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Abstract

Due to signi�cant progress in quantum gas microscopes in recent years, there is a
rapidly growing interest in real space properties of single mobile dopands created in
correlated antiferromagnet (AFM) on a square lattice. In addition, angle-resolved
photoemission spectroscopy (ARPES) has revealed particularly interesting spectral
properties of mobile dopands in cuprates. However, a theoretical description remains
extremely challenging, even when restricting to simple toy-models. As a consequence
previous numerical simulations have been limited to T = 0. However, in order to
link simulations to cold-atom experiments, numerical calculations at �nite temper-
ature are required. Here, we numerically study both the real-time properties as
well as the spectral features of a single mobile hole in the 2D t-J model at �nite
temperature and draw a comparison to features observed at T = 0. We �nd that
a three stage process of hole motion, which was reported at T = 0, is valid even at
�nite temperature. However, already at low temperatures, the hole velocity at long
times is not simply proportional to the spin coupling, contrary to the T = 0 be-
haviour. For the high-temperature behavior at strong coupling regime, remarkably
good agreement was found with subdi�use behavior up to intermediate tempera-
tures. Furthermore, we �nd magnetic polaron peaks in the spectral function up to
T ≈ 1J , demonstrating that magnetic polarons are robust with respect to temper-
ature. Their dispersion relation remains qualitatively unchanged with temperature
in the region away from (π, π) as long as magnetic polarons are present. Instead of
a strong suppression of spectral weight around (π, π), which was observed for T = 0,
we �nd non-vanishing spectral weight and even indications of spin-charge separation
already at low temperatures.
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1 INTRODUCTION 1.0

1 Introduction

The comprehension of the strongly correlated nature of diverse classes of materials
has constituted a signi�cant challenge in recent years. Despite the existence of pre-
cise physical laws that describe the underlying behavior [1], a precise solution for
complex systems remains elusive. At the core of this challenge lies the necessity to
describe real materials with a vast number of particles, as well as the exponential
growth of the computational e�ort required as the system size increases. In order to
address the challenge of dealing with a large number of interacting particles, various
approximate schemes have been employed in the past, wherein the interaction is only
considered to a limited extent. In such cases, the system is typically described from
the perspective of a single particle, with interactions introduced perturbatively. A
prominent example of this is Landau's Fermi-liquid theory [2]. While these methods
have proven e�ective in describing electrical resistivity and more complex phenomena
such as conventional superconductivity, they are inadequate for systems exhibiting
strong electron interactions. Unfortunately, strong electron interactions typically
give rise to pronounced correlations, which are thought to underlie a number of
intriguing quantum e�ects, including high-temperature superconductivity [3,4] and
the fractional quantum Hall e�ect [5]. It is therefore evident that new methods
are required to tackle the problem of simulating realistic many-body electron sys-
tems. As a direct numerical approach, the so-called 'exact diagonalization' (ED)
is employed to obtain eigenvectors of the many-body Hamiltonian describing the
system [6]. While ED is relatively straightforward to implement, it does not address
the issue of exponentially growing complexity with system size. Consequently, it is
typically limited to small system sizes, which can be particularly problematic for
systems exhibiting long-ranged correlations.
Another highly successful approach is to stochastically treat the physical system
under consideration. Such methods are collectively referred to as 'quantum Monte
Carlo' (QMC) techniques [7�9] and can be utilized to sample the partition function
even in the presence of strong interactions. Although this method has proven to
be e�ective in treating a wide range of systems, including those with large system
sizes, it has been demonstrated to require exponentially increasing computational
resources with increasing system size when handling frustrated magnets or fermionic
systems. The origin of this behavior can be attributed to the phenomenon known
as the 'sign problem' [10]. This term refers to the situation in which the weights of
certain system con�gurations become negative or complex, rendering them unable
to be interpreted as classical probabilities [11]. As an alternative to QMC, which is
not constrained by an inherent sign problem, so-called 'tensor network techniques'
[12�14] are frequently employed. In this approach, the wavefunction of a system
is expressed through a network of interconnected tensors, e�ectively constructing a
tensor network. The advent of the density matrix renormalization group (DMRG)
[15,16] marked a pivotal moment in the evolution of these techniques, as it enabled
the e�cient computation of the ground state of a system in the form of a special
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1 INTRODUCTION 1.0

one-dimensional tensor network, known as a matrix product state (MPS). Being
only limited by the entanglement in the wavefunction, tensor networks enable the
simulation of large size strongly correlated systems. Therefore, they represent an
ideal candidate to study the physics of cuprate superconductors, which has been an
area of intensive research over the recent years.
The parent compound of cuprate superconductors is believed to be a two-dimensional
Heisenberg antiferromagnet (AFM) [17]. In addition, it is generally assumed that
an interplay between hole motion and antiferromagnetism is at the heart of high-
temperature superconductivity in cuprates [18]. Therefore, it is of great interest to
study the behavior of a single mobile charge carrier in an antiferromagnetic spin
background.
In a quasi-1 dimensional system, angle-resolved photoemission spectroscopy (ARPES)
[19�21] has revealed spin-charge separation by the observation of a broad continuum
instead of discrete quasi particle peaks [22�28]. However, in two-dimensional, doped,
quantum AFMs, APRES spectra have revealed long-lived magnetic polarons [29�52].
This observation has been further backed up by theoretical calculations at T = 0
that were performed in clean toy models, such as the t-J model [53, 54]. However,
the behaviour at �nite temperature is not yet fully understood.
Previous experiments using ARPES, as well as theoretical studies have investigated
the formation of a so-called magnetic polaron, which is created when a single moving
hole distorts the surrounding Néel spin background. In the conventional magnetic
polaron picture, the polaron can be understood as a cloud of correlated magnons
dressing the hole.
The motion of a hole, which is directly linked to an interplay of spin and charge,
is intuitively described in real space. However, a major part of research has been
focused on the frequency and momentum space, since they are most directly probed
in solid state experiments. Due to signi�cant progress in quantum gas microscopy
in recent years [55�64], there is a rapidly growing interest in real space properties.
It has been shown that a parton picture, �rst suggested by Béran et al. [65], for
describing the magnetic polaron is able to capture the relevant physics qualitatively
[66]. Here, a magnetic polaron consists of a holon, carrying the charge, which is
connected by a chain of displaced spins with a spinon, carrying the spin [18,53]. In
one of the simplest approximate descriptions of a magnetic polaron in the parton
picture, the so-called frozen spin approximation (FSA) is used, which considers only
charge �uctuations along strings of displaced spins and leaves the wavefunction of
the surrounding spins una�ected by hole hopping [51,53,67].
It is generally accepted that the Fermi-Hubbard-model provides an good starting
point for a theoretical description of cuprates [68�70]. At strong coupling, it can be
mapped to the t-J model

Ĥ = −t
∑
⟨ij⟩,σ

P(ĉ†i,σ ĉj,σ + h.c.)P + J
∑
⟨ij⟩

(Si · Sj −
ninj

4
), (1)

where the �rst term denotes the hopping of the hole with strength t and the second
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1 INTRODUCTION 1.0

term represents the spin-exchange interactions with coupling constant J = 4t2/U .
Note that P projects onto the space with at most one fermion per site and we
neglected a three site term [71] in Eq. (1).
Despite the apparent simplicity of this model, theoretical predictions and numer-
ical simulations have proven challenging. As a consequence, previous theoretical
calculations of hole dynamics have been limited to T = 0 behavior.
Quantum gas microscopy (QGM) represents a promising tool to bridge the gap
between experiment and theoretical simulation. By employing this technique, it
is possible to perform large-scale two-dimensional simulations and to study both
real-space and time properties. As QGM operates at �nite temperature, it enables
access to the �nite temperature spectral function in cold atom experiments o�ering
complementary insights to ARPES experiments [72, 73]. These �nite-temperature
simulations are a �rst step towards understanding the intriguing �nite-temperature
phases observed in cuprates. Hence, it is essential to perform numerical calculations
at �nite temperature in order to provide guidance for QGM at �nite temperature.
In this thesis we perform the numerical simulation of �nite temperature properties
of a single hole in a cylinder with length Lx = 18 and width Ly = 4 moving ac-
cording to the t-J model. All simulations were prepared by calculating the thermal
equilibrium of the t-J-model at half-�lling. The result was an insulating antifer-
romagnet. We then modi�ed it by removing a single electron, thus initializing the
motion of a magnetic polaron. Our work provides two major advances: (i) We pro-
vide valuable insights into the real time dynamics of holes at �nite temperature. (ii)
We enhance our understanding of magnetic polarons, by the calculation of spectra
at �nite temperature.
The main �ndings can be summarized as follows: First, we observe that the main
stages of hole motion reported at T = 0 are valid even at �nite temperature. How-
ever, contrary to the T = 0 behaviour, the hole velocity observed for times larger
than 1/J is not proportional to the spin coupling J . This can be seen already at
temperatures T = 0.5J and above. Second, in the strong coupling regime, a re-
markably good agreement with subdi�usive behaviour exists at temperatures going
down to T = 2J . Third, we report the presence of magnetic polaron peaks up to
T ≈ 1J . This is consistent with the temperature up to which non-vanishing AFM
correlations are present at long times, τ ≈ 6[1/J ]. This is an important observation,
since it demonstrates that magnetic polarons are robust with respect to temperature.
Furthermore, we �nd that their dispersion relation remains qualitatively unchanged
with temperature in the region away from (π, π) as long as magnetic polarons are
present. Fourth, we observe non-zero spectral weight and even indications of spin-
charge separation around (π, π) for temperatures larger than T = 0.5J . This is in
contrast to the T = 0 behaviour, which reported a strong suppression of spectral
weight in that region [54].
The structure of this thesis is as follows: In Sec. 2 we present the details of our tensor
network methods, which have been used to perform the numerical simulations. We
begin by motivating a tensor network approach and introducing the basics of matrix-

8



2 METHODS 2.1

product states (MPS). This is followed by a detailed derivation of the time-evolution
algorithms used. We conclude this section by discussing the treatment of �nite
temperature and our method of implementing matrix-product operators (MPOs).
In the main part of this thesis, Sec. 3, we present the results of our research. We start
with an analysis of the results of our real-time dynamics at �nite temperature: First
an introduction to the background knowledge is presented, then we illustrate the
behavior of the dynamics when varying temperature and coupling ratio. Finally, we
conclude the part on dynamics with a discussion of spin correlations. In the second
part of our results, we highlight the spectral properties at �nite temperature and
perform a detailed comparison with important features observed at T = 0. We close
by discussing implications of our work and future research directions.

2 Methods

This section will provide a comprehensive explanation of the combination of al-
gorithms that has been employed in our computations. In order to calculate the
thermal equilibrium of the t-J-model at half-�lling we used the density matrix
renormalization group (DMRG) [74, 75] in the language of matrix-product-states
(MPSs) [12]. This approach was adapted to �nite temperatures via a puri�cation
scheme [76�78] and enhanced by the use of disentanglers [79]. The subsequent
motion of the hole was simulated by combining two versions of MPS-based time
evolution algorithms [80]. Although the entanglement physically only spreads lo-
cally around the location of the quench, it is encoded via the virtual bonds of the
MPS, which spans the entire lattice. This is why we began the time evolution with
a single step of the more expensive, but global Krylov scheme [81�83]. The rest of
the time evolution was performed via the local, but less expensive time-dependent-
variational-principle (TDVP) algorithm [84, 85]. This procedure was improved by
the use of a backwards-time-evolution scheme [86�88], which allowed us to reach
longer times without additional approximations. In all of the above algorithms, we
also used the controlled bond expansion [89,90], which e�ectively performs two-site
optimizations at one-site costs. We will now proceed with an introduction to the
fundamental concepts of matrix product states.

2.1 Formalism and MPS Basics

This section is mainly based on [12,79,80,89�91] and introduces the basics of Matrix
Product States (MPS) as well as more advanced concepts that will be used later to
explain the algorithms used. We begin by motivating a tensor network approach to
the description of quantum systems.
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2 METHODS 2.1

2.1.1 Motivation

Entanglement represents a foundational phenomenon in quantum mechanics. It de-
scribes the inherent interdependence of di�erent degrees of freedom within a quan-
tum system, rendering them incapable of being measured independently. To un-
derstand this phenomenon, we partition the Hilbert space H into A and B parts
H = HA⊗HB. Employing a technique known as the Schmidt decomposition, which
is unique up to degeneracies, we can represent a pure state |ψ⟩ ∈ H as

|ψ⟩ =
∑
α

λα |α⟩A ⊗ |α⟩B , (2)

where the states {|α⟩A} and {|α⟩B} form a orthonormal basis of the Hilbert spaces
HA and HB, respectively, and the Schmidt coe�cients λα are non-negative. It can
be shown that the squared 2-norm || |ψ⟩ ||22 is equal to the sum over squares of
singular values

∑
α(λα)

2 of the state. Consequently, it follows that
∑

α λ
2
α = 1 for a

normalized state. We may now proceed to de�ne the reduced density matrix of A
as

ρ̂A := TrBρ̂, with ρ̂ = |ψ⟩ ⟨ψ| , (3)

which enables us to measure the entanglement between A and B in terms of the
entanglement entropy SA/B, which is de�ned as

SA/B = −TrAρ̂Alog2ρ̂A. (4)

Inserting Eq. (2) into Eq. (4) it is easy to see that SA/B can be expressed as

SA/B = −
∑
α

λ2αlog2λ
2
α. (5)

Consequently, one can directly extract information regarding the entanglement of
two subsystems from the Schmidt decomposition. For instance, in the absence of
entanglement between two subsystems, the Schmidt decomposition only yields a
single term with λ1 = 1.

Area law A general quantum state in the Hilbert space HA obeys the so-called
'volume law'. This implies that the entanglement increases in proportion to the
volume of each subsystem. In contrast, for a gapped and local Hamiltonian Ĥ the
ground state (GS) |ψ0⟩ follows an 'area law' [92�94], whereby the entanglement en-
tropy grows proportional to the area of the boundary between the two subsystems.
In this context, the boundary is de�ned as the set of sites that connect the subsystem
to the environment through operator action. For the purposes of this discussion, we
will consider a system with a linear dimension of L. In the case of a one-dimensional
(1D) tensor network laid through our system, such as Matrix Product States (MPS),
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2 METHODS 2.1

see Sec. 2.1.2, the entanglement entropy is therefore constant in 1D, linear in L in
2D and quadratic in L in 3D. A detailed proof for 1D systems is given in [94].
The area law exerts a profound in�uence on the numerical cost of adequately encod-
ing entanglement in the tensor network description of a GS. This can be observed
in two distinct ways: (i) It has been demonstrated that states that satisfy the area
law contain their entire weight in only a few Schmidt states. This provides an ex-
tremely useful method of compressing quantum states by truncating the Schmidt
decomposition, which is directly related to the matrix product state representation
of a quantum state. (ii) It is possible to derive bounds on the number of basis states
D required to encode the entanglement in our system. This is achieved by starting
from the entanglement entropy S and using bases in which ρA and ρB are diagonal.
Making use of Eq. (4) we obtain

S = −
D∑

α=1

wαlog2wα, (6)

where wα are eigenvalues of ρA.
Clearly, this is maximal if wα = 1

D
, resulting in

S ≤ −
D∑

α=1

1

D
log2

1

D
= log2D. (7)

Upon further reformulation, we arrive at

2S ≤ D. (8)

Combined with the special case of the area law, the reduced density matrix bond
dimension D is independent of system size in 1D systems. This property enables
the e�cient encoding of ground state entanglement. In 2D and 3D, however, the
numerical cost increases exponentially in L when using MPS to represent our system.

2.1.2 MPS Basics

Having motivated the use of tensor networks in the context of gapped 1D systems,
we will now proceed to introduce some of the basic concepts of MPS. Considering a
chain of L sites, where each site is labelled by l, a general quantum state |ψ⟩ in the
Hilbert space H is de�ned as

|ψ⟩ = ψσ |σ⟩ (9)

with |σ⟩ = |σ1⟩ |σ2⟩ ... |σL⟩ and each σl being a local basis state. This state can be
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2 METHODS 2.1

expressed as an open boundary matrix-product-state (MPS),

ψσ = [M1]
σ1
1,α1

[M2]
σ2
α1,α2

···[ML]
σL
αL−1,1

,

= . (10)

The notation [Ml]
σl
αl−1,αl

represents a three-dimensional array of complex or real num-
bers, referred to as a 'tensor'. Connected bonds represent indices that are summed
over, and are therefore referred to as 'virtual bonds'. The bond dimension, denoted
by Dl, is a parameter that characterises the dimensionality of the virtual bond and
is typically constrained by a maximum bond dimension D. The physical bonds σl
are of dimension d. The outermost bonds, indicated by a cross, are dummy bonds
with dimension D0 = DL = 1. It should be noted that the bond dimension required
to exactly represent the quantum state grows exponentially with the system size.
Nevertheless, we have motivated the fruitfulness of this approximation as a conse-
quence of the area law, see Sec. 2.1.1. The transformation of the wavefunction into
the form of Eq. (10) can be readily accomplished through the iterative application
of truncated QR decompositions to the wavefunction.

The gauge freedom inherent to the MPS representation allows the MPS wavefunction
to be transformed into a variety of forms. One of the most signi�cant forms is the
so-called 'canonical form' with respect to either a bond connecting sites l and l + 1
or an 'orthogonality center' at site l

ψσ = , (11)

which is displayed here. The triangles situated to the left of the orthogonality center
are left isometries, i.e. [A†

l ]
σ
α′ᾱ[Al]

σ
ᾱα = [1l]α′α. The triangles on the right represent

right isometries, i.e. [Bl]
σ
αᾱ[B

†
l ]

σ
ᾱα′ = [1l−1]αα′ . It should be noted that the diagonals

of the left and right isometries point in opposite directions. The circle represents
the tensor that is the orthogonality center. The orthogonality center can be shifted
using singular value decompositions (SVDs).

An analogue procedure can be used for the representation of any operator Ô =
|σ⟩Oσσ′ ⟨σ′| in terms of a matrix product operator (MPO)
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2 METHODS 2.1

Oσσ′
= [W1]

σ1,σ′
1

1,ν1
[W2]

σ2,σ′
2

ν1,ν2
···[WL]

σL,σ
′
L

νL−1,1
,

= .
(12)

Here the virtual bond indices νl are of dimension ωl. Furthermore, each local MPO

tensor [Wl]
σl,σ

′
l

νl−1,νl has dimension 4 to account for domain and image Hilbert spaces.
There are a number of ways in which MPOs can be constructed. For further details
on the construction used in our calculations, see Sec. 2.6.

2.1.3 Evaluation of expectation values

Now that a general method for expressing a quantum state in terms of an MPS and
an operator as an MPO has been introduced, it is instructive to illustrate how basis
operations on these objects are carried out. To this end, we will demonstrate the
calculation of an expectation value of a general state |ψ⟩ with respect to an operator
Ô

⟨Ô⟩ = ⟨ψ|Ô|ψ⟩ (13)

= (14)

In the context of standard numerical linear algebra, it is required to initially evaluate
Ô |ψ⟩. Subsequently, the overlap of ⟨ψ| with Ô |ψ⟩ is performed in order to calcu-
late ⟨ψ|Ô|ψ⟩. Unfortunately MPO-MPS applications are expensive to evaluate, see
Sec. 2.1.4. Nevertheless, the tensor network representing ⟨ψ|Ô|ψ⟩ permits a multi-
tude of contraction methods. The optimal contraction from left to right or right to
left is represented in Eq. (14) with rounded blocks. This results in a contraction cost
of O(L(D3ωd + D2ω2d2)). Here and in the following, we assume the usual values
for the bond dimension of the MPS and MPO, as well as the physical dimension.

2.1.4 Application of MPO to MPS

The application of an MPO to an MPS constitutes one of the most crucial tensor
operations. The most direct approach entails the contraction of the corresponding
local MPO and MPS tensors, followed by the reshaping of the resulting tensor
into MPS form. However, this procedure results in a tensor with bond dimension

13



2 METHODS 2.1

D′ = Dω ≫ D. Therefore the direct application is not desirable. In the following
we will present a more e�cient alternative.

Zip-up method As an alternative to the direct application of an MPO to an
MPS, the zip-up method [80] represents an e�cient approach. The fundamental
premise is that the MPO merely distorts the canonical form of the MPS to a limited
extent. Consequently, a moderate degree of truncation can be employed during the
contraction without signi�cant loss of information. At the �rst site, the MPO tensor
is simply contracted with the corresponding right-normalised tensor, B, in a manner
analogous to the direct application of a MPO to a MPS

[M1]
σ′
1

1,α1,1,ν1
=
∑
σ1

[W1]
σ1,σ′

1
1,ν1

[B1]
σ1
1,α1

. (15)

Here the two dummy legs, identi�ed by index '1', can be readily fused to an leg
bearing the index '2'. The subsequent step is to apply an SVD, which will yield

SVD([M1]
σ′
1

2,α1,ν1
) ≈

∑
s1,s′1

[A1]
σ′
1

2,s1
[S]s1,s′1 [V

†]s′1,α1,ν1 . (16)

The �nal step is to multiply both tensors S and V † on the right into the next tensor
B, which will then be split up afterwards. Accordingly, the subsequentM comprises
the following elements

[M2]
σ′
2

2,s1,α2,ν2
=

∑
σ2,s′1,α1,ν1

[S]s1,s′1 [V
†]s′1,α1,ν1 [W2]

σ2,σ′
2

ν1,ν2
[B2]

σ2
α1,α2

. (17)

This process is iterated until the right side of the system is reached and the MPS is
in left canonical form. For an illustration of the main steps, see Fig. 1. The primary
cost, which is resulting from the singular value decomposition (SVD), is given by
O(D3dw). It should be noted that the leg s1 in the case of M2 is usually a leg of
dimension D if we are situated at the center of the system.

2.1.5 Compression of an MPS

Given that numerous operations on an MPS result in an increase in its bond di-
mension�such as those observed in MPO-MPS applications, see Sec. 2.1.4�it is
frequently necessary to truncate an MPS to a desired bond dimension. In particu-
lar, the objective is to identify a state |ϕ⟩ with a lower bond dimension that provides
an optimal approximation of the state |ψ⟩ so that it minimizes the Hilbert space
distance F

F = || |ψ⟩ − |ϕ⟩ ||. (18)

The most direct approach is to perform an iterative sweep through the MPS, truncat-
ing each bond individually using SVDs. Nevertheless, selecting the optimal choice
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2 METHODS 2.1

Figure 1: Illustration of the zip-up method. The process begins with a state in
right canonical form and concludes with a state in left canonical form. The most
important steps described in Sec. 2.1.4 are displayed. The colored areas indicate the
objects to be contracted and the objects to which an SVD is to be applied.

for each individual bond does not necessarily yield the global optimum. Conse-
quently, alternative optimization techniques are more bene�cial. In the following,
we will introduce the so-called 'variational compression' [80] that we used in our
calculations.

Variational compression In order to utilize a more sophisticated algorithm than
direct truncation and sweeping through the system, we present an iterative sweep-
ing scheme. The objective is to sweep through the system and identify the locally
optimal tensor at each site or set of sites. This approach increases the probability
of identifying a globally optimal tensor.
The goal is to identify the optimal MPS |ϕ⟩, which is the most accurate represen-
tation of the initial state |ψ⟩, given a truncated bond dimension. This yields the
minimization problem

|| |ψ⟩ − |ϕ⟩ ||2 = ⟨ψ|ψ⟩ − ⟨ψ|ϕ⟩ − ⟨ϕ|ψ⟩+ ⟨ϕ|ϕ⟩. (19)

It is important to note that the selection of an appropriate initial guess state for |ϕ⟩
can have a signi�cant impact on the convergence speed of the compression process.
Typically, the state obtained by sweeping the system and performing local truncation
via SVDs is the most e�ective. By �xing all tensors except a set of s adjacent tensors,
it is possible to optimise the tensors Al · · ·Al+s−1 of |ϕ⟩ by di�erentiating Eq. (19)
with respect to A†

l · · ·A
†
l+s−1

δ

δA†
l · · ·A

†
l+s−1

(⟨ψ|ψ⟩− ⟨ψ|ϕ⟩− ⟨ϕ|ψ⟩+ ⟨ϕ|ϕ⟩) = δ

δA†
l · · ·A

†
l+s−1

(⟨ϕ|ϕ⟩)−⟨ϕ|ψ⟩) !
= 0.

(20)
If we consider our state to be in canonical form with orthogonality center at site l,
Eq. (20) further simpli�es into
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Figure 2: Illustration of the central equation Eq. (21) de�ning variational compres-
sion. The tensor network is presented for the case s = 1. The colored areas indicate
either the identity resulting from contracting left or right isometries, or alternatively,
the LR environments.

Al · · ·Al+s−1 =
∑

α1···αs+1

[Ll]γ,α1 [Bl]
σl
α1,α2

· · · [Bl+s−1]
σl+s−1
αs,αs+1

[Rl+s]αs+1,β , (21)

where B represent the tensors of |ψ⟩ and the environment tensors LR are de�ned as
the overlaps between the states ⟨ϕ| and |ψ⟩. For an illustration of Eq. (21) as well as
an illustration of how the environments LR are computed, see Fig. 2. It is important
to note that the environment tensors LR do not have to be recomputed from scratch
at each stage of the sweep; they can be successively updated as the system is swept.
As usual, it is bene�cial to use a two-site (s = 2) scheme in preference to a single-
site (s = 1) scheme. This allows for the bond dimension to be adjusted and new
symmetry sectors to be explored if necessary. As is always the case, this approach
entails the truncation of the wavefunction after a local step in order to maintain a
manageable bond dimension.

2.1.6 Projector formalism

In the following we want to introduce the so-called 'projector formalism', which will
be used in subsequent sections. The left and right isometries introduced above can
be used to de�ne left |ψK

l̄α
⟩ and right |ϕK

l̄α
⟩ 'kept' states. The wavefunctions ψK

l̄α
(ϕK

l̄α
)

of these left (right) kept states can be represented as

ψK
l̄α = (22)

ϕK
l̄α = , (23)

where the letter 'K' represents the kept space. The designation "kept" is applied
to the states in question because they build our MPS. The following discussion will
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focus on left isometries, although the analog can be applied to right isometries as
well.
In general, it can be stated that the span of the left kept states de�nes the space
V

K
l̄
= span{|ψK

l̄α
⟩} of dimension Dl̄.

It is crucial to note that each of the isometric tensors de�nes a map from a so-called
parent space, consisting of a direct product of a kept and a local space, into another
kept space

Al̄ : V
K
l̄−1 ⊗ vl̄ → V

K
l̄ . (24)

In the event that the mapped space is of an inferior size to the parent space, we
may de�ne its orthogonal complement, designated as the 'discarded space'. This
has a size of D̄l̄ = Dl̄−1d−Dl̄. From this, we can de�ne the isometries Āl̄ onto the
discarded space in an analogous manner

Āl̄ : V
K
l̄−1 ⊗ vl̄ → V

D
l̄ , (25)

where 'D' represents the discarded space. Therefore performing a direct sum of the
isometry Al̄ with its orthogonal complement Āl̄ de�nes a unitary on the parent space

, (26)

where the �lled black triangle represents the orthogonal complement of the isometry
and the �lled circle represents a unitary map onto the parent space. From this
de�nition of the unitary, we can directly derive the completeness relation

.

(27)

Here and in the following, the identity on the right-hand side of Eq. (27) is rep-
resented by a solid line. Given that the discarded sector is usually a multiple of
the kept sector, it is preferable to avoid its complete calculation. This is where the
completeness relation proves invaluable. As both isometries Al̄ and Āl̄, related to
kept and discarded space, de�ne basis states, we can use them to build projectors
on either the kept or discarded space. In the case of the kept space, we can de�ne

PK
l̄ =

∑
α

|ψK
l̄α⟩ ⟨ψ

K
l̄α| = . (28)

The aforementioned projectors allow us to de�ne projectors acting on a single site
(1s) or bond (b) that operate on the full chain,
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P b
l = PKK

l,l+1 = (29)

P 1s
l = PKK

l−1,l+1 = . (30)

It should be noted that this de�nition also allows us to derive the following useful
relation

P 1s
l P

1s
l+1 = P b

l . (31)

The next step is to construct the so-called 1s tangent space projector P 1s, which we
will need in Sec. 2.2. The tangent space projector P 1s projects on the 1s tangent
space. This space is spanned by all one-site variations of |ψ⟩, wherein only a single
site undergoes a change. One might suggest that it be constructed via

∑L
l̄=1 P

1s
l̄
.

However, this approach is not viable since the summands are not mutually orthog-
onal. Accordingly, an orthogonalisation procedure, akin to Gram-Schmidt, is em-
ployed: We de�ne P 1s

l̄<>
by projecting out the overlap of P 1s

l̄
with P 1s

l̄±1
from P 1s

l̄

P 1s
l̄<>

:= P 1s
l̄ (1V − P 1s

l̄±1). (32)

Explicitly writing we get,

P 1s
l̄< = P 1s

l̄ − P b
l̄ = PDK

l̄,l̄+1 (33)

P 1s
l̄>

= P 1s
l̄ − P b

l̄−1 = PKD
l̄−1,l̄ , (34)

where we made use of Eq. (31) and the completeness relation Eq. (27). This provides
us with the requisite formalism for the construction of the tangent space projector

P 1s :=
l′−1∑
l̄=1

P 1s
l̄< + P 1s

l′ +
L∑

l̄=l′+1

P 1s
l̄> . (35)

Now with Eq. (33) and Eq. (34) we can bring this into a form that we can use later
comfortably
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P 1s =
L∑
l̄=1

P 1s
l̄ −

L−1∑
l̄=1

P b
l̄

=
L∑
l̄=1

−
L−1∑
l̄=1

.

(36)

This concludes the overview of the fundamental concepts that are essential for an
understanding of the algorithms that will be presented in the following sections.

2.2 Time-dependent variational principle (TDVP)

This section is mainly based on [79, 80, 84, 85]. There are a number of di�erent ap-
proaches to performing time evolution for MPS, each with its own set of advantages
and disadvantages. Typical approaches range from direct approximation of the time
evolution operator Û(δ) = e−iĤδ to the approximation of the action of Û(δ) on |ψ⟩
or the local solution of the time-dependent Schrödinger equation (TDSE).
In the following, we present an algorithm that aims at the latter and has a 'single
site' (1s) and a 'two site' (2s) variant. As the 1s variant is the most relevant to our
purposes, we will focus on it and only brie�y introduce the 2s variant at the end for
the sake of completeness.

2.2.1 Derivation

The time-dependent variational principle (TDVP) represents a local time evolution
method for MPS. The main idea is that by evolving the MPS forward by only a small
time step dt, the time evolved state lives in the 1s tangent space of the MPS. The 1s
tangent space is spanned by all single-site variations of |ψ⟩, whereby only one site
is altered. In other words, it is assumed that non-local information is insigni�cant
with regard to the evolution of an observable. Therefore, the procedure is as follows:
The initial step is to project our Schrödinger equation into this space, after which
the time evolution can be performed within it.
Starting with the Schrödinger equation for the MPS

δ

δt
|ψ⟩ = −iĤ |ψ⟩ , (37)

we can observe that the left side of Eq. (37) already lives in 1s tangent space, as is
particularly evident if we consider |ψ⟩ in bond canonical form. Subsequently, the
left side of Eq. (37) can be expressed as
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δ

δt
|ψ⟩ =

l∑
l′=1

+ +
L∑

l′=l+1

.

(38)
It is evident that each of the terms in Eq. (38) di�ers from |ψ⟩ by exactly one site.
In contrast, the right side is clearly not in 1s tangent space, given that the Hamilto-
nian is applied to the state. Next we apply the 1s tangent space projector P 1s, see
Sec. 2.1.6, to the Schrödinger equation, resulting in a series of coupled equations

δ

δt
|ψ⟩ = −iP̂ 1sĤ |ψ⟩

= −i
L∑
l=1

P̂ 1s
l Ĥ |ψ⟩+ i

L−1∑
l=1

P̂ b
l Ĥ |ψ⟩ .

(39)

Considering Eq. (39), it is obvious that an exact solution is not possible. To proceed,
one �nds an approximate solution by decoupling the series of equations, which results
in L forward-evolving equations

δ

δt
|ψ⟩ = −iP̂ 1s

l Ĥ |ψ⟩ (40)

and L-1 backward-evolving equations

δ

δt
|ψ⟩ = iP̂ b

l Ĥ |ψ⟩ . (41)

By applying 1s ψK†
l−1 ⊗ ϕK†

l+1 and bond maps ψK†
l ⊗ ϕK†

l+1 respectively onto our series
of equations, we �nally arrive at

i
δCl(t)

δt
= Ĥ1s

l Cl(t) (42)

i
δΛl(t)

δt
= −Ĥb

l Λl(t). (43)

Here the e�ective 1s (bond) Hamiltonians Ĥ1s
l (Ĥb

l ) are de�ned as the 'partial'
expectation values of the state |ψ⟩ with the Hamiltonian Ĥ leaving either one site
(bond) open, resulting in
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Figure 3: Graphical representation of the process of sweeping from left to right
through the system. The initial step is to evolve the local orthogonality center
forward in time. Subsequently, the orthogonality center is split by QR or SVD
decomposition, and the resulting bond tensor is evolved backwards in time. Then
we move to the next site and iterate the process.

Ĥ1s
l = (44)

Ĥb
l = . (45)

In practice, one sweeps through the system and solves the local time evolution steps
Eq. (42) and Eq. (43) at each site individually. At each local step, we �rst evolve the
orthogonality center forward in time, then perform a QR or SVD decomposition,
and then evolve the bond tensor backward in time. For an illustration see Fig. 3.
The initial decoupling scheme gives rise to a �rst-order integrator with an error per
unit time that is proportional to the time step size δ. Typically, the system is swept
�rst from left to right and then from right to left at a time step that is at half the
initial time step δ. This corresponds to a second-order integrator that reduces the
error to O(δ2) for unit time.
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Each of these local time steps can be performed exactly. Typically, a local Krylov
method is employed for this purpose. It should be noted that, as the projection onto
the tangent space is performed prior to the actual time evolution, both the norm
and the energy of the state are conserved.

As previously stated, the scheme presented above is a so-called 1s scheme (1TDVP).
A signi�cant drawback of this 1s scheme is that it lacks the capability to explore
di�erent symmetry sectors. To address this issue, a 2s variant (2TDVP) of the
scheme can be readily derived from the 1s scheme. It should be noted, however,
that this scheme is not as conceptually clean as the 1s scheme, since states with
di�erent ranges of quantum numbers live in di�erent manifolds. In this procedure,
a two-site tensor is forward evolved, and then it is split into two single-site tensors
using SVD. Subsequently, one of the two local 1s tensors resulting from the SVD,
positioned in the sweep direction, is subjected to backward evolution. By splitting
the two-site tensor into two single-site tensors with SVD, the bond dimension of
the connecting bond will grow. This allows us to explore new quantum sectors;
however, the bond dimension typically has to be truncated to a manageable value
afterwards. However, due to the truncation of the two-site tensor, the norm and
energy of the state are no longer conserved. Furthermore, this scheme is considerably
more expensive than the single-site scheme. In 1TDVP the main cost is O(D3dw),
whereas in 2TDVP it is O(D3d2w). The main cost is due to the application of the
Hamiltonian to the local 1s or 2s tensor.

2.2.2 Errors

The TDVP is riddled with four signi�cant errors.
(i) The projection of the time-dependent Schrödinger equation (TDSE) onto the
tangent space of limited bond dimension results in an error ∆1s,2s

p , with

∆1s,2s
p := ||(1− P̂ 1s,2s)Ĥψ(t)||. (46)

This error is particularly large when the MPS under consideration has a relatively
small bond dimension. As this projection occurs prior to the time evolution, it is
not possible for it to violate energy conservation or alter the norm of the state. An
approximate estimate for the magnitude of this error can be made: In the event
that the n-site variance of the state is large, then (n-1)TDVP will be inaccurate.
(ii) A sweep through the system can be understood as a sequential solution of mul-
tiple coupled TDSEs, each describing a local time evolution. This results in an error
of the order of O(δ2) for unit time and of the order of O(δ3) per time step when
a second-order integrator is employed. Furthermore, this error is ampli�ed in the
presence of bond dimensions that are relatively small.
(iii) This error is speci�c to the 2TDVP and is related to the SVD. It is typically
necessary to truncate the bond dimension in order to maintain a manageable level
of complexity, which introduces a truncation error. This error can be observed by
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maintaining a record of the discarded weight, which is de�ned as the sum over the
squares of the singular values that are discarded during an SVD.
(iv) The �nal source of error arises from the inaccurate solution of the local equa-
tions. It is straightforward to maintain a low level of this error by utilising an
adequate number of Krylov steps in the local Krylov method.

It is also crucial to recognise that the time step size δ a�ects the four errors in
di�erent ways: The projection error and the truncation error are both relatively
insensitive to the time step size of a single time step. A reduction in the time step
size will result in an increased number of time steps being required to achieve the
desired time, which will in turn result in an ampli�ed projection and truncation
error.
Conversely, the �nite time-step error and the error resulting from the inaccurate so-
lution of local equations reduce as the number of time-steps increases. It is therefore
essential to exercise caution when selecting the time step size δ to ensure that all
four errors are adequately balanced.

In my calculations I use a scheme that combines the high accuracy of the 2s scheme
with the low computational cost of a 1s scheme. This is achieved by combining the
1s scheme with a technique known as Controlled Bond Expansion (CBE), which will
be discussed in greater detail next.

2.3 Controlled-bond-expansion (CBE)

This section is based on [89�91]. The goal of the controlled-bond-expansion (CBE)
is to enhance a single-site scheme, such as 1TDVP, in order to achieve 2s accuracy
while maintaining 1s cost.
As previously outlined in the formalism section, see Sec. 2.1, an MPS can be ex-
pressed in terms of isometries, which can be used to de�ne the kept and discarded
spaces. In order to comprehend the objective of the CBE, it is essential to examine
the part that a two-site scheme captures and a one-site scheme does not. In the con-
struction of the Krylov space required to evolve the system forward locally, we apply
the e�ective Hamiltonian (denoted as either Ĥ1s

l or Ĥ2s
l ) to a one-site (1TDVP) or

two-site tensor (2TDVP). Subsequent application of a unitary map to some of the
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open bonds then yields

.
(47)

It is readily observable in Eq. (47) that the part that is omitted by the 1s scheme
is the discarded-discarded (DD) subspace, which is represented by the �lled black
triangles.

Alternatively, one may consider the perspective that CBE in combination with
TDVP aims to minimize the 2s contribution to the projection error ∆1s

p . In the
following we will to refer to this quantity as ∆2⊥

p , which is de�ned as the two-site
contribution to the projection error

∆2⊥
p = ||P̂ 2s(1− P̂ 1s)Ĥψ(t)|| = . (48)

Note that this alternative perspective leads to the same conclusion previously stated
in Eq. (47), namely that the 2s contribution is comprised of the DD sectors.
The fundamental insight of CBE is that Ĥ2s

l ψ
2s
l possesses considerable weight only

on a small subspace of the large DD space. It is therefore su�cient to expand a bond
only by this small relevant subspace. This insight is employed to compute a so-called
'truncated isometry' Ãtr

l , which carries the relevant part of the DD subspace and
has a dimension of only D̃ < D on the MPS bond, in contrast to the much larger
D̄.
The method for calculating the truncated isometry is referred to as 'shrewd selection'
[89]. The object to be minimized in the shrewd selection is obtained from both the
equation Eq. (47) and the equation Eq. (48). It is referred to as the cost function
C, which is de�ned as

C = , (49)
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Figure 4: Shrewd selection process. The matching colours serve to indicate the SVD
input and output. The small letters of the SVD output indicate truncation during
SVD. Preselection: (a) SVD without truncation and open MPO bond. (b) SVD
with truncation down to D′ = D/ω. (c) The truncated MPS bond and MPO bond
are to be fused into a bond of size D̂ = D. Final selection: (d) SVD with truncation
and a closed MPO bond, which reduces the bond dimension to D̃ < D.

where the orange triangles represent the truncated isometries that are the subject
of our computation. The optimal minimization of C could be achieved via SVD,
although this would entail a 2s cost. The shrewd selection represents an e�cient
method for minimizing this quantity, while requiring only 1s cost. The shrewd
selection is comprised of two steps: The initial stage of the process is the so-called
'preselection'. In this step, the central MPS bond is truncated down from D to D′.
This has the consequence that the full complement Āl is replaced by a preselected
complement Âpr

l with an already reduced image dimension D̂, with D̂ = D′ω. The

�nal selection entails a further truncation of Âpr
l with closed MPO bond to yield

the �nal result Ãtr
l , with image dimension D̃ < D. It should be noted, that for the

shrewd selection to remain at a 1s cost, it is necessary that D̂ = D. Accordingly,
one selects D′ = D/ω. For further details on the shrewd selection, see Fig. 4.
Having now acquired the requisite knowledge to compute the truncated isometry,
the subsequent step is to provide an explanation of the process for combining it
with single-site TDVP. The procedure for utilising CBE for a local TDVP step is
as follows: (i) The truncated isometry is computed through shrewd selection. (ii)
Subsequently, the isometry and the orthogonality center involved in the local time
evolution as well as the e�ective Hamiltonian are expanded using this truncated
isometry. (iii) Finally, a local 1s step is performed with the regular 1s scheme in the
expanded space.
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(a)

time = 0.01[1/J]
TDVP+CBE 0.08

(b)

time = 0.01[1/J]
Global krylov 0.08

Figure 5: Illustration of the necessity of utilising Global Krylov for the initial time
step. Initially, the ground state of the t-J model at t/J = 2 was computed. Sub-
sequently, an electron was removed from a central site, and the resulting dynamics
were plotted over the entire lattice. We display the hole density in a 4 by 18 cylinder
after a single short time step. The size of the green circles represents the strength
of the hole density. Notably, the site with the maximum hole density corresponds
to the initial hole location. (a) The �rst time evolution step was performed with
the TDVP. (b) The �rst time evolution step was performed with the Global Krylov
scheme. Given the asymmetric propagation of the hole in (a) as opposed to the
symmetric spreading in (b), it can be concluded that the Global Krylov scheme
performs with signi�cantly higher accuracy at the �rst time step.

2.4 Global Krylov time evolution

This section is based on [80, 95] and presents an additional time evolution method
that is required due to a subtle weakness of the TDVP that we use for the majority
of the time evolution. At the outset of the time evolution, a hole is created in the
ground state of the 2D system under consideration. However, upon the creation of
this hole, the bond dimension remains �xed, despite the necessity for a generally
higher bond dimension to encode the increase in entanglement in our system. As
TDVP is a local method, the bond dimension is increased bond by bond as the state
is evolved forward. Consequently, the correct behaviour is not captured immediately
after the hole is added. To address this issue, we implemented a global time evolution
algorithm, which performs the initial time evolution step, after which TDVP is used
to complete the evolution. An illustration of the error produced without the use of
global Krylov at the initial time step can be seen in Fig. 5.
The global Krylov method is a Krylov subspace method. In the context of time
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evolution, the objective is to approximate the action of the exact time evolution
operator Û exact(δ) on the state |ψ(t)⟩ as a whole. Consequently, we avoid manipu-
lating the time evolution operator Û exact(δ) on its own. It is noteworthy that the
global algorithm presented below is highly analogous to the local Krylov solver used
to solve the local time step in TDVP, see Sec. 2.2. In the following, we derive the
algorithm in a way that is independent of MPS.

2.4.1 Derivation

We begin by introducing the Krylov subspace KN of a Hamiltonian Ĥ with an
initial state |ψ⟩ as the span of the vectors {|ψ⟩ , Ĥ |ψ⟩ , · · · , ĤN−1 |ψ⟩}. The initial
stage of the process is to construct the Krylov subspace by generating a set of
Krylov vectors |ν0⟩ , |ν1⟩ , · · · , |νN−1⟩ that span the Krylov space: The initial state
with norm 1 is set as the �rst Krylov state. Subsequently, an iterative process is
employed: The most recent Krylov vector |νi−1⟩ is then subjected to the action of
the Hamiltonian Ĥ, resulting in the generation of a state with a signi�cantly larger
bond dimension. Subsequently, this temporary state is orthonormalised with respect
to all previous Krylov vectors, thereby de�ning the next Krylov vector |νi⟩. It should
be noted that, in exact arithmetic with the aforementioned construction it would be
su�cient to orthonormalise only with respect to the two most recent Krylov vectors.
However, due to rounding errors, it is typically necessary to orthogonalise with
respect to all previous vectors. Having constructed our Krylov space, the question
remains as to how we can best approximate the time evolution Û exact(δ) |ψ(t)⟩. The
Krylov method attempts to identify the element in KN that provides the optimal
approximation to the time evolution, i.e.

Û exact(δ) |ψ(t)⟩ ≈ argmin
|u⟩∈KN

|| |u⟩ − Û exact(δ) |ψ(t)⟩ || := |ψ(t+ δ)⟩ . (50)

In order to achieve this, one de�nes the projector on KN

P̂N =
N−1∑
i=0

|νi⟩ ⟨νi| (51)

≡ V †
NVN , (52)

where the matrices VN and V †
N store the Krylov vectors and operate as maps from

Hilbert space H to Krylov space. Subsequently, the solution to the minimization
problem, see Eq. (50), is given by

|ψN(t+ δ)⟩ = P̂ †
N Û

exact(δ)P̂N |ψ(t)⟩ . (53)

It should be noted that, thus far, no approximations have been made under the
assumption that N = dimH ≡ NH. As a �nal step, the Taylor expansion of Û

exact(δ)
is employed, which results in
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|ψNH(t+ δ)⟩ =
NH−1∑
i=0

|νi⟩ ⟨νi| e−iδĤ

NH−1∑
i′=0

|ν ′i⟩ ⟨ν ′i| |ψ(t)⟩ (54)

=

NH−1∑
i=0

|νi⟩ ⟨νi|
∞∑
n=0

(−iδ)n

n!
Ĥn

NH−1∑
i′=0

|ν ′i⟩ ⟨ν ′i| |ψ(t)⟩ (55)

= V †
NH

∞∑
n=0

(−iδ)n

n!
VNHĤ

nV †
NH
VNH |ψ(t)⟩ (56)

≈ V †
N

∞∑
n=0

(−iδ)n

n!
VNĤ

nV †
NVN |ψ(t)⟩ = V †

Ne
−iδTNVN |ψ(t)⟩ , (57)

with (TN)i,i′ := ⟨νi| Ĥ |νi′⟩ denoting the Krylov space representation of Ĥ. Note that
the approximation was introduced in Eq. (57), given that in general N ≪ NH. Thus,
by comparing Eq. (56) and Eq. (57), it becomes evident that the error introduced in
the Taylor expansion is of the order of O(δn/n!). It can thus be concluded that even
a small number of iterations can result in a very small error. This is equivalent to
the statement that due to the unique structure of the Krylov space V †

NT
n
NVN |ψ(t)⟩

will converge rapidly to Ĥn |ψ(t)⟩.
In the following, we can exploit the special property that TN is tridiagonal, i.e.
(TN)i,i′ = 0 if |i− i′| > 1, in exact arithmetic to further simplify the evaluation of Ĥ.
While this is only strictly applicable in the context of exact arithmetic, enforcing
this property will serve to enhance stability and numerical accuracy. By employing
this property, it becomes evident that VN |ψ(t)⟩ in Eq. (57) can be written as

VN |ψ(t)⟩ = || |ψ(t)⟩ ||e1N , (58)

as the �rst (normalized) Krylov vector |ψ(t)⟩ is by construction orthogonal to all
other Krylov vectors. In this context, e1N represents an N-dimensional unit vec-
tor. Moreover, as TN is merely N × N in size, it can be e�ciently exponenti-
ated through the utilisation of standard diagonalization algorithms. Making use of
TN = Q†

NDNQN results in

e−iδTN = Q†
Ne

−iδDNQN . (59)

In this context, the notation DN is used to denote the diagonal matrix that contains
the eigenvalues of the matrix TN . The matrix QN is used to represent a matrix
that contains the respective left eigenvectors as rows. Upon inserting Eq. (58) and
Eq. (59) into Eq. (57), we obtain the �nal equation

|ψN(t+ δ)⟩ = || |ψ(t)⟩ ||V †
NQ

†
Ne

−iδDNQNe
1
N . (60)
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This can be rewritten by de�ning the coe�cient vector cN := Q†
Ne

−iδDNQNe
1
N , re-

sulting in

|ψN(t+ δ)⟩ = || |ψ(t)⟩ ||V †
NcN . (61)

It is evident that the time evolved state |ψNH
(t+ δ)⟩ comprises a sum over the

Krylov vectors.

2.4.2 Errors and Numerical E�ciency

A number of convergence criteria and error bounds have been established for the
error produced in the Krylov step. However, the majority of convergence criteria
are imprecise and dependent on a speci�c interpretation. Moreover, the majority of
error bounds have been derived for exact arithmetic, and thus may not be applicable
to MPS. Accordingly, we will present the most practical error bound for the Krylov
step.
The most signi�cant bound that has been validated through empirical observation is
that the Krylov error is of order O(δN) if

√
Wδ ≤ N [80]. The quantityW is de�ned

as the spectral range and is of the same order as the system size. This provides a
reliable method for tuning the error so that it is comparable in magnitude to the
other errors produced during the calculations.
In addition to the Krylov error, the method employed with MPS also gives rise to
the truncation error. As usual, this error can be tracked using the discarded weight,
and is typically of a negligible magnitude.
In conclusion, it can be stated that both errors can be e�ectively controlled and
are typically of a relatively small magnitude, thereby rendering the method highly
accurate. Nevertheless, this is at the expense of a relatively large numerical e�ort:
The application of the Hamiltonian Ĥ to |ψ⟩, followed by the fusion of the legs, gives
rise to a cost of O(D3w3d). The subsequent process of orthogonalisation results in
a cost of O(D3), see Sec. 2.4.5.

2.4.3 Use in combination with MPS

Thus far, we have considered a general derivation of the global Krylov method. We
will now provide a brief overview of the simpli�cations introduced by expressing
the quantum state as an MPS and the Hamiltonian Ĥ as an MPO. The primary
bene�t of utilising MPS is that it allows for the e�cient calculation of the �nal
entry of the Krylov matrix (TN)N−1,N−1 = ⟨νN−1| Ĥ |νN−1⟩. In exact arithmetic, the

matrix vector product Ĥ |νN−1⟩ would have to be computed. In contrast, the use of
MPS eliminates the necessity for this computation, as ⟨νN−1| Ĥ |νN−1⟩ corresponds
to an expectation value, namely the energy of the last Krylov vector. As applying
the Hamiltonian to the most recent Krylov vector signi�cantly increases its bond
dimension, omitting this step for the �nal Krylov vector signi�es a considerable
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speedup of the algorithm.

As previously stated in Sec. 2.4.2, the time-evolved state |ψNH
(t+ δ)⟩ is obtained

by summing over N Krylov vectors. Given that each Krylov vector corresponds to a
complete MPS, the bond dimension is doubled when two Krylov vectors are added
and must be truncated afterwards. A number of techniques exist for truncating the
bond dimension, see Sec. 2.1.5. We have selected variational compression as it is the
most appropriate method for our purposes.

2.4.4 Caveats: Loss of Orthogonality

A signi�cant challenge associated with this algorithm is the loss of orthogonality of
the Krylov vectors due to �nite numerical precision. It is essential to recognise that
ensuring the quality of the Krylov space is of the utmost importance in order to
obtain accurate time evolution.
As previously stated, truncation is necessary when using MPS, thereby reinforcing
the signi�cance of these issues. It would be reasonable to assume that the use of a
Gram-Schmidt-type procedure would be the optimal method for orthogonalising the
vectors with respect to each other. However, this procedure results in the addition
of multiple MPS (direct sum), necessitating further truncation to reduce the bond
dimension. This ultimately leads to a paradoxical loss of orthogonality.
One potential solution to this issue is the use of a method known as 'variational
orthogonalization' with respect to all previous Krylov vectors [95]. This can be
understood as a variational compression of a state under the constraint that it
should have zero overlap with all previous Krylov vectors. In the context of Lagrange
multipliers, this can be expressed as a minimization of

||Ĥ |νi⟩ − |νi+1⟩ ||2 +
∑
i′

βi′⟨νi+1|νi′⟩ (62)

with respect to |νi⟩ and βi′ . By employing an iterative scheme proposed in [95],
this can be solved in terms of a series of local 1s or 2s problems. It should be
noted, however, that the enhanced convergence of the 2s scheme is accompanied by
the necessity of truncation after each local step, which has the potential to destroy
the orthogonality of Krylov vectors. It is therefore recommended that, in practice,
a few sweeps be performed with a 2s scheme, followed by a single site scheme, in
order to ensure orthogonality. It should be noted that orthogonalization may be
over-constrained if the vector space at the �rst few sites is of a very limited size.
In such instances, it is recommended that the constraints be introduced sweep by
sweep. The orthogonalisation may be performed either during the application of
the Hamiltonian to the state in the form of a variational MPO-MPS application, or
subsequently. In the following we will explain the latter approach, as it has been
demonstrated to be advantageous in the context of long-range interactions, such as
those occurring on a cylinder.
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2.4.5 Variational Orthogonalization

The objective of this method is to identify the MPS |ϕ⟩ representing a given state
|ψ⟩ in an optimal manner, while ensuring that the constraint ⟨ϕ|ψk⟩ = 0 for a set
{|ψk⟩} is satis�ed. The variational orthogonalization follows a similar pattern as the
variational compression: (i) As initial state we choose |ϕ⟩ = |ψ⟩. (ii) Subsequently,
we calculate overlaps between the states ⟨ϕ| and |ψ⟩, which we designate as LR, and
overlaps between ⟨ϕ| and |ψk⟩, which we designate as LR. It should be noted that the
overlaps LR have already been encountered in Sec. 2.1.5 on variational compression.
(iii) Subsequently, we sweep through the system and undertake replacements on s
adjacent sites: Initially, replacements are made that are equivalent to variational
compression, with the objective of reducing the bond dimension

Al · · ·Al+s−1 =
∑

α1···αs+1

[Ll]γ,α1 [Bl]
σl
α1,α2

· · · [Bl+s−1]
σl+s−1
αs,αs+1

[Rl+s]αs+1,β, (63)

where A represents the MPS tensors of |ϕ⟩, while B denotes the tensors of |ψ⟩. It
should be noted that in this instance, either the 1s or 2s scheme is employed, i.e.
s = 1 or s = 2.
Subsequently, a projector P̂l in the space orthogonal to |ψk⟩ is applied, resulting in

Al · · ·Al+s−1 = P̂lAl · · ·Al+s−1. (64)

The following derivation outlines the construction of the projector. We begin by
considering the single overlap ⟨ϕ|ψk⟩ = 0. Given that this is a linear form in all
tensors of |ϕ⟩, we can reformulate the condition that |ϕ⟩ is orthogonal to |ψk⟩ for a
given block of s tensors with all the other tensors held �xed as

⟨ϕ|ψk⟩ = 0 ⇒

(
δ

δA†
l · · ·A

†
l+s−1

⟨ϕ|ψk⟩

)
A†

l · · ·A
†
l+s−1 = 0 (65)

≡ F
{k}
l A†

l · · ·A
†
l+s−1 = 0. (66)

In this context, F
{k}
l represents a tensor of rank s+ 2, which has the same form as

Al · · ·Al+s−1. Thus, we can express the projector P̂l in a manner inspired by the
Gram-Schmidt procedure as

P̂l = 1̂−
∑
k,k′

F
{k}
l [N−1]k,k′F

{k′}†
l , (67)

where [N−1]k,k′ is de�ned as the k, k′th element of the inverse of the Gram matrix
N , with

[N ]k,k′ = Tr(F
{k}†
l F

{k′}
l ). (68)
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It should be noted that, due to the construction of F
{k}
l the projector P̂l acts on a

tensor of the shape Al · · ·Al+s−1 and returns a tensor of the same shape. Here we
used the inverse of the Gram matrix to ensure that the projector is idempotent, i.e.
P̂ 2
l = P̂l.

To enhance the e�ciency of this algorithm, an alternative approach could be to
compute the eigenvectors of the inverse Gram matrix and express the F

{k}
l with

them. This would e�ectively transform the double sum in Eq. (67) into a single
sum. However, determining the eigenvectors of the inverse Gram matrix may prove
to be an ill-conditioned and singular problem. An alternative approach that is
stable and is based on the same idea is to compute the so-called Moore-Penrose
pseudoinverse [96] of the Gram matrix

[N+]k,k′ =

np∑
µ=1

Vkµ
1

λµ
V †
k′µ, (69)

where V is the matrix containing the eigenvectors of N as columns. Note that λ are
de�ned as the np eigenvalues of N , which are greater than nλmaxϵ. In this context,
n represents the linear dimension of N , while ϵ denotes the machine precision.
Finally, the use of the pseudoinverse allows us to obtain

G
{µ}
l :=

1√
λµ

∑
k

VkµF
{k}
l (70)

P̂l = 1̂−
∑
µ

G
{µ}
l G

{µ}†
l . (71)

It is important to note that the process of �nding G
{µ}
l is of the order of O(D2),

which is very e�cient. Furthermore, it is also possible to e�ciently compute the
linear forms F

{k}
l using the overlaps LR as

F
{k}
l =

∑
α1···αs+1

[L{k}
l ]γ,α1 [B

{k}
l ]σl

α1,α2
· · · [B{k}

l+s−1]
σl+s−1
αs,αs+1

[R{k}
l+s]αs+1,β, (72)

where B
{k}
l represent the MPS tensors of |ψk⟩. Given the e�cient iterative method

for computing and updating F
{k}
l during sweeping, it is straightforward to compute

the projector P̂l and ensure orthogonality of the truncated MPS in a variational
manner.

Note that in our computations we make use of a scheme that combines variational
orthogonalization with CBE to enhance performance. It should be noted, how-
ever, that in this instance the object to be minimised by CBE di�ers from the one
encountered in combination with TDVP, see Sec. 2.3.

32



2 METHODS 2.5

2.5 Puri�cation

This section is based on [12, 76�79, 86�88, 97]. There are a number of techniques
that can be employed to simulate mixed states using MPS. These include a direct
representation of the density matrix as an MPO, via minimally entangled typical
thermal states (METTS), and puri�cation. In the METTS approach, the sum over
the eigenstates of the density matrix ρ̂ is performed using a Monte Carlo scheme.
In the case of only a few eigenstates with signi�cant weight, this approach has been
demonstrated to be e�ective [98]. However, when considering a full-rank thermal
density matrix at a �nite temperature, it is more advantageous to employ a puri�-
cation scheme, which, in addition, permits calculations to be performed using the
MPS formalism previously introduced. Accordingly, we will focus on this scheme in
the remaining part of this discussion.
The fundamental concept of puri�cation is to represent the density matrix ρ̂ of an
arbitrary mixed state in terms of a pure state |ψ⟩. In order to achieve this, it is
necessary to double the Hilbert space H by introducing a so-called 'auxiliary' or
'ancilla' (a) space. The ancilla space may be interpreted as a heat bath coupled to
the physical system in question. This doubling of the Hilbert space is done for every
physical (p) state, resulting in a puri�ed state

|ψ⟩ =
∑
α

|α⟩a |α⟩p
√
ρα ∈ Ha ⊗Hp, (73)

where |α⟩p represents the eigenstates of ρ̂p, while the corresponding eigenvalues are
represented by ρα. In this context, the density matrix for a general mixed state ρ̂p
is de�ned in diagonal form as

ρ̂p =
∑
α

|α⟩p ρα ⟨α|p . (74)

It should be noted that the pure state can also be interpreted as a Schmidt decom-
position on Ha ⊗ Hp. Furthermore, it is essential to highlight that the operators
act solely on the physical space, leaving the ancilla space una�ected. The puri�ed
state, see Eq. (73), can be represented using MPS in a manner analogous to MPO.
However, in this case, the upper legs are living in the auxiliary space, see Fig. 6.
This results in the formation of supersites, which are comprised of two legs living in
local space: one in physical and the other in auxiliary space. As an alternative ap-
proach, the number of lattice sites can be doubled, which corresponds to a doubling
of the Hilbert space. However, the supersite approach is more advantageous when
utilising the CBE algorithm, as the local dimension increases up to d2. Moreover,
the MPO implementation of the Hamiltonian must be adopted when the number of
sites is doubled, as it is only permitted to act on the physical space. By tracing over
the auxiliary space of |ψ⟩ ⟨ψ| one obtains the physical density matrix ρ̂p
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Tra |ψ⟩ ⟨ψ| =
∑
β

∑
α,α′

⟨β|α′⟩a |α′⟩p
√
ρα
√
ρ′α ⟨α|p ⟨α|β⟩a

=
∑
α

|α⟩p ρα ⟨α|p = ρ̂p.
(75)

Furthermore, the puri�cation is supported by the observation that expectation val-
ues calculated using puri�ed states correspond to expectation values of the respective
mixed states

⟨ψ|1a ⊗ Ôp|ψ⟩ =
∑
α,α′

√
ρα ⟨α′|p ⟨α

′|a 1a ⊗ Ôp |α⟩a |α⟩p
√
ρ′α (76)

=
∑
α

⟨α|p Ôp |α⟩p ρα = Trpρ̂pÔp = ⟨Ôp⟩ . (77)

In this derivation, we have assumed that ρ̂p is normalised. Otherwise, the expecta-
tion value would have to be divided by the trace of ρ̂p, which is equal to the norm
of the puri�ed state

⟨ψ|ψ⟩ =
∑
α,α′

√
ρα ⟨α′|p ⟨α

′|a |α⟩a |α⟩p
√
ρ′α =

∑
α

ρα = Trpρ̂p. (78)

Thus far, our discussion has focused on the general case of an arbitrary mixed
quantum state. We now turn to a system at �nite temperature that is currently in
equilibrium.
The equilibrium density matrix ρ̂β is de�ned as

ρ̂β = e−βĤp =
∑
α

|α⟩p e
−βEα ⟨α|p , (79)

where Eα denotes the eigenvalues of the Hamiltonian Ĥp.
The norm is de�ned as the well-known partition function Z(β), with

Z(β) = Trpρ̂p =
∑
α

e−βEα . (80)

Upon consideration of equations Eq. (73) and Eq. (79) it becomes evident that the
puri�ed version is de�ned as

|ψβ⟩ =
∑
α

|α⟩a |α⟩p e
−βĤp/2 =

∑
α

|α⟩a |α⟩p e
−βEα/2. (81)

It is also of practical importance to note that the in�nite temperature puri�ed state
can be readily expressed in terms of a maximal auxiliary physical (max. aux-phys.)
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Figure 6: General puri�ed quantum state, represented as MPS in a supersite shape.
In this context, the index p denotes physical degrees of freedom, while a represents
auxiliary degrees of freedom.

entangled state, which corresponds to a product state over locally max. aux-phys.
entangled sites

|ψ0⟩ =
∑
σ

|σ⟩a |σ⟩p =
∑
σ

|σ1⟩a |σ1⟩p · · · |σL⟩a |σL⟩p =
L∏
l=1

(
∑
σl

|σl⟩a |σl⟩p). (82)

In this instance, σ denotes the local basis states, as is typically done. Furthermore,
note that we considered a system featuring L sites. It is straightforward to see that
the representation in terms of a product of locally max. aux-phys. entangled sites
is valid, given that ρ̂β factorizes over all sites in the case of in�nite temperature.
This results in a product state over combined aux-phys sites. In the context of
a spin system, one typically selects 'opposite' quantum numbers for the ancilla in
comparison to the physical site. Consequently, one can work in a system with a
reduced dimension of the total Hilbert space Ha ⊗ Hp. To illustrate, for a system
with spin 1/2, one typically chooses local spin singlets at in�nite temperature, which
sets the z-component of the total spin to zero.

Nevertheless, the question of how to derive |ψβ⟩ from |ψ0⟩ remains unanswered. In
examining Eq. (75), it becomes evident that an imaginary time evolution must be
performed on the in�nite temperature puri�ed state |ψ0⟩ in order to reduce the
temperature. This can be seen by considering

ρ̂β = e−βĤp = e−βĤp/21̂e−βĤp/2. (83)

We now employ the fact that 1̂ = ρ̂0, where ρ̂0 represents the equilibrium density
matrix at in�nite temperature. This allows us to rewrite Eq. (83) as

ρ̂β = e−βĤp/2Tra |ψ0⟩ ⟨ψ0| e−βĤp/2 = Trae
−βĤp/2 |ψ0⟩ ⟨ψ0| e−βĤp/2. (84)

In the �nal step, the trace over the auxiliary space has been pulled out, as the
Hamiltonian only acts on the physical space. By making use of Eq. (75), this results
in a �nal equation for the equilibrium puri�ed state at �nite temperature
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|ψβ⟩ = e−βĤp/2 |ψ0⟩ . (85)

It is evident that Eq. (85) is equivalent to performing an imaginary time evolution
up to the time τ = −iβ/2. Furthermore, it should be noted that when combin-
ing Eq. (78) and Eq. (80), the partition function Z(β) can be readily obtained by
observing the normalisation factors of |ψβ⟩ when lowering the temperature. This
provides a straightforward approach to carrying out thermodynamic calculations.

2.5.1 Ancilla space backward time evolution

Although the puri�cation is straightforward to implement and enables the use of
pre-existing methods for time evolution within the MPS framework, the typical
time scales that can be reached at �nite temperature are considerably shorter than
those at T = 0. This can be attributed to the growth of entanglement in the
system. At T = 0, excitation of the ground state in a restricted region, will result in
localised growth of entanglement around the excited region over the course of time
evolution. In contrast, at T > 0 the entanglement typically increases homogeneously
throughout the system. It is noteworthy that this phenomenon persists even in the
context of time-evolution of a puri�ed state in equilibrium. This phenomenon can be
attributed to the non-unique nature of the puri�cation, which renders the associated
entanglement growth 'nonphysical'. It should be noted that any unitary operator
Ûa acting on the ancilla space can be applied to the puri�ed state without a�ecting
the physical behaviour. It is therefore possible to attempt to identify an optimal
representation of the auxiliaries that would result in a reduction of this non-physical
growth of entanglement. It has been proposed that a backward evolution on ancilla
space

Ûa(t) = eiĤat (86)

signi�cantly reduces the entanglement buildup during time evolution. A pedagogical
illustration of this behaviour has been presented in [87] for a Heisenberg chain. In
the following, we will focus on the spin �ip terms as they are more relevant to the
dynamics. Let us consider a supersite in our system, which combines the auxiliary
σa and physical σp degrees of freedom and is spanned by {|↑↑⟩ , |↑↓⟩ , |↓↑⟩ , |↓↓⟩}. The
system is initially set up using a typical choice of local aux-phys spin singlets, see
Sec. 2.5. Now, we aim to observe the action of the Hamiltonian on two neighboring
supersites separated by the pipe | symbol.
If the Hamiltonian Hp ⊗ 1 is applied to these sites, the physical spins will �ip due
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to the action of the spin �ip terms

↓↑ | ↑↓ (1/2)(S+⊗1)⊗(S−⊗1)−−−−−−−−−−−−−→ (1/2) ↑↑ | ↓↓ (87)

↑↓ | ↓↑ (1/2)(S−⊗1)⊗(S+⊗1)−−−−−−−−−−−−−→ (1/2) ↓↓ | ↑↑ . (88)

However, if we begin from the same state and apply the Hamiltonian −1 ⊗ Ha,
which features a negative sign, to the ancilla space, the same transition will occur,
but with the opposite sign

↓↑ | ↑↓ (−1/2)(1⊗S−)⊗(1⊗S+)−−−−−−−−−−−−−−→ (−1/2) ↓↓ | ↑↑ (89)

↑↓ | ↓↑ (−1/2)(1⊗S+)⊗(1⊗S−)−−−−−−−−−−−−−−→ (−1/2) ↑↑ | ↓↓ . (90)

Consequently, the time evolution using both Ĥp and Ĥa, which is determined byHp⊗
1−1⊗Ha, reduces to a trivial calculation. In practice, the simultaneous backward
time evolution in the ancilla and forward evolution of the system in physical space
has been demonstrated to be an e�ective approach, see Fig. 7. It is noteworthy that
this implementation is signi�cantly more e�cient than previous implementations
[86] utilising backwards evolution on ancilla space in terms of the minimum bond
dimension required.

2.5.2 Two-site disentangler

Given that the entanglement is already growing during the imaginary time evolu-
tion, it is necessary to �nd an alternative to the backward evolution on ancilla space
that will enable us to reduce the entanglement during the imaginary time evolution.
In a previous study, Hauschild [79] proposed an algorithm that attempts to compute
Ûa such that Ûa |ψ⟩ exhibits minimal entanglement. This can be understood as a
'disentangling' procedure. The algorithm employs a sequence of local disentangling
operations to gradually construct a network that de�nes Ûa. The local two-site uni-
tary Û is constructed in such a way that the action of it minimizes the entanglement
of an e�ective two-site wavefunction |θ′⟩, with |θ′⟩ := Û |θ⟩. Given that the von Neu-
mann entropy is a non-linear function of the reduced density matrix, we decide to
minimize the second Rényi entropy S2(Û |θ⟩), de�ned as

S2(Û |θ⟩) = −log Tr(ρ̂2L,L′) = −log (Z2), (91)

in order to derive the two-site unitary Û .
In this context, ρ̂L,L′ = TrR,R′(Û |θ⟩ ⟨θ| Û †) represents the reduced density matrix
of the left half of the two-site system and the subscripts L or R denote the left or
right half of the two-site system, respectively. In order to minimize S2 it is evident
that this corresponds to maximizing Z2. One may attempt to resolve this non-linear
problem by means of an iterative approach. As a �rst step in this iteration, one may
select Û1 = 1. Let us consider the case where we are in the m-th iteration. We may
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Figure 7: Benchmark to demonstrate the bene�t of backward time evolution on
ancilla space in combination with TDVP and CBE. We compute the in�nite tem-
perature longitudinal spin structure factor Szz

n (t) of a L = 100 site xy chain with

spin coupling J = 1. Szz
n (t) is de�ned as follows: Szz

n (t) =
〈
Sz
L/2+n(t)S

z
L/2

〉
. We

compare the exact result (solid brown/yellow line) with TDVP+CBE, both with
(dashed blue and red lines) and without (solid blue and red lines) backward evo-
lution of the auxiliary space. Despite the maximum bond dimension D being set
to 60 and 200, the actual bond dimension required in TDVP+CBE combined with
backward evolution on the auxiliary space was only 13.
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now assume that Ûm+1 is independent of the previous Ûm. Upon rewriting Z2 in
terms of Ûm+1, and the remaining environment E2(Ûm, θ), the resulting expression
reduces to

Z2(Ûm+1, Ûm, θ) = Tr(Ûm+1E2(Ûm, θ)). (92)

From this, we can conclude that the optimal unitary Ûm+1 maximizing Z2 is obtained
by performing an SVD on E2(Ûm, θ)), which results in

E2(Ûm, θ)) = AΛB†, with Ûm+1 = BA†, (93)

where A and B† represent left and right isometries and Λ denotes the singular value
spectrum of E2(Ûm, θ)). The rationale behind the de�nition of Um+1, see Eq. (93),
can be readily observed by inserting Eq. (93) into Eq. (92), resulting into

Zupdated
2 = Tr(BA†AΛB†) = Tr(Λ). (94)

Consequently, the �nal Û , which is minimizing the entanglement, is obtained when
the singular value spectrum of E2(Ûm, θ)) has reached convergence. For an illustra-
tion of the disentangling process, see Fig. 8.
It should be noted that this algorithm typically converges to a local minimum. In
order to identify a global minimum, it is necessary to perform a number of computa-
tions with di�erent initial disentanglers Û1 and select the one featuring the smallest
�nal entropy. It is also noteworthy that this algorithm only disentangles neighboring
sites, thereby rendering it incapable of reducing the entanglement for sites situated
at a greater distance. In order to achieve this, the use of swap gates may be em-
ployed. Furthermore, although the presented algorithm reduces the entanglement,
it does not result in a reduction of the required bond dimension during computation
due to the presence of a tail of small Schmidt values. Nevertheless, given that the
numerical e�ort is strongly correlated with the amount of entanglement present in
the system, it has proven to be a valuable tool.

2.6 MPO Implementation

In this section we explain in detail the MPO implementation procedure used for
our numerical calculations. The procedure is inspired by �nite state machines
(FSMs) [99�103]. To facilitate understanding, we �rst explain the method at a more
conceptual level. This is followed by a detailed presentation of how the technique
can be combined with tensor networks.

2.6.1 Conceptual discription

For the sake of clarity, the procedure is presented below for the case of a two-
dimensional Hubbard model on a square lattice

ĤHubbard = U
∑
i

ĉ†i↑ĉi↑ĉ
†
i↓ĉi↓ − t

∑
⟨ij⟩,σ

(ĉ†i,σ ĉj,σ + h.c.), (95)
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Figure 8: Illustration of the two-site disentangling algorithm. (a) Two-site wave-
function |θ⟩ to be disentangled by Û . (b) Tensor network diagram representing the
reduced density matrix ρ̂L,L′ = TrR,R′(Û |θ⟩ ⟨θ| Û †). (c) Tensor network diagram of

Z2(Û , θ) = Tr(ρ̂2L,L′). The green area indicates the e�ective environment E2(Ûm, θ)),

which is de�ned by Z2(Û , θ) = Tr(ÛE2(Û , θ)).
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Figure 9: Illustration of the channels/states required to generate non-local terms.
The line represents the MPS chain that we run through our system. The channel
shown at a given site corresponds to the channel into which the �rst non-trivial
character located at that site transitions in order to generate valid words. (a-c)
Di�erent scenarios with additional features are shown. Note that in all scenarios
the Hamiltonian has NN interactions. (a) 2D square lattice with periodic boundary
condition (PBC) in y-direction, corresponding to a cylinder. Note that the case
without PBC would lead to the same states. (b) 2D square lattice with next nearest
neighbour (NNN) interaction. (c) 2D square lattice with both PBC in the y-direction
and NNN. This corresponds to a cylinder with NNN.

where ĉ† and ĉ represent the usual fermionic creation and destruction operators. To
illustrate, running an MPS through a 4 x 4 lattice, see Fig. 9, will result in terms
such as

Ĥ =(Uĉ†↑ĉ↑ĉ
†
↓ĉ↓)1 ⊗ 12 ⊗ 13 · · ·116

+ 11 ⊗ (Uĉ†↑ĉ↑ĉ
†
↓ĉ↓)2 ⊗ 13 · · ·116

· · ·
+ (−tĉ†↑P)1 ⊗ (ĉ↑)2 ⊗ 13 · · ·116

+ 11 ⊗ (−tĉ†↑P)2 ⊗ (ĉ↑)3 ⊗ · · ·116

· · ·
+ (−tĉ†↑P)1 ⊗ P2 ⊗ P3 ⊗ P4 ⊗ (ĉ↑)5 ⊗ 16 · · ·116

· · · ,

where P represents the parity operator and the subscript refers to the MPS site. In
the following, the onsite interaction term will be abbreviated as the U term, and
the hopping term will be abbreviated as the t term. The term 'character' will be
used to refer to uniquely occurring sets of operators at a given site: Uĉ†↑ĉ↑ĉ

†
↓ĉ↓ → U ,

−tĉ†↑P → A, ĉ↑ → B,−tĉ†↓P → C,ĉ↓ → D, tĉ↑P → E, ĉ†↑ → F ,tĉ↓P → G,ĉ†↓ →
H,1 → I,P → P . In accordance with this de�nition, the hopping terms on two
neighboring MPS sites can be expressed as AB, CD, EF and GH. Furthermore, all
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characters are often interpreted as an so-called alphabet Σ. Concatenating several
elements of Σ results in the formation of a discrete sequence, referred to as a 'word'
w. Consequently, each term in the Hamiltonian Ĥ can be understood as a valid
word. It follows that the set of all valid words can be used to express all terms in
the Hamiltonian, thereby de�ning a so-called 'regular language',

Ĥ = UIIIIIIIIIIIIIII + IUIIIIIIIIIIIIII +···
IIIIIIIIIIIIIIIU + ABIIIIIIIIIIIIII + IABIIIIIIIIIIIII +···
APPPBIIIIIIIIIII,

where we have dropped the site subscript for readability. In order to provide an
explicit example of how to generate a MPO from a regular language, we will write
down the MPO in matrix format for a small system, which is relatively straight-
forward [12]. Running a MPS through a 3 x 3 lattice, this results in a local MPO
tensor Ŵl, located at site l within the chain, which can be expressed as

Ŵl =



I 0 0 0 0 0 0 0 0 0 0 0 0 0
A 0 0 0 0 0 0 0 0 0 0 0 0 0
0 P 0 0 0 0 0 0 0 0 0 0 0 0
0 0 P 0 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 P 0 0 0 0 0 0 0 0 0
0 0 0 0 0 P 0 0 0 0 0 0 0 0
E 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 P 0 0 0 0 0 0
0 0 0 0 0 0 0 0 P 0 0 0 0 0
G 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 P 0 0 0
0 0 0 0 0 0 0 0 0 0 0 P 0 0
U B 0 B D 0 D F 0 F H 0 H I



. (96)

It is readily apparent that the product of the operator-valued matrices Ŵl, situated
along the chain, will yield all terms in the Hamiltonian.
Next, we will continue with the 4 x 4 lattice and use the Finite State Machine (FSM)
to create all valid terms in the Hamiltonian. In order to achieve this, we connect
all sites that lead to a valid word. To illustrate, the word APPPBIIIIIIIIIII
corresponds to a horizontal hopping term between sites 1 and 5, which have to
be connected via FSM in order to generate this word. For this purpose we use
special 'states', which can be thought of as channels, so that each channel connects
two (or more) sites. As is intuitively understandable, these channels live on the
bonds between the sites that they connect. We will demonstrate in Sec. 2.6.2 that
these channels live on the virtual bonds of the MPO. Consequently, the MPO bond
dimension is directly correlated with the number of channels on a virtual bond.
The idea is that there exist two 'global' channels, the so-called initial and �nal
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states, which connect the trivial identities with each other, as well as the trivial
part with the non-trivial part of each word. Considering the vertical hopping term
IIIIIIABIIIIIIII, the identities positioned in front of the nontrivial hopping
(AB) are connected by the initial channel, whereas the identities following the non-
trivial hopping are connected by the �nal channel. Consistently, the nontrivial
hopping (AB) is connected to the identities on the previous sites by the initial
channel and to the subsequent sites by the �nal channel. Given that we are running
an MPS/MPO chain through our system, the information �ows from site 1 to site
2 to site 3 ... site 16. Therefore, the channels that live on bonds follow the same
behavior. They �ow in from the previous site, interact with the operator at the
current site, and �ow out to the next site. When the current channel interacts with
a local operator, it can transition to a di�erent channel. In the following, we will refer
to a subscript as an incoming channel (from the previous site) and a superscript as
an outgoing channel (to the next site). Consequently, we can represent our vertical
hopping term IIIIIIABIIIIIIII as

I iiI
i
iI

i
iI

i
iI

i
iI

i
i (AB)fiI

f
f I

f
f I

f
f I

f
f I

f
f I

f
f I

f
f I

f
f , (97)

where i represents initial and f the �nal channel. Note that, for now, we have
neglected the channel that connects the A and B parts of the hopping term. We can
observe that the non-trivial hopping AB changes the channel from initial to �nal.
Having established how the trivial part of a word/term is coupled to the non-trivial
part, we next explain how the local constituents within a non-trivial part are coupled
to each other. To this end, we consider the horizontal hopping IAPPPBIIIIIIIIII
between sites 2 and 6, which we have already learned to interpret as
I ii (APPPB)fiI

f
f I

f
f I

f
f I

f
f I

f
f I

f
f I

f
f I

f
f I

f
f I

f
f . In order to couple sites 2 and 6 as well as the

parities in between, we de�ne a special channel connecting all non-trivial sites of this
hopping term. For the sake of convenience, we will refer to this channel as channel
'h' for hopping. Thus, the operator A takes in the initial channel and outputs the
channel h, which is passed on by the other non-trivial sites as well. The �nal non-
trivial character B takes the channel h and outputs the �nal channel to indicate that
only trivial characters follow, i.e. I iiA

h
i P

h
hP

h
hP

h
hB

f
hI

f
f I

f
f I

f
f I

f
f I

f
f I

f
f I

f
f I

f
f I

f
f I

f
f . As we want

to couple di�erent sites in our square lattice, we require di�erent channels in order
to connect each pair of sites. To illustrate: APPPBIIIIIIIIIII (sites 1 and 5):
channel 1, IAPPPBIIIIIIIIII (sites 2 and 6): channel 2, IIAPPPBIIIIIIIII
(sites 3 and 7): channel 3. Note that once IIIIAPPPBIIIIIII (site 5 and 9) is
reached, we can reuse channel 1, since channel 1 is only required to exist between
the sites 1 and 5 it originally aimed to couple. The same applies to the other
channels. This results for a maximum of four channels required to couple the non-
trivial constituents of every horizontal hopping term in Ĥ, see Fig. 9.
Having gained an understanding of how to couple the horizontal hopping terms via
channels/states, we next apply the same ideas to the vertical hopping terms and the
onsite interaction terms. In the case of a vertical hopping term the already existing
channels 1 to 4 can be used to connect the non-trivial constituents on neighbor-
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ing sites, e.g. A1
iB

f
1I

f
f I

f
f IIIIIIIIIIII, I

i
iA

2
iB

f
2I

f
f I

f
f IIIIIIIIIII,· · · . In order to

enhance readability, some the �nal channel scripts from the identities have been
dropped. The �nal case of onsite interactions is straightforward to implement, given
that they are purely local. Therefore, they mediate a direct transition from initial
to �nal state, e.g. U f

i I
f
f I

f
f IIIIIIIIIIIII or I iiU

f
i I

f
f I

f
f IIIIIIIIIIII,· · · .

2.6.2 Combination with tensor networks

The �nal step required for the construction of the MPO is to establish a relationship
between the concept of tensors and channels/states. This will facilitate an under-
standing of the value of the FSM approach in the implementation of MPOs. Once
this relationship is understood, the iterative generation of all words can be achieved
by placing the characters and using the channels as previously described.

If we describe the characters of our alphabet in terms of tensors, we have by con-
struction either three-legged (A-H) or two-legged (U ,I,P ) tensors. Each of these
tensors possesses two physical legs and an additional virtual leg in the case of three-
leg tensors. In order to use operators that take in a channel via an incoming leg and
output another channel via an outgoing leg, it is necessary to add the appropriate
number of 'vacuum' legs to the tensors in order to obtain four-legged objects. In this
way, we also obtain our characters in four-leg MPO shape. Vacuum legs are de�ned
as legs of dimension 1, which do not carry quantum numbers. The addition of a
vacuum leg to a speci�c tensor O is achieved by: (i) Constructing an three-leg iden-
tity operator I that maps the two spaces of incoming legs onto their tensor product
space on the outgoing leg. In this instance, we choose as incoming spaces, the space
de�ned via the physical leg of the operator and the vacuum space. (ii) We contract
the physical leg of the three-leg identity with one physical leg of the operator. This
e�ectively adds a leg de�ned on vacuum space to the operator. As the physical
legs do not connect sites, we have at least one incoming and one outgoing leg per
character that connects to neighboring sites. The procedure of adding a vacuum leg
is illustrated in Fig. 10.

Next, we use the so-called expansion of a leg, which is followed by activating speci�c
channels/states on that leg to de�ne the ingoing and outgoing channels/states for
each operator. When expanding a leg, one increases the data size along that partic-
ular leg by inserting zeros, and then positions the non-zero data in a speci�c part of
the expanded data array, which we will refer to as 'activating' a channel. We want
to illustrate the detailed procedure for the case of an three-leg operator O of Hilbert
space dimension 2 × 2 × 1 where we aim to expand the virtual leg of dimension 1.
Let us assume we want to expand it to allow for N = 4 channels and we want to
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Figure 10: Process of adding a vacuum leg to an operator O. The �nal step (ii),
which consists of contracting the identity operator I with the operator O, is dis-
played. In this context, the letter 'p' denotes the physical, while 'vac' or 'virt'
denotes the respective vacuum or virtual legs.

activate the channel m = 2. The procedure is as follows: (i) Generate a two-leg
identity operator I that lives on the state space of the leg that we want to expand.
(ii) Iterate through the quantum number sectors and modify the reduced matrix
element data of the identity operator I in each sector. We de�ne the data in each
sector as a 1 × N matrix with only zeros. This is followed by setting the (1,m)th
data element equal to 1. (iii) Finally, we contract the identity operator I with the
operator to be expanded. This results in an operator of dimension 2× 2×N . The
procedure can be seen in detail in Fig. 11.
As a consequence, two operators with equal quantum numbers and dimension along
a leg that has been previously expanded, can only contract along that leg to an
non-zero object, if that particular leg has been activated in the same channel m.
From this perspective one should understand the statement that operators on two
neighboring sites are coupled via a channel. Note that two operators with di�erent
quantum numbers on a leg will contract to an all-zero object, if contracted along
that speci�c leg.
This allows for the straightforward assignment of channels for the 2D Hubbard
model: Usually, it is advantageous to choose the vacuum leg as the leg carrying the
initial and �nal channel. Therefore, they are expanded to dimension 2 and either
activated in channel 1 (initial channel) or 2 (�nal channel). The non-trivial virtual
legs of characters (A-H) are selected to carry the channels intended for hopping.
In our example, they are expanded to dimension 4 to accommodate the maximum
number of four channels required for hopping, and activated in a speci�c channel.
As vacuum legs carry di�erent quantum numbers compared to the non-trivial virtual
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Figure 11: Procedure of expanding a virtual leg of a three-leg operator O of Hilbert
space dimension 2×2×1 by making use of identity operator I. The leg is expanded
to allow for N channels. The same abbreviations employed in Fig. 10 are used to
denote the respective legs. The number positioned adjacent to each leg correspond
to its respective dimension. (i) Generate a two-leg identity operator I living on the
virtual space. (ii) Modify the reduced matrix element data of the identity operator
I. (iii) Contract the identity operator I with operator O.
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Figure 12: Procedure of expanding the parity P with two legs that carry the same
quantum numbers as the non-trivial virtual legs of characters (A-H). The same
abbreviations employed in Fig. 10 are used to denote the respective legs. (i) Add a
vacuum leg to the parity P . (ii) Generate an identity operator I, mapping the space
of the non-trivial virtual legs of characters (A-H) and the vacuum space onto their
tensor product space. (iii) Contract the identity operator I and parity P .

legs, the hopping channels do not interfere with the initial/�nal channels.
It is also important to note that, in order to couple the parity operators of a horizon-
tal hopping term to their respective creation/destruction operators via the hopping
channels, see Sec. 2.6.1, we do not extend the parity P with vacuum legs. Instead,
we use legs carrying the same quantum numbers as the non-trivial virtual legs of
characters (A-H). This is achieved as follows: (i) Add a vacuum leg to the initially
two-legged parity P . (ii) Build a three-leg identity operator I that maps the vacuum
space and the space de�ned via the non-trivial virtual legs of characters (A-H) onto
their tensor product space. (iii) Contract the parity P and the identity operator
I along the vacuum leg. This e�ectively adds two legs corresponding to the non-
trivial virtual legs of characters (A-H) to the parity P . The procedure is depicted
in Fig. 12.

2.6.3 Summary

The procedure of implementing an MPO can be summarized as follows: (i) Expand
all characters so that they take on a four-legged MPO shape, see Sec. 2.6.2. (ii)
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Initialize the local MPO at each site with a four-legged identity, with both in and
outgoing channels activated simultaneously in the initial and �nal states. As an
exception, the identity on the �rst site is activated only in the initial channel, and
the identity on the last site is activated only in the �nal channel. This marks the
beginning and the end of each word. By initializing the MPO in this manner, the
trivial part of all words of Ĥ is already taken care of. (iii) Iterate all words of Ĥ and
place the non-trivial parts, activated in the correct channels, according to Sec. 2.6.1.
When placing each character at a site, we add it to the already existing local MPO
tensor. This process allows us to iteratively build up the entire MPO.

3 Results

This section presents the results of our study on magnetic polarons at �nite tem-
perature. We begin by discussing the details of the real-time dynamics, followed by
an analysis of the spectral features.

3.1 Real time dynamics

In this section we want to shed light on the real-time dynamics of a single hole at
di�erent temperatures and coupling ratios. In the following we will also draw a
comparison with the behaviour observed at T = 0. We will denote the time variable
by τ , and plot it in units of either inverse tunneling 1/t or inverse exchange coupling
1/J .

3.1.1 Background

Previous theoretical studies at T = 0 [18, 53, 54, 104] have shown conclusively that
the dynamics of a hole follows a three stage process: (i) There is initial ballistic
spreading of the hole with a velocity proportional to t, independent of J , up to time
1/t. (ii) The magnetic polaron emerges as a meson, consisting of a holon and a
spinon. (iii) Starting at times 1/J , there is again ballistic spreading by the polaron
with a velocity proportional to J and independent of t.
In order to verify the individual stages of the three stage process, one can de�ne the
Manhattan distance r [53]

r =
∑
x

∑
y

(|x|+ |y|) · nh(x, y) , (98)

where x and y denote positions within the lattice, and nh(x, y) the corresponding
hole density. The origin, with (x, y) = (0, 0), is de�ned as the initial hole location.
By examining the time-dependence of r for T > 0, we study how far the hole is
moving from its original position. Furthermore, this allows us to gain insight into
the extent to which the polaron retains its characteristics at higher temperatures.
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Figure 13: Dynamics of a hole at di�erent temperatures in the two-dimensional t-J
model on a square lattice. The calculations are performed for t/J = 1, 3, 5 on a
cylinder with length Lx = 18 and width Ly = 4. The plots show the Manhattan
distance as a function of time τ . At strong coupling, i.e. t/J ≫ 1, and times larger
1/J we observe faster spreading at low temperatures (dashed lines) than at higher
temperatures (solid lines).
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3.1.2 Varying temperature

In Fig. 13, we compare r for multiple temperatures T , while keeping the coupling
ratio t/J �xed. For all values of T and t/J , we observe the expected behaviour of an
initial fast propagation of the hole, followed by slower propagation due to magnetic
dressing. Note that this corresponds to a three stage process, similar to the three
stages (i-iii) reported at T = 0, see Sec. 3.1.1. For an analysis of the extent to which
the stages (i-iii) are still present at �nite temperature, see Sec. 3.1.3.
Upon closer examination, we notice that only for t/J = 1, the distance r(τ) at �xed
τ increases monotonically with temperature. For stronger coupling, t/J > 1, low-
temperature values of r, see dashed lines, stay lower for times up to 1/J , i.e. the
stage of polaron emergence, but start to increase more quickly at times, τ ≈ 3[1/J ].
As a result, r(τ) at �xed τ > 1/J is larger at intermediate temperatures than at large
ones. This e�ect is more pronounced the higher t/J . In the parton picture, spin-spin-
correlations are necessary for a �nite string tension that constrains hole expansion
and binds the holon to the spinon. Since the polaron is expected to propagate with
a velocity proportional to the spin-coupling J , and spin-spin-correlations decrease
with increasing temperature, see Fig. 19, implying a decrease in string tension, one
could have conjectured that the slope of r(τ) vs. τ should monotonically increase
with temperature for all times. Instead, at large τ the slope is seen to decrease
with T . Thus, the T -dependence of the slope can not be attributed solely to a
decrease in the e�ective spin coupling. We will further elaborate this point in the
next subsection.

3.1.3 Varying the coupling ratio

In order to analyze the velocity of hole propagation, we compare the time evolution
of the Manhattan distance r(τ) for three values of t/J while keeping the temperature
�xed, see Fig. 14. The curves in Fig. 14(a-c) and Fig. 14(d-f) represent the same
data, only for di�erent scalings of the time axis, τt or τJ , focusing on the short-term
(long-term) dynamics of the hole, respectively.
Fig. 14(a-c) reveals how the velocity initially does not depend on the spin-coupling J
but only depends on hopping t, as can be seen by all curves lying on top of each other
for shorter times. For all t/J values, an increase of temperature from T = 0.25J to
T = 2.99J leads to an extension of the �rst stage of hole propagation, presumably
due to a weakening of the spin correlations. This e�ect is most pronounced for
t/J = 1. We interpret this as arising from a reduction in spin correlations, resulting
in a reduction in string tension, with increasing temperature. Consequently, the
time window within which the hole expansion only depends on hopping t increases.
By taking a closer look at Fig. 14(d), featuring T = 0.25J , we notice that the three
curves are approximately linear and parallel for larger times. Since the velocity can
be estimated by dividing the Manhattan distance by time, and time is scaled in units
of 1/J , all three curves having the same slope veri�es that the polaron velocity is
proportional to J . However, upon increasing the temperature above T = 0.25J , the
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Figure 14: Analysis of the three stage process at �nite temperature. (a-c) Manhattan
distance is shown for three values of t/J at several temperatures as a function of
time τ , plotted in units of 1/t. (d-f) Analog to (a-c), but now plotted in units of 1/J .
The initial spreading still occurs with a velocity proportional to hopping t. For times
beyond the emergence of the polaron we do only observe a simple proportionality
of the expansion rate to the spin coupling J at low temperature T = 0.25J .
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Figure 15: Analysis of the high temperature dynamics. Logarithmic plot of the
Manhattan distance for di�erent t/J as function of time. The data is plotted against
a subdi�usive process (green dashed line), which has been shifted to coincide with
the beginning of the respective long-term dynamics.

long time behaviour starts to di�er. For T = 0.99J , see Fig. 14(e), the di�erent
graphs, no longer run parallel to each other at large times, pointing to a deviation
from the behavior found for the polaron model at T = 0. For T = 2.99J , see 14(f),
the non-parallel behaviour is less pronounced, but the three graphs are signi�cantly
more curved than for T = 0.25J .
Furthermore, the �ndings from Fig. 14(d-f) are reinforced from a di�erent per-
spective. By scaling time in units of 1/t, see Fig. 14(a-c), and increasing t/J , we
e�ectively decrease J and expect a decrease of the velocity for longer times, at least
for lower temperatures. This is visible in the T = 0.25J-plot by the crossing of the
curves for t/J = 5 (red) and t/J = 3 (yellow). For T = 0.99J and T = 2.99J , this
behaviour is absent, pointing again to a di�erent behaviour of polarons at longer
times.

3.1.4 Subdi�usion behavior at in�nite temperature

By approximating the hole motion at in�nite temperature as a quantum random
walk on the Bethe lattice with a disorder potential [53], it was shown that the long-
term propagation of the hole in the t-Jz model is subdi�usive when considering the
case of in�nite temperature and large Jz/t. Although our calculations are limited
to a �nite system size, which makes it di�cult to observe di�usion processes, we
have analyzed whether similar behavior can be observed for the more challenging
t-J model.
In Fig. 15 we compare the intermediate to long-time Manhattan distance for our
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Figure 16: Hole density and spin across the entire lattice shown for several times
at temperature T = 0.25J for t/J = 5 . The size of the green circles represents
the strength of the hole density. Height and direction of the arrow correspond to
absolute value and direction of spin.

highest temperature T = 9.09J against the τ 1/4 behaviour (dashed lines) expected
for subdi�usive expansion. By scaling the time in units of 1/t and displaying the
behaviour for di�erent values of t/J , we e�ectively show how the spin coupling J
a�ects the high temperature dynamics. For small spin couplings, i.e. t/J ≫ 1
(red line), we �nd remarkably good agreement with the subdi�usion process dis-
played here. However, at t/J = 1 (blue line) the subdi�usive behaviour only holds
for intermediate times and starts to break down for long times. This can also be
understood in terms of a disorder potential on a Bethe lattice, which slows down
the hole expansion. As a result of spin couplings, the movement of the hole from
one site to another modi�es the energy of the spin system, e�ectively creating the
aforementioned disorder potential. Nevertheless, for the relatively large spin cou-
plings J at t/J ≈ 1 (blue line), the subdi�usive behavior is no longer observed. This
phenomenon may be related to the spin �ip terms present in the t-J model, which
could amplify this e�ect in comparison to the t-Jz model. Consequently, this could
result in the breakdown of subdi�usion for relatively large spin couplings J. It is
also worth mentioning that the type of subdi�usion observed here is identical to the
subdi�usion previously reported for the t-Jz model.
Furthermore, it is important to determine the temperature at which the subdi�usion
behaviour ceases to exist. As the long-term behaviour for T ≥ 2.99 remains essen-
tially unaltered with temperature in the case of t/J ≫ 1, see solid lines in Fig. 13,
we conclude that for small spin couplings, i.e., t/J ≫ 1, this subdi�usive behavior
persists down to a temperature of T ≈ 2J .
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Figure 17: Hole density and spin across the entire lattice shown for several times
at temperature T = 0.99J for t/J = 5. The data is displayed in the same way as
Fig. 16.

3.1.5 Hole density and spin across system

Thus far, our analysis has been limited to average distances. We now turn to site-
resolved densities, which are directly accessible in quantum gas microscopes. In the
following, we illustrate how both the hole density and spin evolve as a function of
the lattice sites and as a function of time for a speci�c temperature T = 0.25J with
t/J = 5, see Fig. 16. At this point it is also important to mention that initially, an
electron with spin down was removed from the equilibrium system, resulting in a
total spin Stot

z ̸= 0.
In Fig. 16a we observe how the short-time symmetric spreading of the hole, starting
at the initial hole position, results in spins being aligned in the same direction at
sites adjacent to the initial hole position. This observation re�ects that Stot

z ̸= 0.
The initial hole position is located in the center of the cylinder and corresponds to
the site with the largest hole density present at such short times. This indicates
that the hole is still mainly located at the initial site.
At intermediate times, see Fig. 16b, the hole has already spread over one third of
the length of the cylinder. In the process of spreading it has distorted the spin
order around the initial hole position signi�cantly more compared to Fig. 16a. Since
displacing spins in an AFM background comes at an energy cost, this slows down
the initial fast spreading of the hole at times 1/t, which we observe here, and binds
the holon to the spinon, both connected by the string of displaced spins. This
corresponds to the emergence of a magnetic polaron.
Finally at long times, see Fig. 16c, we can see the reemergence of AFM correlations
in the whole system and an almost uniform distribution of the hole density over the
entire lattice, which indicates the imminent return of the system into equilibrium.
Fig. 17 presents analogous results at a higher temperature T = 0.99[J ]. One observes
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Figure 18: Sign-corrected next nearest neighbor spin correlations between the initial
hole position and its diagonal neighbors as function of time. Data is displayed for
several t/J at di�erent temperatures.

a similar behaviour compared to Fig. 16, but the hole motion generally takes place
faster and the average spin expectation value is reduced signi�cantly. Nevertheless,
the spatial heterogeneity of the hole density at long times indicates that the system
has not yet reached a state of near-equilibrium, see Fig. 17c. This phenomenon
may be attributed to either �nite size e�ects or represents a distinctive feature of
the doped system's dynamic. However at the same point in time one also observes
a slight asymmetry in the spin data with respect to mirroring the data along the
initial hole position. This presumably is due to accumulation of errors, which a�ect
the rather small spins at such temperatures more severely. Furthermore we can see
that no AFM correlations have built up close to the return to equilibrium, which is
in line with Sec. 3.1.6 and Sec. 3.1.7.

3.1.6 Next nearest neighbor spin correlations

The process of polaron creation and subsequent polaron spreading, can also be ana-
lyzed by considering the evolution of spin correlations. In equilibrium, i.e. directly
before we remove an electron from our system and study its dynamic, we can ob-
serve non negligible local AFM correlations for temperatures below T = 0.99J , see
App. B.
To gain further insight on the evolution of spin correlations, we want to study sign-
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corrected spin correlations, which are evaluated between sites r and r′ and de�ned
as

Cr(d) = (−1)dx+dy4(⟨Sz
rS

z
r+d⟩ − ⟨Sz

r ⟩ ⟨Sz
r+d⟩). (99)

Here, d is de�ned as the di�erence vector between respective sites r and r′ and Sz is
de�ned as the usual z-component of the spin operator S. Note that as a consequence
of this de�nition, positive correlation values correspond to AFM correlations.
We start by considering the corresponding next-nearest neighbor correlations C0(|d| =√
2). Fig. 18 shows the sign-corrected next-nearest neighbor spin correlation (SC-

NNNC) as a function of time and relative to the initial hole position. This has been
a common choice in experiment [105], facilitating comparisons with relative ease.
The correlations are evaluated for di�erent temperatures at three values of t/J .
We can observe for all values of t/J at all temperatures that the system is out of
equilibrium during short and intermediate times, testi�ed by the presence of negative
correlation values, and only slowly approaches equilibrium for long times. For times
up to 1/t the SCNNNC is negative and decreases even further in size. This is
connected to the fast initial spreading of the hole with a velocity proportional to t.
When the hole performs one hop, it places the neighboring spin on the "origin." As
a result, the spin is situated in the "wrong" sublattice, leading to negative d =

√
2

spin correlations. During the phase of polaron emergence, which follows directly
afterwards, the SCNNNC relaxes towards zero quickly and only slows down when
the polaron is fully formed. At times larger 1/J , when the polaron is moving as
a whole, the SCNNNC continues to relax to equilibrium, but slower compared to
the stage of polaron emergence. Given that the polaron is moving as a whole, the
relaxation to equilibrium can also be understood as a consequence of spinon motion
away from the origin.
Furthermore we can see that the negative correlations relax to equilibrium much
faster for strong spin coupling, i.e. small t/J . This phenomenon can be attributed
to the relaxation of spin correlation at the origin, which is a consequence of the
motion of the spinon away from the origin. Given that spinon motion occurs on
time scales of 1/J , the �ndings presented on time scales of 1/t, see Fig. 18, can be
explained.
Since a �nite string length of the polaron requires �nite spin correlations [18,51,53],
it is also of interest to determine the temperature up to which �nite spin correla-
tions are visible. This should indicate the transition to a region where no polarons
emerge. We �nd an absence of spin correlations at all times for temperatures above
T = 2J , with non-vanishing positive spin correlations only present at long times
for temperatures smaller T = 0.99J . This temperature scale is in line with the
temperature at which one would expect to see a return of AFM correlations due to
a competition between temperature and spin coupling. In addition, the complete
lack of spin correlations for temperatures above T = 2J also suggests that magnetic
polarons do not survive in that temperature range.
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Figure 19: Sign-corrected nearest neighbor (SCNNC) spin correlations in the entire
lattice for t/J = 5. Data is plotted at di�erent temperatures at the maximum cal-
culated time τ = 6/J . The bars represent the SCNNC spin correlations connecting
neighboring sites. The thickness and the color of the bars represents the absolute
value and the sign of the spin correlation.

3.1.7 Nearest neighbor spin correlations

To further improve our intuitive understanding, we now build on the image created
in Sec. 3.1.5 by discussing the distribution of spin correlations over the entire lattice
as a function of temperature.
To this end, we take a closer look at the sign-corrected nearest neighbor (SCNNC)
spin correlations, see Fig. 19. Here, we present the distribution of the spin correla-
tions over the entire lattice for t/J = 5 at the maximal reached time τ = 6/J . By
examining the long-term correlations, we aim to determine whether we can identify
features that are characteristic of a system close to equilibrium, such as a homoge-
neous spin correlation, or alternatively, whether we can observe features that must
be explained due to the dynamics of the doped system.
Overall, we observe that the average strength of the spin correlation reduces with
increasing temperature, as expected. Since these data only show non-vanishing spin
correlations for temperatures below T = 0.99J , they support the observations of
Sec. 3.1.6.
Furthermore, we see a fairly even distribution of spin correlation, only the spin
correlations around the initial hole position have not yet reached equilibrium. This
leads to the conclusion that the system is almost back in equilibrium at the end of
the time evolution, in agreement with Sec. 3.1.5.
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3.1.8 Spinon spreading

To conclude with the discussion of the real-time dynamics, we want to shed light
on the spinon spreading. In order to achieve this, we de�ne the spinon density as
the normalized deviation of the SCNNC from its equilibrium value. It is crucial to
acknowledge that this de�nition is only valid in the context of temperatures where
polarons exist, see Sec. 3.2.3. Fig. 20 illustrates the Manhattan distance rs of the
spinon for varying values of t/J and temperatures. Overall, the data indicate that
the spinon spreading also follows a three-stage process, similar to the spreading of
the hole as a whole.
Within a single short time step, a pronounced increase in the spinon distance, rs,
is observed, with the greatest increase occurring at low temperatures. This can be
attributed to the presence of AFM correlations in equilibrium at low temperatures.
The removal of an electron and subsequent hopping of the hole for a short time step
results in the emergence of ferromagnetic correlations adjacent to the initial hole po-
sition. This corresponds to a signi�cant deviation from the equilibrium correlations,
which is re�ected in a steep increase in the spinon distance rs.
Following the initial time step, the velocity of spinon spreading is observed to in-
crease with temperature. This behaviour persists up to medium times and is espe-
cially pronounced in the case of t/J > 1. It is noteworthy that this behaviour is
consistent with the behaviour of the hole as a whole, which also features an increase
in spreading velocity with temperature in the case of T < 2J and similar times, see
Sec. 3.1.2.
At long times, τ > 1/J , the velocity of spinon spreading is observed to be similar
for di�erent temperatures. However, the absolute spinon distance rs reached at long
times is slightly higher for lower temperatures. This is in contrast to the long-time
spreading of the hole as a whole, see Sec. 3.1.2, which reaches further distances the
higher the temperature in the case of T < 2J . It is likely that this discrepancy
can be attributed to a reduction in the binding strength between the holon and the
spinon as the temperature increases, which in turn permits a further propagation of
the hole.

3.2 Spectral properties

Finally, we take a look at the spectral properties at �nite temperature. Furthermore,
we make a thorough comparison with the features observed at T = 0.
In the following the spectral function S(k, ω) is de�ned as the Fourier transformation
of the time-dependent correlation function Ci,j(t),

A(k, t) =
∑
j

e−ikjC0,j(t) (100)

A(k, ω) =

∫ ∞

−∞
dte−iωtA(k, t) (101)
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Figure 20: Manhattan distance of the spinon. The spinon density used here is
de�ned as the normalized deviation of the SCNNC from its equilibrium value. The
data is displayed for several t/J and di�erent temperatures, up to which polarons
are expected to exist.
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Figure 21: Spectral function for t/J = 3 going along two di�erent paths in the
Brillouin zone (BZ). Data is shown for several temperature values. The spectral
function is obtained along cuts through the BZ. Note that the cuts in y-direction
are symmetrized in order to allow for a high resolution in ky. (a-e) Path goes though
center of the BZ. (f-j) Path goes along the edge of BZ. The dashed lines in (g) mark
the splitting of the ground state branch.
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which �nally results in

S(k, ω) = − 1

π
ℑA(k, ω). (102)

Here Ci,j(t) is de�ned in our puri�cation formalism as

Ci,j(t) = −i
∑
σ

⟨ψpuri
equil|e

iĤtĉ†j,σe
−iĤtĉi,σ|ψpuri

equil⟩, (103)

where i and j stand for the lattice sites for which the correlation function is to be
calculated and ĉ (ĉ†) are the usual destruction (creation) operators. Here the sum
runs over spin and |ψpuri

equil⟩ is the �nite temperature puri�ed state of the system in
equilibrium.
In this context, the quasiparticle residue Z(k) is de�ned as the frequency integral
over the respective peak [54]

Z(k) =

∫ ω+

ω−

dωS(k, ω). (104)

It should be noted that, in the context of the geometric string theory picture, Z(k)
is proportional to the probability for a string of length zero [18].

3.2.1 Background

In the past, various semi-analytical and numerical methods have been used to study
the spectral properties of a single hole in the 2D t-J model at T = 0. In the
strong coupling regime, i.e. t/J > 1, the following low energy properties have been
established [54], with energies not exceeding 2t above the one-hole ground state:
(i) At the lowest energies, S(k, ω) exhibits a quasiparticle peak belonging to the
magnetic polaron. The width is of the order of J , and the dispersion relation exhibits
a minimum at the nodal point (π/2, π/2) as well as low-energy states along the edge
of the magnetic Brillouin zone.
(ii) The quasiparticle residue Z(π/2, π/2) at the dispersion minimum at the nodal
point depends strongly on t/J .
(iii) Above the magnetic polaron ground state a second peak has been observed at
excitation energies ∆E < t.
(iv) The �rst excitation peak can be observed for all momenta, as long as the ground
state spectral weight is nonzero. Furthermore, it has been shown that the dispersion
relation of the �rst excitation peak is qualitatively identical to that of the ground
state. In the geometric string theory picture the �rst excited peak can be understood
as a vibrational excitation of the polaron, featuring a energy scaling with the ratio
of t/J [18].
(v) Around k = (π, π) the spectral function is suppressed for energies up to O(2t)
above the ground state. This has been explained as a consequence of spinon statis-
tics. Beyond that energy range, one �nds a pronounced high energy feature.
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Figure 22: Spectral function for t/J = 3 evaluated at k = (π/2, π/2). This corre-
sponds to a vertical cut through Fig. 21 at the point k = (π/2, π/2).

3.2.2 General observations at �nite temperature

In order to extend our knowledge of the spectral properties of single holes and to
test to what extent the properties (i-v) are present at �nite temperature, we have
calculated the spectral function at �nite temperature, see Fig. 21. Here we calculated
the spectral function S(k, ω) for t/J = 3.
It is also worth mentioning that one needs to perform an additional forwards time-
evolution on the equilibrium puri�ed state e−iĤt |ψpuri

equil⟩, see Eq. (103), besides our
usual time-evolution describing the hole dynamics in order to calculate the overlap in
Eq. (103). In order to extend the time window that we can use, we employed linear
prediction [106] and multiplied the correlation function with a Gaussian envelope
prior to Fourier transformation [107].
Note that the chosen value of t/J = 3, which is a typical value for high-Tc cuprates,
lies within the strong coupling regime, but outside of the region where the Nagaoka
e�ect is relevant [108]. Results for di�erent values of t/J , which are still positioned
in that regime, behave qualitatively similar, see App. A.
Beginning with some general observations, we �nd that at our lowest temperature
T = 0.25J , spectral functions are qualitatively identical to T = 0 results, see [54].
Therefore if we compare with features (i-v), see Sec. 3.2.1, we �nd that all properties
(i-v) are present for this low temperature. Further increasing temperature up to
T = 0.99J , the spectral function looks qualitatively similar to the result at T = 0,
but featuring some important di�erences, see Sec. 3.2.4, 3.2.5, 3.2.6. Above this
temperature, the spectrum begins to deform more and more into a single band
structure whose behavior is almost quadratic.
Next we look in more detail at some of the discussed features and examine whether
they persist upon increasing temperature:
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Figure 23: Peak locations of the two emerging branches in the spectral function, see
dashed lines in 21(g), present at T = 0.71J for t/J = 3, 5. The peak locations have
been extracted for the vertical cut (π, 0) −→ (π, π). To facilitate comparison between
the curves for di�erent t/J , the peak locations have been shifted by an o�set term
ωoffset[J ].

3.2.3 Temperature resistance of polarons

In order to test the validity of the polaron picture at �nite temperature, we study
the temperature dependence of polaron peaks, i.e. features (i),(iii): To this end, we
evaluate the spectral function S(k, ω) at a speci�c point in the BZ, see Fig. 22. We
can resolve both the ground and �rst excited state of the magnetic polaron up to
T ≈ 0.99J . This demonstrates that polarons are relatively stable with respect to
temperature and con�rms the validity of the polaron picture even at intermediate
temperature. Note that this is also consistent with the temperatures up to which
non-negligible AFM correlations are present, see Sec. 3.1.6 and App. B, which is
easy to understand due to the necessity of spin correlations for the existence of a
�nite string tension.

3.2.4 Dispersion relations of ground and �rst excited polaron states

Even though we have shown in Sec. 3.2.3 that polarons exist up to relatively high
temperatures, it is also of interest to what extend the respective dispersion relations
change with temperature, i.e. testing feature (iv): We observe that outside of the
area around (π, π), which shows some very interesting behavior at �nite tempera-
ture (see 3.2.5), the dispersion relations of the �rst excitation peak and the polaron
ground state remain qualitatively identical and basically unchanged with tempera-
ture as long as polarons are present, which includes temperatures up to T ≈ 0.99J .
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3.2.5 Suppression of the spectral weight around k = (π, π)

In analogy with the T = 0 results, we also observe a suppression of the spectral
weight around k = (π, π) for temperatures smaller T = 0.5J . This is accompanied
by a high energy feature above that energy gap, which is also observed for T = 0.
Above that temperature threshold, the ground state branch splits up into two new
branches around k = (π, π) and closes that excitation gap, see dashed lines in Fig.
21(g). At the same time, we observe that the high-energy feature loses prominence,
which suggests that these two phenomena are connected. It should be noted that
the splitting of the ground state branch is absent in the case of t/J = 1, see App. A.
In order to assess the nature of the two branches, we extracted the peak positions
for t/J = 3, 5 and plotted them as function of ω[J ], see Fig. 23. We observe that the
upper branches remain almost independent of t/J , whereas the lower branch shows
a signi�cant alteration with t/J . This indicates that the two emerging branches are
each either O(t) or O(J), suggesting that they indicate a spin-charge separation,
with the peak located at O(J) corresponding to a spinon and the one located at
O(t) to a chargon. Nevertheless, to con�rm that the two branches are indeed of
O(t) or O(J), further calculations at even higher values of t/J would be necessary,
which would entail a signi�cantly greater numerical e�ort.
The emergence of the two branches can be understood in the context of a mean-
�eld parton theory as follows: In the case of T = 0, the suppression of the spectral
weight at k = (π, π) was explained as a consequence of the Fermi-Dirac distribution
of spinons, which leads to a sharp step in the spinon quasiparticle weight ZMF

s (k) [54]

ZMF
s (k) =

{
2, |k| ≤ π/2

0, else
, (105)

which e�ectively suppresses the quasiparticle weight of the polaron in a region
around (π, π). At �nite temperature, this sharp step becomes smooth, resulting in
a decreasing spinon contribution to the quasiparticle weight as (π, π) is approached
and ultimately leading to the quasiparticle weight reaching zero. As the quasiparti-
cle weight approaches zero, the probability of a �nite string length is reduced, which
ultimately results in the decoupling of holon and spinon. This can be seen well at
T = 0.71[J ] in Fig. 21 when approaching (π, π) in the ground state branch of the
polaron. Note that this agrees with the decon�nement temperature T ≈ 0.65[Jz]
reported for the t-Jz model [109].

3.2.6 Analysis of behavior around k = (0, 0)

Previous results at T = 0 revealed in addition to the suppression of spectral weight
around (π, π), also a considerably weaker suppression of spectral weight around
(0, 0). The suppression is less severe compared to (π, π) and spectral weight starts
to increase already slightly above the ground state peak. A prominent high energy
feature is also missing compared to (π, π). This suggested that di�erent mechanisms
are responsible for the behavior at (π, π) and (0, 0).
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We �nd that this suppression around (0, 0) gets more pronounced with increasing
temperature, such that when the temperature is high enough that the gap at (π, π)
is closed, see Fig. 21(g) at T = 0.71J and Sec. 3.2.5, the ground state peak at (0, 0)
is almost fully suppressed and a wide energy window with very low spectral weight
has opened above the ground state energy. In contrast to the conclusion reached at
T = 0, the observed correlation between the behaviour at (0, 0) and (π, π) suggests
a connection between the two, which may be attributed to a common underlying
mechanism.

4 Conclusion

In this work we numerically studied the real-time dynamics and spectral features of
a single hole in the 2D t-J model at �nite temperature.
We observed that a three-stage process of hole motion is valid even at �nite tem-
perature. In the strong coupling limit, i.e. t/J ≫ 1, we observe that the speed of
hole spreading decreases with temperature at long times. This is in contrast to what
would be expected from the mean-�eld parton theory at T = 0 and suggests that
the long time spreading is not solely dependent on the spin coupling J .
Furthermore, our �ndings reveal that, at �nite temperature, the initial stage of hole
motion is solely dependent on the hopping t. Moreover, for all values of t/J an
increase in T results in the prolongation of the initial stage of hole motion.
Contrary to the mean-�eld parton theory at T = 0 one does not observe a hole
velocity with a proportionality only dependent on spin coupling J for times larger
1/J . This is the case already at temperatures T = 0.5J and above. This should
also be an incentive to further enhance the mean-�eld parton theory in order to
accurately capture the reported �nite temperature behaviour.
Furthermore, in the strong coupling regime there exists a remarkably good agreement
with subdi�usive behaviour at high temperatures going down to T = 2J . Since our
tensor networks calculations were performed on a �nite size cylinder it is challenging
to observe clean di�usion. Therefore it would be interesting to see whether this
behaviour can be con�rmed for even larger systems in the future.
We also reported the presence of magnetic polaron peaks up to T ≈ 0.99J . Note
that this is consistent with the temperature up to which non-vanishing local AFM
correlations are present at long times. This is an important observation, since it
implies that magnetic polarons are robust with respect to temperature. Further-
more, we �nd that their dispersion relations remain qualitatively unchanged with
temperature in the region outside (π, π) as long as magnetic polarons are present.
Finally, we observe nonzero spectral weight and even indications of spin-charge
separation around (π, π) for temperatures larger T = 0.5J . This is in contrast
to the T = 0 behaviour, which exhibited a strong suppression of spectral weight in
that region. Nevertheless, in order to con�rm the spin-charge separation and shed
more light on the nature of this phenomenon, further investigation is recommended.
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Another highly interesting direction for future research would be the investigation
of �nite doping, e.g. the case of two holes. At T = 0, both a highly mobile bound
pair with a dispersion proportional to t and a heavy pair, which moves due to spin
exchange processes, have been found [110]. It will be exciting to see whether similar
features can be con�rmed at �nite temperature and to increase our understanding
of the pairing mechanism in cuprates.
Our work provides guidance for ultracold atom experiments, which are capable of
studying individual magnetic polarons at �nite temperature in both real and fre-
quency space. It will therefore be fascinating to see whether a systematic experi-
mental study of the temperature dependence will yield comparable results.

66





Acknowledgements

This thesis would not have been possible without the support and encouragement
of a number of people. First of all, I would like to thank my supervisor Prof. Jan
von Delft for the opportunity to do research in his group. His passion for driving
physics forward creates a stimulating environment for doing physics and is always a
source of great inspiration.
I am grateful for the opportunity to collaborate with Prof. Annabelle Bordth and
Prof. Fabian Grusdt, who guided my research with their expertise and knowledge.
Without their contribution, my research would not have become what it is.
Special thanks to my main mentor Markus Scheb, who was always open for discus-
sions and tried to support me as much as possible. You have probably invested the
most time and energy of all the people listed here in trying to support me and I am
very grateful for that.
Thanks also to Andreas for providing a constant stream of ideas that kept my work
moving forward.
I would like to thank all the group members who supported me with helpful discus-
sions and made this year an enjoyable experience.
I would also like to thank Sebastian Paeckel for the helpful discussions that improved
my understanding of tensor networks.
Last but not least, I would like to thank my friends and family for their continuous
support and understanding.

68



C CONVERGENCE C.0

A Spectral function

In Figs. 26 and 27 we present additional results for the spectral function using
di�erent t/J .

A.1 Symmetrization

The vertical cuts in Fig. 21 were obtain via the use of symmetrization [54]. Prior to
Fourier transformation, the array of the time-dependent correlation data, which is
of size Lx × Ly, is reshaped into an array of size Ly × Lx. As a consequence of the
reshaping of the array, the momenta transform as

kx −→ ky (106)

ky −→ kx, (107)

e�ectively resulting in the Fourier transformation being unaltered by the reshaping.
It is important to note that this procedure yields an enhanced resolution in the ky
direction.

B Spin correlations in equilibrium

Given that spin correlations are required for the existence of a �nite string tension,
it is instructive to observe the presence of spin correlations in equilibrium. In Fig. 24
we present the evolution of nearest and next-nearest neighbor spin correlations in
equilibrium as a function of temperature.

C Convergence

The results presented in the main text have been subjected to meticulous analysis
with regard to convergence in a number of parameters, including the bond dimension
D, see Fig. 25.
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Figure 24: Sign-corrected spin correlations Cr(d) in equilibrium as a function of
temperature. The data presented herewith concerns the same t-j cylinder as that
discussed in the main text and shows data corresponding to the nearest and next-
nearest neighbor case.
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Figure 25: Convergence with bond dimension D in the Manhattan distance at T =
0.99J for t/J = 1, 3, 5.
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Figure 26: Spectral function calculated in the same manner as Fig. 21 in the main
text, but now for t/J = 5.
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Figure 27: Spectral function calculated in the same manner as Fig. 21 in the main
text, but now for t/J = 1.
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