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Chapter 1

Introduction and motivation

Effective models are often used when only a specific part, e.g. low-temperature physics, is
required so that one does not need the complicated bare model. So how to find an effective
model for a given bare model is an interesting topic in physics. Traditionally, by Schrieffer–
Wolff transformation (SWT) [1] one can derive a low-energy effective Hamiltonian from an
original Hamiltonian of a given system perturbatively, normally up to the second order.
This may lead to imperfectness of the effective Hamiltonian which could potentially cause
errors between bare and effective models.

Numerical renormalization group (NRG) firstly introduced by Kenneth Wilson [2] in
1975 is an important tool to solve many-body systems in which impurities play a role.
However, the NRG method was not popularly used for several reasons, especially due to
the limited computational ability. In the last and this decade, the resonance of NRG takes
place combining with the tensor networks techniques. Since energies can be resolved log-
arithmically in different scales, NRG applies a coarse-graining process and brings a high
resolution.

Recently, J. B. Rigo and A. K. Mitchell [3] proposed a model machine learning approach
to find effective models that can in principle be derived by a continuous renormalization
group (RG) transformation from the bare model. They begin with a known effective model
with unknown parameters and optimize the effective parameters by minimizing the cost
function based on the partition function.

With this combination of NRG and model machine learning, Rigo and Mitchell provide
two examples as proof of principle. The first bare model is single impurity Anderson model
(SIAM) whose effective model is single impurity Kondo model (SIKM) with an impurity of
spin-1/2. The second bare model is a two-impurity Anderson model for a double quantum
dot (2IAM for DQD) system and its effective model is a SIKM with an impurity of spin-1.
With the calculation of some physical properties of the effective models with optimized
parameters, they show in their paper that the resulting effective parameters indeed fit the
bare model perfectly for the low-temperature physics.
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In this thesis, some basic information of the Anderson model and Kondo model will
be introduced in Chapter 2. Then, a short discussion of NRG is presented in Chapter 3.
By NRG, the bath should be fistly discretized logarithmically, then tridiagnolized from a
star-geometry to a chain-geometry, and in the end diagonalized iteratively. In Chapter 4,
the general procedure of the model machine learning is provided, and the two examples in
Rigo and Mitchell’s paper will be reproduced. Also, another effective model of 2IAM for
DQD will be found so that more low-energy physics can be covered. This would be more
challenging because more than one effective parameter must be optimized. It will also be
shown that by the single-shell approximation the computational cost of the model machine
learning can be reduced remarkably. Chapter 5 will give a summary of all the findings,
problems, and a future outlook of the model machine learning.



Chapter 2

Anderson Model, Kondo Model and
Schrieffer–Wolff transformation

In this thesis, single impurity models and double quantum dot (DQD) systems are going
to be considered. As mentioned before, the Kondo model is an effective model of the An-
derson model to describe the same low-energy physics. In this chapter, the models in the
table below and the Schrieffer–Wolff transformation (SWT) will be introduced.

Bare model Effective model
Single impurity Anderson model (SIAM) Single impurity Kondo model (SIKM)

2IAM for DQD 2IKM for DQD

Table 2.1: Effective models of Anderson models.

In the following, the impurity of a spinful fermionic level and the bath consisting of
non-interacting spinful fermions are considered. The quantum impurity has only a small
number of degrees of freedom, so the impurity Hamiltonian can be diagonalized exactly.
The bath Hamiltonian can be diagonalized exactly as well since the bath is non-interacting.

2.1 Single Impurity Anderson Model (SIAM)

The Hamiltonian of a general quantum impurity model is given by

H = Himp[ds, d
†
s] +Hbath[cks, c

†
ks] +Hhyb[ds, d

†
s, cks, c

†
ks], (2.1)

where ds is the annihilation operator for the impurity Hamiltonian, cks is the annihilation
operator for the bath. Here, s =↑, ↓ stands for spin, and k is the momentum of bath
fermion. The bath Hamiltonian Hbath and the hybridization Hamiltonian Hhyb can be
expressed further as

Hbath =
∑
k

∑
s=↑,↓

εkc
†
kscks, (2.2)
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Hhyb =
∑
k

∑
s=↑,↓

νk(d
†
scks + c†ksds) (2.3)

with
εk: the energy of bath fermion of momentum k,
νk: the coupling amplitude between the impurity level and the bath level of momentum k.
The coupling between the impurity and the bath is characterized by the hybridization
function

∆(ω) =
∑
k

ν2
kδ(ω − εk), (2.4)

For simplicity, a box-shaped hybridization function is chosen:

∆(ω) =
Γ

π
Θ(D − |ω|). (2.5)

The impurity Hamiltonian of SIAM has the following form:

Himp = Und↑nd↓ + εd(nd↑ + nd↓), (2.6)

where nds = d†sds is a number operator at the impurity, U > 0 is the local Coulomb
interaction (plays a role only when double occupied), εd < 0 is the energy level, Γ is
hybridization strength and D is the half-bandwidth of the bath. Without loss of generality,
D = 1 is chosen for the whole thesis. Due to Eq.(2.6), the states and the corresponding
energies at impurity can be listed as follow:

State Local energy
|0〉 0
|↑〉 εd
|↓〉 εd
|↑↓〉 2εd + U

Table 2.2: States at local Hilbert space of impurity.

Here, the particle-hole symmetry is considered so that the energy levels of empty state and
double occupied state are the same.

0 = 2εd + U =⇒ εd = −U/2. (2.7)

For the purpose of this thesis, only the low-energy physics part is cared about, which means
only the singly occupied states are crucial, since their energy levels lay far below the empty
and double occupied states. Hence, the average local occupancy of local level is 〈nd〉 ≈ 1.
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2.2 Single Impurity Kondo Model (SIKM) and SWT

In 1964, Jun Kondo described the Kondo effect by using the third-order perturbation
theory that is an unusual low-temperature behavior for dilute magnetic alloys.[4] The
Kondo model, also the so-called s-d interaction model in Kondo’s original formulation, is
named after him as well.
SIKM is an effective model of SIAM which only describes the singly occupied states. The
general form of the Kondo model is

H = Hbath +Hexc. (2.8)

The bath Hamiltonian for SIKM is the same as for SIAM in Eq.(2.2), while

Hhyb = 2J ~Sd · ~S0. (2.9)

Here ~Sd is the local spin operator for the impurity and

~S0 =
∑
k,k′

∑
s,s′

c†ks
1

2
~σss′ck′s′ (2.10)

is the spin operator acting on the first bath site with the vector of spin-1/2 Pauli matrices
~σ = [σx, σy, σz]. J is the Kondo coupling strength.
By Schrieffer-Wolff transformation[1], the SIAM can be projected onto SIKM where the
empty state and the double occupied state are filtered out. The Kondo coupling strength
J can be expressed by parameters from SIAM. Considering the particle-hole symmetry,
one gets

JSW =
8ΓD

πU
. (2.11)

However, as one will see later in this thesis, SIKM with JSW is not the optimal parameter to
describe the original low-energy regime of SIAM. By the model machine learning approach,
one will find the optimal J .

2.3 Double Quantum Dot system (DQD)

In this section, the Hamiltonians of both 2IAM and 2IKM for DQD are going to be intro-
duced.
The only difference compared with single impurity models is that now two impurities in-
teract with the bath instead of one. So the bath Hamiltonian stays unchanged. The
Hamiltonian of 2IAM for DQD has the following general form

H = Hbath +Hdots +Hhyb, (2.12)

where Hbath is the same conduction band Hamiltonian as in (2.2) and Hdots =
∑

i=1,2Hdot,i,
Hhyb =

∑
i=1,2Hhyb,i. Corresponding Eq.(2.6) and Eq.(2.3),

Hdot,i = Und↑ind↓i + εd(nd↑i + nd↓i) (2.13)
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Hhyb,i =
∑
k

∑
s=↑,↓

νk(d
†
iscks + c†ksdis). (2.14)

In 2IKM for DQD, two quantum dots (two spin-1/2 as impurities) can also interact with
each other. Similarly, the Hamiltonian of 2IKM for DQD can be expressed as

H = Hbath +
∑
i=1,2

2Ji~Sd,i · ~S0 + Js~Sd,1 · ~Sd,2. (2.15)

Due to the symmetry, the two quantum dots should be aligned in the same direction with
the same strength. So one can set J1 = J2. Actually, the inter-dot spin-spin coupling is
a special case of Ruderman-Kittel-Kasuya-Yosida(RKKY) [5] interaction in bulk system
and Js can be approximately given by

JRKKY ∝
64

π2

Γ2

U
. (2.16)

Same as JSW, JRKKY can still be optimized by machine learning approaches. See Ref. 6
for further insight of DQD.



Chapter 3

Numerical Renormalization Group

The numerical Renormalization Group (NRG) method is a tool to solve quantum impurity
models non-perturbatively in which a quantum mechanical impurity with a small number
of degrees of freedom couples to a non-interacting bath of fermions or bosons. This method
was firstly invented by Kenneth Wilson in 1975 [2] as he was trying to solve the Kondo
model. In 1982, Wilson was awarded the Nobel Prize in Physics and it was part of his
Nobel Prize ciation for development for the RG concept. A detailed review of this method
can be found in [7]. The codes used in this thesis have been developed by Andreas Weich-
selbaum and Seung-Sup Lee. The lecture materials of tensor networks are also utilized. [8]

In Wilson’s scheme of NRG method, the band of a bath should be discretized loga-
rithmically to resolve the low-energy regime. By tridiagonalization, the Hamiltonian with
a star-geometry can be mapped on a tight-binding Wilson chain. Then this Hamiltonian
should be diagonalized iteratively to solve the Wilson chain numerically. In the following
sections, this process will be discussed in detail with the example of SIAM from Sec. 2.1.

3.1 Logarithmic discretization

Recall that the hybridization function is box-shaped which should be now discretized log-
arithmically. Choose a logarithmic discretization parameter Λ > 1 and separate the band
into the intervals I±n with n ∈ N:

I+n = [Λ−n,Λ−n+1] I−n = [−Λ−n+1,Λ−n]. (3.1)
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Figure 3.1: Discretized intervals of a box-shaped hybridization function, modified from
Fig. 1a) in Ref. 7

.

In each interval, there can be found a representative state |±n〉 with its energy ξ±n as
representative energy of this interval. Hence, the Hamiltonian of SIAM can be rewritten
approximately as

Hdisc = Himp[ds, d
†
s] +Hstar

bath[a±n,s, a
†
±n,s] +Hstar

hyb [ds, d
†
s, a±n,s, a

†
±n,s], (3.2)

Hstar
bath =

∑
±n

∑
s=↑,↓

ξ±na
†
±n,sa±n,s, (3.3)

Hstar
hyb =

∑
±n

∑
s=↑,↓

γ±n(d†sa±n,s + h.c.). (3.4)

Here, a±n,s is the annihilation operator[7] for the representative state |±n〉 in the interval

I±n. More precisely, a†+n,s can be regarded as a particle-like excitation while a†−n,s as a hole-
like excitation. The continuous hybridization function (2.4) becomes also discrete with the
new discrete coupling constant γ±n for the whole interval I±n:

∆(ω) ≈
∑
±n

γ2
±nδ(ω − γ±n). (3.5)

γ2
±n =

∫
I±n

dω∆(ω) (3.6)

Using the Campo-Oliveira scheme[9], the representative energies can be defined as

ξ±n =

∫
I±n

dω∆(ω)∫
I±n

dω
∆(ω)

ω

. (3.7)
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Figure 3.2: Representative states with energies ξ±n in I±n, modified from Fig. 1b) in Ref.
7

.

According to the box-shaped hybridization function (2.4), the integrals can be easily
calculated, which results

γ2
±n = Λ−n(1− Λ−1) ∼ Λ−n (3.8)

ξ±n = ±1

2
Λ−n(1 + Λ−1) ∼ Λ−n. (3.9)

One can see, both the coupling constants and the representative energies decrease expo-
nentially.

3.2 From star-geometry to Wilson chain

The discrete hybridization Hamiltonian Hstar
hyb (see Eq.(3.4)) means that each representative

state can interact with the impurity. This can be seen as a star-geometry.

Hstar = Hstar
hyb +Hstar

bath =



d a+1 . . . a+N/2 a−1 . . . a−N/2
d† 0 γ+1 . . . γ+N/2 γ−1 . . . γ−N/2
a†+1 γ+1 ξ+1

...
...

. . .

a†+N/2 γ+N/2 ξ+N/2

a†−1 γ−1 ξ−1
...

...
. . .

a†−N/2 γ−N/2 ξ−N/2


.

By tridiagonalization using Lanczos’s method[10], this star-geometry Hamiltonian can
be transformed into a semi-finite tight-binding Wilson chain Hamiltonian with
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Hchain = Hchain
bath +Hchain

hyb =



d f0 f1 f2 . . . fN
d† 0 timp
f †0 timp ε0 t0
f †1 t0 ε1 t1

f †2 t1 ε2
. . .

...
. . . . . .

f †N εN


.

Here, all the interactions with the impurity from the star-geometry are summarized into
the interaction between the impurity and the first bath site (with index 0):

timpf0s ≡
N/2∑
n=1

γ+na+n,s + γ−na−n,s (3.10)

with normalization constraint{
f †ls, fl′s′

}
= δll′δss′ for l = 0, ..., N. (3.11)

Indeed, due to the particle-hole symmetry, the on-site energies εl are all zeros, since they
are all non-interacting. Hence, the bath and hybridization Hamiltonian of the chain can
be rewritten as

Hchain
bath =

∑
l≥0

∑
s=↑,↓

tl(f
†
l,sfl+1,s + h.c.), (3.12)

Hchain
hyb =

∑
s

timp(d†sf0,s + h.c.). (3.13)

Note that the discretization and tridiagonalization act only on bath and hybridization
Hamiltonian, but do not act on impurity Hamiltonian. Adding the impurity at site l = −1,
the whole Wilson chain Hamiltonian can be expressed by

HWilson = Himp +Hchain. (3.14)

A remarkable result is that the coupling strength between nearest-neighbouring sites decay
exponentially along the chain

tl ∼ Λ−l/2. (3.15)

Figure 3.3: Semi-finite tight-binding Wilson chain with an impurity at site l = −1, modified
from Fig. 3 in Ref. 7
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Hence, all energy scales are equally important, though the contribution of perturbations
of later sites becomes weaker and weaker.

3.3 Iterative diagonalization

In the next step, the Wilson chain should be diagonalized iteratively and the energies can
be resolved in a coarse-graining way. The center scheme of the iterative diagonalization
in the renormalization group (RG) context is going to be discussed. In this and the
following sections, the matrix product state (MPS) method will be used. A mathematical
introduction in MPS [11] is recommended for further reading.
In the following, the RG steps are going to proceed on the Hamiltonian, then the rescaled
Hamiltonian will be iteratively diagonalized.

3.3.1 Renormalization group transformation

Recall the Wilson chain Hamiltonian with chain length N :

H l = Himp +
∑
l≥0

∑
s=↑,↓

tl(f
†
l,sfl+1,s + h.c.) +

∑
s

timp(d†sf0,s + h.c.) (3.16)

and that the coupling strength tl decays exponentially as shown in Eq.(3.15). Now define
the rescaled coupling strength

t̃l = Λl/2tl, (3.17)

so that all the rescaled coupling strengths t̃l are in the order of O(1). Therefore, lowest
energy splitting of H l is in O(Λ−(l−1)/2). To continue to resolve this lowest energy splitting,
rescale the Hamiltonians and shift the ground state energies equal to zeros:

H̃ l = Λ(l−1)/2(H l − El
g). (3.18)

This is the standard RG procedure: set the ground state energy to zero, then rescale the
whole Hamiltonian to O(1). Adding one more site, the rescaled Hamiltonian H̃ l+1 can be

expressed by H̃N :

H̃ l+1 = Λl/2(HN+1 − El+1
g )

= Λl/2(H l − El
g) + Λl/2tl

∑
s

(f †l,sfl+1,s + h.c.)− Λl/2(El+1
g − El

g)

= Λ1/2H̃ l +
∑
s

t̃l(f
†
l,sfl+1,s + h.c.)− δẼl+1.

(3.19)

This can be viewed as a so-called RG transformation T of H̃ l:

H̃ l+1 = T(H̃ l). (3.20)
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3.3.2 Iterative diagonalization

Finally, the scheme of iterative diagonalization is to be introduced. Assume that the chain
until site l is already diagonalized numerically with eigenstates |α〉l:

H̃ l |α〉l = Ẽl
α |α〉l . (3.21)

Here H̃ l and Ẽl
α are the rescaled Hamiltonian and eigenenergy. According to Eq.(3.20),

multiply a factor Λ1/2 to H̃ l, then add the next site |σl+1〉 with bond dimension d and get
the enlarged Hilbert space H l+1 = span

{
|α〉 ⊗ |σl+1〉

}
. Now, our new Hamiltonian looks

almost the same as Eq.(3.20)) until the ground state energy shift.

˜̃
H
l+1

= Λ1/2H̃ l +
∑
s

t̃l(f
†
l,sfl+1,s + h.c.) + Λl/2El

g = H̃ l+1 + Λl/2El+1
g (3.22)

After diagonalizing this new rescaled Hamiltonian H̃ l+1 (s. Eq.(3.20)), the new eigenstate
|β〉 can be written as a linear combination of this basis:

|β〉l+1 =
∑
s,σl+1

|σl+1〉 |α〉lA
α,σl+1

β (3.23)

Figure 3.4: One site of the chain is added in each iteration, modified from Fig. 2 in Ref. 7

Then the ground state energy of this iteration should be shifted to zero. Obviously,
the dimension of the Hilbert space becomes larger every time when one more site is added
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to the Wilson chain. Due to the limited computational ability, in each iteration only the
lowest Nkeep states are kept, all others should be discarded:

|β〉l+1 =

{
|β〉Dl+1 , lowest Nkeep states

|β〉Kl+1 , otherwise
(3.24)

A short summary of the iteration diagonalization scheme is shown below (also see fig.(3.5)):

(a) Use the kept rescaled eigenenergies Ẽl from last iteration and make sure that the
ground state energy is zero.

(b) Scale the eigenergies Ẽl by a factor Λ1/2.

(c) Enlarge the Hilbert space by adding a new site and diagonalize the new Hamiltonian.

(d) Shift the new ground state energy to zero and keep only the lowest Nkeep states.
Then repeat this procedure starting from step (a).

Figure 3.5: Modified from Fig. 3 of Ref. 7: Procedure of iterative diagonalization.
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One might ask why the standard diagonalization (not iteratively) would not work here. The
reason is that the dimension of the whole Wilson chain scales with the length of the chain,
namely proportional to dN . Hence, the Hamiltonian is too large to diagonalize at once.
By the iterative diagonalization with truncation, the number of states are manageable.
There are some more advantages of this method. Thank the logarithmic discretization,
information from all energy scales is obtained. Also, the small energies can be resolved
very well.
However, there is also a problem with this method: since all the discarded states are
thrown away in each iteration, the kept states do not build a complete basis, which causes
the failure when the spectral function is calculated using Lehmann’s representation. Hence,
it would be helpful, if there is a scheme to get a complete basis set. Indeed, this will be
introduced in the next section.

3.4 Anders-Schiller basis and full density matrix (fdm)

In 2005, Frithjof Anders and Avraham Schiller introduced a brilliant idea [12][13] to build
a complete basis set from the discarded states which were thrown away by Wilson in the
iterative diagonalization. With this approach, one can construct the full density matrix.
More importantly for this thesis, one can construct the partition function of the system
under a specific temperature.
Define the environmental states |el〉 at the Nth. iteration of NRG:

|el〉 =
N⊗

n=l+1

|σn〉 , (3.25)

which can be combined with the shell state |α〉Xl with X ∈ {K,D} onto the Hilbert space
of the whole Wilson chain:

|α, e〉Xl ≡ |el〉 |α〉
X
l . (3.26)

In the references mentioned above, it is proved that

B = {|α, e〉Dl } (3.27)

forms a complete basis set, known as ‘Anders-Schiller (AS) basis’. In this thesis, the proof
is spared. By construction, the states |α, e〉Dl are orthogonal to each other since they are in
different iterations. These basis states are approximately eigenstates of the Hamiltonian
of the whole chain:

HN |α, e〉l ≈ H l |α, e〉l = El
α |α, e〉l . (3.28)

Here the ‘NRG approximation’ is made: when acting on states from shell l, HN is approx-
imated by H l. Neglecting the later sites is acceptable since they describe finer structures
which are small contributions compared with shell l. With this approach, the full density
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matrix can be constructed by the basis states and their approximated eigenenergies in each
shell:

ρ[l] ≡
exp
(
−βHN

)
Z

≈
∑
l

∑
αe

|α, e〉Dl
exp
(
−βEl

α

)
Z

D
l 〈α, e| . (3.29)

For the purpose of this thesis, it is important to know how the partition function Z
results from this construction. The partition function is crucial for the model machine
learning approach since the partition functions of bare and effective models are going to
be matched later and therefore the cost function depends on the partition function Z. The
density matrix ρ, as shown in Eq.(3.29), can be simplified to a reduced density matrix ρ̄
where the environmental states are contracted. Since for shell l nothing happens yet in
the later shell, one can trace out all the later shells to define the reduced density matrix
for shell l:

ρ̄X
′

[l]X = Tr
{
ρX
′

[l]X

}
shell>l

. (3.30)

Here ρX
′

[l]X = PX′

l ρPX
l is sector projection of ρ for shell l. Hence, Eq.(3.29) can be rewritten

as
ρ[l] ≈

∑
l

ωnρ
D
[l]D, (3.31)

where Z is the partition function, ω ≡ dN−lZD
l /Z and ZD

l ≡
∑D

α exp
(
−βEl

α

)
. See [14] for

more details about the full density matrix method in NRG (fmdNRG).



Chapter 4

Machine learning effective models for
quantum impurity systems

In this chapter, the method of model machine learning in Ref. 3 is going to be implemented.
A machine learning approach that optimizes an effective impurity model based on partition
functions will be introduced. The effective impurity model will be explored to describe the
low-energy physics of the bare model. As proof of principle, SIAM and 2IAM for DQD
will play the role of bare models and the effective models of them will be found.

4.1 Cost function and gradient descent

In this section, two fundamental concepts in machine learning will be discussed, namely the
cost function and gradient descent[15]. These are crucial for the model machine learning
approach in this thesis.

4.1.1 Cost function

A cost function (also called a loss function) is used to learn parameters that explain the
data well and defines how costly the mistakes are[15]. What machine learning steadily does
after choosing the proper cost function, is trying to minimize the cost function. Ideally, a
cost function should be a convex function to make sure that a local minimum of the cost
function is also the only global minimum. If a cost function is not convex, then one has to
pay attention to check whether this local minimum is the global minimum, which means it
is smaller than all other local minima. An RG-derivable effective model has a Hamiltonian
of the following form as shown in Ref. 3:

Heff =
∑
i

θihi, (4.1)

where θi’s are the effective parameters and hi’s are the effective operators. In this thesis,
the effective operators are taken as granted and the job is to find the optimal effective
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parameter by tunning them iteratively. As shown in Ref. 3, the cost function is chosen to
be dependent on the partition functions of the bare and effective models:

LZ = [log(Zeff)− log(Zbare))]
2. (4.2)

The free energy F is convex and defined by

F = −kT log(Z), (4.3)

which ensures the cost function is always convex in each effective parameter effectively.
Thus, this cost function has only one local minimum.

4.1.2 Gradient descent

The gradient of a multi-variable function points to the direction of the steepest ascent
where the gradient is evaluated. So if this point goes in the opposite direction of the
gradient (adding a minus sign in front of the gradient) for the same step size (also called
learning step) α > 0, the cost function will decrease. Iteratively applying this procedure,
the minimal value of the cost function will be achieved. The gradient of the cost function
in Eq.4.2 can be calculated as in Ref.[3]:

∂LZ
∂θi

= 2

[
log(Zeff)− log(Zbare))

]
·
∂Zeff

∂θi

Zeff

= 2 ·
[

log(Zeff)− log(Zbare))

]
· (−β〈hi〉), (4.4)

where 〈hi〉 is the expectation value of hi in eigenbasis of the effective Hamiltonian. Note
that the proportionality constant is not important for the gradient descent, since it can
be absorbed into the learning step. Hence, the new parameter after each gradient descent
iteration is

θi,new = θi − α̃ ·
∂LZ
∂θi

= θi + α ·
[

log(Zeff)− log(Zbare)

]
· 〈hi〉
T
. (4.5)

4.2 General procedure

In this section, a general procedure to learn an effective model for a quantum impurity
system will be given. In specific examples introduced later, the procedure may differ a
little, but the main steps do hold.
First, one has to generate the bare model, iteratively diagonalize it via NRG and calculate
its partition function for a proper low temperature1 by NRG as shown in Sec. 3.4. Then
beginning with some random numbers for the effective parameters, tune them by apply-
ing the gradient descent (see Eq.(4.5)) iteratively until the cost function arrives its only
minimum. Alternatively, one can try to get ‘approximately optimal’ effective parameters
and start with them, then proceed with the gradient descent. Actually, this alternative is

1How to choose this low temperature depends on specific problems which are introduced in Sec. 4.3.3
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better than the previous one. Since the starting parameters are already somehow physi-
cally meaningful, the chance to get nonsensical results is much lower. Also, the speed of
convergence to the minimum is normally faster. Hence, one should at first try to use this
alternative. If one cannot find such ‘approximately optimal’ parameters, then just use the
random numbers. After the optimal parameters are achieved, it is meaningful to calculate
some physical properties of both effective and bare models and compare them. The effec-
tive model should correspond to the low-energy part of the bare model. In the end, it is
worth thinking about whether there is any improvement for the algorithm or some other
better ideas for some specific problem. To summarize, the steps above are listed below:

1. Generate the bare model and calculate its partition function at a proper low temper-
ature.

2. Begin with physically meaningful parameters for the effective model. Or just begin
with some random parameters.

3. Repeat gradient descent to find the optimal parameters by using Eq. (4.5).

4. Compare the physical properties of bare and effective model.

5. Improvement and discussion.

4.3 Effective model of SIAM

In this section, as proof of principle, the effective model of a given SIAM will be found.

4.3.1 Procedure

Go through the steps mentioned in the last section (see Sec. 4.2):

1. In Chapter 3, it was in detail introduced how to solve a SIAM by logarithmic dis-
cretization and map it from star-geometry to Wilson chain which should be iteratively
diagonalized using NRG. With the help of the Ander-Schiller basis as shown in Sec.
3.4, the partition function can also be calculated by using the fdmNRG approach.
As mentioned before, a proper low temperature should be chosen. Here, we choose
the Kondo temperature, since at the Kondo temperature the crossover between the
strong-coupling and local-moment regimes takes place. By Bethe ansatz, the Kondo
temperature can be calculated as in Ref. 16

T = TK =

√
UΓ

2
exp

(
−πU

8Γ
+
πΓ

2U

)
(4.6)

2. It is known that the SIKM is the effective model of SIAM if both models share the
same bath as shown in Ref. 3

Heff =
∑
i

θihi = 2J ~Sd · ~S0 (4.7)
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with i = 1, θi = 2J and hi = ~Sd · ~S0. Using Schrieffer–Wolff transformation[1]
(see Section 2.2) the SIAM can be approximately mapped to a Kondo model at low

temperature with JSW =
8ΓD

πU
that is a good starting point for J .

3. In SIKM, the expectation value of effective operator can be calculated with the help
of the reduced density matrix within the Hilbert space of the impurity ρimp, where
the bath sites are all traced out. As shown in Ref. 3,

〈hi〉 = 〈~Sd · ~S0〉 = Tr

(
ρimp(~Sd · ~S0)

)
. (4.8)

Rewrite Eq.(4.5)

Jn+1 = Jn−α ·
∂LZ
∂Jn

= Jn+α ·
[

log(ZSIKM|J=Jn)− log(ZSIAM))

]
· 〈
~Sd · ~S0〉|J=Jn

T
(4.9)

and repeat the gradient descent step until the minimum of the cost function (Eq.
4.2) is reached2.

4. Calculate the impurity entropy of SIAM and SIKM as a function of temperature
and see whether the low-energy part matches, which means the strong-coupling and
local-moment regimes should be the same.

4.3.2 Results

In the following, two examples of SIAM will be shown as results.

Example 1

Example 1 is a reproduction of an example in Ref. 3. Fix some parameters for the
SIAM: local Coulomb interaction U = 0.3, the half-bandwidth of the bath D = 1, the
coupling strength of the box-shaped hybridization function Γ = π · 3× 10−3, discretization
parameter Λ = 2.5, Wilson chain length N = 50, number of states to be kept Nkeep = 300
and εd = −U/2 due to particle-hole symmetry.
One can see in Fig.4.1(a) below that the cost function decreases with the iteration step and
arrives at zero in the end while the cost gradient also becomes zero. To extend the range
of J , cost functions and cost gradients of some extra points are also calculated and plotted
to visualize the minimum as shown in Fig.4.1(b). The cost gradient perfectly crosses the
zero-value at JML, since the cost gradient equal to zero corresponds to the minimum of the
cost function.

2α should be positive. However, because of an unknown reason, α used in this thesis is always negative.
Probably there is a mistake in the derivative, but we did not find it.
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Figure 4.1: Model machine learning process of SIKM from the SIAM with U = 0.3 and
Γ = π · 3× 10−3. The effective parameter results as JML = 0.0667. (a) Cost function and
cost gradient during the learning process. Both of them go towards zero. (b) Cost function
and cost gradient as functions of J . The minimum of the cost function corresponds to
the cost gradient of zero. (c) The partition functions of SIAM and SIKM with optimal
J = JML as well as the relative difference of partition functions. (d) Impurity contribution
to the entropy of SIAM and SIKM with JML as well as with JSW, modified from Fig. 2a)
in Ref. 3. SIKM with JML overlaps perfectly on SIAM for the first two regimes from the
left.

The partition functions of SIAM and SIKM with JML match for low temperature as
shown in Fig.4.1(c) very well. There is no difference between them around TML and first
from about T = 10−7 the difference is not zero. Nevertheless, the relative difference is still
very small and increases with the temperature. In Fig. 4.1(d) the impurity contribution to
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the entropy is plotted. One can see SIKM with JSW has approximately the same low-energy
physics while the impurity entropy is perfectly reproduced by JML.

Example 2

Figure 4.2: Model machine learning process of SIKM from the SIAM with U = 0.004 and
Γ = π ·8× 10−5. The effective parameter results as JML = 0.787. (a) Cost function and cost
gradient during the learning process. Both of them go towards zero. (b) Cost function and
cost gradient dependent on J with some extra values of J . The minimum of J corresponds
the cost gradient of zero. (c) The partition functions of SIAM and SIKM with optimal
J = JML. They are almost the same for low temperatures. (d) Impurity contribution to
the entropy of SIAM and SIKM with JML as well as with JSW. SIKM with JML matches
perfectly on SIAM for the first two regimes from left.
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Using another set of parameters, the algorithm works as well. Choose U = 0.004,Γ =
π · 8× 10−5, all other parameters stay the same as in Example 1. One gets results shown
in Fig.4.2 above. They are similar to the results in Example 1.

Spectral functions

Figure 4.3: Spectral function of the annihilation operator f1,↑ for a spin-up electron at the
first bath site.

Figure 4.4: Relative error of spectral functions of the annihilation operator f1,↑ for spin-up
electron at the first bath site .
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Not only the static properties, but also dynamics properties can be optimized perfectly.
In Fig. 4.3 above, the spectral functions of the annihilation operator f1,↑ for a spin-up
electron at the first bath site is plotted. The only difference is there is an anti-resonance

for SIAM at about ω =
U

2
. The relative error δAf1↑(ω > 0)/Af1↑,SIAM(ω > 0) is shown in

Fig. 4.4.

4.3.3 Temperature for calculating partitions function

In the following, the dependence of the machine learning temperature is going to be dis-
cussed about.
Since the low-temperature physics must be optimized, the machine learning temperature
should be small, e.g. T ≤ TK. Such choices are valid because of the physical meaning
of Kondo temperature TK: the crossover takes place around Kondo temperature. So the
question now is how large temperature T can be chosen so that the temperature is still
small enough to describe the low-temperature physics. In Fig. 4.5, the temperature de-
pendence of J for two SIAM with the same Kondo temperature TK is shown. One can see,
even when the temperature is a little bit higher than Kondo temperature TK, J can still be
optimized correctly. Depending on different SIAM, the tolerance is different. So for safety,
one can always choose T smaller than or equal to TK.

Figure 4.5: Temperature dependence of J obtained by model ML for two SIAM with the
same TK but varying U, V , modified from Fig. 3c) in Ref. 3. Even when the temperature
a little bit higher than Kondo temperature TK, J can still be optimized correctly.
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4.4 Effective model of 2IAM for DQD

Using the idea above, one can also find effective models of 2IAM for DQD. Now there are
two options for us to set the Hamiltonian of effective model Heff . The first option is to
choose a SIKM with spin-1. Alternatively and also more complicatedly, one can choose a
2IKM for DQD as an effective model. This makes sense since a 2IKM for DQD can be
mapped to a SIKM with spin-1. It would be more challenging to deal with a 2IKM for
DQD as an effective model because there are then two parameters to optimize, which could
lead to several local minimums. But first of all, the first option is considered that is an
example in Ref. 3.

4.4.1 SIKM with spin-1 as an effective model

A SIKM with spin-1 is similar to the normal SIKM with spin-1/2. The only difference
is that spin-1 instead of spin-1/2 Pauli-matrices should be used (s. Sec. 2.2). Hence,
the procedure for SIKM (s. Sec. 4.3.1) can be recycled and the following results can be
achieved: with the increasing iteration steps, both cost function and cost gradient go to
zero as shown in Fig. 4.6(a). After adding some extra values of J and the corresponding
cost functions and cost gradients, one can see that at J = JML the cost function is indeed
the minimum and the cost gradient is zero in Fig. 4.6(b).

One can see, the partition function can be fitted until T in O(10−3) and the first
crossover from left in Fig.4.6(d) can be covered perfectly. Depending on the demand or
the purpose, if only the most lowest-energy physics is required, then SIKM with spin-1
with JML is a proper effective model of 2IAM for DQD. However, if one is more ambitious
and wants to get a richer structure of low-temperature physics (e.g. covering the second
crossover from left as well), a 2IKM for DQD can be applied as an effective model for a
larger range of temperatures.

4.4.2 2IKM for DQD as an effective model

With even more details, one can use 2IKM for DQD as an effective model. Recall the
Hamiltonian of a 2IKM for DQD (Eq.(2.15)):

H = Hbath + 2J(~Sd,1 · ~S0 + ~Sd,2 · ~S0) + Js~Sd,1 · ~Sd,2. (4.10)

Now there are two parameters to optimize. Directly applying exactly the same procedure
for SIAM may not lead to the desired result. Nevertheless, go through the first three steps
of general procedure quickly and see what kind of changes can be made for the current
situation:

1. 2IAM for DQD can be easily generated. But for which temperature the partition
function should be calculated is not clear. As known from Sec. 4.3.3, choosing
temperatures lower than Kondo temperature TK can lead to the correct parameter
for SIKM. Choosing a much higher temperature than TK , the low-energy physics
cannot be reproduced properly. So for now, it makes sense to choose T around TK .
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Figure 4.6: Model machine learning process of spin-1 SIKM from 2IAM for DQD with
U = 0.5 and Γ = 0.0196. The effective parameter results as JML = 0.827. (a) Cost function
and cost gradient during the learning process. Both of them go towards zero. (b) Cost
function and cost gradient dependent on J with some extra values of J . The minimum of J
corresponds to the cost gradient of zero. (c) The partition functions of 2IAM for DQD and
spin-1 SIKM with optimal J = JML and their relative differences. The relative differences
are zero around TML and increase with the temperature. (d) Impurity contribution to the
entropy of SIAM and SIKM with JML as well as with JSW, modified from Fig. 4 in Ref. 3.
Spin-1 SIKM with JML matches perfectly on 2IAM for DQD for the first two regimes from
left.
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2. As starting parameters one can choose J = JSW and Js = JRKKY as shown in
Eq.(2.16).

3. Now the expectation values of the effective operators can be calculated using the
same method as Eq.(4.8):

〈h1〉 = 〈~Sd,1 · ~S0 + ~Sd,2 · ~S0〉 = Tr

(
ρimp(~Sd,1 · ~S0 + ~Sd,2 · ~S0)

)
, (4.11)

〈h2〉 = 〈~Sd,1 · ~Sd,2〉 = Tr

(
ρimp(~Sd,1 · ~Sd,2)

)
. (4.12)

Hence, the parameters J and Js can be updated through

Jn+1 = Jn−α·
∂LZ
∂Jn

= Jn+α·
[

log(ZDQD,Kondo|J=Jn)−log(ZDQD,AIM))

]
· 〈h1〉
T

, (4.13)

Js,n+1 = Js,n−β ·
∂LZ
∂Js,n

= Js,n+β ·
[

log
(
ZDQD,Kondo|Js=Js,n

)
− log(ZDQD,AIM))

]
· 〈h2〉
T

.

(4.14)
Here, another learning step parameter β can be defined in dependence on α, which
can speed up the optimization with a proper choice of β, since J and Js are in
different scales possibly. Choose β = α and β = α · JRKKY/JSW separately and get
two different results as shown in Fig. 4.7.

Figure 4.7: Model machine learning results of 2IKM for DQD from 2IAM for DQD with

U = 0.5 and Γ = 0.0196. (a) Impurity entropy with modified β = α · JRKKY

JSW

, resulting J =

0.0827, Js = 0.0037. (b)Impurity entropy with β = α, resulting J = 0.0827, Js = −0.0199.
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Actually, as mentioned above, different choices of β only change the speed of convergence
to the optimal values. However, two different sets of parameters have been resulted. The
reason for this unusual outcome is that there is more than one local minimum for the cost
function because the partition function is only a scalar (namely there is only one feature
for optimization), which should control two parameters J and Js. Nevertheless, almost
the same J is achieved, since the partition function is calculated at a temperature under
TK. So the partition function encodes mainly the feature of the most low-energy part. By
using this property, one can optimize the parameters in such a fashion: fix Js = JRKKY in
the very beginning and optimize J . With optimized J = JML one can then optimize Js by
choosing another higher temperature that corresponds to the second crossover (from the
left) of the impurity entropy. How to choose this temperature will be talked about in the
next section. Assuming that this temperature is known as TML,2nd. Then β can also scale

with the temperature, so set β = α · JRKKY

JSW

· TML,2nd

TML,1st

. With these constructions, one gets

an optimized J after 43 iteration steps and then changes the machine learning temperature
as shown in Fig. 4.8. The partition functions can be fitted very well, as shown in Fig.
4.9. The relative differences of partition functions are zero around TML,1st and TML,2nd, and
increase with the temperature. 3

Figure 4.8: Model machine learning process of 2IKM for DQD from 2IAM for DQD with
U = 0.5 and Γ = 0.0196. Firstly optimize J , then Js. The ML temperature is changed at
the 43th iteration step. (a) Cost function and effective parameters, (b) cost gradient with
increasing iteration steps.

3The relative differences of the partition functions are zero at TML,2nd! The temperature next to TML,2nd

is larger than TML,2nd, but not the same.
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Figure 4.9: Model machine learning results of 2IKM for DQD from DOD for AIM with
U = 0.5 and Γ = 0.0196. Firstly optimize J , then Js. (a) Partition function of 2IAM for
DQD and 2IKM for DQD with JML = 0.0827 and Js,ML = 0.0089 as well as the relative
difference of the partition functions. Around TML,1st and TML,2nd the relative difference is
zero.(b) Impurity contribution to the entropy of 2IAM for DQD and 2IKM for DQD with
optimized parameters.

4.4.3 Choosing the ML temperature for the next regime

Now let’s go back to the question of how to choose the machine learning temperature to
optimize the second crossover (second regime).
After optimizing J , the very low-temperature part has been already optimized. So differ-
ences of the partition functions between bare and effective models should be almost zero.
To cancel the exponential influence resulting from the degeneracy, one can calculate the
logarithmic differences (see Fig. (4.10)) of partition functions between AIM and Kondo
model:

δ = log(Zbare)− log
(
Z̃eff |J=JML

)
, (4.15)

where Z̃eff is the partition function of the effective model with already optimized JML. One
can choose the temperature for the second ML temperature TML,2nd at which δ changes
most rapidly, namely, choose the local extremum 4 of ∂δ

∂T
(see Fig.(4.10)). This temperature

lies in the beginning of the second regime.

4Actually, one finds the maximum of the absolute value of the derivative. In this case, it is a maximum.
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Figure 4.10: Logarithmic differences of partition functions between AIM and Kondo model
and its derivative over temperature. The part with TML,1st is not shown, since that part is
not the interest for now.

With TML,2nd one can reproduce the second crossover of 2IAM for DQD from 2IKM
for DQD. The scheme described above can actually be generalized if there are more than
two regimes to be optimized. One just needs to calculate the logarithmic differences again
after the optimization of the second regime, find the local maximal derivative and repeat
this procedure.

4.5 Adopting Wilson’s truncation scheme in Model

ML

Until now, the full density matrix method is used to calculate the partition functions and
expectation values with NRG, which works very well but has a high computational cost,
since the Wilson chain Hamiltonian with chain length N has to be fully iteratively diagonal-
ized. One can actually adopt Wilson’s truncation scheme, use single-shell approximation
and speed up the model machine learning remarkably.

Explanation

Choosing 2IAM for DQD as a bare model, there are two machine learning temperatures
TML,1st and TML,2nd for calculating the partition functions to optimize the effective parame-
ters. So by coarse-graining in Wilson’s scheme, one only needs the first lT sites to describe
the physics at temperature T with El

α ∝ T and then compare the partition functions in
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shell lT :
Z l =

∑
α

e−βE
l
α (4.16)

with eigenenergies El
α in shell l. Hence, one only needs to iteratively diagonalize until

site LT and the rest of the sites plays a role in perturbations that are small enough to be
ignored. This can be done for both TML,1st and TML,2nd. For TML,1st, lML,1st = 26 and for
TML,2nd,lML,2nd = 15 for the same example in Sec. (4.4). Indeed, one gets almost exactly
the same results. The relative difference of J is 0.0049% and the relative difference of Js is
0.00045%, which hardly changes the physical features of effective models. In this approach,
the computational cost is reduced from O(NN

keep) to O(N l
keep) and in the example above is

from O(N50
keep) to O(N26

keep) for the optimization of J and from O(N50
keep) to O(N15

keep) for
the optimization of Js.

An interesting plot

From Sec. 4.3.3 one knows there is a range of tolerance of temperatures that can be
chosen to calculate the partition functions. Hence, one can actually choose different shells
corresponding to the temperatures. Observing a SIAM and its effective model and varying
the shells for the single-shell approximation, one gets an oscillation for temperatures higher
than Kondo temperature (s. Fig. 4.11). The reason for this ‘even-odd oscillation’ is unclear,
but it is still interesting to show this plot.
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Figure 4.11: Temperature dependence for calculating the partitions functions with single-
shell approximations. The same J is resulting in around Kondo temperature. For even
higher temperatures, there exists an ‘even-odd oscillation’.



Chapter 5

Conclusion and outlook

In this thesis, the effective models of SIAM and 2IAM for DQD are reproduced as in
Rigo and Mitchell’s paper. To check the result, models with different parameters are also
shown. The machine learning process, for example, the cost function and cost gradient,
are plotted to verify that the cost function with the optimized effective parameters is
indeed the minimum of all. By the impurity contribution of entropy, one can see that
the statics low-energy physical properties of bare models are indeed reproduced by the
effective model. However, the spectral functions of the annihilation operator for the spin-
up electron at the first bath sites are not always the same. For the single impurity model,
the spectral functions of bare and effective models are almost exactly the same. Also, the
temperature dependence of effective parameter J is discussed. For SIAM, one can always
choose the temperature under or a little bit higher than Kondo temperature to calculate
the partition functions for the cost function. For the effective models with more than one
parameter, e.g. 2IKM for DQD, one must optimize the effective parameters separately,
from very-low temperature to low temperature. Every time when one parameter has been
optimized for one regime, one can choose the locally largest absolute value of derivative
for the logarithmic difference of the partition functions. This is indeed a variant of the
utilized cost function and can be calculated numerically. In the end, by adopting Wilson’s
truncation scheme and using the single-shell approximation, one can get almost the same
effective parameters as before up to a O(10−5) accuracy, while the computational cost
is reduced exponentially. There is still an unsolved fundamental problem in this thesis:
the learning step α should be positive. As mentioned before, a negative α is used for an
unknown reason.
To conclude, the model machine learning method reproduced from Ref. 3 and further
developed in this thesis works perfectly for the physical properties of SIAM and 2IAM for
DQD, which is based on the assumption that the effective operators are already known and
one only needs to optimize the effective parameters. However, if the effective parameters
are also unknown, then one cannot apply the method in this thesis. Also, the partition
function is only a number. Thus, two unrelated, arbitrary partition functions are the same
by accident. To avoid this, one could add more constraints to the cost function.
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Selbständigkeitserklärung

Ich versichere hiermit, die vorliegende Arbeit mit dem Titel

Maschinelles Lernen Schrieffer–Wolff Transformation und ihre Anwendung
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