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Abstract

Many-Body Localization (MBL) has drawn a lot of attention, having emerged as
a new phase of matter when disorder is present. Numerous studies, both theoretical
and experimental, have investigated the properties of MBL and its dynamics. One
goal is to understand the role of symmetry on the thermal and MBL phases. Although
Abelian symmetries have been thoroughly studied, this is not the case for continuous
non-Abelian symmetries. In this Master’s thesis project, we study the influence of
non-Abelian SU(n), n = 2, 3 symmetries on the ergodic or non-ergodic behavior of
a disordered Heisenberg quantum spin chain. While theoretical studies have proven
that MBL is inconsistent with continuous non-Abelian symmetries, a recent study [1]
has shown that non-ergodic behavior is still possible for an SU(2) symmetric model.
We will use a time-evolution tensor network method, the time-dependent density
matrix renormalization group, to check some of these results, extend the analysis to
larger systems, and also explore the SU(3) symmetric disordered Heisenberg model.
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Chapter 1

Thermalization vs Many-body
localization

1.1 Thermalization in quantum systems

Let us imagine a cup of very hot coffee left outside in the cold Munich weather
in January. Without any physics intuition, we can predict that, after a while, our
coffee will get cold, or in other words, it will reach thermalization. And that is an
easy prediction to make, because thermalization processes are extremely common in
nature (and our everyday life).

However, describing thermalization using the modern microscopic theory, the
quantum theory, is not an easy task. Although, quantum statistical mechanics
can provide some accurate macroscopic predictions for some problems, difficulties
arise when the models become more complicated. In order to study thermalization
we picture our system weakly coupled to an environment. However, if the system-
environment interactions are difficult to model, we will be led to making assumptions
or even fail to describe the system. That was the case until 2008, when M. Rigol,
V. Dunjko and M. Olshanii [2] proved that thermalization can be studied in isolated
systems, without the need to add an environment as a thermal bath. In this case,
the rest of the system acts as a bath to each subsystems.

Since then, it has been established by both theoretical studies and experiments
that there exist two main classes of many-body systems: the ergodic ones and the
many-body localized (MBL). In this chapter, we will review the first class of the
ergodic systems and the phenomenon of thermalization in isolated quantum systems.
For that, we will introduce the eigenstate thermalization hypothesis (ETH), which
explains the microscopic mechanism of thermalization in isolated quantum systems
[3–6].

In statistical mechanics the description of classical systems is based on the ergod-
icity hypothesis:

Ergodicity hypothesis (in statistical mechanics): Over a long period of time, all mi-
crostates of the system are accessed with equal probability.

In quantum systems though this description is problematic. Let us assume that



2 1. Thermalization vs Many-body localization

we have an isolated quantum many-body system in an initial non-equilibrium state
|ψ(0)⟩, such that the energy fluctuations are sub-extensive (they grow slower than the
system’s size). The time evolution of the initial state is determined by a Hamiltonian
Ĥ, as shown below:

|ψ(t)⟩ = e−iĤt |ψ(0)⟩ =
∑
n

Ane
−iEnt |n⟩ (1.1)

Here, the states |n⟩ are the many-body eigenstates of the system with eigenenergies
En. Unlike a classical system, the probability pn =|An|2 to find a quantum system
in a particular eigenstate |n⟩, is determined by the initial state and does not change
over time.

Let’s now assume a physical observable of the system, which is described by an
operator Ô. The average value of operator Ô after time T → ∞ is given by:

⟨Ô⟩∞ = lim
T→∞

1

T

∫ T

0

dt ⟨ψ(t)| Ô |ψ(t)⟩ !
=

∑
n

pn ⟨n| Ô |n⟩ (1.2)

An isolated system, starting from an initial state, can achieve thermalization, if the
system’s observables reach values given by the microcanonical ensembles at sufficient
long times. Thus, the expectation values in individual eigenstates, ⟨n| Ô |n⟩, need to
follow the microcanonical ensemble, in order for the observable Ô to reach a thermal
expectation value for T → ∞, since pn are fixed.

1.2 The Eigenstate Thermalization Hypothesis

The question we want to answer now is: Why ergodic systems thermalize? J.M.
Deutsch [3] (1991) and M. Srednikci [4] (1994) proposed the Eigenstate Thermaliza-
tion Hypothesis (ETH), as an explanation of the thermalization phenomenon using
the properties of individual eigenstates. In particular, the ETH states that, in ergodic
systems, the expectation values in individual states, ⟨n| Ô |n⟩, follow the microcanon-
ical ensemble. It is important to mention here, that although all known examples of
thermalizing systems obey ETH, it is not clear yet if ETH is a necessary condition
for thermalization.

In Eq.1.1, we have assumed that the off-diagonal terms ⟨α| Ô |β⟩ average out.
However, in order to describe the approach to the equilibrium values and bound the
temporal fluctuations around a certain energy, we also need to take the off-diagonal
terms under consideration. In that case, the Eigenstate Thermalization Hypothesis
ansatz [7] is introduced:

⟨α| Ô |β⟩ = Omc(Ē)δαβ + e−SĒ
th/2Rαβf(ω, Ē) (1.3)

where Ē = (Eα+Eβ)/2 denotes the average eigenenergy and ω = Eα−Eβ the energy
difference. SĒ

th is the thermodynamic entropy, Rαβ is a normal-distributed random
number, Omc the microcanonical expectation value of local observable and f(ω, Ē) is
the spectral function. It is important for functions Omc(Ē) and f(ω, Ē) to be smooth
functions of their arguments. The ansatz above is sufficient to ensure thermalization.
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In order to understand why the above ansatz makes sense intuitively, we will
discuss the diagonal and off-diagonal terms separately.

� diagonal term

As we saw in Eq.1.2, the infinite time mean value of an observable can be written
as:

O∞ = lim
T→∞

1

T

∫ T

0

dt
∑
m,n

c∗mcnOmne
i(En−Em)t =

∑
n

|cn|2Onn (1.4)

as the time integral kills all the terms with Em ̸= En. This implies that the
diagonal matrix elements must be given by the microcanonical value for each
eigenstate. That is why function Omc(Ē) has to be a smooth function of energy,
which is equivalent to the microcanonical value. The diagonal term of the ETH
ansatz contains exactly this information.

� off-diagonal term

Let’s consider temporal fluctuations of the observable O.

σ2
O = lim

T→∞

1

T

∫ T

0

dt(⟨O(t)⟩2 −O2
∞) =

= lim
T→∞

∫
dt

∑
m,n,p,q

OmnOpqc
∗
mcnc

∗
pcqe

i(En−Em+Ep−Eq)t −O2
∞

(1.5)

The term that contributes is the one for En = Eq and Em = Ep, which gives:

σ2
O =

∑
m̸=n

|cm|2|cn|2|Omn|2 ≤ max |Omn|2 (1.6)

for the off-diagonal elements. f(ω, Ē) function determines the dynamics of
the observable. One way to see that is to calculate the correlation function
⟨m| Ô(t)Ô(0) |n⟩ using the ETH ansatz, as follows:

⟨m| Ô(t)Ô(0) |n⟩ =
∫
eiωt|fO(Ē, ω)|2dω (1.7)

where the absorption rate is A(ω) = |fO(Ē, ω)|2.

ETH provides also an insight to the entanglement properties of ergodic eigenstates.
Assuming that the eigenstate |n⟩ obeys ETH, then a small subsystem A will have
thermal expectation values. Therefore, the entanglement entropy of subsystem A in
state |n⟩ is equal to the thermodynamic entropy, as follows:

Sent(A) = −Tr(ρA log ρA) = Sth(A) (1.8)
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Since thermodynamic entropy is extensive, this implies that for highly excited
eigenstates |n⟩ the entanglement entropy obeys the volume law, scaling proportionally
to the volume of the subsystem, Sent(A) ∝ vol(A).

The ansatz Eq.1.3 also implies the strong sensitivity of ergodic eigenstates to
external perturbations of the Hamiltonian, from which it follows that there is level
repulsion. Indeed, if we add a small perturbation, ϵÔ, ϵ ≪ 1, to the Hamiltonian,
the off-diagonal elements Eq.1.6 are exponentially larger than the level spacing ∆ ∼
De−SĒ

th/2, where D is the characteristic energy scale of the Hamiltonian. Thus, the
effect of a local perturbation is not local, but it effects an exponentially large number
of eigenstates. The level spacing, then, obeys Wigner-Dyson statistics, where the
eigenenergies behave as independent random variables and level repulsion is present.

How to escape thermalization

In order for a system to reach thermalization, transport must be present. In partic-
ular, the different ergodic subsystems are required to exchange energy and particles,
meaning that the system must be conducting. Therefore, it is reasonable to assume
that the absence of transport could be a way to escape thermalization. The starting
point could be the Anderson localization in single-particle disordered systems.

1.3 Anderson localization

The first introduction of the localization of quantum particles by a static random po-
tential was introduced by P.W. Anderson in his seminal paper ”Absence of Diffusion
in Certain Random Lattices” [8]. It is important to note here, that this study consid-
ers localiazation of a single particle, while MBL theory studies many-body systems
of interacting particles at finite temperature, as we will see later.

Figure 1.1: Due to strong disorder, the probability of a particle to make a resonant
transition vanishes

Anderson considered a tight-binding model of electrons on a crystal lattice, where
the energy levels at each site are chosen by a random distribution. The Hamiltonian
of the system is given by:

H =
∑
i

ϵic
†
icj +

∑
⟨i,j⟩

tijϵc
†
ici (1.9)

where the energies of each site are chosen randomly from a distribution with ϵi ∈
[−W,W ]. This is where disorder appears to the problem.
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The phenomenon of Anderson localization implies that the eigenstates are local-
ized around a center site. We can write the wavefunction as follows:

Ψ(r) ∼ e−
r−r0

ξ (1.10)

where r0 is the position of the center around which the eigenstate is localized and ξ
is the localization length.

Let us now consider the limit of strong disorder, t ≪ W . We will work with just
two sites with hopping amplitude t between them.
The Hamiltonian for these two sites will be:

H1,2 =

[
ϵ1 t
t ϵ2

]
(1.11)

Within first order perturbation theory we can find that:

|Ψ1⟩ ≃ |1⟩+ t

ϵ1 − ϵ2
|2⟩ (1.12)

and

|Ψ2⟩ ≃ |2⟩ − t

ϵ1 − ϵ2
|1⟩ (1.13)

The above result stands in the case that the two nearby sites are off resonant.
However, considering that the energy for each site is randomly distributed, the case
of two sites being resonant |ϵ1 − ϵ2| ≤ t is possible. In particular there a finite small
density of resonant pair of sites.

However, these unusual resonant sites will be in general spatially far apart, so
that their overlap is exponentially small. Therefore, the question that appears here is,
whether the system could be delocalized due to higher order processes. By calculating
higher order perturbations, Anderson proved that, since there are intermediate non-
resonant processes between the two remote resonant sites (assuming that the typical
distance between them is l ∼ N1/d, where N is the number of levels and d the spacial
dimension ), the amplitude between them decays exponentially with l, while the level
spacing only decays as a power law with l (δ ∼ W/N). Therefore, the long range
processes do not lead to de-localization of the system.

1.4 Definition of MBL state

Now, it is time to move from the single-particle localization to the many-particle
localization. We define a many-body localized (MBL) system as the system, which
can be described by a complete set of conserved quantities {nα} with α = 1, ..., N ,
each of which takes values from a set {1, ..., dα}, and their associated quasi-local
conserved projectors called 1-bits:

Πnα
α =

dβ∑
nβ ̸=α=1

|n1...nα...nN⟩ ⟨n1...nα...nN | (1.14)
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which are exponentially well-localized within a localization length ξ of position rα and
commute with the Hamiltonian, [Πnα

α , H] = 0. The quasi-local conserved quantities
are related to local operators after a quasi-local unitary transformation.

The known phenomology of MBL systems, such as area-law entanglement, absence
of transport, slow dephasing and entanglement growth can be based on the above
definition.

1.5 Area law entanglement in MBL

As mentioned above, for systems that obey ETH the entanglement entropy of a
subsystem A obeys the volume law, Sent(A) ∝ vol(A). On the contrary, a subsystem
A in an MBL eigenstate obeys the area-law, Sent(A) ∝ vol(∂A), meaning that it scales
proportional to the volume of the boundary of the subsystem A. In fact, even highly
excited MBL states obey the area-law.

Figure 1.2: Area-law of entanglement entropy, only the boundary contributes to the
entanglement

Let us now consider an MBL system with a local Hamiltonian Ĥ. We can divide
the Hamiltonian into: ĤA, which acts on a subsystem A, ĤB, which acts on the
complement subsystem of A, B, and VAB which couples the subsystems A and B
locally near the boundary. Starting in the limit VAB → 0, the eigenstates can be
written as a tensor product of the eigenstates |α⟩A, |β⟩B of ĤA and ĤB:

|AB⟩ = |α⟩A ⊗ |β⟩B (1.15)

The subsystem A has zero entanglement entropy. Now we turn on the local cou-
pling term VAB, which can be interpreted as a local perturbation of the MBL state,
affecting the subsystems within a localization length ξ from the boundary of A and
B. A local perturbation far away of the boundary is expected to decay exponen-
tially with the distance, leading to an area-law scaling of the entanglement entropy
Sent ∝ vol(∂A).

1.6 Quasi-local integrals of motion

We will try now to understand the definition in section 1.4 in more detail. We consider
the disordered Heisenberg model:

ĤXXZ =
J⊥
2

L∑
i=1

(σ̂x
i σ̂

x
i+1 + σ̂y

i σ̂
y
i+1) +

Jz
2

L∑
i=1

σ̂z
i σ̂

z
i+1 + hzi σ̂

z
i (1.16)
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where σ̂ = (σ̂x, σ̂y, σ̂z) is the vector of the spin-1/2 Pauli operators and hzi ∈ [−W,W ]
is a randomly distributed on-site magnetic field and W is the disorder strength.

We start by taking the limit J⊥ → 0 of the XXZ-Hamiltonian:

Ĥ0 = Jz

L∑
i=1

σ̂z
i σ̂

z
i+1 +

∑
i

hzi σ̂
z
i (1.17)

The Hamiltonian Ĥ0 commutes with each operator σ̂z
i , [Ĥ0, σ̂

z
i ] = 0, therefore

there are 2N eigenstates, which are product states of the form:

|{σ}⟩ = |σ1σ2...σN⟩ (1.18)

where σi =↑, ↓
The system at this point is in the Many-body localization (MBL) state, forW ̸= 0.

Now, we turn on a weak J⊥ term (J⊥ ≪ W ), such that the system remains in the
MBL state, but the Hamiltonian is no longer diagonal in the |{σ}⟩ basis. Using the
same argument we used for the entanglement entropy above, we can claim that the
new egeinstates can be obtained from the product state, Eq.1.18, by a quasi-local
unitary transformation Û [9–11].

Quasi local operator Û : The operator is defined as quasi-local, if it can be fac-
tored into a sequence of 2-site, 3-site,... unitary operators as Û =

∏
i ...Û

(3)
i,i+1,i+2Û

(2)
i,i+1

(Fig.1.3).

Therefore, we obtain the integrals of motion τ̂ zi of Ĥ from the integrals of motion
σ̂z
i by the unitary transformation:

τ̂ zi = Û †σ̂z
i Û (1.19)

At stronger disorder we can write τ̂ zi as an expansion of σ̂z
i , as follows:

τ̂ zi = Zσ̂z
i +

∞∑
n=1

V
(n)
i Ô

(n)
i (1.20)

where Ô
(n)
i contains up to (2n+1)-body operators acting on sites at distance n from

site i and is normalized to ||Ô(n)
i || = 1. Z is the finite overlap of τ̂ zi with σ̂z

i and

the coefficients V
(n)
i ∼ e−n/ξ, satisfies the constraint that the τ̂ zi act on spins locally.

The lengthscale ξ can be viewed as the localization length of the MBL phase, and the
existence of this locality distinguishes the MBL phase from the thermal phase.

The operators τ̂ zi form a complete set of independent quasi-local integrals of motion
(LIOMs) and can be viewed as an emergent conserved pseudospin degree of freedom,
as it is conserved during the evolution of the MBL system, as long as it is not coupled
to an external heat bath. We can also define the operators τ̂x,yi = Û †σ̂x,y

i Û , which
form a complete basis together with τ̂ zi , so that the operators σ̂α

i can be decomposed
in the τ -basis.

In order to study the dynamics of the system, described by the Hamiltonian Ĥ,
in the MBL phase, it is useful to write it in the τ -basis, as follows:
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Figure 1.3: Quasi-local operator Û , written as a sequence of 2-site and 3-site unitary
operators

ĤMBL =
∑
i

hiτ̂
z
i +

∑
i>j

Jij τ̂
z
i τ̂

z
j +

∑
i<j<k

Jijkτ̂
z
i τ̂

z
j τ̂

z
k + ... (1.21)

We note that the above Hamiltonian has a very simple form, including only τ̂ zi
terms, which is reasonable as [τ̂ zi , Ĥ] = 0. The coupling constants decay exponentially
with the separation between the LIOMs, as:

Jij ∝ J0e
−|i−j|/κ (1.22)

and

Jijk ∝ J0e
−|i−k|/κ (1.23)

By equating the Hamiltonian ĤMBL to the original Ĥ we can derive an equality
that connects the lengthscales κ and ξ:

κ−1 ≥ (ξ−1 + ln 2)/2 (1.24)

The above expression indicates κ remains finite, even if ξ diverges at the MBL-
thermal transition.

1.7 The thermal-MBL transition

In this section, we will discuss about the transition between the thermal and MBL
phases. These two phases are characterized by quite different dynamical proper-
ties, therefore they must be separated by a phase transition[12–14]. While crossing
the transition point, there is a drastic change of the entanglement structure from
volume- to area-law. Such many-body localization (delocalization) transitions bear
few similarities with the familiar paradigms of fully- thermal and fully quantum phase
transitions, so understanding this new kind of criticallity is of great significance.
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1.7.1 A localization criterion

Here, we introduce a rough criterion[12], that will enable us to determine if a state lives
in the thermal or MBL phase, with a later goal to understand the transition between
them. For that we will again consider the 1-D spin chain system with Hamiltonian:

Ĥ0 =
L∑
i=1

JŜiŜi+1 +
∑
i

hiŜ
z
i (1.25)

where hi ∈ [−W,W ] is randomly distributed and represents the disorder.
To test localization, we will start by computing the transition amplitude Γ, for

our system from an initial product state |Ψ⟩ to a final state |Ψ⟩′. For a transition
between two typical infinite-temperature spin configurations, we need to flip ∼ O(L)
spins, leading to a total transition amplitude of:

Γ ≃
(
W

J

)L

≃ e−L/x0 (1.26)

where x0 ≃ (logW/J)−1 is the single particle localization length. For weak disorder,
the transition amplitude gives an asymptotic form Γ ∼ 2−L/2, as in the thermal phase
eigenstates are random superpositions of all typical spin configurations.

In order to check whether such a typical macroscopic rearrangement of spins occur
resonantly, we will compare the transition amplitude with the energy level spacing δ
between the states. In our case the energy level spacing is given by:

δ ≃ Λ

2L
≃

√
L

2L
(1.27)

where Λ ∼
√
L is the many-body bandwidth. We introduce the dimensionless ratio

g, as:

g = Γ/δ (1.28)

which measures the degree to which transitions between different spin configurations
are resonant.

Figure 1.4: The many body level spacing as a criterion to distinguish between thermal
and MBL phase
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In particular, for strong disorder, meaning g ≪ 1 the eigenstates are perturbatively
close to non-entangled product states, with limited many-body tunneling processes,
which represent the MBL-like picture. On the other hand, g ≫ 1 means that resonant
tunneling between all typical spin configurations is present, a picture consistent with
the thermal phase.

1.7.2 Critical value of the resonance ratio g

As mentioned above, the thermal-MBL transition has unique characteristics. The
resonance ratio g is a random, fluctuating function of the disorder, where the fluc-
tuations are extremely strong. As a result, it would be wrong to assume that the
transition occurs when gc ≃ 1. As the parameter g characterizes collective many-
body resonances, it is exponentially sensitive to extensive fluctuations. This leads to
the fact that the mean value of g is ill-defined, and we must study its full distribu-
tion instead. Thus, the MBL transition can be viewed as a strong-randomness phase
transition.

One way to study the transition for our system, keeping in mind that g is charac-
terized by strong randomness, is to separate our system into blocks of thermal regions
(g ≪ 1) and blocks of insulting ones (g ≫ 1). The tricky case of g ∼ 1 is not likely to
appear, given the broad distribution of g, something that makes the problem easier
to deal with.

Now the question that arises is: how big do the thermal or insulting blocks need to
be for the system to be in the thermal or MBL phase respectively? Let us assume two
locally thermal clusters of length l separated by a locally insulting cluster of length
L − 2l (Fig.1.5). The two thermal clusters can interact via tunneling through the
MBL block with amplitude ∼ e−(L−2l)/x0 , where x0 is the localization length. For an
adequately large interaction (larger than the level spacing δ ∼ 2−2l) the two thermal
cluster will inter-resonate and form a big thermal cluster, for l = l∗ ≃ L

2(1+x0/ log 2)
.

Therefore for l > l∗, the thermal blocks act as a bath, that thermalizes the inter-
mediate localized spins. The transition is expected for thermal block sizes close to
l∗.

Figure 1.5: Locally thermal and insulting clusters

1.7.3 Scaling properties of the MBL transition

Upon weakening the disorder, an 1-dimensional MBL system melts directly into an
incoherent thermal liquid via a continuous second order phase transition. Studies
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have shown that this phase transition is governed by a diverging length scale:

ξ ∼ 1

|∆W |ν
(1.29)

where ∆W = W −Wc, with Wc being the critical value of the disorder and ν is the
correlation length exponent. Exact diagonalization simulations have found νED ≃ 1,
while RG approaches suggest larger values like νRG ≃ 3.2− 3.5 [15, 16].

1.7.4 Critical dynamics

As we argued above, the critical point of the transition between the two phases is
determined by locally thermal blocks tunneling through MBL blocks, that fill the
system. The characteristic time that is needed to tunnel through an MBL block
of length ∼ L, therefore thermalize the localized spins, is exponentially slow at the
transition point:

τ(L)|W=Wc ∼ e−L (1.30)

We can compare this with characteristic times of ordinary critical points, where
τ ∼ Lz, with z is a finite dynamical exponent and conclude that critically (de)-
localized systems have dynamics with infinite dynamical exponent z → ∞.

MBL systems do not reach equilibrium, they have virtual dephasing dynamics and
strictly zero long-distance transport of conserved quantities, like energy or particles.
In contrast, for L ≪ ξ an exponentially slow non-zero transport is present, driving
the system to equilibrium.

1.7.5 Thermalization breakdown towards MBL phase

Next, we will discuss about how the transport and relaxation dynamics slowly stop
at the MBL transition. Starting from the thermal side, where we expect τ(L) ∼ DL2

(D is the diffusion constant), we want to approach the transition on scales L ≪ ξ.
RG approaches, as well as exaxt diagonalization simulations have found that near the
transition the relaxation is never diffusive, but scales like τ(L) ∼ Lz with z > 2. The
dynamical exponent z continuously evolves in respect to the disorder at a diverging
way, as:

zO =
cO

|W −Wc|ν
(1.31)

where cO is a non-universal number that depends on the observable O that is relax-
ing to equilibrium. These observables O, which can be the energy or entanglement
for example, have different dynamical critical exponents, but diverge with the same
universal power law in the vicinity of the transition point.

These unusual sub-diffusive dynamics can be explained by the existence of rare
insulating regions between the thermal regions, which slow down relaxation and trans-
port. Let us assume that there is such an insulating region of length r within a wide
thermal region. On the thermal side of the transition the probability of finding such
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Figure 1.6: Plot taken from [12]: Scaling structure of the MBL transition

an insulating region scales as e−r/ξ, where ξ is the correlation length. The charac-
teristic relaxation time of this region scales as τ(r) ∼ er/xO , which means that the
expected time diverges near the transition, where ξ > xO.

The size of these bottleneck-type regions scales as:

r∗ ∼ ξ logL/ξ (1.32)

and the relevant tunneling time scales as:

τ(r∗) ∼ er∗/xO ∼ Lξ/xO (1.33)

This is in accordance with Eq.1.31, as the correlation length diverges as ξ ∼ 1/|W −Wc|ν .

1.7.6 Entanglement at the transition point

Entanglement plays a key role to the study of the thermal-MBL transition, as well as
MBL phase in general, and its behavior is addressed in most of the studies on that
topic. However, there is not a clear picture concerning the scaling of entanglement
right at the transition so far. For small subsystems, LA ≪ L, and assuming that the
entropy is a continuous scaling function of LA/ξ, it is proven that the entanglement
entropy follows a thermal volume-law scaling at the MBL criticality. However, exact
diagonalation studies [17–19], on cases that are not in the small subsystem regime,
have found a sub-thermal regime, as well as a discontinuity of the entanglement
entropy at the transition point. For cases where L≫ ξ, with ξ being the characteristic
length scale, entanglement entropy displays a discontinuity across the transition, from
a thermal volume-law to an area-law.

1.8 Example: The spin-1/2 Heisenberg chain in a

random magnetic field

Now we will study the example of a spin-1/2 Heisenberg chain in a random magnetic
field to understand the properties of both thermal and MBL phases, discussed above.
This example is the most studied one [20], thus perfect for this goal.
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The Hamiltonian of this one-dimensional lattice model is given by:

Ĥ = J

L∑
i=1

(σ̂x
i σ̂

x
i+1 + σ̂y

i σ̂
y
i+1 + σ̂z

i σ̂
z
i+1) + hzi σ̂

z
i (1.34)

where the magnetic fields hi are randomly distributed with a disorder strength hi ∈ [−W,W ].
The symmetry of the model is U(1) as the total magnetization is conserved.

Using this example we will discuss about both thermal (ETH) states and MBL
states especially for models that describe:

� isolated quantum systems

� eigenstates at finite energy density (far from the ground state)

� lattice systems with energy spectrum that is often bounded

� one-dimensional systems with short-range interactions

Thermalization phase
For sufficiently low disorder the system satisfies the eigenstate thermalization hy-

pothesis (ETH), with the assumptions about the diagonal and off-diagonal elements
of ETH ansatz we mentioned in the previous chapter. These assumptions have been
verified numerically in a variety of studies on different systems [2, 21, 22]. We expect
to verify the ETH for energies close to the middle of the spectrum, as for the spectrum
extrema, convergence to ETH expectations is slower. This is the reason why Fig.1.7
includes data in the range ϵ ∈ [0.15, 0.9].

Figure 1.7: plot taken from [17]: Phase diagram of the random field Heisenberg
spin chain, where the vertical axis is the normalized energy density and horizontal
axis is the disorder strength h

Thermal eigenstates that live at the same energy density (same ϵ) have the same
expectation value for few-body observables, therefore can be considered similar. in
Fig.1.7 these states are depicted with the same color. Especially in the middle of the
spectrum, which corresponds to infinite temperature, eigenstates behave exactly like
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random vectors, and can be described by statistical mechanics.

Many-body localization (MBL) phase
In order to avoid the ETH picture, and as a consequence thermalization, suf-

ficiently strong disorder is necessary. For our example Hamiltonian, in the strong
disorder limit h → ∞, the eigenstates become product states of the form |{σ}⟩ =
|σ1σ2...σN⟩, with σz

i = ±1. These eigenstates do not satisfy the ETH and the sys-
tem does not end up in the thermal phase. Instead it is localized and without any
interaction there is no particular mechanism, which could lead to energy or parti-
cle exchange. Nevertheless, the MBL phase can be present even for systems with
interactions between particles in the presence of disorder [23, 24].

1.8.1 Spectral statistics of ETH and MBL phases

Here we will discuss the different properties of the eigenstates that are connected with
the existence of an ETH or MBL state.

Firstly, let us discuss the spectral statistics of the two phases. In the ETH phase,
the eigenvalues follow the statistics of Random Matrix Theory. For the model Eq.1.34,
the eigenvalues follow the Gaussian Orthogonal Ensemble (GOE) statistics, as the
Hamiltonian has only real elements in the σz basis. As a result the eigenvalues satisfy
the Wigner semi-circle law and the level spacings sn = En − En−1 distribution the
Wigner-Dyson law.

One way to distinguish ETH from MBL phase is to compute the average ratio of
consecutive level spacings rn = min(sn,sn−1)

max(sn,sn−1)
, as introduced by Oganesyan and Huse[25].

In the GOE ensemble, for the case of the ETH phase, the average value is ⟨r⟩GOE ≃
0.5307, while in the MBL phase, where eigenvalues are not correlated and thus follow
the Poisson distribution, it takes the value ⟨r⟩Poisson ≃ 2 ln(2)− 1 ≃ 0.386.

A second way to distinguish the two phases is by studying the eigenstates. The
eigenstates of a system that satisfies the ETH are similar, while for a MBL system they
are different. Therefore, we can compare the distribution of amplitudes, pi = |⟨n|i⟩|2,
of two nearby eigenstates, with respect to the basis state |i⟩, with the Kullback
Leibler divergence: KL = −

∑
i pi ln

pi
p′i
. If the system satisfies the ETH, then the

GOE ensemble will give ⟨KL⟩GOE = 2, while if the system is in the MBL phase,
⟨KL⟩ diverges with respect to the system size.

1.8.2 Entanglement Entropy

In the MBL phase entanglement entropy follows the area law, especially SA = O(1)
for a spin chain. Exact diagonalization results for the chain system of our example
are shown in Figure 1.8. In particular, the disorder average entanglement entropy
of half chains LA = L/2 for an excited state of high energy (ϵ = 0.5) is shown as a
function of the size of the system L and disorder strength h. At disorder strength
h ≃ 3.8 the entanglement entropy moves from the volume- to area-law. We can make
the following observations about MBL states concerning entanglement properties:

� MBL states at finite energy are related to ground states of many body systems
that satisfy the area-law
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� MBL states can be represented by matrix product states (MPS)

Figure 1.8: plot taken from [17]: Exact diagonalization results of the entanglement
entropy for the random filed Heisenberg model

1.8.3 Transport

Thermalization in states that satisfy the ETH is the result of transport of energy,
particles and information. In the case of MBL states transport is absent. There are
studies [26, 27], where numerical calculations of the conductivity are made for our
example model in Eq.1.34. In the MBL phase, the dc conductivity σdc = limω→0 σ(ω),
was found to vanish for any finite temperature. However, for very low disorder, where
the states satisfy the ETH, it is very difficult to numerically prove that the system
has a metallic behavior.

1.8.4 Many-body mobility edge

A debated topic concerning ETH and MBL states is whether the location of the
transition line between the two phases depends on the energy density. As we can see
in Fig.1.7, the transition line clearly depends on the energy density. This is so-called
many-body mobility edge. There are plenty of studies of the same or other models
that have found a mobility edge [28–32].

However, there are studies [33] which argue that no many-body mobility edge can
exist in the thermalization limit. This claim is based on the argument that local
mobile fluctuations are always possible. This fluctuations have higher energy than
the background and can thermalize the “cold” subsystems, leading to thermalization.
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1.9 Experiments

Searching for MBL in experiments is a quite challenging task. The reason is that
the systems have to remain disconnected from any thermal bath, which is difficult to
achieve during experimental processes. Thus, most of the efforts done so far include
ultracold atoms experiments, ultracold ions experiments, superconducting qubits ex-
periments and a few attempts with real materials[34].

The first experiments concerning MBL[35] were based on ultracold atoms at high
energy densities. The authors studied the one-dimensional Fermi Hubbard chain of
interacting spin mixtures of two spin components. In the presence of a quasiperiodic
potential the Hamiltonian takes the form:

Ĥ = −J
∑
i,σ

(
ĉ†i,σ ĉi+1,σ + h.c.

)
+∆

∑
i,σ

cos(2πβi+ ϕ)n̂i,σ + U
∑
i

n̂i,↑n̂i,↓ (1.35)

where ĉ
(†)
i,σ are the fermionic operators, U is the onsite interaction strength and ∆

the strength of the quasiperiodic detuning potential. The initial state prepared, was
a density-wave state where particles occupy even sites. Then, the imbalanced I =
⟨(Ne − No)/(Ne + No)⟩ was measured for different potential strengths. What was
observed (Fig.1.9), is that for weak detuning potential the imbalance relaxed rapidly,
while for stronger detuning potential it saturates to a non-zero value. The first case
indicates thermalization, while the second case is clear evidence of localization.

Figure 1.9: plot taken from [35]: Time evolution of initial density wave in
a quasiperiodic potential in the interacting Aubry-André model. The plot shows
the imbalance for different detuning potential strengths, providing evidence of non-
ergodicity

Moreover, an experiment [36] in a two-dimensional system of interacting bosons
in presence of a two dimensional disorder pattern showed evidence of localization for
strong disorder (Fig.1.10).
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Figure 1.10: plot taken from [36] Evidence of non-ergodicity in two dimensions.
Starting with a domain wall of a bosonic Mott insulator, time evolutions shows that
the domain wall does not fully disappear after long time

Evidence of a localized phase were also presented in an experiment with ultracold
ions[37]. In particular, the disordered transverse field Ising model with long range
interactions was simulated by ten ultracold ions. The authors observed that starting
from an initial Néel state, a stationary magnetization appeared for a strong disorder.

Figure 1.11: taken from [38] Left panel: Optical micrograph of the superconducting
qubits device used for the experiment. Right panel: For a system of two interacting
photons on nine lattice sites and a local disorder potential, the level spacing statis-
tics changes from a Gaussian orthogonal ensemble for weak disorder to a Poisson
distribution for weak disorder

Finally, superconducting qubit circuits[39] have been used in search for localiza-
tion. The MBL level statistics have been studied[38] for disordered and non-disordered
systems, revealing different behavior for each case Fig.1.11. In a different experi-
ment[40], the disordered XY-spin Hamiltonian was simulated by ten superconducting
qubits, showing again evidence of a localized phase.





Chapter 2

Many-body localization vs
symmetry

One of the many directions that MBL studies take, try to find answers on how sym-
metry affects whether the system has MBL or thermal tendencies. In this section we
will discuss about some general constraints that are imposed on many-body localiza-
tion in the presence of symmetry. This chapter contains all the knowledge we had
before this master project.

2.1 Local symmetry action

Let us consider a lattice of N sites. The degrees of freedom of the system transform
under a faithful representation V of a symmetry group G. The Hilbert space of the
system of N -site lattice can be written as a tensor product of on-site Hilbert spaces,
as H = V⊗N . As we have considered a faithful representation, all the irreducible
representations of the symmetry G are included in the above tensor product for a
sufficiently large N.

Let us also label as gi ∈ V the representation of the symmetry generator g ∈ G on
the site i. A symmetry G preserves the MBL phase if the local conserved quantities
labeling, Eq.1.14, is consistent with the symmetry G then:

[Πnα
α ,

∏
i

gi] = 0 (2.1)

In that case the symmetry action factorizes on the local 1-bits, as:

Vnα1 ...nαN
= Vnα1

⊗ · · · ⊗ VnαN
(2.2)

considering that the operators are strictly local.

2.2 Example of MBL phase preservation

An example[41] of local factorization of symmetry on the 1-bits is the MBL Ising
paramagnet:
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H = −
L∑
i=1

hiσ
x
i + ... (2.3)

where the symmetry of the system isG = Z2 and the dots represent possible symmetry-
preserving perturbations. The integrals of motion of the system are the σx

i and its
eigenstates are a product state of definite σx

i = ±1. We can derive the local conserved

projectors by a quasi-local unitary transformation U on σx
i , such as Πn=0,1

αi
= U † 1±σx

i

2
U .

The local action of the symmetry is given by:

ĝαi
= U †σx

i U (2.4)

Here ĝαi
commutes with the Hamiltonian H, [ĝαi

, H] = 0, as they commute
with all the conserved quantities Πn=0,1

αi
. Therefore, starting with a global symmetry

[
∏

i gi, H] = 0, the system factorizes into local symmetry for the MBL system

2.3 Non-abelian symmetries

Now let us assume that a system has a non-abelian symmetry G. In this case there
are some irreducible representations of G that are necessarily multidimensional. This
means that for an MBL state, there will be a multiplet structure, where local degrees
of freedom cost no energy to excite, leading to the localization breaking[41].

In order to make the above argument clearer, we will assume that there is an
MBL system with non-abelian symmetry G. We will conclude that such a case is
not stable. In the 1-bit space, the Hilbert space has the form H = ⊗αVα, where the
reducible representation Vα can be decomposed as Vα = ⊗dα

nα=1
Vnα . If the symmetry is

non-abelian, some of the irreducible representations Vnα have dimension larger than 1.
That means that we have to introduce an additional number pα = 1, ..., (dimVnα) to
the quantum number nα, in order to label an eigenstate. This leads to an exponential
degeneracy of the eigenstates of the Hamiltonian.

As we saw above, the global symmetry is promoted to a local symmetry, as we
assume that the system is in an MBL phase. Therefore, the local symmetry leads
to local degeneracies, which results to an exponential-in-system-size degeneracy of all
eigenstates. Such degenerate eigenstates are inherently unstable, even to infinites-
imally small perturbations. This degeneracy can not be resolved, thus either the
symmetry or the localization must break down. Whether the symmetry or the
localization will break down considering a specific system depends on some simple
principles.

2.4 General symmetry principles

The following symmetry constraints are based on this study [41]. First of all, in the
case of weak disorder, we expect that the local excitations will overlap, leading the
system always to thermalization.

The cases for a system with strong disorder are the following:



2.5 Systems with SU(n) symmetry - what we know 21

1. If the non-abelian symmetry group G has irreducible representations of bounded
dimension, then there are two possible outcomes:

� the system forms an MBL state in which symmetry is spontaneously broken
down to an abelian subgroup [42].

� the system forms a symmetry preserving quantum critical glass (QCG), an
intermediate phase between thermalization and localization. Such a system
cannot be described by a set of independent conserved quantities[43].

2. If the non-abelian symmetry group G is continuous, the irreducible representa-
tions are allowed to have an arbitarily large dimension (2S + 1 for SU(2)). In
this case the result is thermalization even for strong disorder[41].

3. If the symmetry group is abelian, then a stable MBL phase is allowed, as we
saw in the Z2 example above.

We gather all the possible symmetry cases and their thermal/MBL expectations,
in the table below:

group G finite #irreps #irreps → ∞

|V| = 1 MBL allowed (Zn) MBL allowed (U(1))

1 < |V| <∞ MBL + Sym. Spont. Broken
(or Quantum Critical Gases)

MBL + Sym. Spont. Broken

|V| → ∞ - only thermalization allowed

2.5 Systems with SU(n) symmetry - what we know

Based on the discussion above, SU(n) symmetries, being continuous and non-Abelian,
are inconsistent with the MBL phase. However, it not obvious that thermalization is
the only path that disordered SU(n) symmetric systems follow, whatever the disorder
strength. In fact, there are two previous studies on the SU(2) disordered Heisenberg
model [1, 44] that show evidence that this is not the case. The SU(2) disordered
Heisenberg model is defined in Chapter 3.

In a bit more detail, the authors claim that for sufficiently strong disorder SU(2)
symmetry allows an non-ergodic phase, although generally unstable, which lies be-
tween the thermal and MBL phase. ED results of the half-chain entanglement entropy
till L = 20, Fig.2.1, show an non-ergodic behavior of systems under strong disorder.
This ergodicity breaking behavior phenomenon disappears as we move to weaker
disordered realizations, shown by the linear fit with the thermal expectation of the
entanglement scaling with length.
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Figure 2.1: plot taken from [1]: Median value of the half-chain entanglement
entropy for disorder strength α = {0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6} with respect to chain
length. Linear fit shows the ergodic tendency of the weaker disorder realizations

Further analysis, using the SDRG method, offered an approximation concerning
the chain length that is needed, so that we could see evidence of thermalization
even with strong disorder. The authors claim, that for strong disorder, there is an
ergodization length scale, Lerg, determined by the dashed line in Fig.2.2, after which
spin resonances start to increase rapidly, leading the system, very slowly, towards
thermalization.

Figure 2.2: plot taken from [1]: Maximum density of the resonant spins developed
in the course of SDRG as a function of system size

Based on the above claims, the non-ergodic phase is characterized as unstable,
although the time scales are large enough for an experiment to observe ergodicity. In
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our analysis we are able to achieve simulations for sizes close to the Lerg ∼ 100 for
disorder strength α = 0.5, thus we will try to check if the above approximation seems
reasonable.





Chapter 3

Time evolution of SU(n) disordered
Heisenberg chains

3.1 SU(2) symmetric model

The model, we will study in this chapter, is the so called disordered Heisenberg chain
with spin-1/2 sites, where SU(2) symmetry holds. The Hamiltonian that describes
the model, is the following:

H =
∑
i

Ji · SiSi+1 (3.1)

where Si are the spin operators (Sx,Sy,Sz) and Ji > 0 the coupling constants between
the sites in the antiferromagnetic case. We add the disorder in our model by letting the
coupling constants Ji be drawn from the power-law distribution[45] (beta distribution
for b = 1):

P (Ji) =
α

J1−α
i

, with 0 < J < 1 (3.2)

The coupling distribution above appears naturally in low temperature studies and
is consistent with earlier experimental results[46, 47].

Parameter α controls the disorder. In particular:

� small α (< 1) → strong disorder

� large α (≳ 1) → weak disorder

Indeed, the disorder can be quantified by the ratio of two neighboring sites’ cou-
plings, as follows:

max (|Jk|, |Jk+1|)
min (|Jk|, |Jk+1|)

= e1/α (3.3)

It is clear from the equation above, that for small α the ratio becomes expo-
nentially large. In the examples below, we will consider the α = 0.5 case as very
strong disorder and α = 1 as weaker disorder. This dinstiction is also supported by
a previous study of disordered Heisenberg chains with SU(2) symmetry [1].
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Figure 3.1: Cartoon of the coupling disorder

Setting

1. For a chain of L sites, we produce L-1 coupling constants Ji, drawn from the
power law distribution above

2. We prepare an initial state |ψt=0⟩ in the form of an MPS. We have considered
two different initializations, one consisted of nearest neighbour singlet bonds,
which belongs to the lower energy regime and one of nearest neighbour triplet
bonds, which belongs to the high energy regime, roughly corresponding to an
infinite temperature state.

3. We let the MPS evolve in time, using the tdDMRG method with Trotter time
step δτ = 0.1 and bond dimension D = 1024 or D = 2048, as we will describe
later.

3.2 SU(2) - Initialization

As mentioned above, we have chosen two different initial states, |ψ(0)⟩, for the time
evolution process:

� The first one is an MPS, which consists of a series of nearest neighbour singlets
(Stot = 0), keeping the total spin of the chain at 0.

� The second one is an MPS, where the nearest neighbour spins form a triplet
state, in such a way that the total spin of 4 sites is 0. That way, the total spin
of a chain with length multiple of 4 remains also 0.

Figure 3.2: The two SU(2) initializations

When studying the MBL or thermal phase of a system, it is important to choose
an energy range for the initial state close to the middle of the spectrum, where the
density of states is sufficiently large. The time evolution process preserves the total
energy of the system, therefore the time evolved states after any time t should have the
same energy as the initial state. Away from the middle of the spectrum, convergence
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to thermal phase becomes extremely slow. This can be also realized by the ETH
ansatz:

⟨α| Ô |β⟩ = Omc(Ē)δαβ + e−SĒ
th/2Rαβf(ω, Ē) (3.4)

The off-diagonal term of the ETH ansatz contains the factor e−SĒ
th/2 , where SĒ

th is
the thermodynamic entropy for energy E. This is analogous to the density of states.
Therefore, the middle of the spectrum is usually chosen for ETH studies.

At this point, it is crucial to check in which energy range the two initial states,
proposed above, live. For that, we produce 25 J-configurations for two different disor-
der strengths α = 1 and α = 0.5. For each one of them, we calculate the energy of the
ground state of the particular Hamiltonian using the Density Matrix Renormalization
Group (DMRG), described in section A.5. The highest energy of the spectrum is given
by Ehighest(J) = −Egs(−J), where Egs(−J) is the ground state of the Hamiltonian
after taking J → −J , computed again using the DMRG method. Then, we calculate
the energy ⟨ψinit|Ĥ|ψinit⟩ for both initializations and all J-configurations. The energy
analysis results for the two disorder strengths are shown below:

Figure 3.3: Energy of the ground state, the sinlget initial state and the triplet initial
state for 25 random J-configurations (25 random Hamiltonians) and α = {0.5, 1}

From the energy analysis above, it is obvious that the nearest neighbour singlet
initialization could be considered as a low-energy state, while the nearest neighbor
triplet initialization as a high-energy state. As mentioned above, the high-energy
regime is mostly preferable for ETH/MBL studies, thus the second initialization seems
to be a better candidate.
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3.3 SU(3) symmetric model

The next goal of this project is to study the SU(3) symmetric disordered Heisenberg
model. The Hamiltonian describing the model has the same form as in the SU(2)
case:

H =
∑
i,α

JiS
α
i S

α
i+1 (3.5)

with the difference that here the Sα
i are the SU(3) spin operators referring to the λα

generators of SU(3) symmetry and the sum over α extends over these N2 − 1 = 8
generators.

The 8 generators of SU(3) can be written in a matrix form (Gell-Mann matrices)
as:

λ1 =

0 1 0
1 0 0
0 0 0

 λ2 =

0 −i 0
i 0 0
0 0 0

 λ3 =

1 0 0
0 −1 0
0 0 0



λ4 =

0 0 1
0 0 0
1 0 0

 λ5 =

0 0 −i
0 0 0
i 0 0

 λ6 =

0 0 0
0 0 1
0 1 0



λ7 =

0 0 0
0 0 −i
0 i 0

 λ8 =
1√
3

1 0 0
0 1 0
0 0 −2



(3.6)

For SU(3) symmetry, we use locally the defining representation (10) = , where
q = (q1q2) specifies the Young tableau as follows: q1 is the offset of number of boxes
from 1st to 2nd row and q2 from 2nd to 3rd row.

Therefore, = (10) and its dual = (01).

For the SU(3) model, we will discuss only the strong disorder regime with disorder
parameter α = 0.5. For that purpose, instead of generating new random coupling
J-configurations, we will use the ones already generated for the SU(2) model, as
described in section 3.1, so that we can additionally compare the two models for each
configuration separately for L = 24, L = 48 and L = 96.

3.4 SU(3) - Initialization

Again, we will follow the same reasoning as in the SU(2) case, described in section
3.2, in choosing a suitable initial state for our purpose. The main goal is to find an
initial state with energy lying close to the middle of the spectrum (E ∼ 0). The choice
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of the subspaces for each site is also restricted by the fact that the total MPS has

to be in the fully antisymmetric subspace , or = (no box) = (00) in the Young

tableau notation.

By calculating the energy of different initial state realizations, we conclude that a
suitable initial state can be constructed by choosing the subspaces shown below, for
each 3 sites:

� 3-site multiplet: q = (30), (fully symmetric subspace)

� 6-site multiplet: q = (11), [d = 8],

� 9-site multiplet: q = (00), (no box)

The energy of the initial state above is around E ∼ −0.1, tested for different
random J-configurations.

3.5 Time-dependent Density Matrix Renormaliza-

tion Group (tDMRG)

There is a variety of time-evolution methods based on tensor networks’ techniques for
initial matrix product states, like the Time-Dependent Block Decimation (TEBD),
TEBD2, TEBD4 and Density Matrix Renormalization Group (DMRG) [48, 49].
For our time-evolution calculations we will use a powerful time-dependent DMRG
(tDMRG)[50–52] code written by Andreas Weichselbaum using the QSpace tensor
network library.

Algorithm

The tDMRG algorithm is based on the idea of combining the Trotter decomposition
method and the DMRG algorithm (AppendixA). Assuming that the Hamiltonian
describing the system is Ĥ, we want to compute the time evolution of a state |ψ⟩ by
applying the time-evolution operator:

Û = e−iĤt (3.7)

to the initial state.

� As in the Trotter decomposition method, the first step is to separate the Hamil-
tonian into an odd and an even term, where the odd term refers to the odd
bonds (1− 2, 3− 4, . . . ) and the even term to the even bonds (2− 3, 4− 5, . . . )
of the one dimensional chain. By introducing an infinitesimal time interval τ ,
the time-evolution operator Eq.3.7 takes the form:

Û(t) =
(
e−i(Ĥeven+Ĥodd)τ

)N ≈
(
e−iĤevenτe−iĤoddτ +O(τ 3)

)
(3.8)
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Figure 3.4: Odd-bond time evolution operators applied on the MPS

� By separating the Hamiltonian in odd and even terms, we have ensured that all
the operators applied on odd (or even) bonds commute with each other. That
is not the case for operators sharing the same site (H12 and H23 for example).
Thus, we can construct an MPO for all the odd- (even-) bond operators and
apply them at the same time Fig.3.4.

� We can start with applying the MPO referring to the e−iĤoddτ operators on all
the odd bonds. After reshaping and applying SVD we end up to the updated
tensors of each odd bond, Fig.3.5

Figure 3.5: SVD step leading to the updated tensors

� The next step is where the DMRG ideas are applied. We need to variationally
minimize the quantity:

| |ψ(t+ τ)⟩+ |ψcompressed⟩ |2 (3.9)

where |ψ(t+ τ)⟩ is the MPS after the application of the odd-MPO, with bond
dimension Dd and |ψcompressed⟩ is the compressed MPS with bond dimension D.
This is done with one-site DMRG tensor updates and sweeps till the minimiza-
tion is achieved.

� Finally, we apply the even-MPO to the compressed MPS and repeat the steps
above.
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Errors

While using the tdDMRG algorithm it is crucial to monitor the error that affects the
time-evolution of the MPS for each time t. In our case, we considered the calcula-
tion inaccurate at the point when the normalization of the state had fluctuations of
the order of 10−6. At that point, fluctuations to the total energy where becoming
significant.

The tdDMRG error is the result of two contributions:

1. Trotter error

The Trotter error is the result of the discretization of time into smaller time
intervals. Thus, it grows with each step τ and linearly with time. We can reduce
it by choosing smaller time intervals τ .

2. Truncation error:

The truncation error is the result of SVD truncation and grows exponentially
with time, for the case that the entanglement entropy increases linearly with
time. For strongly localized states we can, therefore, reach longer time scales.

For our time-evolution measurements, we monitor the impact of the above errors
to the results by checking the normalization of the state for any time t and the total
energy. As we will see later in the analysis of the results, the calculations are stopped
at earlier times to secure accuracy of the results.





Chapter 4

Results and analysis

We apply the tDMRG method described above on the two initializations of the SU(2)
and SU(3) symmetric disordered Heisenberg model to produce time-evolved states for
different chain lengths and disorder strengths, which will be specified below. We can
now make measurements of quantities of interest and study their dynamics over time.

4.1 Spin-spin correlations

The first promising candidate of such a measurement is the spin-spin correlations

⟨ψ(t)|SiSj |ψ(t)⟩ (4.1)

where |ψ(t)⟩ is the state of the system at time t, in our case the time-evolved MPS
after time t, and Si the spin operator acting on site i. In our case the states ψ(t)
are not the eigenstates of the system, so we can not check the validity of the ETH
(Eq.1.3). Instead, we will study how the spin-spin correlations relax over time, when
disorder is presence.

Figure 4.1: SU(N) Young tableaux for (a) the defining irreducible representation that
describes the spin of a site, (b) the symmetric and (c) the antisymmetric subspace of
two such spins

Before analyzing the results, we should discuss about what values we expect
from this calculation for SU(N) quantum spin systems with local spins in the N -
dimensional fundamental irreducible representation of SU(N) (Fig.4.1). For an SU(N)
invariant state, the two site density matrix of dimension N2 has a symmetric subspace
of dimension N(N + 1)/2 and an antisymmetric subspace of dimension N(N − 1)/2.
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Then the spin-spin correlations are given by:

⟨SiSj⟩ =
1

2

(
pS − pA − 1

N

)
, (4.2)

where pS is the total weight of the state on the symmetric subspace and pA on the
antissymetric subspace respectively.

Calculation of ⟨SiSj⟩ with tensor networks

The calculation of spin-spin correlations in the tensor network language is a
trivial one. We first construct the MPO of the SiSj by contracting the two
3-leg spin tensors that correspond to sites i and j respectively and contract
it with the corresponding physical legs of the MPS. Then, we calculate the
average of the operator by contracting the remaining open physical legs.

Figure 4.2: Spin-spin correlations calculation in tensor networks representation

SU(2) symmetry

For N = 2 (SU(2) symmetry), the value of the spin-spin correlations for a singlet
bond (anti-symmetric subspace pA = 1) is −3

4
, while for a bond forming a triplet

(pS = 1) is +1
4
. At infinite temperature ⟨SiSj⟩ → 0. A way to think about the

infinite temperature limit, is to imagine that at T → ∞ each spin-bond state will
be a mixture of the singlet state and the three triplet states with equal probability,
resulting to ⟨SiSj⟩ = 1

4
·
(
− 3

4

)
+ 3 · 1

4
·
(
+ 1

4

)
= 0.

The static spin-spin correlations for the second initialization chosen for SU(2), as
in Fig.3.2, and an L = 24 chain is shown in Fig.4.3

The 4-spin triplet structures described in Fig.3.2 are represented in the color-plot
below as colored “islands”. Indeed, the red squares represent the triplet bonds with
⟨SiSi+1⟩ = +1/4, while the blue squares with ⟨SiSi+1⟩ = −0.5 are the additional
spin-spin correlation needed, so that the 4-spin block has total spin equals 0.

SU(3) symmetry

For N = 3, Eq.4.2 gives the expected ⟨SiSj⟩ values for the fully symmetric and anti-
symmetric subspaces. In particular, ⟨SiSj⟩ = −2

3
for the anti-symmetric subspace
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Figure 4.3: ⟨SiSj⟩ − 3/4δij colorplot for the SU(2) initial state

and ⟨SiSj⟩ = 1
3
for the anti-symmetric subspace.

The spin-spin correlations colorplot for the initial state, as described in section
3.4, can be seen in Fig.4.4.

Figure 4.4: ⟨SiSj⟩ − 3/4δij colorplot for the SU(3) initial state

Here, the 9-spin structures are more complicated as many subspaces are involved.
Nevertheless, the fully (anti-)symmetric two-site bonds can be seen, like the fully
symmetric (2, 3)−bond for each 9-site structure for example.
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Dynamics

The behavior and dynamics of a random Heisenberg chain as it evolves through time
can be qualitatively revealed by tracking the equal-time spin-spin correlations as
time evolves. The examples we mention below refer to SU(2) symmetric systems,
but the same ideas apply for SU(3) symmetric ones, taking into account that the
spin-spin correlations values describing each subspace are different. Nevertheless, the
information we obtain remains the same.

Figure 4.5: Left plot: Coupling constant Ji’s random configuration. Plots 2-6: Color-
plots of the ⟨SiSj⟩−3/4δij correlations for the time evolution of a L=24 spins system
(α = 0.5)

In Fig.4.5 we can see how the spin-spin correlations evolve in time for an L = 24
size random Heisenberg spin chain. As mentioned above, the initial localized state
is characterized by non-zero nearest- and next nearest- neighbour correlations. In
this example, as the system evolves, we observe the delocalization of the majority of
the bonds, plus longer range correlations appear. In the final picture at t = 1000,
there are no singlet or triplet localized bonds, rather most of the bonds have ⟨SiSi+1⟩
correlations around 0.

Figure 4.6: Left plot: Coupling constant Ji’s random configuration. Plots 2-6: Color-
plots of the ⟨SiSj⟩− 3/4δij correlations for the time evolution of a second L=24 spins
system (α = 0.5)

Analysis of the spin-spin correlation color-plots for different random J-configurations
reveal a second path that disorder SU(2) symmetric Heisenberg systems could follow.
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Choosing a second L = 24 configuration and same disorder strength a = 0.5, shown in
Fig.4.6, one can notice that the behaviour of the system is different from the previous
example.

In this example, we notice that there are certain bonds (bond between spins 6
and 7 for example), that preserve their ⟨SiSi+1⟩ over time, meaning they remain
localized in the same state (the triplet state in that bond case). In fact, we can
also notice that this particular system is separated in two smaller subsystems that
evolve independently, without “communicating” with each other. Thus, longer range
correlations for spins between these two subsystems are 0 (white off-diagonal areas).

4.2 Eigenvalues of spin-spin correlations

Inspired by this study [53] of a fermionic system, it seems interesting to examine the
behaviour of the eigenvalues of the spin-spin correlations matrix ρij = ⟨SiSj⟩ we have
already calculated above. In their work [53], the authors studied a system of spinless
fermions with nearest neighbor hopping and repulsive interaction in a disordered
lattice. In order to characterize their states |ψ(t)⟩ they calculate the one particle
density matrix, defined as:

ρij(t) = ⟨ψ(t)| c†icj |ψ(t)⟩ (4.3)

and then diagonalized it.

The eigenvalues calculated are the occupation numbers and the eigenfunctions
are the natural orbitals of the fermionic system. Studying the time evolution of the
eigenvalues of ρij as seen in Fig.4.7, the authors distinguish between thermal and MBL
phase by the nature of their relaxation dynamics. In particular, the eigenvalues relax
slowly to values different than 0.5 for strong disorder systems at the MBL phase, while
they approach the 0.5 value for weak disorder systems moving towards the thermal
phase.

Figure 4.7: plot taken from [53]: Main panel (a): Time evolution of disorder-
averaged occupation spectrum nα deep in the MBL phase, (b) for both MBL and
thermal phase, (c) Power-law relaxarion for the upper half of the spectrum
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For our problem, instead of calculating the one particle density matrix, we calcu-
late the spin-spin correlation matrix, defined as:

ρij(t) = ⟨ψ(t)|SiSj |ψ(t)⟩ (4.4)

and then we diagonalize it. The connection between 4.3 and 4.4 becomes more direct
after a Jordan-Wigner transformation, in particular, if a Jordan-Wigner string is
included in 4.4 in between sites i and j. Further analysis of this topic will be done
outside this master project.

The relaxation dynamics of the eigenvalues of ρij for the two cases studied in the
previous section (Fig.4.5 and Fig.4.6) can be seen in Fig.4.8 and Fig.4.9.

Figure 4.8: Time evolution of the eigenvalues nα of ρij for the Fig.4.5 configuration

Figure 4.9: Time evolution of the eigenvalues nα of ρij for the Fig.4.6 configuration

The initial state is characterized by a gaped eigenvalue spectrum, where the eigen-
values take values nα = 0 coming from the uncorrelated bonds, nα = 2 from the triplet
bonds and nα = 0.5 from the rest of the bonds. The relaxation dynamics of the eigen-
values show a different behaviour for a system that gets delocalized, Fig.4.8, and one
that does not, Fig.4.9. First, we notice that in both cases the eigenvalues cover al-
most the whole spectrum. The difference is that for the delocalized case the spectrum
becomes uniform and moves towards smaller values, while for the localized case, the
eigenvalue spectrum shows gaps, as bonds and blocks of bonds remain localized to
a particular state through time. Although there is a fast relaxation from the initial
state (t = 0 to t = 250) the most of the eigenvalues, in the localized case, reach a
saturated value in the end (t = 750 to t = 1000).
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4.3 Averaging over disorder

4.3.1 Parameters

So far, we have taken a first look at the different paths disordered Heisenberg models
can follow, by arbitrarily choosing two examples of realizations. At this point of the
analysis, it is time to study how the behavior and dynamics of disordered Heisenberg
systems depend on parameters of the problem. We will present an analysis of the
time evolution of such systems over two parameters:

� system size L

� disorder strength α

As we deal with disorder, such an analysis demands averaging over different dis-
order realizations, meaning different random J-coupling configurations, for each pa-
rameter case. We choose 3 chain length cases L = {24, 48, 96} and two disorder
realizations α = {0.5, 1} to cover both the strong and weaker disorder regime.

4.3.2 Nearest-neighbor spin correlations ⟨SiSi+1⟩
As we saw in section 4.1 spin-spin correlations give a quantitative picture of the
dynamics of a disordered Heisenberg chain as it evolves in time. Now, we have to find
a way to use this measurement and averaging over disorder to analyze the behavior
of such systems for different L and α realizations. For that we can focus only on
the nearest-neighbor spin-spin correlations ⟨SiSi+1⟩, studying the behaviour of each
2-spin bond as a result of the nearest neighbor interactions of the spins.

In a similar work, [1], the authors use the SDRG method to study disordered
Heisenberg chains. They calculate the averages of two local observables Ômax =
SiSi+1 and Ôrand = SjSj+1 over eigenstates. Ômax refers to the bond which is most

strongly coupled, while Ôrand to a random coupled pair, in the SDRG picture. That
way they are testing the ETH validity or breakdown for different disorder strengths
and L = 22 long chains. The results are presented in Fig.4.10.

In our case, we have no knowledge of the eigenstates of the system. Instead, the
results of the tdDMRG procedure are time-evolved states |ψ(t)⟩. The average of a
local observable, like Ô = SiSi+1, over the state ψ(t) is connected to the ones over
the eigenstates of the system at infinite temperature, in the following way:

⟨ψ|SiSi+1 |ψ⟩∞ =
∑
α

pα ⟨α|SiSi+1 |α⟩ (4.5)

We will check the ergodicity of a random Heisenberg chain of length L charac-
terized by disorder strength α by calculating the observable ⟨ψ|SiSi+1 |ψ⟩ for all the
bonds of the chain, time-averaged in a time window t = 850 − 1000. Then, we re-
peat the same calculation for different configurations of same parameters L and α.
We include the results for each (L,α) realization in normalized histograms, as in Fig.
4.11.
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Figure 4.10: plot taken from [1]: Heat maps for the distributions of ⟨α| Ômax |α⟩
(left column), ⟨α| Ôrand |α⟩ (right column) for > 25000 eigenstates, L = 22 and α ∈
0.3, 0.6, 1.3 using the SDRG method

Expectations

The initial state consists of triplet bonds with ⟨SiSi+1⟩ = +0.25, uncorrelated bonds
between the 4-site triplet structures with ⟨SiSi+1⟩ = 0 and bonds with ⟨SiSi+1⟩ =
−0.5 between two triplet bonds, which are needed to achieve total spin Stot = 0
every 4 spins. For localized systems, that break the ergodicity, we expect triplet
bonds to remain localized, meaning initially triplet bonds with ⟨SiSi+1⟩ conserved
over time. If the system is ergodic, the spin-spin correlations of most of the bonds
should have values around the thermal average of the observable, which for ⟨SiSi+1⟩
is 0 for T → ∞.

Analysis

Starting with the strong disorder case (α = 0.5), for L = 24 and L = 48 we can
clearly distinguish two peaks: the one at ⟨SiSi+1⟩ = +0.25 and a wider one around
⟨SiSi+1⟩ = 0. This behaviour is evidence of ergodicity breakdown as a significant
number of nearest neighbour spin bonds remain localized in their initial triplet case.
On the contrary, the triplet bar becomes insignificant for the case of L = 96. In that
case, there are signs of the system’s tendency towards the thermal regime.

The picture is much more obvious for the weaker disorder case (α = 1). For weaker
disorder, the system show evidence of ergoodic behavior for all lengths studied, as
the histogram bar referring to localized bonds is quite insignificant.

The results for L = 24, for both disorder strengths, seem to agree with the spin-
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Figure 4.11: Normalized histograms of the nearest neighbor spin-spin correlations for
20 configurations and α = {0.5, 1}, L = {24, 48, 96}.

spin correlation calculations done using the SDRG method (histograms in Fig.4.10
for L = 22). For small sized systems, strong disorder breaks ergodicity, preventing
blocks of different sizes from getting delocalized, as we will see in the next chapters.
The affect of strong disorder seems to fade out as the system sizes become larger and
the finite size effects are diminished.
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4.4 Entanglement entropy scaling

A second indicator of ergodic/nonergodic behaviour, commonly used, is the scaling
of the entanglement entropy with system size. As mentioned in previous chapters,
the entanglement entropy is expected to obey a volume law for thermalizing systems,
while it follows an area law for systems into the MBL phase. The method, that is
frequently used, is the calculation of the half-chain entanglement entropy. The states
in the middle of the chain have to satisfy Sent(L/2) ∼ L/2 for systems in the thermal
phase. Scaling with system length slower than the above, is an indication of non-
ergodic behaviour. However, in our case, the fact that we study realizations of only 3
different lengths (L = 24, 48, 96) and the fact that our systems are adequately large,
allows us to use a different approach to study the scaling of the entanglement entropy.

Cut Averaged Entanglement Entropy (CAEE)

In a work in 2016 [54], the authors introduced cut-averaged entanglement entropy as
a way to quantify MBL phase at the level of a single eigenstate. This method has
also been used in a study of disordered spin chains with finite non-Abelian symmetry
[55].

Starting with a single state ψ(t) at time t, as the result of the time evolution of
the initial state and a random J-configuration, we calculate the block entanglement
entropy of all the subsystems of size l. Then, we average over the subsystems of
the same size. We repeat this procedure for as large subsystem lengths l as we can
afford. The result of this method is a block entanglement entropy curve as a function
of subsystem length, where each curve refers to a single random realization.

Calculation of CAEE with tensor networks

As described above, we would like to calculate the block entanglement entropy
of all the l-site subsystems of our L-site system, for as a large l value as we
can computationally afford. In order to reduce the finite-size effects in our
calculation, we discard the first L/6 sites from the left border of the chain and
the last L/6 sites from the right border of the chain.

Figure 4.12: Part of the chain we consider for the entanglement entropy calcu-
lation

The entanglement entropy of a subsystem A, with respect to the rest of the
system, let us call it B, is given by:
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S(ρA) = −Tr(ρA log ρA) (4.6)

where ρA is the reduced density matrix referring to subsystem A:

ρA = Tr(ρAB) (4.7)

Figure 4.13: Calculation of the reduced density matrix of an l-site block (sub-
system A), by tracing out the rest of the sites, in the tensor networks represen-
tation

Thus, the first step is to calculate the reduced density matrix of an l-site
block living somewhere in the chain. For that, we need two copies of the
MPS, Fig.4.13. The tracing out of subsystem B is achieved by contracting the
physical legs of each M †

i and Mi pair of tensors. Then, we turn subsystem
A (l-site block) into a matrix by fusing all the l physical legs of the tensors
which are part of A. The processes above lead to a 2-leg tensor, which is the
reduced density matrix referring to subsystem A, ρA. Next, we diagonalize the
reduced density matrix, calculate the log ρA and calculate the trace of Eq.4.6
by contracting the ρA with the log ρA matrix.

Finally, we repeat the above calculation for the l-site blocks contained in the
colored area defined in Fig.4.4.
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The results of the block entropy measurement for SU(2) symmetric systems and
α = {0.5, 1}, L = {24, 48, 96} are shown below.

Figure 4.14: Entanglement entropy Sent/ ln 2 scaling with subsystem size for ∼ 20
configurations and α = {0.5, 1}, L = {24, 48, 96}. Each colored line refers to a single
chain with random J. The black dashed line is the entanglement entropy scaling with
system length for the ergodic regime

Expectations

The slope of each of the block entanglement entropy curves, ∆S/∆l, reveals the
entropy scaling of the particular configuration with length. The expectation of the
scaling for the ergodic regime is Sent(l) ∼ l, which corresponds to a slope equal to 1,
while the MBL phase to a slope equal to 0. The dashed line drawn on the plots in
Fig.4.14 is the thermal expectation of the entanglement scaling with length.
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Analysis

Let us start with the 3 plots in Fig.4.14 referring to the strong disorder case (α =
0.5). For L = 24 we notice that the curves referring to different strong disorder
configurations show a significant variance from the mean value, or spreading, which
seems to become less significant as we move to larger chains. There are reports [28]
that connect the variance of the entanglement entropy to the thermal-MBL transition.
In particular, the maximum value of the variance is at the transition point and it
reduces as we move away from it and towards either the thermal or MBL phase. There
is no thermal-MBL transition in this case, as continuous non-Abelian symmetries do
not support MBL. Nevertheless, that spreading could be an indication of the system’s
tendency to move away from the ergodic regime for small chain lengths.

Keeping the point on the variance on hold, we will focus now on how the entan-
glement curves diverge (their slope) from the thermal expectation (slope = 1). It is
important to note that all the simulations lasted till t = 1000. So a reasonable ques-
tion is whether that time interval is enough for all the 3 different length realizations
to relax to their final state. For that, we plot the time evolution of the entanglement
entropy corresponding to the 8-site blocks for L = 96, Fig.4.15. The right plot of
Fig.4.15 indicates that the majority of the configurations have not reached their final
evolved state at t = 1000. This means that the points of the entropy lines for the
L = 96 case are underestimated.

Figure 4.15: Time evolution of the entanglement entropy of the 8-spin blocks (red
circle) for different random configurations (L = 96, α = 0.5). The time evolution of
the 5-spin blocks (green circle) is depicted in Fig.4.16.

Similarly, the time evolution of the entanglement entropy referring to 5-spin blocks
is presented in Fig.4.16, for different chain lengths. For L = 24 and the majority of
the realizations, the entanglement entropy shows signs of saturation over time. On
the contrary, the L = 96 case shows a constant, but slow, increase for all the random
configuration, which is in agreement with the behavior of the entanglement entropy
concerning the 8-site blocks in Fig.4.15. Further analysis of the entropy scaling with
time is a topic of future study outside this project.
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Figure 4.16: Time evolution of the entanglement entropy of the 5-spin blocks for
different random α = 0.5 configurations for L = {24, 48, 96}

Combining the two arguments above, about the variance and slope, we can make
the following claims. For L = 24 the significant variance of the slopes of the entan-
glement lines indicate that the system is far from either the thermal or MBL state,
which implies tha there is egodicity breaking. This claim is in agreement with the
ED results presented here [1] for small chains and disorder strength α = 0.5, as well as
with the spin-spin correlation results we presented in Section 4.3.2. Moving towards
larger chains sizes, indications that the systems lean towards an ergodic behavior
appear.

The picture for the weaker disorder regime (α = 1) seems more profound. Even
for small systems, L = 24 with weaker disorder, the entanglement entropy slopes
tend to cover larger values and smaller variances. This is a sign of the ergodicity
breaking disappearance, which was present in the strong disorder regime. The above
observations are in agreement the ED calculation done here [1]. For larger chains and
weaker disorder the evidence of thermalization is even stronger, as expected.
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4.5 SU(2) vs SU(3) symmetry

The next question that arises is what is the role of symmetry on the ergodic or
non-ergodic behavior of random Heisenberg chains. Starting from the SU(3) initial
state, described in Section 3.4, we produce time-evolved states, using the tdDMRG
method, the same way we did for the SU(2) symmetric model earlier. We will consider
only the strong disorder regime for α = 0.5. It is important to note that we use
exactly the same random J-configurations, as the ones for the SU(2) case, for each
L = {24, 48, 96} respectively. The quantities measured are also the same: nearest
neighbor spin-spin correlations and block entanglement entropy.

4.5.1 Nearest-neighbor spin correlations ⟨SiSi+1⟩
The results of the spin-spin correlations’ measurement for the strongly disordered
SU(3) symmetric model and chain lengths L = 24, 48, 96 are shown in Fig.4.17.

Figure 4.17: Normalized histograms of the nearest neighbor spin-spin correlations
for ∼ 20 configurations for the SU(2) and SU(3) symmetric model and α = 0.5,
L = {24, 48, 96}

Expectations

The initial state of the SU(3) model, discussed in Section 3.4 and 4.1, consists of
localized bonds both in the fully symmetric and fully anti-symmetric subspace. These
bonds correspond to values ⟨SiSi+1⟩ = +1/3 and ⟨SiSi+1⟩ = −2/3 respectively. Thus,
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in the case of ergodicity breaking, we expect the histogram bars referring to these
values to remain significant.

Analysis

In Fig.4.17 we also present the SU(2) results descussed in the previous sections. Even
for the small chains of lengths L = 24 and L = 48, the SU(3) histograms show that the
egodicity breaking phenomenon is reduced. In particular, the bars representing the
localized bonds at ⟨SiSi+1⟩ = +1/3 and ⟨SiSi+1⟩ = −2/3 reveal that the percentage
of the localized bonds is below 5% of the total bonds in each case. The same picture
is present for the case of L = 96, but in this case SU(2) was already showing evidence
of ergodicity. The interesting result lies on the small chains, where symmetry affects
the ergodicity breaking seen in the SU(2) case.

4.5.2 Entanglement entropy scaling

In Fig.4.18, we present the entanglement entropy scaling results of the SU(3) sym-
metric model accompanied with the results for SU(2) symmetry already shown.

Again, the small size chains show a different behavior as we move to SU(3) model.
Firstly, the spreading of the SU(3) lines becomes smaller than the corresponding
SU(2) lines for the same lengths L. Additionally, the same random realizations
that were showing entanglement entropy scaling away from the thermal expectation
(smaller slopes) have moved towards the thermal expectation (larger slopes). This
is a sign of the ergodicity breaking becoming less significant, as we saw from the
spin-spin correlation results. The L = 96 results show small difference between the
two symmetries as expected.

SU(3) symmetry has an impact on the relaxation time scaling of the disordered
systems. Due to calculation error restrictions, caused by limited bond dimension,
the time interval of the time evolution for each SU(3) case (Fig.4.19) is significantly
smaller than the one for the SU(2) cases as the system size increases. For the L = 96
case, where the systems show similar, close to ergodic, behavior the relaxation times
are not the same. In particular, it is significantly smaller for the SU(3) symemtric
model, as shown in Fig.4.18. The relaxation dynamics differences between the two
symmetries would be an interesting topic for further studying.

Nevertheless, the results shown above provide evidence that SU(3) symmetry
is inconsistent with ergodicity breaking, at least in the parameter regimes studied,
where SU(2) supports it. In an experiment, where time scales are limited, these
two different ergodicity behaviors would be very clear to distinguish. Still, a better
analysis is necessary concerning the scaling of the entanglement entropy with time to
make these claims stronger, as for the SU(3) symmetric model the time interval of
the simulation is limited by computational restrictions.
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Figure 4.18: Entanglement entropy Sent/ ln 2 scaling with subsystem size for the same
∼ 20 configurations and SU(2), SU(3) symmetry, L = {24, 48, 96}. Each colored
line refers to a single chain with random J. The configurations used for the SU(3)
symmetric Hamiltonians are the same as for the SU(2) ones. The black dashed line
is the entanglement entropy scaling with system length for the ergodic regime
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Figure 4.19: Entanglement entropy scaling with subsystem length. Same color lines
refer to the same random J-configuration for α = 0.5, solid lines to the SU(2) sym-
metric model and dashed lines to the SU(3) model
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4.6 Dynamics of sub-thermal regime

The analysis of the spin-spin correlations and entanglement entropy scaling results
shows evidence of ergodicity breaking, present for SU(2) symmetric strongly disor-
dered Heisenberg chains of small sizes, which disappear for the SU(3) symmetric
model. It would be interesting to understand the dynamics behind this behavior, as
it lies between the already well-studied thermal and MBL phase. The MBL phase
is described by quasi-local operators which commute with the Hamiltonian. There
are assumptions that the sub-thermal regime is characterized by localized blocks of
varying sizes, or in other words, integrals of motion of varying locality [1].

To check that, we will consider two examples of disordered realizations of size
L = 24 and strong disorder, which is in the parameter regime we observe the breaking
of ergodicity. By calculating the spin-spin correlation colorplot refering to the final
state of the random realizations, Fig.4.20 and Fig.4.21, it is easy to spot bonds that
have remained localized at t = 1000.

Figure 4.20: Left plot: ⟨SiSj⟩ color-plot of the final state (t = 1000) of a disordered
configuration of size L = 24. Right plot: time evolution of the total spin Stot of blocks
of 2, 3, 4 and 6 spins in the circled region

The total spin of an i-spin block is:

⟨S2
tot⟩ =

(∑
j

S2
j

)2

(4.8)

The terms ⟨SiSj⟩ needed for the above calculation are all known from the calculation
of the spin-spin correlation matrix. In Fig.4.20 and Fig.4.21 the time evolution of the
total spin of i-spin blocks is presented.

The time evolution of the total spin presented above indicates that the sub-thermal
regime supports spin-blocks of different sizes, which can be characterized by (quasi-
)local integrals of motion, like the total spin, that are conserved over time. The
existence of these localized spin-blocks that break the ergodicity of the systems, leads
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Figure 4.21: Left plot: ⟨SiSj⟩ color-plot of the final state (t = 1000) of a disordered
configuration of size L = 24. Right plot: time evolution of the total spin Stot of blocks
of 2, 3, 4 and 6 spins in the circled region

to the results shown in previous sections. The above observation is in agreement with
the description of the sub-thermal regime using integrals of motion of varying locality.





Chapter 5

Summary and Discussion

In the current master thesis we study how continuous non-Abelian symmetries affect
the tendency of a system towards the Many-body localization phase or thermalization.
In particular, we study the SU(2) and SU(3) disordered Heisenberg model, where
the disorder is added to the model by random coupling constants. We approach
the problem through time evolution by implementing a powerful tdDMRG algorithm
based on the QSpace tensor network libray.

The first step we had to take was the construction of a suitable initial state for
each symmetry case. This step is quite important, because it determines the total
energy of the system throughout the whole time evolution process, as total energy
remains constant. For the study of ETH or/and MBL the energy of the states studied
are chosen to be close to the middle of the spectrum, where the density of states is
significantly large. With that idea in mind, we choose the symmetry subspaces of
the initial chain in such a way that will guarantee a high-energy initialization, as
described in chapter 3.

The choice of the disorder strength follows a recent work [1] on the SU(2) Heisen-
berg model. We choose two disorder strength regimes, one of strong disorder (α = 0.5)
and one of weaker disorder strength (α = 1). For each case of disorder, we generate
random J-coupling configurations, drawn from a beta power law distribution. As we
are also interested in a system size analysis, we work with 3 cases of chain lengths,
L = {24, 48, 96}. Thus, the parameters of the problem are the disorder strength,
system size and symmetry.

Next, we implement the time evolution algorithm for a time interval t = 1000, time
step δτ = 0.1 and bond dimension equal to 1024. For each 3-parameter combination,
we produce ∼ 20 time evolved states. Then, it is finally the time to start the analysis
of the results.

Our analysis is based on two quantities: the spin-spin correlations and the en-
tanglement entropy scaling with length, as described in chapter 4. Starting with the
SU(2) symmetric model, for small chains (L = 24), we observe the breaking of ergod-
icity for strong disorder and an ergodic behavior for weaker disorder. These results
confirm the ED results produced in a previous study [1] for L = 22 sites chains.
Extending our analysis to larger chains, we see evidence of the systems tendency to-
wards ergodicity even in the strong disorder regime. Further study is necessary on
that ergodic/non-ergodic border. In particular, we plan to make the entropy scaling
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analysis for large chains (L = 96) a bit more straightforward to ensure the tendency
towards thermalization very soon after the end of this master project.

As mentioned above, we could also attack the SU(3) symmetric problem, by
making use of the powerful QSpace tensor network library. Using the same random
J-configurations, we show evidence of the disappearance of the ergodicity breaking,
observed for small chains and strong disorder in the SU(2) case. In other words,
even small chains under strong disorder tend to move towards the thermal phase,
something that was prohibited by the SU(2) symmetry.

Finally, we tried to understand some of the dynamics concerning the non-ergodic
regime observed. For that we studied the total spin and block entropy of localized
blocks of different sizes that remain localized in time. We observed, that in the
subthermal regime, localized blocks, of varying sizes, are formed, characterized by
constant total spin. This comes in agreement with the assumption that the subther-
mal regime is characterized by integrals of motion of varying locality.

Of course, there are some points that remain unclear or need further analysis.
Firstly, a more careful analysis of the entanglement entropy scaling is needed, so that
we make our claims more solid. In particular, the next step planned is to produce
a larger number of realizations for all the cases studied and improve the entropy
scaling results. Moreover, it would be interesting to check if even stronger disorder
could extend the non-ergodic behavior to even larger chains, or maybe to the SU(3)
symmetric model. Finally, an infinite size analysis of the problem may be a topic of
interest.
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Appendix A

Tensor networks

A.1 Notation

An n-th rank tensor, that lives in an m-dimensional space, is a mathematical object
that contains mn components and obeys certain transformation rules. It can be seen
as a generalization of a vector or matrix, and in our case as an array of complex or
real numbers. Graphically, we will represent tensors as circles with n legs, where n
is the dimension of the tensor. We will note the upper indices (M i) with an arrow
going inwards and the lower indices (Mi) with one going outwards.

Figure A.1: Illustration of a tensor

A.2 Matrix Product States (MPS)

Throughout this thesis, we will work with one-dimensional disrdered Heisenberg spin
chains. In Tensor Networks’ language, we can represent one dimensional quantum
states via Matrix-product states (MPS). Let us consider a general quantum chain
|ψ⟩, which can be written as:

|ψ⟩ =
∑

σ1,...,σN

cσ1,...,σN |σ1, ..., σN⟩ (A.1)

We can think of the coefficient cσ1,...,σN as a tensor with N indices. This tensor
can be written as the product of N rank-3 tensors, as follows:
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|ψ⟩ =
∑

σ1,...,σN

Mσ1
1;a1

Mα1σ2
2;α2

· · ·MαN−1σN

N ;αN
|σ1⟩ ⊗ · · · ⊗ |σN⟩ (A.2)

That way, we can describe our state ψ as a matrix product. The σi indices are
the ‘physical’ indices, containing the information of the local physical states on site
i, while the αi indices are the virtual bond ones.

Figure A.2: Illustration of an MPS

A.3 Matrix Product Operators (MPO)

In a similar way, we can represent any operator as a contraction of tensors. An
arbirtary operator Ô acting on N sites can be written in the following general form:

Ô = |σ⃗′⟩Oσ⃗′
σ⃗ ⟨σ⃗| =

∑
σ1,...,σN
σ′
1,...,σ

′
N

c
σ′
1,...,σ

′
N

σ1,...,σN |σ1, ..., σN⟩ ⟨σ′
1, ..., σ

′
N | (A.3)

Analogously to the MPS construction, we can write the c
σ′
1,...,σ

′
N

σ1,...,σN as a product of
N rank-4 tensors, as:

Ô =
∑

σ1,...,σN
σ′
1,...,σ

′
N

α1,··· ,αN

O
σ′
1

1;σ1,α1
O

σ′
2

2;σ2,α1,α2
· · ·Oσ′

N
1;σN ,αN−1,αN

|σ1, ..., σN⟩ ⟨σ′
1, ..., σ

′
N | (A.4)

Figure A.3: Illustration of MPO
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A.4 Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is a quite useful linear algebra tool, which is
used in various cases and operations that involve manipulation of MPSs. In fact, the
Schmidt decomposition of quantum states can be derived from the Singular Value
Decomposition.

Figure A.4: Singular value decomposition in the tensor networks representation

SVD implies that any matrix M with dimensions NA × NB can be decomposed
as:

M = USV † (A.5)

U is a NA×min(NA, NB) matrix, while V † is of dimension min(NA, NB)×NB. U
has orthonormal columns, while V † orthonormal rows. This means that if NA ≤ NB

then U is unitary (UU † = I). Instead, if NA ≤ NB then V † is unitary (V V † = I). S
is a diagonal min(NA, NB)×min(NA, NB) matrix with non-negative elements, called
singular values. The number of the non-zero elements is the Schmidt rank of M.

Most of tensor network methods, like DMRG/tDMRG that we will use, rely on
the optimal approximation of large dimensional matrices via truncation. Such a
truncation can be applied on the S matrix. In particular, for a matrix S with r
singluar values, writen in a descending order, we can set the last r − r′ to be zero.
This will also lead to a U and V † matrix of smaller size, and eventually to a matrix
M ′ of rank r′, as an approximation of the initial M .

A.5 Density Matrix Renormalization Group (DMRG)

One dimensional strongly correlated quantum systems are very hard to tackle, both
analytically and numerically. There is a variety of approaches, such as the Bethe
ansatz, perturbation theory or field theories, but they all encounter restrictions or
difficulties to implement. The density-matrix renormaization group (DMRG), in-
vented by White in 1992 [56–60], seems to be one of the most powerful numerical
approaches we have in our hands to tackle such one-dimensional problems [48]. It is
excessively used for studies on ground state problems , dynamic properties of eigen-
states, one-dimensional quantum systems at finite temperature as well as far form
equilibrium systems described by non-Hermitian Hamiltonians.
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Algorithm

Given a Hamiltonian Ĥ, DMRG offers a variational method to search for the ground
state and ground state energy of Ĥ. It is based on the assumption, valid for 1-d, which
states that we can decimate the Hilbert space of the problem and find a reduced state
space that contains all the relevant physics.

In the tensor network language, we consider an MPS of bond dimension D, which
will be the dimension of the reduced state space. The first goal is to minimize ⟨ψ| Ĥ |ψ⟩
in the D-dimensional variational space, where |ψ⟩ is represented by the MPS and the
Hamiltonian is in an MPO form. Introducing a Langrange multiplier λ, the goal is
the minimization of:

⟨ψ| Ĥ |ψ⟩ − λ ⟨ψ| |ψ⟩ (A.6)

Figure A.5: ⟨ψ| Ĥ |ψ⟩ − λ ⟨ψ| |ψ⟩ in tensor networks’ representation

The next step is to extremize the above quantity with respect to an MPS tensor.
This is part of the one-site formulation of DMRG. However, the one-site procedure is
not suitable for problems that involve symmetries, as an one-site update is limited to
the Hilbert space of its symmetry sector. Instead, a two-site formulation of DMRG
is used and we will describe the following steps of it below.

� Firstly, we prepare our MPS in a mixed canonical form around one of the two
tensors (Mi,Mi+1), with respect to which we want to extremize Eq.A.6.

Figure A.6: Minimization of ⟨ψ| Ĥ |ψ⟩ − λ ⟨ψ| |ψ⟩
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� The updated pair of Mi,Mi+1 is given by extremizing Eq.A.6 with respect to
M †

i ,M
†
i+1

∂

∂M †
i+1

∂

∂M †
i

(
⟨ψ| Ĥ |ψ⟩ − λ ⟨ψ| |ψ⟩

)
!
= 0 (A.7)

The derivation above leads to a generalized eigenvalue problem written in tensor
format as:

Hα′

α (MiMi+1)
α = λ(MiMi+1)

α′
(A.8)

Figure A.7: Hα′
α in tensor networks’ representation

� The following step is to solve the eigenvalue problem above, and in particular
find the lowest eigenvalue. For that the Lanczos iterative algorithm is used
[61–64], as the size of the update is Dd×Dd.

� Last step of the optimization is the reshape of the updated tensors M̃iM̃i+1 and
truncation down to size D.

Figure A.8: Final step of the M̃iM̃i+1 tensors update

� The above steps complete the optimization of the pair MiMi+1. Then, we
move to the next pair Mi+1Mi+2 to the write and repeat the steps above. The
algorithm repeats sweeps to the right and left through the whole MPS till there
is convergence
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for a finite-temperature insulator”. In: Scientific Reports 5 (2015), p. 13503.

[35] M. Schreiber, S.S. Hodgman, P. Bordia, H.P. Löschen, M.H. Fischer, R. Vosk,
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