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Abstract. The pseudofermion functional renormalization group (pffRG) is a computational method for
determining zero-temperature phase diagrams of frustrated quantum magnets. In a recent methodological
advance, the commonly employed Katanin truncation of the flow equations was extended to include mul-
tiloop corrections, thereby capturing additional contributions from the three-particle vertex (Thoenniss
et al. https://arxiv.org/abs/2011.01268; Kiese et al. https://arxiv.org/abs/2011.01269). This development
has also stimulated significant progress in the numerical implementation of pffRG, allowing one to track
the evolution of pseudofermion vertices under the renormalization group flow with unprecedented accu-
racy. However, cutting-edge solvers differ in their integration algorithms, heuristics to discretize Matsubara
frequency grids, and more. To lend confidence in the numerical robustness of state-of-the-art multiloop
pffRG codes, we present and compare results produced with two independently developed and algorithmi-
cally distinct solvers for Heisenberg models on three-dimensional lattice geometries. Using the cubic lattice
Heisenberg (anti)ferromagnet with nearest and next-nearest neighbor interactions as a generic benchmark
model, we find the two codes to quantitatively agree, often up to several orders of magnitude in digital
precision, both on the level of spin-spin correlation functions and renormalized fermionic vertices for vary-
ing loop orders. These benchmark calculations further substantiate the usage of multiloop pffRG solvers
to tackle unconventional forms of quantum magnetism.

1 Introduction

A fascinating phenomenon in the study of frustrated
quantum magnets is the interplay of unconventional
forms of magnetic order and the possible emergence
of quantum spin liquid states near zero temperature
[3]. The successful description of such low-energy states
of quantum spin systems has, however, remained chal-
lenging, especially in the presence of competing inter-
actions, geometric frustration, and in higher spatial
dimensions.

Since its inception more than a decade ago [4],
the pseudofermion functional renormalization group
(pffRG) has become a powerful and flexible approach to
map out the zero-temperature phase diagrams of vari-
ous quantum spin models, both in two [4–20] and three
spatial dimensions [16,21–29]. Although the problem
obtained after representing the spin operators by com-
plex fermions is treated approximately, one of the strik-
ing features of pffRG is its ability to track competing
instabilities in different interaction channels, allowing
one to discriminate putative spin-liquid phases from
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long-range ordered magnetic ground states. This ability
can be traced back [30,31] to the inclusion of leading-
order 1/S and 1/N diagrams (the former promoting
classical magnetic order, the latter quantum fluctua-
tions), which are treated on equal footing in pffRG by
means of the routinely employed Katanin truncation
[32].

Recently, the multiloop truncation scheme of the infi-
nite hierarchy of fRG flow equations [33–35], previ-
ously used in the context of the Hubbard [36,37] and
Anderson impurity model [38], was applied to the zero-
temperature pffRG by some of us [1,2]. The convergence
in the number of loops over a wide range of energy
scales attested to the inner consistency of the pffRG
method, despite being used in the strong-coupling limit.
These developments were accompanied and facilitated
by substantial improvements of the numerical imple-
mentation that remedy many shortcomings of previ-
ous studies. Yet, some of these advances, such as the
employed integration routines and adaptive Matsubara
frequency grids [1,2], rely on certain numerical heuris-
tics, affecting, e.g., the minimal grid spacing and largest
Matsubara frequencies considered. Therefore, quanti-
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tative agreement between different implementations is,
although highly desired, not guaranteed a priori.

In the present work, we provide evidence for the
numerical robustness of pffRG by benchmarking two
independent state-of-the-art solvers, one provided by a
research group at LMU Munich (dubbed code #1 in the
following), and one by a Cologne–Würzburg collabora-
tion (denoted by code #2) with an open-source release
[39]. As a test case, we consider ferro- and antiferromag-
netic Heisenberg models on the simple cubic lattice and
compare our results both on the level of renormalized
couplings (i.e. fermionic vertex functions) as well as for
the (post-processed) spin-spin correlation functions.

The remainder of the paper is structured as follows.
We begin by providing a brief overview of the multi-
loop pffRG in Sect. 2. This is followed by an in-depth
comparison of the numerical results produced by the
two codes at hand in Sect. 3. Finally, in Sect. 4, tech-
nical aspects of the implementation, such as the choice
of frequency grids, integration routines and differential
equation solvers are discussed, with special emphasis
devoted to their influence on the numerical stability
and accuracy of the two codes.

2 Multiloop pseudofermion fRG

Within the pffRG approach, one can study generic spin-
1/2 Hamiltonians with bilinear spin couplings, i.e.,

H = 1
2

∑

ij

Jμν
ij Sμ

i Sν
j . (1)

Here, the spin operators Sμ
i live on the sites i of an

arbitrary lattice, and the exchange matrices Jμν
ij are

assumed to be real. The spin operators are represented
in terms of complex pseudofermions f

(†)
iα with α ∈ {↑, ↓}

as

Sμ
i = 1

2

∑

α,β

f†
iασμ

αβfiβ , (2)

where σμ
αβ for μ ∈ {x, y, z} are the Pauli matrices.

This yields a purely quartic Hamiltonian which can be
treated by established functional RG techniques.

Note that the pseudofermion representation of the
spin algebra comes with an artificial enlargement of
the local Hilbert space dimension, which must be
dealt with by an additional particle number constraint∑

α f†
iαfiα = 1 on every lattice site. In practice, this

constraint is not enforced, but holds on average due to
particle-hole symmetry [1,2,4]. Nevertheless, the influ-
ence of fluctuations can be quantitatively gauged by
explicitly computing the variance of the number oper-
ator, which can be expressed through the equal-time
spin-spin correlation function 〈Sμ

i Sμ
i 〉 [1]. Although

fluctuations are not fully suppressed, even if a local
level repulsion term ASμ

i Sμ
i (with A < 0) is employed,

recent studies [1,19,23,30] pointed out that observables

extracted from pffRG flows are qualitatively unaffected
by the unphysical Hilbert space sectors.

An alternate decomposition of the spin operators
into Majorana instead of Abrikosov fermions allows one
to circumvent the problem of unphysical states in the
fermionic representation at the cost of redundant copies
of physical Hilbert-space sectors [40]. For moderately
high temperatures, the latter approach was recently
shown to enable an accurate calculation of thermody-
namic observables [41], such as the free energy and spe-
cific heat. However, the approach was also found to suf-
fer from unphysical divergencies when approaching the
T → 0 limit, which we consider here (for the Abrikosov
fermion decomposition).

Since kinetic contributions are absent in the pseudo-
sfermion representation of Eq. (1), the free propagator
assumes the simple form

G0(1′|1) = (iω1)−1δi1′ i1δα1′ α1δ(ω1′ − ω1) , (3)

diagonal in all indices. To successively integrate out
high-energy modes and thus provide an effective low-
energy description of a given model, a cutoff parameter,
here denoted as Λ, is introduced in the bare propaga-
tor. The fRG equations then govern the flow of the n-
particle vertices from the UV limit Λ → ∞, where the
regularized bare propagator vanishes, to the infrared
limit Λ → 0, where one recovers the physical theory. As
such, there is a certain degree of freedom in the cutoff
implementation. A popular choice for the regulator in
pffRG is a Heavyside step function, which sharply sup-
presses frequency contributions |ω| < Λ. This choice
is very useful for analytical treatments of pffRG in the
large-S and large-N limit, where the flow equations can
be solved exactly and reproduce mean-field gap equa-
tions [30,31]. However, if numerical calculations are
employed away from these limits, a non-analytic reg-
ulator spoils the smoothness of the right-hand side of
the flow equations, and therefore limits the applicabil-
ity of higher-order integration routines. For this reason,
we consider a smooth regulator

RΛ(ω) = 1 − e−ω2/Λ2
, (4)

throughout this manuscript, and implement the cutoff
as GΛ

0 (ω) = RΛ(ω)G0(ω), with G0(ω) ≡ (iω)−1.
To make the infinite hierarchy of fRG flow equations

amenable to further calculations, a truncation is neces-
sary. Usually, this is done by neglecting all n-particle
vertices of n = 3 and higher [32]. However, to capture
the physics of interest in pffRG, one must already go
beyond that using the Katanin truncation, which feeds
the Λ derivative of the self-energy ΣΛ back into the
flow of the two-particle vertex ΓΛ [4]. Within this trun-
cation, the flow equations schematically read

d

dΛ
ΣΛ = −[

ΓΛ ◦ SΛ
]
Σ

, (5)
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d

dΛ
ΓΛ =

∑

c

γ̇Λ
c = −

∑

c

[ΓΛ ◦ ∂Λ(GΛ × GΛ) ◦ ΓΛ]c .

(6)

Here, we introduced the loop function [Γ ◦ G]Σ and the
single-scale propagator SΛ ≡ − d

dΛGΛ|ΣΛ=const.. We cat-
egorized the contributions to the flow of Γ into three
distinct channels c: the particle-particle (s) channel,
the direct particle-hole (t) channel, and the crossed
particle-hole (u) channel. Each “bubble” term, with the
general form [Γ ◦ (G × G′) ◦ Γ′]c, describes the flow of
a two-particle reducible vertex γc. As all self-energies,
vertices, and related correlators are Λ-dependent, we
refrain from writing this dependence explicitly in the
following.

The multiloop fRG (mfRG) flow [33–35], recently
employed within pffRG [1,2], is an attempt to go
beyond the Katanin truncation and capture even more
contributions from n-particle vertices with n ≥ 3. It can
be derived from the parquet approximation [42], which
self-consistently connects one- and two-particle corre-
lation functions via the Schwinger–Dyson (SDE) and
Bethe–Salpeter equations (BSE), and as such the inher-
ent dependence of the Λ → 0 fRG result on the specific
choice of regulator is eliminated [34]. This approxima-
tion includes all those contributions to the flow of the
two-particle vertex which can be efficiently calculated,
i.e., with the same cost as the one-loop flow in Eqs. (5)
and (6). Summarized briefly: To obtain the mfRG flow
of γc, one iteratively computes multiloop corrections to
the one-loop (� = 1) result, using bubble functions with
undifferentiated propagators but differentiated vertices.
In a similar fashion, one can recover equivalence to the
SDE, by feeding back the so-determined vertex correc-
tions into the self-energy flow.

One of the most important ingredients to achieve
sufficient numerical accuracy throughout the multi-
loop flow is an appropriate treatment of the frequency
dependence of the two-particle vertex. In Ref. [43],
a parametrization in terms of one bosonic and two
fermionic frequencies (the fourth frequency argument
is fixed by energy conservation) for each two-particle
reducible vertex was put forward. This parametrization
captures the non-trivial high frequency asymptotics of
the vertices while being numerically efficient. Code #1
uses precisely the proposal of Ref. [43], and the dia-
grams contributing to each channel are grouped into
four asymptotic classes Kn as

γc(ωc, νc, ν
′
c) = K1,c(ωc)

+ K2,c(ωc, νc) + K2′,c(ωc, ν
′
c)

+ K3,c(ωc, νc, ν
′
c) , (7)

where we displayed only frequency arguments for
brevity. Here, ωc, νc and ν′

c, denote the natural fre-
quency arguments for diagrams reducible in channel c
(see Ref. [1] for the conventions used). The Kn asymp-
totically decay to zero in each frequency, allowing one
to reduce the necessary number of arguments when

summing up the asymptotic classes to obtain γc. Code
#2 chooses a slightly different approach, by defining
asymptotic classes Qn [44] as

Q1,c(ωc) = K1,c(ωc)
Q2,c(ωc, νc) = K1,c(ωc) + K2,c(ωc, νc)

Q2′,c(ωc, ν
′
c) = K1,c(ωc) + K2′,c(ωc, ν

′
c)

Q3,c(ωc, νc, ν
′
c) = K1,c(ωc)

+ K2,c(ωc, νc) + K2′,c(ωc, ν
′
c)

+ K3,c(ωc, νc, ν
′
c) , (8)

with the respective choice of natural frequency argu-
ments outlined in Ref. [2]. Since the Kn classes decay
to zero for large frequencies, the Qn (at least for
n > 1) are projected to a lower class. For instance,
Q3,c(ωc, νc, ν

′
c) = Q2,c(ωc, νc) if |ν′

c| → ∞. Let us
emphasize that both parametrizations contain the same
information about the asymptotic structure of the two-
particle vertices, as the Kn and Qn parametrizations
can be exactly transformed into each other. For an
appropriate choice of numerical frequency grids, both
parametrizations are therefore equally valid and differ
only in numerical performance. The former approach
allows for a more fine-grained adjustment of dis-
crete frequencies to the asymptotic decay of individ-
ual classes, while the latter reduces the cost of evoking
a two-particle vertex from a summation of up to four
classes Kn to loading just a single Qn.

The central observable computed from the pffRG
equations is the flowing spin-spin correlation function,

χμν
ij (iω = 0) =

∫ ∞

0

dτ〈TτSμ
i (τ)Sν

j (0)〉 , (9)

where we omit indication of the Λ-dependence for
brevity. In all models considered here, the interactions
in the Hamiltonian are diagonal and SU(2)-symmetric.
This leads to spin-spin correlations that are symmetric
as well, and we thus define χij ≡ χxx

ij = χyy
ij = χzz

ij .
The spin-spin correlations can be used to identify

transitions into phases with broken symmetries; there,
the flow becomes unstable at some ΛT and must be
stopped. For long-range ordered states, the momentum
k for which the structure factor

χ(k, iω) =
1

Nsites

∑

ij

eik·(Ri−Rj)χij(iω) (10)

(i.e. the Fourier transform of χij) is most dominant
gives an indication of the emergent magnetic order,
as exemplified in Fig. 1. A smooth flow down to the
infrared Λ → 0 is, on the other hand, associated with
non-magnetic phases, such as spin liquids, dimerized,
or plaquette-ordered states.
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Fig. 1 Momentum-resolved structure factors within the
first Brillouin zone of the cubic lattice for (a, b) the fer-
romagnetic case at Λ/J = 0.8 and (c, d) the paramagnetic
case at Λ/J = 0.3, computed for (a, c) � = 1 and (b, d)
� = 3 using code #2. The ferromagnet shows a sharp peak at
the Γ point, without visible difference between the two loop
orders. The putative paramagnet shows a broadened distri-
bution of spectral weight centered around soft maxima at
the M points in � = 1 calculations, while the structure fac-
tor peaks more distinctively for � = 3, signalling the onset
of magnetic order instead

3 Results

To benchmark the two codes, we calculate the spin-spin
correlations and pseudofermion vertices of an extended
Heisenberg model on the cubic lattice with a maximum
correlation length ξ = 5 in units of the lattice spacing
[1]. The corresponding three-dimensional cluster con-
tains N = 515 sites, small enough to efficiently compare
the two codes but large enough to produce the (qual-
itatively) correct physics. The corresponding Hamilto-
nian with up to third-neighbor interactions (see inset
in Fig. 2) reads

H = J1

∑

〈ij〉
Sμ

i Sμ
j + J2

∑

〈〈ij〉〉
Sμ

i Sμ
j + J3

∑

〈〈〈ij〉〉〉
Sμ

i Sμ
j ,

(11)

where we fix J ≡
√

J2
1 + J2

2 + J2
3 as the unit of energy.

We focus on two choices of these interaction parameters
to highlight differences between fRG flows in different
phases:

J1 < 0, J2 = 0, J3 = 0, (12)
J1 > 0, J2/J1 = 0.6, J3/J1 = 0.25, (13)

Fig. 2 Inverse spin-spin correlation function for the fer-
romagnet as a function of Λ. Shown here is a comparison
of the � = 1 and � = 3 flows obtained from both codes.
The dotted line is a Λ−1 fit [χC = CJ/(Λ − ΛC)] to the
data at Λ/J ∈ [1.0, 4.0]. The transition to a ferromagnet-
ically ordered phase is visible as a sharp downturn away
from Curie–Weiss behavior. Inset: Definition of the first,
second, and third nearest-neighbor interaction, J1 (green),
J2 (purple), and J3 (yellow)

where Eq. (12) yields a nearest-neighbor ferromagnet
and the setup of Eq. (13) was previously reported to
result in a paramagnetic ground state [21].

Rewriting each spin operator Sμ in the Hamiltonian
in terms of pseudofermions leads to an expression pro-
portional to f†

α′fαf†
β′fβ , with interactions proportional

to
∑

μ σμ
α′ασμ

β′β . Exploiting this SU(2) symmetry (the
interactions are diagonal and of equal magnitude in
every spin direction), the flowing pseudofermion vertex
Γ (and each of its two-particle reducible parts γc) can
be decomposed into a spin component Γs, proportional
to the latter combination of Pauli matrices, and a den-
sity component Γd proportional to δα′αδβ′β [4,45]. Note
that the density component, although initially vanish-
ing for any typical spin model, becomes finite away from
the UV limit and is essential for tracking the evolution
of all symmetry-allowed couplings under the RG flow.

3.1 Ferromagnetic phase

With pure nearest-neighbor ferromagnetic interactions,
the zero-temperature ground state is intuitively expec-
ted to be a ferromagnet. Therefore, in the context of
pseudofermion fRG, there should be a transition at
some finite ΛT > 0 from a paramagnetic regime at
large Λ > ΛT to the ferromagnetic phase at Λ < ΛT.
Approaching the transition, the spin-spin correlator χij

is expected to diverge, similar to a finite-temperature
phase transition. In this case, a peak will form at the Γ
point in reciprocal space, as is visible Fig. 1, since the
correlations are uniform and positive in a ferromagnet.

Close to the transition, the flow is supposed to visi-
bly deviate from its paramagnetic Curie–Weiss behav-
ior χii ≈ CJ/(Λ − ΛC) at large Λ  ΛT. For this
reason, it is convenient to plot the inverse correlator
1/χii as a function of Λ to locate the transition, as
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shown in Fig. 2. Here, the 1/Λ behavior appears as a
straight line with slope 1/C displaced horizontally by
ΛC/J and the transition to the ferromagnetic phase is
visible as a sharp turn down to a smaller inverse cor-
relation function at Λ/J ≈ 0.76. The structure factor
at Λ close to ΛT, shown in Figs. 1 and 3, has a single

Fig. 3 Structure factor for the ferromagnet along a high-
symmetry path of the cubic lattice Brillouin zone. The
results are in excellent agreement between both codes, both
for � = 1 and � = 3, showing dominant ferromagnetic corre-
lations indicated by a sharp peak around the Γ point. Inset:
Zoom into the path segment connecting the X ,M , and R
point

peak at the Γ point, signifying an instability towards
ferromagnetic order. This, as well as the Curie–Weiss fit
parameters, are consistent across both considered loop
orders � = 1, 3 and both codes, while ΛT differs slightly.

Since both implementations obtain the spin-spin cor-
relations by post-processing the vertices, any discrep-
ancy therein originates from differences in the vertices.
Therefore, a more detailed examination of the 1/χii-
deviations between the codes for � = 1 will follow once
the flow of the vertex components has been discussed.
Moreover, even if the flows for the χij agree perfectly
(as, e.g., in the regime Λ > ΛT), discrepancies in the
vertices cannot be fully excluded, as post-processing
spin-spin correlations from pseudofermion vertex data
amounts to integrating a combination of several prop-
agators and the vertex over two frequencies [1]. Hence,
this additional step might hide potential differences in
the vertex data.

To investigate this further, we focus on the t-
reducible vertex γt plotted in Fig. 4 at various values
of Λ: Its spin component γs

t (second and third column)
is responsible for the transition and becomes sharply
peaked at small bosonic frequencies ω ≈ 0. Its density
component γd

t (last column) with its extended struc-
tures and peaks at non-zero fermionic frequencies ν is
particularly difficult to resolve and thus most likely to
contain numerical artifacts. Comparing γt, as well as
the the self-energy Σ between the codes, we find quan-

Fig. 4 Frequency structure of self-energy and t-reducible vertex for the ferromagnet at different values of Λ/J for � = 3
flows. The self-energy is purely imaginary and antisymmetric in frequency space, while all vertex components are real and
symmetric along the directions plotted here. We show two cuts through the three-dimensional structure of γΛ,μ

t,〈ij〉(ω, ν, ν′):
A cut along the bosonic frequency axis ω, with both fermionic frequencies set to ν = ν′ = 0, and a cut with equal fermionic
frequencies ν = ν′, where the bosonic frequency was set to ω = 0. The first cut is not shown for γd

t as γd
t,〈ij〉(ω, 0, 0) = 0

due to symmetry [1,2]. The most prominent structure in the t-reducible vertex is a peak around zero bosonic frequency
ω = 0 that grows in magnitude and becomes sharper as Λ is decreased. This indicates ferromagnetic correlations that grow
stronger as the ordering phase transition is approached. In all components, there is quantitative agreement between the two
codes
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Fig. 5 Decomposition of the γs
t,〈ij〉(ω, ν, ν′) vertex for the

ferromagnet into asymptotic classes K1,t, K2,t, K3,t (first,
second, third row) for the � = 3 flows at Λ/J = 0.8. Fre-
quency axes shown here are the same as in Fig. 4. As the
flow is close to the ordering phase transition at this value of
Λ, strong ferromagnetic correlations are present as a peak
around ω = 0 in K1,t. The other classes are at least one
order of magnitude smaller. In all classes, both codes show
quantitative agreement

titative agreement also on this very detailed level of
inspection.

As outlined in Sect. 2, both codes use a decomposi-
tion of the reducible vertices γs, γt, γu into four asymp-
totic classes each. The decomposition into asymptotic
classes Kn is shown for γs

t at Λ/J = 0.8 in Fig. 5, where
we omit Ks

2′,t, as it is equal to Ks
2,t by crossing sym-

metry [1,2]. Note that, while these vertices can directly
be extracted from code #1, an additional transforma-
tion is applied to the Qn decomposition of code #2 [see
Eq. (8)]. The peak in γs

t at small bosonic frequencies
in Fig. 4 is found to stem from the K1 contribution,
which is an order of magnitude larger than the other
classes. In K2 and K3, extended structures with mul-
tiple maxima and minima exist. It is thus crucial to
use a frequency mesh with enough mesh points in an
extended region around the origin to control numerical
interpolation errors (see Sect. 4).

Though the codes implement the vertex decom-
position differently (see Sect. 2) and use different
approaches to build appropriate frequency meshes (see
[1,2] for a detailed description), all components of the
vertex are consistent with each other. This demon-
strates that it is possible to gain control over said inter-
polation errors by a careful adaptive implementation
that places enough mesh points where they are needed.

Since the numerical error incurred by interpolation
of the continuous frequency structure from a discrete
mesh is particularly relevant whenever sharp struc-
tures are present in the vertex, different choices of fre-

Fig. 6 Flows with rescaled frequency meshes. Compari-
son of the flow of inverse static on-site spin correlations
1/χii(iω = 0) obtained using frequency meshes with dif-
ferent scaling factors κ. The dotted line is a Λ−1 fit to the
data at Λ/J ∈ [1.0, 4.0]. For all values of κ, a transition
to a ferromagnet is visible as a sharp turn down. The pre-
dicted transition point as well as the slope of χ in the region
Λ/J < 0.8 differs, while the behavior at large Λ > J remains
identical

quency meshes have strong effects close to phase transi-
tions, where some couplings are expected to diverge. For
instance, in the ferromagnetic setup discussed above,
the transition was induced by a peak in the spin com-
ponent of the t-reducible vertex that grows quickly and
starts to diverge, as can be seen in the second column of
Fig. 4. As the transition is approached, this peak pro-
gressively becomes sharper and thus more difficult to
resolve using discrete meshes. Thus, minor differences
in mesh spacing can induce differences in the flow at
the transition, though the qualitative, physical results
remain unchanged.

To investigate the effects of changes in the mesh spac-
ing explicitly, we compared results obtained from both
codes with artificially modified meshes. Both implemen-
tations make use of adaptive frequency grids where,
during the flow, the mesh spacing is adjusted according
to the frequency structure of the vertex. The simplest
way to manipulate the meshes is to rescale them by
an artificial scaling factor κ. In Fig. 6, we show the
effect of such a rescaling on the � = 1 flow from Fig. 2.
Above Λ/J ≈ 0.8, all frequency structures in the ver-
tex are fairly broad and easy to resolve. Consequently,
rescaling the frequency grid has little effect and values
κ = 0.5 . . . 3.0 result in the same flow and also the same
Curie–Weiss fit parameters. Below that point, the flows
differ more and more as structures become sharper and
ultimately predict slightly different transition points
ΛT/J . Nevertheless, all flows predict a transition to the
same ferromagnetic phase, which can be identified by a
peak in the structure factor at the Γ point.

3.2 Paramagnetic phase

For the second set of parameters, Eq. (13), all interac-
tions up to the third neighbor are antiferromagnetic.
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Fig. 7 Inverse spin-spin correlation function for the puta-
tive paramagnet as a function of Λ. Shown here is a com-
parison of the � = 1 and � = 3 flow obtained from both
codes. The dotted line is a fit of a Λ−1 power law to the
data at Λ/J ∈ [1.0, 4.0]. For Λ/J ≥ 0.5, the Λ−1 behavior
is followed almost perfectly. At smaller Λ/J , the � = 1 and
� = 3 flows disagree: The � = 1 curve smoothly approaches
Λ = 0 (staying above the power law), indicating antiferro-
magnetic correlations. By contrast, the � = 3 curve displays
a downward cusp, similar to Fig. 2, and thus predicts an
ordered state

Consistent with prior work using one-loop fRG [21],
both codes find a paramagnetic ground state for � = 1,
indicated by a smooth and regular flow down to Λ = 0
in Fig. 7.

Remarkably, the � = 3 data predicts a qualitatively
different phase: There is a divergence in the spin cor-
relations at ΛT/J ≈ 0.24, indicating an ordering tran-
sition at a scale roughly three times lower than for the
ferromagnetic ordering instability discussed in the pre-
vious section. Such a reduced ordering scale is not unex-
pected for an exchange-frustrated spin system when
compared to an unfrustrated one, but sometimes hard
to establish.

Probing the structure factor in the vicinity of the
divergence reveals a strong enhancement of magnetic
correlations compared to the � = 1 flow, as indicated by
sharpened Bragg peaks around the M = (0, π, π) points
in Figs. 1 and 9. These correspond to antiferromagnetic
correlations between planes orthogonal to the vector
connecting the second nearest-neighbors along diago-
nals of the faces in the cubic unit cell (shown in purple
in Fig. 2). Our result is consistent with earlier observa-
tions of long-range (0, π, π) order neighboring the para-
magnetic phase [21]. Yet, the mfRG flows obtained from
both codes suggest a rather strong modification of the
respective phase boundaries as the coupling parameters
investigated here were previously predicted to be deep
in the non-magnetic regime.

In the vertex (see Fig. 8) and self-energy, there is
again very good quantitative agreement between both
codes. At Λ/J = 0.05, small quantitative differences
between code #1 and #2 appear in the density com-
ponent γd

t of the t-reducible vertex, consistent with the
earlier remark that it is the most difficult component
to resolve well.

The � = 1 and � = 3 flows are very similar down
to Λ/J ≥ 1. Contributions of � > 1 terms become sig-
nificant at Λ/J ≈ 1 and eventually lead to an order-
ing instability induced by a peak in the γs

t component
that diverges at Λ/J ≈ 0.24. In contrast to the fer-
romagnetic case, this peak is negative, indicating anti-
correlation. Along the fermionic ν frequency axis, the
vertex shows an extended structure with multiple peaks
of similar magnitude to the one on the bosonic axis.
Since the K1 class has no fermionic frequency, this
means that, remarkably, other classes reach an order
of magnitude comparable to K1, as shown explicitly in
Fig. 10. Consequently, vertex structures along fermionic
frequency axes, in contrast to the ferromagnetic transi-
tion, become sizeable. It is therefore crucial to resolve
the full three-dimensional frequency structure in K3.
Though numerically expensive, a large number of mesh
points is necessary to ensure sufficient accuracy, as inad-
equate resolution of features along the fermionic fre-
quency axes can strongly affect the fRG flow. This is
even more important for multiloop flows, where inter-
polation errors might accumulate during the iteration
over loop orders.

4 Technical aspects

To conclude our benchmark calculations, we discuss
some of the particularly relevant technical aspects (see
Table 1) which are needed to obtain confidence that we
have sufficient degree of control over numerical errors.
In doing so, we will also connect to the existing litera-
ture and scrutinize some of the algorithmic approaches
which are routinely employed in the pffRG community.

4.1 Frequency grids

Both the self-energy and two-particle vertices are func-
tions of Matsubara frequencies, which are continuous
in the zero-temperature limit. A numerical implemen-
tation has to sample these functions on a finite grid and
interpolate their values in between the sampling points.
In many previous works (see e.g. Refs. [4,19,46]), the
same frequency grid was chosen for the self-energy and
all reducible vertices, usually featuring logarithmically
increasing distances between adjacent grid points start-
ing from some small but finite frequency. The inten-
tion behind such a choice of frequencies was to resolve
the structure around zero frequency with high accu-
racy while coarse-graining high-frequency tails. More-
over, each vertex component was parametrized in terms
of the three bosonic transfer frequencies, instead of
the channel-specific mixed bosonic-fermionic frequency
treatment utilized by codes #1 and #2.

Although most of the structure of the two-particle
vertex is indeed centered around zero frequency, its pre-
cise extent strongly depends on the cutoff scale Λ (see,
e.g., Figs. 4 and 8) and a static frequency grid will there-
fore fail to faithfully resolve the evolution of frequency
structures under the fRG flow. Furthermore, multipeak
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Fig. 8 Frequency structure of self-energy and t-reducible vertex for the putative paramagnet at different values of Λ/J for
� = 1 and 3 flows. As the � = 3 flow diverges at Λ/J ≈ 0.24, only � = 1 is shown at Λ/J = 0.05. The same cuts through the
three-dimensional frequency structure of the vertices are shown as in Fig. 4. Again, a peak in the γs

t,〈ij〉 component (second
column) indicates strong correlations that become stronger as Λ is further decreased. In contrast to the ferromagnetic case,
this peak is negative, indicative of antiferromagnetic correlations, and there is a sizeable contribution of γs

t for nonzero
fermionic frequencies ν, ν′ (third column), particularly for � = 3

structures that are present in several vertex components
will in general not be captured by logarithmic sampling.

To address both shortcomings, codes #1 and #2
introduce hybrid frequency meshes using linear spac-
ing around zero frequency augmented by an algebraic
(code #1) or logarithmic (code #2) part to capture
the high-frequency behavior in the asymptotic classes
Kn or Qn. The parameters of these meshes are then
independently rescaled for different vertex components
making use of sophisticated scanning routines (see [1,2]
for further details).

4.2 Evaluation of bubble integrals

Having fixed the frequency discretization, the evalua-
tion of frequency integrals in loop and bubble func-
tions necessitates the use of a quadrature rule. In earlier
implementations, a trapezoidal quadrature was used,

with integration points coinciding with the frequency
mesh of the vertex. As discussed above, this procedure
yields good resolution around the origin of the integra-
tion variable. For 1� calculations, the bubble function
consists of a single-scale and a full propagator, the for-
mer being more strongly peaked than the latter. As the
integration variable was usually shifted such that the
origin coincided with the more important pole of the
single-scale propagator, at least the dominant contri-
bution was accounted for in previous implementations.

In higher loops, however, both propagators enter the
bubble on equal footing, necessitating adaptive routines
to deal with the enriched frequency structure. This is
illustrated in Fig. 11, where we compare the results of
integrating the bare susceptibility

χΛ
0 (ω) =

1
4π

∫
dν GΛ

0 (ν + ω
2 )GΛ

0 (ν − ω
2 ) ,

123



Eur. Phys. J. B (2022) 95 :102 Page 9 of 13 102

Fig. 9 Structure factor for the paramagnetic setup along a
high-symmetry path of the cubic lattice Brillouin zone. The
results are in good agreement between both codes, both for
� = 1 and � = 3, showing that correlations are strongest
around the M point. Here, the peak sharpens with increas-
ing loop order, and the � = 3 flow predicts enhanced long-
range correlations

Fig. 10 Decomposition of the γs
t,〈ij〉(ω, ν, ν′) vertex in the

paramagnetic setup as in Fig. 5, for the � = 3 flows at
Λ/J = 0.3. Here, all asymptotic classes are of the same
order of magnitude, and structures with multiple peaks are
present along the fermionic frequency cut (second column)

Fig. 11 Evaluation of bubble integrals. Comparison of the
bare susceptibility χΛ

0 (ω) = 1
4π

∫
dν GΛ

0 (ν + ω
2
) GΛ

0 (ν − ω
2
)

obtained numerically via adaptive and static quadrature.
The adaptive method utilizes the Simpson rule, while the
static method applies a trapezoidal rule to a fixed loga-
rithmic frequency discretization (see main text for more
details). For frequencies larger than the scale set by the cut-
off Λ, the non-adaptive integration becomes unstable and is
plagued by rapid oscillations. By contrast, the adaptive rou-
tine yields stable results even beyond the small frequency
regime and is therefore crucial to obtain accurate results for
the vertex functions and their asymptotic behavior

i.e., the simplest bubble-like integral encountered dur-
ing the fRG flow. Using trapezoidal quadrature over
a fixed set of 60 logarithmically distributed integration
points between νmin = 10−3J and νmax = 250J , we find
strong deviations for frequencies ω/Λ � 1 ∼ 10 com-
pared to the results produced with the adaptive routine
of code #2 (see Ref. [2] for further details). Moreover,
at small cutoffs Λ/J � 1, the non-adaptive result is
plagued by rapid oscillations, rendering it numerically
unstable and thus inapplicable. Analytically, an asymp-
totic falloff with a power law ω−2 is expected, and this
is reproduced perfectly by the adaptive integrator.

We emphasize that the test case considered here
merely constitutes the simplest version of a bubble-like
integral computed within the pffRG flow. In general,
the propagators in bubble functions are dressed with
self-energy insertions and additionally contracted with
two-frequency dependent vertices. One should, there-
fore, expect even larger numerical errors for full fRG
calculations that utilize non-adaptive quadrature.

Table 1 Technical summary of the algorithmic choices in code #1 and #2

Code #1 Code #2

Vertex decomposition K1, K2, K3 Q1, Q2, Q3

Frequency mesh Adaptive linear and algebraic Adaptive linear and logarithmic
Integration rule Adaptive 21-point Gauss–Kronrod rule Adaptive Simpson rule + Richardson extrapolation
ODE solver 5th order Cash–Carp 3rd order Bogacki–Shampine
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(a) (b)

(d)(c)

Fig. 12 Scaling of relative runtime with numerical parameters. Median computational runtime of 60 samples of a single
calculation of the right-hand side of the flow equation for Λ/J = 1 relative to the runtime of the fastest computation in
each series. Calculations start from a parquet solution to make the code integrate over non-trivial frequency structures. The
numerical parameters for all plots are fixed to Nω = 50, Nν = 30, ξ = 4 and � = 1, if not varied. The asymptotic behavior
expected analytically is achieved in all cases (dashed red lines)

4.3 Flow integration

The integration of the RG flow can, in principle, be
performed using any standard solver for ordinary dif-
ferential equations. While earlier works used an Euler
scheme with decreasing step-sizes (see, e.g., Ref. [46]),
we employ higher order solvers in the Runge–Kutta
family with adaptive step-size control to achieve max-
imum accuracy while being numerically efficient to
operate. It is of particular importance to implement
an error-controlling method near ordering instabilities
such as the ferromagnetic setup in Sect. 3, as otherwise
numerical errors may become unacceptably large even
at scales Λ ≈ J .

4.4 Initial condition

The final ingredient to set up the pffRG flow is an
appropriate initial condition. In the UV limit Λ → ∞,
the pseudofermion vertex is given by the bare spin
coupling, which, in numerical calculations, is naturally
implemented using J as the initial condition at a large
but finite value of Λ. The mfRG flow will, by con-
struction, reproduce a solution to the parquet equa-
tions [33–35], given an initial condition consistent with
them. Therefore, we solve the regularized parquet equa-
tions iteratively for an initial scale Λ/J = 5 and use
the resulting self-energy and reducible vertices as a
dynamic, i.e., frequency-dependent starting point for
the fRG flow [1].

4.5 Scaling analysis

Most of the runtime needed to evaluate the right-
hand side of the flow equations is spent calculating

the derivative of the high-dimensional two-particle ver-
tex as given in Eq. (6). In comparison, the computa-
tion time spent for the self-energy derivative of Eq. (5)
is negligible. Consequently, the (asymptotic) computa-
tional complexity is given by

O (
N2

ξ × NωN2
ν × �

)
,

where Nξ is the number of (symmetry reduced [1,2])
lattice sites, Nω (Nν) the number of bosonic (fermionic)
frequencies, and � denotes the number of loops. The
total number of sites, in turn, is expected to follow a
O(ξd) dependence, where ξ is the maximal correlation
length considered and d is the spatial dimensionality of
the underlying lattice, with d = 3 for the simple cubic
lattice at hand.

To demonstrate that we indeed reach this asymp-
totic algorithmic scaling also in numerical implemen-
tations we show, in Fig. 12, the median runtime data
for 60 evaluations of the right-hand side of the fRG
equations obtained using code #2. For the number of
bosonic and fermionic frequencies, the expected linear
and quadratic behavior, respectively, is achieved over
the whole parameter range. Note that, due to the adap-
tive integration and parallelization used, slight devia-
tions from the theoretical scaling are to be expected.
Similarly, the scaling in the maximal correlation length
ξ is achieved for the whole parameter range. In the num-
ber of loops, the linear scaling sets in at � = 5, while
for smaller � a steeper slope is found. We attribute this
behavior to the contributions of higher loops becoming
successively smaller, leading to faster converging adap-
tive loop integrals for given absolute and relative toler-
ances. That way, the initial overhead of computing two
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Table 2 Number of (symmetry reduced) vertex flow equa-
tions for Heisenberg models on the cubic lattice as a function
of the maximum correlation length ξ. The number of posi-
tive frequencies is fixed to 60 (50) for the bosonic (fermionic)
Matsubara axis

Max. correlation length ξ No. flow equations

3 9 183 600
5 24 795 720
7 53 264 880
9 101 019 600

11 167 141 520
13 258 059 160

(three) loop corrections, which require twice (thrice)
the number of integrals to be evaluated compared to
� = 1, diminishes with increasing loop number and the
analytically expected scaling, linear in �, is recovered.

As a final remark, we mention that the number of
vertex flow equations, another measure of algorithmic
complexity, grows rapidly as one increases the maximal
correlation length considered for a given lattice model.
This is summarized in Table 2.

5 Conclusions

We benchmarked two state-of-the-art codes for solving
pseudofermion functional renormalization group equa-
tions. Our analysis considered both physical observ-
ables, i.e. spin-spin correlation functions and struc-
ture factors, as well as fermionic vertex functions (self-
energy and two-particle vertex) for ferro- and antifer-
romagnetic models on the simple cubic lattice.

For the nearest-neighbor ferromagnet, both codes
were in quantitative agreement at least until Λ/J �
0.76, where they consistently predicted a breakdown of
the RG flow, indicated by a sharp peak (for � = 1) or a
divergence (for � = 3) in the spin-spin correlations. The
energy scale ΛT associated with this numerical insta-
bility slightly differed, which necessitated an in-depth
comparison of the influence of the numerical frequency
grid on the obtained results. We found that both fRG
solvers, due to the emergence of a singular peak in the t
reducible vertex functions, become sensitive to the pre-
cise mesh spacing and thus predict marginally different
critical scales, although the physical conclusion drawn
from the RG flow, i.e. the onset of long-range ferromag-
netic order, remains the same.

For the antiferromagnetic setup, the � = 1 results
obtained by both codes were in agreement with one
another and previous studies [21], predicting a para-
magnetic state, signified by a regular RG flow down
to the infrared. For � = 3, similar numerical agreement
between the two codes was found. However, the physical
results changed qualitatively: the flow of the spin-spin
correlator diverged around Λ/J ≈ 0.24, accompanied
by sharp Bragg peaks at the M points indicating the
formation of antiferromagnetic order at low tempera-

tures. This reinstantiates the importance of including
higher loop corrections in pffRG to avoid overestimat-
ing the extent of paramagnetic phases and to obtain
more accurate predictions of ground states in frustrated
quantum magnets.

We also elaborated on the importance of employing
adaptive numerical algorithms to obtain robust results
at all stages of the flow. More explicitly, there are
extended structures with multiple peaks in the three-
dimensional frequency dependence of several vertex
components. As these structures are sizable, it is cru-
cial to resolve them in an accurate manner. We found
fixed logarithmic frequencies to be insufficient for struc-
tures not centered at zero frequency, and rely instead on
adaptive frequency meshes that have been specifically
optimized for pffRG vertices. Furthermore, we demon-
strated that the commonly employed quadrature of a
trapezoidal rule over a static, logarithmic mesh fails to
produce the analytically expected behavior of bare bub-
ble integrations at large frequencies. It is thus unsuit-
able for providing the essential Matsubara integrals for
error-controlled fRG flows. By contrast, the implemen-
tations presented and benchmarked here solve these
problems using highly accurate, yet efficient adaptive
routines (see Table 1). We thus believe that, moving
forward, they will be widely used for unbiased calcu-
lations of (multiloop) ground-state phase diagrams of
frustrated magnets from pffRG.
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17. A. Keleş, E. Zhao, Phys. Rev. Lett. 120, 187202 (2018).
https://doi.org/10.1103/PhysRevLett.120.187202
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