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The low-energy physics of Tomonaga-Luttinger liquids (TLLs) is controlled by the Luttinger parameter.
We demonstrate that this parameter can be extracted from a single wave function for one-component TLLs
with periodic boundary condition. This method relies on the fact that TLLs are described by conformal field
theory in which crosscap states can be constructed. The overlaps between the crosscap states and the
ground state as well as some excited states are proved to be universal numbers that directly reveal the
Luttinger parameter. In microscopic lattice models, crosscap states are formed by putting each pair of
antipodal sites into a maximally entangled state. Analytical and numerical calculations are performed in a
few representative models to substantiate the conformal field theory prediction. The extracted Luttinger
parameters are generally quite accurate in finite-size systems with moderate lengths, so there is no need to
perform data fitting and/or finite-size scaling.
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Introduction—The theory of Tomonaga-Luttinger liquid
(TLL) is a great triumph of strongly correlated physics [1].
Based on previous work of Tomonaga [2], Luttinger
introduced a model to study interacting fermions in one
dimension [3]. It clearly exemplifies the peculiarity of
reduced dimensionality because infinitesimal interaction in
a one-dimensional system drives it away from the Fermi
liquid. In subsequent works [4–8], the bosonization frame-
work was established to provide a unified treatment for
many strongly correlated problems in one dimension. Spin
chains are usually studied using the Jordan-Wigner trans-
formation that converts spins to fermions. Gapless phases
of bosons or fermions can be understood using free boson
fields that correspond to density fluctuations. Instabilities
of the TLL lead to symmetry-breaking ordered phases. It is
not easy to realize one-dimensional systems, but exper-
imental investigations have been carried out in solid state
and cold atom platforms [9–18]. Another context in which
TLL thrives is the edge of certain two-dimensional topo-
logical states [19–22].
The low-energy physics of one-component TLLs is

captured by the Hamiltonian

H ¼ v
8π

Z
L

0

dx
�ð∂xφ̂Þ2 þ ð∂xθ̂Þ2

�
; ð1Þ

which is a system of compactified bosons in the language of
conformal field theory (CFT). Here L is the length of the
system, v is the characteristic velocity, φ̂ is a compactified
boson field with radius R (i.e., φ̂ ∼ φ̂þ 2πR), and θ̂ is the
conjugate boson field of φ̂ with radius R0 ¼ 2=R. The
Luttinger parameter K can be expressed using the radius
as K ¼ R2=4. Its value is 1 for free fermions and deviates
from 1 when interaction is turned on. For a given TLL, many
properties are determined byK so it is routinely computed in
numerical studies. If the Hamiltonian has a microscopic
U(1) symmetry (e.g., particle number conservation), K can
be obtained by comparing theground-state energy ofmultiple
systems with different U(1) charges [23]. This is feasible
because K can be interpreted as the stiffness of a superfluid.
The powerlaw decay of certain correlation functions can be
used to deduce K when their bosonized expressions are
known [1]. It has been found that K also appears in the U(1)
charge fluctuations of a subsystem [24,25], the U(1) sym-
metry-resolved entanglement spectrum [26,27], different
types of entanglement entropy [28–32], and finite entangle-
ment scaling analysis [33,34].
In this Letter, we propose that the Luttinger parameter in

microscopic models can be extracted from the eigenstate
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crosscap overlap (ESCO). It has three favorable features:
(i) a single wave function instead of multiple states is used;
(ii) data fitting or finite-size scaling is not needed; (iii)micro-
scopic U(1) symmetry is not required. To the best of our
knowledge, no other method enjoys all three advantages
simultaneously. Ourmethod ismotivated by classical results
and recent progresses in CFTand integrablemodels.When a
CFT is defined on the Klein bottle, important information
can be inferred from the thermal entropy [35–47]. The Klein
bottle can be viewed as a special cylinder with crosscaps at
its ends. A simple circle with all pairs of antipodal points
identified becomes a crosscap. It is possible to define a
variety of crosscap states in the framework of boundary
CFT [48]. For a rational CFT, the crosscap states have
universal overlaps (“crosscap coefficients”) with its ground
state [49–51]. In some integrable models, the crosscap
states have been identified as “integrable boundary states”
[52–56]. The overlaps between all eigenstates of these
integrable models and the crosscap states can be expressed
as determinants, but their physical significance is not
transparent. We aim to establish a general framework for
studying crosscap states in CFT (without and with pertur-
bations) such that physical properties can be deduced from
their overlaps with eigenstates.
General construction of crosscap states—While the

crosscap is easy to visualize, the problem of what kind
of states qualify as conformal crosscap states in CFTs has
not been completely settled [49–51]. We take the viewpoint
that a conformal crosscap state should satisfy two sets of
constraints. First, the field operators on antipodal spatial
coordinates are identified with each other in some way. If a
CFT has Lagrangian description, this can be made precise
using the path integral formalism [57–59]. These requisites
are physical manifestations of the geometric structure of
crosscap and referred to as ‘“sewing conditions.” Second,
the partition functions on a cylinder with crosscap boun-
daries (tree channel) and on a Klein bottle (loop channel)
should be equal. This “loop-tree channel correspondence”
allows one to determine certain coefficients in crosscap
states. As we turn to lattice models, the problem becomes
even more complicated because the lattice counterpart of a
field operator is generally difficult to find. It is thus unlikely
that a conformal crosscap state can be converted rigorously
to a lattice one. Based on the intuitive picture of identifying
antipodal spatial points, recent works have studied
lattice crosscap states in which antipodal sites form Bell
states [52–56], but their relation to the conformal crosscap
states has not been elucidated.
It is particularly instructive to study a specific lattice

realization of the Hamiltonian in Eq. (1), namely, the
modified Villain model [60] as illustrated in Fig. 1(a):

HmV¼
XN
j¼1

�ð2πRp̂jÞ2þR02ðX̂jþ1− X̂jþ2πn̂j;jþ1Þ2
�
: ð2Þ

There are N sites in the chain (labeled by j), the lattice
spacing is a, and periodic boundary condition is imposed.
X̂j (Êj;jþ1) is the site (link) variable at site j [link ðj; jþ 1Þ]
and p̂j (n̂j;jþ1) is the associated canonical momentum, and
they satisfy the standard commutation relations ½X̂j; p̂l� ¼
½Êj;jþ1; n̂l;lþ1� ¼ iδjl. The eigenbasis of these variables is
denoted as jXji (Xj ∈R) and jEj;jþ1i [Ej;jþ1 ∈ ½0; 2πÞ],
which span the local Hilbert space at site j and link
ðj; jþ 1Þ, respectively. The tensor product of these local
ones is the full Hilbert space. However, there are additional
local operators Ĝj ¼ eiðÊj;jþ1−Êj−1;j−2πp̂jÞ that commute with
the Hamiltonian. We define the physical subspace Hphy by
imposing the Gauss law constraints Ĝj ¼ 1 ∀ j. The
projection operator onto the subspace Hphy is denoted as

PG. Using new variables θ̂j ¼ R0ðX̂j þ 2π
Pj

k¼1 n̂k−1;kÞ
and φ̂j;jþ1 ¼ RÊj;jþ1 [60], Eq. (2) can be rewritten as

HmV ¼
XN
j¼1

�ðφ̂jþ1;jþ2 − φ̂j;jþ1Þ2 þ ðθ̂jþ1 − θ̂jÞ2
�
: ð3Þ

Its continuum limit is taken by sending N → ∞ and a → 0
with L ¼ Na kept unchanged. After the substitutions
φ̂jþ1;jþ2 − φ̂j;jþ1 → a∂xφ̂ðxÞ and θ̂jþ1 − θ̂j → a∂xθ̂ðxÞ,
the TLL Hamiltonian emerges from Eq. (3). The operators
eiθ̂j=R

0
and eiφ̂j;jþ1=R act within Hphy thanks to the commu-

tation relations ½eiθ̂j=R0
; Ĝj0 � ¼ ½eiφ̂j;jþ1=R; Ĝj0 � ¼ 0 ∀ j; j0.

The compactification radii of θ̂j and φ̂j;jþ1 are R0 and R,
respectively.
Motivated by the intuitive picture mentioned above and

previous works [49–56], we construct the Ansätze

jC�i ¼ PG

YN=2

j¼1

jBV
�ij;jþN=2 ⊗ jBL∓ij;jþN=2 ð4Þ

for crosscap states by putting antipodal links and sites in the
generalized Bell pairs

jBL∓ij;jþN=2 ¼
Z

2π

0

dEjEij;jþ1j ∓ EijþN=2;jþN=2þ1;

jBV
�ij;jþN=2 ¼

Z
∞

−∞
dXjXijj � XijþN=2; ð5Þ

(b)(a)

FIG. 1. (a) Schematics of the modified Villain model and its
crosscap states jC�i. (b) Graphic representations of an MPS with
eight sites and its crosscap overlap.
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respectively. It can be verified that the relations

eiðθ̂j∓θ̂jþN=2Þ=R0 jC�i ¼ jC�i;
eiðφ̂j;jþ1�φ̂jþN=2;jþN=2þ1Þ=RjC�i ¼ jC�i ð6Þ

are fulfilled for all j, which in the continuum limit becomes

ei½θ̂ðxÞ∓θ̂ðxþL=2Þ�=R0 jC�i ¼ jC�i;
ei½φ̂ðxÞ�φ̂ðxþL=2Þ�=RjC�i ¼ jC�i: ð7Þ

These identities are sewing conditions in the sense that field
operators on antipodal spatial coordinates are combined to
form certain operators under which the crosscap states are
invariant. It is amusing that they can be derived rigorously
using our formalism.
For subsequent calculations, we introduce the mode

expansions [61]

θ̂ðxÞ ¼ φ̃0 þ
4πx
L

π0 þ
X
k≠0

i
k

�
ei

2πk
L xak − e−i

2πk
L xāk

�
;

φ̂ðxÞ ¼ φ0 þ
4πx
L

π̃0 þ
X
k≠0

i
k

�
ei

2πk
L xak þ e−i

2πk
L xāk

�
; ð8Þ

where the zero modes and oscillatory modes satisfy
½φ0; π0� ¼ ½φ̃0; π̃0� ¼ i and ½ak; al� ¼ ½āk; āl� ¼ kδkþl;0,
respectively. φ0 (φ̃0) is an angular variable with radius R
(R0), and π0 (π̃0) is the associated canonical momentum.
The eigenvectors of π0 and π̃0 that can be annihilated by all
bosonic annihilation operators ak>0 and āk>0 are denoted as
jn;mi (n;m∈Z); they are highest weight states (Virasoro
primary states) of the CFT and satisfy π0jn;mi ¼
ðn=RÞjn;mi and π̃0jn;mi ¼ ðm=R0Þjn;mi. The TLL
Hamiltonian in Eq. (1) becomes

H ¼ 2πv
L

�
π20 þ π̃20 þ

X∞
k¼1

ða−kak þ ā−kākÞ −
1

12

�
; ð9Þ

whose energy eigenstates are just Virasoro primary states
jn;mi and the descendant states obtained by applying the
creation operators ak<0 and āk<0 on top of jn;mi. The
crosscap states can be expressed as

jCþi ¼ κþ exp

�X∞
k¼1

ð−1Þk
k

a−kā−k

�X
n∈Z

j2n; 0i;

jC−i ¼ κ− exp

�
−
X∞
k¼1

ð−1Þk
k

a−kā−k

�X
m∈Z

j0; 2mi: ð10Þ

The overall factors are not fixed by normalization but
should be chosen as κþ ¼

ffiffiffiffiffi
R0p

and κ− ¼ ffiffiffiffi
R

p
to fulfill the

loop-tree channel correspondence [62].

The conformal crosscap states in Eq. (10) are scale-
invariant (i.e., they contain no scale) and cannot be
normalized. Their lattice counterparts may be normalizable
[Eq. (14) for spin-1 ¼ 2 chains defined below] or not
normalizable [Eq. (4) for the modified Villain model],
depending on the local Hilbert space dimension. In fact, for
a given lattice model whose low-energy theory is the
compactified boson CFT, the crosscap states together with
the coefficients κ� in Eq. (10) should be understood
as the continuum description of their lattice counterparts
jC�latti. This means that they are fully determined by the
overlaps of lattice crosscap states with low-lying eigen-
states in the continuum limit: hC�jn;m; fnkg; fn̄kgi ¼
limN→∞hC�lattjψn;m;fnkg;fn̄kgi, where jψn;m;fnkg;fn̄kgi is the
lattice counterpart of the CFT eigenstate jn;m; fnkg; fn̄kgi.
An appealing property of jC�i is that their overlaps with

certain highest weight states jn;mi are universal numbers
depending only on the compactification radius (equiva-
lently, the Luttinger parameter):

jhCþj2n; 0ij2 ¼ R0 ¼ 1ffiffiffiffi
K

p ; n∈Z;

jhC−j0; 2mij2 ¼ R ¼ 2
ffiffiffiffi
K

p
; m∈Z: ð11Þ

It was found in Ref. [39] that the Luttinger parameter
appears in the thermal entropy of compactified boson CFTs
on the Klein bottle. In view of the spacetime symmetry of
CFTs, it is natural to expect that the same variable can also
be found using the ground state alone. Our derivation not
only puts this expectation on a firm ground but also
provides further insights into crosscap states. Some excited
states are incorporated in the present formalism, and
perturbations to a pure CFT can be investigated [66].
Spin chains with microscopic U(1) symmetry—To apply

the general theory in specific lattice models, the crosscap
states should be expressed in terms of the microscopic
degrees of freedom. It is helpful to begin with spin-1=2
chains. The first one is the XXZ model,

HXXZ ¼
XN
j¼1

ðSxjSxjþ1 þ SyjS
y
jþ1 þ ΔSzjS

z
jþ1Þ; ð12Þ

with K ¼ π=½2ðπ − cos−1ΔÞ� for Δ∈ ð−1; 1� [1]. The
second one is the Haldane-Shastry (HS) model,

HHS ¼
	
π

N



2 X
1≤j<l≤N

Sj · Sl

sin2
�
π
N ðj − lÞ� ; ð13Þ

with K ¼ 1=2 [67,68]. Both models have a U(1) symmetry
associated with the conservation of the z component of the
total spin.
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It is natural to speculate that

jClatti ¼
YN=2

j¼1

ðj↑ijj↑ijþN=2 þ j↓ijj↓ijþN=2Þ ð14Þ

is a crosscap state when N is even [52–56], but
there is one subtlety: it corresponds to jCþi only if
modðN;4Þ¼0 but does not for the cases with
modðN; 4Þ ¼ 2. This property can be traced back to the
constraint ðSzj − SzjþN=2ÞjClatti ¼ 0. The Szj operator in boso-

nization reads Szj ∼ ∂xθ̂ðxÞ þ ð−1Þjα cos½θ̂ðxÞ=R0� for XXZ
and HS chains (α is a model-dependent constant). For
modðN; 4Þ ¼ 0, the lattice constraint ðSzj−SzjþN=2ÞjClatti¼
0 is hence consistent with Eq. (7).
The validity of Eq. (14) in the XY model (i.e., Δ ¼ 0 in

the XXZ model) and the HS model can be substantiated by
analytical calculations. In the hardcore boson basis, the
Virasoro primary states jn; 0i have the wave functions

Ψλðx1;…;xMÞ∝ð−1Þ
P

l
xl
Q

j<k

��sin½πðxj−xkÞ=N���λ, where
1 ≤ x1 < � � � < xM ≤ N denote the positions of spin-↑ sites
(occupied by hardcore bosons), and λ ¼ 1 (λ ¼ 2) for the
XY (HS) chain [69]. The number of bosons M is related to
the U(1) charge n viaM ¼ N=2þ n. It is important to note
that the cases with modðN; 4Þ ¼ 2 and modðN; 4Þ ¼ 0 are
different. Because jClatti only contains states with even M,
hClattjΨλðMÞi vanishes identically for oddM. We also have
hClattjΨλðM ¼ N=2þ 2nÞi ¼ 0 when modðN; 4Þ ¼ 2, so
jClatti does not correspond to jC�i in these cases. In
contrast, it can be proven that

jhClattjΨλ¼1ðMÞij2 ¼ 1;

jhClattjΨλ¼2ðMÞij2 ¼ 2MðM!Þ3
½ðM=2Þ!�2ð2MÞ! ¼

ffiffiffi
2

p
þOð1=MÞ

ð15Þ

if modðN; 4Þ ¼ 0 and M ¼ N=2þ 2n [62]. This is a
perfect agreement with the field theory prediction
Eq. (11), giving a strong indication that jClatti corresponds
to jCþi for modðN; 4Þ ¼ 0.
For the XXZ model with Δ ≠ 0, the ground state can be

computed numerically using the density matrix renormal-
ization group (DMRG) [70]. When the ground state jΨi is
expressed as a matrix product state (MPS) [71,72], its
crosscap overlap hClattjΨi would be the tensor contraction
shown in Fig. 1(b). Numerical results at many different N’s
and Δ’s are displayed in Fig. 2. The MPS bond dimension
is 2000 for N ¼ 100 and 6000 for N ¼ 400. The accuracy
is very good in a wide range of Δ for a moderate N ¼ 100.
The relative error of K is of the order 10−4 or smaller when
Δ∈ ½−0.95; 0.8�. As Δ approaches 1, clear deviation from
exact values is observed [not visible in Fig. 2(a) due to its
scale] and the relative error reaches 7.20% at Δ ¼ 1. This

deviation is tentatively attributed to the marginal terms in the
low-energy theory atΔ ¼ 1 [73], which usually cause strong
finite-size effects. It does get smaller as N increases but the
convergence is very slow [see Fig. 2(b)]. To validate this
conjecture, we study the model Hnext ¼

P
N
j¼1ðSj · Sjþ1þ

J2Sj · Sjþ2Þ with a next-nearest-neighbor Heisenberg inter-
action, for which the marginal term disappears when J2 ≈
0.24 [74]. The results for this model with N ¼ 100 are
presented in Fig. 2(c). As J2 increases toward 0.24, the
relative error ofK decreases and eventually becomes 0.11%.
Further analysis based on conformal perturbation theory
reveals that finite-size results for the XXZmodel withΔ ¼ 1

should be fitted as K ¼ a½lnðNÞ�−1 þ b [62,66]. This leads
to b ¼ 0.510 using the data points with N ∈ ½100; 400� in
Fig. 2(b).
Spin chains without microscopic U(1) symmetry—A

fundamental improvement of our method is that micro-
scopic U(1) symmetry is not required. To demonstrate
this advantage, we consider the quantum q-state clock
model [75–80]

HqSC ¼ −
XN
j¼1

ðσ†jσjþ1 þ σjσ
†
jþ1Þ − h

XN
j¼1

ðτj þ τ†jÞ; ð16Þ

where the Zq spin operators are defined as σjαi¼ jmodðα−
1þq;qÞi and τjαi ¼ ei2πα=qjαi with α ¼ 1;…; q. This
model is self-dual (SD) at h ¼ 1. For q ≥ 5 and inter-
mediate h (including the SD point), it hosts a Luttinger
liquid that is separated by two Kosterlitz-Thouless (KT)
transitions at hKT1 and hKT2 from gapped phases [81,82].

(a) (b)

(c)

(d)

FIG. 2. Numerically extracted Luttinger parameters in three
models. Exact values are indicated using solid or dashed black
lines for comparison. (a) The XXZ model with N ¼ 100 and
variousΔ. (b) The XXZmodel withΔ ¼ 1 and variousN. (c) The
next-nearest-neighbor model with N ¼ 100 and various J2.
(d) The five-state clock model with various h and N.
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The transition points are related to each other by duality as
hKT1hKT2 ¼ 1. There is no analytical expression for the
Luttinger parameter, but its value at the SD point and the
KT transition points was predicted to be KKT1 ¼ q2=8,
KSD ¼ q=2, KKT2 ¼ 2 [40,77]. As in previous models, the
Ansatz

jClatti ¼
YN=2

j¼1

Xq
α¼1

jαijjαijþN=2 ð17Þ

is proposed as a crosscap state. Numerical results for the
q ¼ 5 case with N ¼ 50;…; 90 and various h are presented
in Fig. 2(d). The MPS bond dimension is 1500 for N ¼ 50
and 2500 for N ¼ 90. At the SD point, finite-size systems
are described by CFTwith irrelevant perturbations, and the
Luttinger parameter has a relative error 0.79% at N ¼ 90.
In the Luttinger liquid regime, the crosscap overlap only
exhibits weak dependence on the system size, so the data
points for different N almost coincide. For the small and
large h phases, the overlap strongly depends on N.
Summary and outlook—To summarize, we have unveiled

that the Luttinger parameter can be extracted from the
overlaps between individual eigenstates and the crosscap
states. The advantages of our method are corroborated by
analytical and numerical results. This method may be
applied to check if a trial wave function indeed describes
the physics of TLL or other CFTs (see, e.g., Refs. [83,84])
in the absence of a Hamiltonian. From the theoretical
perspective, our results open up an exciting new avenue and
many interesting directions are yet to be explored. The
crosscap state used here is constructed from a certain type
of Bell states. For integrable spin chains, other types of
crosscap states have been studied [53]. Do they have clear
counterparts in CFTs? An extension of our method to
multicomponent Luttinger liquids, such as the fermionic
Hubbard model and SU(3) spin chains, is certainly very
desirable. Finally, experimental protocols for measuring the
crosscap overlap should be pursued. We hope that interest-
ing results on these topics will be reported in the future.
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