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Zusammenfassung (Summary in German)

Seit ihrer Entdeckung im Jahre 1996, hat die 0.7-Anomalie in Quantenpunktkontakten (QP-
Cs) große experimentelle und theoretische Aufmerksamkeit erregt. Dabei hat sich heraus
gestellt, dass die 0.7-Anomalie, neben ihrer zunächst entdeckten Ausprägung als schulter-
ähnliche Struktur im Leitwert bei endlicher Temperatur, praktisch auch in allen anderen
QPC Observablen, wie z.B. Thermopower, Schrottrauschen, etc. zu beobachten ist. Die damit
assozierten anomalen Effekte werden mittlerweile zusammengefasst als 0.7-Physik bezeichnet.
Trotz ihrer umfangreichen experimentellen Untersuchung steht die Ursache der 0.7-Anomalie
nach wie vor zur Diskussion. Es existieren zahlreiche theoretische Erklärungsversuche, denen
unterschiedliche Mechanismen zu Grunde liegen und die sich zum Teil auf unterschiedliche
Aspekte der 0.7-Physik konzentrieren. In 2013 hat die von Delft Gruppe die sog. van-Hove
ridge Erklärung vorgestellt. Diese erlaubt eine intuitive Erklärung der 0.7-Physik, basierend
auf den Eigenschaften der nichtwechselwirkenden lokalen Zustandsdichte (LDOS), welche
durch die Geometrie des QPCs festgelegt ist. Zur Untermauerung und dem weiteren Ausbau
dieser Idee wurde die funktionale Renormalisierungsgruppe (fRG) verwendet, um zahlreiche
QPC Observablen zu berechnen. Diesen Berechnungen wurde ein mikroskopisches Model,
bestehend aus einem Hüpfterm, einer QPC Barriere und einem Onsite Wechselwirkungsterm
zu Grunde gelegt. Wichtige 0.7-Aspekte, wie z.B. die asymmetrische Magnetfeldabhängigkeit
des Leitwerts, wurden mittels dieser Berechnungen untersucht. Nichtsdestotrotz konnte das
Markenzeichen der 0.7-Anomalie, nämlich eine ausgeprägte Schulter im Leitwert bei endlicher
Temperatur, bislang nicht reproduziert werden.

In dieser Arbeit untersuchen wir QPC Modelle, die anstelle reiner Onsite Wechselwirkun-
gen auch Wechselwirkungen mit endlicher Reichweite enthalten. Dies ist besonders interessant,
da es die Zahl der möglichen Wechselwirkungsprozesse drastisch erhöht, und daher womöglich
das fehlende Bindeglied dastellt, um die charakteristische 0.7-Schulter im Leitwert aus einem
mikroskopischen Model zu erhalten. Neben der unmittelbaren Anwendung im Rahmen von
Standard QPCs, stellt die Berücksichtigung von Wechselwirkungen mit endlicher Reichweite
auch einen wichtigen Schritt zur Behandlung von längeren QPCs und dem Übergang zu
Quantendrähten dar. Für diese ausgedehnteren Systeme ist die endliche Reichweite der Wech-
selwirkung, wegen der reduzierten Abschirmung in Bereichen von niedriger Elektrondichte,
besonders relevant.

Zur Untersuchung endlicher Wechselwirkungsreichweiten erweitern wir die existierende
fRG Approximationsmethode der gekoppelte Leiter (CLA) durch eine Ausweitung des räum-
lichen Feedbacks zwischen unterschiedlichen fRG Kanälen. In einer Reihe von Publikationen
wenden wir diese neue, erweiterte CLA Methode (eCLA) in Implementationen von wachsender
Komplexität auf QPC- und Quantenpunktmodelle (QD Modelle) an. Den Höhepunkt dieser
Arbeiten bildet die semi-dynamische Behandlung von Wechselwirkungen endlicher Reichweite
in QPCs. Trotz Problemen unserer Methode bezüglich der Verletzung von Ward Identitäten
haben wir vielversprechende Anzeichen dafür gefunden, dass eine endliche Wechselwirkungs-
reichweite – vergleichbar mit der charakteristischen QPC Länge – ein Schlüsselbestandteil
einer ausgeprägten 0.7-Schulter im Leitwert sein könnte.

Neben der Behandlung von QPCs mit endlicher Wechselwirkungsreichweite haben wir
unsere verbesserte eCLA Methode auch auf einige weitere Problemstellungen angewendet, von
denen zwei besonders erwähnenswert sind. (i) Wir haben bemerkt, dass die erweiterte Rückfüt-
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terung zwischen den fRG Kanälen den fRG Fluss stabilisiert und dadurch die Untersuchung
von physikalischen Parameterbereichen ermöglicht, die mit vorhergehenden fRG Methoden
nicht zugänglich waren. So waren wir beispielsweise in der Lage den Leitwert eines Quanten-
punkts zu berechnen, der nur einige wenige Elektronen nahe dem chemischen Potential enthält.
(ii) Die Fähigkeit Wechselwirkungen mit endlicher Reichweite zu behandeln ermöglicht es
auch (mittels einer geeigneten Abbildung) QPCs mit mehreren wechselwirkenden Bändern
zu behandeln. Wir nutzen dies zur Untersuchung des 0.7-Analogs, der bei großem externen
Magnetfeld am Schnittpunkt von Subbändern unterschiedlicher Spinspezies auftritt. Anhand
unserer fRG Berechnungen waren wir in der Lage die Magnetfeldabhängigkeit des Analogs zu
reproduzieren und konnten, darauf aufbauend, die auftretende Formasymmetrie des Leitwerts
– je nachdem ob man sich dem Leitwert von größeren oder kleineren Magnetfeldern nähert –
mittels eines intuitiven Hartree Arguments erklären.

Zusätzlich zu unseren eCLA Arbeiten haben wir mit der einfacheren CLA Vorgänger-
methode eindimensionale ungeordnete Systeme betrachtet und Anzeichen eines möglichen
Vielteilchenlokalisierungsübergangs (MBL-Übergangs) untersucht.
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Abstract (Abstract in English)

Since its discovery in 1996, the 0.7-anomaly in quantum point contacts (QPCs) has drawn
a lot of experimental and theoretical attention. Initially found as the development of a
shoulder-like structure in the conductance with increasing temperature, it soon became clear
that virtually all QPC observables like thermal power, shot-noise, etc., show anomalous
behavior in the 0.7-region, constituting a whole set of phenomena collectively known as
0.7-physics. Although experimentally well established, the origin of the 0.7-anomaly is still
under debate. There exist numerous theoretical explanation attempts, evoking different
mechanisms and partially focusing on different aspects of the 0.7-physics. In 2013, the von
Delft group presented the so called van-Hove ridge explanation, which provides an intuitive
explanation of the 0.7-physics, tracing its root back to the properties of the non-interacting
local density of states (LDOS) which is defined by the geometry of the QPC. To develop
and corroborate this explanation, the functional renormalization group (fRG) was used
to compute various QPC observables starting from a microscopic one-dimensional model
comprised of hopping term, QPC barrier and onsite interaction term. Important 0.7-features
like the asymmetric magnetic field dependence of the conductance could be studied using
those calculations. However, the trademark feature of the 0.7-anomaly – the pronounced
shoulder in the finite temperature conductance had not yet been reproduced.

In this thesis, we investigate QPC models that in addition to onsite interactions also
include a finite interaction range. This is an interesting endeavor, since it increases the number
of interaction processes tremendously, possibly contributing the final step to reproduce the
trademark 0.7-shoulder from a microscopic model. Besides this immediate application to
standard QPCs, it also constitutes an important step towards the treatment of longer QPCs
and the transition to quantum wires. For these longer systems, the finite-ranged character
of the interactions is especially significant due to reduced screening in the extended spatial
regions of low electron density.

In order to achieve the goal of treating finite interaction ranges, we extend a previously used
coupled ladder fRG approximation (CLA) scheme, by extending the spatial feedback between
different fRG channels. In a series of publications, we apply this new extended CLA (eCLA)
scheme in rising levels of sophistication to QPC and quantum dot (QD) models, culminating
in a semi-dynamic treatment of finite-ranged interactions in QPCs. Despite methodological
problems arising from the violation of Ward identities, we indeed find promising evidence that
a finite interaction range, comparable to the characteristic QPC length, is a key ingredient in
obtaining a pronounced 0.7-shoulder in the conductance.

Alongside this main application, we also applied our improved eCLA method to various
other problems, of which two are especially mention-worthy. (i) We noticed that the extended
feedback between fRG channels stabilizes the fRG flow, enabling the study of physical
parameter regimes that were not accessible with the previously existing fRG methods. As a
prime example, we were able to calculate the conductance of a quantum dot, containing only a
few electrons close to the chemical potential. (ii) Being able to treat finite-ranged interactions
also enables us (via a suitable mapping) to treat QPC models with multiple interacting bands.
We use this to study the 0.7-analog occuring at the intersection of different subbands with
opposite spin at large magnetic fields. Using eCLA calculations, we could reproduce the
magnetic field dependence of the analog, and devise an intuitive Hartree explanation that
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explains the occurring shape-asymmetry depending on whether the 0.7-analog is approached
from lower or higher magnetic fields.

Additionally, we investigated one-dimensional disordered systems with the previous CLA
method and searched for signs of a possible many-body localization (MBL) transition.
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Introduction

General motivation
Since several decades, our daily life is unimaginable without semiconductor devices on
micrometer scale and below. The size of engineered structures has continuously decreased
in the last decades, following a exponential trend which results in the famous Moore’s law
[Moo65]. The number of transistors within dense integrated circuits doubles roughly every
2 years. However, since the golden days of quantum mechanics in the 1920s, it has been
clear that there is a hard boundary for the development of “classical” devices. As soon as
the sample dimensions reach the scale of the electronic Fermi-length, quantum effects will
dominate the behavior. This is a curse and a blessing at the same time: Although scalability
of classical transistors ends, the development of new devices, using their very quantum nature
to their advantage has begun. The most anticipated work in this direction would certainly be
the realization of highly scalable quantum computers: Up-to now, working implementations
of quantum computers were mostly based on systems of trapped ions or macroscopic quantum
effects, like superconductivity in Josephson junctions [NM19]. Although stacking of these
structures might be possible in the future, nano-fabrication now makes also another setup
possible: Electrons confined in artificially manufactured nanostructures could be used as
tunable quantum system, suitable for computations [LD98].

In order to develop any of those kinds of systems, a thorough understanding of the
effects arising from the interplay of sample geometry and single- as well as multiple-quantum
mechanical effects is required. In this work we will focus on the simplest kind of samples
imaginable that exhibit quantum effects: A short, point like confinement, the quantum point
contact (QPC), between two mesoscopic leads. Already this structurally very simple system
offers plenty of experimental phenomenons, in particular the infamous 0.7-anomaly, and
poses an immense challenge for theoretical description, being subjected to debate until the
present day [Mic11, BKF+12, MHW02, RM06, IZ07, Mat04, Rei05, SMS08, AH09, GUJB09,
LMS+09, ILK+13, BHS+13].

Apart from naturally arising in bigger quantum devices, QPCs also have found a broad
range of applications by themselves, utilizing their various useful properties. These applications
include the use as charge detectors [EHG+03, FSP+93, EHW+04, PJT+05], fully ballistic
field-effect transistors (FETs) [GNC+10], and spin polarizers in the context of spin-engineering
[YKT+18].

Goal and scope of the thesis
The main goal of this thesis is to investigate the role that interactions with finite spatial range
play within the physics of QPCs, in particular the 0.7-anomaly. In previous works of our
group [BHS+13, BHvD14, SBvD17], it was shown that models with short-ranged interactions
are sufficient to reproduce important properties of the 0.7-physics, like the magnetic field
dependence of the conductance. However, the trademark feature of the 0.7-anomaly, namely
the development of a pronounced shoulder at conductance G = 0.7GQ with increasing
temperature could not yet be reproduced. Here and in the following, GQ = 2e2/h denotes
the QPC conductance quantum. Including a finite-interaction range substantially increases
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the possible interaction processes, which is especially important at finite temperatures. We
will show evidence that this is an important ingredient that was missing to obtain the
finite temperature conductance behavior: A more pronounced shoulder develops when the
interaction range is comparable to the characteristic QPC length.

Apart from this direct consequence on the form of the 0.7-shoulder in the conductance of
(shorter) QPCs, the inclusion of finite-ranged interactions is also especially important when
investigating the transition of a QPC to a longer quantum wire. This transition constitutes
a whole project on its own that we do not undertake in this thesis, however, we consider
our work an important stepping stone for this endeavor. For a long QPC or a quantum
wire, the assumption of effectively short-ranged interactions due to screening processes is
especially bad due to the large extent of the spatial region with low Fermi energy. This
transition is particularly interesting in the context of investigating a possible occurrence of
spontaneous spin polarization within QPCs. Recent experiments [YKT+18], allowing the
direct measurement of the spin polarization, have shown indications that while shorter QPCs
are unpolarized, longer QPCs exhibit spontaneous polarization. For short QPCs this finding
is consistent with [SBvD17], where it was shown that for short QPCs the spin polarization
is only slowly fluctuating on the typical QPC time scales. Increasing the length of the
QPC might lead to the development of a true spontaneous spin polarization. Understanding
this development of spontaneous spin polarization in longer QPCs and its relation to the
0.7-physics could settle a discussion on the origin of the 0.7-anomaly that has been going on
for decades.

In order to achieve our goal of treating finite-ranged interactions in QPCs we extended
the fRG treatment of previous works [BHS+13, SBvD17], leading to the development of a
scheme we call “extended coupled ladder approximation” (eCLA). Besides from being able to
treat finite-ranged interactions, this new scheme also exhibits intrinsic improvement over the
previous CLA scheme. Due to the extended feedback between different vertex channels, the
fRG flow is more stable, which enables the treatment of larger physical parameter regimes.
In particular, we were able to treat a quantum dot (QD) containing only a few electrons
close to the chemical potential, see Sec. 3.2. This problem was not accessible via fRG before,
see discussion in [HBS+15]. Another interesting setup, which we are able to treat with our
eCLA method, is a multiband model, including the first few subbands of a QPC. We were
able to reproduce the experimental magnetic field dependence of a 0.7-analog occurring
for large magnetic fields at the intersection of subbands with different spin. In particular,
our calculations also yielded an asymmetry occurring in the experimental magnetic field
dependence, depending on whether the analog is approached from higher or lower fields.
Guided by our fRG calculations, we could explain this asymmetry intuitively using a simple
Hartree argument. Our eCLA method has been also noticed and used successfully by other
groups, e.g. the groups of Volker Meden in Aachen and Christoph Karrasch in Berlin. In
[MSMK18] they use the eCLA method for the detection of phases in one-dimensional Fermi
systems.

This thesis is structured as follows. In Chapter 1, we give a brief introduction to quantum
point contacts, discussing the basic setup, different physical implementations, the basic
phenomenology as well as theoretical explanations for the occurring phenomena. In Chapter
2, we describe the necessary fRG machinery to treat models with finite-ranged interactions.
In particular, we elaborate on the development of the eCLA method. The following three
Chapters contain the publications written within this PhD-project, namely Chapter 3.2 on
the eCLA in the Matsubara formalism and its static implementation and application to QPCs
and QDs, Chapter 4.2 on the 0.7-analog, Chapter 5.2 on the eCLA in the Keldysh formalism
and its semi-dynamic implementation and application to a QPC. The last Chapter 6 of this
thesis is devoted to an excursion into disordered systems. Concretely, we investigate the
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applicability of Keldysh fRG to treat an interacting one-dimensional disordered chain model.
Our focus lies here on detecting a possible many body localization (MBL) transition predicted
in [BAA06] to occur when temperature is varied. This chapter has not the intention of being
a comprehensive study but rather investigates whether Keldysh fRG is applicable at all to
this type of system. Furthermore, since the work in this chapter was done in large parts
before the final Keldysh version of the eCLA was ready, we use in this whole chapter the
simpler CLA scheme, developed by Schimmel et al. in [SBvD17, Sch17].
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1 Quantum Point Contacts

The main objects of interest in this thesis (apart from a brief excursions into quantum dots in
Sec. 3.2 and disordered systems in Sec. 6) will be quantum point contacts. This first chapter
gives a brief summary over the most important features of this physical system and consists of
three parts. The first part in Sec. 1.1 discusses physical realizations of QPCs. After discussing
the standard semiconductor QPC implementation in Sec. 1.1.1 which has been around since
the 80’s, we give an overview over further implementations Sec. 1.1.2 - Sec. 1.1.5, e.g. in
the context of cold atoms, which only arose more recently. In the second part, Sec. 1.2, we
discuss the basic phenomenology of QPCs, in particular conductance quantization Sec. 1.2.1,
the 0.7-anomaly (Sec. 1.2.2) and 0.7-analog (Sec. 1.2.3) as well as more complicated systems
involving spin-orbit interactions. Explanations for non-interacting phenomena, like e.g. the
quantization of the conductance are directly given within this section. Finally, the last part
of this chapter is dedicated for the discussion of theoretical explanation attempts of QPC
phenomena beyond the non-interacting model.

1.1 Physical realizations of QPCs
In this subsection, we want to take a look at physical realizations of QPCs occurring in exper-
iments. Since their first implementation in 2DEGs of layered semiconductors [vWvHB+88],
there has been an increasing number of systems that realize QPCs. Here we want to briefly
present the most important ones, without claim of completeness.

1.1.1 Layered semiconductors

Historically, the first realization of a QPC was implemented by Van Wees et al. in 1988
[vWvHB+88]. The idea of their method is still the standard method to realize QPCs: A
stacked semiconductor structure is used to create a two-dimensional electron gas (2DEG) at
the boundary of two different layers, e.g. GaAs-AlGaAs [SDG+79]. By attaching electrodes
(“gates”) on the top of the sample (see Fig. 1.1(a)) one can additionally create a potential
landscape within this 2DEG. In case of the QPC, this is simply a narrow constriction, which
in [vWvHB+88] was implemented via a so called split-gate, i.e. a electrode with a very
fine slit separating the source and drain regions of the sample. In more recent experiments
[ILK+13], the usage of multiple gates enables a very flexible adjustment of the form of the
constriction, see Fig. 1.1(b). The negative charging of the gates depletes the 2DEG beneath
them and induces a constriction with a saddle-like potential in the 2DEG, see Fig. 1.2(a).
If now a voltage bias is applied between source and drain, electrons will flow through this
constriction, with a current depending on how “open” the potential is. While one would
classically expect a smooth conductance G = dI

dV , the quantum nature of the system leads to a
quantization of the transversal confinement. Assuming this confinement to be parabolic, one
obtains discrete energy levels n = 1, 2, . . . with a spacing set by the curvature in y-direction,
indicated in Fig. 1.2(a). These discrete energy levels lead to a quantization of the conductance:
Whenever one of them crosses the chemical potential µ, another conductance channel opens
up. This effect is the hallmark of reaching the quantum domain, and can be understood in
a non-interacting quantum mechanical picture [Lan57]. Additionally to this quantization
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Figure 1.1 (a) Schematics of an experimental implementation of a layered semiconductor QPC. The
2DEG is depicted in red, the electrodes (gates on the top, source-drain electrodes on the side) in black.
(b) electron microscope picture of the surface of a QPC, reproduced from [ILK+13]. The device here
has three pairs of attached gates, enabling the tuning of the effective QPC length.

Figure 1.2 (a) Illustration of the parabolic saddlepoint potential V (x, y) in the center of the QPC
with positive y-curvature and negative x-curvature. The horizontal lines indicate the transversal energy
levels n = 1, 2, . . . in the center of the QPC. (b) First measurement of a quantized QPC conductance
as function of gate voltage by Van Wees et al., reproduced from [vWvHB+88].
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a) b)

Figure 1.3 First observation of the 0.7 anomaly by Thomas et al., reproduced from [TNS+96]. (a)
With increasing temperature, a conductance shoulder emerges around G = 0.7GQ. (b) With increasing
magnetic field this shoulder develops into a spin split plateau.

staircase which can be explained non-interactingly, one observes additional effects which can
consensually only be understood in an interacting description. The prime example here is the
0.7-anomaly: With increasing temperature, the first conductance step develops a shoulder-like
structure around G = 0.7GQ. This effect was first observed by Thomas et al. in 1996, see
Fig. 1.3. In Sec. 1.2.2 we will discuss this feature in more detail.

1.1.2 Atomic sized break junctions in metals

In 1995, it was experimentally shown by Krans et al. [KvRF+95] that a conductance quanti-
zation similar to the one in standard (i.e. semiconductor) quantum point contacts can be
observed at break junctions of fine metal wires. Their setup consisted of a fine sodium wire,
attached to two electrodes whose positions could be varied using Piezo electric elements, see
inset of Fig. 1.4. Upon applying an increasing voltage at the Piezo elements, the wire was
bent until it broke. After that the distance between the two break junctions could be adjusted
freely. By studying the conductance as function of this distance, a conduction staircase was
obtained, similar to the one encountered above, see Fig. 1.4. Note, however, that there are
two qualitative differences. (i) The form of the conductance steps does not match the “clean”
form encountered in [vWvHB+88]. Rather than smooth short steps, one observes here either
very sharp and abrupt or very elongated steps. In [KvRF+95], it was argued that these
effects stem from a rearrangement in the contact area of the atomic tip of the break junction.
(ii) Additionally, the conductance itself exhibits a more complex quantization structure. In
contrast to standard QPCs, both 2e2/h and 4e2/h steps occur. This effect can be traced
back to the three dimensional structure of the break junction and can be understood within
the simple approximation of assuming cylindrical contact points, following an argument given
by [KvRF+95]. In this case the eigenfunctions ψ(r) of the system are characterized by

ψ(r) ∼ Jm(r/rmn)eimφeikz, (1.1)

where r, φ, z are standard cylindrical coordinates, k is the momentum in the non-quantized
z direction (along the axis of the point contact), and Jm denotes the m-th Besselfunction
of first kind. The constants rmn are determined by imposing the quantization condition
Jm(a/rmn) != 0, i.e. by demanding that the electron wavefunction should vanish outside of
the cylindrical contact of radius a. Therefore, they are given by rmn = aγmn, where γmn are
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Figure 1.4 First observation of conductance quantization in a metallic (quantum) point contact,
reproduced from [KvRF+95]. The conductance is plotted as function of the distance between the
source and drain electrodes in the break junction (lower horizontal axis). This distance can be varied
changing the voltage of a Piezo element (upper horizontal axis). Note that here 2e2/h as well as 4e2/h
conductance steps occur. Inset: Schematic of the experimental setup.

the zeros of the m-th Besselfunction. Since this zeros fulfill γmn = γ−mn, they are degenerate
for m 6= 0. Thus, only energies with m = 0 are non degenerate, yielding conductance steps of
2e2/h, whereas all others are twofold degenerate leading to steps of 4e2/h in the conductance.

1.1.3 Graphene stripes, gated graphene, and carbon nanotubes

After the (re-)discovery of graphene in 2004 [NGM+04], quasi 1d experiments using thin
graphene stripes, so called “nano ribbons” became possible [TVJ+11]. Here, the central
constriction is not gate defined, but arises naturally by the quasi 1d nature of the sample
itself, see Fig. 1.5(a). These constrictions were realized by attaching electrodes on a graphene
sheet and applying an electric current between them. The resulting annealing process leads
to constrictions with widths down to 250nm.

In 2011, the conductance quantization hallmark was observed in a narrow graphene strip,
again by the Van Wees group [TVJ+11], see Fig. 1.5(b). Especially in the hole-branch (blue
line) one can observe distinct conductance plateaus at 1GQ ,2GQ and 3GQ. In the electron
branch (red line) quantization is less pronounced, however, one can still observe the first and
the onset of the second plateau. While a 0.7 anomaly is not observable in the zero magnetic
field data, at finite magnetic field the system shows behavior resembling 0.7 physics, see
Fig. 1.5. For small magnetic fields, a shoulder develops around 0.6GQ. This effect happens for
field strengths where the Zeeman splitting is still much smaller than the observed structure.
It is very probable that the cause of this effect is the same mechanism as the 0.7-anomaly
explained below in Sec. 1.2.2.

Additionally to being beautiful examples of how quantum effects arise in low dimensional
systems, graphene based setups are somewhat more involved than the standard QPC above.
In particular, theory predicts that the quantization of the conductance should depend on
the boundary of the graphene strip [NFDD96, Wak01, BF06, PCG06, MnRJFRP06]. The
pure cases are the following: For an armchair edge, quantization occurs in multiples of the
conductance quantum GQ. However, for a zigzag edge, quantization is predicted to occur
multiples of 2GQ. The cause of this prediction lies again in the different degeneracies: While
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Figure 1.5 (a) Scanning electron microscopy picture of a graphene stripe with attached electrodes
[TVJ+11]. Segment “C” is just the full unconstricted strip, whereas segments “A” and “B” show
constrictions of varying size. (b,c) Observed quantization of the conductance G as a function of the
Fermi momentum kF , for the hole branch (blue) and the electron branch (red). The conductance
is quantized in integer plateaus, clearly pronounced for the first plateau and then becoming weaker
with increasing plateau number. (d) Conductance as function of gate voltage and finite magnetic
field. Note the structure at G/GQ ≈ 0.6, developing at small magnetic fields and resembling the
0.7-shoulder in regular QPCs. Figures (a)-(d) were reproduced from [TVJ+11].
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Figure 1.6 (a) Conductance quantization of a gated graphene sheet, reproduced from [KCL+16].
Between G = 10GQ − 22GQ one can observe clear conductance steps with height G = 4GQ, i.e.
the valley symmetry of graphene is in this regime conserved. (b) Conductance quantization of a
single-walled carbon nanotube, reproduced from [BMM+05]. Interestingly, quantization occurs here
with steps G = 0.5GQ, indicating that spin-symmetry is broken.

in the armchair case electrons are only spin degenerate, the zigzag edge also preserves the
valley degeneracy between the two Dirac points of the graphene structure. In [TVJ+11],
see Fig.1.5(b), only the “usual” GQ quantization was observed. This implies that the valley
degeneracy is broken, probably due to a mixture of armchair and zigzag edges as well as the
presence of disorder in the system.

In fact, it turned out that the preservation of valley symmetry and a corresponding
observation of 2GQ conductance steps is quite hard to realize. It was first achieved only in
2016 by Kim et al. [KCL+16], using gate defined constriction on a graphene sheet instead of
nano ribbons, see Fig. 1.6(a).

Another natural candidate system for the realization of QPCs are carbon nanotubes
[Iij91, BKdV+93]. It was shown by Frank et al. [FPWH98] that carbon nanotubes exhibit
quantized conductance. In their experimental setup, the conductance of a single carbon
nanotube was found to be either 0 or GQ = 2e2/h. At first look, this result is surprising since
theory predicts two degenerate bands [TD94]. Therefore, together with spin-degeneracy one
would expect a conductance step from 0 to 2GQ. However, the carbon-nanotube used in the
experiment was multi-walled, i.e. had additional inner structure, which might affect the overall
conductance behavior of the nanotube. Subsequently, there have also been experiments with
single-walled tubes, e.g. by Biercuk et al. [BMM+05], however, unsuspected conductance
behavior was observed also here. Here, neither steps of GQ nor 2GQ were found, but steps of
0.5GQ, see Fig. 1.6(b)! This seems to indicate that spin-symmetry can be broken in this setup.
Up to now, no fully satisfying explanation of this anomalous quantization has been given.
However, we want to note here that in recent experiments with longer QPCs, indications
for spontaneous spin-polarization were observed experimentally [YKT+18]. Thus it seems
plausible that for sufficiently long nanotubes spontaneous spin-polarization might also arise,
causing the observed anomalous quantization behavior.



1.1 Physical realizations of QPCs 11

Figure 1.7 (a) First observation of quantized conductance in a nanowire, observed by Lu et al.,
reproduced from [LXT+05]. (b) Highly controllable multigate nanowire device, reproduced from
[HPS+16], and (c) observed conductance within that device. Note that in both (a) and (c) a pronounced
0.7-shoulder is observable.

1.1.4 Grown Nanowires

Similar to using carbon nanotubes, one can also consider another very natural approach to
QPCs by using grown nanowires that are quasi one-dimensional themselves. Conductance
quantization in such a grown wire was first observed in 2005 by Lu et al. [LXT+05], who used
an InAs Nanowire of 20nm diameter and lengths up to 1µm, see Fig. 1.7(a). Due to advances
in growing and gating techniques now highly controllable devices can be manifactured, e.g.
like the one described in Heedt et al. [HPS+16], see Fig. 1.7(b). Noticeably, already in the
first device of Lu that exhibited conductance quantization also the 0.7-anomaly in the first
substep could be observed, see Fig. 1.7(a). In the more recent measurements by Heedt et al.,
the 0.7-feature is very clear, see Fig. 1.7(c).

We note here that for pure cylindrical nanowires without gates the quantization scheme is
more evolved than for the standard QPC case, due to the appearance of degenerate angular
modes. The argument for this is the same as the one given above in Sec.1.1.2 for metal point
contacts. However, in both setups of Refs. [LXT+05, HPS+16] the attached top/back gates
break the cylinder symmetry and therefore the degeneracy of angular modes. Conductance
quantization occurs then in the “usual” steps of GQ, rather than 2GQ. However, in an
experiment by Ford et al. [FKK+12] with lesser attached gates, one can indeed observe the
additional angular degeneracy for the conductance of modes with non zero magnetic quantum
number (m 6= 0).

1.1.5 Cold atoms in optical lattices

More recently, Krinner et al. [KSH+14] managed to construct an implementation of a QPC
within the framework of cold atoms, also reaching the hallmark of conductance quantization,
and in fact exhibiting a whole conductance staircase, see Fig. 1.8(b). This is the first setup
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Figure 1.8 (a),(b) Schematics of the experimental setup used for the cold atom QPC experiment
in [KSH+14]. (c) Image of the resulting QPC constriction. (d) Quantized conductance observed in
the steady state of the setup in (a), for a tighter (red curve, for clarity offset by 2G̃Q) and a wider
QPC constriction (blue curve). Note the possible candidate for a 0.7-shoulder in the first conductance
step of the blue data. The inset shows the conductance curves for a frequency axis scaled by νz,
demonstrating the overall universality of the (non-interacting) conductance quantization. Figures
(a)-(d) were reproduced from [KSH+14]

exhibiting conductance quantization using neutral matter (fermionic 6Li-Atoms) instead of
charged particles. Therefore, in this context, we will mean with conductance the particle and
not the charge conductance, correspondingly quantized in multiples of G̃Q = 1/h.

The experimental setup consisted of an optical trap, realizing two large cylindrical
reservoirs and a central constriction, see Fig. 1.8(a). While the overall trapping potential is
cigar shaped, the TEM01-Mode of a green laser is used to create a narrow 2-dimensional central
region. Another laser is used to project the image of a small slit upon this 2-dimensional
region, effectively creating the 1-dimensional constriction of the QPC, c.f. the schematic
in Fig. 1.8(b). Remarkably, and in contrast to standard QPCs, this constriction can also
be directly observed optically, see Fig. 1.8(c). The resulting conductance of this setup is
shown in Fig. 1.8(d), for a smaller (red) and a larger (blue) transversal confinement width.
A whole staircase of conductance steps with heights G̃Q is observable. While the authors
lay no claim to observing the 0.7-anomaly in their setup, we want to point out that the blue
curve in Fig. 1.8(d) in fact shows a shoulder like feature around 0.7G̃Q. This is even more
interesting, since, complementary to all our previous QPC realizations, the interaction used
in Fig. 1.8(d) is weakly attractive instead of repulsive. Later on, when the authors tune
their interactions to zero (as it is amazingly possible in the cold atom setup) the general
quantization structure stays the same but the 0.7-shoulder vanishes, c.f. Extended Data
Figure 2 of [KSH+14]. This illustrates the possibility to check theories developed in the
context of solid state QPC in a highly adjustable setup: Quantities like interactions (via
Feshbach resonances) [Fes58, IAS+98], effective spin degrees of freedom (modeled by different
hyperfine states) and the potential landscape and can all be tuned very flexible, see e.g.
[KEB17].

Additionally, this kind of setup offers the accessibility of new observables, which are only
very hardly accessible in the “classical” QPC context. For example, the cold atom setup
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enables also the study of QPCs with a spin resolved bias [KLH+16], i.e. only one spin species
feels a potential difference between source and drain. This can be used to measure spin
resolved conductances and investigate the so called spin-drag, i.e. the interaction induced
current of the other spin species in the case of a spin-dependent bias [KEB17].

1.2 Phenomenology of QPCs
In this subsection, we will summarize different interesting experimental observations that
have been observed in QPCs since the initial implementation [vWvHB+88] to very recent ex-
periments [YKT+17]. Whenever these observations can be explained within a non-interacting
description, we will point this out and detail the most important steps. Theoretical explana-
tions beyond the non-interacting level will be discussed in the following Sec. 1.3.

1.2.1 Conductance quantization

For starters, let us first look at the above mentioned hallmark of entering the quantum realm,
namely quantization of the conductance itself, see Fig. 1.2(b). This effect can be understood
in a non-interacting picture, and its form was predicted within Landauer’s transport theory
already in 1957 [Lan57], i.e. over thirty years before its initial observation. For the case of
vanishing interactions, the current that flows through the system can be written as:

I = e
∑
n

ˆ
dωρ(ω)v(ω)Tn(ω)[fL(ω)− fR(ω)], (1.2)

where e is the electron charge, ρ(ω) is the density of states, v(ω) the group velocity, Tn(ω)
is the frequency dependent transmission of the n-th conduction channel, and fL/R(ω) =
1/(1 + eβ(ω−µL/R)) are the Fermi functions of the left/right lead, with βL/R = 1/TL/R being
the reciprocal temperatures (we set the Boltzmann constant kB = 1). If we assume that
temperature is constant and the chemical potentials of the left and right lead are given as

µL/R = µ± eVsd
2 , (1.3)

where µ is an average chemical potential and Vsd is the source drain bias voltage, we can
write the equilibrium linear response conductance as

G = dI

dVsd
= e

∑
n

ˆ
dωρ(ω)v(ω)Tn(ω)∂Vsd [fL(ω)− fR(ω)] (1.4)

= −e2∑
n

ˆ
dωρ(ω)v(ω)Tn(ω)f ′(ω) (1.5)

where f(ω) is the Fermi distribution associated with the average chemical potential µ. The
essence of Landauer’s argument for the conductance quantization in 1d is the following
(for a more detailed discussion, see for example [Bau14]): The product of the density of
states ρ(ω) = 1

2π
dk
dω and the electron group velocity v(ω) = 1

~
dω
dk is constant. This implies

that the conductance of the system is essentially given by the sum of the transmissions
Tn of the different channels. Since the transmission Tn by definition lies always between
0 and 1, the conductance as a whole is quantized in integer multiples of GQ = 2e2/h (the
factor 2 stems from the spin degeneracy of Tn for zero magnetic field). Furthermore, the
form of this quantization can be beautifully understood by the properties of the saddle
point potential, see Fig. 1.2(a). The confining quadratic potential V (x, y) in the transversal
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direction leads to a quantization of the y-direction with the x-dependent harmonic oscillator
energies En(x) = ~ω(x)(n+ 1

2). Upon varying the potential height, each time one of those
energies crosses the chemical potential another one of the transversal modes contributes to the
conductance in (1.5), see Fig. 1.2(b). Integrating out the y-direction (and nominally also the z-
direction) one can obtain a purely one-dimensional model with only the x-direction remaining.
The resulting effective potential V (x) is by default dependent on the exact form of the
saddle-point constriction. For further details see also Sec. IV.A in our publication 3.2 below.
However, to capture the qualitative physics of a QPC, the exact knowledge of V (x, y) and in
extension V (x) is not required. One can simply make the ansatz V (x) = a0 +a2x

2 +a4x
4 + . . .

as a generic Taylor expansion of a symmetric potential barrier, with the parameters a0, . . . as
fit parameters. In order to determine which structure for V (x) (from here on called the “bare
potential”) is suitable to describe the experiment best, one can look at the higher conductance
steps of a QPC. Here, interaction effects are less important due to the screening performed
through the electrons of the lower, already filled subbands. In Heyder [Hey14], this was
carried out and it was shown that a simple parabolic barrier fits the smooth form of the
conductance steps of the higher subbands best. Any introduction of an anharmonicity would
lead to additional resonance structures in the conductance. This was shown numerically
by Heyder [Hey14, HBS+15] and is explained by Schimmel [Sch17], using non-interacting
scattering theory. Therefore, we consider a QPC potential which (around its barrier top) is
of the quadratic form

V (x) = Vg −
1
2
m∗

~2 Ω2
xx

2, (1.6)

where Vg is the gate voltage, m∗ the effective electron mass in GaAs, and Ωx is the curvature
of the QPC in x-direction. Using the particularly simple form of the transmission for such
a pure parabolic barrier [Con68] (which is dependent on spin σ due to a possible present
magnetic field B)

Tσ(ω) = 1
1 + exp(−2π(ω − Vg − σ

2B)/Ωx) , (1.7)

one can compute the form of the conductance steps analytically as done by Büttiker [Büt90].
In case of zero magnetic field and zero temperature, one obtains a conductance step in the
form of a Fermi function where the curvature Ωx sets the width of the step:

g = G/GQ =
[
e2πVg/Ωx + 1

]−1
, (1.8)

c.f. blue line in Fig. 1.9(a). In the following, we take a moment to discuss how this non-
interacting form changes for varying temperature, magnetic field and bias voltage. This is
particularly useful, in order to distinguish non-interacting from interacting effects observed
in QPC experiments.

In Fig. 1.9(a), we show the dependence of the conductance on temperature. With
increasing temperatures, the conductance step becomes smeared out. Due to the interaction
with the thermal bath, electrons with energy below the barrier may receive thermal energy
and manage to cross the barrier. On the other hand, incoming electrons with sufficient energy
to pass the barrier, may be reflected due to loss of energy to the thermal bath. Both effects
lead to a broadening of the conductance step. Note, however, that overall the step remains
symmetric around the g = 0.5 point.

In Fig. 1.9(b), the magnetic field is increased, which leads to a different QPC barrier
height for the two spin species. Therefore, the respective spin resolved curves are shifted in
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Figure 1.9 Conductance g = G/GQ as function of gate voltage Vg for a single subband. (a) With
varying temperature the conductance is smeared out symmetrically around the g = 0.5 point. (b)
Finite magnetic field lifts the spin degeneracy and leads to a development of a spin-split plateau. Note
that also here the splitting occurs symmetrically around the g = 0.5 point

gate voltage, leading to the development of a spin split plateau. Again the symmetry around
g = 0.5 remains conserved in the non-interacting case. So far, we have only studied the linear
response conductance, i.e. the conductance at vanishing bias voltage Vsd = 0.

In Fig. 1.10, we show the behavior of the conductance with increasing Vsd at different
gate voltages Vg. For a more closed setup with g < 0.5, increasing the bias voltage leads
to an increase in the conductance, while for a more open setup with g > 0.5 it leads to a
decrease. This can be easily understood considering the symmetric form of the applied bias
(1.3). Without loss of generality, we can assume that Vsd ≥ 0. In general, an infinitesimal
increase of the bias voltage δVsd > 0 will lift the left chemical potential slightly up and shift
the right chemical potential slightly down. Therefore, the net current from the left to the right
lead will slightly increase. The magnitude of this increase (and therefore the conductance),
however, depends on the position of the left and right chemical potential and therefore the
finite bias voltage. In an open QPC, a small but finite increase in the bias voltage leads to
the following effects: The left chemical potential is shifted upwards and T (µL) changes only
lightly, therefore having no large impact on the conductance. On the other hand, the right
chemical potential is shifted downwards and T (µR) decreases due to the QPC barrier. This
leads to a decrease in the conductance. Thus the net effect of an increase in bias in the open
QPC regime is to decrease the conductance (see the cyan and magenta lines in Fig. 1.10).
In the closed QPC, this effect is reversed. Now the shift of the right chemical potential
has no impact since T (µR) is small anyway. However the transmission amplitude T (µL) is
significantly increased by shifting µ upwards, therefore yielding an increase in conductance.
Thus the net effect of a finite bias increase in the closed QPC regime is to increase the
conductance (see the green and blue lines in Fig. 1.10).

1.2.2 Special features of the lowest subband: The 0.7 anomaly

Additionally to the quantization staircase in Fig. 1.2(b), which can be understood in a
non-interacting setup, there are a several observations which can only be explained by
taking interactions into account. First and foremost among those is the so called “0.7
anomaly”. This structure was pointed out first by Thomas et al. [TNS+96] in 1996. While
the higher conductance steps follow beautifully the non-interacting form given in (1.8), the

15
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Figure 1.10 Conductance as function of bias voltage Vsd for several values of the gate voltage Vg.
Note that for a closed QPC an increase in Vsd leads to an increase of conductance, while for a open
QPC it leads to a decrease.

first step shows a peculiarity. The dimensionless conductance g = G/GQ, where GQ = 2e2/h
is the conductance quantum, exhibits a shoulder like structure at roughly g ≈ 0.7, see
Fig. 1.3(a). In particular, this structure gets more pronounced with increasing temperature.
Subsequent studies showed that virtually all observables (shot noise [RSG+04, DZM+06],
thermal power [ANP+00], thermal conductance [CNP+06], . . . ) show anomalous behavior
(i.e. different than non-interacting behavior) while the gate-voltage is turned through the
0.7 (also called “subopen”) region. Here, we show the most prominent example for this
behavior, namely the conductance as function of temperature [TNS+96, BHS+13], magnetic
field [TNS+96, BHS+13] and bias voltage [KBH+00, CLGG+02]. In this section, we focus on
the experimental features of the 0.7-anomaly. A theoretical explanation for the 0.7-physics as
given in [BHS+13] is discussed in Sec. 1.3 below.

The conductance in Fig. 1.3 shows clearly the development of a pronounced shoulder
at g = 0.7 with increasing temperature. Although the degree to which this step develops
varies for different devices, the occurrence of a shoulder-like 0.7-feature is universal and was
observed in a multitude of experiments, see e.g. [TNS+96, Mic11, BHS+13, ILK+13]. Newer
measurements at very low temperatures indicate that the shoulder can actually vanish for
T → 0, yielding again a convex conductance step, see Fig. 1.11(b) .

The conductance as function of an in plane magnetic field B also exhibits interesting
behavior. While the non-interacting formula (1.8) suggests a symmetric splitting (a finite
magnetic field adds a linear Zeeman term to the gate potential, i.e. in (1.8) Vg → Vg + σ

2B,
where σ ∈ {+,−} is the electron spin), the experimental curves show that the splitting
exhibits a pronounced asymmetry, see Figs. 1.3(b) and 1.11(a). The shape of the first substep
is almost of the same form as in the non-interacting case. The second substep, however, is
shifted to higher gate voltages and its form is much more broadened. In the case of very large
in plane magnetic fields, the opposite spin components of different subbands can become
degenerate, yielding new interesting effects. We discuss this case in Sec. 1.2.3 below.

The conductance as function of finite bias voltage and for different values of the gate
voltage can be seen in Fig. 1.12(a). To study the influence of a finite bias voltage let us first
look at the behavior of the higher conductance steps around Vsd = 0. Here, the finite bias
influence resembles strongly the non-interacting shape displayed in Fig. 1.10, again indicating
that interactions play a less important role for the higher steps. Therefore, we focus in
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a)

b)

Figure 1.11 Measurements of the first conduc-
tance step, reproduced from [BHS+13]. Devel-
opment of the 0.7 anomaly for varying magnetic
fields (a) and temperatures (b). Note that for very
small temperature and zero magnetic field the 0.7-
shoulder vanishes.

a) b)

Figure 1.12 (a) Measured bias dependence of the conductance for various gate voltages. Note the
zero bias anomaly (ZBA) occurring at Vsd = 0 and small conductance g.(b) Temperature dependence
of the ZBA and the side peaks. Figures (a) and (b) were reproduced from [CLGG+02]
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the following discussion on the first conductance step, i.e. only the first transversal mode is
contributing. For all gate voltages, the conductance exhibits a sharp decrease when going
from Vsd = 0 to a small finite bias. This is particular interesting for gate voltages where
g < 0.5, since for these gate voltages a non-interacting treatment predicts an increase of the
conductance with increasing bias voltage, see the discussion in Sec. 1.2.1. This feature is called
a zero bias anomaly (ZBA) and resembles the ZBA induced by the Kondo effect in quantum
dots. In particular, it also gets suppressed with increasing temperature, see Fig. 1.13(b). Due
to these similarities, it was argued (see e.g. [ILK+13]) that the 0.7-anomaly might also be
caused by the Kondo effect, even though the development of a localized magnetic moment in
a QPC seems unlikely.

Additional interesting features of the first conductance step are the sidepeaks, see
Fig 1.12(a,b) around Vsd = 0.6mV, as well as the behavior at large bias voltage Vsd = 1.5mV
where the conductance approaches - independently of the gate voltage - a value around
g ≈ 0.2− 0.3. The latter feature, first observed in [PNMM+91] (and sometimes addressed as
the “0.25-anomaly” [CGP+08]) is interesting, since a non-interacting treatment yields a value
of g ≈ 0.5 for large bias. Similar to the 0.7 anomaly, the origin of the 0.25 anomaly is still
under debate [dPPBW04, KRA+08, CGP+08, IZ09]. However, as pointed out by Schimmel
[Sch17], the occurrence of the sidepeaks at Vsd = 0.6mV is also very interesting. This feature
is consistently present in a large variety of experiments (see e.g. [CLGG+02, RYF+10]) and
to our knowledge, its origin is not known. It is not even apparent if it is necessarily the
result of interactions or if some modification of the non-interacting model that was missed up
to now could also be responsible. A non-equilibrium Keldysh fRG treatment performed in
[Sch17], using a standard QPC model with short ranged-interactions (see Sec. 5.2 below), did
not show any indications of this sidepeaks.

1.2.3 Effects involving several subbands: The 0.7 analog

After it was discovered that the 0.7 anomaly in the first conductance step exhibits clearly the
influence of interactions, several other attempts were made to observe further non-interacting
behavior. The natural candidates for this are always the energetically lowest electrons, since
the interactions of the energetically higher ones will be effectively screened by the lower lying
electrons. Indeed, we have seen above that the higher conductance steps resemble almost
perfectly the non-interacting shape given by (1.8). In the standard setup (i.e. zero magnetic
field and strong confinement) this lowest electrons are the spin degenerate ones of the first
subband. In order to observe different interacting behavior, one has to find a way to change
this configuration of the lowest lying electron levels. This can be done in several ways. More
recently, [HCC+18] implemented an experiment with a very weak confining potential. This
leads to a very small subband spacing, almost making the first two subbands degenerate.
It was shown that this leads to the development of a quasi one-dimensional Wigner crystal
where the electrons form a loose zig-zag chain formation in the QPC. Interestingly, it was
conjectured [MML07] that the change from the normal groundstate, which is for a not too
long QPC still Fermi-liquid like (instead of exhibiting 1d Luttinger behavior, as it is the case
in infinitely expanded systems), to this type of Wigner crystal is a quantum phase transition.

A second, maybe more straight forward approach, is to apply a strong in plane magnetic
field to the QPC sample. Besides a diamagnetic contribution (which again can be understood
nicely in a non-interacting model, see [GTP+03]), this leads to a lifting of the energy
degeneracy of single subbands of spin up and down electrons via a Zeeman shift, see Fig. 1.13.
For low magnetic fields (blue region in Fig. 1.13), this leads exactly to the behavior in the first
substep, that was already explored in the 0.7-anomaly section above. However, by making the
applied magnetic field sufficiently large, we can introduce another degeneracy in the system,
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Figure 1.13 Illustration of the development of the QPC energy levels with increasing magnetic
field. The region of the 0.7-analog at the intersection of the spin-up branch of the first subband and
the spin-down branch of the second subband is marked in red, whereas the region of the ordinary
0.7-anomaly is marked in blue.

namely at the intersection of the spin 1-up and the spin 2-down spin-subbands, see red region
in Fig. 1.13. When - while opening the QPC - this region crosses the chemical potential,
the screening potential caused by lower lying subbands is still small, since only the 1-down
electrons are occupied. Indeed, here one notices another interacting effect. At the crossing
appears a structure that resembles the 0.7-anomaly in the first substep, see Fig. 1.14, solid
ellipse. For this reason it is called the 0.7-analog [GTP+03].

However, opposed to all similarities, there are also differences to the 0.7-anomaly. The
most striking one is certainly the appearing asymmetry of the structure. If the crossing
point is approached from higher magnetic fields a clear shoulder is visible, see green curve in
Fig. 1.14. At lower fields, however, no shoulder is visible and the conductance curves looks
almost symmetric, see red and blue curves in Fig. 1.14. In section 4.2 of this work, we first
reproduce this feature in the conductance via fRG-calculations and then also give an intuitive
physical explanation, in terms of a simple Hartree picture.

1.2.4 Extending the physical setup: Inclusion of spin-orbit interactions

In this last part of the phenomenological QPC section, we take a brief look at physical
setups that exhibit an additional kind of spin symmetry breaking, namely spin-orbit coupling.
While in the previous sections, spin symmetry was broken by the introduction of an external
magnetic field via a Zeeman term ∼ B ·σ, we discuss here setups which exhibit an additional
Rashba spin-orbit term, proportional to the electron momentum ∼ kσy. This spin-orbit
coupling can be used in many ways to produce new interesting physical setups.

The most direct setting is to include it directly within a QPC, and study the effects
that emerge from the interplay of Zeeman-field, Rashba-term and electron interactions. In
[GBHvD14], this setup was studied by using similar methods as in [BHS+13] and conse-
quently our study 3.2. Besides interesting effects that emerge from the interplay of SOI and
Zeeman terms already in a non-interacting setup, the implications on the interaction induced
0.7-physics are immense. In particular, for increasing spin orbit strength (perpendicular to
the external magnetic field) spin-mixing is introduced, yielding an avoided crossing and con-
sequential development of a spin gap. For intermediate spin-orbit strengths, this accentuates
the asymmetric shape of the conductance w.r.t. increasing external magnetic field B, see
Fig. 1.15(a-b). However, the dependence of the conductance on B is still linear (although
with increased Lande-factor, due to interactions). For large spin orbit strengths one can
observe several changes, see Fig. 1.15(c). A feature one immediately notices, is the drop of
the conductance in the usual plateau region after the double step. This feature is already
there in the non-interacting model and is due to the development of the above mentioned
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Figure 1.14 Conductance as function of gate voltage for increasing magnetic fields as measured
in [GTP+03], reproduced from our publication in Sec. 4.2. The dashed and solid ellipses mark the
0.7-region and the similar shoulder structure appearing at the 0.7-analog, respectively. Note the
asymmetry in the magnetic field dependence of the 0.7-analog, depending whether it is approached
from lower or higher magnetic fields.

Figure 1.15 (a-c) Development of the magnetic field dependence of the QPC conductance with
increasing dimensionless SOI strength R. (d-f) QPC transconductance in presence of SOI. Note that
at large R, the splitting of the double step is not linear in B but almost constant (see arrow in (f)).
Figures (a)-(f) were reproduced from [GBHvD14]
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Figure 1.16 Detection of spin polarization via spin orbit interactions, reproduced from [YKT+18].
(a) Detector voltage as function of perpendicular magnetic field. Note the splitting of odd peaks
arising from SOI. Inset: Focusing geometries with longer (90deg shape of split gates) and shorter QPC
(60deg shape of split gates). (b) First focusing peak (blue circles) with fitted Lorentzian subpeaks
(green and magenta curves). Note that the amplitude difference of the subpeaks, indicating a spin
polarization of the QPC. (c) Resulting polarization (computed from the amplitude of the subpeaks in
(b)) and conductance as function of gate voltage.

spin gap. However, there is another striking feature, that arises only within the interacting
model. In contrast to the intermediate case, the dependence on B of the double step in the
conductance is almost constant instead of linear. This difference can be seen especially good
by comparing the corresponding transconductances, see Fig. 1.15(d,f). In [GBHvD14], it is
shown that this feature can be beautifully understood by analyzing the dependence of the
(non-interacting) van-Hove ridge on spin orbit strength at finite external magnetic field. The
essence of this van-Hove ridge type of argument to make predictions about the influence of
interactions, is the same as in [BHS+13], and is discussed in detail below in Sec. 1.3.

In a more recent experiment [YKT+18], the effect of spin-orbit interactions was used to
analyze the spin-components of the transmitted electrons of a QPC. For this purpose a setups
consisting of two QPCs were used, see Fig. 1.16(a), inset.

One QPC acts as injector with tunable gate voltage, while the other acts as receptor,
with a gate voltage fixed to the middle of the first conductance plateau. Outside the QPCs,
an external magnetic field perpendicular to the QPC plane is applied, leading the injected
electrons to follow cyclotron orbits. These cyclotron orbits differ slightly for spin-up and
spin-down electrons due to the effect of spin-orbit interactions (due to the SOI introduced
splitting of the Fermi surface), therefore affecting the form of the dected focussing peaks
with varying magnetic field, see Fig. 1.16(a). For odd peaks (i.e. peaks with an even number
of reflections on the wall of the setup), this leads to a splitting of the focussing peak into a
(mainly) up- and a (mainly) down-component. For even peaks, this effect is compensated
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by the odd number of reflections on the wall, leading to an eventual refocusing of up- and
down-electrons at the detector.

This possibility to distinguish between up- and down-electrons in the detector offers the
very interesting opportunity to observe a possible spin-polarization of the injector. This is
highly relevant for insights in the 0.7-physics, since a lot of theoretical descriptions see a
spontaneous spin-splitting as the main cause of the 0.7-anomaly [TNS+96, Rei05]. Other
interpretations, as the van Hove ridge interpretation advocated by our group do not per se
rely on such a spontaneous splitting. The experimental result in [YKT+18], seems to be very
Solomonic in this regard. While spontaneous polarization is absent for short QPCs, it is
observable for longer QPCs, via a resulting amplitude difference of the focusing peaks, see
Fig. 1.16(b,c). This seems to be consistent with the theoretical findings in [SBvD17], where
it is shown for short QPCs that the van Hove ridge scenario -while not leading to a true,
static spontaneous polarization - also implies a “slowly fluctuating polarization”. The time
an electron needs to transverse the QPC is of the same order as the time of spin fluctuations
within the QPC barrier. This quasi polarization could be seen as the precursor to a truly
static polarization in longer QPCs.

Within this thesis, we focus on the treatment and the influence of longer-ranged interactions
in QPCs. We consider our work an important step on the way to obtaining a theoretical
description of the transition from shorter to longer QPCs and the possible onset of spontaneous
polarization. On the one hand, it is a physical necessity to treat longer interaction ranges
in longer QPCs. Longer barrier regions with small Fermi energy limit the amount of
possible screening. In particular, descriptions with purely onsite-interaction models as in
[BHS+13, SBvD17] will not be enough. In the limit to very long one-dimensional systems
(quantum wires), one even expects the formation of Wigner crystals [Sch93]. On the other
hand, while developing the necessary fRG machinery to include this longer interaction ranges,
we noticed that our improved long-range feedback method developed in Sec. 3.2 also helps
to improve the convergence of the fRG flow in general. This enables, independent of which
interaction model (onsite/finite-range) is chosen, the better treatment of longer QPC barriers,
where the fRG-treatment becomes difficult due to the large density of states at the chemical
potential.

1.3 Theoretical explanations beyond the non-interacting
model

Over the years, the rich physics involved in the 0.7 anomaly has invoked a lot of explanation
attempts, which all are more or less good in explaining certain features of the anomaly, but
fail in others. Possible explanations (this list is by no means complete) involve spontaneous
spin polarization [TNS+96, SYB03, Rei05], inelastic scattering [SMS08, LMS+09, BHS+13],
the Kondo effect [MHW02, RM06] and Wigner crystallization [Mat04, GmcUJB09]. Each of
this explanations has its advantages and disadvantages. Here we will give a short review of
the three most prominent:

Spontaneous spin polarization has been the first attempt to explain the 0.7-anomaly,
suggested by Thomas et al. in the same work, where they published the experimental finding
of the 0.7-anomaly [TNS+96]. The idea stems from the form of the conductance curve at
finite magnetic fields B: When B is increased, the 0.7-shoulder develops gradually in the
0.5-spin split step, that is expected to occur due to the Zeeman shift. The 0.7-shoulder at zero
magnetic field is then interpreted as the spin polarized remnant of the finite magnetic field
splitting. In this sense, the spontaneous polarization is analog to the remaining non-vanishing
magnetization in a ferromagnet at zero external magnetic field. Prominent criticism of
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this picture is that in one dimension the Mermin-Wagner theorem applies, prohibiting a
spontaneous breaking of continuous symmetries, like spin orientation. However it is under
debate whether this theorem can be applied so strictly in the given setup, which after all is
only approximately one-dimensional. Suggestions are that (similar to graphene in 2d), the
system can adopt a slight zig-zag structure to avoid the violation of the Mermin-Wagner
theorem. Concrete calculations to support the spontaneous spin polarization hypotheses were
carried out e.g. in [SYB03]. They used a zero temperature DFT approach which seems to
indeed show spontaneous spin-polarization of the energy levels. However, as was pointed
out by Bauer [Bau14], this sort of DFT calculations tend in general to converge preferably
towards polarized phases, missing out on the possibility of an unpolarized phase in between.
Furthermore, only local quantities like the renormalized local potentials are accessible, which
prohibits a direct computation of transport observables like the linear conductance.

As discussed above in Sec. 1.2.4, a recent experiment carried out in the Pepper group was
able to shine more light on the question whether spontaneous spin polarization occurs. Using
a 2DEG sample with strong spin-orbit interactions (SOI), they were able to measure directly
the spin polarization of the QPC, by analyzing electron trajectories in an applied out-of plane
magnetic field. They found that longer QPCs show indeed an onset of spin polarization, while
shorter QPCs remain unpolarized. Therefore, spontaneous spin polarization may certainly
play an important role in the physics of (longer) QPCs but to promote it as the single source
of the 0.7-anomaly may not be the whole truth.

Another, explanation attempt utilizes the Kondo-effect to explain the anomalous conduc-
tance behavior [MHW02, RM06]. The source of this view is mainly rooted in the finite bias
properties of the QPC conductance, see Sec. 1.2.2 above. The behavior of the QPC’s zero
bias anomaly resembles somewhat the zero bias anomaly displayed by the Kondo effect in
quantum dots, see e.g. [COK98]. The claim of this explanation attempt is that a (quasi-)
localized spin forms within the QPC that acts as a magnetic impurity, instigating the Kondo
effect. To validate this claim, density functional calculations where carried out, similar to
the ones used in the spin polarized setup above. Again DFT yields an access of one spin
species, however, now the data is interpreted even bolder. It is claimed that in the middle
of the QPC this access is exactly given by one spin 1/2, effectively yielding a localized
magnetic moment in the QPC center. More recent experiments seem to be in disagreement
with this localization theory. In [KOS+15] the authors present a novel method using NMR
measurements to investigate the spin properties of a QPC in the 0.7 regime. They find no
evidence of a localized spin and in fact, they support the thesis that their measurements can
be perfectly understood in the context of the next and final explanation of the 0.7 anomaly,
which we present below.

Our preferred explanation for the 0.7-anomaly is consensually referred to as “inelastic
scattering” [SMS08, LMS+09] - or also “Van-Hove ridge” explanation. It’s main idea is that
the anomalous properties in the 0.7-regime can be traced back to a large density of states
whose apex lies on the scale of Ωx above the band-bottom of the QPC. This shift of the
1d-divergent Van-Hove singularity away from the band edge is a geometry induced effect of
the QPC barrier, see Fig. 1.17(b). We stress here that this is not a interaction effect, but
can be understood perfectly well in a single-particle picture. However, the effect of this large
density of states becomes only prominent once interactions are taken into account. This can
already be seen in a simple Hartree-argument. To first order in the interaction, the self-energy
in the QPC is given by

Σσ
ii ∼ Unσi = U

ˆ µ

−∞
dω′A(ω′), (1.9)
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Figure 1.17 Local density of states Aj(ω) of a QPC barrier, reproduced from [BHvD14], (a) as
colorplot of site j and frequency ω and (b) Aj(ω) at different sites j. Note that at the QPC center
(j = 0) the LDOS attains its maximum at a small but finite value above 0. The oscillating structure
in the flanks of the QPC are due to Friedel oscillations.

where µ is the chemical potential, U a (here for simplicity onsite) interaction strength and
Aσi (ω) = − 1

π ImGσii(ω) is the local density of states (LDOS) at site i. This first order self-
energy is frequency independent and therefore just leads to a effective non-interacting model
with renormalized barrier. Since the interactions are repulsive, this effective barrier is higher
than the bare one. Furthermore, this effective barrier is highest, where A is biggest, i.e. in
the area around a conductance of g ≈ 0.7, leading to a pronounced reduction in that part of
the conductance curve. While it turns out that this simple Hartree argument alone is not
enough to explain the 0.7-anomaly, it already gives us an intuitive idea what the 0.7 anomaly
is rooted in: An enhanced density of states at the chemical potential in the 0.7-regime.

A more refined treatment of the physical setup, including higher order (and therefore
dynamic) contributions to the self-energy, leads to a more realistic conductance behavior,
especially for finite temperatures. Increasing temperature opens up the window for possible
scattering processes within the QPC. At zero temperature, all states below the chemical
potential are occupied, all above are empty. Therefore, an incoming electron at the chemical
potential can only scatter with other electrons at the chemical potential. All inelastic processes
in which an electron only gives a part of its energy to create particle-hole excitations are not
possible. At finite temperature, the occupation of electron levels within the QPC is given by
a Fermi distribution, therefore making a lot more processes possible.

Having this picture of the 0.7 anomaly in mind, the function renormalization group (fRG)
(see Sec. 2.3 below) yields a natural tool to reinforce and complement this argument via
direct calculations of the QPC conductance. Due to the involved nature of the problem, this
still poses a major challenge in itself and was done in several steps in our group, going from
static to dynamic Matsubara implementations (only reliably usable for zero temperature and
non-dynamic quantities) to a more recent Keldysh implementation.
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Having access to dynamical quantities, in particular the frequency resolved density of
states as well as transversal times of electrons through the QPC, peaked recently in an
extended insight into the QPC mechanics: Schimmel et al. [SBvD17] noticed that all three
of the major explanations presented above can be unified, via evoking a dynamical spin
polarization, which is semi-static on the time scale that electrons need to traverse the QPC.
This timescale is of the same order as spin-fluctuations occurring in the QPC. The explanation
for this is actually quite intuitive. For a not too long QPC (to avoid Luttinger behavior), the
natural degrees of freedom in the QPC are just Fermi-liquid like particle-hole excitations.
Therefore, changing the spin in the center of the QPC by 1/2 corresponds to the transport of
an electron from the middle to the edge of the QPC. Thus, on the timescale that an external
incoming electron needs to traverse the QPC, the other spins appear to be semi-static in the
sense that they cannot change their direction completely in that time.
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2 Method

In the first part of this chapter, various definitions and preliminaries used throughout this
thesis are stated. In the second part, our original work on the extended Coupled Ladder
Approximation in an efficient combined Matsubara/Keldysh formulation (in a similar way
as introduced by Karrasch [Kar10]) is presented. Here, the focus lies on the treatment of
symmetries and the derivation of the eCLA flow equations. This effectively combines the
eCLA parts in the method sections of our publications P1, Sec. 3.2 (Sec. II.A-C,E) and P3,
Sec. 5.2 (Sec. III.A.1-2,B.1-3) below, which the reader may skip on subsequent reading.

2.1 Definitions and preliminaries
In this section, definitions and known relations for various quantities used throughout this
thesis are stated. The formal fRG framework, within which we work, has been established
earlier and has been described in meticulous detail in the works by Karrasch [Kar10], Jakobs
[Jak09] and Bauer [Bau14]. Hence, here it will only be commented on briefly and also only
necessary definitions and important formulas used in our original work will be discussed. The
adopted conventions for Green’s functions, two-particle vertices, etc. are consistent with the
ones used in our publications P1, Sec. 3.2 - P3, Sec. 5.2 below.

2.1.1 Fourier convention

Real time

For a function f(t′|t) of m incoming particles at real times t = (t1, . . . , tm) and m outgoing
ones at real times t′ = (t′1, . . . , t′m), we define its real-frequency Fourier transform f(ω′|ω),1
with ω = (ω1, . . . , ωm) and ω′ = (ω′1, . . . , ω′m), via

f(ω′, ω) =
ˆ
dt

ˆ
dt′ei(ω

′t′−ωt)f(t′, t), (2.1a)

with ωt = ω1t1 + . . .+ωmtm and the integration over multi-indices
´
dt =

´
dt1 . . .

´
dtm and

correspondingly for ω′t′ and
´
dt′.2 The inverse Fourier transform of (2.1a) is given by

f(t′, t) = 1
(2π)2m

ˆ
dω

ˆ
dω′e−i(ω

′t′−ωt)f(ω′, ω). (2.1b)

Imaginary time

For a function f(τ ′|τ) of m incoming particles at imaginary times iτ = (iτ1, . . . , iτm) and
m outgoing ones at imaginary times iτ ′ = (iτ ′1, . . . , iτ ′m), with τi, τ

′
i ∈ [0, β], we define its

discrete, imaginary-frequency Fourier components f(ω′n|ωn), with ωn = (ωn1 , . . . , ωnm) and
ω′n = (ω′n1 , . . . , ω

′
nm), with imaginary Matsubara frequencies3 ωn = iTπ(2n+ 1), with n ∈ Z,

1 To simplify notation, we use the same symbol for a function and its Fourier transform. Which one is meant
will be clear from the context or from its specified argument.

2 Here and in the following, an integration without specified boundaries always runs from −∞ to ∞.
3 We consider here only the fermionic case, which suffices for our applications.
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via

f(ω′n, ωn) =
ˆ
dτ

ˆ
dτ ′e(ω′

nτ
′−ωnτ)f(τ ′, τ), (2.2a)

where ωnτ = ωn1τ1 + . . .+ωnmτm and the integration over multi-indices
´
dτ =

´
dτ1 . . .

´
dτm

and correspondingly for ω′nτ ′ and
´
dτ ′. The inverse Fourier transform of (2.2a) is given by

f(τ ′, τ) = 1
β2m

∑
ωn

∑
ω′
n

e−(ω′
nτ

′−ωnτ)f(ω′n, ωn), (2.2b)

where ∑ωn = ∑
ωn1
· · ·
∑
ωnm

, etc.

2.1.2 Structure of the Hamiltonian

In this thesis, we will consider Hamiltonians of the generic form

H = H0 +Hint =
∑
q′

1q1

(
hq′

1q1 + σ
B

2
)
c†q′

1
cq1 + 1

4
∑

q′
1q

′
2q1q2

v̄q′
1q

′
2|q1q2c

†
q′

1
c†q′

2
cq2cq1 , (2.3)

with the quadratic part H0 and the interacting part Hint. The indices q′1, . . . , q2 are composite
quantum numbers q = (i, σ, s) consisting of site i ∈ Z, spin σ ∈ {+,−} and band index s ∈ N.
All our applications will use a real Hamiltonian, i.e. h, v̄ ∈ R, and in particular the quadratic
part is symmetric

hq1q2 = hq2q1 . (2.4)

The interaction v̄q′
1q

′
2|q1q2 is antisymmetric, i.e. it is invariant under exchange of two incoming

or two outgoing particles,

v̄q′
1q

′
2|q1q2 = −v̄q′

2q
′
1|q1q2 = −v̄q′

1q
′
2|q2q1 . (2.5a)

Furthermore, the interaction is invariant w.r.t. swapping incoming and outgoing particles,

v̄q′
1q

′
2|q1q2 = v̄q1q2|q′

1q
′
2
. (2.5b)

As we will discuss in Sec. 2.2.4, this property is related to time-reversal symmetry.
In addition to the properties (2.4) - (2.5b) that affect all quantum numbers on an equal

footing, we also assume that hq′
1q1 and v̄q′

1q
′
2|q1q2 are SU(2) symmetric in spin space. In

particular, we have spin conservation and spin flip symmetry

v̄σ
′
1σ

′
2|σ1σ2 ∼ δσ′

1+σ′
2|σ1+σ2 , (2.6a)

v̄σ
′
1σ

′
2|σ1σ2 = v̄σ̄

′
1σ̄

′
2|σ̄1σ̄2 , (2.6b)

where σ̄ = −σ denotes the flipped spin.
In most of our applications,4 the Hamiltonian (2.3) will consist of a finite, one-dimensional

central region connected to two non-interacting leads on both ends, see Fig. 2.1. Therefore
we also often decompose the Hamiltonian via

H = HL +HLC +Hc +HCR +HR, (2.7)

4 except for some disorder calculations in Sec. 6 that use a finite system
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spatial sites

non-interacting non-interacting

interacting

Figure 2.1 Schematic of our generic physical setup, consisting of an interacting, inhomogeneous
center region described by HC , connected via the coupling terms HLC and HCR on both sides to
non-interacting leads HL and HR.

where HL/R are the Hamiltonians of the left/right lead, Hc is the Hamiltonian of the central
region and HLC and HCR are the respective couplings. In the following, we use the convention
that the central region lies between sites −N and N , i.e. it consists of 2N + 1 sites.

2.1.3 Heisenberg operators

For an operator A we define the time dependent operator AH(t) for a real time t in the
Heisenberg picture as

AH(t) = e−iH(ti−t)Ae−iH(t−ti), (2.8)

where ti is some initial time (in our applications ti = −∞) and H is the Hamiltonian of the
system. For Matsubara calculations, we consider the evolution in imaginary time t = iτ via

AH(τ) = e−H(τi−τ)Ae−H(τ−τi), (2.9)

where we use the modified Matsubara Hamiltonian H = H − µN , with the number operator
N and the chemical potential µ. This facilitates the treatment of imaginary time τ and
inverse temperature β on the same footing.

In the following, we will sometimes drop the subscript H or H for sake of compactness. If
not specified otherwise, time dependent operators are always meant to be understood in the
Heisenberg picture.

2.1.4 Expectation values

The expectation value of an observable A at time t is generically given by

〈A〉(t) := Tr[Aρ(t)], (2.10)

where ρ(t) is the density matrix of the system. If we know the value of ρ0 = ρ(ti) for an
initial time ti and assume the Hamiltonian to be time independent (as will be the case for all
our applications), the time dependence of ρ(t) is given by the Heisenberg equation of motion

ρ(t) = e−iH(t−ti)ρ0e
−iH(ti−t). (2.11)

Therefore, the expectation value of A is given by

〈A〉(t) = Tr[AH(t)ρ0] = 〈AH(t)〉, (2.12)
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Figure 2.2 Double time contour with forward “−” branch and backward “+” branch and initial
distribution ρ0

where in the last step we have introduced the general notation 〈·〉 := Tr[·ρ0].
In thermal equilibrium, the density matrix is of Gibbs form

ρ0 = ρeq ≡
e−β(H−µN)

Tr e−β(H−µN) , (2.13)

with β = 1/T being the inverse temperature (we set the Boltzmann constant kB = 1), µ the
chemical potential and N being the number operator. In this case, ρ0 commutes with the
Hamiltonian and therefore yields a constant density matrix ρ(t) = ρ0 for all times t.

In the non-equilibrium steady-state approach, we assume that at ti → −∞ our system
was in a product state

ρ0 = ρc0 ⊗ ρL0 ⊗ ρR0 , (2.14)

consisting of some initial state of the finite central region ρc0 which we do not further specify,
as well as the initial state of the infinite leads in thermal equilibrium

ρα0 = e−β(Hα−µαNα)

Tr e−β(Hα−µαNα) , (2.15)

where Hα, Nα, and µα with α ∈ {L,R} are the Hamiltonian, number operator, and the
chemical potential of the left/right lead, respectively. Since ti → −∞, the value of the initial
density matrix of the finite central region ρc0 does not matter5: At the time where we observe
the system, the influence of the initial state of the central region is already decayed and a
steady-state with constant current through the central region has emerged.

2.1.5 Keldysh conventions

Contour and Keldysh indices

In the following, we specify the conventions used for contour and Keldysh indices. We denote
indices living on the forward contour by “−” and indices on the backward contour by “+”,
see Fig. 2.2. As convention for the Keldysh rotation of a tensor object A we use

Aαα
′ =

∑
j,j′

(D−1)α|jAjj′
Dj′|α′

, (2.16)

where j = (j1, . . . , jn) with ji ∈ {−,+} are multi-indices in contour space, and α =
(α1, . . . , αn) with αi ∈ {1, 2} are multi-indices in Keldysh space. Furthermore, we use

5 We assume here that all eigenstates of the central region are coupled to the leads and therefore the initial
distribution of the central region can decay.
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the definition

Dj|α =
n∏
k=1

Djk|αk , (2.17)

where the elementary 2× 2 rotation matrix between contour- and Keldysh space is defined
by

D =
(
D−|1 D−|2

D+|1 D+|2

)
= 1√

2

(
1 1
−1 1

)
, (2.18a)

and correspondingly

D−1 =
(

(D−)1|− (D−)1|+

(D−)2|− (D−)2|+

)
= 1√

2

(
1 −1
1 1

)
. (2.18b)

2.1.6 Structure of the bare vertex

The interaction v̄ of the Hamiltonian introduced in Sec. 2.1.2, gives rise to a two-particle
bare vertex ν in the action.

Matsubara

In the Matsubara case, this bare vertex is given by

νq′
1q

′
2|q1q2(τ ′1, τ ′2|τ1, τ2) = δ(τ ′1 − τ ′2)δ(τ ′2 − τ1)δ(τ1 − τ2)v̄q′

1q
′
2|q1q2 (2.19)

and correspondingly in frequency space

νq′
1q

′
2|q1q2(ω′n1 , ω

′
n2 |ωn1 , ωn2) = βδn′

1+n′
2|n1+n2 v̄q′

1q
′
2|q1q2 . (2.20)

Keldysh

In the Keldysh case, one obtains an additional (Z2)4 Keldysh structure, stemming from the
doubling of the time contour, see Sec. 2.1.5. Expressing the bare vertex in contour space by
symmetrically placing one interaction component on the forward and one on the backward
branch yields

ν
j′

1j
′
2|j1j2

q′
1q

′
2|q1q2

(t′1, t′2|t1, t2) = (−j′1)δ(t′1 − t′2)δ(t′2 − t1)δ(t1 − t2)δj′
1=j′

2=j1=j2 v̄q′
1q

′
2|q1q2 . (2.21)

Rotation into Keldysh space yields correspondingly

ν
α′

1α
′
2|α1α2

q′
1q

′
2|q1q2

(t′1, t′2|t1, t2) =
{
δ(t′1 − t′2)δ(t′2 − t1)δ(t1 − t2)1

2 v̄q′
1q

′
2|q1q2 , if α′1 + α′2 + α1 + α2 odd

0 else,
(2.22)

which reads in frequency space

ν
α′

1α
′
2|α1α2

q′
1q

′
2|q1q2

(ω′1, ω′2|ω1, ω2) =
{

2πδ(ω′1 + ω′2 − ω1 − ω2)1
2 v̄q′

1q
′
2|q1q2 , if α′1 + α′2 + α1 + α2 odd

0 else.
(2.23)
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In the following, we will use the notation ν also for the reduced bare vertex, i.e. the
bare vertex without frequency structure. For this reduced quantity, we have ν = v̄ in the
Matsubara and

να
′
1α

′
2|α1α2 =

{1
2 v̄ for α′1 + α′2 + α1 + α2 odd
0 else

(2.24)

in the Keldysh case.

2.1.7 Definition of Green’s functions

We define the general n-particle Green’s function as

Gk′k =

(−1)n
〈
Tτ
[
cq′

1
(τ ′1) · · · cq′

n
(τ ′n)c†qn(τn) · · · c†q1(τ1)

]〉
Matsubara

(−i)n
〈
Tc
[
c
j′

1
q′

1
(t′1) · · · cj

′
n
q′
n
(t′n)c†jnqn (tn) · · · c†j1q1 (t1)

]〉
Keldysh,

(2.25)

where k = (τ, q) in the Matsubara case and k = (t, j, q) in the Keldysh case. The symbols Tτ
and Tc denote time ordering, either on the imaginary time axis or on the real double time
contour. Operators with later times (in the Keldysh case with times further along the double
contour, see Fig. 2.2) are placed to the left of operators with earlier times.6 At equal time,
creation operators are ordered to the left of annihilation operators. As usual, T and Tc yield
an overall “−” sign if the resulting time ordering is an odd permutation of the initial order,
and a “+” sign if it is an even one.

2.1.8 Compact notation for integration and sums

In the following, we will frequently have to integrate over real or imaginary times and
correspondingly integrate over real frequencies or sum over Matsubara frequencies. To be
able to use an efficient combined notation, we will write

ˆ
dk =

{´
dt Keldysh,´
dτ Matsubara,

(2.26)

and

∑
ω

=


1
β

∑
ωn

Matsubara,

1
2π

ˆ
dω Keldysh.

(2.27)

Notation-wise, we will often combine these integrations/summations with a summation over
all other quantum numbers

∑
k

=
∑
q̃


ˆ
dk time∑

ω

frequency,
(2.28)

with the composite index k consisting of time k or frequency ω and the rest of the appropriate
indices q. In the Matsubara case, q = (i, σ, s), it consists of the indices for site, spin and

6 Therefore, on the double time contour, the forward branch is internally time-ordered, while the backward
branch is internally anti-time-ordered.



2.1 Definitions and preliminaries 33

band. In the Keldysh case, we have an additional time contour index j or Keldysh index α,
i.e. q = (j, q) or q = (α, q), respectively.

2.1.9 Generating functions and definition of one particle irreducible
vertices

In this subsection, we use an efficient combined Matsubara/Keldysh notation similar to the
one introduced by Karrasch in Ref. [Kar10]. While most of our conventions are the same as
in [Kar10], we differ in the definition of the vertex functions in the Keldysh formalism, in
order to be consistent with the conventions introduced in Ref. [Jak09], which were used in
previous publications [HBSvD17, SBvD17] of our group. All factors in curly brackets {. . .}
are only present in the Keldysh formulation. Furthermore we define the scalar product

(ψ̄, ψ′) = {i}
∑
k

ψ̄kψ
′
k. (2.29)

The Green’s functions defined in (2.25) can also be obtained by using a generating function.
To establish this formalism, we first define the partition function

Z =
ˆ
Dψ̄ψ exp[S], (2.30)

where {ψ} is a set of fermionic Grassmann variables, carrying appropriate time and quantum
labels q, and the action S = S0 − {i}Sint consists of a quadratic part

S0 = i
∑
k,k′

ψ̄k[G−1
0 ]kk′ψk′ (2.31)

and an interaction part

Sint = 1
4

∑
k′

1k
′
2k1k2

νk′
1k

′
2k1k2ψ̄k′

1
ψ̄k′

2
ψk2ψk1 . (2.32)

The specific form of the bare propagator G0 resulting from the lead - central region - lead
structure of the Hamiltonian (2.7) is given in Sec. 2.1.12. In the Keldysh case, we have Z = 1
since, in the absence of external sources, any evolution on the forward branch is exactly
rewound on the backwards branch. By coupling the fields ψ̄, ψ to external sources η̄, η, we
can define the generating function

W (η̄, η) = 1
Z

ˆ
Dψ̄ψ exp

(
S0 − {i}Sint − (ψ̄, η)− (η̄, ψ)

)
. (2.33)

Using this generating function, the m-particle Green’s functions defined in (2.25) can be
obtained from W via

Gk′k = {−i}m δm

δη̄k′
1
. . . δη̄k′

m

δm

δηkm . . . δηk1

W (η̄, η)
∣∣∣
η̄=η=0

. (2.34)

If we furthermore defineW c = lnW , we can obtain the connected m-particle Green’s functions
as

Gck′k = {−i}m δm

δη̄k′
1
. . . δη̄k′

m

δm

δηkm . . . δηk1

W c(η̄, η)
∣∣∣
η̄=η=0

. (2.35)
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Applying a Legendre transformation on W c in (η̄, η), we obtain the generating function Γ for
the one-particle irreducible (1PI) vertices

Γ(φ̄, φ) = −W c(η̄, η)− (φ̄, η)− (η̄, φ) + (φ̄, G−1
0 φ), (2.36)

with the conjugate fields

φk = −{−i} δ

δη̄k
W c, (2.37a)

φ̄k = {−i} δ

δηk
W c. (2.37b)

From this function the 1PI vertices can be obtained via

γk′k = {(−i)(−1)m} δ

δφ̄k′
1
. . . φ̄k′

m

δ

δφkm . . . φk1

Γ(φ̄, φ)
∣∣∣
φ̄=φ=0

. (2.38)

Note that the definition (2.38) differs from the one given in Ref. [Kar10]: Instead of {−i}m
we set the prefactor to {(−i)(−1)m}, in order to obtain the same vertex conventions in the
Keldysh formalism as in Ref. [Jak09]. Correspondingly, this implies for the self-energy

Σk′
1|k1 = −{−1}γk′

1|k1 . (2.39)

This choice of sign ensures that the Dyson equations take the form as given in (2.73,2.74).

2.1.10 Time translational invariance

Since we consider only equilibrium or steady-state applications, all our objects will be
translationally invariant in time, or correspondingly the sum of incoming and outgoing
frequencies will be preserved. Therefore, we can define reduced objects depending on one
frequency less than the original ones. For these reduced objects, we will use the following
conventions (we suppress here all indices except frequencies):

Keldysh

G(ω′1, . . . , ω′n|ω1, . . . , ωn) ≡ 2πδ(ω′1 + . . .+ ω′n − ω1 − . . .− ωn)
×G(ω′2, . . . , ω′n|ω1, . . . , ωn), (2.40a)

γ(ω′1, . . . , ω′n|ω1, . . . , ωn) ≡ 2πδ(ω′1 + . . .+ ω′n − ω1 − . . .− ωn)
× γ(ω′2, . . . , ω′n|ω1, . . . , ωn), (2.40b)

Matsubara

G(ω′n1 , . . . , ω
′
nm |ωn1 , . . . , ωnm) ≡ βδn′

1+...+n′
m−n1−...−nm

×G(ω′n2 , . . . , ω
′
nm |ωn1 , . . . , ωnm) (2.41a)

γ(ω′n1 , . . . , ω
′
nm |ωn1 , . . . , ωnm) ≡ βδn′

1+...+n′
m−n1−...−nm

× γ(ω′n2 , . . . , ω
′
nm |ωn1 , . . . , ωnm). (2.41b)
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2.1.11 Structure of one-particle objects in Keldysh space

In contour space, the four components of the one-particle Green’s function and the self-energy
are linearly dependent

G−− −G−+ −G+− +G++ = 0, (2.42a)
Σ−− + Σ−+ + Σ+− + Σ++ = 0. (2.42b)

The rotation to Keldysh space (2.16), makes use of this dependence, yielding7

0 = G11 = 1
2
(
G−− −G−+ −G+− +G++

)
, (2.43a)

GA = G12 = 1
2
(
G−− +G−+ −G+− −G++

)
, (2.43b)

GR = G21 = 1
2
(
G−− −G−+ +G+− −G++

)
, (2.43c)

GK = G22 = 1
2
(
G−− +G−+ +G+− +G++

)
. (2.43d)

and

ΣK = Σ11 = 1
2
(
Σ−− − Σ−+ − Σ+− + Σ++

)
(2.44a)

ΣR = Σ12 = 1
2
(
Σ−− + Σ−+ − Σ+− − Σ++

)
(2.44b)

ΣA = Σ21 = 1
2
(
Σ−− − Σ−+ + Σ+− − Σ++

)
(2.44c)

0 = Σ22 = 1
2
(
Σ−− + Σ−+ + Σ+− + Σ++

)
. (2.44d)

Therefore, instead of four components we only have to keep track of three, the so called
retarded, advanced and Keldysh components.

2.1.12 Form of the bare propagator

The generic Hamiltonian stated above in Sec. 2.1.2 yields an action of the form given by
Eqs. (2.31),(2.32), where the spatial range of the composite indices k′1, . . . , k2 contains the
whole system. The bare propagator G0, e.g. in the Matsubara formalism, is then determined
by

G0(ωn) = 1
ωn −H0

, (2.45)

where

[H0]q′q = [H0 − µN ]q′q = hq′q + σ
B

2 − µ (2.46)

is the full one-particle part of the Matsubara Hamiltonian, including the leads.
In our applications, it suffices to compute both the bare propagator (G0)k′k and the full

propagator Gk′k with the indices k′, k lying in the central region. Since only the central
region of the system contains interactions, the contribution of the leads can be integrated out
analytically and absorbed into a self-energy contribution Σlead, see c.f. [Kar06]. Therefore,

7 Eqs. (2.43a),(2.44d) only hold, if the time arguments t′, t of G(t′, t) / Σ(t′, t) do not coincide. For the case
of equal times, see the discussion in Sec. 2.1.13.
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the bare Matsubara propagator (2.45) with k′, k in the central region can be written as

(G0)k′k(ωn) =
[ 1
ωn −H0c − Σlead(ωn)

]
k′k
, (2.47)

where H0c = H0c − µNc is the one-particle part of the Matsubara Hamiltonian of the central
region without the leads and the lead self-energy is given by

Σp
leadij(ωn) =

(
δ−Niδ−Nj + δNiδNj

)
fp(ωn + µ), (2.48)

with the composite spin and band index p = (σ, s). The form of the function fp(ω) depends
on the Hamiltonian of the leads and their coupling terms to the central region. In case of a
tight-binding chain as lead, the Hamiltonian of the left lead takes the form

HL = −τ
∑

j<−N−1,σ,p
[a†jpaj+1p + a†j+1pajp] +

∑
j<−N

a†jpajp
(σ

2B + Vs
)
, (2.49)

with τ being the hopping amplitude and Vs the overall band offset depending on the index s .
The Hamiltonian for the right lead HR looks analogous, with site index j > N . Computing
the self-energy contribution of the leads to the one-dimensional central region [−N,N ], one
obtains8 (c.f. [Kar06])

fp(ω) = 1
2
[
ωp − i

√
4τ2 − (ωp)2

]
, (2.50)

with

ωp = ω − σ

2B − Vs. (2.51)

In the Keldysh case, one can proceed analogously [Jak09]. Here one obtains for the bare
propagator connecting two sites within the central region

GR0 = 1
ω −H0c − ΣR

lead(ω)
, (2.52a)

GA0 = [GR0 ]†, (2.52b)
GK0 = GR0 ΣK

leadG
A
0 , (2.52c)

where ΣR
lead and ΣK

lead are given by

ΣRp
lead(ω)ij =

(
δ−Niδ−Nj + δiNδjN

)
fp(ω), (2.53)

and

ΣKp
lead(ω)ij = −i

(
δ−Niδ−Nj(1− 2nl(ω)) + δiNδjN (1− 2nr(ω))

)
Γp(ω), (2.54)

with

Γp(ω) = −2 Im fp(ω) (2.55)

= θ(2τ − |ωp|)
√

4τ2 − (ωp)2, (2.56)

8 Here and in the following, √. . . always denotes the principal branch of the complex square root. In particular,
for a complex number z with positive real part,

√
−z = i

√
z.
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and nl/r(ω) denotes the initial equilibrium Fermi distribution with chemical potential µl/r
and temperature Tl/r of the left/right lead.

In the case of thermal equilibrium, which will be the relevant case for all applications in
this thesis (except the non-equilibrium fRG flow equations given in Sec. 2.4.5 and App. A.3),
the Keldysh component of any single particle propagator (non-interacting or interacting)
fulfills the fluctuation-dissipation theorem (2.105).

There is a small caveat concerning the lead self-energy and hybridization function. In a
fRG approach, it can be advantageous to introduce the flow parameter Λ also in the lead
part of the quadratic action, in order to obtain a smoother fRG flow. This implies that the
form of fp(ω) in (2.50)and correspondingly the form of Γp(ω) in (2.56) is modified by the
flow parameter. In our applications below, this is the case for the Keldysh hybridization flow,
see Sec. 2.3.2. The modified forms fpΛ(ω) and ΓpΛ(ω) are specified in Eq. (2.130).

2.1.13 Equal time in Keldysh formalism

In this subsection, we take a brief look on what happens in the case of equal times occurring
in propagators. This deserves a small subsection by itself, since [Jak09, Sch17] comment only
novercally on this case. Let us look at a small example to illustrate the arising problem.
Consider the first order (Hartree) contribution to the self-energy

Σk′
1k1 = −{i}

∑
k′

2,k2

(G0)k2k′
2
νk′

1k
′
2|k1k2 . (2.57)

For concreteness, we look at the retarded component ΣR = Σ12. If we compute it in Keldysh
space, we obtain

ΣR
q′

1q1
(ω) = − i

4π
∑
q′

2,q2

ˆ
dω′
[
(G0)11 + (G0)22

]
q2q′

2
(ω′)v̄q′

1q
′
2|q1q2 , (2.58)

where we used the structure of the bare vertex (2.23). If we now naively insert the Keldysh
structure of the Green’s function (2.43), we obtain the wrong result

ΣR
q′

1q1
(ω) = 1

4πi
∑
q′

2,q2

v̄q′
1q

′
2|q1q2

ˆ
dω′(G0)Kq2q′

2
(ω′), (2.59)

or after transforming to contour space

ΣR
q′

1q1
(ω) = 1

8πi
∑
q′

2,q2

v̄q′
1q

′
2|q1q2

ˆ
dω′
[
G−−0 +G−+

0 +G+−
0 +G++

0

]
q2q′

2
(ω′). (2.60)

Now let us do the computation directly in contour space. We obtain

Σ++
q′q (ω) = − 1

2πi
∑
q′

2q2

ˆ
dω′ν̄q′q′

2|qq2(G0)++
q2q′

2
(ω′), (2.61a)

Σ−−q′q (ω) = 1
2πi

∑
q′

2q2

ˆ
dω′ν̄q′q′

2|qq2(G0)−−q2q′
2
(ω′), (2.61b)

Σ−+
q′q (ω) = Σ+−(ω) = 0, (2.61c)
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where we used the structure of the bare vertex in contour space (2.21). If we furthermore use

ΣR(ω) = 1
2
[
Σ−− − Σ−+ − Σ+− − Σ++

]
(ω), (2.62)

from Eq. (2.44b), we get the retarded self-energy

ΣR
q′q(ω) = 1

4πi
∑
q′

2q2

v̄q′q′
2|qq2

ˆ
dω′
[
(G0)−− + (G0)++

]
q2q′

2
(ω′), (2.63)

in contrast to the naive result (2.60).
To check that (2.63) is indeed the correct formula, we can evaluate the contour Green’s

functions. Using time translational invariance, we get for the evaluation at equal times

(G0)−−q2q′
2
(t, t) = (G0)−−q2q′

2
(0, 0) = (−i)〈Tc[a−q2(0)a−†q′

2
(0)]〉0 = i〈a†q2aq′

2
〉0 (2.64a)

(G0)++
q2q′

2
(t, t) = (G0)++

q2q′
2
(0, 0) = (−i)〈Tc[a+

q2(0)a+†
q′

2
(0)]〉0 = i〈a†q2aq′

2
〉0 (2.64b)

(G0)−+
q2q′

2
(t, t) = (G0)−+

q2q′
2
(0, 0) = (−i)〈Tc[a−q2(0)a+†

q′
2

(0)]〉0 = i〈a†q2aq′
2
〉0 (2.64c)

(G0)+−
q2q′

2
(t, t) = (G0)+−

q2q′
2
(0, 0) = (−i)〈Tc[a+

q2(0)a−†q′
2

(0)]〉0 = −i〈aq′
2
a†q2〉0. (2.64d)

Thus, using

1
2π

ˆ
dω′
[
(G0)−−0 + (G0)++

0

]
q2q′

2
=
[
(G0)−−0 + (G0)++

0

]
q2q′

2
(t, t)

= 2i〈a†q2aq′
2
〉0 = 2iδq2q′

2
(n0)q2 , (2.65)

with the non-interacting particle number (n0)q, we get for (2.63)

ΣR
q′q(ω) =

∑
q2

v̄q′q2|qq2(n0)q2 . (2.66)

In case of a spin conserving Hamiltonian with a purely constant onsite and one-band interaction

v̄
σ′σ′

2|σσ2
j′j′

2|jj2
= Uδj′=j′

2=j=j2

(
δσ′σδσ′

2σ2 − δσ′σ2δσ′
2σ

)
, (2.67)

we obtain

ΣRσ
ji (ω) = δijU(n0)jσ̄, (2.68)

with (n0)jσ̄ being the number of spin σ̄ particles on site j. This is indeed the correct and
well known Hartree result.

This small example shows that one has to be careful applying the Keldysh structure (2.43)
and (2.44) when dealing with equal times. Indeed, the arising problem that was illustrated
here stems from the wrong assumption

1
2π

ˆ
dωG11

0 (ω) = G11
0 (t, t) = 0. (2.69)

At equal times we have instead (using the relations (2.64))

(G0)11
q′q(t, t) = 1

2
(
G−−0 −G−+

0 −G+−
0 +G++

0

)
q′q

(t, t) = i

2〈{a
†
q, aq′}〉0 = i

2δq
′q. (2.70)
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2.1.14 A brief look at units

At the end of this section, it is a good point to take a step back and take a brief look at the
units of the various objects defined in the last subsections. In our chosen formulation we
have, in rough order of appearance (we call the unit of energy here E)

[H] = [h] = [v̄] = E, (2.71a)
[c], [c†] = [c(k)] = [c†(k)] = 0, (2.71b)
[ν(k′1, k′2|k1, k2)] = E4, (2.71c)
[ν(ω′1, ω′2|ω1, ω2)] = 0, (2.71d)
[S] = [S0] = [Sint] = [W ] = [W c] = [Γ] = 0, (2.71e)
[G(k′, k)] = 0, (2.71f)

[G(ω′, ω)] = 1
E2m , (2.71g)

[ψ̄(k)] = [ψ(k)] = 0, (2.71h)
[η̄(k)] = [η(k)] = E, (2.71i)
[φ̄(k)] = [φ(k)] = 0, (2.71j)[ δ

δη̄(k)
]

=
[ δ

δη(k)
]

= 0, (2.71k)[ δ

δφ̄(k)

]
=
[ δ

δφ(k)
]

= E, (2.71l)

[γ(k′, k)] = E2m, (2.71m)
[γ(ω′, ω)] = 0, (2.71n)
[γ(ω′2, . . . , ω′n|ω1, . . . , ωn)] = E, (2.71o)

[G(ω′2, . . . , ω′n|ω1, . . . , ωn)] = 1
E2n−1 , (2.71p)

where k is either t or τ and ω is either a continuous real (Keldysh) or discrete imaginary
frequency (Matsubara). The last two lines (2.71o) - (2.71p) are the reduced quantities from
(2.40,2.41) with one lesser frequency.

2.2 Properties of Green’s and vertex functions
In this section, we discuss exact properties of Green’s and vertex functions. In particular, we
we take a look at their various symmetries and analytic properties.

2.2.1 Dyson equation

We can express the full propagator using the bare propagator and the self-energy via the
Dyson equation, which reads in the Keldysh case

GR(ω) = GR0 +GR0 ΣRGR, (2.72)

and therefore

GR = 1
[GR0 ]−1 − ΣR

. (2.73)
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Completely analogously, we obtain for the Matsubara propagator

G = 1
[G0]−1 − Σ . (2.74)

2.2.2 Permutation of particles

Let P ∈ Sn be a permutation of {1, . . . , n} and (−1)P the sign of the permutation. Then, as
a direct consequence of the representations (2.34) and (2.36), we get the properties

GPk′|k = Gk′|Pk = (−1)PGk′|k, (2.75a)
γPk′|k = γk′|Pk = (−1)Pγk′|k, (2.75b)

for both the Matsubara k = (ωn, q) and Keldysh k = (ω, j, q) formulations.

2.2.3 Complex conjugation

Matsubara

In the Matsubara formalism, straight forward complex conjugation of the definition of the
multi-particle Green’s function (2.25) yields

Gq′q(τ ′, τ)∗ = Gqq′(−τ,−τ ′), (2.76)

or correspondingly in frequency space

Gq′q(ω′n, ωn)∗ = Gqq′(−ωn,−ω′n). (2.77)

Analogously, one obtains for the multi-particle vertex

γq′q(ω′n, ωn)∗ = γqq′(−ωn,−ω′n). (2.78)

Keldysh

In the Keldysh formalism, by complex conjugating the definition of (2.25), one obtains for
the Green’s function the following relation in contour space

Gj
′j
q′q(t

′, t)∗ = (−1)nGj̄j̄
′

qq′(t, t′). (2.79)

In Keldysh and frequency space, this leads to the following relations, see Ref. [Jak09]

G
α′|α
q′|q (ω′|ω)∗ = (−1)n+

∑
k
(α′
k+αk)G

α|α′

q|q′ (ω|ω′), (2.80a)

γ
α′|α
q′|q (ω′|ω)∗ = (−1)1+

∑
k
(α′
k+αk)γ

α|α′

q|q′ (ω|ω′), (2.80b)

where α′k, αk denote indices in Keldysh space.
In the one-particle case, this yields the well known relations

(GR)† = GA, (2.81a)
(GK)† = −GK , (2.81b)
(ΣR)† = ΣA, (2.81c)
(ΣK)† = −ΣK . (2.81d)
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2.2.4 Time reversal

In thermal equilibrium, the type of system that we are interested in exhibits a special
symmetry behavior under time-reversal, even when the Hamiltonian itself – in the case of
finite magnetic field – is not time-reversal invariant. For the choice of the single particle basis
|q〉 = |i, σ, s〉, this symmetry takes for the multi-particle Green’s function the form

G
{jj′}
qq′ (k, k′) = G

{jj′}
q̃q̃′ (k, k′)

∣∣∣
H̃
, (2.82)

where the contour indices {jj′} are only there in the real time formalism, the tilded quantities
are the time-reversed versions of their normal counterparts, and on the r.h.s. |H̃ indicates
that the time dependence should be evaluated using the time-reversed Hamiltonian. Note
that the formulation (2.82) places a requirement on both the Hamiltonian and the basis |q〉
used for the single-particle states. It does not hold for arbitrary single particle states |q〉.

To give (2.82) a precise meaning, we define the anti-unitary9 time-reversal operator Θ.
The action of this operator on the single particle basis states |p, σ〉, with p = (i, s) being
the combined quantum numbers of site index i and band index s, and with the spin index
σ ∈ {−,+}, is given by

Θ|p, σ〉 = ei
π
2 σ|p, σ̄〉. (2.83)

Correspondingly, its action on creation and annihilation operators takes the form

Θa†p,σΘ† = ei
π
2 σa†p,σ̄, (2.84a)

Θap,σΘ† = e−i
π
2 σap,σ̄. (2.84b)

To simplify notation, we denote the time-reversed states and operators via a tilde, |q̃〉 = Θ|q〉
and Ã = ΘAΘ†. To prove (2.82) we slightly generalize the argument given by Jakobs in
[Jak09] to our more general type of systems. All of the Hamiltonians in our applications
below (Secs. 3.2 - 6) are of the general form discussed in Sec. 2.1.2. In particular, all terms
that do not explicitly contain the magnetic field are assumed to obey spin conservation, and
spin flip symmetry, see Eq. (2.6). Using this property, direct computation shows that the
time-reversed Hamiltonian H̃ is equal to the Hamiltonian H with reversed magnetic field:

H̃(B) = H(−B). (2.85)

In order to show now (2.82), we note that we can relate the action of the anti-unitary operator
Θ on the basis states |q〉 to a unitary operator, namely Ω = e−iπSx , which is the operator
that rotates states by an angle of π in spin space around the x-axis. Its action on the single
particle z-axis eigenstates is given by

Ω|p, σ〉 = −i|p, σ̄〉. (2.86)

We note that Ω|p, σ〉 is proportional to Θ|p, σ〉, in particular we have

|q̃〉 = Θ|p, σ〉 = eiπ(σ+ 1
2 )Ω|p, σ〉 = eiπ(σ+ 1

2 )Ω|q〉. (2.87)

9 Note that the conjugate of a anti-linear operator Θ is defined by 〈ψ1|Θψ2〉 = 〈ψ2|Θ†ψ1〉, and therefore the
anti-unitary relations take the same form as the unitary ones, namely Θ†Θ = ΘΘ† = 1.
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Using this proportionality and the relations (2.84), we get

Gq̃′q̃

∣∣∣
H̃

= eiπ
∑

k
(σ′
k−σk))GΩq|Ωq′

∣∣∣
ΩHΩ†

= GΩq|Ωq′

∣∣∣
ΩHΩ†

, (2.88)

where we used spin conservation ∑k(σ′k − σk) = 0. Furthermore

GΩq′|Ωq

∣∣∣
ΩHΩ†

= ((−1){i})n Tr
[
e−β(ΩHΩ†−µN)T [aΩq′

1
. . . aΩq′

n
a†Ωqn . . . a

†
Ωq1

]
]

= ((−1){i})n Tr
[
Ωe−β(H−µN)Ω†T [Ωaq′

1
Ω† . . .Ωaq′

n
Ω†Ωa†qnΩ† . . .Ωa†q1Ω†]

]
= ((−1){i})n Tr

[
e−β(H−µN)T [aq′

1
. . . aq′

n
a†qn . . . a

†
q1 ]
]

= Gq′|q, (2.89)

where T ∈ {T, Tc} for the Keldysh or Matsubara formalism. Therefore (2.82) is fulfilled for
our Hamiltonian H and choice of single particle basis |q〉 = (i, σ, s).

Matsubara

In the Matsubara formalism, we can directly profit from relation (2.82), by computing for
the m-particle Green’s function (2.25)

Gq′q(τ ′|τ) = (−1)m
〈
T [a(τ ′1) . . . a(τ ′m)a†(τm) . . . a†(τ1)]

〉
= (−1)m(−1)P Tr

[
ρeqâ(τP (1)) . . . â(τP (2m))

]
= (−1)m(−1)P Tr

[
ΘρeqΘ†Θâ(τP (1))Θ† . . .Θâ(τP (2m))Θ†

]∗
(2.90)

where in the second line we have relabeled the times (τ ′1, . . . , τ ′m, τm, τ1) as (τ1, . . . , τ2m),
P ∈ SN (2m) is a suitable permutation with sign (−1)P , and â ∈ {a, a†} as appropriate. In
the third line, we used the general property

Tr[A] = Tr[ΘAΘ†]∗, (2.91)

as well as the identity Θ†Θ = 1. Furthermore, if we use

Θâq(τ)Θ† = Θ
[
eτH âqe

−τH
]
Θ† = ΘeτHΘ†ΘâqΘ†Θe−τHΘ†

= eτH̃ âq̃e
−τH̃ = âq̃(τ)

∣∣∣
H̃
, (2.92)

we obtain from (2.90)

Gq′q(τ ′|τ) = (−1)m(−1)P Tr
[
ρ̃ â(τP (1))|H̃ . . . â(τP (2m))|H̃

]∗
(2.93)

=
[
Gq̃′q̃(τ ′|τ)

]∗ (2.76)= Gq̃q̃′(−τ | − τ ′)
∣∣∣
H̃

(2.82)= Gqq′(−τ | − τ ′). (2.94)

Therefore, we see that this symmetry is indeed of a time-reversal character: All incoming
and outgoing indices are swapped and the times acquire a minus sign. In frequency space,
this takes the particular easy form

Gq′q(ω′n|ωn) = Gqq′(ωn|ω′n), (2.95a)
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i.e., simply all incoming and outgoing arguments are swapped. For the vertex, the analogous
relation

γq′q(ω′n|ωn) = γqq′(ωn|ω′n) (2.95b)

holds.

Keldysh

In the Keldysh formalism, the use of the time-reversal property (2.82) proves to be more
tricky. If one carries out the analog computation to (2.90), one obtains the relation

G̃jj
′

qq′(t, t′) = Gj̄
′j̄
q̃′q̃(−t

′| − t)
∣∣∣
H̃

(2.82)= Gj̄
′j̄
q′q(−t

′| − t), (2.96)

where the contour tilde Green’s function G̃ is defined as the standard one in (2.25), but with
the difference that the forward “−”-branch is now internally anti-time-ordered while the
backward “+”-branch is time-ordered. Due to the appearance of G̃ instead of G, we can not
easily get a relation of the form (2.95), as it is the case in the Matsubara formalism. However,
it turns out that there is another connection between G̃ and G, that can be derived from
the Kubo-Martin-Schwinger (KMS) relation, see (2.102) below. Combining the two relations
(2.96) and (2.102) yields again a symmetry relation for the Green’s function G, namely the
multi-particle fluctuation dissipation theorem (FDT). We will discuss the FDT in Sec. 2.2.5
below.

For now, we just want to comment on the special case of one-particle quantities. Here,
the internal time ordering of the contour branches does not really matter, since any desired
ordering can be achieved by putting the incoming and outgoing parts on different branches.
Concretely we have the relation

G̃
j′

1j1
q′

1q1
(t′1|t1) = G̃

j̄1j̄′
1

q′
1q1

(t′1|t1), (2.97)

and therefore we obtain with the general multi-particle property (2.96)

Gj
′j
q′q(t

′|t) (2.97)= G̃j̄j̄
′

q′q(t
′|t) = Gj

′j
qq′(−t| − t′). (2.98)

Transforming this to frequency yields

Gj
′j
q′q(ω

′|ω) = Gj
′j
qq′(ω|ω′), (2.99)

i.e. the incoming and outgoing arguments are swapped, except the contour indices. The
same relation also holds in Keldysh space, one simply has to exchange the contour indices
(j′, j) with Keldysh indices (α′, α). Furthermore, due to time translational invariance, the
one-particle quantities are diagonal in frequency, thus we can write compactly

G
R/A/K
q′

1q1
(ω) = G

R/A/K
q1q′

1
(ω). (2.100)

At this point, two remarks are in order. (i) Note that (2.100) for GR/A(ω) is consistent
with the (2.95), since GR/A(ω) are related to G(ω) via analytic continuation, see the discussion
in Sec. 2.2.7 below. (ii) The transposition property in (2.95,2.100) can also be understood
diagrammatically without explicitly referring to time-reversal symmetry but just by using
the fact that the Hamiltonian in all our applications (Sec. 3.2 - Sec. 6) is not only hermitian
but actually real and symmetric. In the following, we sketch the argument in the Keldysh
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Figure 2.3 Illustration of a diagram that contributes to Gij and after the exchange T of all internal
incoming and outgoing spatial and spin indices yields a diagram contributing to Gji.

formalism, the Matsubara argument is completely analogous. From the form of the bare
propagator discussed in Sec. 2.1.12 one can easily see that the transposition symmetry (2.100)
holds for GR0 (ω). Thermal equilibrium implies via the well known one-particle fluctuation-
dissipation theorem (2.105) that it is also true for GK0 (ω). Furthermore, also the bare
interaction is symmetric under exchange of incoming and outgoing site and spin indices, see
(2.5b). Let us now consider any diagram consisting of bare propagators and bare vertices
that contributes to the propagator GRij(ω). By exchanging the incoming and outgoing spatial
indices at all internal bare propagators and bare vertices, we obtain a diagram contributing
to GRji without changing the value of the diagram, see Fig. 2.3. The same holds true vice
versa and therefore we obtain GRij = GRji. Via the Dyson equation (2.73) one sees immediately
that the same must hold for the one-particle self-energy ΣR(ω).

2.2.5 Fluctuation-dissipation theorems

In case of thermal equilibrium, one can show in general that for the one-particle quantities so
called fluctuation-dissipation theorems (FDTs) hold, connecting the retarded and advanced
components with the Keldysh component. If additionally Eq. (2.82) holds, one can show a
similar statement (which we also call FDT) for two-particle quantities, see [Jak09].

The basis for both the single- and the multi-particle FDTs is the Kubo-Martin-Schwinger
(KMS) relation [Kub57, MS59, Kub66]

Tr
[
ρeqA(tA − iβ)B(tB)

]
= Tr

[
ρeqB(tB)eβµNA(tA)e−βµN

]
. (2.101)

Using this relation, one can derive a connection between the Green’s function G and the tilde
Green’s function G̃, introduced in Sec. 2.2.4 which takes the form

eβ∆j|j′ (ω|ω′)G
j|j′

q|q′(ω|ω′) = (−1)mj|j′
G̃j̄j̄

′

q|q′(ω|ω′), (2.102)

see [Jak09]. The functions ∆j|j′ and mj|j′ are defined as

mj|j′ =
∑

k:j′
k
=+

1−
∑

k:jk=+
1, (2.103)

i.e. mj|j′ measures how many more particles are incoming than outgoing on the backward
branch and

∆j|j′(ω|ω′) =
∑

k:j′
k
=+

(ω′k − µ)−
∑

k:jk=+
(ωk − µ). (2.104)
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One-particle quantities

In case of the one-particle Green’s function and one-particle self-energy, we can use (2.102)
together with the trivial connection (2.97) between G̃ and G to obtain the well known
one-particle FDTs

GK(ω) =
(
1− 2nF (ω)

)(
GR(ω)−GA(ω)

)
, (2.105a)

ΣK(ω) =
(
1− 2nF (ω)

)(
ΣR(ω)− ΣA(ω)

)
, (2.105b)

with the Fermi distribution

nF (ω) = 1
1 + eβ(ω−µ) . (2.106)

In thermal equilibrium, the Keldysh component is thus completely determined by the
knowledge of the retarded and advanced component.

Multi-particle quantities

In the general multi-particle case, we can use (2.102) together with the previous connection
(2.96) between G̃ and G obtained by the time-reversal property. This yields the multi-particle
FDTs derived in [Jak09], which take the form

ReGj
′|j
εj

′j
n

(ω′, ω) = −
[
1− 2nF (∆j′|j(ω|ω′) + µ)

]
ReGj|j

′

−εj|j′
n

(ω|ω′) (2.107a)

ImG
j′|j
−εj

′j
n

(ω′, ω) = −
[
1− 2nF (∆j′|j(ω|ω′) + µ)

]
ImG

j|j′

ε
j|j′
n

(ω|ω′), (2.107b)

where

εj
′|j
n = (−1)1+n+mj′|j

, (2.108)

and

Aj
′j
ε =

∑
α′,α

(−1)
∑

k
(α′
k

+αk)=ε

Dj′|α′
Aα

′|α(D−1)α|j , (2.109)

for an arbitrary multi-particle quantity A. An analogous statement holds for the n-particle
vertices

Re γj
′|j
ε
j′|j
1

(ω′|ω) = −
[
1− 2nF (∆j′|j(ω′|ω) + µ)

]
Re γj

′|j
−εj

′|j
1

(ω′|ω), (2.110a)

Im γ
j′|j
−εj

′|j
1

(ω′|ω) = −
[
1− 2nF (∆j′|j(ω′|ω) + µ)

]
Im γ

j′|j
ε
j′|j
1

(ω′|ω), (2.110b)

with

ε
j′|j
1 = −(−1)1+mj′|j

. (2.111)

The form of this symmetries will further simplify in the context of our fRG approximations,
due to simplifications of the two-particle vertex, see Sec. 2.4.5 below.
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2.2.6 Causality and related analytic properties in the Keldysh formalism

In our subsequent studies, it is often useful to consider the analytical properties of the
continuous Keldysh Green’s functions and vertex quantities as functions of frequencies. Using
a redundancy in the description of the Keldysh contour, one can obtain certain “causality”
relations [Jak09]. In particular, one gets that

G1...1|1...1 = 0 (2.112)

vanishes identically and that the reduced quantities (being functions of one frequency argument
less, in a sense analog to the definitions in (2.40))

G1...1
m-th pos.

2 1...1|1...1(ω′1, . . . ,��ω′m, . . . , ω′n|ω1, . . . ωn), (2.113a)

G1...1|1...
m-th pos.

2 1...1(ω′1, . . . , ω′n|ω1, . . . ,��ωm, . . . , ωn), (2.113b)

are analytic in the lower half plane (l.h.p.) for the frequencies ω′1, . . . , ω′n and analytic in the
upper half plane (u.h.p.) for the frequencies ω1, . . . , ωn.

Analogous statements can be derived for the two-particle vertex [Jak09]. In particular,
they imply that

γ2...2|2...2 = 0, (2.114)

and that

γ2...2
m-th pos.

1 2...2|2...2(ω′1, . . . ,��ω′m, . . . , ω′n|ω1, . . . ωn), (2.115a)

γ2...2|2...
m-th pos.

1 2...2(ω′1, . . . , ω′n|ω1, . . . ,��ωm, . . . , ωn), (2.115b)

are analytic in the lower half plane (l.h.p.) for the frequencies ω′1, . . . , ω′n and analytic in the
upper half plane (u.h.p.) for the frequencies ω1, . . . , ωn.

2.2.7 Connection Matsubara - Keldysh formalism

In the one-particle case, there is an easy connection between the Matsubara and the Keldysh
propagator, namely

G(ωn) = GR(ωn) for Imωn > 0, (2.116a)

and

G(ωn) = GA(ωn) for Imωn < 0. (2.116b)

Therefore, one can obtain the retarded Green’s function GR(ω) for real frequencies ω ≥ µ
from G(ωn) by analytic continuation from positive Matsubara frequencies, and the advanced
Green’s function GA(ω) for real frequencies ω < µ from G(ωn) by analytic continuation from
negative Matsubara frequencies, see Fig. 2.4.

For multi-particle Green’s functions there is in general no simple relation like (2.116)
between the thermal Green’s function and the Keldysh Green’s functions, see e.g. the discussion
in [Wel05]. One of the main reasons for this is that with four or more time arguments, not all
possible correlation functions can be expressed via the simple double time contour description.
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Figure 2.4 Illustration of the analytic continuation of G(ω) to either GR(ω) for ω > µ or GA(ω) for
ω < µ.

Figure 2.5 Illustration of the correlation function (2.117) that can not be represented on the usual
double contour (a). On the four branch contour (b) this is possible without a problem.

For example, for times t1 < t2 < t3 < t4 the correlator

〈a†(t3)a†(t4)a(t1)a(t2)〉 (2.117)

cannot be represented on the double time contour, see Fig. 2.5(a). However, if one allows
for a multi-contour description (i.e. multiple forward and backward branches) this problem
can be resolved, see Fig. 2.5(b). However, then the number of different contour components
grows, making the description more complicated.

2.3 General fRG equations
In this short section, we briefly review the concept of the functional Renormalization Group
(fRG) and explain the specific choice of our used flow parameters.

2.3.1 fRG flow equations

By introducing an artificial flow parameter Λ into the quadratic part of the action GΛ
0 ,10

and computing the derivative of the generating function of the vertices ΓΛ (2.36) w.r.t.
Λ, one can derive an infinite hierarchy of flow equations for the vertex functions γΛ

k′k, see
Ref. [Wet93, MSH+12]. A meticulous derivation via generating functionals can be found in

10 In the following the superscript, Λ indicates the dependence of an object on the flow parameter Λ.
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[Kar10, Bau14]. Alternatively, the flow equations can also be obtained in a diagrammatic
approach [Jak09], or as done very recently by Kugler [KvD18b, KvD18c, KvD18a], by taking
derivatives of the parquet-equations w.r.t. an introduced flow parameter. In our chosen
conventions, the flow equations for the one- and two-particle vertex take the following form

∂

∂ΛΣΛ
k′

1k1
= −{i}

∑
k′

2k2

SΛ
k2k′

2
γΛ
k′

1k
′
2|k1k2

(2.118a)

and

∂

∂Λγ
Λ
k′

1k
′
2|k1k2

= {i}
∑
k′

3k3

SΛ
k3k′

3
γΛ
k′

1k
′
2k

′
3|k1k2k3

+ {i}
∑

k′
3k

′
4k3k4

γΛ
k′

1k
′
2|k3k4

[
SΛ
k3k′

3
GΛ
k4k′

4

]
γΛ
k′

3k
′
4|k1k2

+ {i}
∑

k′
1k

′
2k1k2

γΛ
k′

1k
′
4|k3k2

[
SΛ
k3k′

3
GΛ
k4k′

4
+GΛ

k3k′
3
SΛ
k4k′

4

]
γΛ
k′

3k
′
2|k1k4

− {i}
∑

k′
3k

′
4k3k4

γΛ
k′

1k
′
3|k1k4

[
SΛ
k3k′

3
GΛ
k4k′

4
+GΛ

k3k′
3
SΛ
k4k′

4

]
γΛ
k′

4k
′
2|k3k2

, (2.118b)

where the single scale operator is given by

SΛ = {−}GΛ∂Λ[GΛ−1
0 ]GΛ. (2.119)

Note that due to the highly symmetric form of S in terms of G, the symmetries that we
stated earlier for the propagator G, namely complex conjugation (Sec. 2.2.3), time-reversal
(Sec. 2.2.4), and FDTs (Sec. 2.2.5) hold in the same form also for S.

2.3.2 Choice of flow parameters and initial conditions

So far, we have not specified how the flow parameter is concretely realized. This is done
differently in the Matsubara and Keldysh context.

Matsubara formalism

In the Matsubara case, we use a frequency cutoff as flow parameter, introduced in the bare
propagator of the central region via:

GΛ
0 (ωn) = θT (|ωn| − Λ)G0(ωn), (2.120)

with Λ being a positive number, starting from an initial value Λini =∞ and flowing towards
its final value Λfin = 0, and θT being a step function broadened on the scale of temperature

θT (ω) =


0, ω < −πT
1
2 + 1

2πT ω, |ω| ≤ πT
1, ω > πT.

(2.121)

Therefore GΛini
0 = 0, and GΛfin

0 = G0, i.e. the full bare propagator is recovered. The analytical
initial conditions for the self-energy and two-particle vertex are in this case simple to determine,



2.3 General fRG equations 49

namely

ΣΛini = 0, (2.122a)
γΛini = ν. (2.122b)

Numerically, we can not set Λini =∞, but rather we set it to a large number, much bigger
than any scale involved in the system, but still finite. Therefore, one has to include the flow
from Λ = ∞ to Λ = Λini < ∞ analytically. In this case, one obtains a modified numerical
initial condition for the self-energy, while the initial condition for the two-particle vertex
stays the same (see e.g. [Bau14])

ΣΛini
q′,q = 1

2
∑
p

v̄q′,p|q,p +O(Λ−1
ini ), (2.123a)

γΛini = ν. (2.123b)

Zero temperature limit
A special case occurs in the limit of vanishing temperature T → 0. In our concrete implemen-
tations of the Matsubara fRG flow in our publication P1, Sec. 3.2, this will be the only case
we study due to its simpler structure. In this case, on the one hand the step function (2.121)
becomes sharp, on the other hand the Matsubara frequencies become dense. Therefore, one
has to take some care when computing the derivative w.r.t. the flow parameter Λ. In this
derivative, combinations of δ and θ functions arise, which can be evaluated using Morris
lemma [Mor94], which states that

lim
ε→0

δε(ω)f(θε(ω)) = δ(ω)
ˆ 1

0
f(t)dt, (2.124)

if δε and θε are series of approximating functions

lim
ε→0

δε(ω) = δ(ω), (2.125a)

lim
ε→0

θε(ω) = θ(ω). (2.125b)

Using this, one obtains in the T = 0 case for the single-scale propagator appearing in the
flow of the self-energy (2.118a)

SΛ(ωn) = δ(|ωn| − Λ)G̃Λ(ωn), (2.126)

where

G̃Λ(ωn) = 1
(G0)−1(ωn)− ΣΛ(ωn) . (2.127)

Note that G0 in the denominator of (2.127) does not depend on the flow parameter Λ.
Analogously, one obtains for the products of single-scale and full propagators in the flow of
the two-particle vertex (2.118b)

SΛ(ωn1)GΛ(ωn2) = δ(|ωn1 | − Λ)θ(|ωn2 | − Λ)G̃(ωn1)G̃(ωn2). (2.128)

Keldysh formalism

In our Keldysh studies, we choose a hybridization flow, as described in detail in [Jak09, Sch17].
In this case, the flow parameter Λ is introduced as an artificial decay mechanism in our
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system via

GΛ
0 = 1

ω −H0c − ΣΛ
lead + i

2Λ
. (2.129)

Note that also the lead self-energy depends on Λ, since we use the artificial decay term i/2Λ
in the denominator of the bare propagator on all sites of the system including the leads. The
resulting components of the lead self-energy ΣRΛ

lead and ΣKΛ
lead are still of the form (2.53) and

(2.54), however the functions fp(ω) and Γp(ω) have to be replaced by

fpΛ(ω) = fp
(
ω + i

Λ
2
)
, (2.130a)

ΓpΛ(ω) = −2 Im fp
(
ω + i

Λ
2
)
. (2.130b)

The advantage of this hybridization flow compared to the frequency cutoff scheme used in
the Matsubara context is that it can be seen as describing an actually physical system in
each step of the flow. Therefore, conservation laws, fluctuation-dissipation theorems and
analytical properties must hold11 not just for the final result (as in the frequency cutoff
flow) but throughout the entire flow. Especially in the context of the real-frequency Keldysh
approach this turned out to be a major advantage [Jak09, Sch17].

Analogous to the Matsubara case, the numerical initial conditions amount to

ΣRΛini
q′,q (ω) = 1

2
∑
p

v̄q′p|qp, (2.131a)

ΣKΛini
q′,q (ω) = 0, (2.131b)

γΛ
ini = ν. (2.131c)

2.4 Extended Coupled Ladder Approximation
In this section, we will describe the derivation of the extended Coupled Ladder Approximation
(eCLA) which we developed to be able to treat finite-ranged interactions in QPCs.

2.4.1 Channel decomposition

Our starting ground are the fRG equations for self-energy and vertex (2.118) in a second-order
truncation, i.e. we neglect the three-particle vertex γΛ

k′
1k

′
2k

′
3|k1k2k3

. In this truncation, the fRG
equation for the vertex (2.118b) exhibits three natural channels, depending on the form of
the frequency argument. To make this explicit, one can replace the four fermionic frequency
arguments of the vertex (which are dependent, due to frequency conservation) by three
independent bosonic frequencies, defined as

Π = ω′1 + ω′2 = ω1 + ω2 (2.132a)
X = ω2 − ω′1 = ω′2 − ω1 (2.132b)
∆ = ω2 − ω′2 = ω′1 − ω1. (2.132c)

11 That is, if they are not broken by further approximations.
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Correspondingly the fermionic frequencies ω′1, . . . ω2 can be expressed as

ω′1 = 1
2(Π−X + ∆), (2.133a)

ω′2 = 1
2(Π +X −∆), (2.133b)

ω1 = 1
2(Π−X −∆), (2.133c)

ω2 = 1
2(Π +X + ∆). (2.133d)

Using the bosonic frequencies (2.132), the flow equation for the vertex (2.118b) can be written
as [Jak09]

∂

∂Λγ
Λ
k′

1k
′
2|k1k2

(Π, X,∆) = {i}
∑
ω

{

γΛ
k′

1k
′
2|k3k4

(
Π, ω + X −∆

2 , ω − X −∆
2

)[
SΛ
k3|k′

3

(Π
2 − ω

)
GΛ
k4k′

4

(Π
2 + ω

)]
γΛ
k′

3k
′
4|k1k2

(
Π, X + ∆

2 + ω,
X + ∆

2 − ω
)

(2.134a)

+γΛ
k′

1k
′
4|k3k2

(Π + ∆
2 + ω,X,

Π + ∆
2 − ω

)[
SΛ
k3k′

3

(
ω − X

2
)
GΛ
k4k′

4

(
ω + X

2
)

+ [G↔ S]
]

γΛ
k′

3k
′
2|k1k4

(
ω + Π−∆

2 , X, ω − Π−∆
2

)
(2.134b)

−γΛ
k′

1k
′
3|k1k4

(
ω + Π−X

2 , ω − Π−X
2 ,∆

)[
SΛ
k3k′

3

(
ω − ∆

2
)
GΛ
k4k′

4

(
ω + ∆

2
)

+ [G↔ S]
]

γΛ
k′

4k
′
2|k3k2

(Π +X

2 + ω,
Π +X

2 − ω,∆
)}
, (2.134c)

and correspondingly the flow of the self energy is given by

∂

∂ΛΣΛ
k′

1k1
(ω) = −{i}

∑
ω′

SΛ
k2k′

2
(ω′)γΛ

k′
1k

′
2|k1k2

(ω′ + ω, ω′ − ω, 0), (2.135)

where ω in (2.135) can either be a real Keldysh or imaginary Matsubara frequency. The
k’s here denote composite indices, comprised of all appropriate indices except frequencies
which are displayed explicitly. Here and in the following, we often apply the Einstein sum
convention for reasons of compactness, i.e. we do not write explicit sum symbols for the
internal indices. Furthermore, from here on, we suppress the superscript Λ. Note that the
flow equation (2.134) consists of three parts “channels”, each characterized by a special role of
one of the three frequency arguments Π, X,∆. In order to emphasize this, we have colored the
special bosonic frequencies for each channel in (2.134) in a different colors. The bubble parts
of (2.134), i.e. the parts in square brackets containing only S and G, depend only on this
specific frequency. This motivates the following approximation called channel decomposition,
which assumes that each channel is only dependent on its specific frequency and independent
of the other two bosonic frequencies, see e.g. [Kar06, Jak09, Bau14]. Concretely, we make
the ansatz

γ(Π, X,∆) ≈ ν + ϕP (Π) + ϕX(X) + ϕD(∆), (2.136)



52 Method

a)

b)

c)

S

G

S

G G S

Figure 2.6 Schematic of the three different channels, the particle-particle channel (a), and the
exchange and the direct part of the particle-hole channel (b) and (c).

which we insert on the l.h.s. of the flow equation (2.134). On the r.h.s. of (2.134) we simplify
(2.136) even further by using instead of γ a reduced γ̃A for each channel A ∈ {P,X,D}

γ̃A = ν + ϕA(Π) + φB + φC , (2.137)

where the contributions of the other two channels B and C 12 are approximated by static
values φB, φC in order to avoid frequency mixing between channels. On the specific choice of
φ we comment below, see the discussion to Eq. (2.145). Using (2.137) on the r.h.s. of (2.134),
we end up with the following flow equations for ϕA with A ∈ {P,X,D}

∂

∂Λ(ϕP )Λ
k′

1k
′
2|k1k2

(Π) = (γ̃P )Λ
k′

1k
′
2|k3k4

(Π)(Îpp)Λ
k3k4|k′

3k
′
4
(Π)(γ̃P )Λ

k′
3k

′
4|k1k2

(Π), (2.138a)
∂

∂Λ(ϕX)Λ
k′

1k
′
2|k1k2

(X) = (γ̃X)Λ
k′

1k
′
4|k3k2

(X)(Iph)Λ
k3k4|k′

3k
′
4
(X)(γ̃X)Λ

k′
3k

′
2|k1k4

(X), (2.138b)
∂

∂Λ(ϕD)Λ
k′

1k
′
2|k1k2

(∆) = −(γ̃D)Λ
k′

1k
′
3|k1k4

(∆)(Iph)Λ
k3k4|k′

3k
′
4
(∆)(γ̃D)Λ

k′
4k

′
2|k3k2

(∆), (2.138c)

with the bubble terms

(Îpp)Λ
k3k4|k′

3k
′
4
(Π) = {i}

∑
ω

[
SΛ
k3|k′

3

(Π
2 − ω

)
GΛ
k4k′

4

(Π
2 + ω

)]
, (2.139a)

(Iph)Λ
k3k4|k′

3k
′
4
(X) = {i}

∑
ω

[
SΛ
k3|k′

3

(
ω − X

2
)
GΛ
k4k′

4

(
ω + X

2
)

+ [G↔ S]
]
. (2.139b)

The notation pp- and ph-bubble stands for “particle-particle” and “particle-hole”, and stems
from the direction of the internal lines, see Fig. 2.6. Using the channel decomposition (2.136),
the flow of the self-energy takes the form

∂

∂ΛΣΛ
k′

1k1
(ω) = −{i}

∑
ω′

SΛ
k2k′

2
(ω′)

[
νk′

1k
′
2|k1k2 + (ϕP )Λ

k′
1k

′
2|k1k2

(ω′ + ω)

+ (ϕX)Λ
k′

1k
′
2|k1k2

(ω′ − ω) + (ϕD)Λ
k′

1k
′
2|k1k2

(0)
]
. (2.140)

The reasoning behind the approximation of the channel decomposition (2.136) is to assume
that most of the frequency dependence of a channel is captured in its specific prominent
bosonic frequency, while the dependence on the other two bosonic frequency arguments is

12 B,C ∈ {P,X,D} \ {A} and B 6= C
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not as pronounced. This requirement is in general only fulfilled for small and intermediate
interaction strengths, as the error introduced by the approximations (2.136) and (2.137)
is of third order in the interaction strength. This is no real setback for the fRG scheme
presented here, since by neglecting the three-particle vertex in (2.134), we use a second-order
truncation anyway. However, due to the overall perturbative nature of our fRG approach, the
interaction strength in our applications in Sec. 3.2 - Sec. 6 can not be increased arbitrarily.
Despite this limitation, it was shown in the past that for our type of systems the use of
second-order truncation in conjunction with the channel-decomposition (2.136) usually yields
reliable results up to intermediate interaction strengths. In Ref. [KHP+08], second-order
fRG schemes with and without channel decomposition were compared and shown to yield
similar results for the single impurity Anderson model (SIAM). Furthermore, Schimmel et
al. showed in [SBvD17] that second-order fRG with the presented channel decomposition
scheme (2.136) yields results for the spectral function in QPC systems that are very similar
to the ones obtained using state of the art DMRG techniques. In recent and more advanced
versions of fRG, such as mfRG, the single-frequency-per-channel has to be dropped. There,
full description of dependence on all three frequencies is needed, e.g. using the parametrization
of [].

Note that even though in (2.136) the different channel components of ϕ seem to be
independent, the X- and D-channel are related via the particle permutation symmetry (2.75b).
Explicitly, we have e.g. for the permutation of the outgoing particles

γk′
1k

′
2|k1k2(Π, X,∆)

= γk′
1k

′
2|k1k2

(1
2(Π−X + ∆), 1

2(Π +X −∆)
∣∣∣12(Π−X −∆), 1

2(Π +X + ∆)
)

= −γk′
2k

′
1|k1k2

(1
2(Π +X −∆), 1

2(Π−X + ∆)
∣∣∣12(Π−X −∆), 1

2(Π +X + ∆)
)

= −γk′
2k

′
1|k1k2(Π,∆, X) (2.141)

and therefore we obtain for ϕA with A ∈ {Π, X,∆} the relations

(ϕP )k′
1k

′
2|k1k2(Π) = −(ϕP )k′

2k
′
1|k1k2(Π) (2.142a)

(ϕX)k′
1k

′
2|k1k2(X) = −(ϕD)k′

2k
′
1|k1k2(X). (2.142b)

Analogous one obtains for the permutation of the incoming particles

(ϕP )k′
1k

′
2|k1k2(Π) = −(ϕP )k′

1k
′
2|k2k1(Π) (2.143a)

(ϕX)k′
1k

′
2|k1k2(X) = −(ϕD)k′

1k
′
2|k2k1(−X). (2.143b)

One can show (see App. A.4) that the relations (2.142) and (2.143) are conserved under the
fRG flow (2.134) and (2.135)). Therefore, since the initial vertices ϕAΛini = 0 obey them,
also all ϕAΛ with finite Λ will fulfill them. Further relations between the components of the
ϕA are introduced by the complex conjugation symmetry (Sec. 2.2.3), thermal equilibrium
and time-reversal properties (Sec. 2.2.4-2.2.5). Additionally to those physical symmetries,
the approximated fRG flow equations (2.138) introduce further (artificial) relations between
the ϕA components by themselves. In particular, they reduce the number of independent
Keldysh components, c.f. Eq. (2.202). We study these properties in detail below.
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We also want to remark that by utilizing the particle permutation symmetry (2.75b) as
above in (2.142,2.143), we could have used in (2.138) the symmetrized version

Ipp = 1
2(Îpp + Îpp[G↔ S]) (2.144)

instead of Î, where Îpp[G↔ S] is defined as Îpp in (2.139), just with interchanged roles of G
and S. In the following, we will usually use Ipp instead of Îpp due to the explicit symmetry
of G and S.

The only thing left at this point, in order to completely specify our approximation scheme,
is to make a concrete choice for the static feedback components φP , φX and φD in (2.137).
The simplest approach, which we also want to follow in this work, is to treat the φA with
A ∈ {P,X,D} as an effective additional contribution to the bare vertex ν. In order for this
to be valid, we require the φA to be real and, in the Keldysh case, to have the same Keldysh
structure as the bare vertex, see (2.22). In [Jak09] a particularly elegant choice of the φA in
thermal equilibrium was suggested, namely

φP = ϕP (Πf ), φX = ϕX(Xf ), φD = ϕD(∆f ), (2.145)

with a particular choice of so called feedback frequencies Πf , Xf and ∆f . In the Keldysh
formulation, the appropriate choice for these feedback frequencies is

Πf = 2µ, Xf = ∆f = 0. (2.146)

For these special frequencies, the φA defined in (2.145) are real and, as we will show below in
2.4.5, exhibit the same Keldysh structure as the bare vertex (2.22).

In the Matsubara case, we set the feedback frequencies to

Πf = Xf = ∆f = 0. (2.147)

Note that (2.147) is completely analogous to the choice (2.146). The apparent difference in
the choice of Πf only stems from the different choice of the zero point in frequencies for the
Matsubara and Keldysh formalism. In the Matsubara formulation, the zero point is set to the
chemical potential µ, while in the Keldysh formulation the zero point is chosen independent
of µ (we usually choose the middle of the non-interacting energy band as zero). The effect of
the choices (2.146) or (2.147) therefore is the same: In the integrand of the Iph bubble, both
G and S are evaluated at the same frequency, while the frequency arguments of G and S in
the integrand of the Ipp bubble become symmetric around the chemical potential.

In the Matsubara case, it is immediately apparent that the choice (2.147) yields the
correct structure for the φA by simply using the symmetry (2.77), as well as the corresponding
symmetry for the single-scale propagator S(ωn)∗ = S(−ωn), which can easily be deduced
from the definition (2.119). We get for the integrand of Ipp (c.f. Eq. (2.144))

G
(Πf

2 − ωn
)
S
(Πf

2 + ωn
)

+ [G↔ S] = G(−ωn)S(ωn) + [G↔ S] (2.148)

=
(
G(−ωn)S(ωn) + [G↔ S]

)∗
=
[
G
(Πf

2 − ωn
)
S
(Πf

2 + ωn
)

+ [G↔ S]
]∗
. (2.149)
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and analog for the integrand of Iph

∑
ω

[
S
(
ω − Xf

2
)
G
(
ω + Xf

2
)

+ [G↔ S]
]

=
∑
ω

[
S(ω)G(ω) + [G↔ S]

]
=
∑
ω

[
S(−ω)G(−ω) + [G↔ S]

]∗
=
∑
ω

[
S(ω)G(ω) + [G↔ S]

]∗
∑
ω

[
S
(
ω − Xf

2
)
G
(
ω + Xf

2
)

+ [G↔ S]
]∗
. (2.150)

Therefore, the bubbles Ipp(Πf ), Iph(Xf ), Iph(Df ) and with them also φP , φX and φD are
real and thus the latter can be seen as effective addition to the bare vertex ν.

In the Keldysh case, the corresponding computations are somewhat more complicated,
however the idea is the same. In thermal equilibrium, one can show that the bubbles are
real at the feedback frequencies (see App. A.1). Therefore, also the feedback terms φP , φX ,
φD are real. Using the explicit form of the vertex Keldysh structure (2.202) and the FDTs
(2.237) furthermore yields that the feedback terms have the same Keldysh structure as the
bare vertex.

2.4.2 Spin structure

Before discussing the more complicated spatial structure, we first take a look at the spin
structure of the fRG flow (2.138, 2.140). For any quantity Aσ

′
1σ

′
2|σ1σ2 with spin indices

σ′1, . . . , σ2 we define

Aσσ := Aσσ|σσ, (2.151a)
Aστ := Aστ |στ , (2.151b)

with σ, τ =↑, ↓. Using spin conservation as well as the particle permutation symmetries (2.143,
2.142), we can reduce the number of independent channel and spin components of ϕ to seven,
namely

(ϕP )↑↓, (ϕP )σσ (2.152a)
(ϕX)↑↓, (2.152b)
(ϕD)↑↓, (ϕD)σσ, (2.152c)

with σ =↑, ↓. In terms of this spin components, the flow of the self-energy (2.140) can be
written as

∂

∂ΛΣ↑k′
1k1

(ω) = −{i}
∑
ω′

{
S↑k2k′

2
(ω′)

[
ν↑↑k′

1k
′
2|k1k2

+ (ϕP )↑↑k′
1k

′
2|k1k2

(ω′ + ω)− (ϕD)↑↑k′
2k

′
1|k1k2

(ω′ − ω) + (ϕD)↑↑k′
1k

′
2|k1k2

(0)
]

+S↓k2k′
2
(ω′)

[
ν↑↓k′

1k
′
2|k1k2

+ (ϕP )↑↓k′
1k

′
2|k1k2

(ω′ + ω) + (ϕX)↑↓k′
1k

′
2|k1k2

(ω′ − ω) + (ϕD)↑↓k′
1k

′
2|k1k2

(0)
]}
,

(2.153a)
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and

∂

∂ΛΣ↓k′
1k1

(ω) = −{i}
∑
ω′

{
S↑k2k′

2
(ω′)

[
ν↑↓k′

2k
′
1|k2k1

+ (ϕP )↑↓k′
2k

′
1|k2k1

(ω′ + ω) + (ϕX)↑↓k′
2k

′
1|k2k1

(ω − ω′) + (ϕD)↑↓k′
2k

′
1|k2k1

(0)
]

+S↓k2k′
2
(ω′)

[
ν↓↓k′

1k
′
2|k1k2

+ (ϕP )↓↓k′
1k

′
2|k1k2

(ω′ + ω)− (ϕD)↓↓k′
2k

′
1|k1k2

(ω′ − ω) + (ϕD)↓↓k′
1k

′
2|k1k2

(0)
]}
,

(2.153b)

where we used (2.143, 2.142) and the symmetry properties of the bare interaction (2.5a).
Furthermore, using the γ̃ components

(γ̃P )σσk′
1k

′
2|k1k2

(Π) =
[
ν + (ϕP )(Π) + (φD)

]σσ
k′

1k
′
2|k1k2

− (φD)σσk′
2k

′
1|k1k2

, (2.154)

(γ̃P )↑↓k′
1k

′
2|k1k2

(Π) =
[
ν + (ϕP )(Π) + (φX) + (φD)

]↑↓
k′

1k
′
2|k1k2

, (2.155)

(γ̃X)↑↓k′
1k

′
2|k1k2

(X) =
[
ν + (ϕX)(X) + (φP ) + (φD)

]↑↓
k′

1k
′
2|k1k2

, (2.156)

(γ̃D)σσk′
1k

′
2|k1k2

(∆) =
[
ν + (ϕD)(∆) + (φP )

]σσ
k′

1k
′
2|k1k2

− (φD)σσk′
2k

′
1|k1k2

, (2.157)

(γ̃D)↑↓k′
1k

′
2|k1k2

(∆) =
[
ν + (ϕD)(∆) + (φP ) + (φX)

]↑↓
k′

1k
′
2|k1k2

, (2.158)

(2.159)

the fRG flow of the vertex components (2.152) is given by

∂

∂Λ(ϕP )σσk′
1k

′
2|k1k2

(Π) = (γ̃P )σσk′
1k

′
2|k3k4

(Π)(Ipp)σσk3k4|k′
3k

′
4
(Π)(γ̃P )σσk′

3k
′
4|k1k2

(Π), (2.160a)
∂

∂Λ(ϕP )↑↓k′
1k

′
2|k1k2

(Π) = 2(γ̃P )↑↓k′
1k

′
2|k3k4

(Π)(Ipp)↑↓k3k4|k′
3k

′
4
(Π)(γ̃P )↑↓k′

3k
′
4|k1k2

(Π), (2.160b)
∂

∂Λ(ϕX)↑↓k′
1k

′
2|k1k2

(X) = (γ̃X)↑↓k′
1k

′
4|k3k2

(X)(Iph)↑↓k3k4|k′
3k

′
4
(X)(γ̃X)↑↓k′

3k
′
2|k1k4

(X), (2.160c)
∂

∂Λ(ϕD)↑↑k′
1k

′
2|k1k2

(∆) = −
[
(γ̃D)↑↑k′

1k
′
3|k1k4

(∆)(Iph)↑↑k3k4|k′
3k

′
4
(∆)(γ̃D)↑↑k′

4k
′
2|k3k2

(∆) (2.160d)

+ (γ̃D)↑↓k′
1k

′
3|k1k4

(∆)(Iph)↓↓k3k4|k′
3k

′
4
(∆)(γ̃D)↑↓k′

2k
′
4|k2k3

(−∆)
]
, (2.160e)

∂

∂Λ(ϕD)↓↓k′
1k

′
2|k1k2

(∆) = −
[
(γ̃D)↓↓k′

1k
′
3|k1k4

(∆)(Iph)↓↓k3k4|k′
3k

′
4
(∆)(γ̃D)↓↓k′

4k
′
2|k3k2

(∆) (2.160f)

+ (γ̃D)↑↓k′
3k

′
1|k4k1

(−∆)(Iph)↑↑k3k4|k′
3k

′
4
(∆)(γ̃D)↑↓k′

4k
′
2|k3k2

(∆)
]
, (2.160g)

∂

∂Λ(ϕD)↑↓k′
1k

′
2|k1k2

(∆) = −
[
(γ̃D)↑↑k′

1k
′
3|k1k4

(∆)(Iph)↑↑k3k4|k′
3k

′
4
(∆)(γ̃D)↑↓k′

4k
′
2|k3k2

(∆) (2.160h)

+ (γ̃D)↑↓k′
1k

′
3|k1k4

(∆)(Iph)↓↓k3k4|k′
3k

′
4
(∆)(γ̃D)↓↓k′

4k
′
2|k3k2

(∆)
]
. (2.160i)

2.4.3 Spatial structure

For our choice of systems, the second-order truncation with channel decomposition is unfor-
tunately not yet enough to enable a numerical treatment. For QPC applications, we usually
use Ntot = 61 sites for the interacting central region in order to be able to resolve the QPC
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barrier properly. The resulting N4
tot different spatial components (plus additional frequency,

spin, band and Keldysh structure) are too many to be stored in the RAM memory of current
processors. Therefore, we have to introduce another approximation scheme, to reduce the
number of spatial indices. Our guideline for this will be to only keep spatial components which
are at least generated in second-order perturbation theory in the interaction. Components
that are generated only in higher order will not be kept systematically. This idea was first
implemented by Bauer et al. for the case of onsite interactions in the so called Coupled Ladder
Approximation (CLA) [BHvD14]. Here, we extend this idea to the case of finite-ranged
interactions and correspondingly call it the extended Coupled Ladder Approximation (eCLA).

In order to formulate the eCLA efficiently, it is advantageous to introduce a new notation
for the spatial indices of any channel dependent quantity ΞA, with A ∈ {P,X,D} that
exhibits four spatial indices. In (2.160), these quantities (there Ξ ∈ {ϕ, γ̃, I}) are of the form

(ΞA)j′
1j

′
2|j1j2 , (2.161)

with indices running in the range −N ≤ j′1, . . . , j2 ≤ N ( the number of total sites is
Ntot = 2N +1). In particular, the index ranges are independent of the channel A ∈ {P,X,D}.
Now we introduce channel dependent indices

(ΞP )lkji = (ΞP )j(j+l)|i(i+k), (2.162a)
(ΞX)lkji = (ΞX)j(i+k)|i(j+l), (2.162b)
(ΞD)lkji = (ΞD)j(i+k)|(j+l)i, (2.162c)

where we refer to l, k as short and j, i as long indices with ranges

−L ≤ l, k ≤ L, (2.163a)
max(−N,−N − l) ≤ j ≤ min(N,N + l), (2.163b)
max(−N,−N − k) ≤ i ≤ min(N,N + k), (2.163c)

with the feedback length L. If one chooses L = 2N , the description (2.162) is equivalent to
the original description (2.161). If, however, L is chosen smaller than 2N , this introduces
an additional approximation that sets all old vertex components in (2.161) which cannot be
described by (2.162) to zero.

By comparison with the terms generated in second order perturbation theory (c.f. second
order diagrams in Pub. 1 in Sec. 3.2), we see that all spatial components which are generated
in second order in the interaction, are included in our description (2.162) if the feedback
length L is chosen at least as large as the interaction range LU (we assume that the Coulomb
interaction Uji between to sites is only finite if |j − i| ≤ LU ). Correspondingly, the CLA
scheme used by Bauer et al. is a special case of our description. In order to reduce the eCLA
to the CLA, we have to set the feedback length to zero, L = 0 and omit all the (φD)↑↓
contributions (those are not contained in the CLA description since, in the case of onsite
interactions, they do not contribute in second order ).

In the following, we will often use block matrix multiplication for spatial indices

[A ·B]lkji =
∑
l′,j′

All
′
jj′Bl′k

j′i , (2.164)
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as well as the spatial transformations

(AT )lkji = Aklij , (2.165a)

(AI1)lkji = A
(−l)k
(j+l)i, (2.165b)

(AI2)lkji = A
l(−k)
j(i+k), (2.165c)

(AI)lkji = A
(−l)(−k)
(j+l)(i+k). (2.165d)

Note that the I and T transformations commute, i.e. (AT )I = (AI)T , and that one has

(AB)T = BTAT , (2.166a)
(AB)I = AIBI . (2.166b)

For an efficient notation of the flow equations, we also introduce for a two spatial index
quantity Yji the notation

Y l
j = Yj(j+l). (2.167)

Furthermore, we define the transformations

[Y T ]ji = Yij , (2.168a)
(Y I)lj = Y −l(j+l). (2.168b)

(2.168c)

Note that, in particular, we have for two spatial index quantities

(Y I)lj = (Y T )lj . (2.169)

For the occurring products of two index Y and four index quantities A, we introduce the
notation

[A · Y ]lj = AlkjiY
k
i , (2.170a)

Tr[A× Y ]ji = AlkjiY(i+k)(j+l). (2.170b)

For these products, the following symmetries hold

(A · Y )I = AI · Y I , (2.171a)[
Tr[A× Y ]

]T
= Tr[AT × Y T ]. (2.171b)

Furthermore, we will adapt the following convention for the bare vertex: Whenever we
write an expression like

[v̄ + ΞA]lkji , (2.172)
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where ΞA is a channel dependent vertex quantity, the bare vertex is to be evaluated with the
spatial structure appropriate for channel A, i.e. explicitly we have

[v̄ + ΞP ]lkji = [v̄ + ΞP ]j(j+l)|i(i+k), (2.173a)
[v̄ + ΞX ]lkji = [v̄ + ΞX ]j(i+k)|i(j+l), (2.173b)
[v̄ + ΞD]lkji = [v̄ + ΞD]j(i+k)|(j+l)i. (2.173c)

Having introduced the short index description (2.162), as well as the explicitly formulated
spin structure (2.160) of the flow equations, we have everything at hand to formulate the
eCLA flow equations for the Matsubara case. In the real-frequency Keldysh formulation, we
still have to resolve the Keldysh structure of the flow. Therefore, let us take a look at the
easier Matsubara formulation first.

2.4.4 Matsubara formulation of the eCLA

In this subsection, we specify the eCLA flow equations to the Matsubara case. For this,
we combine the short index description (2.162) with the explicit spin structure of the fRG
flow (2.160). Furthermore, we discuss the special cases of magnetic field, as well as zero
temperature. In the latter case, we also argue that a static approximation is sufficient and
discuss its specific form.

In order to connect with our publication P1 in Sec. 3.2 ,13 we introduce the following
vertex bubble quantities

(WP )lkσσ′
ji (Π) = (Ipp)σσ′

j(j+l)|i(i+k)(Π) = T

2
∑
n

[
Sσji(ωn)Gσ′

(j+l)(i+k)(Π− ωn) + [S ↔ G]
]

(2.174a)

(WX)lkσσ′
ji (X) = (Iph)σσ′

j(i+k)|i(j+l)(X) = T
∑
n

[
Sσji(ωn)Gσ′

(i+k)(j+l)(ωn +X) + [S ↔ G]
]
.

(2.174b)

For our generic fRG flow, we will only need six of these vertex bubbles, namely

(WP )σσ, (WP )↑↓, (WX)σσ, (WX)↑↓, (2.175)

with σ =↑, ↓. Furthermore, we introduce the abbreviations

P = ϕP , P̃ = γ̃P , (2.176a)
X = ϕX , X̃ = γ̃X , (2.176b)
D = ϕD, D̃ = γ̃D, (2.176c)

which enable us to write down the fRG flow a little more compactly and is the same notation
as used in P1, Sec. 3.2.

Before we write down the flow equations, we first take a look at the symmetries of Green’s
and vertex functions (as discussed in Sec. 2.2) and see what form they take in our new spatial
index notation. We only state here symmetries relating to our choice of kept spin components.

13 Instead of exactly repeating the flow equations of P1, here we give a slightly different representation. This
has two reasons. (i) In P1, we gave a formulation containing dependent spin components, whereas we
use here only the independent spin components (2.160) to formulate the flow. Thus, the equations here
are closer to our actual implementation of the flow, where one wants to work only with the independent
components, to reduce numerical costs. (ii) Furthermore, we introduce here a notation that is free of all
spatial indices, making the structure of the flow much more transparent.
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The eliminated spin components can always be obtained via particle permutation as discussed
in Sec. 2.4.1. We give their explicit form in App. A.2. The whole14 set of symmetries can
then be summarized as follows

• Particle permutation

P σσ = P Iσσ = −P I1σσ = −P I2σσ, (2.177a)
Dσσ(∆) = DTIσσ(−∆). (2.177b)

• Complex conjugation

Σσ
ji(ωn) =

[
Σσ
ij(−ωn)

]∗
, (2.178a)

P σσ
′(Π) =

[
(P T )σσ′(−Π)

]∗
, (2.178b)

X↑↓(X) =
[
(XT )↑↓(−X)

]∗
, (2.178c)

Dσσ′(∆) =
[
(DI)σσ′(∆)

]∗
. (2.178d)

• Time reversal

Σσ
ji(ωn) = Σσ

ij(ωn), (2.179a)
P σσ

′ = (P T )σσ′
, (2.179b)

X↑↓ = (XT )↑↓, (2.179c)
Dσσ′(∆) = (DI)σσ′(−∆). (2.179d)

For the bubbles (2.175) we have in general

W = W T , (2.180a)
W (Ω) = W ∗(−Ω), (2.180b)

(WP )σσ(Π) = (WP )Iσσ(Π), (2.180c)
(WX)σσ(X) = (WX)Iσσ(−X), (2.180d)

where Ω ∈ {Π, X,∆}. These bubble symmetries can be seen immediately from their definition
and the symmetry properties (complex conjugation and time-reversal) of the propagators,
see (2.77), (2.95a).

All the symmetries in (2.177) – (2.179) can be checked to be consistent with the fRG
flow, see App. A.4. Furthermore, all the vertex symmetries in (2.177) – (2.179) also hold
for the corresponding tilded vertex objects. This is immediately clear from the definition of
the tilded objects (2.137) and the choice of the feedback in (2.147). Of course it can also be
checked explicitly, using the explicit form of the tilded quantities below in (2.187). In the
following derivation of the final form of the flow equations, we first write down the r.h.s. in the
form resulting immediately from combining (2.160) with our short index notation for spatial
indices (2.162). Then, in a final step, we will simplify the r.h.s. of the flow equation using

14 To the knowledge of the author; the reader is welcome to search for more symmetries.
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the symmetries displayed above (2.177) – (2.179). Note that if one wants to check if these
symmetries are actually consistent with the fRG flow, one actually can use the symmetry
simplified version of the r.h.s. of the flow, as long the initial conditions satisfy the symmetries.
This is done explicitly in App. A.4.

In order to use our short-index notation (2.162) efficiently, we furthermore split the flow
of the self-energy (2.153) in a static and a dynamic part

∂

∂ΛΣ = ∂

∂ΛΣs + ∂

∂ΛΣd, (2.181)

with

∂

∂Λ(Σs)↑j(j+l) = −
∑
ω′

{
S↑i(i+k)(ω

′)
[
v̄ +D(0)

]↑↑lk
ji

+ S↓i(i+k)(ω
′)
[
v̄ +D(0)

]↑↓lk
ji

}
, (2.182a)

∂

∂Λ(Σs)↓j(j+l) = −
∑
ω′

{
S↑i(i+k)(ω

′)
[
(v̄ +D(0))TI

]↑↓lk
ji

+ S↓i(i+k)(ω
′)
[
v̄ +D(0)

]↓↓lk
ji

}
, (2.182b)

and

∂

∂Λ(Σd)↑ji(ω) = −
∑
ω′

{
S↑(i+k)(j+l)(ω

′)P ↑↑lkji (ω′ + ω)− S↑(j+l)(i+k)(ω
′)(DTI)↑↑lkji (ω′ − ω)

+S↓(i+k)(j+l)(ω
′)P ↑↓lkji (ω′ + ω) + S↓(j+l)(i+k)(ω

′)X↑↓lkji (ω′ − ω)
}
,

(2.183a)
∂

∂Λ(Σd)↓ji(ω) = −
∑
ω′

{
S↑(i+k)(j+l)(ω

′)(P I)↑↓lkji (ω′ + ω) + S↑(j+l)(i+k)(ω
′)(XTI)↑↓lkji (ω − ω′)

+S↓(i+k)(j+l)(ω
′)P ↓↓lkji (ω′ + ω)− S↓(j+l)(i+k)(ω

′)(DTI)↓↓lkji (ω′ − ω)
}
.

(2.183b)

Using the symmetry relations (2.177) - (2.179) and the product notation introduced in (2.170),
we can write the self-energy flow compactly in a spatial index free notation as

∂

∂ΛΣ↑s = −
{[
v̄ +D(0)

]↑↑
· Ŝ↑ +

[
v̄ +D(0)

]↑↓
· Ŝ↓

}
, (2.184a)

∂

∂ΛΣ↓s = −
{[

(v̄ +D(0))T
]↑↓
· Ŝ↑ +

[
v̄ +D(0)

]↓↓
· Ŝ↓

}
, (2.184b)

where

Ŝ =
∑
ω′

S(ω′) = T
∑
n

S(ωn). (2.185)

Note that due to the complex conjugation symmetry S(−ωn) = S(ωn)∗, Ŝ and therefore also
Σs are real numbers.

Furthermore, we have for the dynamic part of the self-energy
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∂

∂ΛΣ↑d(ω) = −T
∑
n

{
Tr
[(
P ↑↑(ωn + ω)−D↑↑(ω − ωn)

)
× S↑(ωn)

]
+Tr

[(
P ↑↓(ωn + ω) +X↑↓(ωn − ω)

)
× S↓(ωn)

]}
, (2.186a)

∂

∂ΛΣ↓d(ω) = −T
∑
n

{
Tr
[(

(P I)↑↓(ωn + ω) + (XI)↑↓(ω − ωn)
)
× S↑(ωn)

]
+Tr

[(
P ↓↓(ωn + ω)−D↓↓(ω − ωn)

)
× S↓(ωn)

]}
. (2.186b)

Using the explicit form of the tilded vertex quantities

P̃ σσlkji (Π) =
[
v̄
σσ|σσ
j(j+l)|i(i+k) + P σσlkji (Π)− (φD)σσ(i+k−j)(j+l−i)

ji + (φD)σσ(i−j)(j+l−i−k)
j(i+k)

]
,

(2.187a)

P̃ ↑↓lkji (Π) =
[
v̄
↑↓|↑↓
j(j+l)|i(i+k) + P ↑↓lkji (Π) + (φX)↑↓(i+k−j)(j+l−i)ji + (φD)↑↓(i−j)(j+l−i−k)

j(i+k)

]
,

(2.187b)

X̃↑↓lkji (X) =
[
v̄
↑↓|↑↓
j(i+k)|i(j+l) +X↑↓lkji (X) + (φP )↑↓(i+k−j)(j+l−i)ji + (φD)↑↓(i−j)(i+k−j−l)j(j+l)

]
,

(2.187c)

D̃σσlk
ji (∆) =

[
v̄
σσ|σσ
j(i+k)|(j+l)i +Dσσlk

ji (∆) + (φP )σσ(i+k−j)(i−j−l)
j(j+l) − (φD)σσ(i−j)(i+k−j−l)

j(j+l)

]
,

(2.187d)

D̃↑↓lkji (∆) =
[
v̄
↑↓|↑↓
j(i+k)|(j+l)i +D↑↓lkji (∆) + (φP )↑↓(i+k−j)(i−j−l)j(j+l) + (φX)↑↓(i−j)(i+k−j−l)j(j+l)

]
,

(2.187e)

the vertex flow can be written for the P- and X-channel very compactly as
∂

∂ΛP
σσ(Π) = P̃ σσ(Π) · (WP )σσ(Π) · P̃ σσ(Π), (2.188a)

∂

∂ΛP
↑↓(Π) = 2P̃ ↑↓(Π) · (WP )↑↓(Π) · P̃ ↑↓(Π), (2.188b)

∂

∂ΛX
↑↓(X) = X̃↑↓(X) · (WX)↑↓(X) · X̃↑↓(X). (2.188c)

Using (2.165), we can write down an interim form of the D-channel as

∂

∂ΛD
↑↑(∆) = −

[
D̃↑↑(∆) · (WX)TI↑↑(∆) · D̃↑↑(∆) + D̃↑↓(∆) · (WX)TI↓↓(∆) · (D̃TI)↑↓(−∆)

]
,

(2.189a)
∂

∂ΛD
↓↓(∆) = −

[
D̃↓↓(∆) · (WX)TI↓↓(∆) · D̃↓↓(∆) + (D̃TI)↑↓(−∆) · (WX)TI↑↑(∆) · D̃↑↓(∆)

]
,

(2.189b)
∂

∂ΛD
↑↓(∆) = −

[
D̃↑↑(∆) · (WX)TI↑↑(∆) · D̃↑↓(∆) + D̃↑↓(∆) · (WX)TI↓↓(∆) · D̃↓↓(∆)

]
.

(2.189c)

This interim form (2.189) can be further simplified by using symmetry relations for the
bubbles (2.180) as well as for the vertex quantities (2.177) - (2.179). We obtain
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∂

∂ΛD
↑↑(∆) = −

[
D̃↑↑(∆) · (WX)↑↑(−∆) · D̃↑↑(∆)

+D̃↑↓(∆) · (WX)↓↓(−∆) · (D̃T )↑↓(∆)
]
, (2.190a)

∂

∂ΛD
↓↓(∆) = −

[
D̃↓↓(∆) · (WX)↓↓(−∆) · D̃↓↓(∆)

+(D̃T )↑↓(∆) · (WX)↑↑(−∆) · D̃↑↓(∆)
]
, (2.190b)

∂

∂ΛD
↑↓(∆) = −

[
D̃↑↑(∆) · (WX)↑↑(−∆) · D̃↑↓(∆)

+D̃↑↓(∆) · (WX)↓↓(−∆) · D̃↓↓(∆)
]
. (2.190c)

Having derived the flow equations, the last piece of input we need for actual computations
are the explicit form of the initial conditions which read

ΣΛiniσ1
j′

1j1
= 1

2
∑
j2,σ2

v̄
σ1σ2|σ1σ2
j′

1j2|j1j2
, (2.191a)

PΛini = XΛini = DΛini = 0. (2.191b)

Before we continue to derive the explicit flow equations for the Keldysh formulation in
the next subsection, we take a look at a few special cases of the Matsubara flow.

Zero magnetic field

In the case of zero magnetic field, we have an additional symmetry between spin up and
down components by flipping all spins

Aσ
′
1...σ

′
n|σ′

1...σ
′
n = Aσ̄

′
1...σ̄

′
n|σ̄′

1...σ̄
′
n , (2.192)

where A is any spin dependent quantity and σ̄ = −σ. Therefore for magnetic field B = 0, we
only have to compute the five vertex quantities

P ↑↑, P ↑↓, X↑↓, D↑↑, D↑↓. (2.193)

Furthermore, we get for the components with mixed spins the additional symmetry relations

P ↑↓ = P I↑↓, (2.194a)
X↑↓(X) = XI↑↓(−X), (2.194b)

D↑↓ = DT↑↓. (2.194c)

Note that for zero magnetic field only two bubble evaluations are needed, e.g.

(WP )↑↑, (WX)↑↑. (2.195)

Zero temperature

Although we have formulated the Matsubara flow equations for arbitrary finite temperatures,
we usually use it only to determine the conductance at zero temperature. At finite temperature,
the conductance contains both single-particle as well as two-particle contributions evaluated
at real frequencies, see Sec. 5.2 below. In order to obtain the needed information within the
Matsubara formalism, one would have to perform an analytic continuation from the purely
imaginary Matsubara frequencies to the real frequency axis. While this is numerically per se
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an ill-defined question, due to the finite number of discrete Matsubara frequencies available
in a computation, it turned out that in the QPC case it is especially difficult to extract
meaningful information. This problem was studied in detail by Heyder et al. [Hey14] who
showed that even smallest numerical errors and the general analytic continuation ambiguity
lead to large errors in the conductance.

At zero temperature, the conductance contains only information of the self-energy at the
chemical potential, which can be obtained without problem from our fRG scheme defined
above, by taking the appropriate T → 0 limit, see the discussion in Sec. 2.3.2 above. Bauer et
al. even showed in [BHvD14] that for zero temperature a static approximation of the vertices
(and correspondingly also the self-energy) in the fRG-flow leads to reasonable results for
a QPC setup with onsite interactions. For this reason, we focused in our publication P1,
Sec. (3.2), solely on the zero temperature case in a static approximation to investigate the
effect of finite-ranged interactions in a QPC. Therefore, at the end of this subsection we
take a brief look on how to perform the T → 0 limit of the Matsubara flow. In the limit of
vanishing temperature, the Matsubara frequencies become continuous. From our definition in
Sec. (2.1.1) it follows that that

T
∑
ωn

f(ωn)→ 1
2πi

ˆ
Im-axis

dωf(ω) = 1
2π

ˆ
dωf(iω), (2.196)

where f(ω) is a function defined on the imaginary axis. While this limit can be performed
without difficulty for the self-energy flow (2.184) and (2.186), the limiting procedure for the
flow of the vertex quantities requires more care, see the discussion in Sec. 2.3.2. The resulting
explicit T → 0 limit of the bubble terms (2.174) is given by

(WP )lkσσ′
ji (Π) = 1

4π

ˆ
dω
[
Sσji(iω)Gσ′

(j+l)(i+k)(Π− iω) + [G↔ S]
]

= 1
4π

ˆ
dωδ(|ω| − Λ)θ(|Π− iω| − Λ)

[
G̃σji(iω)G̃σ′

(j+l)(i+k)(Π− iω) + [(Π− iω)↔ (iω)]
]

= 1
4π

∑
ω=±Λ

θ(|Π− iω| − Λ)
[
G̃σji(iω)G̃σ′

(j+l)(i+k)(Π− iω) + [(Π− iω)↔ (iω)]
]
. (2.197)

and analogously one obtains

(WX)lkσσ′
ji (X) = 1

2π
∑
ω=±Λ

θ(|X − iω| − Λ)
[
G̃σji(−iω)G̃σ′

(j+l)(i+k)(X − iω) + [(X − iω)↔ (iω)]
]
.

(2.198)

Zero temperature and static approximation

In the zero temperature limit, a static treatment of the vertex already leads to reasonable
results, see e.g. [Kar06, BHvD14]. In such a static treatment, we approximate all vertex
quantities by their value at the feedback frequency instead of treating them dynamically. In
this case, the vertex bubble terms become especially simple

(WP )σσ′lk
ji (0) = 1

2π Re
[
G̃σji(iΛ)G̃σ′

(j+l)(i+k)(iΛ)∗
]
, (2.199a)

(WX)σσ′lk
ji (0) = 1

π
Re
[
G̃σji(iΛ)G̃σ′

(j+l)(i+k)(iΛ)
]
. (2.199b)

In particular they are both real, as they should be, see the discussion in Sec. 2.4.1.
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Furthermore, the resulting self-energy will be also static since the (former) dynamic part
of self-energy takes the form

∂

∂ΛΣ↑d(iω) = −
{

Tr
[(

(P ↑↑)(0)−D↑↑(0)
)
× Ŝ↑

]
+ Tr

[(
(P ↑↓)(0) +X↑↓(0)

)
× Ŝ↓

]}
,

(2.200a)
∂

∂ΛΣ↓d(iω) = −
{

Tr
[(

(P I↑↓)(0) +XI↑↓(0)
)
× Ŝ↑

]
+ Tr

[(
(P ↓↓)(0)−D↓↓(0)

)
× Ŝ↓

]}
,

(2.200b)

i.e. it is independent of the external frequency ω.

2.4.5 Keldysh formulation of the eCLA

In this subsection, we derive the form of the eCLA within the Keldysh formalism. The
resulting flow equations are similar to the ones in the Matsubara formalism, however, extended
by the additional overlaying Keldysh structure. Since the Keldysh formulation offers, in
principle, the option to investigate non-equilibrium systems (though we will not apply it for
this purpose in this work), we take some extra effort to first describe the general eCLA setup
(suitable also for non-equilibrium systems) and then specialize it to the case of equilibrium.

General (non-equilibrium) eCLA setup

Before we derive the actual flow equations, we take a closer look at the form of the Keldysh
structure for the vertex and bubble quantities. For the vertex Keldysh structure, we will use
the same matrix notation as in [Jak09], namely

Aα
′
1α

′
2|α1α2 =


(11|11) (11|21) (11|12) (11|22)
(21|11) (21|21) (21|12) (21|22)
(12|11) (12|21) (12|12) (12|22)
(22|11) (22|21) (22|12) (22|22)

 , (2.201)

for any quantity Aα′
1α

′
2|α1α2 with four Keldysh indices α′1, α′2, α1, α2 ∈ {1, 2}. Using the spin

resolved flow equations (2.153) and (2.160), one can show that the Keldysh structure for the
vertex objects (in our chosen truncated approximation) is of the structure [Jak09]

ϕP =


0 d d 0
a b b a

a b b a
0 d d 0

 , ϕX =


0 d a b
a b 0 d

d 0 b a
b a d 0

 , ϕD =


0 a d b
a 0 b d

d b 0 a
b d a 0

 (2.202)

where generically aA, bA, dA ∈ C with A ∈ {P,X,D}. Utilization of the general vertex symme-
tries as portrait in Sec. 2.2, yields additional relations between the individual components.15
Analogous to the spin structure in Sec. 2.4.2, where we used the particle exchange symmetry
to reduce the number of vertex spin components to an independent subset, we utilize the
general vertex symmetries (complex conjugation, particle exchange) to reduce the Keldysh
components in (2.202) to an independent subset. All remaining independent symmetries yield
then only relations within the spatial and frequency structure of a particular component with

15 As in the Matsubara case, one can check that these symmetries are conserved under the fRG flow, see
App. A.4. As long as the initial conditions fulfill them, it does not matter if the r.h.s. of the flow equation is
simplified using these symmetries, as long as the l.h.s. is not modified.
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fixed Keldysh and spin structure, i.e. they do not relate components that differ in Keldysh or
spin structure.

Using the general symmetry under complex conjugation (2.80b), we have
(
v̄ + ϕP + ϕX + ϕD

)α′α

q′q
(Π, X,∆)

= γα
′α

q′q

(1
2(Π−X + ∆), 1

2(Π +X −∆)
∣∣∣12(Π−X −∆), 1

2(Π +X + ∆)
)

= (−1)α′αγαα
′

qq′

(1
2(Π−X −∆), 1

2(Π +X + ∆)
∣∣∣12(Π−X + ∆), 1

2(Π +X −∆)
)∗

= (−1)α′α
(
v̄ + ϕP + ϕX + ϕD

)αα′

qq′
(Π, X,−∆)∗, (2.203)

where we used the notation

(−1)α′α = (−1)1+
∑

k
(α′
k+αk). (2.204)

Therefore, we obtain for the individual channels

(ϕP )α′α
q′q (Π) = (−1)α′α(ϕP )αα′

qq′ (Π)∗, (2.205a)
(ϕX)α′α

q′q (X) = (−1)α′α(ϕX)αα′
qq′ (X)∗, (2.205b)

(ϕD)α′α
q′q (∆) = (−1)α′α(ϕD)αα′

qq′ (−∆)∗. (2.205c)

If we apply this symmetry relations to the components a, d and b from (2.202), we obtain

aPq′q(Π) = dPqq′(Π)∗, (2.206a)
aXq′q(X) = dXqq′(X)∗, (2.206b)
aDq′q(∆) = aDqq′(−∆)∗, (2.206c)
dDq′q(∆) = dDqq′(−∆)∗, (2.206d)

bPq′q(Π) = −bPqq′(Π)∗, (2.206e)
bXq′q(X) = −bXqq′(X)∗, (2.206f)
bDq′q(∆) = −bDqq′(−∆)∗. (2.206g)

Note that flipping q and q′ does not change the spin-structure of any of the kept spin compo-
nents (2.152). Therefore, we can eliminate all d components in the P- and the X-channel by
replacing them with appropriate a∗ components. Displaying the spin structure and writing
this symmetries finally in the short index notation for spatial indices, we get from (2.206) for
the kept spin components the following set of symmetries

(aP )σσ′ = (dP )Tσσ′∗, (2.207a)
(aX)↑↓ = (dX)T↑↓∗, (2.207b)

(aD)σσ′(∆) = (aD)Iσσ′∗(−∆), (2.207c)
(dD)σσ′(∆) = (dD)Iσσ′∗(−∆), (2.207d)

(bP )σσ′ = −(bP )Tσσ′∗, (2.207e)
(bX)↑↓ = −(bX)T↑↓∗, (2.207f)

(bD)σσ′(∆) = −(bD)Iσσ′∗(−∆), (2.207g)

where the first two a-symmetries can be used to replace the d-component in the P- and
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X-channel. Using particle exchange, we obtain - analog to the Matsubara case - the additional
symmetries

(aP )σσ = (aP )Iσσ = −(aP )I1σσ

= −(aP )I2σσ, (2.208a)
(aD)σσ(∆) = (dD)TIσσ(−∆), (2.208b)

(bP )σσ = (bP )Iσσ = −(bP )I1σσ

= −(bP )I2σσ, (2.208c)
(bD)σσ(∆) = (bD)TIσσ(−∆). (2.208d)

Therefore, we can additionally eliminate the (dD)σσ component. The independent spin and
Keldysh components can be summarized as

(aP )σσ, (aP )↑↓, (2.209a)
(aX)↑↓, (2.209b)
(aD)σσ, (aD)↑↓, (dD)↑↓, (2.209c)

(bP )σσ, (bP )↑↓, (2.209d)
(bX)↑↓, (2.209e)
(bD)σσ, (bD)↑↓. (2.209f)

In App. A.2, we state how the dependent components are related to the independent ones
(2.209).

As in the Matsubara case, we first derive the flow equation for the self-energy, split in
a static and dynamic part. For this, we combine the spatial structure from the Matsubara
case (before we applied any equilibrium specific symmetries) (2.182) and (2.183) with the
Keldysh structure according to Eq. (2.153). Using the Keldysh structure of the single scale
propagator S (which is the same as for the full propagator G (2.43)) and the two-particle
vertex (2.202), we readily obtain for the static component of the self-energy

∂

∂ΛΣR↑
s = −i

{
(bD)↑↑(0) ·

(
ŜR↑ + ŜA↑

)
+
[1
2 v̄ + aD(0)

]↑↑
· ŜK↑

}
+(bD)↑↓(0) ·

(
ŜR↓ + ŜA↓

)
+
[1
2 v̄ + aD(0)

]↑↓
· ŜK↓

}
, (2.210a)

∂

∂ΛΣR↓
s = −i

{
(bD)TI↑↓(0) ·

(
ŜR↑ + ŜA↑

)
+
[1
2 v̄ + aD(0)

]TI↑↓
· ŜK↑

}
+(bD)↓↓(0) ·

(
ŜR↓ + ŜA↓

)
+
[1
2 v̄ + aD(0)

]↓↓
· ŜK↓

}
, (2.210b)

where analogous to (2.185)

Ŝ =
∑
ω

S(ω) = 1
2π

ˆ
dωS(ω), (2.211)

and we have used the efficient notation for the spatial indices introduced in (2.170). Using
the propagator (2.81) and vertex symmetries (2.207) and (2.208), as well as the fact that
aD(0) is real, we can write this as

∂

∂ΛΣR↑
s = −i

{
(bD)↑↑(0) ·

(
ŜR↑ + (ŜR)T↑∗

)
+
[1
2 v̄ + aD(0)

]↑↑
· ŜK↑

}
+(bD)↑↓(0) ·

(
ŜR↓ + (ŜR)T↓∗

)
+
[1
2 v̄ + aD(0)

]↑↓
· ŜK↓

}
, (2.212a)

∂

∂ΛΣR↓
s = −i

{
− (bD)T↑↓(0) ·

(
ŜR↑ + (ŜR)T↑∗

)
+
[1
2 v̄ + aD(0)

]T↑↓
· ŜK↑

}
+(bD)↓↓(0) ·

(
ŜR↓ + (ŜR)T↓∗

)
+
[1
2 v̄ + aD(0)

]↓↓
· ŜK↓

}
. (2.212b)
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In a similar manner, we obtain for the dynamic part of the self-energy

∂

∂ΛΣR↑
d (ω) = − i

2π

ˆ
dω′
{

Tr
[
(aP )↑↑(ω′ + ω)× SK↑(ω′)

]
− Tr

[
(dD)TI↑↑(ω′ − ω)× (SK)T↑(ω′)

]
+ Tr

[
(aP )↑↓(ω′ + ω)× SK↓(ω′)

]
+ Tr

[
(aX)↑↓(ω′ − ω)× (SK)T↓(ω′)

]
+ Tr

[
(bP )↑↑(ω′ + ω)× SA↑(ω′)

]
− Tr

[
(bD)TI↑↑(ω′ − ω)× (SR)T↑(ω′)

]
+ Tr

[
(bP )↑↓(ω′ + ω)× SA↓(ω′)

]
+ Tr

[
(bX)↑↓(ω′ − ω)× (SR)T↓(ω′)

]}
, (2.213)

and analogously

∂

∂ΛΣR↓
d (ω) = − i

2π

ˆ
dω′
{

Tr
[
(aP )I↑↓(ω′ + ω)× SK↑(ω′)

]
+ Tr

[
(dX)TI↑↓(ω − ω′)× (SK)T↑(ω′)

]
+ Tr

[
(aP )↓↓(ω′ + ω)× SK↓(ω′)

]
− Tr

[
(dD)TI↓↓(ω′ − ω)× (SK)T↓(ω′)

]
+ Tr

[
(bP )I↑↓(ω′ + ω)× SA↑(ω′)

]
+ Tr

[
(bX)TI↑↑(ω − ω′)× (SR)T↑(ω′)

]
+ Tr

[
(bP )↓↓(ω′ + ω)× SA↓(ω′)

]
− Tr

[
(bD)TI↓↓(ω′ − ω)× (SR)T↓(ω′)

]}
. (2.214)

Using again the symmetry relations (2.81), (2.207) and (2.208), this flow equations for the
retarded self-energy can be formulated within the subset of kept spin and Keldysh components
as

∂

∂ΛΣR↑
d (ω) = − i

2π

ˆ
dω′
{

Tr
[
(aP )↑↑(ω′ + ω)× SK↑(ω′)

]
− Tr

[
(aD)↑↑(ω − ω′)× (SK)T↑(ω′)

]
+ Tr

[
(aP )↑↓(ω′ + ω)× SK↓(ω′)

]
+ Tr

[
(aX)↑↓(ω′ − ω)× (SK)T↓(ω′)

]
+ Tr

[
(bP )↑↑(ω′ + ω)× (SR)T↑(ω′)∗

]
− Tr

[
(bD)↑↑(ω − ω′)× (SR)T↑(ω′)

]
+ Tr

[
(bP )↑↓(ω′ + ω)× (SR)T↓(ω′)∗

]
+ Tr

[
(bX)↑↓(ω′ − ω)× (SR)T↓(ω′)

]}
, (2.215a)

and
∂

∂ΛΣR↓
d (ω) = − i

2π

ˆ
dω′
{

Tr
[
(aP )I↑↓(ω′ + ω)× SK↑(ω′)

]
+ Tr

[
(aX)I↑↓(ω − ω′)∗ × (SK)T↑(ω′)

]
+ Tr

[
(aP )↓↓(ω′ + ω)× SK↓(ω′)

]
− Tr

[
(aD)↓↓(ω − ω′)× (SK)T↓(ω′)

]
+ Tr

[
(bP )I↑↓(ω′ + ω)× (SR)T↑(ω′)∗

]
− Tr

[
(bX)I↑↓(ω − ω′)∗ × (SR)T↑(ω′)

]
+ Tr

[
(bP )↓↓(ω′ + ω)× (SR)T↓(ω′)∗

]
− Tr

[
(bD)↓↓(ω − ω′)× (SR)T↓(ω′)

]}
. (2.215b)

Since we will not need the flow of the Keldysh component of the self-energy in thermal
equilibrium later on, we will not display it here. However, the interested reader can find it in
App. A.3.
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In order to derive the flow equations for the vertex, let us next take a look at the Keldysh
structure of the bubble terms (2.139). Generically, we have for the bubble terms

(Ipp)σσ
′α′

1α
′
2|α1α2

j(j+l)|i(i+k) (Π) = i

4π

ˆ
dω
[
S
σα′

1α1
ji (ω)Gσ

′α′
2α2

(j+l)(i+k)(Π− ω) + [S ↔ G]
]
, (2.216)

(Iph)σσ
′α′

1α
′
2|α1α2

j(i+k)|i(j+l) (X) = i

2π

ˆ
dω
[
S
σα′

1α1
ji (ω)Gσ

′α′
2α2

(i+k)(j+l)(ω +X) + [S ↔ G]
]
. (2.217)

which is analogous to (2.174) with an additional Keldysh structure. Using the Keldysh
structure of the propagators (2.43), we obtain

Ipp = i

4π

ˆ
dω′




0 0 0 GASA

0 0 GRSA GKSA

0 GASR 0 GASK

GRSR GKSR GRSK GKSK

+ [G↔ S]

 , (2.218a)

Iph = i

2π

ˆ
dω′




0 0 0 0
0 0 GRSA GKSA

0 GASR 0 GASK

0 GKSR GRSK GKSK

+ [G↔ S]

 . (2.218b)

Using additionally the analytic properties from Sec. 2.2.6 and the fact that for large enough
frequencies we have G(ω) ∼ 1/ω and S(ω) ∼ 1/ω2, we arrive at the following Keldysh
structures for the bubble terms

Ipp = i

4π

ˆ
dω′




0 0 0 GASA

0 0 0 GKSA

0 0 0 GASK

GRSR GKSR GRSK GKSK

+ [G↔ S]

 (2.219a)

Iph = i

2π

ˆ
dω′




0 0 0 0
0 0 GRSA GKSA

0 GASR 0 GASK

0 GKSR GRSK GKSK

+ [G↔ S]

 . (2.219b)

Furthermore, analogous to the Matsubara case (2.174), we use the short index notation for
the spatial indices

(Ipp)lkji = (Ipp)j(j+l)|i(i+k), (2.220a)
(Iph)lkji = (Iph)j(i+k)|i(j+l). (2.220b)

Then we have the following bubble symmetries[
(Ipp)στ

]α′
1α

′
2|α1α2

=
[
(Ipp)Iτσ

]α′
2α

′
1|α2α1

, (2.221a)[
(Iph)στ

]α′
1α

′
2|α1α2

(X) =
[
(Iph)TIτσ

]α′
2α

′
1|α2α1

(−X), (2.221b)

(I)α′
1α

′
2|α1α2 = (−1)1+α′

1+α′
2+α1+α2

[
IT
]α1α2|α′

1α
′
2∗
, (2.221c)

where the first two relations stem from the G↔ S symmetry, and the second relation (for
both P- and X-bubble) is induced by the complex conjugation of the propagators (2.81).
Ultimately, we will see that by using the symmetries (2.221) for the flow of the a components
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we only need to compute the two bubbles

IP := (Ipp)22|21, IX := (Iph)22|12, (2.222)

and then form the combinations

(WP )σσ′ := (IP )σσ′ + (IP )Iσ′σ, (2.223a)
(WX)σσ′(X) := (IX)σσ′(X) + (IX)Iσ′σ(−X)∗. (2.223b)

For the flow of the b components (which is not needed in thermal equilibrium applications),
one needs to compute additional bubbles, see App. A.3.

With the structure of the bubble terms (2.223), we have everything at hand to derive the
flow equations for the vertex in the Keldysh formalism. The simplest way to derive them, is
to just add the appropriate Keldysh structure to the unsimplified (i.e. where we have not yet
used the Matsubara symmetries) flow equations from the Matsubara case (2.188) - (2.189).
Before we write down the flow equations, let us have a look at the specific choice of the
feedback. Since we give the flow-equations for a general, i.e. a not necessarily equilibrium
setup, there is distinguished choice like (2.145). However, by analogy to (2.145), the most
natural choice would probably be something like

(φP )α′
1α

′
2|α1α2 = 1

α′
1α

′
2|α1α2 1

2(aP + dP )(µL + µR), (2.224)

(φX/D)α′
1α

′
2|α1α2 = 1

α′
1α

′
2|α1α2 1

2(aX/D + dX/D)(0), (2.225)

where 1α′
1α

′
2|α1α2 reproduces the Keldysh structure of the bare vertex, i.e.

1
α′

1α
′
2|α1α2 =

{
1 if α′1 + α′2 + α1 + α2 odd
0 otherwise.

(2.226)

Though not as mathematically compelling as the equilibrium choice (2.145) (we now fixed
the Keldysh structure by hand to have the same form as the one of the bare vertex), this
approach conserves the general symmetries from Sec. 2.2 under the fRG flow. Note, however,
that with the choice (2.225) the feedback is not necessarily real anymore. A slightly simplified
approach was used by Schimmel in Ref. [Sch17], namely (expressed in our notation)

(φP )α′
1α

′
2|α1α2 = 1

α′
1α

′
2|α1α2 Re aP (µL + µR), (2.227)

(φX/D)α′
1α

′
2|α1α2 = 1

α′
1α

′
2|α1α2 Re aX/D(0), (2.228)

which specifically keeps the feedback real. Since we will not apply the non-equilibrium flow
equations in this work, we will not further comment on the specifics of the non-equilibrium
feedback.
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Having specified the static feedback, we can define the tilded quantities

(ãP )σσlkji (Π) =
[1
2 v̄

σσ|σσ
j(j+l)|i(i+k) + (aP )σσlkji (Π)− (φD)σσ(i+k−j)(j+l−i)

ji + (φD)σσ(i−j)(j+l−i−k)
j(i+k)

]
,

(2.229a)

(ãP )↑↓lkji (Π) =
[1
2 v̄
↑↓|↑↓
j(j+l)|i(i+k) + (aP )↑↓lkji (Π) + (φX)↑↓(i+k−j)(j+l−i)ji + (φD)↑↓(i−j)(j+l−i−k)

j(i+k)

]
,

(2.229b)

(ãX)↑↓lkji (X) =
[1
2 v̄
↑↓|↑↓
j(i+k)|i(j+l) + (aX)↑↓lkji (X) + (φP )↑↓(i+k−j)(j+l−i)ji + (φD)↑↓(i−j)(i+k−j−l)j(j+l)

]
,

(2.229c)

(ãD)σσlkji (∆) =
[1
2 v̄

σσ|σσ
j(i+k)|(j+l)i + (aD)σσlkji (∆) + (φP )σσ(i+k−j)(i−j−l)

j(j+l) − (φD)σσ(i−j)(i+k−j−l)
j(j+l)

]
,

(2.229d)

(ãD)↑↓lkji (∆) =
[1
2 v̄
↑↓|↑↓
j(i+k)|(j+l)i + (aD)↑↓lkji (∆) + (φP )↑↓(i+k−j)(i−j−l)j(j+l) + (φX)↑↓(i−j)(i+k−j−l)j(j+l)

]
,

(2.229e)

(d̃D)↑↓lkji (∆) =
[1
2 v̄
↑↓|↑↓
j(i+k)|(j+l)i + (dD)↑↓lkji (∆) + (φP )↑↓(i+k−j)(i−j−l)j(j+l) + (φX)↑↓(i−j)(i+k−j−l)j(j+l)

]
.

(2.229f)

With these, we readily obtain for the flow of aP and aX

∂

∂Λ(aP )σσ(Π) = (ãP )σσ(Π) ·
[
(Ipp)22|12 + (Ipp)22|21

]σσ
(Π) · (ãP )σσ(Π), (2.230a)

∂

∂Λ(aP )↑↓(Π) = 2(ãP )↑↓(Π) ·
[
(Ipp)22|12 + (Ipp)22|21

]↑↓
(Π) · (ãP )↑↓(Π), (2.230b)

∂

∂Λ(aX)↑↓(X) = (ãX)↑↓(X) ·
[
(Iph)22|12 + (Iph)21|22

]↑↓
(X) · (ãX)↑↓(X). (2.230c)

Using the bubble symmetries (2.221) this can be written in terms of the bubbles (2.223) as
∂

∂Λ(aP )σσ(Π) = (ãP )σσ(Π) · (WP )σσ(Π) · (ãP )σσ(Π), (2.231a)
∂

∂Λ(aP )↑↓(Π) = 2(ãP )↑↓(Π) · (WP )↑↓(Π) · (ãP )↑↓(Π), (2.231b)
∂

∂Λ(aX)↑↓(X) = (ãX)↑↓(X) · (WX)↑↓(X) · (ãX)↑↓(X). (2.231c)
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For the flow the aσσ′ and the d↑↓ component of the D-channel we obtain

∂

∂Λ(aD)↑↑(∆) = −
{

(ãD)↑↑(∆)
[
(Iph)22|21 + (Iph)12|22

]TI↑↑
(∆)(ãD)↑↑(∆)

+(ãD)↑↓(∆)
[
(Iph)22|21 + (Iph)12|22

]TI↓↓
(∆)(d̃D)TI↑↓(−∆)

}
, (2.232a)

∂

∂Λ(aD)↓↓(∆) = −
{

(ãD)↓↓(∆)
[
(Iph)22|21 + (Iph)12|22

]TI↓↓
(∆)(ãD)↓↓(∆)

+(d̃D)TI↑↓(−∆)
[
(Iph)22|21 + (Iph)12|22

]TI↑↑
(∆)(ãD)↑↓(∆)

}
, (2.232b)

∂

∂Λ(aD)↑↓(∆) = −
{

(ãD)↑↑(∆)
[
(Iph)22|21 + (Iph)12|22

]TI↑↑
(∆)(ãD)↑↓(∆)

+(ãD)↑↓(∆)
[
(Iph)22|21 + (Iph)12|22

]TI↓↓
(∆)(ãD)↓↓(∆)

}
, (2.232c)

∂

∂Λ(dD)↑↓(∆) = −
{

(d̃D)↑↑(∆)
[
(Iph)21|22 + (Iph)22|12

]TI↑↑
(∆)(d̃D)↑↓(∆)

+(d̃D)↑↓(∆)
[
(Iph)21|22 + (Iph)22|12

]TI↓↓
(∆)(d̃D)↓↓(∆)

}
. (2.232d)

In terms of (2.223) and using the symmetries (2.207) this can be written compactly as
∂

∂Λ(aD)↑↑(∆) = −
{

(ãD)↑↑(∆) · (WX)↑↑(−∆) · (ãD)↑↑(∆)

+(ãD)↑↓(∆) · (WX)↓↓(−∆) · (d̃D)T↑↓(∆)∗
}
, (2.233a)

∂

∂Λ(aD)↓↓(∆) = −
{

(ãD)↓↓(∆) · (WX)↓↓(−∆) · (ãD)↓↓(∆)

+(d̃D)T↑↓(∆)∗ · (WX)↑↑(−∆) · (ãD)↑↓(∆)
}
, (2.233b)

∂

∂Λ(aD)↑↓(∆) = −
{

(ãD)↑↑(∆) · (WX)↑↑(−∆) · (ãD)↑↓(∆)

+(ãD)↑↓(∆) · (WX)↓↓(−∆) · (ãD)↓↓(∆)
}
, (2.233c)

∂

∂Λ(dD)↑↓(∆) = −
{

(d̃D)↑↑(∆) · (WX)TI↑↑(∆) · (d̃D)↑↓(∆)

+(d̃D)↑↓(∆) · (WX)TI↓↓(∆) · (d̃D)↓↓(∆)
}
. (2.233d)

Due to our choice of the hybridization flow with artificial leads, the initial conditions in
non-equilibrium are the same as in the ones in equilibrium (2.131).16 For completeness, we
state them here in terms of our introduced quantities

ΣRσ
ji (ω) = 1

2
∑
j2,σ′

v̄
σσ′|σσ′

jj2|ij2 , ΣKσ
ji (ω) = 0, (2.234a)

aP = aX = aD = dD = 0. (2.234b)

16 The reason for this is that, at large flow parameter Λ, the physics is dominated by the artificial leads, which
due to their infinite band width are always at half-filling. Therefore the values of the temperatures and
the chemical potentials of the actual physical leads do not matter. For details see the argument given by
Schimmel in Ref. [Sch17]
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Thermal equilibrium

In thermal equilibrium, additionally to the symmetries discussed in the last subsection (2.207)
– (2.208), we also have the time-reversal symmetry (2.95a) for the propagators and the self-
energy as well as the one- and two-particle FDTs. The former yields the corresponding bubble
symmetry

W = W T . (2.235)

The latter take the form (2.105) for the self-energy and propagators and were formulated in
(2.110) for the vertex in contour space. After some tedious but otherwise straight forward
algebra (see App. C in Sec. 5.2 for details), one can obtain the following relations for the
Keldysh components of the vertex in (2.202)

d = a∗, (2.236)

independently of the channel, and

bP = 2i Im(aP ) coth
((Π

2 − µ
)
/T
)
, (2.237a)

bX = −2i Im(aX) coth
( X

2T
)
, (2.237b)

bD = 2i Im(aD) coth
( ∆

2T
)
. (2.237c)

Using this additional symmetries (2.236) and (2.237), the general flow equations can be
simplified. The flow of the static self-energy (2.212) takes the equilibrium form

∂

∂ΛΣR↑
s = −i

{[1
2 v̄ + aD(0)

]↑↑
· ŜK↑ +

[1
2 v̄ + aD(0)

]↑↓
· ŜK↓

}
(2.238a)

∂

∂ΛΣR↓
s = −i

{[1
2 v̄ + aD(0)

]T↑↓
· ŜK↑ +

[1
2 v̄ + aD(0)

]↓↓
· ŜK↓

}
. (2.238b)

In thermal equilibrium, ŜK can furthermore be expressed as

ŜK = i

π

ˆ
dω(1− 2nF (ω)) ImSR(ω). (2.239)

For the dynamic part of the self-energy one obtains
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∂

∂ΛΣR↑
d (ω) = 1

π

ˆ
dω′
{

(1− 2nF (ω′))

×
(

Tr
[(

(aP )↑↑(ω′ + ω)− (aD)↑↑(ω − ω′)
)
× ImSR↑(ω′)

]
+ Tr

[(
(aP )↑↓(ω′ + ω) + (aX)↑↓(ω′ − ω)

)
× ImSR↓(ω′)

])
+ coth

((ω′ + ω

2 − µ
)
/T
)

×
(

Tr
[

Im(aP )↑↑(ω′ + ω)× (SR)↑(ω′)∗
]

+ Tr
[

Im(aP )↑↓(ω′ + ω)× (SR)↓(ω′)∗
])

− coth
(ω − ω′

2T
)

×
(

Tr
[

Im(aD)↑↑(ω − ω′)× (SR)↑(ω′)
]
− Tr

[
Im(aX)↑↓(ω′ − ω)× (SR)↓(ω′)

])}
,

(2.240a)

and
∂

∂ΛΣR↓
d (ω) = 1

π

ˆ
dω′
{

(1− 2nF (ω′))

×
(

Tr
[(

(aP )I↑↓(ω′) + (aX)I↑↓(ω − ω′)∗)
)
× ImSR↑(ω′)

]
+ Tr

[(
(aP )↓↓(ω′ + ω)− (aD)↓↓(ω − ω′)

)
× ImSR↓(ω′)

])
+ coth

((ω + ω′

2 − µ
)
/T
)

×
(

Tr
[

Im(aP )I↑↓(ω′ + ω)× (SR)↑(ω′)∗
]

+ Tr
[

Im(aP )↓↓(ω′ + ω)× (SR)↓(ω′)∗
])

− coth
(ω − ω′

2T
)

×
(

Tr
[

Im(aD)↓↓(ω − ω′)× SR↓(ω′)
]

+ Tr
[

Im(aX)I↑↓(ω − ω′)× SR↑(ω′)
])
. (2.240b)

Furthermore, we do not have to consider the vertex flow of dD↑↓ and the b components in
thermal equilibrium. Additionally, the flow equations for the a components of the D-channel
take the simpler form

∂

∂Λ(aD)↑↑(∆) = −
{

(ãD)↑↑(∆) · (WX)↑↑(−∆) · (ãD)↑↑(∆)

+(ãD)↑↓(∆) · (WX)↓↓(−∆) · (ãD)T↑↓(∆)
}
, (2.241a)

∂

∂Λ(aD)↓↓(∆) = −
{

(ãD)↓↓(∆) · (WX)↓↓(−∆) · (ãD)↓↓(∆)

+(ãD)T↑↓(∆) · (WX)↑↑(−∆) · (ãD)↑↓(∆)
}
, (2.241b)

∂

∂Λ(aD)↑↓(∆) = −
{

(ãD)↑↑(∆) · (WX)↑↑(−∆) · (ãD)↑↓(∆)

+(ãD)↑↓(∆) · (WX)↓↓(−∆) · (ãD)↓↓(∆)
}
. (2.241c)

Furthermore, we can combine (2.237) with (2.206) and (2.207) to obtain symmetries for
the kept spin and Keldysh (i.e. the a) components of the vertex. For completeness, we
summarize here all resulting symmetries for the kept components17

17 For a systematic visualization of these symmetries, see also App. B of Sec. 5.2.
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• Particle exchange

(aP )σσ = (aP )Iσσ = −(aP )I1σσ = −(aP )I2σσ, (2.242a)

• Complex conjugation

(aD)σσ′(∆) = (aD)Iσσ′∗(−∆), (2.242b)

• Particle exchange + FDT

(aD)σσ = (aD)Tσσ, (2.242c)

• Complex conjugation + FDT

(aX)↑↓ = (aX)T↑↓, (2.242d)
(aP )σσ′ = (aP )Tσσ′

. (2.242e)

To summarize, the equilibrium flow is given by the flow equations for the self-energy (2.240),
the P- and X-channel (2.231), and the D-channel (2.241). The initial conditions are given by
(2.234). For a generic flow with finite magnetic field, one has to evaluate the 8 bubble terms

(IP )σσ′
, (IX)σσ′

, (2.243)

for all possible spin combinations σ, σ′ ∈ {↑, ↓}.

Zero magnetic field

In the case of zero magnetic field, it is enough to compute only the two bubble terms

(IP )↑↑, (IX)↑↑. (2.244)

Since most of the computation time is spent on the evaluation of the integrals of the
bubble terms (2.243), the zero field case reduces computation time by almost a factor of 4.
Furthermore, completely analogous to the Matsubara case (2.193), the vertex components
whose flow has to be computed is reduced to 5 (since the a↓↓ components can be eliminated),
and induces one additional symmetry each for the a↑↓ components. Furthermore, it is of
course enough to compute for the self-energy only the flow of Σ↑. For details see App. B of
Sec. 5.2.
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3 Extended Coupled Ladder Approximation in the
Matsubara formalism

3.1 Overview
This section contains our first publication aiming at the treatment of finite-ranged interactions
in quantum point contacts (QPCs). We devise the Matsubara version of the extended Coupled
Ladder Approximation (eCLA), proceeding analogously to the previous work of Bauer et al.
in [BHS+13, BHvD14]. Guided by the idea to only keep vertex configurations that are already
generated in second-order of the bare interaction, we are lead in a natural way to the eCLA
scheme which incorporates the necessary inter-channel feedback. Since our understanding
-and with it the presentation- of the method has deepened over the last three years, we
recommend, for the interested reader, to study the newer introductory part to the eCLA
method in Sec. 2.4.

Although we derive the dynamic eCLA fRG equations in the Matsubara formalism, we
do not yet aim to achieve a dynamic treatment of the vertex functions in this work. In
our presented implementation, both the two-particle vertex and the one-particle self-energy
are assumed to be static. This assumption was found to produce reasonable results for
the case of zero temperature [BHS+13, BHvD14], and is a good stepping stone to a more
involved dynamical treatment. Besides simplifying the complexity of the implementation, a
static treatment also requires much lesser computational resources and therefore enables the
scanning of a wide range of physical parameters.

The results part can be divided into two sections. Firstly, the new eCLA method is
applied to models with onsite interactions only, to get an intuition what effects the extension
of the interchannel feedback causes by itself. For this task, a newly introduced parameter,
the feedback length L, is increased from L = 0 (which corresponds – besides a minor detail –
to the previous CLA method of [BHvD14]) to finite L constituting a finite spatial feedback
between the different fRG channels. For a standard QPC model with onsite interactions, the
qualitative results for the conductance stay the same as for the CLA. Quantitatively, it was
found that convergence in L is achieved for L being comparable to the characteristic QPC
length. Furthermore, we noticed that the extended feedback stabilizes the fRG flow, enabling
the study of wider physical parameter regimes. We demonstrate this feature using a quantum
dot containing only a few electrons close the chemical potential. For previous fRG schemes
this regime was not treatable due to the large density of states at the chemical potential,
c.f. the work of Heyder et al. in [HBS+15, Hey14]. With a feedback length L on the scale of
the width of the quantum dot, the eCLA, however, impressively manages to overcome this
convergence issues and yields beautiful results.

Secondly, the eCLA method is applied to a model with finite-ranged interactions. For
intermediate interaction ranges, comparable to the characteristic QPC length, the form of
the zero temperature conductance does not change qualitatively from the onsite one. 1 A
distinctly different conductance shape is only found when increasing the interaction range
to the scale of the system size, therefore taking a real long-range tail of the interaction into
account. Here the conductance develops additional shoulder / resonance type features. This

1 This will change when treating finite temperatures, see Sec. 5.2.
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conductance features are accompanied by density oscillations occurring in the central QPC
region. Analyzing the local density of states (LDOS), these additional structures can be
identified as Friedel oscillations of a significantly flattened effective QPC barrier.

A small caveat has to be pointed out here. Our results are accompanied by a fRG
artifact, already encountered in previous studies [Eis13, BHvD14], namely an unphysical
shift in the energy of the pinch-off of the conductance. While noticeable for short- and
intermediate ranged-interactions on the scale of the characteristic QPC length, this shift
becomes especially worse for interactions with a real long range tail. At the time of the
publication of this paper, we attributed this artifact to the static treatment, however, it also
persists (though somewhat mollified) in a semi-dynamic treatment, see Sec. 5.2. Thus, we
expect that this kind of artifact is either caused by the applied channel decomposition or
by the second-order truncated structure of the fRG flow itself. The artifact might therefore
be remedied in a future implementation using multiloop fRG [KvD18b, KvD18c, KvD18a],
which does (generically) not rely on a channel decomposition and furthermore incorporates a
certain class of contributions (namely the parquet type ones) beyond second order.

We are proud to mention that our eCLA method has also caught the attention and the
interest of other groups. A special case of the eCLA is used in [SK17]. In [MSMK18], the
eCLA scheme is successfully used in a fRG study of phase transitions in one-dimensional
systems. It was found that in order to detect certain phase transitions the extended vertex
feedback of the eCLA is of crucial importance.
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We introduce an equilibrium formulation of the functional renormalization group (fRG) for inhomogeneous
systems capable of dealing with spatially finite-ranged interactions. In the general third-order truncated form of
fRG, the dependence of the two-particle vertex is described by O(N4) independent variables, where N is the
dimension of the single-particle system. In a previous paper [Bauer et al., Phys. Rev. B 89, 045128 (2014)],
the so-called coupled-ladder approximation (CLA) was introduced and shown to admit a consistent treatment
for models with a purely onsite interaction, reducing the vertex to O(N2) independent variables. In this work,
we introduce an extended version of this scheme, called the extended coupled ladder approximation (eCLA),
which includes a spatially extended feedback between the individual channels, measured by a feedback length
L, using O(N 2L2) independent variables for the vertex. We apply the eCLA in a static approximation and at
zero temperature to three types of one-dimensional model systems, focusing on obtaining the linear response
conductance. First, we study a model of a quantum point contact (QPC) with a parabolic barrier top and on-site
interactions. In our setup, where the characteristic length lx of the QPC ranges between approximately 4–10 sites,
eCLA achieves convergence once L becomes comparable to lx . It also turns out that the additional feedback
stabilizes the fRG flow. This enables us, second, to study the geometric crossover between a QPC and a quantum
dot, again for a one-dimensional model with on-site interactions. Third, the enlarged feedback also enables the
treatment of a finite-ranged interaction extending over up to L sites. Using a simple estimate for the form of
such a finite-ranged interaction in a QPC with a parabolic barrier top, we study its effects on the conductance
and the density. We find that for low densities and sufficiently large interaction ranges the conductance develops
additional features, and the corresponding density shows some fluctuations that can be interpreted as Friedel
oscillations arising from a renormalized barrier shape with a rather flat top and steep flanks.

DOI: 10.1103/PhysRevB.95.035122

I. INTRODUCTION

The functional renormalization group (fRG) is a well
established tool for studying interacting many-body systems
[1–6]. This technique treats interactions using an RG-enhanced
perturbation theory and is known to provide an efficient
way to treat correlations. In particular, fRG can be used
to treat spatially inhomogeneous systems, represented by a
discretized model with N sites. For example, about N ∼ 102

sites are required to represent the electrostatic potential of
a quasi-one-dimensional point contact in a manner that is
sufficiently smooth to avoid finite-size effects [7]. The cor-
responding two-particle vertex has O(N4) ∼ 108 independent
spatial components. To make numerical computations feasible,
simplifying approximations have to be made to reduce the
number of components used to describe the vertex. Such
a scheme, called the coupled-ladder approximation (CLA),
was proposed in Ref. [7] for the case of on-site interactions.
Bauer, Heyder, and von Delft (BHD) [8] supplied a detailed
description of the CLA, which is in principle applicable to
systems of arbitrary dimensionality. The CLA is implemented
within the context of generic, third-order-truncated fRG,
meaning that all vertices with three and higher particle number
are set to zero throughout the whole flow. In this paper,
we generalize this scheme to be able to treat finite-ranged
interactions. Since the central aim of our scheme is to extend
the spatial range over which information is fed back into the
RG flow, we call our scheme the extended coupled-ladder
approximation (eCLA).

The basic idea of the CLA, and by extension the eCLA,
lies in reducing the number independent components of the
vertex by decomposing it into several interaction channels and
then establishing a consistent approximation by controlling
the amount of feedback between the individual channels.
This strategy follows that used in Refs. [4,9] in the context
of the single-impurity Anderson model. For a model with
short-ranged interactions, this approach reduces the number
of independent quantities in the vertex to order ∼O(N2).
From a perturbative point of view, this treatment is exact
in second order in the interaction and amounts to summing
up approximate contributions from a large class of diagrams,
including mutual feedback between the different interaction
channels. The eCLA generalizes the CLA by extending spatial
feedback between the channels. As a control parameter for this
extended feedback we introduce a feedback length L, where
L = 0 corresponds to the previous approximation scheme
used by BHD, while L = N − 1 includes the full fRG flow
in second order. L thus serves as a control parameter for
the number of independent spatial components of the vertex,
which scales as ∼O(N2L2). Moreover, the longer-ranged
feedback allows us also to treat interactions with finite range
up to LU sites (with LU � L) in a manner that is exact to
second order in the interaction.

In this paper, we present a detailed account of the eCLA,
and apply it to two one-dimensional (1D) fermionic systems,
modeled to describe the lowest 1D subband of a quantum
point contact (QPC) or a quantum dot (QD), respectively. We

2469-9950/2017/95(3)/035122(20) 035122-1 ©2017 American Physical Society
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develop the eCLA for systems described by a Hamiltonian of
the form

Ĥ =
∑
ij,σ

hσ
ij d

†
iσ djσ + 1

2

∑
ij,σσ ′

Uij n̂iσ n̂jσ ′(1 − δij δσσ ′), (1)

where hσ and U are real, symmetric matrices, d
†
jσ creates

an electron in single particle state j with spin σ (=↑ , ↓ or
+,−, with σ̄ =−σ ), and njσ = d

†
jσ djσ . In the context of the

applications presented here, we refer to the quantum number j

as the “site index.” Our eCLA scheme requires the interaction
to have a finite range LU � L, such that

Uij = 0 if |i − j | > LU. (2)

Models of this form, but with on-site interactions (Uij = Uδij ),
have been used to study both QPC and QD systems [7]. To
describe a QPC, hσ

ij is taken to represent a one-dimensional
tight-binding chain, with a potential barrier with parabolic
top, whereas for a QD, it is chosen to represent a double-
barrier potential. The noninteracting physics of both models
is well known, whereas the effect of interactions, espe-
cially for the QPC, are still a topic of ongoing discussions
[10–12]. For the QPC, the conductance is quantized [13–15]
in units of the conductance quantum GQ = 2e2/h, but shows
an additional shoulder at approximately 0.7GQ. This regime,
in which other observables show anomalous behavior too
[16–18], is commonly known as the “0.7-anomaly.” The latter
has been studied in [7] using a model of the above form,
with purely on-site interactions. However, to examine the
effect of gate-induced screening in a QPC, one needs to
consider finite-ranged interactions. This goal serves as the
main motivation for developing the eCLA put forth in this
paper.

We remark that the QD and QPC models considered
here provide a meaningful testing ground for the eCLA,
since lowest-order perturbation theory would not yield an
adequate treatment of the correlation effects expected to occur:
the Kondo effect for QDs and the 0.7-anomaly for QPCs.
Although some aspects of the latter can be understood in terms
of a simple Hartree picture [7], the interaction strength needed
to yield phenomenological behavior typical of the 0.7-anomaly
is sufficiently large that lowest-order perturbation theory is
inadequate.

The numerical results presented here were all obtained
using the eCLA in a static approximation, which neglects
the frequency-dependence of the two-particle vertex (after
which the approach no longer is exact to second order).
Nevertheless, BHD have shown that for a QPC model with
on-site interactions, the CLA with a static approximation leads
to reasonable results for the conductance step shape, though
it does produce some artifacts regarding the pinch-off gate
voltage when the interaction strength is increased. We find
the same to be true for the static eCLA, with the artifacts
becoming more pronounced with increasing interaction range,
but the step shape behaving in a physically reasonable manner.

We use the eCLA for three studies of increasing complexity.
(i) We present static eCLA results for a QPC model with
short-ranged interaction and successively increase the feed-
back length L. This systematically improves the treatment
of RG feedback between the various fRG channels, and

for sufficiently large L converges to the full solution of
the generic, third-order-truncated static fRG. For the models
we consider here, where the characteristic length lx of the
parabolic QPC potential barrier varies between approximately
4–10 sites, we find that convergence in L is achieved once
L becomes comparable to lx . For such systems, the eCLA
scheme thus speeds up the calculation relative to the full
generic, third-order-truncated static fRG by a factor of 103,
without any loss of accuracy. (ii) Furthermore, it turns out that
the eCLA’s enhanced feedback leads to a more stable fRG
flow than the CLA scheme, since each interaction channel acts
more strongly to limit the tendencies other channels might
have to diverge during the fRG flow. This enables us to study
the geometric crossover between a QPC and a QD where the
barrier top stays close to the chemical potential. This setup
features a high local density of states (LDOS) at the chemical
potential, and as a result turns out to be intractable when using
the CLA without enhanced feedback [19]. In contrast, the
eCLA is able to treat this challenging crossover very nicely.
(iii) Finally, we illustrate the potential of the eCLA to deal
with finite-ranged interactions in a setting where the physics
of screening comes into play, namely, a QPC model with
an interaction whose range extends over up to N sites. The
purpose of this study is mainly methodological, i.e., we do not
aim here to achieve a fully realistic treatment of screening in a
QPC. Nevertheless, the results are interesting: for a sufficiently
long ranged interaction and sufficiently low density, there
exists a parameter regime where we find additional features in
the conductance and corresponding 2kF density fluctuations
within the QPC.

The paper has three main parts. The first part (Sec. II)
develops our improved eCLA feedback scheme. The second
part (Sec. III) studies its consequences for QPC and QD
models with on-site interaction, focusing on the effects of
increasing the feedback length L. Finally, the third part
(Sec. IV) is devoted to finite-ranged interactions. We estimate
the approximate form and strength of the interaction to be
used for a 1D depiction of a QPC and show some preliminary
results for the conductance and density profile of such a system
depending on the screening properties. A detailed study of the
physics of long-ranged interactions in QPCs is beyond the
scope of this work and left as a topic of future investigation.

II. fRG FLOW EQUATIONS

Before we introduce our new eCLA scheme, we give a short
overview over the general idea and the usual approximations
made in fRG. Since numerous detailed treatments of fRG
are available, and since our work builds on that of BHD, the
discussion below is very brief and structured similarly to that in
Ref. [8]. The basic idea of fRG is to introduce a flow parameter
� in the bare propagator of the theory in such a way that for
� = �i = ∞, the structure of the resulting vertex functions
are very simple. With our choice for � (described later) all but
the two-particle vertex will vanish,

γ
�i

2 = v γ �i

n = 0 (n �= 2), (3)

where v is the bare vertex. For the final value of the flow
parameter � = �f = 0, one recovers the full bare propagator
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and hence the full theory:

G�
0 → G0, with G�i

0 = 0, G�f

0 = G0 . (4)

The RG flow is described by a hierarchy of coupled differential
equations for the one particle irreducible (1PI) n-particle vertex
functions γn,

d

d�
γ �

n = F
(
�,G�

0 ,γ �
1 , . . . ,γ �

n+1

)
. (5)

Integrating this system from � = �i to � = 0 yields in
principle a full description of all interaction vertices. In
practice, one can of course not treat an infinite hierarchy of
flow equations and has to truncate it at some point. In our
form of third-order truncated fRG, we incorporate the one-
and two-particle vertex into the flow, but set all vertices with
three or more particles to zero

d

d�
γn = 0 (n � 3) . (6)

We thus retain only the flow of the self-energy, � = −γ1, and
the flow of the two-particle vertex γ2. This differential equation
can then be solved numerically, using a standard Runge-Kutta
method. As we will see shortly, the flow of the vertex consists
of three different parquetlike channels, which are coupled to
the flow of the self-energy and also directly to each other. This
simultaneous treatment moderates competing instabilities in
an unbiased way.

In principle, the form of the fRG flow equations depends
on the choice of the flow parameter, even if in most cases
they take the form stated below. In our work, we choose the
� dependence of the bare propagator to take the form of an
infrared cutoff

G�
0 (ωn) = �T (|ωn| − �)G0(ωn), �i = ∞, �f = 0. (7)

We use the Matsubara formalism with the frequencies ωn

defined to be purely imaginary,

ωn = iT π (2n + 1),

and �T is a step function broadened on the scale of tempera-
ture.

Using this cutoff, one can derive the fRG equations in
the standard way, see, e.g., Refs. [5,20] or Ref. [21] for
a diagrammatic derivation. The resulting equation for the
one-particle vertex is given by

d

d�
γ �

1 (q ′
1,q1) = T

∑
q ′

2,q2

S�
q2,q

′
2
γ �

2 (q ′
2,q

′
1; q2,q1), (8)

where qi is a shorthand for all quantum numbers and the
fermionic Matsubara frequency associated with the legs of
a vertex, and the full- and single-scale propagators are defined
via

G� = [[
G�

0

]−1 − ��
]−1

, (9a)

S� = G�∂�

[
G�

0

]−1G�, (9b)

respectively. The structure of the vertex consists naturally of
three different parquetlike channels

γ �
2 = v + γ �

p + γ �
x + γ �

d , (10)
where v is the bare vertex and we refer to γ �

p , γ �
x , and γ �

d

as the particle-particle channel (P ), and the exchange (X) and
direct (D) part of the particle-hole channel. These quantities
are defined via their flow equations

d

d�
γ �

2 = d

d�

(
γ �

p + γ �
x + γ �

d

)
, (11)

and the initial conditions γ �i
p = γ �i

x = γ
�i

d = 0. The explicit
form of the flow equations is

d

d�
γ �

p (q ′
1,q

′
2; q1,q2) = T

∑
q ′

3,q3,q
′
4,q4

γ �
2 (q ′

1,q
′
2; q3,q4)S�

q3,q
′
3
G�

q4,q
′
4
γ �

2 (q ′
3,q

′
4; q1,q2), (12a)

d

d�
γ �

x (q ′
1,q

′
2; q1,q2) = T

∑
q ′

3,q3,q
′
4,q4

γ �
2 (q ′

1,q
′
4; q3,q2)

[
S�

q3,q
′
3
G�

q4,q
′
4
+ G�

q3,q
′
3
S�

q4,q
′
4

]
γ �

2 (q ′
3,q

′
2; q1,q4), (12b)

d

d�
γ �

d (q ′
1,q

′
2; q1,q2) = −T

∑
q ′

3,q3,q
′
4,q4

γ �
2 (q ′

1,q
′
3; q1,q4)

[
S�

q4,q
′
4
G�

q3,q
′
3
+ G�

q4,q
′
4
S�

q3,q
′
3

]
γ �

2 (q ′
4,q

′
2; q3,q2) . (12c)

At this point, the channels have a full feedback between them.
Later on, however, we will control the amount of feedback
between channels by the feedback length L.

A. Frequency parametrization

Since we have energy conservation at each vertex,

γ1(q ′
1,q1) ∝ δn′

1n1
,

γ2(q ′
1,q

′
2; q1,q2) ∝ δn′

1+n′
2n1+n2

,
(13)

we can parametrize the frequency dependence of the self-
energy with one frequency, and of the vertex with three
frequencies. A detailed discussion of the frequency structure
is given in Refs. [4,8,9], and since we proceed analogously,
we will be very brief here. A convenient choice for the
parametrization of the vertex frequency structure is given in
terms of the three bosonic frequencies [7]

� = ωn′
1
+ ωn′

2
= ωn1

+ ωn2
, (14a)

X = ωn′
1
− ωn2

= ωn1
− ωn′

2
, (14b)

� = ωn′
1
− ωn1

= ωn2
− ωn′

2
. (14c)
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In order to keep notation short, the frequency information is
separated from the site and spin quantum numbers:

γ2(j ′
1σ

′
1ωn′

1
,j ′

2σ
′
2ωn′

2
; j1σ1ωn1

,j2σ2ωn2
)

= δn′
1+n′

2n1+n2
γ2(j ′

1σ
′
1,j

′
2σ

′
2; j1σ1,j2σ2; �,χ,�). (15)

For convenience, we have here also listed the fermionic
frequencies in terms of the bosonic ones:

ωn′
1
= 1

2 (� + X + �) , ωn′
2
= 1

2 (� − X − �) , (16a)

ωn1
= 1

2 (� + X − �) , ωn2
= 1

2 (� − X + �) . (16b)

B. Coupled-Ladder approximation

The basic idea of the CLA scheme was introduced in
Refs. [4,9] for the frequency parametrization of the single-
impurity Anderson model and was further developed for
inhomogeneous Fermi systems with on-site interaction in
Ref. [7]. Here we will go one step further and extend
this scheme to treat interacting models with two-particle
interactions of finite range, using an idea similar to the singular
mode fRG approach introduced in [22]. There, the vertex
structure in momentum space was decomposed into fermion
bilinears that interact via exchange bosons and it was shown
that this decomposition admits a systematic approximation
by an expansion using form factors. Here, we will proceed
similar in position space, introducing “short indices” k,l that
will control the extent of our approximation and act similar to
the mentioned form factor expansion.

In the case of third-order truncated fRG, BHD introduced
two different approximation schemes. The simpler “static
second-order fRG” (sfRG2) neglects the frequency depen-
dence of the vertex; the more elaborate “dynamic second-order
fRG” (dfRG2) includes the frequency dependence of the vertex
within a channel approximation, reducing this dependence
from the generic O(N3

f ) to O(Nf ), where Nf is the number of
used frequencies. In the case of the on-site model, it turned out
that static compared to dynamic fRG produces some artifacts
concerning the pinch-off point of the conductance of a QPC
but yields essentially the same shape for the conductance steps
as dynamic fRG. For this reason and since it is a factor of
Nf cheaper, we will only compute the static fRG flow in
our numerical work. Nevertheless, we will derive here the
full dynamic flow equations, and in principle, it should be no
problem to implement these too.

The dfRG2 scheme exploits the fact that the bare vertex
consists of a density-density interaction

v(j ′
1σ

′
1,j

′
2σ

′
2; j1σ1,j2σ2)

= δ
LU

j1j2
Uj1j2

[
(1 − δj1j2

)δσ1σ2
+ δσ1σ̄2

]
×(

δj ′
1j1

δj ′
2j2

δσ ′
1σ1

δσ ′
2σ2

− δj ′
1j2

δj ′
2j1

δσ ′
1σ2

δσ ′
2σ1

)
, (17)

and parametrizes the vertex in terms of O(N2L2
UNf) inde-

pendent variables. Here, δ
LU

j1j2
=1 if |j1 − j2| � LU and is

otherwise set to zero.

Using this vertex, we can now consider a simplified version
of the vertex flow equation (12), where the feedback of the
vertex flow is neglected: on the r.h.s. we replace γ �

2 → v.
If the feedback of the self-energy were also neglected, this
would be equivalent to calculating the vertex in second-order
perturbation theory. As a consequence, all generated vertex
contributions have one of the following structures:

P kl
jiσσ′(Π) := γΛ

p (jσ, j+k σ′; iσ, i+l σ′; Π)

O(v2)�

Π − ωn′

jσ

j + k σ′
ωn′

Π − ωn′′
σ

σ′
ωn′′

iσ

i+ l σ′
ωn

Π − ωn

,
(18a)

P̄ kl
jiσσ′(Π) := γΛ

p (jσ, j+k σ′; iσ′, i+l σ,Π)

O(v2)�

Π − ωn′

jσ

j + k σ′
ωn′

Π − ωn′′
σ

σ′
ωn′′

iσ′

i+ l σ
ωn

Π − ωn

,
(18b)

Xkl
jiσσ′(X) := γΛ

x (jσ, i+l σ′; iσ, j+k σ′; X)

O(v2)�

X + ωn′

jσ

j + k σ′
ωn′

X + ωn′′
σ

σ′
ωn′′

iσ

i+ l σ′
ωn

X + ωn

,
(18c)

X̄kl
jiσσ′(X) := γΛ

x (jσ, i+l σ′; iσ′, j+k σ; X)

O(v2)�

X + ωn′

jσ

j + k σ
ωn′

X + ωn′′
μ

μ
ωn′′

iσ′

i+ l σ′
ωn

X + ωn

,
(18d)

Dkl
jiσσ′(Δ) := γΛ

d (jσ, i+l σ′; j+k σ, iσ′; Δ)

O(v2)�

jσ j + k σ

iσ′ i+ l σ′
ωn

ωn′

ωn +Δ

Δ+ ωn′

μ Δ+ ωn′′μωn′′
,

(18e)

D̄kl
jiσσ′(Δ) := γΛ

d (jσ, i+l σ′; j+k σ′, iσ; Δ)

O(v2)�

jσ j + k σ′

iσ i+ l σ′
ωn

ωn′

ωn +Δ

Δ+ ωn′

σ Δ+ ωn′′σ′ωn′′
,

(18f)

These terms depend only on a single bosonic frequency.
The upper indices kl are taken to run over the range

−L � k,l � L , (19)
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where the control parameter L sets the “spatial feedback
range.” The bounds on the lower indices depend on the upper
indices: if one of the site indices of γ2 lies outside the region
[−N ′,N ′] where N ′ is defined by N = 2N ′ + 1, γ2 is zero.
Therefore i,j run between

max(−N ′, − N ′ − l) � i � min(N ′,N ′ − l), (20)

max(−N ′, − N ′ − k) � j � min(N ′,N ′ − k). (21)

Analogously to BHD, we now feed back all those terms
on the right-hand side (r.h.s.) of the flow equation (12), which
conserve the site and spin structure indicated in Eq. (18). As a
first consequence, each vertex quantity is fully fed back into its
own flow equation. Secondly, the feedback between different
quantities is restricted to those site indices that have the
appropriate structure. Furthermore, to avoid frequency mixing,
the feedback to a given channel from the other two channels
is restricted to using only the static, i.e., zero-frequency
component of the latter.

This scheme can be expressed by the replacement

γ2 → γ̃a (22)

on the r.h.s. of channel a = p,x,d in Eq. (12) where γ̃a is
defined as

γ̃p(j ′
1σ

′
1,j

′
2σ

′
2; j1σ1,j2σ2,�)

= δL
j ′

1j
′
2
δL
j1j2

γ2(j ′
1σ

′
1,j

′
2σ

′
2; j1σ1,j2σ2; �,0,0), (23a)

γ̃x(j ′
1σ

′
1,j

′
2σ

′
2; j1σ1,j2σ2,X)

= δL
j ′

1j2
δL
j ′

2j1
γ2(j ′

1σ
′
1,j

′
2σ

′
2; j1σ1,j2σ2; 0,X,0), (23b)

γ̃d (j ′
1σ

′
1,j

′
2σ

′
2; j1σ1,j2σ2,�)

= δL
j ′

1j1
δL
j ′

2j2
γ2(j ′

1σ
′
1,j

′
2σ

′
2; j1σ1,j2σ2; 0,0,�). (23c)

C. Symmetries

As can readily be checked, these flow equations respect the
following symmetry relations:

Gσ�
ij (ωn) = Gσ�

ji (ωn) = [
Gσ�

ij (−ωn)
]∗

, (24a)

�σ�
ij (ωn) = �σ�

ji (ωn) = [
�σ�

ij (−ωn)
]∗

, (24b)

P kl
jiσσ ′(�) = P lk

ijσσ ′(�) = P
(−k)(−l)
(j+k)(i+l)σ ′σ (�),

P̄ kl
j iσσ ′(�) = P̄ lk

ijσ ′σ (�) = P̄
(−k)(−l)
(j+k)(i+l)σ ′σ (�),

P kl
jiσσ ′(�)= −P̄ −kl

j+kiσ ′σ (�) = −P̄
k(−l)
j (i+l)σσ ′ (�),

Pσσ = P̄σσ , (25a)

Xkl
jiσσ ′(X) = Xlk

ijσσ ′(X) = [
X

(−k)(−l)
(j+k)(i+l)σ ′σ (X)

]∗
,

X̄kl
j iσσ ′(X) = X̄lk

ijσ ′σ (X) = [
X̄

(−k)(−l)
(j+k)(i+l)σσ ′(X)

]∗
,

Xσσ = X̄σσ , (25b)

X = −D̄ , X̄ = −D , (25c)

P kl
jiσσ ′(�) = [

P kl
jiσσ ′ (−�)

]∗
,

Xkl
jiσσ ′(X) = [

Xkl
jiσσ ′(−X)

]∗
,

X̄kl
j iσσ ′(�) = [

X̄kl
j iσσ ′(−�)

]∗
. (25d)

As a result, all relevant information is contained in a small
number of independent frequency-dependent block matrices,
which we define as follows:

P � =P �
↑↓,P �

σ = P �
σσ ,

X� =X�
↑↓, (26)

D� =D�
↑↓,D�

σ = D�
σσ ,

where the superscript � signifies a dependence on the flow
parameter.

The flow equations for these matrices can be derived starting from Eq. (12). The replacement (22) restricts the internal quantum
numbers on the r.h.s. of the flow equation q3, q4, q ′

3, and q ′
4 according to the definitions (18):

Ṗ kl�
ji (�) = γ̇ �

p (j↑,j+k↓; i↑,i+l↓; �)

= T
∑

j ′i ′k′l′,n

[
γ̃ �

p (j↑,j+k ↓; i ′↑,i ′+l′↓; �)S↑�

i ′j ′ (ωn)G↓�

i ′+l′j ′+k′(�−ωn)γ̃ �
p (j ′↑,j ′+k′↓; i↑,i+l↓; �),

+ γ̃ �
p (j↑,j+k ↓; i ′↓,i ′+l′↑; �)S↓�

i ′j ′ (ωn)G↑�

i ′+l′j ′+k′(�−ωn)γ̃ �
p (j ′↓,j ′+k′↑; i↑,i+l↓; �)

]
, (27a)

Ṗ kl�
jiσ (�) = γ̇ �

p (jσ,j+kσ ; iσ,i+lσ ; �)

= T
∑

j ′i ′k′l′,n

γ̃ �
p (jσ,j+k σ ; i ′σ,i ′+l′σ ; �)Sσ�

i ′j ′ (ωn)Gσ�
i ′+l′j ′+k′(�−ωn)γ̃ �

p (j ′σ,j ′+k′σ ; iσ,i+lσ ; �), (27b)

Ẋkl�
ji (X) = γ̇ �

x (j↑,i+l ↓; i↑,j+k ↓; X)

= T
∑

i ′j ′l′k′,n

γ̃ �
x (j↑,i ′+l′ ↓; i ′↑,j+k ↓; X)

[
S↑�

i ′j ′ (ωn+ X)G↓�

j ′+k′i ′+l′ (ωn) + S↓�

j ′+k′i ′+l′(ωn)G↑�

i ′j ′ (ωn+ X)
]

× γ̃ �
x (j ′↑,i+l ↓; i↑,j ′+k′ ↓; X), (27c)
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Ḋkl�
jiσσ ′(X) = γ̇ �

d (jσ,i+l σ ′; j+k σ,iσ ′; �)

= −T
∑

i ′j ′l′k′
n,σ ′′

γ̃ �
d (jσ,i ′+l′ σ ′′; j+k σ,i ′σ ′′; �)

[
Sσ ′′�

i ′+l′j ′+k′(ωn)Gσ ′′�
i ′j ′ (ωn+�) + Gσ ′′�

i ′+l′j ′+k′(ωn)Sσ ′′�
i ′j ′ (ωn+�)

]

× γ̃ �
d (j ′σ ′′,i+l σ ′; j ′+k′ σ ′′,iσ ′; �). (27d)

The initial conditions are

P �i = P �i

σ = X�i = D
�i

σσ ′ = 0 . (28)

These equations can be compactly written in block-matrix form:

d

d�
P �(�) = P̃ �(�) · Wp�(�) · P̃ �(�), (29a)

d

d�
P �

σ (�) = P̃ �
σ (�) · Wp�

σ (�) · P̃ �
σ (�), (29b)

d

d�
X�(X) = X̃�(X) · Wx�(X) · X̃�(X), (29c)

d

d�
D�

σσ ′(�) = −
∑
σ ′′

D̃�
σσ ′′(�) · Wd�

σ ′′ (�) · D̃�
σ ′′σ ′(�) , (29d)

where “·” denotes a block-matrix multiplication:

[A · B]kl
j i =

∑
j ′k′

Akk′
jj ′B

k′l
j ′i (30)

and we have introduced the definitions

P̃ kl�
ji (�) = γ̃ �

p (j↑,j+k↓; i↑,i+l↓; �)

= δjiδklUjj+k + P kl�
ji (�) + δL

ji+lδ
L
ij+kX

(i+l−j )(j+k−i)�
ji (0) + δL

ij δ
L
j+ki+lD

(i−j )(j+k−i−l)�
j (i+l)↑↓ (0), (31a)

P̃ kl�
jiσ (�) = γ̃ �

p (jσ,j + kσ ; iσ,i + lσ ; �)

= δjiδklUjj+k − δk,−lδ(j+k)iUji + P kl�
jiσ (�) − δL

i+lj δ
L
j+kiD

(i+l−j )(j+k−i)�
jiσ (0) + δL

ij δ
L
j+ki+lD

(i−j )(j+k−i−l)�
j (i+l)σ (0), (31b)

X̃kl�
ji (X) = γ̃ �

x (j↑,i + l↓; i↑,j + k↓; X)

= δjiδklUjj+k + Xkl�
ji (X) + δL

i+lj δ
L
j+kiP

(i+l−j )(j+k−i)�
ji (0) + δL

ij δ
L
j+ki+lD

(i−j )(i+l−j−k)�
j (j+k)↑↓ (0), (31c)

D̃kl�
jiσσ ′(�) = γ̃ �

d (jσ,i + lσ ′; j + kσ,iσ ′; �)

= δ0kδ0lUji − δσσ ′δjiδklUjj+k + Dkl�
jiσσ ′(�) + δL

i+lj δ
L
j+kiP

(i+l−j )(i−j−k)�
j (j+k)σσ ′ (0) + δL

ij δ
L
j+ki+lX

(i−j )(i+l−j−k)�
j (j+k)σσ ′ (0), (31d)

which account for the interchannel feedback contained in
equation (22). Note that Eq. (31d) is not fully expressed in
terms of the definitions (26). This can only been done once
σ and σ ′ are specified explicitly and then leads to three
independent equations. Wp, Wx , and Wd each represent a
specific bubble, i.e., a product of two propagators summed
over an internal frequency:

W
lk,p�

ij (�) = T
∑

n

[
S↑�

ij (ωn)G↓�

i+lj+k(�−ωn)

+S↓�

i+lj+k(ωn)G↑�

ij (�−ωn)
]
, (32a)

W
lk,p�

ijσ (�) = T
∑

n

[
Sσ�

ij (ωn)Gσ�
i+lj+k(�−ωn)

]
, (32b)

W
lk,x�
ij (X) = T

∑
n

[
S↓�

i+lj+k(ωn)G↑�

ij (ωn+X)

+G↓�

j+ki+l(ωn)S↑�

ij (ωn+X)
]
, (32c)

W
lk,d�
ijσ (�) = T

∑
n

[
Sσ�

i+lj+k(ωn)Gσ�
ij (ωn+�)

+Gσ�
i+lj+k(ωn)Sσ�

ij (ωn+�)
]
. (32d)

D. eCLA versus CLA and the role of D↑↓

Let us now recapitulate the similarities and differences
between our new eCLA method to the previous CLA method

035122-6



FUNCTIONAL RENORMALIZATION GROUP APPROACH FOR . . . PHYSICAL REVIEW B 95, 035122 (2017)

FIG. 1. The linear conductance g = G/GQ of a QPC as a
function of gate voltage, plotted for the cases with and without
feedback of D↑↓ in an intermediate parameter regime for four
equidistant magnetic fields. Note that the difference between the two
cases is suppressed with increasing the magnetic field.

used in Ref. [8]. There, only on-site models were considered
and the guiding idea for approximations in the fRG flow
was to include only those vertex structures that are already
generated in second order in the interaction. Therefore it was
sufficient to consider only an on-site feedback between the
individual channels, i.e., the feedback range was the same
as the interaction range. In the development of the eCLA,
we followed the same idea, but found it to be advantageous
to separate the feedback length L from the actual range
of the interaction LU . To be exact in second order, L has
to be chosen at least as large as LU . However, it can be
chosen also larger than LU , and thus enables us to study
the importance of the neglected higher-order terms. If L is
chosen exactly equal to LU , we are in principle back at the
original idea to include only vertex structures in the flow
which are already generated in second order of the interaction.
However, there is one exception to the last statement; for purely
on-site interactions (LU = 0), the contributions of D↑↓ and
P σσ to the vertex are of third and fourth order, respectively.
In Ref. [8], they were therefore neglected, consistent with
the policy of keeping only structures generated in second
order. In the present paper, however, our implementation does
not explicitly distinguish between LU = 0 and LU > 0 and
includes the D↑↓ and P σσ contributions regardless of the
values of LU and L, even for LU = L = 0. To be specific,
for LU = L = 0, our present flow scheme keeps P σσ = 0
but leads to a finite contribution of D↑↓. Consequently, our
results for LU = L = 0 differ slightly from those obtained in
Refs. [7,8], and the difference is a measure of the magnitude
of the third-order D↑↓ contribution. In Fig. 1, we compare the
dependence of the QPC conductance on the magnetic field for
a model with purely on-site interactions (defined in Sec. III
below) for both CLA and eCLA with L = 0. The difference
is most noticeable for B = 0 in the region of the 0.7-anomaly,
i.e., in the regime where interactions influence the conductance
most strongly, but even here the difference is not very big. (Of
course, this holds only in intermediate parameter regimes, i.e.,
in regimes where both the eCLA and the CLA are convergent.)

E. The flow equation of the self-energy

Using the above definitions, the flow equation of
the self-energy, Eq. (8), can be written explicitly

as

d

d�
�σ�

ji (ωn) = − T
∑

k,σ ′,n′

{∑
l

Sσ ′�
i+l,j+k(ω′

n)
[
Ui(i+l)δlkδji

− Uij δk,−lδj (i+l)δσσ ′ + P kl�
jiσσ ′(ωn + ω′

n)

+ Xkl�
jiσσ ′(ωn − ω′

n)
]

+
∑
i2

Sσ ′�
i2,i2+k(ω′

n)D(i−j )k�

ji2σσ ′ (0)

}
, (33)

where the l,k summation is restricted to |l|,|k| � L, whereas
the sum over i2 runs over the whole interacting region. To
summarize, dfRG2 is defined by the flow equations (29) and
(33), together with the definitions (9), (18), (26), (31), and (32).

F. Restrictions for actual computations

In our actual computations, we restrict ourself to the case
of zero temperature and use so called static fRG, meaning
that we treat the vertices as frequency independent. The
zero-temperature limit enables us to transform the summation
over discrete Matsubara frequencies into continuous integrals
along the imaginary axis, and the �T in Eq. (7) is a sharp step
function. Using this, we are able to apply Morris’ lemma [23],
which enables us to simplify the integral expressions contain-
ing the single-scale propagator S in the flow equations (27):
under integration over ω, the following relations hold:

S�(iω)
T =0= δ(|ω| − �)G̃�(iω), (34a)

G̃�(iω) = [[G0(iω)]−1 − ��(iω)]−1, (34b)

S�
i,j (iω1)G�

k,l(iω2)
T =0= δ(|ω1| − �)�(|ω2| − �)

× G̃�
i,j (iω1)G̃�

k,l(iω2) . (34c)

The static fRG approximation treats the vertex quantities
γ �

p , γ �
x , γ �

d as frequency independent, setting the bosonic
frequencies �, X, and � to zero. Via Eq. (8), this automatically
implies that the self-energy is frequency independent, too.
In the case of QPC models with on-site interaction, this
approximation was compared with results of the frequency
dependent fRG scheme, the so-called “dynamic fRG” and
was seen to yield reasonable results for the zero-frequency
Green’s function at zero temperature. However, for models
with finite-ranged interactions, we find more pronounced static
fRG artifacts (described in Sec. IV), which might be improved
by the use of the dynamical method. This is a topic for
future research. We stress here that it should in principle be
straightforward to implement the dynamical method. The main
restriction is simply the effort in computation time, which
scales like the number of used frequencies, Nf , which in
Ref. [7] is typically of the order 102.

G. Numerical implementation

In a numerical implementation, the flow will start at a value
�i which is usually chosen as large, but is not infinite. For �i

large enough, one can show [5] that the flow of the self-energy
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from � = ∞ to � = �i results in a value of γ
�i

1 given by

γ
�i

1 (q ′
1,q1) = −1

2

∑
q

v(q,q ′
1; q,q1) . (35)

This is then used as the initial condition for γ1 in the numeric
fRG flow. The initial condition for the vertex γ2, given by
Eq. (3), stays the same.

In the case of sfRG2, the vertices and the self-energy only
depend on �. In order to carry out the resulting integration, we
mapped the domain of the flow parameter � ∈ [0,∞) onto the
finite domain x ∈ [0,1) by using the substitution � = x

1−x
, cf.

Ref. [8]. To integrate the resulting flow, we followed Dormand-
Prince [24], using a fourth-order Runge-Kutta method with
adaptive step-size control.

For static fRG, the computationally most expensive step is
the block-matrix multiplication of Eq. (29), which scales as
O(N3L3). In dynamic fRG schemes with nonfrequency cutoff
(e.g., with hybridisation flow [4]), for intermediate N � 102

most of the calculation time is spent on the bubble integrals
of Eq. (32), whose calculation time scales as O(N2L2Nf ),
where Nf is the number of bosonic frequencies. Since the
numerical cost for this calculation (for the system sizes used
in our setup) is comparable to the block-matrix multiplication
of Eq. (29), it might be possible to implement the eCLA within
those schemes, too.

III. RESULTS: ON-SITE INTERACTIONS

Having derived our eCLA scheme in the last section, we
are now able to apply it to the two models of primary interest
here, namely the QPC and the QD. In the present section, we
study purely on-site models,

Uij = δijU , (36)

where we treat the strength U of the interaction as a tunable and
space-independent parameter, which is suppressed smoothly
to zero at the ends of the interacting region. The focus
of this section lies on comparing our results to the ones
obtained previously by BHD to explore the consequences
of the improved feedback for a well-studied example. If not
otherwise specified, plots in this section are calculated with
μ = 0, i.e., with half-filled leads.

A. Models for QPC and QD

Our interest lies in the low-energy physics of a QPC or a
QD. For this reason, we consider only the lowest subband of
a QPC, or a QD coupled to one-dimensional leads. We use a
one-dimensional model Hamiltonian of the same form as used
in Refs. [7,8,19]:

Ĥ =
∑
jσ

[
Eσ

j n̂jσ − τ (d†
jσ dj+1σ + H.c.)

] +
∑

j

Uj n̂j↑n̂j↓.

(37)

It describes an infinite tight-binding chain with constant lattice
spacing a, constant hopping amplitude τ , on-site interaction
Uj , and on-site potential energy Eσ

j = Vj − σB
2 . Here, Vj will

be used to model the smooth electrostatic QPC or QD potential
defined by gates (as described below and illustrated in Fig. 2),

FIG. 2. Typical QPC and QD barrier shapes, controlled via the
parameters, εF , Vg , N ′, and, for the QD, Vs and js . For these plots,
both μ and the barrier top lie were chosen to lie below the center of the
bulk band, which we take as reference energy where ω = 0. The case
of half-filled leads, used for most of our calculations, corresponds to
choosing μ = 0.

and the Zeeman energy B accounts for a uniform external
magnetic field parallel to the 2DEG. We take Uj and Vj to be
nonzero only within a (single or double) “barrier region” of
N = 2N ′ + 1 sites centered around j = 0, containing the QPC
or QD. The rest of the chain represents two noninteracting
leads with bandwidth 4τ , chemical potential μ, bulk Fermi
energy εF = 2τ + μ, and effective mass m∗ = �2/(2τa2)
(defined as the curvature of the dispersion at the band bottom
in the bulk). Adopting the convention in Ref. [8], we choose
the center of the bulk band as energy origin. In order to arrive
at a discrete QPC potential Vj , we start with a continuous QPC
potential

V (x) =
{

(Vg + εF ) exp
(−γ 2(x/Lbar)2

1−(x/Lbar)2

)
, |x| � Lbar,

0, |x| > Lbar,
(38)

where 2Lbar is the whole barrier length and Vg controls the
barrier height, measured with respect to (w.r.t.) εF . Near the
barrier top, the potential (38) can be expanded as

V (x) = Vg + εF − 1

2

m∗

�2
�2

xx
2 + O(x4) , (39)

where the curvature parameter �x is given by

�x = γ
�

Lbar

√
2(Vg + εF )

m∗ . (40)

It has units of energy and serves as a characteristic energy
scale for the QPC. It also defines a characteristic length scale
for the QPC barrier top:

lx = �/
√

2m∗�x = a
√

τ/�x. (41)

The dimensionless parameter γ in the exponent of Eq. (38)
can be used to vary the barrier curvature [Eq. (40)] without
changing the barrier height. Through most of Sec. III, we will
keep γ = 1 constant and consider only gate-voltages small
compared to εF , such that the curvature can be assumed
to be independent of Vg . However, when studying eCLA
convergence properties (Fig. 4), and when dealing with longer-
ranged interactions in Sec. IV, we will need to choose γ �= 1.

We discretize the QPC potential (38) by choosing a number
of sites N and setting the lattice spacing a = 2Lbar/N , to arrive
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at

Vj = V (j · a) =
{

(Vg + εF )e
−γ 2 (j/N ′ )2

1−(j/N ′ )2 , |j | � N ′,
0, |j | > N ′.

(42)

The resulting barrier shape given by Eq. (42) is plotted in
Fig. 2(a). The leading behavior around the maximum at j = 0
is quadratic and the same as in Ref. [8]:

Vj = Vg + εF − �2
x

4τ
j 2 + O(j 4), (43)

and the curvature can be expressed through the discrete

quantities as �x = γ
2
√

τ (εF +Vg )

N ′ . For our on-site studies,
where Vg is only varied in a small region around Vg = 0,

we use the approximation �x = γ
2
√

τεF

N ′ . In order to avoid
discretization artifacts, the discretization length a should be
chosen significantly smaller than lx . In our actual computations
for the QPC with on-site interactions, we use a ratio lx/a

varying between approximately 4–10 sites.
To model a QD, we use a potential that can be tuned

smoothly from the QPC shape described above to a double-
barrier structure, as shown in Fig. 2(b). The discretization
procedure is analogous to the QPC and we state here only the
resulting discrete dot potential, which is the same as used in
Refs. [7,19]:

Vj =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, ∀ |j | � N ′,

(Vs + εF )
[
2
( |j | −N ′

js−N ′
)2 − ( |j |−N ′

js−N ′
)4]

,

∀ j0 � |j | � N ′,
Vg + εF + �̄2

xj
2

4τ
sgn(Vs − Vg), ∀ 0 � |j | <j0.

(44)

We can vary the dot width via js , and the depth of the
quadratic well in the middle via Vs and Vg . These choices
determine the values of j0 and �̄x in order to make the
potential continuously differentiable. Of course, this is just one
convenient way to model the dot structure, and the qualitative
behavior of the physical results does not depend on the specific
implementation.

For the on-site interaction, we use both for the QPC and the
QD the form used by BHD [7]:

Uj = Ue−(j/N ′)6/[1−(j/N ′)2]. (45)

It is almost constant and equal to U in the center of the QPC
and drops smoothly to zero at the flanks of the barrier region.

B. Physical behavior of the models

We now briefly summarize the physics of these models,
which was already discussed in great detail by BHD in
Refs. [7,19]. Our main handle for tuning the QPC potential
is the gate voltage Vg , which controls the height of the barrier.
If the barrier top lies well above the chemical potential, the
QPC is closed. Lowering the barrier, the QPC opens up and
the linear conductance g increases smoothly from 0 to 1 in
the region of gate voltages 0 � Vg � �x , where �x is the
curvature of the QPC introduced above. Additionally, the width
of the conductance step, i.e., the gate-voltage interval in which
the conductance increases from zero to one, is also set by �x .

The general shape of the conductance curve for a parabolic
barrier in the absence of interactions is a step described by
a Fermi function, as was shown by Büttiker in Ref. [15]. If
one switches on on-site interactions, the conductance curve
becomes asymmetric and flattens increasingly at the top. This
effect can be traced back to the fact that when the barrier top
drops below the chemical potential as the QPC is being opened
up, the maximum in the LDOS just above the barrier top (called
van Hove ridge in Ref. [7]) is aligned with the chemical
potential, thereby strongly enhancing interaction effects. It
turns out that the effective on-site interaction strength is in fact
given by

U eff
j = U · A0

j (μ), (46)

where

A0
j (ω) = − 1

π
ImG0

jj (ω + i0+) (47)

is the noninteracting local density of states per site. Near the
barrier center, the resulting U eff scales like U/

√
�xτ .

In the QD case, we can vary the width and depth of the
middle well, [cf. Figs. 6(d) and 6(e) below]. Typically, we want
to study the crossover between QPC and QD, thus we start out
with a QPC setup and lower the potential of the central region
to change the geometry to a QD model. The characteristic
physics of the quantum dot is determined by the structure of the
discrete levels of the bound states in the well. This quantization
leads to a conductance peak whenever such a level crosses the
chemical potential and the dot gets filled by one electron more.
In the interacting case, the degenerate levels split on a scale of
the interaction strength U . However, there is a further effect:
the odd valleys, i.e., the regions between the peaks where the
dot contains an odd number of electrons, become conductance
plateaus with GQ ≈ 1. This behavior reflects the occurrence
of the Kondo [25] effect since the singly occupied dot level
behaves like a localized spin coupled to a fermionic bath.

In this work, we will apply our eCLA first to the same
type of on-site models of QPCs as used by BHD [7,8,19]
and analyse the resulting effects. Importantly, we find that in
comparison to the CLA used previously, the eCLA yields an
improved stability of the fRG flow in the case of large bare
LDOS at the chemical potential. This improvement allows us
to additionally study the QPC-QD crossover, which involves
a very high LDOS due to the flat barrier top that occurs in this
transition. Using the CLA, it had not been possible to study
this transition when the barrier top lies close to the chemical
potential μ, since the CLA equations did not converge. Due
to this problem, in the real-space approach chosen by Heyder
et al. [19], it was not possible to study dots which contain just
a few electrons. Since our new feedback scheme significantly
ameliorates the convergence problem, we are now able to study
the crossover from a QPC to a QD, which is just occupied by
a single electron. This will be shown in Sec. III D.

C. Increasing the feedback length

Let us now study the influence of the feedback length L on
the zero-temperature linear conductance [26],

g = 1

2

∑
σ

|2πρσ (μ + i0+)Gσ
−N ′N ′(μ + i0+)|2 . (48)
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FIG. 3. Linear conductance g calculated using the static eCLA for five equidistantly chosen magnetic fields B between 0 and �x/2. (a)–(c)
Conductance at fixed U/

√
�xτ = 3.0 and four values of L. (d)–(f) Conductance at fixed L = 5, for three values of U/

√
�xτ .

Here, ρ(ω) is the density of states at the boundary of a semi-
infinite tight-binding chain; two such chains represent the two
one-dimensional noninteracting leads, coupled to the central
interacting region. Let us first look at the QPC case. We are
interested in the shape of the conductance trace as a function of
applied gate voltage and how this shape changes with external
parameters, such as an applied magnetic field.

For pure on-site interactions, it is natural to choose the
feedback length L = 0. This is what has been done in
Refs. [7,8,19,27], and the results have been discussed therein
in detail. Here, we will allow a nonzero L, although the actual
interaction is purely on-site. This implies that a certain class of
additional third-order terms will be generated during the RG
flow which introduce a better coupling between the channels
in the sense of the feedback in Eq. (23). For L → N , the
third-order truncated static fRG scheme is recovered fully
regarding the spatial structure of the two-particle vertex (but
not for its frequency structure, since we are using the static
approximation). Figures 3(a) to 3(c) show the conductance
G as a function of gate voltage Vg for different values of
magnetic field B, calculated at fixed U and different values
of feedback parameters L. Increasing the latter from L = 0 to
L = 3, cf. Fig. 3(b), leads to quantitative but not qualitative
changes in the shape of the conductance curves—the main
effect is that the width of the B-induced subplateau decreases.
In this regard, increasing L has a qualitatively similar effect
to decreasing U (at L = 0), cf. Figs. 3(d) to 3(f). Note,
though, that increasing L hardly affects the Vg position of
the conductance step, whereas decreasing U does shift the
step slightly towards higher Vg values, as expected physically
due to the lowering of the Hartree barrier. Increasing the
feedback beyond L = 5 does not lead to any significant
quantitative changes, as can be seen in Fig. 3(c) where L = 5
(black line) is directly compared with L = 8 (red dashed
line). Hence, for the present model, convergence is reached
for L � 5. In general, this value depends on the strength of
interaction U , and more importantly on the actual shape of the
barrier.

In Fig. 4, we study the convergence behavior as function
of the feedback length L more thoroughly, for four different
values of the geometric length scale lx/a [Eq. (41)], which
is the width of the region where the LDOS is enhanced. To
determine the convergence behavior, we first chose a large
value Llarge (here Llarge = 21) for which maxVg

|gLlarge (Vg) −
gLlarge−1(Vg)| is smaller than 10−4, i.e., for which we can
assume that the conductance is converged against its limit.
We then plot

�gL := max
Vg

|gL(Vg) − gLlarge (Vg)| (49)

as a function of L. For our purposes, as for the plots in Fig. 3,
we will regard that the conductance as being converged when
�gL � 0.5 × 10−2. In Fig. 4, this criterion is indicated by the
dashed line. The inset shows the smallest L (named LC) for
which the conductance is converged as a function of lx/a.
We see that for all models under our consideration LC is
comparable to lx/a. Due to this convergence, the number
of vertex components can safely be reduced from O(N4)

FIG. 4. Convergence behavior of the conductance for different
values of lx/a, where �gL is defined in Eq. (49). The parameters for
the lx/a = 3.8 data are the same as in Fig. 3. For the larger lx values
the chemical potential was chosen as μ = −1.7 and the parameter γ

was varied. The inset shows the dependence of LC on lx .
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to O(N2L2), where L ≈ lx/a. It would be interesting to
investigate if this number can be reduced even further, a next
possible candidate being O(NL3), by studying the structure of
the vertex in more detail. This is, however, beyond the scope
of this work and we leave this question for further research.

The extended feedback between the channels becomes
increasingly important with increasing interaction strength.
For L = 5, the eCLA yields meaningful, converged results for
interaction values for which the L = 0 flow obtained by CLA
is divergent. This is the case for U � 4

√
�xτ . Figures 3(d) to

3(f) show the conductance for such large values of interaction
and L = 5. The qualitative behavior is unchanged w.r.t. smaller
values of the interaction, and the quantitative strength of the
impact of the interaction increases continuously, in that the
width of the spin-split subplateau increases with U .

To shed light on the effect of the enhanced coupling between
the channels, we now analyze the resulting two-particle vertex
quantitatively, by studying its extremal value

γ ext
2 = max

q ′
1q

′
2q1q2

|γ2(q ′
1,q

′
2; q1,q2)|, (50)

where the q’s stand here both for site and spin indices.
Furthermore, we identify the two most contributing parts to
these value as

γ ext
x = max

j ′
1j

′
2j1j2

γx(j ′
1↑,j ′

2↓; j1↑,j2↓),

γ ext
p = min

j ′
1j

′
2j1j2

γp(j ′
1↑,j ′

2↓; j1↑,j2↓) . (51)

Note that we used the minimum in the definition of γ ext
p ,

since the γp contribution is mainly negative, whereas γx is
dominated by its positive part. Figure 5 shows these quantities
and the conductance as a function of Vg for L = 0 and 5.
The main message of this figure is that for intermediate
interaction strength (solid black curves) the flow converges
for both L = 0 (left column) and L = 5 (right column) and
yields qualitatively the same results for the conductance in
Figs. 5(a) and 5(b). If, however, one increases the interaction
strength further (red solid curves) the flow for L = 0 starts
to diverge [Figs. 5(c) and 5(e)] and the values of physical
observables computed from it become wrong, reflected for
example in the kink of the red conductance curve in Fig. 5(a).
A good measure for the behavior of the flow is the maximum
value of the two-particle vertex, plotted in Figs. 5(c) and 5(d).
We see that the kink in the conductance curve corresponds
to a very large value of γ ext

2 /U = 58.2 [lying outside of the
range of Fig. 5(c)]. In contrast, for L = 5, γ ext

2 as well as the
conductance stay well behaved and, in fact, the flow converges
without problems [Figs. 5(b) and 5(d)]. In order to shed light
on this stabilizing effect of the enhanced feedback, we show in
Figs. 5(e) and 5(f) the P ↑↓ and X↑↓ part of the channels, which
constitute the contributions to γ ext

2 with the largest moduli.
In the case of intermediate interaction (black curves) the X

and P contributions are of the same order of magnitude but
differ in their relative sign. If one looks at the completely
uncoupled channels, i.e., the pure ladder contributions (cf. the
study in Ref. [8]) and increases the interaction strength, the
X channel is the first one to diverge. Our interpretation of
the stabilizing effect is now as follows. Since the channels are
coupled, a slight increase in the modulus of the X channel

FIG. 5. Conductance and vertex quantities calculated for the two
feedback lengths L = 0 (left column) and L = 5 (right column)
with three different effective interaction strengths U/

√
�xτ , at zero

magnetic field.

leads via the feedback to a slight increase of the modulus of
the P channel, and due to their relative sign difference they
partially cancel, so that the resulting additional contribution
to γ2 is small. If the effective interaction becomes too strong,
this ameliorating effect eventually breaks down and the flow
diverges. In the L = 5 case, we take much more feedback
between the individual channels into account than for L = 0
and it is therefore reasonable that the divergence point of the
flow is shifted toward larger effective interactions.

D. Crossover between a closed QPC and a QD

As we have seen above, the increase of the feedback length
L leads to a more stable fRG flow in regions for high LDOS,
corresponding to a large effective interaction strength. This
stabilization effect enables us to study parameter regimes
that have been hard to treat with previous fRG schemes.
We illustrate this below for a situation known to suffer from
fRG divergence problems, namely the crossover from a QPC
to a QD. In Ref. [19], it was found that when using the
CLA (called “fRG2” there), the fRG flow for this transition
suffers from divergences if the flat barrier top is too close to
the chemical potential. For this reason, it was not possible
for fRG2 to smoothly describe how the dot filling increases
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FIG. 6. The crossover from a QPC to a QD. (a) The conductance as a function of gate-voltage Vg , calculated for several magnetic fields
(black solid lines: B = 0, 1, 2, 3 × 10−4, black dashed lines: B = 6, 9, 12 × 10−4) with feedback length L = 20. Colored symbols indicate
the conductance values obtained with smaller feedback lengths. (b) and (c) Noninteracting LDOS (color scale) and barrier shape (solid white
curve) for the two gate voltages marked by the left and right vertical arrows in (a), respectively. Horizontal white dashed lines indicate the
chemical potential μ. (d), (e) The electron density per site nj again computed for the two gate voltages indicated in (a). Summing nj over all
sites between the two density minima yields ndot = 1.01 and 2.98.

with decreasing Vg , and the region where no or only a few
electrons occupy the dot remained inaccessible within the
CLA. The eCLA enables us now to study precisely this
interesting region. [In Ref. [19], this regime was treated instead
using a simpler fRG scheme without vertex flow (“fRG1”).
Although this did qualitatively produce the Kondo physics
that is expected if the QD occupancy is odd, Ref. [19] argued
that fRG1 is generically less reliable than fRG2. For example,
for a QPC geometry, it underestimates the skewing of the
zero-temperature conductance step that is characteristic for the
0.7-anomaly. For this reason, the detailed studies of QD-QPC
crossovers performed in Ref. [19] were all limited to deep dots,
studied using fRG2.]

In Fig. 6(a), we show the conductance curve for the
crossover between a closed QPC and a QD, in which the first
two bound state levels cross the chemical potential as the dot
is made deeper. This level structure is illustrated in Figs. 6(b)
and 6(c) where we show the noninteracting LDOS of the dot
structure for the two gate voltages indicated by the black
markers in Fig. 6(a). Both of these gate voltages lie within
regions where the sharp LDOS maximum associated with a
bound state near ω = μ causes convergence problems if the
feedback length L is small, but not if L is chosen sufficiently
large, which is possible within the eCLA.

When varying the gate voltage, we can see Kondo plateaus
in the conductance arising in the Vg regions where the
occupation of the dot is odd. This is illustrated in Figs. 6(d)
and 6(e), where we show the site-resolved density, again for
the two Vg values indicated in (a). We see that the electrons are
localized within the QPC, which here had a width of 20 sites.
When the densities within the QPC are integrated, we indeed
obtain approximately one electron for the first plateau and
three electrons for the second plateau. These Kondo plateaus,
caused by Kondo screening of the dot spin, get suppressed with
increasing magnetic field since the spin degeneracy is broken.
This suppression happens in the first and second Kondo plateau
for magnetic fields on the scale ∼1 × 10−4τ (solid black

lines), and ∼3 × 10−4τ (dashed black lines), respectively. A
quantitative extraction and analysis of the Kondo scales of the
setup is beyond the scope of this paper. Our main purpose
here is to illustrate that the finite-ranged feedback of eCLA
enables us to treat a parameter regime which was not accessible
with previous fRG schemes and produces qualitatively correct
Kondo physics. To outline this, we have indicated in Fig. 6(a)
how the range of convergence increases with increasing L

from 0 to 30. We see that the L = 0 method is only convergent
in the parameter regimes where the occupancy of the dot is
even and hence the conductance is small. By increasing L

from 0 over 5 to 10, we see that also the conductance plateaus
become more and more visible. At L = 20, the whole Kondo
plateau is accessible. Upon further increasing the feedback
up to L = 30 (not shown here), we find that the conductance
results for L = 20 are already properly converged.

IV. FINITE-RANGED INTERACTIONS

In this section, we consider a model of a QPC with an
interaction whose range extends over up to N sites, in contrast
to the purely on-site interaction studied in Sec. III. The purpose
of this study is to illustrate the potential of the eCLA to deal
with finite-ranged interactions in a setting where the screening
of a longer-ranged interaction comes into play, and to take
a first step towards exploring the physical consequences of
screening. We should emphasize, though, that we do not aim
here to achieve a fully realistic treatment of screening in a QPC.
That would require including higher-lying transport modes
(we consider just the lowest-lying one), which would go well
beyond the scope of the present paper.

Our model is described by the following Hamiltonian:

Ĥ =
∑
ijσ

[
Eσ

j n̂jσ −τ (d†
jσ dj+1σ + H.c.)

]
+ 1

2

∑
i,j,σ,σ ′

Uij n̂iσ n̂jσ ′ (1 − δij δσσ ′). (52)
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Here, Eσ
j is chosen as described in Sec. III, and Uij can differ

from zero for all sites with separation |i − j | < LU , where LU

determines the bare interaction range. Note that we now also
have a bare interaction between electrons with the same spin,
which was absent in the on-site case. In the previous section,
the interaction strength was controlled by a single value U

[cf. Eq. (45)] and treated as a tunable parameter, whose strength
was varied by hand. However, now Uij is a matrix with N2

parameters, and we need to specify its form explicitly. For
this, we start with a continuous 3D model of a QPC, and for
the Hilbert spaces associated with transverse motion in the y

and z directions, we reduce the dimensionality down to one,
by taking into account only the ground states of the respective
confining potentials, cf. Ref. [28]. In this way, we arrive at a
continuous effective theory in 1D for the x direction, which
in a last step is discretized using a finite difference method,
already applied by BHD in Ref. [8]. We use the resulting
model to compute the conductance and the density profile of
a QPC, and study their dependence on the screening effects of
the long-ranged interaction and the geometric dimensions of
the QPC.

A. Derivation of a one-dimensional Hamiltonian

We start from the Hamiltonian Ĥ = Ĥ0 + Ĥ1 with

Ĥ0 =
∑

σ

∫
d3r�̂†

σ (r)

(
VQPC(r) − �2

2m
∇2

)
�̂σ (r),

Ĥ1 = 1

2

∑
σ1,σ2

∫
d3r1

∫
d3r2U (r1 − r2)

× �̂†
σ1

(r1)�̂†
σ2

(r2)�̂σ2 (r2)�̂σ1 (r1), (53)

where the fermionic field �̂†
σ (r) creates an electron with spin

σ at the continuous position variable r. The interaction is of
screened Coulomb form with screening length ls and relative
dielectric constant κ , which is given in ESU-CGS units by

U (r1 − r2) = e2

κ

(
1

|r1 − r2| − 1√|r1 − r2|2 + l2
s

)
, (54)

cf. Hirose et al. [29]. This interaction form results from taking
image charges on the top gate into account, which is positioned
at a distance of ls/2 above the 2DEG. We use a QPC potential
given by

VQPC(x,y,z) =
[
αV (x) + m∗ �y(x)2

�2

y2

2

]
�(z), (55)

with �y(x) = 2βV (x), and m∗ = 0.067me is the effective
mass of GaAs. The function �(z) ensures the confinement
to the 2DEG and the one-dimensional potential V (x) which
enters here is the same as that used in our on-site-model
studies, Eq. (38). The QPC potential VQPC has a saddlelike
form: it defines a quadratic confinement in y direction with
a positive curvature �y(x) that decreases with increasing
|x|, whereas the curvature in x direction is negative, with
magnitude �x . The confinement in y-direction disappears
for |x| → ∞, where V (x) = 0. For the coefficients α and
β, we impose the condition α + β = 1, which turns out to
ensure that the effective one-dimensional potential resulting
from eliminating the y and z directions is precisely V (x). We

specify the transverse curvature at the center of the QPC to be
�y = �y(0), thereby fixing the parameter β = �y

2V (0) .
We now project onto the ground state subspace for the

transverse directions. With this step, taken for the sake of
simplicity, we ignore all transport modes except the one
contributing to the first conductance step. For a truly realistic
description of screening, the higher-lying modes would have
to be taken into account, too. This would lead to stronger
screening and an effective interaction of shorter range than
that obtained below.

Concretely, we thus represent our quantized fields as

�̂σ (r) = φx(y)ϕ(z)ψ̂σ (x). (56)

Here, φx(y) and ϕ(z) are the normalized ground state wave
functions of the confining potentials in the y and z directions,
respectively,

ϕ(z) =
√

δ̃(z), (57)

φx(y) = 1

(2π )1/4
√

ly(x)
e−y2/(4l2

y (x)), (58)

and the operator ψ̂σ (x) creates an electron in a state with wave
function δ(x)φx(y)ϕ(z). In our 2DEG setup, δ̃(z) is a peak of
weight one, very narrow compared to the scales in x and y

directions, whereas φx(y) is the ground state of a harmonic
oscillator with characteristic length

ly(x) = �√
2m∗�y(x)

. (59)

With this, we arrive at an effective 1D continuous theory
described by the effective 1D Hamiltonian

Ĥeff =
∑

σ

∫
dxψ̂†

σ (x)

[
�

2m
∂2
x + (α + β)V (x)

]
ψ̂σ (x)

+
∑
σ1,σ2

∫
dx1dx2

U (x1,x2)

2
ψ̂†

σ1
(x1)ψ̂†

σ2
(x2)ψ̂σ2(x2)ψ̂σ1(x1).

(60)

We now choose α + β = 1 as stated above, thus ensuring
that the resulting effective one-dimensional potential is indeed
given by V (x). The matrix elements of the interaction are given
by

U (x1,x2)

= e2

κ

√
1

2π
(
l2
y(x1) + l2

y(x2)
)

×
{

exp

[
(x1 − x2)2

4
(
l2
y(x1) + l2

y(x2)
)]

K0

[
(x1 − x2)2

4
(
l2
y(x1) + l2

y(x2)
)]

− exp

[
(x1 − x2)2 + l2

s

4
(
l2
y(x1) + l2

y(x2)
)]

K0

[
(x1 − x2)2 + l2

s

4
(
l2
y(x1) + l2

y(x2)
)]}

.

(61)

For a typical 2DEG of GaAs-AlGaAs, the relative dielectric
constant has the value κ ≈ 12.9. K0 is the modified Bessel
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function of second kind in zeroth order. It diverges logarith-
mically when its argument approaches zero.

In order to discretize our 1D continuous theory along the
x direction, we set x := a · j and replace the continuous field
ψ̂σ (x) by the discrete set of operators djσ , where a is the lattice
spacing and j the site index. This results in a Hamiltonian of
the form (52). Treating the second derivative in the kinetic
term using a finite difference method, the single-particle part
of the Hamiltonian takes the form H0 = ∑

ijσ hσ
ij , with

hσ
ij =

(
Vi − σB

2

)
δij − τ (δi,i+1 + δi,i−1), (62)

where Vi is just the discretized version of the effective
1D potential, B is the magnetic field, and τ = �2

2m∗a2 is the
hopping matrix element. We define a discretized form of the
interaction by

Uij :=U (ai,aj ), if i �= j ; (63)

Uii := 1

a2

∫ a(i+1/2)

a(i−1/2)
dx1

∫ a(i+1/2)

a(i−1/2)
dx2U (x1,x2), (64)

where we treat the on-site case separately, since U (x1,x2)
has an integrable singularity as x1 approaches x2. The above
treatment presupposes that the transverse wave functions do
not change significantly on a scale set by a. If a is much
smaller than the characteristic length of the electrostatic
potential, the above discretization scheme correctly captures
the physical behavior of the continuous theory while reg-
ularizing the short distance of the interaction, with Uii =
− e2

κ
√

πly (ai) ln[a/ly(ai)] + O(1) for a → 0.
Having arrived at the discretized Hamiltonian (52), let

us take a final look at the parameters that characterize our
system. From the dimensionful constants �, e2/κ , and m∗,
one can construct an intrinsic length scale [ �2

m∗e2 κ] ≈ 10 nm

and intrinsic energy scale [ m∗e4

2�2κ2 ] ≈ 5.5 meV. It is possible
to express all our model’s length and energy scales in terms
of these two dimensionful constants. However, it is often
convenient to be able to relate quantities like the gate-voltage
dependence of the conductance or the spatial resolution of
the density directly to the geometry of the QPC. For this
reason, we introduce in our studies below for each QPC a
characteristic energy scale �̄x , and a corresponding length
scale l̄x = �/

√
2m∗�̄x , which we measure in absolute units

and which characterize the mean geometry of the QPC barrier.
Concretely, we will take for �̄x the curvature of the bare
barrier at the renormalized conductance pinch-off gate voltage
V

po
g , where the conductance just begins to increase from zero

(and the barrier height is εF + V
po
g ). All the other geometric

quantities are then specified relative to �̄x . To be specific,
we will characterize our QPC by the following rescaled
dimensionless quantities (denoted by tildes):

(i) �̃x = �̄x

meV
, (ii) Ṽg = Vg

�̄x

, (iii) �̃y = �y(0)

�̄x

,

(iv) l̃s = ls

l̄x
, (v) L̃bar = Lbar

l̄x
, (vi) x̃ = x

l̄x
,

(vii) �̃′′
y = l̄2

x

�̄x

[
∂

∂2
x

�y(x)

]
x=0

. (65)

FIG. 7. (a) Distance dependence of the bare interaction Ũ (0,̃x)
between an electron located at the QPC center and one at x̃, plotted on
a logarithmic scale, for three values of l̃s . The dashed black line shows
the limit of l̃s → ∞ and the dots on the lowest curve (red) illustrate the
chosen discretization points for the case N = 61. (b) Ũ (0,̃x) (central
peak) and Ũ (̃xs = 4.5,̃x) (side peak), plotted for l̃s = 2.15 on a linear
scale for both negative and positive x̃ values.

�̃x describes the longitudinal barrier curvature in units of meV,
Ṽg the normalized gate voltage, �̃y the transverse curvature
at the barrier center, l̃s the screening length, L̃bar the total
barrier length which controls the behavior of the flanks, x̃

the longitudinal coordinate, and �̃′′
y the x dependence of the

transverse curvature at the barrier center. Note that if one
chooses to specify �̃x , �̃y , �̃′′

y , l̃s , and L̃bar, this implicitly
also fixes εF : its value has to be chosen in such a way that the
resulting curvature at pinchoff has the specified value �̃x .

It is instructive to express the interaction U (x1,x2) of
Eq. (61) in terms of the rescaled dimensionless parameters. If
we define Ub = e2/(κl̄x), the dimensionless ratio Ũ (̃x1 ,̃x2) =
U (x1,x2)/Ub depends only on the dimensionless parameters
(65) (ii)–(vii), but not on �̄x . Thus the dependence of the
interaction strength (in absolute units) on the longitudinal
curvature �̄x of the QPC is fully encapsulated in Ub. The
corresponding dimensionless parameter

Ũb = Ub/�̄x =
√

2m∗e2

κ�
1√
�̄x

(66)

characterizes the effective on-site interaction strength at the
barrier center for the present long-ranged interaction model,
and plays a role analogous to the parameter U eff

0 = U · A0
0(μ)

of Eq. (46) (which likewise scales as 1/
√

�̄x) for the on-site
interaction model of Sec. III. Evidently, Ũb increases with
decreasing �̄x , implying that interactions become ever more
important the smaller the curvature of the barrier top. Typical
values for Ũb for the plots below range between 4.2 and 4.9.

The spatial structure of the long-ranged interaction for
typical choices for the physical parameters is shown in Fig. 7.
In Fig. 7(a), we plotted the dimensionless ratio Ũ (0,x̃) =
U (0,̃x · l̄x)/Ub for three values of the rescaled screening
length l̃s , as a function of positive x̃ = x/l̄x . This ratio is
independent of �̄x itself, but increases significantly with
increasing screening length. In (b), we again show Ũ (0,̃x)
(central peak) and for comparison also Ũ (̃xs ,̃x) = U (̃xs · l̄x ,̃x ·
l̄x)/Ũb for fixed x̃s = 4.5 as a function of x̃, where the x̃ range
contains now the whole QPC. Due to the reflection symmetry
of our system about the QPC center, Ũ (0,̃x) is a symmetric
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FIG. 8. QPC conductance step shape for three choices of the
number of discretization points N (with maximal feedback length
L = N − 1), for two QPCs with different curvatures. We used the
following parameters, in absolute units [cf. Eqs. (38) and (61)]. In
(a), γ = 0.85, εF = 13.89 meV, �y = 2.35 meV, Lbar = 146.11 nm,
and ls = 46.17 nm; and in (b), γ = 0.85, εF = 11.00 meV, �y =
2.00 meV, Lbar = 158.24 nm, and ls = 50.00 nm. The insets zoom
into the range g ∈ [0.8,1.05] and plot g as a function of Vg − V po

g to
align the pinchoffs. When expressed in terms of the dimensionless
parameters of Eq. (65), the parameter choices in (a) and (b) differ
only in �̃x . For example, for the middle N = 61 curves (green),
we obtain for panel (a) A = {�̃x = 1.23, �̃y = 1.91, L̃bar = 6.79,

�̃′′
y = −0.060, l̃s = 2.15}, and for panel (b), B = {�̃x = 1.05,

�̃y = 1.91, L̃bar = 6.79, �̃′′
y = −0.060, l̃s = 2.15}.

function of x̃. In contrast, Ũ (̃xs ,̃x) is an asymmetric function
of x̃ around the point x̃ = x̃s , decreasing more quickly when
x̃ − x̃s becomes large positive than large negative, because the
transverse potential is wider in the former case. This widening
of the transverse potential is also the reason why Ũ (̃xs ,̃x) as
a function of x̃s − x̃ with fixed x̃s is in general smaller than
Ũ (0,̃x) as a function of x̃.

B. Discretization dependence

We begin our treatment of long-ranged interactions by
investigating to what extent our results depend on the number
of discretization points N with all other parameters held
fixed. Figure 8 shows this dependence for two QPCs whose
parameters were chosen to yield somewhat different ranges
of �x curvatures. The first point to notice involves the Vg

value of the conductance pinchoff: whereas in the absence of
interactions it occurs near Vg = 0, turning on our long-ranged
interactions shifts it towards the left, i.e., towards a larger
gate voltage. This behavior is unphysical, since for any fixed
Vg at which the density is nonzero, turning on interactions
should generate a Hartree barrier that causes the conductance
to decrease, not increase. We suspect that this unphysical
behavior is an fRG artefact, possibly due to our use of the
static approximation. We leave the issue of exploring what will
happen when using a dynamic version of our eCLA as a topic
for future study. We remark, however, that similar unphysical
shift artifacts where encountered in Ref. [8] when comparing
various different fRG methods that treated the details of
the vertex flow in somewhat different ways. Nevertheless,
although the V

po
g values of the conductance curves in Ref. [8]

depended on methological details, the overall shape of the

FIG. 9. QPC conductance curves at fixed N , calculated with
feedback length L = N − 1 for several values of the interaction
cutoff LU (solid lines), and with L = 15 for LU = 10 (dashed
line). The QPC parameters were chosen as in Fig. 8(b). Note
that while convergence in L is rapid, the conductance becomes
independent of the cutoff length only for LU > 40. Furthermore, for
LU � lx/a ≈ 4.4, we recover the conductance shape of short-ranged
interactions.

conductance steps were essentially the same, i.e., when plotted
as functions of Vg − V

po
g , they coincided. We find a similar

trend here: if we increase N , V
po
g increases, because changing

N slightly changes the strength and shape of the interaction
function Uij , causing corresponding changes in V

po
g and �̄x ;

however, the shape of the conductance steps in Figs. 8(a) and
8(b) seems at least qualitatively convergent when N increases
[cf. insets in (a) and (b)], despite the N dependence of the step’s
position. For the remainder of this paper we will therefore only
address the overall shape of the conductance step.

In Figs. 8(a) and 8(b), we expressed all parameters in
terms of absolute units. In most of the remaining plots
where physical properties are discussed, we use instead
the more convenient dimensionless quantities introduced in
Eq. (65) (and denoted by tildes). We have also extracted
these dimensionless parameters for Figs. 8(a) and 8(b) and
summarized them for further use in the parameter sets A and
B given in the caption of Fig. 8.

In Fig. 8, we used the maximal feedback length L = N − 1
to fully take interactions over the whole QPC into account.
However, due to numerical costs, this limited the number of
sites that could be treated to N � 71. For this reason, we have
also explored using a cutoff length LU for the interaction range,
setting Uij = 0 for |i − j | > LU . The resulting conductance
curves for different LU are shown in Fig. 9. We first note
that when the cutoff length LU becomes smaller than the
characteristic length lx/a ≈ 4.4 of the QPC, we recover
the conductance shape for short-ranged interactions. This
behavior is analogous to that obtained in Fig. 10 below, when
reducing the screening length ls below lx . Furthermore, we
find rapid convergence when increasing L beyond LU for a
fixed N ; for example, Fig. 9 contains two curves for LU = 10,
one computed with L = 60 (solid), the other with L = 15
(dashed), which essentially coincide. However, the shape of the
conductance step becomes independent of LU only for rather
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FIG. 10. (a) and (b) The conductance curves corresponding to
the interactions depicted in Fig. 7(a), for two different QPC mean
curvatures �̃x = 1.2 and 1.0, respectively. The arrows at the right
(red) l̃s = 0.86 and the left (blue) l̃s = 2.15 curve in (b) indicate the
gate voltages Ṽg = −1.43 and Ṽg = 3.73 at which the density profiles
in Figs. 11(a) and 11(b) were calculated, respectively.

large values of LU , implying that the tail of the long-ranged
interaction actually matters significantly. Therefore, we did
not pursue using LU < N any further and for the remainder of
this work show only data obtained without interaction cutoff
and with full feedback length, L = N − 1.

C. Effects of long-ranged interactions on QPC properties

After these technical considerations, let us now study how
the fact that the interaction range is not zero affects the QPC
properties. For this, we first briefly discuss the dependence of
our finite-ranged interaction on the given physical parameters
and then study the resulting consequences on the conductance
and the density. As pointed out earlier, this study does not
aim to achieve a fully realistic description of screening in a
QPC, but rather serves as a first illustration of the potential of
the eCLA for treating a model with reasonably long-ranged
interactions.

Figures 10(a) and 10(b) show, for two different values
of the curvature �̃x , respectively, three conductance curves
corresponding to the three choices of l̃s used in Fig. 7(a). For
both choices of �̃x , we obtain an on-site-like conductance step
shape when l̃s is small. When l̃s is increased, i.e., when the
amount of screening is reduced, the step shape acquires some
additional features, such as the emergence of a “preplateau” at
a value of g slightly lower than 1, followed by a much slower
increase towards 1 in Fig. 10(a). These features are more
pronounced for the longer QPC (i.e., smaller curvature) of
Fig. 10(b), where the conductance quickly reaches a preplateau
around g � 0.8 and thereafter increases much more slowly.

In order to explore the origin of this behavior, we show
in Figs. 11(a) and 11(b) two density profiles (thin lines),
calculated, respectively, for two fixed parameter choices from
Fig. 10(b), indicated in the latter by the right (red) marker for
l̃s =0.86, Ṽg =−1.43 and the left (blue) marker for l̃s =2.15,
Ṽg =3.73. In Fig. 11(b), for which the rescaled screening
length l̃s is larger, we observe three qualitative changes relative
to Fig. 11(a). First, the flanks of the density profile are
somewhat steeper. Second, the spatial region in which the
density is low has become wider. And third, in this low-density
region the density shows some weak density oscillations that
are absent in Fig. 11(a).

FIG. 11. Density profiles (thin lines) calculated for two fixed
parameter choices from Fig. 10, indicated for panels (a) and (b) by the
right and left arrows in Fig. 10(b), respectively. For comparison, the
thick lines depict (a vertically rescaled version of) the imaginary part
of the interacting single-particle propagator at the chemical potential,
A0,̃x = − 1

πl̄x
Im GR

0,̃x(ω = 0). Horizontal dashed lines indicate where
A0,̃x = 0. In (b), the distance between the two density maxima
(marked by the dashed vertical lines) is λ = 3.62l̄x . This agrees well
with two estimates of λF /2, either from the distance between the two
central zeros of A0,̃x finding λF /2 = 3.82l̄x or from the mean density
n̄ in the center of the QPC (shaded region) finding λF /2 = 3.55l̄x .

The first two features suggest that the long-range interac-
tions have generated a renormalized barrier whose shape has
a flatter top and steeper flanks than the bare parabolic barrier.
This flattening occurs because the bare density is larger in
the flanks than near the center, hence the upward Hartree-type
shift of the barrier potential, which is proportional to the bare
density, is larger in the flanks than near the center. The upward
renormalization in the flanks becomes stronger the larger the
interaction range, because then the upward Hartree-type shift
at a given site is determined by a weighted average of the
density over a range of nearby sites (whose extent is set by the
screening length), and since the bare density profile is convex,
the sites in the flanks contribute more strongly.

To shed further light on the third feature, namely the weak
density oscillations in the low-density region, we compare
their oscillation period with estimates for the “local Fermi
wavelength” λF at the QPC center, which can be extracted from
either the interacting Green’s function or the mean density
in the center of the QPC. To illustrate the first method, the
thick lines in Figs. 11(a) and 11(b) indicate the oscillatory
behavior of A0,̃x = − 1

πl̄x
Im GR

0,̃x(ω = 0). For a homogeneous
system, the Green’s function oscillates with period λF , and
likewise we can here define an effective λF /2 in the middle
of the QPC by taking the distance between the two central
zeros of the thick line. For Fig. 11(b), the position of these
zeros is in good agreement with the position of the density
maxima of the QPC (indicated by the two dashed vertical
lines), whereas the density in Fig. 11(a) shows no features on
the scale of λF . An alternative way to extract an effective λF

is to calculate the mean density n̄ in the center of the QPC
between the two density maxima (shaded region in Fig. 11),
and use λF = 2π/kF = 4/n̄. For Fig. 11(b), the first method
yields λF /2 = 3.82l̄x , and the second λF /2 = 3.55l̄x , which
are both in reasonable agreement with each other and the
distance λ = 3.62l̄x between the two density maxima. Thus we
conclude that the period of the density oscillations observed
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FIG. 12. Study of two QPCs with different L̃bar, for three choices
of �̃x . The other dimensionless parameters were chosen the same
as in B [cf. caption of Fig. 8]. (a) and (b) Conductance as function
of gate voltage and (c)–(h) density as function of position and gate
voltage. While the conductance changes its shape for both QPCs, the
shorter one (b) shows stronger features, preeminently a shoulder in the
conductance step. In the density, both QPCs show the development of
oscillations with approximate wavelength λF /2, which is determined
by the Green’s function as in Fig. 11 and indicated by the distance
between the black lines. In the last plots (g) and (h), the density
oscillations transition at smaller gate voltages from two to three
maxima. The cut along the dashed white line in (f) is precisely the
density profile plotted in Fig. 11(b).

here can be associated with λF /2, or equivalently wave number
2kF .

In Fig. 12, we examine this behavior more systematically,
using two QPCs having a comparatively long screening length
of l̃s = 2.15, but which differ slightly in L̃bar, i.e., in their
total barrier length. For both QPCs, the conductance step
[Figs. 12(a) and 12(b)] changes its shape with decreasing
curvature �̃x and for the right QPC with smaller L̃bar develops
additional pronounced features in the plateau region. In
Figs. 12(c)–12(h), we show the corresponding densities (color
scale) as functions of gate voltage and longitudinal position,
and find that with decreasing curvature �̃x the density develops
oscillations. The period of these oscillations is again set by
λF /2, which is indicated in Figs. 12(c)–12(h) by the distance
between the black lines. While for the right QPC the two
density maxima follow very accurately the black lines, in the
left QPC they lie slightly further apart than λF /2. The reason

FIG. 13. (a)–(c) Barrier shapes (dashed lines) and corresponding
noninteracting densities (solid lines) for almost open QPCs with
(a) a parabolic barrier top, (b) a flat barrier top with wide flanks,
(c) and a flat barrier top with steep flanks. (d)–(f) Density profiles
corresponding to these three barrier shapes, plotted as functions of
position and gate voltage. In these plots, λF /2 is again indicated
by the distance between the black lines. The flat barrier top with
steep flanks of panel (c) yields pronounced Friedel oscillations in the
density profile shown in (f), which resemble the density oscillations
caused by the long-range interaction in the open regime of the QPCs
of Figs. 12(e)–12(h). This suggests that for the latter, the renormalized
barriers have a rather flat tops with steep flanks.

for this might be that the left QPC is slightly longer (L̃bar is
larger), giving the electrons in the center more space to form
the two repelling density maxima, but not enough space to fit a
third density maximum into the available region. In summary,
we find that when increasing the geometric proportions of the
QPC compared to the scale set by the interactions, i.e., when
decreasing �̃x , the conductance develops additional features
in the plateau region, and simultaneously density oscillations
arise on a scale set by λF /2.

We interpret the 2kF density oscillations seen in Fig. 11(b)
as Friedel oscillations generated by the inhomogeneity induced
by the renormalized QPC potential. A similar interpretation
was envoked in Iqbal et al. [30] where they also found a
wavelength λF /2, or equivalently a wave number of 2kF , for
their spin polarized, emergent localized states (ELS) obtained
from SDFT calculations in long QPCs.

To support this interpretation, we show in Figs. 13(a)–13(c)
some density profiles (solid lines) obtained for a QPC model
of noninteracting electrons traversing a QPC, comparing three
different barrier shapes (dashed lines): (a) a parabolic top,
(b) a flat top with a slow transition to broad flanks, and (c)
a flat top with a rather quick transition to steep flanks. For
a given gate voltage, the overall shape of the density profile
mirrors that of the barrier top for all three cases. Moreover,
pronounced additional density oscillations arise for case (c).
Panels (d) to (f) show the corresponding evolution of such
density profiles with gate voltage. For gate voltages where
the QPC is sufficiently open that the density in the center is
not very low, the density oscillations seen in Figs. 13(c) and
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FIG. 14. Interacting LDOS in the static approximation [Eq. (67)],
shown as function of position and energy (color scale), for three
different values of the screening length l̃s . Solid white lines show
the bare potential Vj and dashed white lines Vj + �jj , as functions
of position. The physical parameters used for this plot correspond
to those of Fig. 10(b), with the gate voltage was set to Ṽg = −1.91
in (a), Ṽg = −1.43 in (b), and Ṽg = 3.73 in (c). (The latter two
correspond to the red and blue markers in Fig. 10.) The shape of the
band bottom reflects that of the renormalized barrier. (The fact that
the renormalized barrier top lies below the bare barrier top in (c) is
due to the artifact of static fRG discussed in Sec. IV B.)

13(f) are reminiscent, respectively, of those seen in Figs. 11(b)
and 12(c)–12(h) for QPCs with interactions whose range is
longer than the characteristic QPC length (i.e., with l̃s > 1).
This supports the interpretation offered above that such QPCs
indeed have renormalized barriers with rather flat tops and
steep flanks. However, for higher gate voltages where the QPC
is beginning to close off and the density in the center becomes
very low, we see a qualitative difference between the density
profiles shown in Fig. 13(f) and those of Figs. 12(c)–12(h): the
former shows a weak density maximum, whereas the latter do
not, because in the regime of very low densities, the Hartree-
type renormalization of the barrier shape is not yet strong
enough to generate a flattish barrier top.

To further explore our hypothesis concerning the occur-
rence of a renormalized barrier with a flattened top and steep
flanks, we have studied the influence of the screening length,
l̃s , on the interacting LDOS in the static approximation,

Aj (ω) = − 1

π
Im Gjj (ω + i0+) = − 1

π
Im[ω − h0 − �]−1

jj ,

(67)

where h0
ij = δijVj − τ [δi,j+1 + δi,j−1] is the bare single-

particle Hamiltonian, and �ij is the static self-energy at
the end of the RG flow [31]. Figure 14 shows the LDOS
(color scale) as a function of position and energy, for three
values of the screening length, l̃s . We interpret the shape
of the effective band bottom as indicative of the shape of
the effective barrier. We observe that with increasing l̃s , the
effective barrier top indeed does become strikingly flat over
an extended region of space centered on the middle of the
QPC, ending in rather steep flanks, as anticipated above.

For comparison, solid white lines show the bare potential
Vj with its parabolic top. Moreover, dashed white lines
show Vj + �jj , to illustrate the contribution of the diagonal
elements of the self-energy to the renormalization of the
potential barrier. However, while Vj + �jj does show a trend
toward barrier flattening with increasing screening length, for
the largest l̃s value [Fig. 14(c)], it leads to a shallow local
minimum at x̃ = 0, reminiscent of a QD-like barrier shape.
To correctly capture the shape of the band bottom, which
shows no such local minimum, the off-diagonal elements of
the self-energy have to be taken into account, too. This is
done when computing the LDOS according to Eq. (67), which
involves inverting the entire matrix ω − h0 − � before taking
diagonal elements. The above results show that long-range
interactions can have a rather striking flattening effect on
the effective barrier shape, and that long flat barriers lead to
interesting density oscillations. It would thus be interesting to
study the geometric crossover from a QPC to a homogeneous
wire obtained by making the QPC length l̄x very long, or
by using flat-topped bare barriers of increasing width. In a
paper by Schulz [32], concerning Wigner crystal physics in
1D, it was predicted that in a homogeneous 1D model with
long-ranged Coulomb interactions in the low-density limit,
the density-density correlator 〈ρ(x)ρ(0)〉 contains both 2kF

and 4kF oscillations. The latter decay more slowly with x,
and are argued by Schulz to lead to a Wigner crystal in a
homogeneous system. During the aforementioned geometric
crossover from a QPC to a long wire, well-developed 4kF

density oscillations can be expected to emerge, which could
be regarded as precursors for the formation of a Wigner
crystal. A systematic study of this behavior would be extremely
interesting, but falls beyond the scope of this paper and is
left for future study. In particular, future work would have to
incorporate screening also due to higher transport channels,
leading to a shorter-ranged interaction, so that the effects
discussed above would likely turn out to be somewhat less
pronounced than found here.

V. CONCLUSION AND OUTLOOK

Building on previous works [7,8], we have introduced
an improved approximation scheme for third-order truncated
fRG. We use an extended coupled ladder approximation
(eCLA), splitting the fRG-flow into three channels depending
on the internal index structure. When treated independently,
each of these channels behaves as in the random phase
approximation. The complexity of the eCLA scheme depends
on the amount of feedback admitted between the individual
channels. For the frequency dependence, we only used static
feedback between the channels. In order to control the amount
of feedback in the spatial structure, we have introduced the
feedback length L. In the case L = 0, we get the minimal
feedback between the channels, corresponding to the CLA of
previous works [8], whereas for L → N − 1 we recover the
full spatial vertex flow in second order.

For actual computations, we restricted ourselves to static
fRG, i.e., in addition to using only a static feedback between
the channels we also neglected the frequency dependence
of the vertices altogether. In this additional approximation,
we calculated the zero-temperature Green’s function at the
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chemical potential, which is the relevant quantity in order to
compute the linear conductance of the system.

We first applied our new method to a QPC model with
on-site interactions, which has extensively been studied in
the past. Here, we observed that the longer-ranged feedback
leads to a quantitative but not qualitative change as long as
both methods are convergent for the respective parameters. In
particular, we observed for barriers with characteristic lengths
between 4–10 sites that convergence in L is achieved onces L

becomes comparable to lx . Additionally, we observed that the
enhanced feedback stabilizes the fRG flow and therefore leads
also to convergence in parameter regimes which could not be
studied with the L = 0 method. To illustrate this increased
stability, we studied QPC-QD crossovers analogous to those
discussed by Heyder et al. in Ref. [19] using the CLA.
There, the convergence of the fRG flow suffers especially
from the high LDOS at the chemical potential that occurs
during the crossover when the barrier top becomes flat in an
extended region close to the chemical potential. Our stabilized
flow, however, enabled us to study this type of transition. In
particular, we succeeded to study regimes of very shallow
dots, containing only a few electrons, and observed the Kondo
plateau in the conductance expected for such dots.

Finally, in order to test the full potential of our im-
proved feedback, we applied it to a QPC with finite-ranged
interactions. The most striking observation was that for a
relatively flat QPC in the regime of low density and sufficiently
long-ranged interactions, the conductance reaches a preplateau
somewhat below g = 1 (before slowly climbing towards
g = 1), accompanied by the onset of oscillations in the density.
The wavelength of these density oscillations was determined to
be approximately λF /2, admitting an interpretation as Friedel
oscillations arising from a renormalized barrier shape with
a rather flat top and steep flanks. This behavior is consistent
with that observed by Iqbal et al. [30] in SDFT calculations for
their emergent localized states (ELS) in a spin-polarized QPC.

It would be of great interest to explore these type of effects
more systematically in the future, within a more realistic model
that incorporates the effects of higher transport modes when
deriving the effective screened interaction for the lowest-lying
transport mode. In particular, the geometric crossover between
a QPC potential and a homogeneous quantum wire, expected to
show Wigner crystallization, could be explored in this fashion.
However, it remains to be seen whether fRG will be able
to cope with the truly homogeneous limit; such a study will
presumably also have to employ tools more powerful than
fRG, such as the density matrix renormalization group.

By way of an outlook to future technical fRG developments,
let us remark that it would be desirable to find ways of avoiding
an fRG artifact that is present in our results: upon turning on a
long-ranged interaction, the position of the conductance step
shifts not to smaller gate voltages, as physically expected,
but to larger ones. We suspect that this artefact results from
our use of static fRG. A next possible step to remedy this
problem could be to change from static to dynamic fRG, i.e.,
to implement the frequency dependence of the vertices. More-
over, it would also be possible to use our enhanced feedback
scheme in the context of Keldysh fRG, which is additionally
able to treat the temperature dependence and nonequilibrium
behavior of QPCs. This would be numerically challenging
since the Keldysh scheme in the L = 0 implementation is
already very costly by itself. However, one might profit from
the fact that the most expensive part of the Keldysh calculation
scales with O(L2), and not with O(L3) as in our case. Work in
that direction is currently in progress.
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4 0.7-analog in quantum point contacts

4.1 Overview
This section contains our publication investigating the 0.7-analog structure appearing at
the intersection of the opposite spin components of different subbands at large magnetic
fields [GTP+03, GTP+04]. Similar to the 0.7-anomaly, the 0.7-analog structure has been
declared an effect of spontaneous spin polarization [GTP+03, GTP+04, BJY05]. This claim
is based on DFT studies, in a similar way as discussed earlier for the 0.7-anomaly in Sec. 1.3.
Here, we instead investigate the 0.7-analog from the viewpoint of the van-Hove ridge scenario
developed in [BHS+13].

For this, we apply our devised eCLA scheme to a QPC model with two subbands, consisting
of two interacting (intra and inter band) tight binding chains with a QPC barrier and an
imposed external energy offset. This can be achieved via a simple mapping of the two chain
model onto a single chain model (of double length) with modified hopping and interaction
terms. Since in our eCLA approach the spatial and the spin structure of the bare interaction
can be adjusted freely, this requires no change of the fRG implementation used in Sec. 3.2.

In the results part of this paper, we first consider a setup with magnetic fields comparatively
small to the band energy offset. We find that the second conductance step is (i) more
symmetric than the first step, indicating that the interactions within the second subband are
screened by the first subband, and (ii) broadened due to an increasing Hartree shift from
the continued filling of the first subband. This second effect is especially important, since it
will be responsible for an asymmetry occurring in the magnetic field dependence of the 0.7
analog.

In the second part, we increase the magnetic field until the opposite spin components of
the first and the second subband intersect, and study the magnetic field dependence of the
0.7-analog arising at this intersection. Starting from a simple setup with all interactions (intra
and inter band) chosen equally, we work our way to a realistic situation, with an appropriate
choice of the relative interaction strengths between and within the subbands. With a realistic
choice of the relative interaction strengths, we are able to reproduce the noticeable asymmetry
occurring in the experimental magnetic field dependence of the conductance at the 0.7-analog.
When approached from higher magnetic fields, the 0.7-structure of the analog is much more
pronounced than when approached from lower magnetic fields. Aided by our fRG calculations,
we are able to pinpoint the cause of this asymmetry to the different intra and inter band
interaction strengths. Based on this insight, we can explain the underlying mechanism of this
asymmetry using a simple Hartree picture, revealing that it is based on a similar effect as the
broadening in (ii).
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We use a recently developed fRG method (extendend Coupled-Ladder Approximation) to study the 0.7 analog
in quantum point contacts, arising at the crossing of the first and second band at sufficiently high magnetic fields.
We reproduce the main features of the experimentally observed magnetic field dependence of the conductance at
the 0.7 analog, using a QPC model with two bands and short-range interactions. In particular, we reproduce the
fact that this dependence is qualitatively different, depending on whether the analog is approached from higher
or lower magnetic fields. We show that this effect can be explained qualitatively within a simple Hartree picture
for the influence of the lowest electrons.

DOI: 10.1103/PhysRevB.98.115112

I. INTRODUCTION

In quasi-one-dimensional structures, such as quantum
wires or quantum point contacts (QPCs), an in-plane magnetic
field induces a Zeeman splitting of different spin subbands.
When this splitting equals the one-dimensional level spacing
introduced by the lateral confinement of the structure, one
finds crossing features similar to the 0.7 anomaly, as observed
at zero magnetic field. Therefore, these features are called 0.7
analogs [1]. The most prominent of these 0.7 characteristics
is the development of a shoulderlike structure in the conduc-
tance with increasing magnetic fields. In Fig. 1, one can see
this shoulder in the original 0.7 regime (dashed ellipse) as
well as the similar feature at the 0.7 analog (solid ellipse).
The apparent similarities have intertwined the explanation
attempts of 0.7 anomaly and 0.7 analogs, prominently fea-
turing spontaneous spin-polarization [2], and quasilocalized
states [3].

However, despite observed similarities, there are also fea-
tures specific to the 0.7 analog that have no counterpart for
the 0.7 anomaly. A striking example is the asymmetry in the
magnetic field dependence of the conductance, depending on
whether the analog is approached from higher or lower fields,
see Fig. 1, which is a annotated version of Fig. 1 in Ref. [1].
While the 0.7 analog resembles the 0.7 anomaly at higher
magnetic fields (green curve), the conductance curves at lower
fields (red curve) are much more symmetric and show no sign
of a 0.7 shoulder.

Some years ago, an interpretation of the 0.7 anomaly was
introduced in Ref. [4] that traces its origins back to the
structure of the noninteracting van Hove ridge in the local
density of states. This interpretation has been supported by
direct conductance calculations of the QPC via the functional
renormalization group (fRG). Following this approach, we use
here a recently developed extended coupled-ladder approxi-
mation (eCLA) fRG scheme [5] to study the features of the
0.7 analog at the crossing of the 1↑ and 2↓ spin subbands of
a QPC, working out the similarities and differences between
0.7 analog and 0.7 anomaly.

We argue that the 0.7 analog physics can be explained
in a similar manner as the 0.7 anomaly, evoking a smeared
van Hove singularity in the local density of states. However,
the effects of the electrons in the lowest spin subband are
of critical importance. We demonstrate that these electrons
cause the above-mentioned asymmetry in the magnetic field
dependence of the conductance and study its dependence on
the ratio of intra- to interband interaction strength.

II. THEORETICAL MODEL AND METHOD

A. Model

Since our goal is a qualitative understanding of the 0.7
analog physics, we use here the simplest model that should be
able to give us the relevant features. We model the lowest two
bands of the QPC via one-dimensional spinful tight-binding
chains with an intra- and interband short-ranged interaction.
The external magnetic field is modeled by a Zeeman term,
splitting the energies of spin up and spin down electrons. We
point out that, in experiments, one observes additionally to
the Zeeman effect also a diamagnetic shift with increasing
magnetic field. This shift is understood analytically [6], and
is expected not to be relevant for the qualitative physics
of interest here [1]. Therefore, we will omit this effect in
the present qualitative study, and concentrate on the physics
caused by the interactions. Our Hamiltonian will thus be of
the form

H = −τ
∑
i,s,σ

[c†
isσ ci+1sσ + H.c.] +

∑
i,s,σ

Visσ nisσ

+
∑
i,s

U intra
is nis↑nis↓ +

∑
i,σ1,σ2

U inter
i ni1σ1ni2σ2 , (1)

where cisσ annihilates an electron at site i in band s with spin
σ ∈ {+,−} = ↑,↓, and nisσ = c

†
isσ cisσ is the corresponding

number operator. In our calculations, we will use the hopping
amplitude τ as unit of energy, i.e., we measure the on-site
energy, Visσ , as well as the intraband interaction, U intra

is ,
and the interband interaction, U inter

i , in units of τ . Within a
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FIG. 1. Figure 1 of Ref. [1] with some additional annotations.
As a guide for the eye, we colored three curves: The analog (blue)
of the zero-field conductance step as well as two curves at magnetic
fields �B = ±2.4T above (green) and below (red) of the analog of
the zero-field conductance step. The 0.7 anomaly is indicated by the
dashed ellipse, that of its analog by the solid one. Clearly this 0.7-like
behavior is only present if the analog is approached from above.

central region, i ∈ [−N,N ], we use the following form for
the potential term:

Visσ = Vg exp
[
− (i/N )2

1 − (i/N )2

]
+ V off

s + σ
B

2
. (2)

Here the first summand leads to a quadratic barrier top in
the middle of the QPC with curvature �x = 2

√
Vgτ/N and

corresponding characteristic length lx = a
√

τ/�x , with a be-
ing the lattice constant. The second term constitutes the band
offset (we choose V off

1 = 0, and therefore use the abbreviation
V off := V off

2 ) and the third term is the Zeeman splitting. To
illustrate these settings, we have plotted the potential structure
in Fig. 2.

Analogous to Ref. [4], we take both Vg as well as U intra
is ,

and U inter
i to be zero outside of the central region, where we

thus have two noninteracting tight-binding leads with the site
independent energy offset

Visσ = V off
s + σ

B

2
. (3)

Those can be integrated analytically and their contribution
absorbed in the self-energy � of the central region. Note that
this contribution will, however, depend on V off

s , as well as
B. The short-ranged interactions U intra

is and U inter
i are treated

as free parameters, chosen as site independent within the
middle of the central region, and reduced smoothly to zero
at its edges. All our calculations will be carried out in thermal
equilibrium at zero temperature, implying that all states below
the chemical potential μ are filled, all states above are empty.

FIG. 2. Schematic illustration of the potential structure for the
two spin-split bands, as given by Eq. (2). Note that the curvature of
the barrier, �x , is the same for all four subbands.

Our typical observable will be the linear response conduc-
tance through the system, and its dependence on the chemical
potential μ, as well as on the magnetic field B.

Note that to keep things simple and clear, we have made
here several simplifying assumptions. We omit any hopping
terms between the two bands, keep the offset between the
bands a site independent constant throughout the whole sys-
tem (in particular the barrier curvature for both bands is the
same) and omit any longer-ranged interactions. Furthermore,
in all our calculations we will keep Vg constant and vary
μ instead. In terms of the Fermi energy on the central site,
εF = μ − Vg , this is the same as varying Vg with constant μ,
but has the advantage that the bare curvature �x (Vg ) of the
barrier does not change.

B. Method

To determine the interaction-induced self-energy, �, and
two-particle vertex, γ , we use the recently introduced eCLA
fRG scheme [5] within a static implementation. This scheme
was originally designed to treat longer-ranged interactions. It
enables the treatment of our two-band model, since it is possi-
ble to map the Hamiltonian Eq. (1) onto a one-dimensional
chain model with longer-ranged interactions. For this, we
simply interleave the different bands, as sketched in Fig. 3,
leading to a new effective one-dimensional Hamiltonian, con-
taining interactions between neighboring sites:

Heff = −τ
∑
j,σ

[c†
jσ cj+2σ + H.c.] +

∑
j,σ

Ṽjσ njσ

+
∑

j

Ũ intra
j nj↑nj↓ +

∑
j,σ1,σ2

Ũ inter
2j n2jσ1n2j+1σ2 . (4)

Here the new index is given by j = 2i + s − 1 (s = 1 is
band 1, s = 2 is band 2), and the coefficients are Ṽjσ = Visσ ,
Ũ intra

j = U intra
is , and Ũ inter

j = U inter
i . We will sometimes use

α = (s, σ ) as composite species index.
This Hamiltonian is now in a form suitable for the eCLA

approach. Without going into detail, we just point out that this
method depends crucially on a dimensionless parameter, L,
called the feedback length in Ref. [5], which determines the
spatial extent of the renormalized vertex, γ . This L has to
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FIG. 3. Schematic procedure of interleaving the two bands. Note
that in the effective chain, we get again on-site, as well as anisotropic
nearest neighbor interactions.

be chosen large enough to reach convergence, and we will
comment on the convergence properties in the beginning of
the next section.

Finally, the calculation of the zero-temperature linear
response conductance, g = h

2e2
∂I
∂V

, from the self-energy
obtained with our fRG method, is carried out via the
formula [7–9]

g = 1

2

∑
σ,s

∣∣2πρσs (μ + i0+)Gσs
−NN (μ + i0+)

∣∣2
, (5)

where ρσs is the density of states on the first lead site for spin
σ and band s, and Gσs

−NN is the propagator for a electron in
band s with spin σ from the leftmost to the rightmost site of
the central region.

III. RESULTS

We use the following general settings in this section: The
band offset is chosen as V off = 0.1τ and N = 30, therefore
the total number of spatial sites in the central region is Ntot =
61 and correspondingly the total number of effective sites in
Eq. (4) is Neff-tot = 122. Furthermore, except for Fig. 6, we set
Vg = 0.5τ , implying a curvature �x ≈ 0.05τ .

In Fig. 4(a), we show the noninteracting, as well as the fully
L-converged conductance for our two-band model, with the
simplest nontrivial interaction configuration, U intra

is = U inter
i =

0.7τ . These values correspond to a typical value for the
onsite interactions in a one-band QPC used in Ref. [4].
The main changes caused by the interaction are the slightly
more asymmetric shape of the conductance steps, and the
shift to larger chemical potentials observed for the second
step. Qualitatively, this shift is caused by the additional
interaction energy between the electrons of the two bands
(Hartree shift).

A. Convergence in L

Before we proceed, let us first discuss the convergence
of our method with respect to the feedback length L. For a
one-band QPC with onsite interactions, L has to be of the

0.0

1.0

2.0

g

interacting
noninteracting

-6 -4 -2 0 2 4 6 8 10

μ/Ωx

-8

-4

0

4

(g
L
−

g
L

m
a
x
)
×

1
0
2

L=1
L=2
L=3

L=4
L=5
L=10

(a)

(b)

FIG. 4. (a) Conductance g for the non- as well as the interacting
system for L = 10 as function of μ. (b) Difference between the
conductance for several L values to the converged result (at L =
Lmax = 10). We see that convergence is achieved around L = 5.

order of the characteristic length of the harmonic barrier top
to achieve convergence: L ≈ lx/a, with the lattice spacing a.
For our interleaved two-band system, we would thus simply
expect L ≈ 2lx/a, since the effective distance between two
points of the same band is doubled and the effect of the
now-finite interaction range on the convergence should be
negligible, since the introduced nearest-neighbor interaction
is still much shorter than lx . In Fig. 4(b), the convergence
behavior in L is shown. We see that the convergence for
the two-band model is achieved around L ≈ 5. Since in our
system lx ≈ 4.6a, this shows that L can in fact be chosen
smaller than the naive guess, L ≈ 2lx/a, indicating stabilizing
feedback effects between the two bands.

As a side remark, we point out that the finite extent of the
renormalized vertex beyond the lowest value (i.e., L > 1) is
actually important to treat the screening properties between
the two bands. This will be seen in the next section when we
study the magnetic-field dependence of the conductance.

B. Small magnetic field

Before we look at the 0.7 analog, we want to take a brief
look at the properties of the conductance at magnetic fields
much smaller than the band spacing, B � V off, see Fig. 5,
solid curves.

There are two main observations we make here: First,
we see that the magnetic-field dependence of the second
step is more symmetric, indicating that the interaction of the
electrons in the second band is screened by electrons in the
first band. Second, we see that the second conductance step is
broader than the first one. This feature can be qualitatively
understood in a simple Hartree picture: While increasing
μ during the second step, electrons are still filling up the
lowest band, leading to a increasing Hartree shift for the
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FIG. 5. Solid curves: Conductance at low magnetic fields, i.e.,
with B � V off = 0.1τ ≈ 2.12 �x and U intra = U inter = 0.7τ . The
second spin-split double step is more symmetric and broader than
the first. Dotted curves: Spin resolved electron densities nα on the
central QPC site for B/�x = 0 (blue) and B/�x = 1.06 (black).
Note the damping that appears in nα whenever a different particle
species enters the QPC.

electrons in the higher band. As a result, the second step gets
broadened.

To further validate this explanation, we can compute an
estimate for the observed broadening via

�E = U inter(�n1↓ + �n1↑)a, (6)

where �n1σ is the total change of the first-band spin-σ density
at the center of the QPC during the second conductance
step. Instead of considering a “pure” Hartree effect where
one would use for n1σ only the density of a system without
interband interaction, we can improve on that by using the
actual fully interacting densities that we obtained from our
fRG calculation. These densities are given by

nα
i =

∫ μ

−∞
dωAα

i (ω), (7)

where the local density of states at site i for particle species
α, Aα

i (ω) = − Im Gα
ii (ω)/π is given by the imaginary part of

the fully interacting retarded electron propagator Gα
ii (ω). It is

instructive to take a quick look at these densities themselves:
In Fig. 5, we have plotted the density for the different particle
species in the center of the QPC, nα ≡ nα

0 (dotted curves).
Each time a new particle species enters the QPC, the increase
of any other species nα is slowed down, or “damped,” due to
the corresponding interaction. The damping of n1σ during the
second conductance step will lead (starting in second order
in U inter) to a reduction of the pure Hartree broadening of
that step. We see that the damping in n1σ is most pronounced
at B = 0, when both n2↑ and n2↓ particles enter the QPC
at the same time. Correspondingly, the width of the second
conductance step is only slightly larger than that of the first.
On the other hand, for B/�x = 1.06, the damping in n1σ is
relatively small, leading to a pronounced broadening of the
second conductance step. Using Eq. (6), the effective Hartree
broadening can be obtained from the change of the densities
n1σ during the second conductance step. For example, in
the B/�x = 1.06 case, the second conductance step occurs
between μ/�x ≈ 3.3, with densities n1↓ ≈ 0.12/a, n1↑ ≈

6 8 10 12
μ/Ωx

1.0

1.5

2.0

g

B/Ωx

0.00
0.17
0.34
0.50

6 8 10 12
μ/Ωx

B/Ωx

0.00
0.17
0.34
0.50

(a)

L = 1

(b)

L = 5

FIG. 6. Magnetic field dependence of the second conductance
step. (a) L = 1, (b) L = 5. We see that the second conductance step
is more symmetric in the L = 5 case, indicating a better screening of
interactions in the second band.

0.08/a, and μ/�x ≈ 7.8, with densities n1↓ ≈ 0.15/a, n1↑ ≈
0.13/a. Therefore, the effective Hartree broadening given by
Eq. (6) is

�E ≈ 0.7τ · [(0.15 − 0.12) + (0.13 − 0.08)]

= 0.056τ ≈ 1.1�x. (8)

This result can be compared with the observed broadening
of the second conductance step: The widths of the steps
are �μstep 1 ≈ (2.4 − (−1.2))�x = 3.6�x and �μstep 2 ≈
(7.8 − 3.3)�x = 4.5�x , leading to a relative broadening of
�μstep 2 − �μstep 1 ≈ 0.9�x , which is in qualitative agree-
ment with Eq. (8). The effect that the electrons in the first
band change the form of the second conductance step is
quite generic and will be also encountered in the 0.7 analog
case.

Here it is also interesting to look at the L-dependence of
the conductance with various magnetic fields. Particularly for
longer QPCs, where lx � 5a, the increase in L has a visible
impact, see Fig. 6.

For L = 1, the second conductance step is very asymmet-
ric, but becomes more symmetric with increasing L, due to
the screening of the interaction in the second band instigated
by electrons in the first band. The curvature, �x ≈ 0.03τ

(Vg = 0.2τ ), which we used here, is comparable to the one in
a previous fRG study [10] of the two-band model. However,
in that work, the results were not converged in L, therefore
underestimating screening effects.

C. 0.7 analog at large magnetic field

Having studied the properties of the two-band model at
low magnetic fields, we are now prepared to tackle the 0.7
analog. This analog appears at the crossing of the 1↑ and
the 2↓ spin subbands at a magnetic field, B = Bc, which is
of the order of the energy separation of the two bands V off

(determined by the confinement in the lateral direction). This
situation resembles the situation given in the 0.7 anomaly,
in the sense that two particle species are competing while
trying to get through the QPC. Therefore, one might naively
expect that the 0.7 analog shows the same features as the
0.7 anomaly. However, this is only partially true. While for
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FIG. 7. (a) Conductance curves for B � Bc = 0.1τ ≈ 2.12 �x

and (b) for B � Bc at equal intra- and interband interaction strengths.
In (b), the dotted curve is the manually shifted curve, �B/�x =
−0.64, from (a). We see that it has exactly the same form as
the corresponding curve for �B/�x = 0.64. The quantities �μ1↑,
�μ2↓ measure the width of the corresponding half-steps and �p

indicates the pinch-off shift between �B < 0 and �B > 0, see also
Fig. 8.

�B = B − Bc > 0 the experimentally measured conductance
shows the typical feature of 0.7 physics, namely the develop-
ment of a shoulder with increasing magnetic field, this feature
is missing for �B < 0.

In trying to understand the underlying physics, we first
start with the simplest interaction model, U intra

is = U inter
i ≡

U = 0.7τ , which we already used in the last sections. Figure 7
shows the resulting conductance.

We make two main observations: First, the curves for
�B < 0 lie approximately symmetrically around the Bc

curve, while the �B > 0 curves do not. However, second, the
actual shapes of corresponding curves, i.e., for B = Bc − �B

and B = Bc + �B, are very similar, they are just offset by
different amounts.

This behavior can be understood by a similar argument
as used for the broadening of the conductance step in
the low magnetic field case above. As already mentioned,
in a case with only 1↑ and 2↓ particles, the situation
would be completely symmetric. Therefore the different be-
havior must stem from the other particles in the system.
Since, in the analog case, the 2↑ spin subband lies much
higher than the chemical potential and is therefore empty,
the 1↓ particles must be responsible for the change of
situation.

Both of our observations can be explained by taking the
effect of the 1↓ electrons in a simple Hartree argument into
account: The Hartree shift on particle species α induced
by the 1↓ particles in the center of the QPC is given by
Eα

H = Uαn1↓a, where Uα denotes the appropriate interaction
(U intra for α = 1↑, U inter for α = 2↓). Assuming that the
chemical potential μ is already far above the 1↓ van Hove
ridge, A1↓(ω) ≈ A1↓ will be approximately constant, and
the Hartree shift will be approximately of the form Eα

H ≈
Uα (nc

1↓ + (μ − b1↓)A1↓)a, with a constant nc
1↓ and the barrier

top of the 1↓ particles given by b1↓ = Vg − B
2 . Leaving the

other interactions aside for a moment, we can readily write
down the μ- and B-dependence of the renormalized barrier

tops of the 1↑ and 2↓ particles:

b1↑ = Vg + B

2
+ E1↑H (B,μ),

b2↓ = Vg + V off − B

2
+ E2↓H (B,μ). (9)

The qualitative behavior of this equations is shown in Fig. 8,
and provides a good explanation for the observed phenomena:
In contrast to the noninteracting case [Fig. 8(a)], we obtain
for U intra = U inter a pinch-off asymmetry, �p, between the
pinch-offs at magnetic fields above and below the analog,
see Fig. 8(b). Taking into account the interaction between
1↑ and 2↓ (whose main effect is a broadening of the second
half-step), this results in the more symmetric arrangement of
the two half-steps around the crossing curve for �B < 0, and
to a more asymmetric situation in the �B > 0 case. However,
we see that the shape of corresponding curves is the same
since the μ-width of the half-steps, �μ1↑ and �μ2↓, is equal.

If we compare this to experiment [1], we see that this
setting reflects only partially the experimental situation: While
the half-steps are indeed arranged more symmetrically for
�B < 0 than for the �B > 0 case, also the form of the
corresponding curves themselves differs substantially in ex-
periment. For �B > 0, the conductance curves are much
more asymmetric in the μ behavior, developing a 0.7 analog
plateau, while for �B < 0 they are not. To analyze this quan-
titatively in our calculation, we introduce the “conductance
asymmetry” �g(μ) = gm(μ) − g(μ), where gm(μ) is the
mirror image of g(μ) around the point g(μ)/g0 = 1.0 under
reflection in both the horizontal and vertical direction. The
more asymmetric the conductance curve is in μ, the larger gets
the modulus of �g. This is illustrated in Fig. 9(a). Figure 9(b)
shows the dependence of this asymmetry �g on the magnetic
field. We see that contrary to the experiment the asymmetry is
equally strong above and below the crossing value Bc.

This indicates that our description up to now lacks an
important ingredient. We will argue in the following that this
is due to the unphysical choice U intra = U inter. Generically,
one would expect U inter < U intra

2 < U intra
1 . The first statement

is due to the smaller overlap of the transversal wave functions
between different bands, the second because the transversal
wave function in the second band is spread out wider than
in the first band. Both effects lead to a weakening of the
effective one-dimensional interaction strength. Estimates for
the ratios of this different interaction strengths can be ob-
tained in a similar manner as in Ref. [5], see Appendix, and
yield U intra

2 /U intra
1 ≈ 0.77 and U inter/U intra

1 ≈ 0.36. Keeping
our previous U intra

1 fixed, this leads approximately to U intra
2 =

0.5τ and U inter = 0.3τ .
To investigate the influence of these differences in interac-

tion strength, we proceed in two steps. In the ideal case where
the analog region is well separated from the 2↑ conductance
step, we expect that the influence of U intra

2 at the analog is
not important, since the barrier for the 2↑ electrons is way
above the chemical potential. Therefore, we will first keep
U intra

2 equal to U intra
1 = 0.7τ and investigate the influence of

a reduction of U inter = 0.3τ alone. In Fig. 10, we show the
resulting conductance curves. Again, we encounter a pinch-
off shift of the higher spin subband steps; however, due to
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FIG. 8. Schematic behavior of the Hartree renormalized barriers of the 1↑ (red) and 2↓ (blue) particles as function of μ and B. The colored
regions indicate where |bα − μ| < �x/2, i.e., the regions within which the conductance steps occur. (a) Noninteracting case: Bc = V off, no
pinch-off asymmetry, no shape asymmetry. (b) U intra = U inter: Bc = V off, pinch-off asymmetry (�p > 0), no shape asymmetry. (c) U intra >

U inter: Bc < V off, pinch-off asymmetry (�p > 0) and shape asymmetry (�μ1↑ > �μ2↓).

the different interaction strengths, the crossing point Bc is
now shifted, too. More importantly, we see that in addition
to the pinch-off asymmetry, also the shape of corresponding
curves for �B < 0 and �B > 0 differ, the curves for �B < 0
being much more symmetric than the �B > 0 curves. This
is the behavior also observed in experiment and for further
reference, we will call it the “shape asymmetry.”

These features can be readily explained with our Hartree
picture for the renormalized barrier positions Eq. (9). Their
behavior for U intra > U inter (i.e., the Hartree shift for the 2↓
subband is smaller than for the 1↑ subband) is shown in
Fig. 8(c). We see two immediate effects: (i) The 2↓ subband
is shifted to lower values of μ and therefore the value of the
magnetic field Bc, where the two subbands cross is shifted
to lower magnetic fields, as encountered in the Fig. 10, and
(ii) the width �μ2↓ of the 2↓ half-step is decreased, therefore
yielding the shape asymmetry: For �B < 0, the first half-step
(1↑) is broader than the second half-step (2↓), thus counter-
acting the asymmetry introduced by the interband interaction
between the competing particles themselves and leading in
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FIG. 9. Illustration of the asymmetry in μ. (a) Conductance
curve �B/�x = −0.64 from Fig. 7 (black), together with its mirror
image (red) under inversion around the g = 1.0 point, and the
difference �g between the two curves (blue). (b) Colorplot of �g

as a function of magnetic field and chemical potential. We see that
the strength of the curve asymmetry is symmetric around Bc.

total to a more symmetric curve. For �B > 0, the effect is
reversed, leading to a more asymmetric curve.

Furthermore, Fig. 8(c) exhibits a third interesting, albeit
less pronounced feature: Due to the smaller interaction with
the lowest electrons, the μ-width of the 2↓-strip is smaller
than the width of the 1↑-strip and therefore the two middle
corners of the intersecting diamond [light pink region in
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FIG. 10. (a), (b) same plot as in Fig. 7, but for larger intra- than
interband interaction (U intra

1,2 = 0.7τ , U inter = 0.3τ ), resulting in Bc ≈
1.48�x . In (b), the dashed curve is again the �B/�x = −0.63 curve
from (a), manually shifted such that it intersects the corresponding
�B/�x = 0.64 curve at the g/g0 = 1 point. However, contrary to
Fig. 7(b), the shape of the two curves does not coincide. (c) Colorplot
of the shape asymmetry. In contrast to Fig. 9(b), we see that the
asymmetry is clearly stronger for �B > 0 than for �B < 0.
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FIG. 11. Zoom of Fig. 1. Note the slight kink that occurs at the
onset of the blue 0.7 analog curve compared to the steep onset of the
B = 0 curve (circled areas).

Fig. 8(c)] do not lie on the Bc line, but are shifted slightly
upward or downward from it. Directly at the Bc line, i.e.,
at the 0.7 analog, the broader 1↑ and the thinner 2↓ steps
superimpose symmetrically, which leads to a conductance
curve with slightly less steep parts at the onset and at the
end in μ direction. Since the Hartree picture we use in Fig. 8
takes only the interaction with the 1↓ electrons and not the
interaction between the 1↑ and 2↓ electrons themselves into
account, we expect this small effect to be most prominent at
the onset of the second conductance step. In the experimental
data, one might interpret the slight kink that occurs at the onset
of the blue 0.7 analog step, compared to the smooth B = 0

1 2 3 4
μ/Ωx
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g
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B ≤ Bc = 1.43Ωx

ΔB
Ωx

0.00
-0.21
-0.42
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Ω
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μ/Ωx

(b)
B ≥ Bc = 1.43Ωx

ΔB
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0.00
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-0.64
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Δg

U intra
1 = 0.7τ, U intra

2 = 0.5τ, U inter = 0.3τ

FIG. 12. (a), (b) same plot as in Figs. 7(a) and 7(b) and
Figs. 10(a) and 10(b), but for three different interactions: U intra

1 =
0.7τ , U intra

2 = 0.5τ , and U inter = 0.3τ . In comparison to Fig. 10,
the crossing point is slightly reduced to Bc = 1.43�x ; however, the
asymmetry persists. (c) Colorplot of the shape asymmetry, which
stays very similar to Fig. 10(c).
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FIG. 13. Colorplot of the transconductance as function of B and
μ. Note the more pronounced asymmetry at the �B > 0 than the
�B < 0 part of the crossing region.

curve, as a result of the described effect, compare circled
onsets in Fig. 11. However, this feature is quite weak and
could also be caused by other causes, e.g., a gate-dependent
deformation of the QPC potential. Furthermore, we do not
observe any visible effect of this kind in our fRG calculations,
see Fig. 10.

As a last step, we finally also reduce U intra
2 = 0.5τ < U intra

1 .
The results are shown in Fig. 12. We see that the reduction of
U intra

2 slightly shifts the crossing point Bc to lower values of
the magnetic field; however, the shape asymmetry introduced
by the lowering of U inter stays intact. Thus, in terms of Fig. 8,
the net effect of the reduction of U intra

2 is simply a slight shift
of the blue 2↓ barrier top position stripe to the left, i.e., to
lower values of μ, without changing its slope.

D. Limitations

A limitation of our static zero temperature calculation is
that we have no access to inelastic processes. We suspect that
this leads to a main difference between our results and experi-
mental observations, namely that we do not see a pronounced
finite temperature plateau in the conductance. This can be
clearly seen by comparing the transconductances dg/dμ, see
Fig. 13, where we do not observe the “gap” at �B > 0 as in
the experimental data, cf. Fig. 2(a) in Ref. [1] or Fig. 1(b) in
Ref. [11]. However, we also see in the transconductance, that
for �B > 0 the broadening of the conductance curve in the
second half-step is more pronounced than for �B < 0, where
the half-steps are more symmetric in position as well as slope.

IV. CONCLUSION

We have studied the 0.7 analog in QPCs using a two-
band model with intra- and interband onsite interactions and
found that we could qualitatively reproduce the magnetic field
dependence of the conductance around the analog. In partic-
ular, we could reproduce the asymmetry in the conductance,
depending on whether the analog is approached from higher
or lower magnetic fields.

Due to our use of a static fRG scheme, we were not able to
investigate finite temperature properties of the analog, which
is an interesting direction for further research.

115112-7
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APPENDIX: ESTIMATE OF THE QPC
INTERACTION STRENGTHS

Following the approach of Ref. [12], we calculated in
Ref. [5] the intraband interaction for a QPC with a single band

that resulted from a screened Coulomb interaction. This was
done by taking only the ground state φ1 of the transversal
y direction (in the two-dimensional electron gas plane) into
account. Since the confinement in y direction can be ap-
proximated by a harmonic potential, φ1 is simply the ground
state of a harmonic oscillator. In a QPC with two bands, we
additionally also take the first excited state of the harmonic y

confinement into account. The computation of the resulting
matrix elements for the interaction between two effective
one-dimensional states at x0 and x1 can be done analogously
to the one-dimensional case and yields in terms of integrals
over the relative coordinate r in the transversal direction:

U intra
1 (x0, x1) = (

l2
y (x0) + l2

y (x1)
)− 1

2

∫
dr g(r ), (A1)

U intra
2 (x0, x1) = (

l2
y (x0) + l2

y (x1)
)− 9

2

∫
dr g(r )

[
3l2

y (x0)l2
y (x1)

(
l2
y (x0) + l2

y (x1)
)2 + (

l2
y (x0) + l2

y (x1)
)

× (
l4
y (x0) − 4l2

y (x0)l2
y (x1) + l4

y (x1)
)
r2 + l2

y (x0)l2
y (x1)r4

]
, (A2)

U inter(x0, x1) = (
l2
y (x0) + l2

y (x1)
)− 5

2

∫
dr g(r )

[
l4
y (x1) + l2

y (x0)
(
l2
y (x1) + r2

)]
, (A3)

where ly (x) is the (x dependent) characteristic length in y direction, e the electron charge, κ the dielectric constant, and g(r )
(which consists of the screened Coulomb interaction, as well as the lateral confinement) is given by

g(r ) = e2

κ

[
1√

(x0 − x1)2 + r2
− 1√

(x0 − x1)2 + r2 + l2
s

]
e−r2/(2(l2

y (x0 )+l2
y (x1 ))), (A4)

where ls is the screening length. All these contributions are logarithmically divergent for x0 → x1. In this work, we make the
simplest approximation and ignore the position dependence of the U ’s, by setting them to their value in the QPC center. Then
we obtain for the ratios of the different effective interaction strengths used in Sec. III C:

U intra
2

U intra
1

= lim
x1→0

U intra
2 (0, x1)

U intra
1 (0, x1)

≈ 0.77, (A5)

U inter

U intra
1

= lim
x1→0

U inter(0, x1)

U intra
1 (0, x1)

≈ 0.36, (A6)

where in the last step we used a ratio ls/ ly (0) = 3, which could, for example, be realized in a QPC with ls = 50 nm and
ly = 17 nm, which corresponds in a GaAs 2DEG to a curvature �y = 2 meV.
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5 Keldysh fRG treatment of finite-ranged
interactions in quantum point contacts

5.1 Overview
This section contains our publication investigating the temperature dependence of the
conductance of a quantum point contact (QPC) with finite-ranged interactions. The inclusion
of a finite interaction range at finite temperature is a major step, since it tremendously
increases the number of possible interaction processes, possibly yielding effects that were
missed out using only an onsite interaction model like in [SBvD17]. Furthermore, a reasonable
treatment of finite interaction range is also a necessary requirement in order to study the
transition of (comparatively short) QPCs to longer quantum wires (c.f. the discussion in the
Introduction of this thesis).

In order to achieve the goal stated above, we develop a (semi-) dynamic Keldysh version of
the extended Coupled Ladder Approximation (eCLA) introduced in our previous publication
in Sec. 3.2. For this, we proceed analogously to previous works on Keldysh fRG [Jak09,
SBvD17, Sch17]. In particular, we use a hybridization flow by introducing artificial leads (as
opposed to a frequency cutoff as in Sec. 3.2), keeping the flow parameter dependent action
physical during the flow. Therefore, important relations like fluctuation dissipation theorems
are manifestly fulfilled for this flow.

The introduction of the feedback length L for the spatially extended feedback of the eCLA
requires special care in the dynamic case. Due to numerical costs, it is not possible to include
the extended spatial feedback for all frequencies. Therefore, we introduce the concept of
a dynamical feedback length L(Ω), keeping the extended spatial feedback only around the
feedback frequencies of the respective vertex channels, which constitute the most important
frequencies. Although we are not able to reach full convergence w.r.t. L(Ω), we can still see a
very interesting trend from our results for the QPC conductance.

While, for a model with onsite interactions, the conductance always retains a qualitatively
similar shape when temperature is increased, this changes for models with finite-ranged
interactions. When the interaction range is comparable to the characteristic length of the
QPC, we find that the conductance develops a pronounced 0.7-shoulder with increasing
temperature. This constitutes the main result of this paper.

Unfortunately, this finding is somewhat spoiled by methodological problems and therefore
we can not claim it as the whole truth. Besides the above mentioned convergence issues
(c.f. Sec. 3.2), our method also suffers from the violation of Ward identities. This violation
makes the conductance computation ambiguous, i.e. formally equivalent expressions for the
conductance in terms of the vertex quantities and the self-energy yield different results. We
treat this problem here by a somewhat ad hoc method, based on the artificial restoration
of Ward consistency between self-energy and vertex. A truly reliable method should of
course fulfill this Ward consistency on its own. A possible candidate for such an improved
method could be a future multiloop fRG (mfRG) implementation of the eCLA. This recently
developed fRG method [KvD18a, KvD18b, KvD18c] goes beyond second order truncation
fRG and is conserving on a one-particle level. Work in this direction is currently in progress.
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We combine two recently established methods, the extended Coupled-Ladder Approximation
(eCLA) [Phys. Rev. B 95, 035122 (2017)] and a dynamic Keldysh functional Renormalization
Group (fRG) approach for inhomogeneous systems [Phys. Rev. Lett. 119, 196401 (2017)] to tackle
the problem of finite-ranged interactions in quantum point contacts (QPCs) at finite temperature.
Working in the Keldysh formalism, we develop an eCLA framework, proceeding from a static to a
fully dynamic description. Finally, we apply our new Keldysh eCLA method to a QPC model with
finite-ranged interactions and show evidence that an interaction range comparable to the length
of the QPC might be an essential ingredient for the development of a pronounced 0.7-shoulder in
the linear conductance. We also discuss problems arising from a violation of a Ward identity in
second-order fRG.

I. INTRODUCTION

In a previous work [1], we have devised an extended
Coupled-Ladder Approximation (eCLA), an approxima-
tion scheme within the second-order truncated functional
Renormalization Group (fRG) approach. The eCLA is
capable of a controlled incorporation of the spatial extent
of the one-particle irreducible two-particle vertex (here-
after simply called ”vertex“) into a channel-decomposed
[2–4] fRG flow. Using a static Matsubara implementa-
tion, we showed that this scheme improves the conver-
gence of the fRG flow by increasing the feedback between
the separate channels of the vertex flow. Furthermore, by
design, this scheme includes a correct treatment of finite-
ranged interactions up to second order in the interaction.
Applying the eCLA scheme to a quantum point contact
(QPC), we observed that with an increasing interaction
range, the effective QPC barrier flattens and additional
features in the linear conductance (herafter simply called
”conductance“) arise, caused by corresponding Friedel
oscillations.

The eCLA has recently also been used in [5] to study
phase transitions in an one-dimensional spinless tight-
binding chain with nearest and next nearest neigbor in-
teraction. Furthermore, in [6] a set of second order flow-
equations was derived for a one-dimensional system of
spinless fermions, which can be obtained as a special case
of the spin-1/2 eCLA equations.

In this paper, we build on our previous QPC stud-
ies, now focusing on the following question: how does
the temperature dependence of the QPC conductance
change when the interaction range is increased from 0
up to the scale of the characteristic QPC length? In
this regime, our previous zero-temperature static Mat-
subara approach indicated only a slight broadening of
the conductance step. However, it is very interesting to
study the behavior in this regime at finite temperature,
since – contrary to experimental findings, see e.g. [4, 7, 8]
– an earlier study [9], utilizing only onsite interactions,
found no pronounced 0.7-shoulder in the conductance.
In order to be able to treat finite temperatures, we here
present an implementation of the eCLA in a dynamic

Keldysh setup, as devised in [10, 11] and extended and
successfully applied to QPCs with short-range interac-
tions in [9]. Since a full treatment of both the spatial as
well as the frequency structure of the vertex is numeri-
cally not possible, we introduce an additional approxima-
tion scheme that allows us to take the extended spatial
structure of the vertex for successively more frequencies
into account. Although the numerical costs did not per-
mit us to reach full convergence w.r.t. the used frequency
range, the qualitative behavior at large ranges remained
stable. Furthermore, we analytically argue that we are
indeed able to capture the most important vertex contri-
butions to the conductance within the covered frequency
range.

Finally, we apply this new method to a QPC at finite
temperature and show evidence that a finite interaction
range on the scale of the length of the QPC likely is an
essential factor for the development of a pronounced 0.7-
shoulder in the conductance (see Fig. 7 below).

We also discuss problems arising from a violation of
a Ward identity in second-order fRG. We suggest a sim-
ple correction factor for ameloriating these problems, but
conclude that a truly reliable cure will require going be-
yond second-order fRG.

This paper is structured as follows. Sec. II defines the
model used to describe a QPC. Sec. III describes method-
ological details, in particular regarding our parametriza-
tion of the vertex. (Problems arising from a Ward iden-
tity violation are addressed in Sec. III C, see Fig. 3 be-
low). Sec. IV presents our results for the temperature de-
pendence of the QPC conductance and Sec. V our conclu-
sions. Three appendices deal with further technical de-
tails, such as vertex symmetries (App. B), the importance
of a dynamic treatment of vertex feedback (App. E), and
the consequences of violating Ward identities (App. F).

II. MODEL

We consider a Hamiltonian consisting of a one-
dimensional tight-binding chain with finite-ranged inter-



2

actions:

H = −
∑

iσ

τi[c
†
iσci+1σ + h.c] +

∑

iσ

σ
B

2
niσ

+ 1
2

∑

ijσσ′

Uij(1− δijδσσ′)niσnjσ′ , (1)

where ciσ annihilates an electron at site i ∈ Z with spin

σ and niσ = c†iσciσ is the number operator. Instead
of a quadratic onsite potential as used in [1], we use
a quadratic modulation in the hopping, τi = τ − ∆τi,
to model the QPC barrier. This approach was also
used in [9]. It causes a constriction of the tight-binding
band, leading to a density of states which, close to the
lower band edge, is equivalent to the one generated by a
quadratic onsite potential. Moreover, at the upper band
edge this method avoids the formation of sharp bound
states which are difficult to treat numerically and lead
to problems with e.g. the normalization of the density of
states.

The hopping modulation and the interactions are both
taken to be finite only within a central region with 2N+1
sites, i.e. U(i, j) = 0, if i or j 6∈ [−N,N ] and ∆τi = 0 if
i 6∈ [−N,N − 1]. Note that the central region contains
one hopping element less than onsite terms. Within this
region the hopping and interaction takes the form

∆τi =
1

2
Vge
−x2

i /(1−x2
i ), xi =

2i+ 1

2N
, (2)

Uij =
[
δijU0 + (1− δij)U1

e−|i−j|/χ

|i− j|
]
f(i, j), (3)

where i ∈ [−N,N −1] for ∆τi and i, j ∈ [−N,N ] for Uij .
The hopping variation ∆τj is characterized by Vg, the
effective barrier height in the center of the QPC, as well
as an exponential factor exp[−x2

i /(1−x2
i )] governing the

form of the barrier: In the QPC center a quadratic barrier
top dominates, while in the QPC flanks the barrier goes
smoothly to zero. The interaction consists of an onsite
term δijU0 as well as a Yukawa-like offsite term governed
by interaction strength U1 and exponential decay rate
χ. We chose the Yukawa-like form of the interaction
strength in order to fit two demands: (i) The interaction
should not only be onsite anymore (as it was in [9]), but
also have a finite extent comparable to the characteristic
QPC length. (ii) It still has to decay quickly enough,
i.e. not develop an algebraic long-range tail, in order to
be numerically treatable at finite temperature within a
dynamic Keldysh setup. The situation of weaker screen-
ing, introducing only an algebraic decay in the interac-
tion strength, requires a very large spatial extent of the
vertex. For this situation, a dynamic treatment within
the eCLA approach is therefore not feasible. However, for
zero temperature, this case can be studied approximately
within a static fRG approach that requires considerably
lesser numerical resources [1]. The function f(i, j) is in-
serted for numerical purposes and consists of two factors

f(i, j) = exp
(
− z(i, j)6

1− z(i, j)2

)
× θ
(
LU − |i− j|

)
, (4)

with z(i, j) = max
(
|i|
N ,
|j|
N

)
. The exponential factor sup-

presses the interaction at the edges of the central region
and thus assures a smooth transition from finite inter-
action strength to zero interaction in the leads. Note
that instead of the quadratic power that appears in the
numerator of the exponential factor in the hopping vari-
ation (2), we used in (4) a power of z(i, j)6 in the expo-
nential term. This ensures that the interaction strength
around the barrier top stays almost constant and only
drops off, smoothly, relatively close to the edges of the
central region. The θ factor introduces a cutoff in the
interaction range, i.e. the interaction is only finite for
ranges |i − j| ≤ LU . Since in this work we will focus
only on qualitative predictions, we will in fact use only
LU to vary the range of the interaction, while keeping
χ fixed on the scale of the QPC length. Concretely, if
not specified otherwise, we will use the following param-
eters throughout: Spatial discretization N = 30, i.e. we
have a total number of 2N + 1 = 61 sites; barrier height
Vg = 0.5τ , i.e. the lower edge of the noninteracting band
in the QPC center lies at ωb = −2τ + Vg = −1.5τ , c.f.
Fig. 1(a); screening length χ = 5. This is on the scale of
the characteristic length of our QPC, see below; magnetic
field B = 0.

The curvature of the central barrier, which sets the
characteristic energy scale of the QPC, is then given by
Ωx = 2

√
Vgτ/N ≈ 0.05τ . Likewise, the characteris-

tic QPC length scale is given by lx = a
√
τ/Ωx ≈ 5a,

where a denotes the lattice constant of our discretiza-
tion. Moreover, if not otherwise specified, we will use
the following set of interaction parameters. Onsite in-
teraction: LU = 0, U ≡ U0 = 0.7τ = 3.2

√
Ωxτ . These

values were also used in [9]. We remark that this onsite
interaction strength is close to its maximal value that
can be used before the fRG flow breaks down. Finite-
ranged interaction: LU = 3, U0 = 0.5τ = 2.3

√
Ωxτ ,

U1 = 0.3τ = 1.4
√

Ωxτ . These parameters are chosen in
such a way that (i) LU > lx/(2a) i.e. a particle on the top
of the QPC barrier can interact with a particle outside of
the QPC center, whose width is set by the characteristic
length lx. (ii) The strength of the onsite term U0 = 0.5 in
(3) is chosen to be slightly smaller than that for the pure
onsite interaction with U = 0.7, in order to compensate
for the finite extent of the interaction. The strength of
the offsite interaction is chosen in an ad hoc fashion as
U1 = 0.3 which, as we will see, is large enough to lead to
a noticeable impact on the conductance behavior. In the
end of Sec. III B 4 we take a very brief look on how the
conductance changes with (i) increasing interaction range
LU and (ii) when varying the overall interaction strength
while keeping the ration U0/U1 fixed. A systematic study
of the conductance dependence on the detailed form of
the interaction is, however, beyond the scope of this pa-
per. The resulting barrier and interaction forms for this
choice of parameters are shown in Fig. 1.

Primarily, we are interested in the form of the first con-
ductance step that occurs when the QPC opens up, right
after pinch-off. To vary the effective barrier height, we
vary the chemical potential µ instead of the gate voltage
Vg, as done in experiments. This has the advantage that
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Figure 1. (a) Colorplot of the non-interacting LDOS Aj(ω)
for the chosen QPC model. (b) Interaction profile U0j in the
center of the QPC as function of site j.

the curvature Ωx of the central barrier does not change
during the conductance step. All observed changes dur-
ing the step therefore depend only on the energetic dis-
tance of the chemical potential to the barrier top, i.e. on
the Fermi energy at the central site, εF = µ− ωb.

III. METHOD

In order to compute the conductance from the de-
scribed model, we use a second-order truncated Keldysh
fRG (in a similar fashion as described in [9]). However,
in order to treat finite-ranged interactions we extend the
scheme used there, applying an eCLA-approximation, as
described in [1].

This section is divided into three parts. Sec. III A sum-
marizes the general Keldysh fRG approach to the QPC
model (1). Since this general approach is the same as in
[9], we provide only a brief description and just state the
most important relations. In Sec. III B, we describe the
combination of Keldysh- and eCLA fRG in detail, discuss
the resulting flow equations and comment on symmetries
of the involved quantities. Finally, in Sec. III C we dis-
cuss how to obtain the conductance from our fRG data,
using the approach presented in [12].

A. Keldysh fRG setup

1. Propagators

We implement our fRG flow as hybridization flow [3, 9],
by introducing a flow parameter Λ into the retarded bare
propagator which nominally acts as coupling strength be-
tween the system sites (including the leads) and an arti-
ficial source of dissipation

GR0,Λ(ω) =
1

ω −H0 + i
2Λ

, (5)

where H0 denotes the single-particle part of the Hamil-
tonian (1). Via the relations (9a) and (10), the Λ de-
pendency will also enter the advanced and the Keldysh
component of the bare propagator. In the limit Λ→∞
which serves as a starting point of the flow, the artifical
dissipation renders the model trivial, whereas for Λ→ 0
we recover the full bare propagator.

As usual, before carrying out any numerical calcula-
tions, the non-interacting leads can be integrated out
analytically [2–4] and their effect is absorbed into a self-
energy contribution Σlead for the central region given by
sites [−N, . . . , N ]. This contribution is located at the two
ends of the central region and its retarded component is
given by [9]

ΣRσΛ
leadij(ω) =

1

2
(δi,−Nδj,−N + δi,Nδj,N )

×
(
ωσ + i

Λ

2
− i
√

4τ2 −
(
ωσ + i

Λ

2

)2)
, (6)

with ωσ = ω−σ2B. Using this quantity, the retarded bare

propagator GR0,Λij(ω) with i, j within the central region
can be expressed as

GR0,Λij(ω) =
[ 1

ω −HC
0 − ΣRσΛ

lead + i
2Λ

]
ij
, (7)

where HC
0 is the part of the single-particle Hamiltonian

that lives entirely within the central region.

Using the Λ dependent bare propagator (7), the re-
tarded component of the single-scale propagator can be
obtained by

SR(ω) = (GG−1
0 ∂ΛG0G

−1
0 G)RΛ(ω)

= GRΛ(ω)
(
− i

2
+ ∂ΛΣRΛ

lead(ω)
)
GRΛ(ω). (8)

In order to simplify notation, we will supress the index
Λ in the following.

For all propagators and the self-energy, the advanced
component is the hermitian conjugate of the retarded
component and the Keldysh component is its own nega-
tive hermitian conjugate, i.e. for all ξ ∈ {G0, G, S,Σ} we
have

ξA = (ξR)†, (9a)

ξK = −(ξK)†. (9b)

Additionally, due to our equilibrium setup, these quan-
tities also fulfill a fluctuation-dissipation theorem (FDT)

ξK(ω) = (1− 2f(ω))
(
ξR(ω)− ξA(ω)

)
. (10)

Here, f(ω) = (1 + e(ω−µ)/T )−1 denotes the Fermi dis-
tribution with chemical potential µ and temperature T
(Boltzmann constant kB = 1 by convention).

For further use, we also note that using Keldysh indices
∈ {1, 2} we have

GR = G21, GA = G12, GK = G22. (11)

Here and in the following sections, we use the common
notation, where “2” indicates the classical and “1” the
quantum component, c.f. [10, 11].
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2. Keldysh and frequency structure of the vertex

We arange the Keldysh structure of the two-particle
vertex according to the convention [10, 11]

γαβ|γδ =




(11|11) (11|21) (11|12) (11|22)
(21|11) (21|21) (21|12) (21|22)
(12|11) (12|21) (12|12) (12|22)
(22|11) (22|21) (22|12) (22|22)


 , (12)

where α, β, γ, δ ∈ {1, 2} denote Keldysh indices.
Furthermore, we use a channel decomposition,

γ(ω′1, ω
′
2|ω1, ω2) ≈ ν̄ + ϕP (Π) + ϕX(X) + ϕD(∆), (13)

with the bosonic frequencies given by

Π = ω1 + ω2 = ω′1 + ω′2, (14a)

X = ω2 − ω′1 = ω′2 − ω1, (14b)

∆ = ω2 − ω′2 = ω′1 − ω. (14c)

The quantity ν̄ denotes the bare vertex whose Keldysh
structure reads [3]

ν̄α
′
1α

′
2|α1α2 = 1

2 v̄




0 1 1 0
1 0 0 1
1 0 0 1
0 1 0 1


 . (15)

The spin and spatial dependence of the antisymmetrized
quantity v̄ is given by

v̄
σ′
1σ

′
2|σ1σ2

j′1j
′
2|j1j2

= δj′1j1δj′2j2δσ′
1σ1
δσ′

2σ2
Uσ1σ2
j1j2

− δj′1j2δj′2j1δσ′
1σ2
δσ′

2σ1
Uσ1σ2
j1j2

, (16)

with

Uσ1σ2
j1j2

=

{
0, if j1 = j2 and σ1 = σ2

Uj1j2 , else.
(17)

The quantitites ϕP (Π), ϕX(X), ϕD(∆) denote the con-
tributions of the respective channels. Using general
symmetries of the vertex, as well as additional (approxi-
mate) symmetries introduced by our chosen approxima-
tion of the fRG equations, it can be shown that [3, 9] the
form of the resulting Keldysh structure depends on the
individual channel and is given by

ϕP (Π) =




0 dP dP 0
aP bP bP aP

aP bP bP aP

0 dP dP 0


 (Π), (18a)

ϕX(X) =




0 dX aX bX

aX bX 0 dX

dX 0 bX aX

bX aX dX 0


 (X), (18b)

and

ϕD(∆) =




0 aD dD bD

aD 0 bD dD

dD bD 0 aD

bD dD aD 0


 (∆). (18c)

Furthermore, including frequency, spin and spatial struc-
ture one finds that these components are not all inde-
pendent but fullfill additional symmetry relations (see
App. B). In thermal equilibrium, it is possible to ex-
press all d-components via the complex conjugate of a-
components, see (B13). Additionally, the components of
the vertex fulfill a FDT [10, 11],

bP = 2i Im(aP ) coth
((Π

2
− µ

)
/T
)
, (19a)

bX = −2i Im(aX) coth
( X

2T

)
, (19b)

bD = 2i Im(aD) coth
( ∆

2T

)
, (19c)

leaving the a-components as the only independent part of
the Keldysh structure. As a final remark, we emphasize
that in the chosen convention aP (Π) and aD(∆) are both
retarded, whereas aX(X) is advanced [10, 11].

3. Frequency parametrization

We now briefly explain the nature of our chosen fre-
quency parametrization and introduce some notations
that will be useful in the subsequent sections. Here again,
we closely follow the method described in [9], therefore
we refer the interested reader to its extensive supplement
material. Since we are working in the Keldysh formal-
ism, both the fermionic frequencies in the propagators
and self-energy as well as the bosonic frequencies of the
vertices are continuous real numbers and one cannot for-
mally distinguish them (as one does in the finite temper-
ature Matsubara formalism). For our numerical treat-
ment, we use two different frequency parametrizations.

The first one discretizes the state of the system, i.e.
self-energy and vertices, with Nfreq underlying frequency
points. Since both computation time and allocated mem-
ory depend crucially on Nfreq, this number should be
chosen with care. For the explicit implementation of the
grid, we proceed then as follows. Within the energy
window [−4τ, 4τ ], corresponding to twice the band width
introduced through our tight-binding leads, we choose a
linear discretization, outside of this window we use an
exponentially-spaced discretization scheme. Of the num-
ber Nfreq of total frequency points, we use roughly 2/3
of them within and 1/3 outside of the linear window.
In addition to this underlying grid, we add a number of
extra frequencies, which depend upon whether we want
to use the grid for the self-energy, the P-channel, or the
XD-channel contribution of the vertex. The idea here is
that for each of those cases there is a frequency window
of special physical interest. For the self-energy, this win-
dow is around the chemical potential, and for the vertex
channels around the so-called feedback frequency, which
equals 2µ in the P- and 0 in the X-channel. In each of
these cases we add one extra frequency point at each of
these special frequencies. Additionally, in the case of fi-
nite temperature, NT frequencies are added to resolve
a frequency window [−5T, 5T ] of width 10T around the
special frequencies. We use Nfreq ∼ 1490 and NT = 10



5

and have verified that our results are converged w.r.t.
these two parameters. While the number of base grid
frequencies Nfreq ∼ 1490 was already used in [9], the cho-
sen number of additional frequencies (∼ 100) to resolve
the temperature window in [9] was much higher than our
NT = 10. Our comparatively low choice of this number is
due to the fact, that for our study NT affects the numer-
ical cost much more than for [9], due to the inclusion of
the long-range part of the vertex around the feedback fre-
quencies, see Sec. III B 4. However, even with the choice
NT = 10, our data is still reasonably converged w.r.t.
NT , see App. G. We use the following notation for the
frequency parametrization: We denote the total number
of frequency points by Nf for the fermionic grid, and
by NA with A ∈ {P,X}, for the bosonic P-, and XD-
channel grid. We denote the respective frequency grids
by ωf = {ωn}0≤n≤Nf and ΩA = {ΩAn }0≤n≤NA . We intro-

duce the notation ΩAf for the feedback frequency of the

bosonic channels, i.e. ΩPf = 2µ and ΩXf = 0. Moreover,
we denote the index of the feedback frequency by nA.
Thus, we have ΩPnP = 2µ and ΩXnX = 0.

A second frequency parametrization is utilized to dis-
cretize the propagators G and S. In a precomputation
step, taking place before the evaluation of the r.h.s. of the
fRG flow equations, we evaluate G and S on a very fine
grid of approximately Npre ∼ 30000 frequency points,
using linear interpolation of the self-energy. Whenever a
propagator within the r.h.s. of the flow has to be eval-
uated at a given arbitrary frequency (not necessarily a
grid frequency) we use its linearly interpolated value ob-
tained from this fine frequency grid. Concretely, this
evaluation always occurs as part of a frequency integra-
tion over an internal fermionic frequency ω, see (22), (26)
below. Due to the matrix inversion involved in the com-
putation of a propagator from the self-energy, the pre-
computation method is much faster than computing the
propagators separately for each internal frequency occur-
ing in the frequency integration. Compared to the time
the actual evaluation of the r.h.s. takes, the time spent
for this precomputation is negligible. In order to facili-
tate the integration, we employ a frequency substitution
(see discussion in Sec. III B 5). In all our computations,
the fine propagator grid was chosen as a uniform grid in
this substituted frequency space.

At the end of this subsection, we summarize the intro-
duced parameters for our frequency grids in Tab. I. The
specified values for the number of frequencies will be used
for all subsequent calculations, except in App. G, where
we discuss the convergence behavior w.r.t. NT .

B. Extended Coupled Ladder Approximation

1. Spatial short indices and simple eCLA

Having summarized the general Keldysh setup in the
previous subsection, we are now in the position to for-
mulate the fRG flow equations using a variation of the
eCLA-Method [1]. For this, we first introduce spatial
“short” indices l, k and “long” indices j, i , parameteriz-

Table I. Summary of parameters for frequency grids.

Parameter Description

Nfreq ∼ 1490 Number of basic grid frequencies for self-energy
and vertices.

NT = 10 Additional frequencies in the temperature win-
dow [−5T, 5T ] around the feedback frequencies
for the respective vertex channels and the chem-
ical potential for the self-energy.

ΩA Resulting frequency grid for channel A ∈
{P,X}.

NA ∼ 1500 Total number of frequencies in ΩA.

ΩAf Feedback frequency of channel A:

ΩPf = 2µ, ΩXf = 0.

nA Index of the feedback frequency of channel A:

ΩPnP = 2µ, ΩXnX = 0.

ωf Resulting frequency grid for self-energy.

Nf ∼ 1500 Total number of frequencies in ωf .

Npre ∼ 30000 Total number of frequencies in the fine propa-
gator grid.

ing the spatial structure of the vertices, as:

(aP )lkji(Π) = aPj(j+l)|i(i+k)(Π), (20a)

(aX)lkji(X) = aXj(i+k)|i(j+l)(X), (20b)

(aD)lkji(∆) = aDj(i+k)|(j+l)i(∆). (20c)

Since the treatment of the full spatial structure of the
vertex is numerically too costly, the eCLA scheme re-
stricts the range of the short indices l, k by introducing
the feedback-length L, with |l|, |k| ≤ L. The range of
the corresponding long indices j, i is dependent on l, k,
respectively, since we require that both j, i and j+ l, i+k
lie within the central region, i.e.

max(−N,−N − l) ≤ j ≤ min(N,N − l) (21a)

max(−N,−N − k) ≤ i ≤ min(N,N − k). (21b)

Generically, the feedback length L should be chosen at
least as great as the range of the bare interaction LU
(L ≥ LU ), such that the spatial structure of all ver-
tex components generated in second-order of the bare
interaction can be represented. In practical applications,
we view L as an internal numerical parameter in which
convergence should be reached. For example, in case of
a QPC with onsite-interactions [1] and a static imple-
mentation of the eCLA, convergence in the conductance
was achieved for L ≈ lx/a, where lx is the characteristic
length of the QPC.

However, in this form the eCLA is still too costly to
be implemented in a dynamic Keldysh setup, due to the
large number of frequencies needed to resolve sharp struc-
tures on the real frequency axis: A straightforward pa-
rameterization with NP = NX ∼ 1500 bosonic frequen-
cies, as was chosen in [9], is numerically not possible if
we want to take a feedback length L into account that



6

is at least of the order of the characteristic QPC length
L ≈ lx/a ∼ 5, where a is the lattice spacing of the spatial
discretization. For this reason, we have to further refine
our eCLA scheme, see Sec. III B 4 below. However, to do
this efficiently, we first take a look at the structure of the
Keldysh-fRG flow equations.

2. Flow equations

In this subsection, we state the general form of the
flow equations for self-energy and two-particle vertex. In
order to get a feeling for their general structure, we will
not write down their full index dependencies, but rather
focus on the important aspects. In App. D the flow equa-
tions are then given with their full index structure.

Due to the equilibrium symmetries of self-energy and
vertex (a thorough discussion of these is included in
App. B), we only have to compute the flow of ΣR and
the a components of the vertex. In our presentation here,
we will first present the Keldysh and frequency structure
and suppress spin and spatial indices. For the self-energy
this flow takes the following form

∂ΛΣR(ω) =̂

∫
dω′
{
SR(ω′)

[
bX(ω′ − ω) + bD(0)

]

+SA(ω′)
[
bP (ω′ + ω) + bD(0)

]

+SK(ω′)
[

1
2 v̄ + aP (ω′ + ω) + aX(ω′ − ω) + aD(0)

]}
,

(22)

where we have written “ =̂ ” instead of “ = ” in order
to indicate that we suppressed a (non trivial) spin and
spatial structure. Via the relations (9a,10), SA and SK

can be expressed through SR and the b components can

be expressed through the a components using the ver-
tex FDTs (19). Therefore, the flow of the retarded self-
energy can be expressed solely through SR and the a
compontents of the vertex. By splitting (22) into a static
and a dynamic part, its spatial structure can be ex-
pressed using only two pairs of short-long indices (j, l)
and (i, k), see App. D. For each combination of those one
has to compute an internal frequency integral. There-
fore the computational effort for the self-energy scales
like (2N + 1)2(2L+ 1)2.

The flow of the a components of the vertex is of the
general structure

∂Λa
A(Ω) =̂ ãA(Ω) IA(Ω) ãA(Ω), (23)

with A ∈ {P,X,D} and correspondingly Ω ∈ {Π, X,∆}.
Again we have suppressed spatial und spin indices, for
details see App. D. In (23) , the tilded quantities are
given by

ã =̂ 1
2 v̄ + aA + φB + φC , (24)

where φB , φC denotes the static feedback from the other
two channels, which is chosen as in [9–11], namely φP =
aP (2µ), φX = aX(0), φD = aD(0). The main effort in
the vertex flow goes into the computation of the bubble
quantities IA(Ω), which contain the internal frequency
integration. Suppressing spatial and spin structure, these
bubbles are of the form

IP = (Ĩpp)22|21 + (Ĩpp)22|12 (25a)

IX = (Ĩph)22|12 + (Ĩph)21|22 (25b)

ID = −
[
(Ĩph)22|21 + (Ĩph)12|22

]
, (25c)

with

(Ĩpp)α
′
1α

′
2|α1α2(Π)=̂

i

2π

∫
dω
[
Sα

′
1α1(ω)Gα

′
2α2(Π− ω) + [S ↔ G]

]
, (26a)

(Ĩph)α
′
1α

′
2|α1α2(X)=̂

i

2π

∫
dω
[
Sα

′
1α1(ω)Gα

′
2α2(ω +X) + [S ↔ G]

]
, (26b)

and the Keldysh convention (11).
Let us now take a look at the spatial structure of (23).

We have already seen in (20) that (aA)lkji has a blockma-
trix structure in position space, with two pairs of short
and long indices (l, j) and (k, i). The same is true for
the bubble quantities (IA)lkji . If we introduce the block-
matrix multiplication in spacial indices

[A ·B]lkji = Alk1ji1B
k1k
i1i

, (27)

the multiplications appearing between the different fac-
tors in (23) are all of this blockmatrix type, although for
the D-channel some factors are to be transposed. For
details see App. D. In our regime of parameters, the bot-
tleneck in computation time is not the blockmatrix mul-

tiplications in (23) but rather the computation of the
bubbles (26). Therefore, as for the self-energy, the lead-
ing contribution to computation time for the r.h.s. of the
vertex flow scales as (2N + 1)2(2L+ 1)2.

After having specified the flow-equations, the last piece
missing to determine the flow completely are the initial
conditions. For a finite but large Λini (in practice Λini =
105τ) they are given by [10, 11]

ΣRσΛini
ij (ω) =

1

2

∑

kτ

v̄
στ |στ
ik|jk , (28)

aPΛini = aXΛini = aDΛini = 0. (29)
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3. Bubble symmetries

Since the evaluation of the bubble integrals in (26) will
be the most expensive part of the fRG flow, we briefly
comment on simplifications occurring due to symmetry
relations of the bubbles. While we refer the interested
reader again to App. D for details, it turns out that we
only need to compute two Keldysh components of the
bubbles (26), namely

Ipp = (Ĩpp)22|21, (30a)

Iph = (Ĩph)22|12. (30b)

Thus generically, we have to compute 8 integrals of the
type given in (26), namely (Ipp)στ and (Iph)στ for all
possible spin combinations of σ, τ = ± ↑, ↓. In thermal
equilibrium, the propagators G and S for our system are
symmetric in position space (see discussion in App. A),
i.e.

Gσji(ω) = Gσij(ω) (31a)

Sσji(ω) = Sσij(ω). (31b)

Due to this property, the bubbles satisfy

I lkji = Iklij . (32)

This implies that we only have to compute the compo-
nents of the bubble with k ≥ l, and for l = k only the
components with i ≥ j.

A further great simplification occurs in the case of zero
magnetic field: Here we only need to compute the two
integrals (Ipp)↑↑ and (Iph)↓↓.

4. Dynamic feedback length

Now that we have obtained the fRG equations, we can
proceed to tackle the problem identified in Sec. III B 1:
the huge numerical cost arising from the combination of
high frequency resolution in the vertex (NA ∼ 1500)
with a finite feedback length on the scale of the QPC
length L ∼ lx/a ∼ 5 sites. Our Ansatz to overcome this
challenge is to introduce for each channel A two individ-
ual feedback lengths, a static one, LAs , and a dynamic
one, LA(Ω), which depends on the bosonic frequency Ω
of the respective channel and decreases with increasing
difference between Ω and the feedback frequency ΩAf .
We choose these feedback lengths in such a way that
LA(Ω) ≤ LAs for all Ω and that at the feedback frequency
LA(ΩAf ) = LAs holds. Our strategy is now the following:

For each dynamic block-matrix quantity MA ∈ {aA, IA},
we compute the components MAlk

ji (Ω) (we suppress spin
indices in this subsection) only for the spatial and fre-
quency grid points for which |l|, |k| ≤ LA(Ω) holds. Thus,
using the dynamic feedback length, we can restrict the
numerical effort to obtain and store the spatial structure
of these quantities for each frequency individually. On
the other hand, if we have to evaluate MA in a compu-
tation for a short-index |l| or |k| greater than LA(Ω), we

Figure 2. Illustration of the dynamic feedback length LA(Ω).
The vertex contribution at the feedback frequency is depicted
in green, contributions at other frequencies are shown in dif-
ferent colors. Note that for frequencies Ω 6= ΩAnA , vertex

contributions beyond the dynamic feedback length LA(Ω) but
within the static feedback length LAs are replaced by the green
feedback contributions.

apply the following rule:

MAlk
ji (Ω) =

{
0, if |l| > LAs or |k| > LAs
MAlk
ji (ΩAf ), else.

(33)

Thus, if we do not have the dynamic value for a com-
bination of short indices (l, k) available, we replace it, if
possible, by the corresponding value at the feedback fre-
quency. Otherwise we have to set it to zero. A schematic
illustration of this procedure is given in Fig. 2. In the
special case LA(Ω) = L for all Ω and A ∈ {P,X}, we
recover the simple eCLA scheme described in III B 1.

Using this extended scheme, we are able to include a
long-range contribution at physically important frequen-
cies, namely the ones around the feedback frequencies
Π = 2µ in the P- and X = 0 in the XD-channel. Those
frequencies can be shown to have the biggest contribution
to low-energy observables like the linear conductance. A
short argument for this can be found in App. E. For all
other frequencies we can treat the long-range feedback in
a static manner, similar to the treatment in [1]: Every-
time, we have to evaluate the long-range contribution at
one of those frequencies, we will simply replace it by its
value at the feedback frequency of the respective channel.

This approximation is admittedly quite crude. How-
ever, note that many previous treatments that were even
cruder, e.g. treating the vertex only statically altogether,
still led to reasonable results. In this sense, our semi-
static treatment should be understood as the next step
on the way to a more quantitatively reliable method. The
approximation could be improved by not using the val-
ues at the feedback frequency, but the values at the edge
of the region that was parametrized in detail when going
beyond that region. However, in our view, such a more
refined treatment would only be warranted if at the same
time one also refrained from making the channel decom-
position of the vertex. Recall that the channel decompo-
sition tracks only a single frequency argument per chan-
nel and evaluates the contributions from the other two
channels only at the feedback frequency. The errors in-
curred in this manner seem to be comparable to the ones
incurred by the approximation of Eq. (33). A more so-
phisticated parametrization of the frequency dependence
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is left for future work.

The remaining question is how to choose the frequency
dependence of the dynamic feedback length LA(Ω). Note
that generically, for this scheme to be formally exact in
second-order in the bare interaction, LA(Ω) would have
to be chosen greater than LU for all frequencies in the
grid. However, this is exactly the situation we want to
avoid with this construction: The hope is that the rele-
vant (low energy) physics can already be captured with
a (much) smaller dynamic feedback length when evalu-
ating quantities away from their respective feedback fre-
quencies. Thus our goal is to choose a sequence of pa-
rameterizations LAn (Ω) that (a) formally converges point-
wise to 2N (the maximal value of the feedback length):
limn→∞ LAn (Ω) = 2N , and (b) achieves a much quicker
convergence than the formal one in low-energy observ-
ables, yielding an efficient low-energy description. In
principle, one is free to choose such a sequence in any way
one likes. In this work, we use a very simple treatment,
with a parameterization LA(Ω) characterized by only two
numerical integer parameters, L ≥ 0 and NL ≥ 0, where
2NL+1 sets the window of frequencies around ΩAf within
which we treat the long-ranged part of the vertex dynam-
ically. In fact, we here choose these two parameters chan-
nel independent and refer to L as the feedback length and
NL as the number of long-range frequencies. Physically,

the contributions around the feedback frequency ΩfA are
most important, i.e. there it is important to resolve the
long-range structure in frequency. We call this frequency

range Θf
A and choose it in a symmetric fashion around the

feedback frequency via Θf
A = [ΩAnA−NL ,Ω

A
nA+NL

]. There-

fore we set LA(Ω) = L for all Ω ∈ ΘA
f . Away from the

feedback frequency, we expect a static treatment of the
long-range structure to be acceptable, therefore we set
the dynamic feedback length LA(Ω) = 0 for all Ω /∈ ΘA

f .
In the limit of large L and NL, we recover the full channel
decomposed description of the vertex as given in (13).

Note that for a fixed finite L > 0, and for all observ-
ables that depend only on the low energy properties of
the system (like e.g. the linear conductance) this method
interpolates between two extreme cases: As discussed
above, for a large number of long-range frequencies NL,
the results of this method converge to the results ob-
tained without static long-range feedback. On the other
hand, for NL = 0 (i.e. the only long-range contributions
live at the feedback frequencies) this method still already
incorporates the spatial structure of the long-range feed-
back L, even though only statically. Loosely speaking,
this NL = 0 case results from the simplest possible com-
bination of the previous dynamic work on Keldysh-fRG
[9] and the static eCLA implementation in [1]. By further
increasing NL, we can deepen the combination between
those approaches and create more reliable dynamic re-
sults.

At the end of this subsection, we summarized the in-
troduced numerical parameters for the dynamic feedback
length in Tab. II.

Table II. Summary of parameters for dynamic feedback length

Parameter Description

LA(Ω) Dynamic feedback length. Controls the spatial
extent of the vertex that is taken into account
at frequency Ω.

LAs Static feedback length, LAs = LA(ΩAnA). For all

other frequencies Ω we have LA(Ω) ≤ LAs .

Θf
A Frequency range around the feedback frequency,

for which LA(Ω) is non-vanishing. Concretely,

LA(Ω) = L for Ω ∈ Θf
A and zero otherwise.

NL 2NL + 1 is the number of frequencies in Θf
A.

Concretely, Θf
A = [ΩAnA−NL ,Ω

A
nA+NL

].

5. Further implementational details

The coupled system of flow equations (D2,D3) and
(D10) was solved with a standard fourth-order Runge-
Kutta ODE solver. The integration over frequencies on
the r.h.s. of the flow equations was carried out using
Gaussian quadrature with Patterson sets [13]. In order to
facilitate the computation, we used a substitution of the
real frequency axis to the interval (−7, 7), which trans-
forms the integrand in such a way that (integrable) poles
are avoided and the integrand becomes finite on the whole
interval (−7, 7). This substitution is a slightly modified
version of the one used in [9], see [14] for details. The
most time-consuming part of the calculation is the eval-
uation of the r.h.s. of the flow equations, especially the
computation of the bubble integrals in the vertex- (D4)
and self-energy flow (D2,D3). In order to speed up com-
putation time, we used a hybrid MPI + OMP implemen-
tation, parallelizing the computation of the self-energy
bubble in external frequencies ω and the vertex bubbles
I lk(Ω) both in external frequency Ω and additionally in
the short-indices l, k. Furthermore, we also parallelized
the block-matrix multiplication appearing on the r.h.s. of
the flow in the short-indices l, k.

C. Conductance Computation

The main observable of interest for us is the linear
conductance g. In order to compute it, we use a formula
first derived by Oguri [15]. We employ its convenient
Keldysh formulation developed in [12], whose notational
conventions we have also adopted in this work. Within
this formulation the conductance g can be expressed as

g = g1 + g2, (34)

with the one-particle contribution

g1 = −e
2

h

∫ ∞

−∞
dε f ′(ε)Tr

{
Γl(ε)GR(ε)Γr(ε)GA(ε)

}
(35)
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and the two-particle contribution g2 = g2Σ + g2Φ, with

g2Σ =
2e2

h

∫
dε f ′(ε)Tr

{
Γl(ε)GR(ε) Im ΣR(ε)GA(ε)

}
,

(36a)

g2Φ =
e2

h

∫
dε f ′(ε)Tr

{
Γl(ε)GA(ε)Φ̃l(ε)GR(ε)

}
. (36b)

Here, f ′ denotes the derivative of the Fermi distribu-
tion w.r.t. energy ε, Γr(ε)ij = δiNδjNΓ(ε), Γl(ε)ij =

δ−Niδ−NjΓ(ε), with Γ(ε) = θ(2τ − |ε|)
√

4τ2 − ε2, are the
hybridization functions for the right/left lead, 2 Im ΣR =

−i(ΣR − ΣA) and Φ̃r(ε) is the vertex correction term.

This term encodes the direct contribution of the two-
particle vertex to the conductance. It is given by (c.f.
[12], Eq. (20))

(Φ̃l/r)σ2

j′2j2
(ε) =

1

2πi

∫
dε′

∑

j′1,j1

[
GA(ε′)Γl/r(ε′)GR(ε′)

]σ1

j1j′1

×Kσ1σ2|σ1σ2

j′1j
′
2|j1j2

(ε, ε′, 0). (37)

The vertex response part K
σ1σ2|σ1σ2

j′1j
′
2|j1j2

(ε, ε′, 0) can be

brought into the form (using the vertex FDTs (19))

K
σσ|σσ
j′1j

′
2|j1j2

(ε, ε′, 0) = 2i
[

Im(ap)
σσ(j′2−j′1)(j2−j1)

j′1j1
(ε′ + ε)fp(ε, ε′)− Im(ad)

σσ(j2−j′1)(j′2−j1)

j′1j1
(ε′ − ε)fx(ε, ε′)

]
(38a)

K
σ̄σ|σ̄σ
j′1j

′
2|j1j2

(ε, ε′, 0) = 2i
[

Im(ap)
(j′1−j′2)(j1−j2)σσ̄

j′2j2
(ε′ + ε)fp(ε, ε′)− Im(ax)

(j′1−j2)(j1−j′2)σσ̄

j2j′2
(ε′ − ε)fx(ε, ε′)

]
(38b)

K
σσ̄|σσ̄
j′1j

′
2|j1j2

(ε, ε′, 0) = 2i
[

Im(ap)
(j′2−j′1)(j2−j1)σσ̄

j′1j1
(ε′ + ε)fp(ε, ε′) + Im(ax)

(j2−j′1)(j′2−j1)σσ̄

j′1j1
(ε− ε′)fx(ε, ε′)

]
, (38c)

with the functions fp(ε, ε′) = 2f(ε′) + 2b(ε′ + ε− µ) and
fx(ε, ε′) = 2f(ε′)+2b(ε′−ε+µ). Here b(ε) = 1/(eβ(ε−µ)−
1) denotes the Bose distribution.

Fig. 3 shows the resulting conductance for a generic
set of parameters. Fig. 3(a) depicts the two-particle con-
tributions g2, g2Σ, and g2Φ. In particular, note that for
small values of the chemical potential µ, the total two-
particle contribution becomes negative. This carries over
to the total conductance, see Fig. 3(b): At pinch-off, the
one particle-contribution g1 vanishes and thus the nega-
tive two-particle part g2 leads to a negative conductance
g. This behavior is clearly unphysical, as the total con-
ductance should vanish below pinch-off. The cause of this
problem has to stem from the two major approximations
that we applied: The channel decomposition (13) and
the general second-order fRG truncation. Especially the
latter is known to lead to a violation of the law of current
conservation and Ward identities (see App. F for a more
detailed discussion). In particular, the Ward identity

Φ̃l(ε) + Φ̃r(ε) = −2 Im ΣR(ε), (39)

derived in [12], is violated in our approximation scheme,
leading to unphysical results for transport quantities [14].
To ameliorate this problem, we replace the vertex contri-
butions Φ̃l/r by “Ward-corrected” versions,

Φ̃
l/r,W
ij (ε) = Φ̃

l/r
ij (ε)Fij(ε), Fij(ε) =

−2 Im ΣRij(ε)

(Φ̃r + Φ̃l)ij(ε)
.

(40)

The multiplicative factor Fij nominally equals 1 if Φ̃l,r

satisfy the Ward identity (39) with Im ΣR. If they do

not, it by construction ensures that Φ̃l/r,W do,

Φ̃l,W(ε) + Φ̃r,W(ε) = −2 Im ΣR(ε), (41)

thereby compensating the adverse consequences of the
second-order truncation scheme. (To avoid numerical er-
rors arising from division by very small numbers, we set
Fij(ε) = 1 whenever its denominator becomes smaller
than 10−8; the results are not sensitive to the value of
this bound.) The sum of (36a) and (36b), with Φ̃l re-

placed by Φ̃l,W in the latter, yields

gW
2 = −e

2

h

∫ ∞

−∞
dε f ′(ε)Tr

{
Γl(ε)GA(ε)Φ̃r,W(ε)GR(ε)

}
.

(42)

Note that the integrand is proportional to Φ̃r. This prop-
erty ensures that the conductance vanishes at pinch-off,
as can be seen by the following argument. Assume that
the QPC is closed, i.e. the chemical potential µ is below
the QPC barrier. Then in the integral (42) only frequen-
cies ε below the QPC barrier contribute, implying that

the propagators G
R/A
ij (ε) are only non-vanishing for spa-

tial indices i, j on the same side of the barrier. Therefore,
since the hybridization function Γl(ε) lives on the left side

of the system, only contributions of Φ̃rij(ε) contribute
where i, j are on the left side of the barrier. However,
applying the same logic in the definition of Φ̃r(ε) (37),

we see that Φ̃rij(ε) is only non-vanishing for i, j on the
right side of the barrier. Therefore, the two-particle part
of the conductance vanishes at pinch-off. Indeed, this is
confirmed by the violet curves in Fig.3(c,d), computed
using Eq. (42) for gW

2 .
All conductance results shown in the subsequent sec-

tions are obtained using the Ward-corrected two-particle
contribution (42).

Note that if one evokes the Ward identity (39) with-

out replacing Φ̃l/r by Φ̃l/r,W, the sum of (36a) and (36b)
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ḡ2

1 0 1 2

(µ−ωb)/Ωx

(a) (b)

(c) (d)

Finite-ranged, L= 5, NL = 15, T= 0. 005Ωx

g

g1

gW
2

ḡ

Figure 3. Conductance obtained via straightforward appli-
cation of formulas (35-36). (a) Two-particle contributions
g2 = g2Σ + g2Φ [Eq. (36)]. (b) Single- and two-particle con-
tributions to the total conductance g = g1 + g2 [Eq. (34-36)].
Note that both g2 and g are negative at pinch-off. (c) Compar-
ison of g2 to gW

2 and ḡ2; the latter two go to zero at pinch-off.
(d) Single-particle and Ward-corrected two-particle contribu-
tions to the total conductance g = g1 + gW

2 . For comparison
we also show ḡ = g1 + ḡ2.

yields an expression for g2 similar to (42), but contain-

ing Φ̃r instead of Φ̃r,W. This expression ḡ2, which cor-
responds to the second term in Eq. (23) of [12], also
vanishes at pinch-off, see Fig. 3(c,d). However, we be-
lieve it to be unreliable when used in conjunction with
second-order-truncated fRG, since the latter, as men-
tioned above, yields results for Φ̃l,r which (in contrast

to Φ̃l/r,W) violate the Ward identity used for its deriva-
tion.

IV. RESULTS

In this section, we investigate the features one obtains
for a QPC with a finite-ranged interaction of the type de-
scribed in Sec. II. The section is divided into two parts. In
the first part, we present results obtained with a dynamic
treatment of the short-range part and a static treatment
of the long-range part of the vertex. In the second part,
both short-range and long-range contributions of the ver-
tex are treated dynamically.

1 0 1 2

(µ−ωb)/Ωx

0.0

0.5

1.0

g

Finite-ranged, NL = 0, T= 0. 05Ωx

L
5

10

Figure 4. Conductance for large feedback lengths L = 5, 10
(solid curves), computed using a static treatment of the long-
ranged part of the vertex, i.e. using NL = 0. Dashed and
dotted curves indicate the one- and two-particle contribution,
respectively. As in the static Matsubara case, we see that
L = 5 is sufficient to achieve convergence.

A. Static long-range part

The results of this first subsection are obtained us-
ing NL = 0, i.e. by a direct combination of the dynamic
treatment of the short-range part [9] and the static treat-
ment of long-range part of the vertex [1]. As discussed in
Sec. III B, introducing a finite-ranged interaction neces-
sitates the introduction of the feedback length L, mea-
suring the range over which the vertex develops structure
during the RG flow. In [1], we have shown that in the
static Matsubara setup convergence in L was reached for
L ∼ lx/a and L > LU , where lx is the characteristic QPC
length and LU the range of the interaction. In our new
Keldysh formulation, this statement remains true. As an
example, Fig. 4 shows a typical conductance curve for
our generic finite-ranged interaction from Sec. II, com-
puted at a finite temperature T = 0.05Ωx. We see that
convergence is reached around L = 5 ≈ lx/a. In the rest
of this work, we always use L = 5 if not explicitly stated
otherwise.

Having assured the convergence w.r.t. the feedback
length, we can now compare the implication of finite-
ranged interactions on the conductance within a static
long-range feedback description. For this, we compare a
typical onsite-interaction model (here we use the same
parameters as used in [9], in particular onsite U = 0.7τ)
with a model with finite-ranged interactions. The form
of the interaction is here chosen as introduced in Sec. II,
i.e. with a onsite interaction strength U = 0.5τ and expo-
nentially screened offsite components, reaching an inter-
action range of LU = 3. Therefore, a particle in the cen-
ter of the QPC can directly interact with a particle out-
side the center, being half the characteristic QPC length
away. The resulting conductances are shown in Fig. 5.
Fig. 5(a) displays the conductance of the onsite model,
which is qualitatively very similar to the one obtained in
[9], even though we here use a finite feedback length L. It
is important to mention that in [9] this onsite interaction
strength was chosen as large as possible without causing a
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Finite-ranged, NL = 0

Figure 5. Temperature dependence of the conductance (solid
curves) for a model with (a) onsite interations and (b) finite-
ranged interactions (LU = 3), computed using a feedback
length L = 5 and static long-range part NL = 0. Dashed
and dotted curves indicate the one- and two-particle contri-
butions, respectively. In the finite-ranged case (b) the con-
ductance shows a slightly stronger flattening in the 0.7 region
than in the onsite case (a). However, the form of the curves
is still quite similar.

failure of convergence for the RG flow. However, even in
this maximal interaction strength case, no development
of a pronounced 0.7-shoulder with increasing tempera-
ture was observed. In Fig. 5(b) we use a finite-ranged
interaction. The only difference compared to part (a) is
that the conductance curves are slightly more asymmet-
ric, indicating that due to its finite range, the amount of
interaction that can be taken into account with fRG is
larger. However, there is still no pronounced shoulder in
the conductance. In the next subsection, we will see that
this changes when taking a dynamic contribution of the
long-range part into account.

B. Dynamic long range part

In this section, we will extend our study by treating the
long-range part of the vertex dynamically within a cer-
tain window of frequencies. As explained in Sec. III B,
this window is controlled numerically by the number, NL,
of frequency points around the feedback frequencies for
which the long-range part is taken into account. How-
ever, there is a caveat: Our frequency parametrization
is not strictly uniformly spaced, especially around the
feedback frequencies we have to distinguish two scales,
c.f. Sec. III A 3. The smaller scale is set by tempera-
ture, and we use NT = 10 frequencies distributed on
that scale around the feedback frequency to resolve the
temperature dependence. The other relevant scale is set
by the curvature Ωx, which is resolved by our underly-
ing equally spaced general frequency grid, introduced in
Sec. III A 3. Therefore, when we increase NL up to ∼ 5
we take only the vertex contribution in a frequency range
set by temperature into account. A further increase of
NL then begins also to resolve the Ωx scale, which sets the
scale of the characteristic width of the conductance step.
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Figure 6. Dependence of the conductance on increasing NL,
which controls the width of the frequency window within
which the long-ranged part of the vertex is treated dynami-
cally, at finite L = 5. While, within our numerical resources,
convergence in NL could not be fully reached, finite values of
NL seem to lead to a more prominent 0.7-feature than in the
onsite case: This is most pronounced for medium NL = 10, 15
and still noticeable at large NL = 25, 29.

Concretely, the half-width of the frequency range of the
long-range vertex is given by ∆ω = 0.8Ωx for NL = 10
and increases roughly by 0.8Ωx per additional increase of
5 in NL. Thus, the biggest value NL = 29 corresponds
to a maximal frequency range of ∆ω = 3.8Ωx. Further-
more, one can show that the leading frequency contribu-
tion to the conductance at the chemical potential µ lies
around the feedback frequencies in a range determined
by εF = µ − Vb (c.f. App. E), i.e. it is on a scale set by
Ωx. Between NL = 10 and NL = 15, ∆ω becomes big-
ger than Ωx. Thus, starting from NL = 15, we take all
leading frequency contributions into account for values of
the chemical potential reaching the shoulder region, c.f.
Fig. 6.

The dependence of the resulting conductance onNL for
a typical set of parameters is shown in Fig. 6. Although,
we were not able to reach completely converged results
at our maximal value NL = 29 (after which we hit the
memory bound of our computational resources), there
seems to be a persistent feature for large NL: Going from
NL = 0 (the static long-range result from last section)
up to finite NL = 29, we observe a qualitative difference
in the conductance. In the second half of the conduc-
tance step a shoulder-like structure emerges, resembling
the 0.7-anomaly observed at finite temperature in var-
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ious experiments [4, 7, 8, 16–18]. This feature is most
pronounced for NL = 10 − 15, when just the leading
frequency contribution is taken into account and relaxes
somewhat for larger NL. However, as we will show be-
low, even for NL = 29 the 0.7-feature is still much more
prominent than in the onsite case.

When decomposing the conductance in one- and two-
particle contributions (dashed and dotted lines in Fig. 6),
we see that this 0.7-feature comes from two effects: (i) In
the shoulder region, the one-particle part itself exhibits a
kink at a conductance value around g ∼ 0.4. This feature
is very strongly pronounced for NL = 10 and seems to
weaken somewhat for larger NL. Note here that near
pinch-off the differences between curves with different NL
are small and become larger starting when µ reaches the
shoulder region. This behavior is consistent with our
discussion in App. E. (ii) The two-particle contribution
increases steeply from pinch-off towards its maximum in
the shoulder region and decreases after that. This feature
seems to be almost equally pronounced for all large NL =
15− 29. Both of these effects lead to the development of
a shoulder-like structure in the conductance.

Concluding this discussion, we point out another in-
teresting effect. Even if the one- and two-particle parts
themselves are still subject to changes in NL, these
changes seem to mostly cancel out each other. The
resulting conductance seems to be much lesser depen-
dent on NL: Comparing the magenta (NL = 20), cyan
(NL = 25), and black lines (NL = 29) in Fig. 6, the
NL = 29 data seem almost converged in the shoulder
region. In fact, apart from the precise position of the
shoulder, the qualitative shape of all three curves is al-
ready very similar. Intuitively this effect makes sense:
If a particle traverses the QPC and contributes directly
to the conductance via the one-particle contribution it is
less likely to have given energy to create particle-hole ex-
citations which might contribute to the two-particle part
of the conductance and vice versa.

In the following, we study the dependence of the 0.7-
feature on temperature, interaction range and interaction
strength. For this, we will always compare the onsite
interaction result with the finite-ranged results for both
the leading frequency case at NL = 15, where the 0.7-
structure is most pronounced, as well as for the full NL =
29 result.

Above we have established the development of a 0.7-
shoulder in the finite-ranged interaction model when
treating the long-range contributions of the vertex dy-
namically. In Fig. 7, we study how finite-ranged interac-
tions affect the temperature dependence of the conduc-
tance. We see that the form of the onsite-conductance
in Fig. 7(a) is still the same as in Fig. 5(a,b). How-
ever, in Fig. 7(b,c), we see that for finite-ranged interac-
tions increasing temperatures lead to a more and more
pronounced 0.7-plateau. As above, we see that in the
NL = 15 case the 0.7-feature is most pronounced, how-
ever also for NL = 29 it is much stronger than in the
onsite case. In addition to having a different shape, the

conductance also depends much more strongly on tem-
perature itself. We see that finite-ranged interactions,
if treated dynamically, have the potential to introduce
major changes compared to onsite interactions and are
likely to be essential ingredients in the development of
a pronounced 0.7-plateau. This finding constitutes the
main result of this paper.

While we believe that the qualitative behavior of the
conductance is captured correctly within our approach,
we still want to comment on two inaccuracies: In the
NL = 29 case, the T = 0.1Ωx curve exhibits a slight
kink in the 0.7-structure, which can be traced back to a
peak in the two-particle contribution. This is probably
an artifact of our method, indicating that for this param-
eter regime an improvement of the vertex description is
in order: While it could be that simply a larger value of
NL is needed to converge to a smooth result, it might
also be possible that for a more accurate description one
would have to improve the vertex treatment alltogether.
We comment on one possible way to do this below. An-
other problem that we can observe in Fig. 7(b,c) is a
(slight) pinch-off shift to lower chemical potentials, i.e.
the QPC with finite-ranged interactions opens up ear-
lier than the one with onsite interactions or even the one
without interactions. This unphysical behavior, an arti-
fact of our method, was also encountered in our earlier
work in the Matsubara context [1]. It will be interest-
ing to see, whether further improvements of the vertex
treatment succeed in eliminating this unphysical shift.

Further insight can be gained by looking at the re-
sulting local density of states (LDOS) of the interact-
ing system. First of all, this yields an intrinsic consis-
tency check, by inspecting how well the LDOS satisfies
the normalization condition

∫
dωAi(ω) = 1, see Fig. 8.

Note that the normalization condition is relatively well
satisfied in the center of the QPC (where the relevant
physics for transport happens) and is off in the flanks
of the QPC. This is somewhat to be expected, since we
utilized our numerical resources in such a manner as to
best resolve the position and frequency dependence in
the center region, i.e. for frequencies close to barrier top
and chemical potential. For up to site 15 ≈ 3lx/a the
LDOS normalization is fulfilled well, which is exactly the
region of the renormalized flat barrier top, as we will see
below. Beyond that most of the LDOS contribution sits
deeper in the flanks of the QPC away from the barrier top
and the region of good resolution. Within the region of
the barrier top itself, the leading frequency contribution
NL = 15 seems to be yielding the best results.

Having checked the LDOS normalization, we next dis-
cuss the frequency resolved LDOS structure. Fig. 9 shows
the LDOS Ai(ω) as a colorplot depending on frequency
and site index of the effective QPC barrier. Compar-
ing the onsite result (a) to the finite-ranged results (b,c)
shows that the latter exhibit a stronger flattening. This
behavior is qualitatively consistent with our static Mat-
subara treatment, which also suggested a flatter barrier
top for finite-ranged interactions. Just as the conduc-
tance earlier, this indicates again that here more inter-
action processes are taken into account. Comparing the
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Figure 7. Temperature dependence of the conductance for (a) onsite and (b) finite-ranged interactions with NL = 15 and (c)
NL = 29. In contrast to the onsite case, the finite-ranged conductance shows a much more pronounced 0.7-feature: While for
NL = 15 in (b) an actual shoulder emerges, the full NL = 29 result in (c) is still much more asymmetric than the onsite-case.
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Figure 8. LDOS normalization in the plateau region (µ −
ωb)/T = 0.4 for finite interaction range for different param-
eters NL. In the QPC center the normalization condition∫
dωAj(ω) = 1, is satisfied much better than in the flanks.

two finite-ranged results, the NL = 15 result exhibits a
stronger van Hove ridge peak than the NL = 29 result.
Applying the rationale developed in [4], this is consistent
with the more pronounced 0.7-structure in the conduc-
tance in Fig. 7.

Aside from the form of the renormalized barrier in the
0.7-regime of the conductance step, one can also look at
the development of this barrier when varying the chemi-
cal potential. For this we plot in Fig. 10 the LDOS on the
middle site A0(ω) as function of frequency and chemical
potential, analogously to Fig. (5) of [9]. We see that when
the chemical potential (black line) crosses the barrier top
ωb, the van Hove ridge of the interacting LDOS increases
with it. This pinning is much more pronounced for the
finite-ranged case [Fig. 10(b,c)] than for the onsite-case
[Fig. 10(a)]. Again, this indicates the presence of more

interaction processes in the case of finite-ranged interac-
tions.

Up to now, we always used the same finite-ranged in-
teraction with an interaction range on the scale of the
characteristic length of the QPC and a strength that had
been chosen ad hoc. A systematic study of how these
properties affect the QPC conductance is beyond the
scope of this work. However, in the very last part of this
subsection, we will take a first brief look what happens
when these parameters are changed. Fig. 11 shows the
influence of a variation in the interaction range. With in-
creasing interaction cutoff LU , the conductance changes
from the onsite LU = 0 to the LU = 3 results discussed
earlier. We see that the 0.7-feature becomes more pro-
nounced, while at the same time the unphysical pinch-off
shift mentioned above occurs.

Fig. 12, instead shows the dependence of the conduc-
tance on increasing interaction strength with fixed range
LU = 3. Here, we keep the ratio of onsite- and offsite-
interaction strength U0/U1 = 5/3 = fixed and increase
U0 from 0.3τ beyond our usual value 0.5τ to the large
value 0.7τ . With increasing interaction strength, the
form of the conductance becomes more asymmetric and
the 0.7-structure eventually develops a oscillatory fea-
ture. Similar to the observations discussed above, this is
very pronounced for the leading frequency contribution
(NL = 15) and less visible for NL = 29. Again the un-
physical pinch-off shift in the chemical potential is clearly
visible.
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Figure 9. QPC LDOS as function of site and frequency for (a) onsite-, and finite-ranged interactions with (b) NL = 15 and (c)
NL = 29. Note that in (b) and (c) the renormalized barrier top is much flatter than in the onsite case. For the NL = 15 case
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interactions with (b) NL = 15 and (c) NL = 29. For finite-ranged interactions the pinning of the van Hove ridge to the
chemical potential is much stronger than in the onsite case. Note that in the leading contribution case NL = 15, the LDOS is
more pronounced than in the full NL = 29 result.

1 0 1 2

(µ−ωb)/Ωx

0.0

0.5

1.0

g

Finite-ranged, NL = 15

LU
0

1

2

3

1 0 1 2

(µ−ωb)/Ωx

T= 0. 05Ωx

(a)

L= 5

T= 0. 05Ωx

(b)

Finite-ranged, NL = 29

Figure 11. Dependence of the conductance on the interaction
range for (a) NL = 15 and (b) NL = 29. With increasing
interaction range the 0.7-feature develops in the conductance
step. Note that with increasing LU the pinch-off of the con-
ductance is shifted to smaller chemical potentials

C. Further challenges

In the data of the previous subsection, we have noticed
that for finite-ranged interactions an unphysical shift in
the conductance occurs: The pinch-off is shifted to lower
chemical potentials, seeming to imply that the effective
QPC barrier gets somehow reduced by finite-ranged in-
teractions. This effect was also found to a varying extent
in previous fRG work on QPCs [1, 4, 9, 12, 19] and is
an artefact of our method, presumably our truncation
scheme. Together with the other inconsistencies, namely
the violation of the Ward identity (39) and the associ-
ated issue that the two-particle contribution to the con-
ductance is negative unless the Ward-correction (40) is
used, this implies that in order to obtain quantitatively
reliable results for the conductance one will have to go
beyond the channel decomposition (13), and in general
also beyond second-order truncated fRG. In particular,
a more refined description and treatment of the vertex
is required, using not only one but all three indepen-
dent frequencies. A possible approach for meeting the
latter challenge within the Matsubara formalism is de-
tailed in [20]. A general improvement of our method
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Figure 12. Dependence of the conductance on the interaction
strength (a) for the leading frequency contribution NL = 15,
as well as (b) the full NL = 29 contribution. For large interac-
tion strength the 0.7-structure develops an oscillatory feature,
more pronounced in (a) but also visible in (b). Note again
the unphysical shift to smaller chemical potentials occuring
for larger interaction strength.

could be to combine this efficient vertex treatment with
the recently developed multiloop fRG (mfRG) method
[21–23] which provides a natural strategy for going be-
yond second-order truncated fRG. Work in this direction
is currently in progress.

V. CONCLUSIONS

The work reported here had two goals. The first was
methodological – advancing fRG methodology by com-
bining long-range feedback (eCLA) with the Keldysh for-
malism. The second goal was phenomenological – in-
vestigating the effect of finite-ranged interactions on the
temperature dependence of the 0.7-anomaly in QPCs.

Regarding our second goal, the conclusions are encour-
aging: we find clear indications that finite-ranged interac-
tions strengthen the 0.7-shoulder in the conductance step
at finite temperature. However, we were unable to fully
achieve our first goal: the approximations used (1-loop
truncation, channel decomposition of the vertex) are too
crude to obtain a fully converged and truly satisfactory
fRG treatment of long-range interactions in the Keldysh
formalism. Moreover, we encountered problems arising
from the violation of Ward identities.

Thus, we conclude that finite-ranged interactions merit
further study in the context of the 0.7-anomaly, but more
sophisticated methodology is needed to describe them
satisfactorily. A promising candidate for further studies
in this direction would be multi-loop Keldysh-fRG [21–
23]. Work in this direction is currently in progress.
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APPENDIX

In this appendix, we discuss some more technical as-
pects of our model and method. We begin with summa-
rizing the general symmetries of our system in App. A.
These symmetries are exact and do not depend on the
channel decomposition or our fRG approximations. In
App. B, we discuss the implications of these general sym-
metries on the components (18) of the channel decompo-
sition and count the number of independent components.
In particular, we use in App. B a more general form of
the multiparticle FDTS (19,B13) in the channel decom-
position than in previous works [9–11]. For the interested
reader, we have included a derivation of this more gen-
eral form in App. C. In App. D, we show the explicit
form of the flow equations from Sec. III B 2, including
the full index structure. In App. E, we discuss the im-
portance of the feedback frequencies for the conductance,
and give a justification for our frequency approximation
within Sec. III B 4 while developing the dynamic feedback
length. In App. F, we explicitly show the violation of the
Ward identity (39) for increasing interaction strength.
Finally, in App. G, we discuss the convergence of our re-
sults w.r.t. the number of frequencies NT for which we
take a long-range structure of the vertex into account,
c.f. Sec. III B 4.

Appendix A: General symmetries

In this section, we list the general symmetries that our
system introduced in Sec. II obeys. The derivation of
these symmetry relations can be found in great detail
in [10]. Note that all the symmetries discussed in this
section are exact. In particular they do not depend on the
channel decomposition (13), or any fRG approximations.

1. Particle permutation. For any permutation P of
(1, . . . , n) with sign (−1)P holds (c.f. Eq. (3.18) in
[10])

ξPm′|m = ξm′|Pm = (−1)P ξm′|m, (A1)

where ξ ∈ {G, γ} is either a multi-particle Green’s
or vertex function and m = (m1, . . . ,mn) is a
multi-particle index, with mk = (ωk, αk, qk) con-
sisting of frequency ωk, Keldysh index αk, and site
and spin index qk = (ik, σk).

2. Complex conjugation. For ξ ∈ {G, γ} holds (c.f.



16

Eq. (3.24) in [10])

ξ
α′|α
q′|q (ω′|ω)∗ = (−1)zξ+

∑
k(α′

k+αk)ξ
α|α′

q|q′ (ω|ω′), (A2)

with zG = n and zγ = 1. For further reference,
we also state the equivalent relation of (A2) on the
double time contour (i.e. before rotating to Keldysh
space)

ξ
j′|j
q′|q(t

′|t)∗ = (−1)zξξ
j̄|j̄′
q|q′(t, t

′), (A3)

where j, j′ ∈ {+,−}n are multi-particle indices on
the double time contour (+: forward branch, −:
backward branch), and j̄ = −j.

3. Thermal equilibrium and time reversal. In thermal
equilibrium, our system obeys the general Kubo-
Martin-Schwinger (KMS) condition [24–26], which
leads to the relation (c.f. Eq. (3.52) in [10])

eβ∆j|j′ (ω|ω′)G
j|j′
q|q′(ω|ω′) = (−1)m

j|j′
G̃j̄j̄

′

q|q′(ω|ω′), (A4)

with

mj′|j =
∑

k:jk=+

1−
∑

k:j′k=+

1, (A5)

and

∆j′|j(ω′|ω) =
∑

k:jk=+

(ωk − µ)−
∑

k:j′k=+

(ω′k − µ). (A6)

The tilded Green’s function G̃ in (A4) is defined as
the normal Green’s function G, however with anti-
time ordering on the forward- and time orderinng
on the backward branch, see Eq. (3.16) in [10]. In

the single-particle case, G̃ can be expressed simply
in terms of G via the relation (c.f. Eq. (3.17) in
[10])

G̃
j′|j
q′|q(ω

′|ω) = Gj̄j̄
′

q′|q(ω
′|ω). (A7)

Combining (A4) with (A7) and rotating to Keldysh
space (we follow the convention in [10], see (A15))
yields the single-particle FDTs (10).

Additionally to the KMS conditions, thermal equi-
librium also implies the following time reversal
behavior for multi-particle Green’s functions (c.f.
Eq. (3.71) in [10])

G̃
j|j′
q|q′(ω|ω′) = G

j̄′|j̄
q̃′|q̃(ω

′|ω)
∣∣∣
H̃
. (A8)

Here, q̃ = Θq denote the time reversed basis states,
where Θ is the anti-unitary time reversal operator

Θ|i, σ〉 = ei
π
2

∑
k σk |i, σ̄〉, (A9)

with σ̄ denoting the opposite spin of σ ∈ {+,−}n.
Note that the propagator on the r.h.s. of (A8) has
to be evaluated using the time reversed Hamilto-
nian H̃ = ΘHΘ†.
The Eqs. (A4) (relating G and G̃) and (A10) (relat-

ing G̃ and G|H̃) are general equilibrium properties.
Our specific system exhibits additionally a special
form of time-reversal symmetry, that will allow us
to relate G and G̃: For the components of the prop-
agators evaluated in the basis {|q〉} with |q〉 = |i, σ〉
holds (see Eq. (3.80) in [10])

Gjj
′

qq′(t, t
′) = Gjj

′

q̃q̃′(t, t
′)
∣∣∣
H̃
. (A10)

Although our system is more general than the ones
considered in [10], the proof that (A10) holds for
our specific choice of the basis {|q〉} can be done
completely analogously to the one in [10], pp. 60-
61. For details, see [27]. We remark that for (A10)
to hold, the Hamiltonian (1) does not have to be
time reversal invariant itself, in particular (A10)
also holds for finite magentic field.

Using (A10), we can obtain two more important
symmetry relations. In the single-particle case,
combining (A10) with (A8) and (A7) yields

G
j′|j
q′q (ω′|ω) = G

j′|j
q|q′(ω|ω′). (A11)

Since, in our system, G is diagonal in spin and fre-
quency, this implies that the spatial transposition
symmetry (31a) and by extension also (31b).

In the multiparticle case, one can combine (A10)
with (A8) and (A4) to obtain after transformation
to Keldysh space a FDT for G. An analog rela-
tion holds for the vertex γ, making it possible to
express this multi-particle FDTs for ξ ∈ {G, γ} in
the compact form (see Eqs. (3.104,3.106) in [10])

Re ξ
j′|j
ε
j′|j
ξ

(ω′|ω) = −
[
1− 2f

(
∆j′|j(ω′|ω) + µ

)]
Re ξ

j′|j
−εj′|jξ

(ω′|ω), (A12a)

Im ξ
j′|j
−εj′|jξ

(ω′|ω) = −
[
1− 2f

(
∆j′|j(ω′|ω) + µ

)]
Im ξ

j′|j
ε
j′|j
ξ

(ω′|ω), (A12b)
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where

ε
j′|j
ξ = (−1)1+nξ+m

j′|j
, (A13)

and for given ε = ±1

γj
′|j
ε =

∑

α′,α
(−1)

∑
k(α′

k
+αk)=ε

Dj′|α′
γα

′|α(D−1)α|j , (A14)

with the Keldysh rotation

D−|1 = D±|2 =
1√
2
, (A15a)

D+|1 = − 1√
2
. (A15b)

Appendix B: Symmetries of vertex components

In this section, we discuss the symmetries of the vertex
components ϕP , ϕX , ϕD of Eq. (18). This symmetries
arise from the general vertex symmetries discussed in
App. A. We first take a look at the general (i.e. not nec-
essarily equilibrium) symmetries in App. B 1, and discuss
special equilibrium properties in more detail in App. B 2,
where we also comment on additional symmetries arising
in the case of zero magnetic field or a parity-symmetric
model.

1. General case

Using general vertex properties and the channel de-
composition of 2nd-order truncated fRG, one obtains var-
ious relations for the vertex components in (18) (c.f. e.g.
[10, 11]). Fig. 13(a,b) depicts how those symmetries re-
late the different components. We use the notation:

• Pi: Exchange of incoming particles:

ϕβ′
1β

′
2|β1β2

Pi→ −ϕβ′
1β

′
2|β2β1

,

• Po: Exchange of outgoing particles:

ϕβ′
1β

′
2|β1β2

Po→ −ϕβ′
2β

′
1|β1β2

,

• C: Vertex conjugation:

ϕβ′
1β

′
2|β1β2

C→ (−1)1+
∑
k α

′
k+αkϕ∗β1β2|β′

1β
′
2
.

Here β = (α, ω, j, σ) are composite-indices, comprised of
Keldysh index, frequency, spatial site and spin. Each
of these three symmetries is depicted by an arrow, con-
necting related vertex components. Therefore each of the
components is connected via three solid arrows to other
components or itself. The symmetries obey the general
relations

P 2
i = P 2

o = C2 = 1,

[Po, Pi] = 0,

CPi = PoC. (B1)

This implies that not all the relations between the var-
ious vertex components are independent, i.e. that they
can not be expressed via each other. However, one can
always find an independent subset of relations. In Fig. 13,
an example for such an independent subset is given by
the relations colored red. Expressed as equations, this
independent subset takes the form

(aP )
σ′
1σ

′
2|σ1σ2

j′1j
′
2|j1j2

(Π)
Po= −(aP )

σ′
2σ

′
1|σ1σ2

j′2j
′
1|j1j2

(Π), (B2)

Pi= −(aP )
σ′
1σ

′
2|σ2σ1

j′1j
′
2|j2j1

(Π), (B3)

C
= (dP∗)σ1σ2|σ′

1σ
′
2

j1j2|j′1j′2
(Π). (B4)

(bP )
σ′
1σ

′
2|σ1σ2

j′1j
′
2|j1j2

(Π)
Po= −(bP )

σ′
2σ

′
1|σ1σ2

j′2j
′
1|j1j2

(Π), (B5)

C
= −(bP∗)σ1σ2|σ′

1σ
′
2

j1j2|j′1j′2
(Π). (B6)

(aX)
σ′
1σ

′
2|σ1σ2

j′1j
′
2|j1j2

(X)
Po= −(dD)

σ′
2σ

′
1|σ1σ2

j′2j
′
1|j1j2

(X), (B7)

Pi= −(aD)
σ′
1σ

′
2|σ2σ1

j′1j
′
2|j2j1

(−X), (B8)

C
= (dX∗)σ1σ2|σ′

1σ
′
2

j1j2|j′1j′2
(X). (B9)

(bX)
σ′
1σ

′
2|σ1σ2

j′1j
′
2|j1j2

(X)
Pi= −(bD)

σ′
1σ

′
2|σ2σ1

j′1j
′
2|j2j1

(−X), (B10)

C
= −(bX∗)σ1σ2|σ′

1σ
′
2

j1j2|j′1j′2
(X). (B11)

(aD)
σ′
1σ

′
2|σ1σ2

j′1j
′
2|j1j2

(∆)
C
= (aD∗)σ1σ2|σ′

1σ
′
2

j1j2|j′1j′2
(−∆). (B12)

2. Equilibrium case

Besides the generic single-particle FDTs (10), which
are a generic property of any equilibrium system, the
multiparticle relation (A12) holds due to the special form
of time-reversal symmetry (A10) that our system obeys.
Applying this multi-particle relation to our channel de-
composition, we obtain two properties for our vertex
quantities, namely (ii) the vertex FDTs from (19), as
well as (iii) the relation

a∗ = d, (B13)

which holds for all channels. Since especially the rela-
tions (19c) and (B13) have (to our knowledge) not been
stated in this generality before, we give a short derivation
for the interested reader in App C.

In Fig. 13, the symmetries containing the additional
equilibrium symmetry relations are depicted in panels
(c,d). In the following, we will restrict our discussion to
this equilibrium case. Then, for finite magnetic field, we
have 7 independent components in spin space:

(aP )σσ := (aP )σσ|σσ, σ =↑, ↓, (B14a)
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Figure 13. Graphical representation of the symmetry relations for the P-channel (a,c) and XD-channel (b,d). The first row
(a,b) depicts the general symmetries for the non-equilibrium case, the second row (c,d) depicts the symmetries for the special
case of thermal equilibrium. For each subfigure, the red colored symmetries are an example for an independent subset.

(aP )↑↓ := (aP )↑↓|↑↓, (B14b)

(aX)↑↓ := (aX)↑↓|↑↓, (B14c)

(aD)σσ := (aD)σσ|σσ, σ =↑, ↓, (B14d)

(aD)↑↓ := (aD)↑↓|↑↓. (B14e)

The remaining task is to determine the symmetries of
these quantities in position and frequency space and to
identify the independent components. This process can
be illustrated again via the symmetry diagrams shown
in Fig. 13. We are now looking for a complete subset of
independent symmetry operations that do not change the
channel or spin configuration, i.e. that do not mix the
quantities introduced in (B14). This can be done in the
following way: Start from one component and form all
possible closed paths with the solid arrows starting and
ending at the same component. Then discard those loops
that change the spin structure. The remaining paths
form the desired complete set of remaining symmetries.
This leads to the following symmetry counts: aPσσ: 3,
aP↑↓: 1, aX↑↓: 1, aDσσ: 2, aD↑↓: 1.

In order to classify these symmetries, we use the short-
index notation introduced in (20), i.e. we encode the spa-
tial structure in a (frequency dependent) block-matrix
A(Ω) = {Alkji}(Ω), with a bosonic frequency Ω. To sim-
plify notation, let us define the following generic indepen-
dent transformations in position and frequency space:

[AI1 ]lkji(Ω) = −A(−l)k
(j+l)i(Ω), (B15a)

[AI2 ]lkji(Ω) = −Al(−k)
j(i+k)(Ω), (B15b)

[AT ]lkji(Ω) = Aklij (Ω), (B15c)

[AZ ]lkji(Ω) = A
∗(−l)(−k)
(j+l)(i+k)(−Ω). (B15d)

With this, we can classify the symmetries in position and

Table III. Symmetries of vertex components in position and
frequency space.

aPσσ aP↑↓ aX↑↓ aDσσ aD↑↓

I1 X − − − −
I2 X − − − −
T X X X X −
Z − − − X X

frequency as in Table III. The invariance under transpo-
sition T implies that for all vertex components in (B14)
except aD↑↓, the spatial block-matrix is symmetric, i.e.
we only need to compute components with

k ≥ l, (B16)

and for k = l it suffices to compute components with i ≥
j . The additional symmetries I1, I2 in aPσσ imply that
there we only need to consider l > 0. Finally, for both the
D-channel contributions aDσσ and aD↑↓ we need to only
compute the contributions for the frequencies ∆ ≥ 0.

Zero magnetic field

In our work, we do not consider a finite magnetic field.
This directly implies that we only need to compute one
spin component of aPσσ and aDσσ (e.g. σ =↑). Further-
more, applying the same method as described above, we
find that each of the mixed spin components now has one
symmetry more, changing the symmetry counts to aPσσ:
3, aP↑↓: 2, aX↑↓: 2, aDσσ: 2, aD↑↓: 2.

Again we can classify the symmetries, see Table IV.
In terms of independent vertex components this implies
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Table IV. Same as in Table III but for zero magnetic field.

aP↑↑ aP↑↓ aX↑↓ aD↑↑ aD↑↓

I1 X − − − −
I2 X − − − −

I ≡ I1 ◦ I2 X X − − −
T X X X X X
Z − − X X X

that now we have to compute only the components with
non-negative frequencies in the X-channel and that the
spatial block structure of aD↑↓ is now symmetric. Fur-
thermore, additionally to the symmetric condition (B16),
now one only needs to compute the components with
l ≤ 0 in aP↑↓. (Note that, in agreement with our choice
of sign in (B16), this is a weaker statement than the
condition l > 0 that is encountered for aP↑↑, which is
symmetric under I1 and I2 independently).

Parity

Finally, in the equilibrium context, the setup studied
in this work is parity symmetric, due to the parity sym-
metry of the Hamiltonian. In our notation, the parity
transformation can be expressed as

[AM ]lkji(Ω) = A
(−l)(−k)
(−j)(−i)(Ω). (B17)

(B18)

In our work this relation is then a symmetry for all vertex
components.

Summary

Each of the above-mentioned symmetries reduces the
independent components of the vertex by roughly a fac-
tor of 1/2. Since in our work the computation of the
bubbles (30) takes the most time, our implementation
does not make explicit use of the vertex symmetries in
Table IV. However, they are useful tools for checking an
implementation for possible mistakes.

Appendix C: Derivation of vertex FDTs

In this section, we give a brief derivation of the vertex
FDTs (19) and the relation (B13). As starting point, we
use the general statement (A12) for the exact two-particle
vertex in contour space, derived in [10], Eq. (3.106). We
remark that the spin and spatial structure of (A12) is
trivial. For this reason, we will not display any spin or
spatial indices in this section.

Inserting the channel decomposition (13) in (A12)
yields

Re
[
ν
j′|j
ε
j′|j
1

+
∑

A

(ϕA
ε
j′|j
1

)j
′|j(ΩA)

]
= −

[
1− 2f

(
∆j′|j(Π,X,∆) + µ

)]
Re
[
ν
j′|j
−εj′|j1

+
∑

A

(ϕA−εj′|j1

)j
′|j(ΩA)

]
, (C1a)

Im
[
ν
j′|j
−εj′|j1

+
∑

A

(ϕA−εj′|j1

)j
′|j(ΩA)

]
= −

[
1− 2f

(
∆j′|j(Π,X,∆) + µ

)]
Im
[
ν
j′|j
ε
j′|j
1

+
∑

A

(ϕA
ε
j′|j
1

)j
′|j(ΩA)

]
, (C1b)

where A ∈ {P,X,D} and correspondingly ΩA ∈
{Π,X,∆}, and where we applied an analogous definition
of (A14) to the ϕ’s and ν. Using (14), we obtain for

∆j′|j(ω′|ω)

∆−−|−−(ω′|ω) = 0, (C2a)

∆++|−−(ω′|ω) = 2µ− (ω′1 + ω′2) = 2µ−Π, (C2b)

∆−+|+−(ω′|ω) = ω1 − ω′2 = −X, (C2c)

∆−+|−+(ω′|ω) = ω2 − ω′2 = ∆. (C2d)

Furthermore, combining (A14) and (15) yields the bare
vertex expressions

ν
j′|j
+ = 0, (C3a)

ν
j′1j

′
2|j1j2

− = νj
′
1j

′
2|j1j2 ∼ δ(j′1 = j′2 = j1 = j2). (C3b)

Analogously, a combination of (A14) with the Keldysh

structure of the vertices (18) leads i.a. to the relations

(ϕA−)−−|−− = aA + dA, (C4a)

(ϕA+)−−|−− = bA, (C4b)

for all A ∈ {P,X,D}, as well as

(ϕP−)++|−− = −aP + dP , (C4c)

(ϕP+)++|−− = −bP , (C4d)

(ϕP±)−+|+− = (ϕP±)−+|−+ = 0, (C4e)

(ϕX− )−+|+− = aX − dX , (C4f)

(ϕX+ )−+|+− = −bX , (C4g)

(ϕX± )++|−− = (ϕX± )−+|−+ = 0, (C4h)
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and

(ϕD−)−+|−+ = aD − dD, (C4i)

(ϕD+)−+|−+ = −bD, (C4j)

(ϕD±)++|−− = (ϕD±)−+|+− = 0. (C4k)

If we insert (C2), (C3) and (C4) into (C1a), we obtain

∑

A

Re
[
bA(ΩA)

]
= 0, (C5a)

Re
[
− bP (Π)

]
= −

[
1− 2f(3µ−Π)

]
Re
[
− aP + dP

]
(Π),

(C5b)

Re
[
− bX(X)

]
= −

[
1− 2f(µ−X)

]
Re
[
aX − dX

]
(X),

(C5c)

Re
[
− bD(∆)

]
= −

[
1− 2f(µ+ ∆)

]
Re
[
aD − dD

]
(∆).

(C5d)

If we insert (C2), (C3) and (C4) into (C1b), we obtain

∑

A

Im
[
aA(ΩA) + dA(ΩA)

]
= 0, (C6a)

Im
[
− aP + dP

]
(Π) = −

[
1− 2f(3µ−Π)

]
Im
[
− bP (Π)

]
,

(C6b)

Im
[
aX − dX

]
(X) = −

[
1− 2f(µ−X)

]
Im
[
− bX(X)

]
,

(C6c)

Im
[
aD − dD

]
(∆) = −

[
1− 2f(µ+ ∆)

]
Im
[
− bD

]
(∆).

(C6d)

Using (C5) and (C6a) together with the continuity of
the vertex components as well as their high frequency
asymptotic lim|Ω|→∞ ϕA(Ω) = 0 yields relation (B13). If
we additionally also use the relations (C6b-C6d) and the
identity

1

1− 2f(µ+ Ω)
= coth

( Ω

2T

)
, (C7)

we obtain the vertex FDTs (19).

Appendix D: Explicit flow equations

In this section, we give the full form of the flow equa-
tions discussed in Sec. III B 2, including all spin- and spa-
tial indices. For the notation of the latter, we use the
general short-index notation introduced in (20). Using
the symmetries of the vertex for the equilibrium case (as
discussed in App. B) , the general fRG-flow equations
in the channel decomposition (see e.g. [10, 11]) can be
formulated as shown below.

In order to facilitate the representation of the self-
energy flow, it is convenient to split the self-energy into
a static and a dynamic contribution Σ = Σs + Σd. Fur-
thermore, we introduce first the following auxiliary quan-
tities, identified by a tilde:

∂Λ(Σ̃s)
Rσ
j(j+l)(ω) = − i

2π

∫
dω′

[1

2
v̄
σσ|σσ
j(i+k)|(j+l)i + (aD)σσlkji (0)

]
SKσi(i+k)(ω

′), (D1a)

∂Λ(Σ̃d)
Rσ
ji (ω) =

i

2π

∫
dω′

{
(bD)σσlkji (ω − ω′)SRσ(j+l)(i+k)(ω

′)− (bP )σσlkji (ω′ + ω)SAσ(i+k)(j+l)(ω
′)

+
[
(aD)σσlkji (ω − ω′)− (aP )σσlkji (ω′ + ω)

]
SKσ(j+l)(i+k)(ω

′)
}
. (D1b)

Then the flow of the self-energy is given by:

∂Λ(Σs)
R↑
j(j+l)(ω) = ∂Λ(Σ̃s)

R↑
j(j+l)(ω)

− i

2π

∫
dω′

[1

2
v̄
↑↓|↑↓
j(i+k)|(j+l)i + (aD)↑↓lkji (0)

]
SK↓i(i+k)(ω

′), (D2a)

∂Λ(Σd)
R↑
ji (ω) = ∂Λ(Σ̃d)

R↑
ji (ω)

− i

2π

∫
dω′

{
(bX)↑↓lkji (ω′ − ω)SR↓(j+l)(i+k)(ω

′) + (bP )↑↓lkji (ω′ + ω)SA↓(i+k)(j+l)(ω
′)

+
[
(aX)↑↓lkji (ω′ − ω) + (aP )↑↓lkji (ω′ + ω)

]
SK↓(j+l)(i+k)(ω

′)
}
, (D2b)

and

∂Λ(Σs)
R↓
j(j+l)(ω) = ∂Λ(Σ̃s)

R↓
j(j+l)(ω)
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− i

2π

∫
dω′

[1

2
v̄
↑↓|↑↓
i(j+l)|(i+k)j + (aD)↑↓klij (0)

]
SK↑i(i+k)(ω

′). (D3a)

∂Λ(Σd)
R↓
ji (ω) = ∂Λ(Σ̃d)

R↓
ji (ω)

− i

2π

∫
dω′

{
(bX)

↑↓(−l)(−k)
(j+l)(i+k) (ω − ω′)SR↑(j+l)(i+k)(ω

′) + (bP )
↑↓(−l)(−k)
(j+l)(i+k) (ω′ + ω)SA↑(i+k)(j+l)(ω

′)

+
[
(aX∗)↑↓(−l)(−k)

(j+l)(i+k) (ω − ω′) + (aP )
↑↓(−l)(−k)
(j+l)(i+k) (ω′ + ω)

]
SK↑(j+l)(i+k)(ω

′)
}
. (D3b)

Before we proceed to write down the flow of the two-particle vertex, let us take a look at the bubble terms (26).
Displaying the full spin and spatial structure, (26) reads

[
(Ĩpp)α

′
1α

′
2|α1α2

]στlk
ji

(Π) =
i

2π

∫
dω
[
(Sα

′
1α1)σji(ω)(Gα

′
2α2)τ(j+l)(i+k)(Π− ω) + [S ↔ G]

]
, (D4a)

[
(Ĩph)α

′
1α

′
2|α1α2

]στlk
ji

(X) =
i

2π

∫
dω
[
(Sα

′
1α1)σji(ω)(Gα

′
2α2)τ(i+k)(j+l)(ω +X) + [S ↔ G]

]
. (D4b)

The symmetrical appearance of G and S in definition (D4) implies a corresponding symmetry for the whole bubbles.
Using the notation introduced in (B15) with I ≡ I1 ◦ I2, the implied [G↔ S] symmetry of the bubble reads

[
(Ĩpp)α

′
1α

′
2|α1α2

]στ
(Π) =

[
(Ĩpp)α

′
2α

′
1|α2α1

]Iτσ
(Π), (D5a)

[
(Ĩph)α

′
1α

′
2|α1α2

]στ
(X) =

[
(Ĩph)α

′
2α

′
1|α2α1

]Iτσ
(−X). (D5b)

These symmetries immediately follow from definiton (D4). Additionally, by complex conjugation, we have for
ζ ∈ {Ipp, Iph}

ζα
′
1α

′
2|α1α2 = (−1)1+α′

1+α′
2+α1+α2

[
ζα1α2|α′

1α
′
2

]∗
, (D6)

which follows from (D4) and (9). In terms of the components in Keldysh space (30), and with properly treated spin
and spatial structure, the bubbles IA with A ∈ {P,X,D} from (25) take the form

(IP )στ (Π) =
[
(Ĩpp)22|21 + (Ĩpp)22|12

]στ
(Π) =

[
(Ipp)στ + (Ipp)Iτσ

]
(Π), (D7a)

(IX)στ (X) =
[
(Ĩph)22|12 + (Ĩph)21|22

]στ
(X) =

[
(Iph)στ (X) + (Iph)I∗τσ(−X)

]
, (D7b)

(ID)στ (∆) = −
[
(Ĩph)22|21 + (Ĩph)12|22

]Iστ
(∆) = −(IX)τσ(−∆)

]
. (D7c)

Furthermore, using the propagator FDTs (10), together with the general relation

1− 2f(µ− ω) = −
[
1− 2f(µ+ ω)

]
, (D8)

one can straightforwardly show (c.f. [10], pp. 166-167) that the bubbles (D7) are real at their feedback frequencies,
i.e. IP (2µ) and IX(0), ID(0) are real.

For the flow of the vertex we define:

(ãP )σσlkji (Π) =
1

2
v̄
σσ|σσ
j(j+l)|i(i+k) + (aP )σσlkji (Π)−(φD)

σσ(i+k−j)(j+l−i)
ji + (φD)

σσ(i−j)(j+l−i−k)
j(i+k) , (D9a)

(ãP )↑↓lkji (Π) =
1

2
v̄
↑↓|↑↓
j(j+l)|i(i+k) + (aP )↑↓lkji (Π) + (φX)

↑↓(i+k−j)(j+l−i)
ji + (φD)

↑↓(i−j)(j+l−i−k)
j(i+k) , (D9b)

(ãX)↑↓lkji (X) =
1

2
v̄
↑↓|↑↓
j(i+k)|i(j+l) + (aX)↑↓lkji (X) + (φP )

↑↓(i+k−j)(j+l−i)
ji + (φD)

↑↓(i−j)(i+k−j−l)
j(j+l) , (D9c)

(ãD)σσlkji (∆) =
1

2
v̄
σσ|σσ
j(i+k)|(j+l)i + (aD)σσlkji (∆) + (φP )

σσ(i+k−j)(i−j−l)
j(j+l) − (φD)

σσ(i−j)(i+k−j−l)
j(j+l) , (D9d)

(ãD)↑↓lkji (∆) =
1

2
v̄
↑↓|↑↓
j(i+k)|(j+l)i + (aD)↑↓lkji (∆) + (φP )

↑↓(i+k−j)(i−j−l)
j(j+l) + (φX)

↑↓(i−j)(i+k−j−l)
j(j+l) . (D9e)

The static interchannel feedback is chosen as in [9–11] φP = aP (2µ), φX = aX(0), φD = aD(0). Note that since the
bubbles (D7) are real valued at the respective feedback frequencies, the φ are also real and furthermore (due to the
vertex FDTs (19) and (B13)) they have the same Keldysh structure as the bare vertex (15).

If we use the definition of block-matrix multiplication in
spacial indices (27), the flow of the vertex can be written

in the simple form:

(ȧP )σσ(Π) =
1

2
(ãP )σσ(Π) · (IP )σσ(Π) · (ãP )σσ(Π)

(D10a)
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(ȧP )↑↓(Π) = (ãP )↑↓(Π) · (IP )↑↓(Π) · (ãP )↑↓(Π) (D10b)

(ȧX)↑↓(X) = (ãX)↑↓(X) · (IX)↑↓(X) · (ãX)↑↓(X)
(D10c)

(ȧD)↑↑(∆) = −(ãD)↑↑(∆) · (IX)↑↑(−∆) · (ãD)↑↑(∆)

− (ãD)↑↓(∆) · (IX)↓↓(−∆) · (ãD)T↑↓(∆)
(D10d)

(ȧD)↓↓(∆) = −(ãD)↓↓(∆) · (IX)↓↓(−∆) · (ãD)↓↓(∆)

− (ãD)T↑↓(∆) · (IX)↑↑(−∆) · (ãD)↑↓(∆)
(D10e)

(ȧD)↑↓(∆) = −(ãD)↑↓(∆) · (IX)↓↓(−∆) · (ãD)↓↓(∆)

− (ãD)↑↑ · (IX)↑↑(−∆) · (ãD)↑↓. (D10f)

Appendix E: Importance of feedback frequencies

In this section, we discuss the importance of the feed-
back frequencies in the vertex (c.f. Sec. III B 4) for low-

energy observables. In particular, we use the linear re-
sponse conductance g of Eq. (34) as an example. In order
to illustrate the underlying mechanism, we first focus on
the system at T = 0. In this case, the conductance con-
sists only of the one-particle contribution (35), i.e. it is
completely determined by the knowledge of Σ(µ). We
obtain Σ(µ) via our fRG flow, i.e. in order to understand
the influence of our treatment of the two-particle vertex
on the conductance, we have to take a look at the flow
equations formulated in Sec. III B 2. In case of the static
part ∂Λ(Σs)

R, this is easy: The vertex contribution aD is
only evaluated directly at the feedback frequency ∆ = 0.
For the dynamic contribution ∂Λ(Σd)

R, we have to look
a little closer. In the T = 0 case, we can prove here two
exact statements (E4a,E4b). By using the FDTS (19)
and performing the limit T → 0, we obtain

∂Λ(Σ̃d)
Rσ
ji (µ) =

1

π

∫
dω′

(
2θ(ω′ − µ)− 1

)
Im
[(

(aP )σσlkji (µ+ ω′)− (aD∗)σσlkji (µ− ω′)
)
SRσ(j+l)(i+k)(ω

′)
]
. (E1)

Since both aP and aD are retarded and approach constants and SR(ω) ∼ 1
ω2 for large frequency arguments ω, we

have furthermore:
∫
dω′
(

(aP )σσlkji (µ+ ω′)− (aD∗)σσlkji (µ− ω′)
)
SRσ(j+l)(i+k)(ω

′) = 0. (E2)

With this, we can rewrite (E1) and obtain

∂Λ(Σ̃d)
Rσ
ji (µ) = − 2

π

∫ µ

−∞
dω′ Im

[(
(aP )σσlkji (µ+ ω′)− (aD∗)σσlkji (µ− ω′)

)
SRσ(j+l)(i+k)(ω

′)
]
. (E3)

Proceeding analogously, we can obtain for the complete dynamic self-energy

∂Λ(Σd)
R↑
ji (µ) = ∂Λ(Σ̃d)

R↑
j|i (µ)− 2

π

∫ µ

−∞
dω′ Im

[{
(aP )↑↓lkji (µ+ ω′) + (aX∗)↑↓lkji (ω′ − µ)

}
SR↓(j+l)(i+k)(ω

′)
]
, (E4a)

∂Λ(Σd)
R↓
ji (µ) = ∂Λ(Σ̃d)

R↓
ji (µ)− 2

π

∫ µ

−∞
dω′ Im

[{
(aP )

↑↓(−l)(−k)
(j+l)(i+k) (µ+ ω′) + (aX)

↑↓(−l)(−k)
(j+l)(i+k) (µ− ω′)

}
SR↑(j+l)(i+k)(ω

′)
]
.

(E4b)

In the one-particle part of the conductance (35), we
have to evaluate GRσ−NN (µ) at opposite ends of the chain.

In order for a self-energy component (Σd)
R
ji(µ) to yield

a substantial contribution to this propagator, the spatial
indices j, i have to fulfill at least one of the following two
criteria: (i) The spatial indices lie on different sides of
the QPC barrier. In this case, ΣRji(µ) yields a direct hop-

ping contribution to GRσ−NN (µ). (ii) At least one spatial
index lies in the region of the barrier top. In this case,
one either obtains a still significant hopping contribution
(if the other index does not lie in the region of the barrier

top) or a renormalization of the barrier top (if both in-
dices lie in the region of the barrier top). The remaining
case, where both indices lie away from the barrier top on
the same side of the QPC barrier, does not yield any sig-
nificant contributions to the conductance. In this case,
both spatial indices j, i lie in a connected spatial region
where the lower band edge is way below the chemical po-
tential (c.f. Fig. 1(a)), i.e. in this region the movement
of electrons is not impaired anyway. Therefore, we will
assume in the following that j, i fulfill at least one of the
two criteria (i),(ii).
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In this case, we can approximately change the lower
bound of the integration in (E1-E4b) from −∞ to ωb =
−2τ + Vg, the energy of the barrier top in the middle
of the QPC: For small l, k the propagator SR(i+k)(j+l)(ω

′)
gets suppressed exponentially by the barrier once ω′ <
ωb. For large l or k, the vertex contributions (aA)lk(ω′)
will be small, since the interaction range of the bare in-
teraction is finite and much shorter than the length of the
entire system (including the QPC flanks). Therefore, in
the flow of the self-energy compontents ΣRj,i(µ) where i, j
fulfill at least one of the conditions (i) or (ii), only vertex
components within the frequency range [2µ−(µ−ωb), 2µ]
are important for the P-contribution, and in the range
[−(µ− ωb), (µ− ωb)] for the X- and D-channel contribu-

tions. Since we are especially interested in the behavior
during the first conductance step, i.e. when (µ−ωb) ∼ Ωx,
the leading frequency contribution of the vertex compo-
nents lies in the frequency range Ωf ± Ωx, where Ωf are
the feedback frequencies 2µ and 0, defined in Sec. III A 3.

At finite temperatures, for the one-particle contribu-
tion of the conductance, the same argument holds in
essence. It is just slightly more technical due to keep-
ing track of the temperature smearing of Fermi steps.
Instead of evaluating Σ only at µ, we now need it in an
interval [µ−∆T , µ+ ∆T , where the scale of ∆T ∼ 5T is
set by temperature, c.f. (35). In analogy to (E1), the flow
of Σ(µ + ∆ω), with ∆ω ∈ [−∆T ,∆T ] can be rewritten
using

∂Λ(Σ̃d)
Rσ
ji (µ+ ∆ω) = − 2

π

∫ µ

−∞
dω′ Im

[(
(aP )σσlkji (µ+ ∆ω + ω′)− (aD∗)σσlkji (µ+ ∆ω − ω′)

)
SRσ(i+k)(j+l)(ω

′)
]

+
1

π

∫
dω′

[{
coth

(ω′ − µ+ ∆ω

2T

)
− [2θ(ω′ − µ)− 1]

}
Im(aP )σσlkji (µ+ ∆ω + ω′)SRσ∗(i+k)(j+l)(ω

′)

+
{

(1− 2nF (ω′))− [2θ(ω′ − µ)− 1]
}

(aP )σσlkji (µ+ ∆ω + ω′) ImSRσ(i+k)(j+l)(ω
′)

−
{

coth
(µ+ ∆ω − ω′

2T

)
− [2θ(µ− ω′)− 1]

}
Im(aD)σσlkji (µ+ ∆ω − ω′)SRσ(i+k)(j+l)(ω

′)

−
{

(1− 2nF (ω′))− [2θ(ω′ − µ)− 1]
}

(aD)σσlkji (µ+ ∆ω − ω′) ImSRσ(i+k)(j+l)(ω
′)
]
. (E5)

Note that in (E5) all four terms in curly brackets {. . . }
decay exponentially in ω′ on the scale of temperature T
for ω′ outside a small interval around µ. Following the
same line of argument as above, one finds that the vertex
components are suppressed outside of an interval around
the feedback frequency which is widened on the order
of temperature: The important frequencies effectively lie
in the intervals [2µ − (µ − ωb) − ∆̃T , 2µ + ∆̃T ] for the

P-channel and [−(µ − ωb) − ∆̃T , (µ − ωb) + ∆̃T ] for the

X- and D-channel, where ∆̃T ∼ 2∆T lies again on the
scale of temperature. Analogous arguments hold for the
complete self-energy.

For finite temperature there is also a two-particle con-
tribution (42) to the conductance, directly containing a
vertex contribution. This vertex contribution is effec-
tively only needed in an interval of width set by tem-
perature around the feedback frequencies. This can be
seen from (42) together with (37) and (38) , since the
functions

fp(µ+ ∆T , ε
′) = coth

[ε′ − µ+ ∆T

2T

]
− tanh

[ε′ − µ
2T

]
,

(E6)

fx(µ+ ∆T , ε
′) = coth

[ε′ − µ−∆T

2T

]
− tanh

[ε′ − µ
2T

]

(E7)

decay exponentially with increasing |ε′−µ|, on a scale set
by temperature. Furthermore, the input argument ∆T is
analogous to the one appearing in (E5) and lives again

on the scale of temperature. That the leading frequency
contribution for the two-particle contribution of the con-
ductance is determined on the scale of temperature can
also be nicely seen in Fig. 6. The main contribution to
g2 is collected by going from NL = 0 to NL = 5, i.e.
while resolving the temperature scale (c.f. the discussion
in Sec. IV B). Further increase in NL > 5 only slightly
changes the two-particle contribution.

Appendix F: Violation of Ward Identities

In Sec. III C, we have seen that the conductance com-
putation suffers from a violation of the Ward identity
(39). Here, we will elaborate on this violation and show
how it depends on external and numerical parameters.
One of the main influences on the severity of this vio-
lation are the interaction parameters employed. For an
onsite interaction model our fRG treatment is exact to
second order in the interaction, even in the case of the
feedback length L = 0. Therefore, for small enough in-
teraction strengths, the violation of the Ward identity
(39) scales like ∼ U3, i.e. in this weak interaction regime
we expect (39) to be well satisfied. This can indeed be
seen in Fig. 14(a,b).

However, for an interaction strength suitable to ob-
serve 0.7-physics, the Ward identity is severly violated,



24

0.0

0.5

1.0

1.5

2.0
−2ImΣR

00(ω)/τ

[Φ̃r + Φ̃l]00(ω)/τ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0

0.5

1.0

1.5

0.5

1.0

1.5

2.0

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

1.0

40 20 0 20 40

(ω−µ)/T

1

0

1

2

3

4

40 20 0 20 40

(ω−µ)/T

6

4

2

0

2

4

40 20 0 20 40

(ω−µ)/T

5

4

3

2

1

0

1

2

Onsite, L= 0, NL = 0

(a) U= 0. 05
√

Ωxτ

(b)

U= 0. 5
√

Ωxτ

(c)

U= 3. 2
√

Ωxτ

Finite-ranged, L= 5, NL = 0

(d)

U0 = 0. 05
√

Ωxτ

U1 = 0. 03
√

Ωxτ

(e)

U0 = 0. 5
√

Ωxτ

U1 = 0. 3
√

Ωxτ

(f)

U0 = 2. 3
√

Ωxτ

U1 = 1. 4
√

Ωxτ

Finite-ranged, L= 5, NL = 15

(g)

U0 = 0. 05
√

Ωxτ

U1 = 0. 03
√

Ωxτ

(h)

U0 = 0. 5
√

Ωxτ

U1 = 0. 3
√

Ωxτ

(i)

U0 = 2. 3
√

Ωxτ

U1 = 1. 4
√

Ωxτ

10−6 10−5 10−5

10−4 10−3 10−3

10−3 10−3 10−3

Figure 14. Violation of the Ward identity (39) at temperature T = 0.1Ωx for onsite interactions (first column), and finite-ranged
interactions with NL = 0 (second column) and NL = 15 (third column). The power of 10 indicated above each panel is a
scale factor for the vertical axis. Within each column the interaction strength is increased from very small in the first row,
up to the realistic strength in the last row. In (c), the dashed lines (blue for −2 Im ΣR00 and red for (Φ̃l + Φ̃r)00), show the
onsite interaction results computed using L = 5, NL = 15. Note that with these choices the violation in the region around the
chemical potential µ is reduced compared to the NL = 0 result, even in the case of onsite interactions.

see Fig. 14(c). For this reason, the best way to obtain the
conductance from the results of our current fRG method,
is the Ward-corrected treatment described in Sec. III C,
which restores the Ward consistency between the two-
particle part and the self-energy.

Note that the situation is somewhat remedied by using
our eCLA scheme with finite L and finite NL already for
the onsite interaction, see the dashed lines in Fig. 14(c).
In the static Matsubara case [1], we saw that the eCLA
scheme stabilizes the fRG flow by coupling the individual
channels better together, extending the accessible physi-
cal parameter regime. Now we also see that it increases
the internal consistency of the results between the one-
and two particle level.

In the case of the model with finite-ranged interac-
tions the situation is qualitatively similar. However,
with our approximate treatment of the frequency depen-
dence of the long-ranged part of the vertex, described in
Sec. III B 4, we generally already make a mistake in sec-
ond (i.e. the leading order) in the Ward identity. This is
due to the fact that it is numerically not possible to incor-
porate the effect of long-range feedback at all frequencies.
We take long-range contributions only into account in a
certain frequency range around the feedback-frequencies
[c.f. (33)]. Following the logic of App. E, we therefore ex-
pect the Ward identity (39) to hold only in this frequency
range around the chemical potential, even at small inter-
action strengths. This effect can indeed be seen by com-
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Figure 15. Conductance curves for NT = 10 (blue) and NT =
20 (red). As before, solid lines indicate the whole conductance
g, while dashed lines indicate the one-particle and dotted lines
the two-particle contributions. The resulting curves almost
perfectly agree.

paring Figs. 14(d,e) to Figs. 14(g,h). At large interaction
strengths the violation then becomes much more severe,
as for the onsite interaction model. This necessitates in-
troducing the Ward-correction strategy of Eq. (40).

Appendix G: Convergence w.r.t. NT

In our whole work, we used NT = 10 additional fre-
quencies in the temperature window [−5T, 5T ] around
the chemical potential / feedback frequencies in oder to
resolve the finite temperature behavior of the self-energy
/ two-particle vertex. Despite NT = 10 being much
lesser than the comfortable ∼ 100 additional frequen-
cies used in Ref. [9] for the same purpose, our results
are still converged w.r.t. NT , see Fig. 15. Here we com-
pare the results for the finite-ranged interaction model
with NT = 10 (blue curves) and NT = 20 (red curves).

Note that in order to not change the frequency range θfA,
for the respective channels A ∈ {P,X,D}, we also had
to increase the number of long range frequencies NL ac-
cordingly. Both curves lie almost perfectly on top of each
other, indicating that a further increase of NT beyond 10
is not necessary.
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5.3 A technical comment
Here and in the following, equations references that refer to our publication in Sec. 5.2 above
are marked with the prefix “P3:”.

In this section, we comment briefly on how the approximation of the dynamic feedback
length affects the ladder structure of the vertex flow. For this, we take a look at the vertex
flow resulting from the flow equations P3:(D10), when using our extended eCLA scheme as
described in Sec. P3:III B4. In particular, we take a look at the structure that results from
decoupling the different channels by setting the interchannel feedback φP = φX = φD = 0 in
Eqs. P3:(D9) and the self-energy to zero throughout the flow. For convenience we introduce
the quantities

[νPστ ]lkji = 1
2 ν̄

στ |στ
j(j+l)|i(i+k) (5.1)

[νXστ ]lkji = 1
2 ν̄

στ |στ
j(i+k)|i(j+l) (5.2)

[νDστ ]lkji = 1
2 ν̄

στ |στ
j(i+k)|(j+l)i. (5.3)

Let us now first consider the case where we do not make any static approximations in
P3:(D10). It is well known that in this case the channel-decoupled fRG-flow yields a RPA-like
ladder structure for each channel. Explicitly, one obtains for A ∈ {P,X}

(aP )σσ =
(
1− νAσσ 1

4(JA)σσ
)−1

νAσσ − νAσσ, (5.4)

(aA)↑↓ =
(
1− νAστ 1

2(JA)στ
)−1

νAστ − νAστ , (5.5)

where the RPA-Bubble JA is defined in the same way as IA in P3:(26), just by replacing S
with G. For the D-channel we obtain the structure

(aD)στ =
[(

1 + νD
1
2J

D
)−1

νD − νD
]στ

, (5.6)

that includes internal summation over spin and where JD is given by

(JD)στ = δστ
(
δσ↑J

X↑↑ + δσ↓J
X↓↓

)
. (5.7)

The question is, what happens when we make the static approximation for bubble and
vertex components with |l| or |k| bigger than the dynamic feedback length LA(Ω), see P3:(33).
In general, the fRG-flow described above will then not have a simple resumable ladder
structure. However, if one modifies the used approximation of the vertex slightly (beyond
second-order), one can get modified flow equations that are ladder resumable and in fact
again yield the relations (5.4-5.6), with JA evaluated according to our rule P3:(33). For
this, we have to change the way we treat vertex elements on the right-hand side with one
short-index, say |l| ≤ LA(Ω) and the other one greater than LA(Ω). In this situation, our
method described above makes the replacement

(aA)lkji(Ω)→ (aA)lkji(ΩA
f ). (5.8)

This looks like the obvious choice, considering that the vertex bubble is treated in the same way.
However, for the vertex itself this is, in a sense, not optimally using the bubble information
provided through approximation P3:(33). Loosely speaking, in a ladder construction of the
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Figure 5.1 Comparison between the RPA, the standard and the modified vertex flow result for the
vertex component aDσσ(Ω). We used a small system with N = 5, i.e. 11 sites and a finite-ranged
interaction (LU = 3) with (a) a smaller and (b) a bigger interaction strength. Case (b) is close to
the divergence of the RPA and the differences between the RPA/modified flow and the standard flow
become apparent.

vertex given by bare vertices and bubbles, we should not replace Ω with ΩA
f in all internal

bubble terms just because the external short-index k is greater then LA(Ω). At least in a
part of the ladder, the bubbles can be evaluated at the actual value of Ω. It turns out that
this is the reason why replacement (5.8) prevents the flow to be ladder resumable. However,
we can resolve this problem by replacing (5.8) with

(aA)lkji(Ω)→ (aA)ll1jj1(Ω)
[
(aA)(ΩA

f )−1
]l1l2
j1j2

(aA)l2kj2i (Ω
A
f ), (5.9)

where l1 runs only in the dynamic range |l1| ≤ LP (Ω) and l2 runs only in the static range
LP (Ω) < |l2| ≤ Ls. The external l appears now only on a quantity with both short-indices in
the dynamic range, i.e. one can use the contribution of the actual frequency Ω instead of ΩA

f .
Using this, one can show that the flow sums up again to the RPA-like relations (5.4-5.6), see
Appendix A.5.

Since there is no fundamental reason to choose (5.9) over (5.8) beyond the ladder-
resumability in the case of decoupled flow equations, we used for all our numerical challenging
QPC calculations the simpler form (5.8). However, we tested in small systems (N = 5) that
the decoupled flow fulfills indeed the relations (5.4-5.6) when the modification (5.9) is used,
see Fig. 5.1.
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6 Application of Keldysh fRG to disordered systems

In this chapter, we check whether a real frequency Keldysh fRG approach can be used to
capture the predicted MBL transition [BAA06] in a one-dimensional system comprised of
interacting electrons in a random potential. In this preliminary investigation, we focus on the
temperature dependence of some observables aiming to identify the transition temperature, Tc.
While a comprehensive analysis of any disordered system would require a disorder averaging,
we use here a simplified approach. We explore the properties of the system at certain physical
parameters only for one typical given realization of disorder and in a vicinity of the chemical
potential.

One possible observable for identifying the MBL transition is the linear conductance, which
has also been the prime observable in the rest of this thesis. The temperature dependence
of the dc conductance is expected [BAA06] to be equal to zero at T < Tc and to grow as a
power law with increasing T above Tc. Unfortunately, the present version of the fRG method
violates particle conservation laws (see also the discussion in Sec. 5.2), i.e. even in a steady
state (of a system of finite size) the conductance is spatially not constant. While we expect
the results obtained for a finite (i.e. well bigger than zero) conductance to be still qualitatively
correct, the necessary quantitative accuracy to distinguish between exact zero and a power
law going to zero around the MBL transition is not possible. We anticipate that this difficulty
might be overcome during potential future work on this project, in particular by the usage of
multiloop fRG as developed in [KvD18b, KvD18c, KvD18a].

A second possible observable is provided by the fact that the functional order parameter
of the localization transition is predicted to be the distribution function of the imaginary
part of the single-particle self-energy, Im Σ. In the following, we study the temperature and
interaction dependence of this quantity, both as function of frequency as well as at selected
energies, see Sec. 6.4.1.

A third possibility is closely related to the second one. By studying the number and form
of the peaks in the LDOS with increasing interaction strength, one can make a prediction of
how strongly the initially non-interacting, localized puddles start to interact which each other.
This provides a measure to directly observe the developing delocalization with increasing
interaction, see Sec. 6.4.2.

6.1 Setup
We study a one-dimensional spinfull electron system with uniformly distributed onsite
disorder and onsite interactions. The system consists of a central region in which disorder
and interactions are present, as well as two tight binding leads (without disorder and without
interactions) which are coupled to the ends of the central region. The Hamiltonian of this
system for a given disorder realization is given by:

H = −τ
∑
i,σ

(c†iσci+1σ + c†i+1σciσ) +
∑
i

Vic
†
iσciσ +

∑
i

Uini↑ni↓, (6.1)

where i and σ are the lattice site and spin indices, Vi(ω) ∈ [−Vd, Vd] is a uniformly distributed
random variable and Vd/τ is the (dimensionless) disorder strength. The onsite interaction is
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denoted by Ui and is chosen in such a way that Ui = U in the middle of the central system
and gets suppressed at the boundary, see Fig. 6.1.

Figure 6.1 (a) Schematic plot of the system with two non-interacting tight-binding leads as well as a
disordered, interacting central region. (b) Random potential Vi (black) and interaction Ui for one
disorder realization and system size N = 61 sites with Vd = 1.2τ and U = 0.8τ . Doted lines illustrate
properties of a smaller system. Note that the interaction is suppressed at the boundary of the central
region.

In the following, we study the dependence of the one-particle self-energy and the LDOS
on frequency and temperature. For this, we later on transform the one-particle basis for the
central region from real space to the energy eigenspace.

6.2 Choice of parameters
In order to observe the MBL transition, we have to adjust the external parameters such that
it is the dominating effect among three competing ones:

• Thermal dephasing with the typical temperature Tdeph

• Finite bandwidth (4τ) introduced due to the discrete description of our model; we
should only consider temperatures T � 4τ .

• MBL transition at the critical temperature Tc.

The temperatures Tdeph and Tc can be estimated as (see [GMP05] and [BAA06]):

Tdeph ∼
δξ
λ2 (6.2)

Tc ∼
δξ

λ ln(1/λ) , (6.3)

where λ is the dimensionless interaction strength, and δξ the energy spacing in the localization
volume set by the localization length ξ. In Fig. 6.2 these two functions are plotted for
δξ = 0.2τ (which is a reasonable value for the energy spacing, as we will show below). In
total, we require:

1. Tc � Tdeph

2. Tc � Bandwidth = 4τ

3. ξ � System size = L

In order to fulfill condition (1), we want λ to be small. However, we also have to keep Tc
smaller than the bandwidth (condition (2)), thus we want to make the localization length ξ
as large as possible in order to decreases δξ. Due to numerical restrictions, we use a system
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with size up to 60a, where a denotes the lattice spacing. In order to keep ξ (much) smaller
than Lmax (condition 3) but as big as possible, we adjust the disorder strength Vd such that
ξmax ≈ 20a. In our model this holds true at Vd = 1.2τ . The energy level spacing is then given
by:

δξ = 1
νξ

= 1
1

4τa20a
= 1

5τ, (6.4)

where we have assumed the density of states ν to be constant, which is reasonable in the
middle of the band. Now we can adjust the dimensionless interaction strength λ such that
the above conditions (1, 2) are fulfilled, see Fig.6.2. This approximately yields λ = 0.2, which

Figure 6.2 The typical dephasing temperature, Tdeph, (blue) and the MBL-transition temperature,
Tc (red), depending on the dimensionless interaction strength λ.

can be transformed to the dimensionfull interaction strength U as:

U = λ

ν

1
a

= 1/5
1/(4τa)

1
a

= 0.8τ. (6.5)

To summarize this section, we will look for the MBL-transition in the parameter regime:

• number of disorder sites N = 61a

• disorder strength Vd = 1.2τ

• interaction strength U = 0.8τ .

6.3 Data acquisition
Since this project took place before our fully fledged eCLA code was ready, all the data shown
here were obtained with the simpler CLA-Code Keldysh code provided by Dennis Schimmel
[SBvD17, Sch17]. Furthermore, our used code assumes thermal equilibrium from the start.
Formally, this is for a finite system always the case. However, since in the disordered regime
the equilibration time diverges in the limit of an infinite system, the stability of the obtained
data should also be checked with an explicit non-equilibrium implementation of the code.
This has not been done yet and we leave it for a future continuation of this investigation.
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6.4 Data analysis
The data analysis is performed as follows. We work in the eigenbasis of the non-interacting
part of the Hamiltonian (H0). If our system is long enough and boundary effects are not
important, we can just ignore the leads and diagonalize the single-particle Hamiltonian of
the central region given by:

Hc = −τ
∑

i∈[−N,N ]

(
c†ici+1 + c†i+1ci + Vic

†
ici
)
. (6.6)

D = V THcV, V TV = 1, D = diag(ζ1, . . . , ζn). (6.7)

In the following, we label the eigenstates of Hc with greek letters α, . . . while we use roman
letters i, . . . for the spatial indices. Having obtained the eigenbasis of Hc, we can analyse the
behavior of the interaction induced, one-particle-irreducible self-energy Σσ

αα(ω), defined by

G−1σ
αβ (ω) = G0

−1σ
αβ (ω)− Σσ

αβ(ω). (6.8)

Here G and G0 denote the full interacting as well as the bare one-particle propagator, α, β
are eigenstates of H0, and σ and ω are the indices for spin and frequency, which are both
conserved in our system. Thus, the self-energy is a matrix valued function, depending on
frequency and temperature.

We will also use the density of states (DOS), both as the LDOS

Aσi (ω) = − 1
π

ImGσii(ω), (6.9)

i.e. expressed in spatial indices i, as well as in the eigenbasis of the non-interacting Hamiltonian
1:

Aσα(ω) = − 1
π

ImGσαα(ω), (6.10)

where G is the full interacting one-particle propagator in the respective basis. This quantity
reflects the position (either in real space for Aσi (ω), or in energy for Aσα(ω)) and the broadening
of the single particle levels in the interacting system.

Consider now the system at a finite temperature T = 0.1τ . For this temperature, the
imaginary part of the self-energy is finite, and its frequency structure can be seen clearly. In
Fig. 6.3, the frequency dependence of the quasiparticle decay rate Im Σα(ω) and the DOS
Aσα(ω) is shown for 6 eigenvalues α in the middle of the spectrum. As we can see, the DOS
and the self-energy are closely related. At the position of the levels also the imaginary part
of the self-energy has a peak.

6.4.1 Quasiparticle decay rate close to the chemical potential

Let us now focus on the behavior of the occupied level closest to the chemical potential
µ = 0, i.e. the blue curve in Fig. 6.3. If we vary the temperature, we get the characteristic
behavior of the DOS and Im Σ shown in Fig. 6.4. For increasing temperature, the DOS gets
smaller and broader, while Im Σ develops a peak at the level position. If we take a cut at the

1 For simplicity, we use the same symbol A. Which quantity is used will always be clear by whether the
indexing is in Greek or Roman letters
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Figure 6.3 DOS Aα(ω) (positiv) and corresponding Im Σ(ω) (negativ) for six different α in the
middle of the spectrum. The dashed line denotes the value of the chemical potential. Note that the
values of the DOS have been divided by 102.

frequency of the DOS peak at T = 0, we can plot for this particular frequency the dependence
of the imaginary part of the self-energy on temperature.

With this method, we can extract the temperature dependence of the self-energy for
various system sizes and interactions. The results are shown in Fig. 6.5. We see that Im Σ
drops quickly for small temperatures, then develops a slight plateau-like region, and then
drops off again at a faster rate. The problematic parameter regime for our code are the
small temperatures T , where we could not create enough data points due to fRG convergence
issues. It is to be expected that for small temperatures the system is harder to treat, since
the particles become more localized and corresponding peaks in the LDOS become sharper
and are finally missed in our discretization scheme with fixed frequency values. In a future
implementation, it would be highly desirable to somehow track the energy levels in frequency
space, making sure that sharp levels are better integrated during the fRG flow. On the other
hand, we expect that the delocalized levels, i.e. the part of the system that is responsible for
a non-vanishing conductance, is still treated fairly well, even in our simple approach. Thus,
even if we miss out on some localized levels, the influence of those levels should be negligible,
since their interaction with other levels is very small.

In order to analyse the delocalized regime of the system further, we have plotted the three
conductance curves of Fig. 6.3 also in a log-log plot, see Fig. 6.6. We can distinguish three
different temperature regimes. Starting from small temperatures, the quasi-particle decay
rate − Im Σ increases quickly until T ≈ 0.1τ . Between 0.1τ . T . 0.3τ the increase slows
down and seems to follow a power law with exponent α1. After 0.3 . T , the increase gets
again larger, and seems to follow a power law with exponent α2. We illustrate this power law
behaviors by fitting lines to the blue N = 31 data points before (blue dashed line) and after
the kink at T = 0.3τ (blue solid line). Extracting the exponents as the slopes of these lines
yields α1 = 0.49 and α2 = 0.80. Both these exponents are still far from the ergodic metallic
case (the expected delocalized phase [BAA06]) where one would expect a power law with
exponent α = 1.
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Figure 6.4 Same setting as in Fig. 6.3, but we plot only the DOS and the self-energy for the occupied
level closest to the chemical potential (the blue curves from Fig. 6.3) for equally spaced temperatures
T = 0.0, 0.02, . . . , 0.2. The dashed line indicates the DOS maximum for T = 0.
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Figure 6.5 Dependence of Im Σ on T , extracted with the method described above. We have plotted
here data for three different system sizes N = 31 (blue), N = 41 (green) and N = 61 (red). The bars
at the datapoints are not errorbars in a classical sense but indicate the magnitude of the two-particle
vertex, and thus serve as a internal sanity check for our fRG approximation.

Figure 6.6 Same plot as in Fig. 6.5 but using a log-log scale. Straight lines have been fitted to the
linear part of the plots (only shown for the N = 31 case, c.f. blue solid and dashed lines) and were
used to extract powerlaw exponents.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.7 (a) Grayscale plot of the interacting LDOS Aσi (ω) as function of site and frequency. (b-d)
LDOS at site i = −5 in the non-interacting case (b) and in the interacting case (c-d) for different
temperatures. Black markers indicate the non-interacting eigenenergies, colored markers the detected
peaks in the LDOS. The inset in (d) shows the number of these peaks per site. (e-f) show the DOS in
energy space for three different eigenenergies (colored markers) for two different temperatures. Black
markers indicate again the non-interacting eigenenergies.

6.4.2 Analysis of DOS and LDOS peaks

In the preceding subsection, we focused on the quasi-particle decay rate as indicator of a
possible delocalization transition. In this subsection, we instead study directly the density of
states, either in real space (LDOS) or in energy space (DOS). In order to simplify the system,
we omit in this part the leads and just work with an isolated central region. We focus on
the occurrence and development of LDOS/DOS peaks, both in number and in form, when
physical parameters like temperature and interaction strength are changed. Let us start with
a look at the LDOS which already provides a nice insight into the occuring delocalization.
To get an intuition of the system, we first plot the interacting LDOS Aσi (ω) in Fig. 6.7(a)
in a grayscale plot as a function of site i and frequency ω. All states lie roughly in the
energy band [−2τ, 2τ ] set by the hopping, which is somewhat extended by the finite disorder
strength Vd. In Fig. 6.7(b-d) we show cuts for i = −5 (this choice is in principle arbitrary, as
long as it is far enough away from the edges of the system). Here, we choose i = −5 since
for this value a LDOS peak lies close in energy to the chemical potential (see Fig. 6.7(a)),
therefore relating somewhat to the blue DOS level studied in Fig. 6.3 in Sec. 6.4.1. The main
observation when going from the non-interacting system in Fig. 6.7(b) to the interacting
system in Fig. 6.7(c) is that the position of the LDOS peaks shifts in energy and (more
importantly) their number noticeably increases (compare also the green and red curve in the
inset of Fig. 6.7(d)). This increase in the peak number reflects the emergence of multi-particle
excitations. Increasing the temperature in Fig. 6.7(d) smears these multi-particle excitations
into a broader peaks, creating a whole spectrum of possible excitations. The increase in the
excitation spectrum can also be beautifully seen in the DOS in energy space, see Fig. 6.7(e).
Black markers indicate the non-interacting level positions, and the interacting DOS is plotted
for the three non-interacting colored energies. Via interactions, these states develop an overlap
with multiple other non-interacting levels, creating many small subpeaks at the corresponding
non-interacting eigenenergies. Increasing the temperature in Fig. 6.7(f) leads again to a
broadening of the peaks and (around ω = 0) to the development of a whole spectrum of
excitations.
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6.5 Conclusion of the disorder study
While we could not – within this preliminary study – identify the MBL transition in the
investigated one-dimensional disordered system, our method gives us access to quantities like
the quasiparticle decay rate, as well as the frequency resolved (L)DOS which can be used to
analyse the underlying MBL mechanism. The main problem is that we could not reach small
enough temperatures to clearly identify the localization - delocalization point. Furthermore,
the violation of conservation laws within our fRG scheme is problematic. Ultimately, it would
be nice to directly compute the conductance of the system, with which an experiment would
distinguish between localization or delocalization. Unfortunately, due to the violation of
Ward identities, the computation of a quantitative conductance is hardly possible with our
current second order truncated fRG schemes (compare also the discussion in Sec. 5.2). A way
to tackle the conservation problems could be to use a multiloop fRG scheme as developed
in [KvD18a, KvD18b, KvD18c], which has been shown to increase the conservation of Ward
identities (at least on a one-particle level).
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7 Conclusion and Outlook

The main goal of this thesis was to study finite-ranged interactions in QPCs, and in particular
their influence on the 0.7-anomaly. In order to achieve that goal, we developed an extended
Coupled Ladder Approximation (eCLA) feedback scheme for second order truncated fRG.

This eCLA scheme enabled a static, zero-temperature Matsubara treatment of long-
ranged interactions (extending over the whole system, including the QPC flanks), and a
semi-dynamic finite-temperature Keldysh treatment of finite-ranged interactions with ranges
on the scale of the characteristic QPC length. In the former case, we observed that long-range
interactions result in a strong flattening of the QPC barrier, leading to oscillatory features in
the conductance via the resulting Friedel-oscillations. In the latter case, we found indications
that finite-ranged interactions may play an important role in the development of a more
pronounced 0.7-shoulder in the finite temperature conductance of QPCs.

During the development of the improved eCLA scheme, we also applied it to several side
applications. In particular, we found that its extended feedback stabilizes the fRG flow,
enabling the treatment of larger physical parameter regimes. This could most impressively be
seen in the Kondo regime of small quantum dots containing only a few electrons. Furthermore,
through a simple mapping, the eCLA scheme enabled us to treat QPCs with several subbands.
We used this to study the 0.7-analog at the intersection of magnetically spin-split subbands,
enabling us to give an explanation of an asymmetry occuring in the magnetic dependence of
the experimentally observed conductance.

While our method suffered from second order artifacts, most prominently a violation of
Ward identities and correspondingly an ambiguity in the conductance, we consider it an
important step on the way to a more refined treatment. In particular, the recently developed
multiloop fRG scheme [KvD18b, KvD18c, KvD18a] offers a natural way to expand our eCLA
method beyond second order and improves upon the fulfillment of conservation laws. Work
in this direction is currently in progress.

Further open questions which could be investigated with such a refined method are the
continuation of our work on disordered systems, the transition from QPCs to quantum wires
(here, spin polarization is experimentally expected to play an important role [YKT+18]), and
also an experimentally observed even-odd effect in the finite temperature transconductance
at large magnetic fields, see [CGP+09].
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A Appendix

A.1 The Keldysh vertex bubbles at the feedback frequencies
Here we show that the vertex bubbles (2.223) are real at their respective feedback frequencies
(2.146) in thermal equilibrium. For this, we use the general relation

1− 2nF (µ+ ω) = −
[
1− 2nF (µ− ω)

]
. (A.1)

Let us first look at the P-bubble WP . Using Eqs. (2.222) and (2.219) we have

(IP )σσ′lk
ji (Π) = i

4π

ˆ
dω
[
SKσji (ω)GRσ′

(j+l)(i+k)(Π− ω) + [S ↔ G]
]

= − 1
2π

ˆ
dω(1− 2nF (ω))

[
ImSRσji (ω)GRσ′

(j+l)(i+k)(Π− ω) + [S ↔ G]
]
. (A.2)

Inserting this in Eq. (2.223) we obtain

(WP )σσ′lk
ji (Π) = − 1

2π

ˆ
dω(1− 2nF (ω))

[{
ImSRσji (ω)GRσ′

(j+l)(i+k)(Π− ω)

+ ImSRσ
′

(j+l)(i+k)(ω)GRσji (Π− ω)
}

+ [S ↔ G]
]

= − 1
2π

ˆ
dω
[{

(1− 2nF (ω))
(

ImSRσji (ω) ReGRσ′

(j+l)(i+k)(Π− ω)

+ ImSRσ
′

(j+l)(i+k)(ω) ReGRσji (Π− ω)
)

+ i ImSRσji (ω) ImGRσ
′

(j+l)(i+k)(Π− ω)
(
(1− 2nF (ω)) + (1− 2nF (Π− ω))

)}
+ [G↔ S]

]
.

(A.3)

Using (A.3) together with (A.1), we obtain that WP (2µ) is real.
For the XD-bubble WX we can proceed analogously. We have

(IX)σσ′lk
ji (X) = i

2π

ˆ
dω
[
SRσji (ω)GKσ′

(i+k)(j+l)(X + ω) + [S ↔ G]
]

= − 1
π

ˆ
dω(1− 2nF (ω +X))

[
SRσji (ω) ImGRσ

′

(i+k)(j+l)(X + ω) + [S ↔ G]
]
.

(A.4)
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Inserting this in Eq. 2.223 and shifting the integration frequency we obtain

(WX)σσ′lk
ji (X) = − 1

π

ˆ
dω(1− 2nF (ω))

[
SRσji (ω −X) ImGRσ

′

(i+k)(j+l)(ω)

+ SRσ
′

(j+l)(i+k)(ω +X) ImGRσij (ω) + [S ↔ G]
]

= − 1
π

ˆ
dω(1− 2nF (ω))

[(
ReSRσji (ω −X) ImGRσ

′

(i+k)(j+l)(ω)

+ ReSRσ′

(j+l)(i+k)(ω +X) ImGRσij (ω)

+ i ImSRσji (ω −X) ImGRσ
′

(i+k)(j+l)(ω)

− i ImSRσ
′

(j+l)(i+k)(ω +X) ImGRσij (ω)
)

+ [S ↔ G]
]
. (A.5)

For X = 0, the imaginary part of (A.5) is zero and therefore WX(0) is real.

A.2 Dependent channel components
Here we list how the dependent channel components are given in terms of the kept components.

A.2.1 Matsubara

In the Matsubara case, we have

P ↓↑ = P I↑↓, (A.6a)
P ↑↓|↓↑ = −P I2↑↓, (A.6b)
P ↓↑|↑↓ = −P I1↑↓, (A.6c)

X↓↑(X) = XI↑↓(−X) (A.6d)
X↑↓|↓↑(X) = −D↑↓(−X) (A.6e)
X↓↑|↑↓(X) = −DT↑↓(−X) (A.6f)

D↓↑ = DT↑↓, (A.6g)
D↑↓|↓↑(∆) = −X↑↓(−∆), (A.6h)
D↓↑|↑↓(∆) = −XI↑↓(∆). (A.6i)

A.2.2 Keldysh

In the Keldysh formalism, we have for the generic (i.e. not necessarily equilibrium) case for
the P-channel

(aP )↓↑ = (aP )I↑↓, (A.7a)
(aP )↑↓|↓↑ = −(aP )I2↑↓, (A.7b)
(aP )↓↑|↑↓ = −(aP )I1↑↓, (A.7c)

(bP )↓↑ = (bP )I↑↓, (A.7d)
(bP )↑↓|↓↑ = −(bP )I2↑↓, (A.7e)
(bP )↓↑|↑↓ = −(bP )I1↑↓, (A.7f)

(dP )σσ′ = (aP )Tσσ′∗, (A.7g)
= (aP )TIσ′σ∗, (A.7h)

(dP )↑↓|↓↑ = −(aP )TI2↑↓∗, (A.7i)
(dP )↓↑|↑↓ = −(aP )TI1↑↓∗, (A.7j)
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for the X-channel

(aX)σσ(X) = −(aD)σσ(−X), (A.8a)
(aX)↓↑(X) = (aX)I↑↓∗(−X), (A.8b)

(aX)↑↓|↓↑ = −(aD)↑↓(−X), (A.8c)
(aX)↓↑|↑↓ = −(dD)TI↑↓, (A.8d)

(bX)σσ(X) = −(bD)σσ(−X), (A.8e)
(bX)↓↑(X) = (bX)TI↑↓(−X), (A.8f)

(bX)↑↓|↓↑ = −(bD)↑↓(−X), (A.8g)
(bX)↓↑|↑↓ = −(bD)TI↑↓, (A.8h)

(dX)σσ = −(aD)TIσσ, (A.8i)
(dX)σσ̄(X) = (aX)Tσσ̄∗(X), (A.8j)

= (aX)TIσ̄σ(−X), (A.8k)

(dX)↑↓|↓↑ = −(dD)↑↓(−X), (A.8l)
(dX)↓↑|↑↓ = −(aD)TI↑↓, (A.8m)

and for the D-channel

(aD)TIσσ′(−∆) = (dD)σ′σ(∆), (A.9a)
(aD)↑↓|↓↑ = −(aX)↑↓(−∆), (A.9b)
(aD)↓↑|↑↓ = −(aX)I↑↓∗, (A.9c)

(bD)↓↑(∆) = (bD)TI↑↓(−∆), (A.9d)
(bD)↑↓|↓↑(∆) = −(bX)↑↓(−∆), (A.9e)

(bD)↓↑|↑↓ = −(bX)TI↑↓, (A.9f)

(dD)↑↓|↓↑(∆) = −(aX)T↑↓∗(−∆), (A.9g) (dD)↓↑|↑↓ = −(aX)TI↑↓. (A.9h)

In thermal equilibrium this relations are simplified by the FDTs, in particular the relations
(2.236) and (2.237) hold.

A.3 Flow equations for the Keldysh self-energy and the
b-components of the vertex

For the flow of the Keldysh component of the self-energy, one obtains analogous to (2.212)
for the static part

∂

∂Λ(Σs)K↑j(j+l)(ω) = −i
∑
ω′

{[
S + ST∗

]↑R
i(i+k)

(ω′)
[
v̄ + (dD)(0)

]↑↑lk
ji

+
[
S + ST∗

]↓R
i(i+k)

(ω′)
[
v̄ + (dD)(0)

]↑↓lk
ji

}
, (A.10)

and

∂

∂Λ(Σs)K↓j(j+l)(ω) = −i
∑
ω′

{[
S + ST∗

]R↑
i(i+k)

(ω′)
[
v̄ + (aD)(0)

]TI↑↓lk
ji

+
[
S + ST∗

]R↓
i(i+k)

(ω′)
[
v̄ + (dD)(0)

]↓↓lk
ji

}
. (A.11)
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For the dynamic part we get

∂

∂Λ(Σd)K↑ji (ω) = −i
∑
ω′

{
SA↑(i+k)(j+l)(ω

′)(aP )↑↑lkji (ω′ + ω)− SA↑(j+l)(i+k)(ω
′)(aD)TI↑↑lkji (ω′ − ω)

+SR↑(i+k)(j+l)(ω
′)(dP )↑↑lkji (ω′ + ω)− SR↑(j+l)(i+k)(ω

′)(dD)TI↑↑lkji (ω′ − ω)

+SK↑(i+k)(j+l)(ω
′)(bP )↑↑lkji (ω′ + ω)− SK↑(j+l)(i+k)(ω

′)(bD)TI↑↑lkji (ω′ − ω)

+SA↓(i+k)(j+l)(ω
′)(aP )↑↓lkji (ω′ + ω) + SA↓(j+l)(i+k)(ω

′)(dX)↑↓lkji (ω′ − ω)

+SR↓(i+k)(j+l)(ω
′)(dP )↑↓lkji (ω′ + ω) + SR↓(j+l)(i+k)(ω

′)(aX)↑↓lkji (ω′ − ω)

+SK↓(i+k)(j+l)(ω
′)(bP )↑↓lkji (ω′ + ω) + SK↓(j+l)(i+k)(ω

′)(bX)↑↓lkji (ω′ − ω)
}

(A.12)

and

∂

∂Λ(Σd)K↓ji (ω) = −i
∑
ω′

{
SA↑(i+k)(j+l)(ω

′)(aP )I↑↓lkji (ω′ + ω) + SA↑(j+l)(i+k)(ω
′)(aX)TI↑↓lkji (ω − ω′)

+SR↑(i+k)(j+l)(ω
′)(dP )I↑↓lkji (ω′ + ω) + SR↑(j+l)(i+k)(ω

′)(dX)TI↑↓lkji (ω − ω′)

+SK↑(i+k)(j+l)(ω
′)(bP )I↑↓lkji (ω′ + ω) + SK↑(j+l)(i+k)(ω

′)(bX)TI↑↓lkji (ω − ω′)

+SA↓(i+k)(j+l)(ω
′)(aP )↓↓lkji (ω′ + ω)− SA↓(j+l)(i+k)(ω

′)(aD)TI↓↓lkji (ω′ − ω)

+SR↓(i+k)(j+l)(ω
′)(dP )↓↓lkji (ω′ + ω)− SR↓(j+l)(i+k)(ω

′)(dD)TI↓↓lkji (ω′ − ω)

+SK↓(i+k)(j+l)(ω
′)(bP )↓↓lkji (ω′ + ω)− SK↓(j+l)(i+k)(ω

′)(bD)TI↓↓lkji (ω′ − ω)
}
.

(A.13)

Using the symmetry relations (2.207) - (2.208) and the compact notation introduced in
(2.170), we can write this in the simpler form

∂

∂Λ(Σs)K↑(ω) = −i
∑
ω′

{[
v̄ + (aD)TI(0)

]↑↑
·
[
S + ST∗

]↑R
(ω′)

+
[
v̄ + (dD)(0)

]↑↓[
S + ST∗

]↓R
(ω′)

}
, (A.14a)

and
∂

∂Λ(Σs)K↓(ω) = −i
∑
ω′

{[
v̄ + (aD)(0)

]TI↑↓[
S + ST∗

]R↑
(ω′)

+
[
v̄ + (aD)TI(0)

]↓↓[
S + ST∗

]R↓
(ω′)

}
, (A.14b)

and for the dynamic part
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∂

∂Λ(Σd)K↑(ω) = −i
∑
ω′

{
Tr
[
(aP )↑↑(ω′ + ω)× (SR)T↑(ω′)∗

]
− Tr

[
(aD)TI↑↑(ω′ − ω)× (SR)↑(ω′)∗

]
+Tr

[
(aP )T↑↑(ω′ + ω)∗ × SR↑(ω′)

]
− Tr

[
(aD)↑↑(ω − ω′)× (SR)T↑(ω′)

]
+Tr

[
(bP )↑↑(ω′ + ω)× SK↑(ω′)

]
− Tr

[
(bD)TI↑↑(ω′ − ω)× (SK)T↑(ω′)

]
+Tr

[
(aP )↑↓(ω′ + ω)× (SR)T↓(ω′)∗

]
+ Tr

[
(aX)T↑↓(ω′ − ω)∗ × (SR)↓∗(ω′)

]
+Tr

[
(aP )T↑↓(ω′ + ω)∗ × SR↓(ω′)

]
+ Tr

[
(aX)↑↓(ω′ − ω)× (SR)T↓(ω′)

]
+Tr

[
(bP )↑↓(ω′ + ω)× SK↓(ω′)

]
+ Tr

[
(bX)↑↓(ω′ − ω)× (SK)T↓(ω′)

]}
(A.15a)

and
∂

∂Λ(Σd)K↓(ω) = −i
∑
ω′

{
Tr
[
(aP )I↑↓(ω′ + ω)× (SR)T↑(ω′)∗

]
+ Tr

[
(aX)TI↑↓(ω − ω′)× (SR)↑(ω′)∗

]
+Tr

[
(aP )TI↑↓(ω′ + ω)∗ × SR↑(ω′)

]
+ Tr

[
(aX)I↑↓(ω − ω′)∗ × (SR)T↑(ω′)

]
+Tr

[
(bP )I↑↓(ω′ + ω)× SK↑(ω′)

]
+ Tr

[
(bX)TI↑↓(ω − ω′)× (SK)T↑(ω′)

]
+Tr

[
(aP )↓↓(ω′ + ω)× (SR)T↓(ω′)∗

]
− Tr

[
(aD)TI↓↓(ω′ − ω)× (SR)↓(ω′)∗

]
+Tr

[
(aP )T↓↓(ω′ + ω)∗ × SR↓(ω′)

]
− Tr

[
(aD)↓↓(ω − ω′)× (SR)T↓(ω′)

]
+Tr

[
(bP )↓↓(ω′ + ω)× SK↓(ω′)

]
− Tr

[
(bD)↓↓(ω − ω′)× (SK)T↓(ω′)

]}
. (A.15b)

For the vertex, one obtains for bP and bX (correspondingly to Eq. (2.231))

∂

∂Λ(bP )σσ(Π) = (ãP )σσ(Π) ·
[
(Iph)11|22 + (Iph)22|22 + (Iph)22|11

]
(Π) · (d̃P )σσ(Π)

+ (ãP )σσ(Π) ·
[
(Iph)22|12 + (Iph)22|21

]
(Π) · (bP )σσ(Π)

+ (bP )σσ(Π) ·
[
(Iph)21|22 + (Iph)12|22

]
(Π) · (d̃P )σσ(Π), (A.16)

∂

∂Λ(bP )↑↓(Π) = 2(ãP )↑↓(Π) ·
[
(Iph)11|22 + (Iph)22|22 + (Iph)22|11

]
(Π) · (d̃P )↑↓(Π)

+ 2(ãP )↑↓(Π) ·
[
(Iph)22|12 + (Iph)22|21

]
(Π) · (bP )↑↓(Π)

+ 2(bP )↑↓(Π) ·
[
(Iph)21|22 + (Iph)12|22

]
(Π) · (d̃P )↑↓(Π), (A.17)

∂

∂Λ(bX)↑↓(X) = (ãX)↑↓(X) ·
[
(Iph)21|12 + (Iph)12|21 + (Iph)22|22

]
(X) · (d̃X)↑↓(X)

+ (ãX)↑↓(X) ·
[
(Iph)21|22 + (Iph)22|12

]
(X) · (bX)↑↓(X)

+ (bX)↑↓(X) ·
[
(Iph)22|21 + (Iph)12|22

]
(X) · (d̃X)↑↓(X). (A.18)

Using the symmetries (2.207) – (2.208) this can be written as
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∂

∂Λ(bP )σσ(Π) = (ãP )σσ(Π) ·
[
(Iph)11|22 + (Iph)22|22 + (Iph)22|11

]
(Π) · (ãP )Tσσ∗(Π)

+ (ãP )σσ(Π) ·
[
(Iph)22|12 + (Iph)22|21

]
(Π) · (bP )σσ(Π)

+ (bP )σσ(Π) ·
[
(Iph)21|22 + (Iph)12|22

]
(Π) · (ãP )Tσσ∗(Π), (A.19a)

∂

∂Λ(bP )↑↓(Π) = 2(ãP )↑↓(Π) ·
[
(Iph)11|22 + (Iph)22|22 + (Iph)22|11

]
(Π) · (ãP )T↑↓∗(Π)

+ 2(ãP )↑↓(Π) ·
[
(Iph)22|12 + (Iph)22|21

]
(Π) · (bP )↑↓(Π)

+ 2(bP )↑↓(Π) ·
[
(Iph)21|22 + (Iph)12|22

]
(Π) · (ãP )T↑↓∗(Π), (A.19b)

∂

∂Λ(bX)↑↓(X) = (ãX)↑↓(X) ·
[
(Iph)21|12 + (Iph)12|21 + (Iph)22|22

]
(X) · (ãX)T↑↓∗(X)

+ (ãX)↑↓(X) ·
[
(Iph)21|22 + (Iph)22|12

]
(X) · (bX)↑↓(X)

+ (bX)↑↓(X) ·
[
(Iph)22|21 + (Iph)12|22

]
(X) · (ãX)T↑↓∗(X). (A.19c)

Analogously, we obtain for the flow of bD

∂

∂Λ(bD)↑↑(∆) = −
{

(ãD)↑↑(∆) ·
[
(Iph)21|12 + (Iph)22|22 + (Iph)12|21

]TI↑↑
(∆) · (d̃D)↑↑(∆)

+(bD)↑↑(∆) ·
[
(Iph)21|22 + (Iph)22|12

]TI↑↑
(∆) · (d̃D)↑↑(∆)

+(ãD)↑↑(∆) ·
[
(Iph)12|22 + (Iph)22|21

]TI↑↑
(∆) · (bD)↑↑(∆)

+(ãD)↑↓(∆) ·
[
(Iph)21|12 + (Iph)22|22 + (Iph)12|21

]TI↓↓
(∆) · (ãD)TI↑↓(−∆)

+(bD)↑↓(∆) ·
[
(Iph)21|22 + (Iph)22|12

]TI↓↓
(∆) · (ãD)TI↑↓(−∆)

+(aD)↑↓(∆) ·
[
(Iph)12|22 + (Iph)22|21

]TI↓↓
(∆) · (b̃D)TI↑↓(−∆)

}
, (A.20)

∂

∂Λ(bD)↓↓(∆) = −
{

(ãD)↓↓(∆) ·
[
(Iph)21|12 + (Iph)22|22 + (Iph)12|21

]TI↓↓
(∆) · (d̃D)↓↓(∆)

+(bD)↓↓(∆) ·
[
(Iph)21|22 + (Iph)22|12

]TI↓↓
(∆) · (d̃D)↓↓(∆)

+(ãD)↓↓(∆) ·
[
(Iph)12|22 + (Iph)22|21

]TI↓↓
(∆) · (bD)↓↓(∆)

+(d̃D)TI↑↓(−∆) ·
[
(Iph)21|12 + (Iph)22|22 + (Iph)12|21

]TI↑↑
(∆) · (d̃D)↑↓(∆)

+(bD)TI↑↓(−∆) ·
[
(Iph)21|22 + (Iph)22|12

]TI↑↑
(∆) · (d̃D)↑↓(∆)

+(dD)TI↑↓(−∆) ·
[
(Iph)12|22 + (Iph)22|21

]TI↑↑
(∆) · (b̃D)↑↓(∆)

}
, (A.21)
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and

∂

∂Λ(bD)↑↓(∆) = −
{

(ãD)↑↑(∆) ·
[
(Iph)21|12 + (Iph)22|22 + (Iph)12|21

]TI↑↑
(∆) · (d̃D)↑↓(∆)

+(bD)↑↑(∆) ·
[
(Iph)21|22 + (Iph)22|12

]TI↑↑
(∆) · (d̃D)↑↓(∆)

+(ãD)↑↑(∆) ·
[
(Iph)12|22 + (Iph)22|21

]TI↑↑
(∆) · (bD)↑↓(∆)

+(ãD)↑↓(∆) ·
[
(Iph)21|12 + (Iph)22|22 + (Iph)12|21

]TI↓↓
(∆) · (d̃D)↓↓(∆)

+(bD)↑↓(∆) ·
[
(Iph)21|22 + (Iph)22|12

]TI↓↓
(∆) · (d̃D)↓↓(∆)

+(ãD)↑↓(∆) ·
[
(Iph)12|22 + (Iph)22|21

]TI↓↓
(∆) · (bD)↓↓(∆)}. (A.22)

Using the symmetries (2.207) - (2.208) as well as the bubble symmetries (2.221), this can be
written as

∂

∂Λ(bD)↑↑(∆) = −
{

(ãD)↑↑(∆) ·
[
(Iph)12|21 + (Iph)22|22 + (Iph)21|12

]↑↑
(−∆) · (ãD)T↑↑∗(∆)

+(bD)↑↑(∆) ·
[
(Iph)12|22 + (Iph)22|21

]↑↑
(−∆) · (ãD)T↑↑∗(∆)

+(ãD)↑↑(∆) ·
[
(Iph)21|22 + (Iph)22|12

]↑↑
(−∆) · (bD)↑↑(∆)

+(ãD)↑↓(∆) ·
[
(Iph)12|21 + (Iph)22|22 + (Iph)21|12

]↓↓
(−∆) · (ãD)T↑↓∗(∆)

+(bD)↑↓(∆) ·
[
(Iph)12|22 + (Iph)22|21

]↓↓
(−∆) · (ãD)T↑↓∗(∆)

−(ãD)↑↓(∆) ·
[
(Iph)21|22 + (Iph)22|12

]↓↓
(−∆) · (b̃D)T↑↓∗(∆)

}
, (A.23a)

∂

∂Λ(bD)↓↓(∆) = −
{

(ãD)↓↓(∆) ·
[
(Iph)12|21 + (Iph)22|22 + (Iph)21|12

]↓↓
(−∆) · (ãD)T↓↓∗(∆)

+(bD)↓↓(∆) ·
[
(Iph)12|22 + (Iph)22|21

]↓↓
(−∆) · (ãD)T↓↓∗(∆)

+(ãD)↓↓(∆) ·
[
(Iph)21|22 + (Iph)22|12

]↓↓
(−∆) · (bD)↓↓(∆)

+(d̃D)T↑↓∗(∆) ·
[
(Iph)12|21 + (Iph)22|22 + (Iph)21|12

]↑↑
(−∆) · (d̃D)↑↓(∆)

−(bD)T↑↓∗(∆) ·
[
(Iph)12|22 + (Iph)22|21

]↑↑
(−∆) · (d̃D)↑↓(∆)

+(d̃D)T↑↓∗(∆) ·
[
(Iph)21|22 + (Iph)22|12

]↑↑
(−∆) · (b̃D)↑↓(∆)

}
, (A.23b)

and
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∂

∂Λ(bD)↑↓(∆) = −
{

(ãD)↑↑(∆) ·
[
(Iph)12|21 + (Iph)22|22 + (Iph)21|12

]↑↑
(−∆) · (d̃D)↑↓(∆)

+(bD)↑↑(∆) ·
[
(Iph)12|22 + (Iph)22|21

]↑↑
(−∆) · (d̃D)↑↓(∆)

+(ãD)↑↑(∆) ·
[
(Iph)21|22 + (Iph)22|12

]↑↑
(−∆) · (bD)↑↓(∆)

+(ãD)↑↓(∆) ·
[
(Iph)12|21 + (Iph)22|22 + (Iph)21|12

]↓↓
(−∆) · (ãD)T↓↓∗(∆)

+(bD)↑↓(∆) ·
[
(Iph)12|22 + (Iph)22|21

]↓↓
(−∆) · (ãD)T↓↓∗(∆)

+(ãD)↑↓(∆) ·
[
(Iph)21|22 + (Iph)22|12

]↓↓
(−∆) · (bD)↓↓(∆)}. (A.23c)

A.4 Consistency check of symmetries with flow equations
In this section, we check the consistency of the various symmetry relations for the channel
decomposition (Matsubara: (2.177) – (2.179) and (A.6i), Keldysh: (2.207) – (2.208) and
(A.7) – (A.9)) that we inferred from the exact symmetries discussed in Sec. 2.2, with the fRG
flow.

Due to the symmetries of the bare interaction (2.5) (and since we choose the feedback φ
to have the same symmetries), one easily sees that γ̃A has the same symmetries as ϕA for all
channels A ∈ {P,X,D}.

A.4.1 Permutation of particles

Since we used this symmetry to eliminate redundant spin components, we take a look at the
most general flow equations (2.138) that still describe the flow of all spin components. One
obtains then straightforwardly

∂

∂Λ(ϕP )Λ
k′

1k
′
2|k1k2

(Π) = (γ̃P )Λ
k′

1k
′
2|k3k4

(Π)(Îpp)Λ
k3k4|k′

3k
′
4
(Π)(γ̃P )Λ

k′
3k

′
4|k1k2

(Π)

= −(γ̃P )Λ
k′

2k
′
1|k3k4

(Π)(Îpp)Λ
k3k4|k′

3k
′
4
(Π)(γ̃P )Λ

k′
3k

′
4|k1k2

(Π)

= − ∂

∂Λ(ϕP )Λ
k′

2k
′
1|k1k2

(Π), (A.24)

∂

∂Λ(ϕP )Λ
k′

1k
′
2|k1k2

(Π) = (γ̃P )Λ
k′

1k
′
2|k3k4

(Π)(Îpp)Λ
k3k4|k′

3k
′
4
(Π)(γ̃P )Λ

k′
3k

′
4|k1k2

(Π)

= −(γ̃P )Λ
k′

1k
′
2|k3k4

(Π)(Îpp)Λ
k3k4|k′

3k
′
4
(Π)(γ̃P )Λ

k′
3k

′
4|k2k1

(Π)

= − ∂

∂Λ(ϕP )Λ
k′

2k
′
1|k2k1

(Π), (A.25)

∂

∂Λ(ϕX)Λ
k′

1k
′
2|k1k2

(X) = (γ̃X)Λ
k′

1k
′
4|k3k2

(X)(Iph)Λ
k3k4|k′

3k
′
4
(X)(γ̃X)Λ

k′
3k

′
2|k1k4

(X)

= (γ̃D)Λ
k′

4k
′
1|k3k2

(X)(Iph)Λ
k3k4|k′

3k
′
4
(X)(γ̃D)Λ

k′
2k

′
3|k1k4

(X)

= − ∂

∂Λ(ϕD)Λ
k′

2k
′
1|k1k2

(X), (A.26)
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∂

∂Λ(ϕX)Λ
k′

1k
′
2|k1k2

(X) = (γ̃X)Λ
k′

1k
′
4|k3k2

(X)(Iph)Λ
k3k4|k′

3k
′
4
(X)(γ̃X)Λ

k′
3k

′
2|k1k4

(X)

= (γ̃D)Λ
k′

1k
′
4|k2k3

(−X)(Iph)Λ
k3k4|k′

3k
′
4
(X)(γ̃D)Λ

k′
3k

′
2|k4k1

(−X)

= (γ̃D)Λ
k′

1k
′
4|k2k3

(−X)(Iph)Λ
k4k3|k′

4k
′
3
(−X)(γ̃D)Λ

k′
3k

′
2|k4k1

(−X)

= − ∂

∂Λ(ϕD)Λ
k′

1k
′
2|k2k1

(−X), (A.27)

where in the second to last line of (A.27), we used the general bubble symmetry

(Iph)k3k4|k′
3k

′
4
(X) = (Iph)k4k3|k′

4k
′
3
(−X), (A.28)

which immediately follows from the definition (2.139). Therefore, the permutation of particles
symmetry is conserved under the fRG flow.

A.4.2 Complex conjugation

Let us first look at the Matsubara case. Since we have shown the validity of the particle per-
mutation symmetry (2.142) – (2.143), i.e. the replacement of the redundant spin components,
we can now use the spatial index free flow equations (2.188) instead of the general equations
(2.138). We then obtain the relations for the two-particle vertex contributions

∂

∂ΛA
σσ′(Ω)∗ = αAσσ

′
Ãσσ

′(Ω)∗ · (WA)σσ′(Ω)∗Ãσσ′(Ω)∗

= αAσσ
′
ÃTσσ

′(−Ω) · (WA)Tσσ′(−Ω) · ÃTσσ′(−Ω)

=
[
αAσσ

′
Ã ·WA · Ã

]Tσσ′

(−Ω) = ∂

∂ΛA
Tσσ′(−Ω), (A.29)

for A ∈ {P,X} and

αAσσ
′ =

{
2, for A=P and σ 6= σ′

1, else.
(A.30)

Furthermore, one obtains for the D-channel (using the flow equations (2.190) and relation
(2.180b))

∂

∂ΛD
σσ′(∆)∗ = −

∑
τ

[
Dστ (∆)∗ · (WX)ττ (−∆)∗ · D̃τσ(∆)∗

]
= −

∑
τ

[
DIστ (∆) · (WX)Iττ (−∆) · D̃Iτσ(∆)

]
= −

∑
τ

[
Dστ (∆) · (WX)ττ (−∆) · D̃τσ(∆)

]I
= ∂

∂ΛD
Iσσ′(∆). (A.31)

In the Keldysh case we have to go back once more to the general flow Eq. (2.138) since in
our final (non-equilibrium) flow equations we have used complex conjugation to eliminate the
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redundant d-components in the P - and X-channel. We have then for the individual channels

∂

∂Λ(ϕP )α
′|α
q′q (Π)∗ = (γ̃P )α

′|β
q′p (Π)∗(Ipp)β|β

′

pp′ (Π)∗(γ̃P )β
′|α
p′q (Π)∗

= (−1)α′|β(γ̃P )β|α
′

pq′ (Π)(−1)β|β′(Ipp)β
′|β
p′p (Π)∗(−1)β′|α(γ̃P )α|β

′

qp′ (Π)

= (−1)α′|α(γ̃P )α|β
′

qp′ (Π)(Ipp)β
′|β
p′p (Π)∗(γ̃P )β|α

′

pq′ (Π)

= (−1)α′|α ∂

∂Λ(ϕP )α|α
′

qq′ (Π), (A.32)

∂

∂Λ(ϕX)α
′
1α

′
2|α1α2

q′
1q

′
2|q1q2

(X)∗ = (γ̃X)α
′
1α

′
4|α3α2

q′
1q

′
2|q3q2

(X)∗(Iph)α3α4|α′
3α

′
4

q3q4|q′
3q

′
4

(X)∗(γ̃X)α
′
3α

′
2|α1α4

q′
3q

′
2|q1q4

(X)∗

= (−1)1+α′
1+α′

4+α3+α2(γ̃X)α3α2|α′
1α

′
4

q3q2|q′
1q

′
4

(X)

× (−1)1+α3+α4+α′
3+α′

4(Iph)α
′
3α

′
4|α3α4

q′
3q

′
4|q3q4

(X)

× (−1)1+α′
3+α′

2+α1+α4(γ̃X)α1α4|α′
3α

′
2

q1q4|q′
3q

′
2

(X)

= (−1)α′α ∂

∂Λ(ϕX)α1α2|α′
1α

′
2

q1q2|q′
1q

′
2

(X), (A.33)

and

∂

∂Λ(ϕD)α
′
1α

′
2|α1α2

q′
1q

′
2|q1q2

(∆)∗ = −(γ̃D)α
′
1α

′
3|α1α4

q′
1q

′
3|q1q4

(∆)∗(Iph)α3α4|α′
3α

′
4

q3q4|q′
3q

′
4

(∆)∗(γ̃D)α
′
4α

′
2|α3α2

q′
4q

′
2|q3q2

(∆)∗

= −(−1)α′
1+α′

3+α1+α4(γ̃D)α1α4|α′
1α

′
3

q1q4|q′
1q

′
3

(−∆)

× (−1)1+α3+α4+α′
3+α′

4(Iph)α
′
3α

′
4|α3α4

q′
3q

′
4|q3q4

(∆)

× (−1)1+α′
4+α′

2+α3+α2(γ̃D)α3α2|α′
4α

′
2

q3q2|q′
4q

′
2

(−∆)

= −(−1)α′α(γ̃D)α1α′
3|α

′
1α4

q1q′
3|q

′
1q4

(−∆)(Iph)α3α4|α′
3α

′
4

q3q4|q′
3q

′
4

(−∆)(γ̃D)α
′
4α2|α3α′

2
q′

4q2|q3q′
2

(−∆)

= (−1)α′α ∂

∂Λ(ϕD)αα′
qq′ (−∆). (A.34)

Therefore, the complex conjugation symmetries (2.205) are conserved under the fRG flow.

A.4.3 Time reversal

In the Matsubara case, the time-reversal symmetries (2.179) are consistent with the flow
(2.184), (2.186), (2.188), and (2.190). We have

∂

∂ΛΣTσ
s = ∂

∂ΛΣIσ
s = −

{[
v̄ +D(0)

]↑σ
· Ŝ↑ +

[
v̄ +D(0)

]σ↓
· Ŝ↓

}I
(A.35)

= −
{[
v̄ +D(0)

]I↑σ
· ŜI↑ +

[
v̄ +D(0)

]Iσ↓
· ŜI↓

}I
(A.36)

= ∂

∂ΛΣσ
s , (A.37)

where we used the property (2.179) for the D-channel and the bare vertex (for the bare vertex
this property results immediately from (2.5b)) and the fact that D(0) is real. Furthermore,



A.4 Consistency check of symmetries with flow equations 163

using Eqs. (2.177) and (2.179) we have

∂

∂ΛΣT↑
d (ω) = −T

∑
n

{
Tr
[(
P T↑↑(ωn + ω)−DT↑↑(ω − ωn)

)
× ST↑(ωn)

]
+Tr

[(
P T↑↓(ωn + ω) +XT↑↓(ωn − ω)

)
× ST↓(ωn)

]}
, (A.38)

= −T
∑
n

{
Tr
[(
P ↑↑(ωn + ω)−D↑↑(ω − ωn)

)
× S↑(ωn)

]
+Tr

[(
P ↑↓(ωn + ω) +X↑↓(ωn − ω)

)
× S↓(ωn)

]}
, (A.39)

= ∂

∂ΛΣ↑d(ω). (A.40)

Therefore the symmetry ΣT = Σ is consistent with the flow.
For the P - and X-channel we have using Eqs. (2.179) – (2.180)

∂

∂ΛA
Tσσ′(Ω) = ασσ

′
ÃTσσ

′(Ω)(WA)Tσσ′(Ω)ÃTσσ′(Ω) (A.41)

= ασσ
′
Ãσσ

′(Ω)(WA)σσ′(Ω)Ãσσ′(Ω) (A.42)

= ∂

∂ΛA
σσ′(Ω), (A.43)

with Aσσ
′ ∈ {P ↑↑, P ↓↓, P ↑↓, X↑↓}, and ασσ = 1/2, α↑↓ = 1. Therefore, the symmetries

P = P T and X = XT are consistent with the flow.
For the D-channel we have

∂

∂ΛD
Iσσ′(∆) = −

∑
τ

[
D̃στ (∆)(WX)ττ (−∆)D̃τσ′(∆)

]I
(A.44)

= −
∑
τ

[
D̃Iστ (∆)(WX)Iττ (−∆)D̃Iτσ′(∆)

]I
(A.45)

= −
∑
τ

[
D̃στ (−∆)(WX)ττ (+∆)D̃τσ′(−∆)

]I
(A.46)

= ∂

∂ΛD
σσ′(−∆). (A.47)

Therefore the symmetry Dσσ′(∆) = DIσσ′(−∆) is consistent with the flow.

A.4.4 FDTs

We first consider the relation a∗ = d, stated in (2.236).
For the P - and X-channel we know already from complex conjugation (2.206)

∂

∂Λd
A
q′q(Ω) = ∂

∂Λa
A
qq′(Ω)∗, (A.48)

with A ∈ {P,X}. Therefore, it is enough to show

∂

∂Λ(aA)qq′ = ∂

∂Λ(aA)q′q. (A.49)
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Using Eqs. (2.179) – (2.180) yields for (aA)σσ′ ∈ {(aP )↑↑, (aP )↓↓, (aP )↑↓, (aX)↑↓}

∂

∂Λ(aA)σσ′ = ασσ
′(ãA)σσ′ · (WA)σσ′ · (ãA)σσ′ (A.50)

= ασσ
′(ãA)Tσσ′ · (WA)Tσσ′ · (ãA)Tσσ′ (A.51)

= ασσ
′[(ãA)Tσσ′ · (WA)Tσσ′ · (ãA)Tσσ′]T (A.52)

= ∂

∂Λ(aA)Tσσ′
. (A.53)

Therefore, (aA)∗ = dA holds for the P - and X-channel.
For the equal spin part of the D-channel we already know from particle exchange (2.208)

and complex conjugation (2.207) that

∂

∂Λ(aD)σσ(∆) (2.208)= ∂

∂Λ(dD)TIσσ(−∆) (2.207)= ∂

∂Λ(dD)Tσσ(∆)∗. (A.54)

Therefore it suffices to show

∂

∂Λ(aD)Tσσ = ∂

∂Λ(aD)σσ. (A.55)

We have

∂

∂Λ(aD)σσ(∆) = −(ãD)στ (∆)(WX)ττ (−∆)(ãD)τσ(∆) (A.56)

= −(ãD)Tτσ(∆)(WX)Tττ (−∆)(ãD)Tστ (∆) (A.57)

= −
[
(ãD)Tστ (∆)(WX)Tττ (−∆)(ãD)Tτσ(∆)

]T
(A.58)

= ∂

∂Λ(aD)Tσσ(∆). (A.59)

Furthermore, using the general bubble symmetry

(WX)Iσσ′(X) = (WX)σ′σ(−X)∗, (A.60)

which can be seen immediately from definition (2.223), we have for the (dD)↑↓ component

∂

∂Λ(dD)↑↓(∆) = −
{

(d̃D)↑↑(∆) · (WX)TI↑↑(∆) · (d̃D)↑↑(∆) (A.61)

+ (d̃D)↑↓(∆) · (WX)TI↓↓(∆) · (d̃D)↓↓(∆)
}

(A.62)

= −
{

(ãD)↑↑(∆)∗ · (WX)↑↑(−∆)∗ · (ãD)↑↑(∆)∗ (A.63)

+ (ãD)↑↓(∆)∗ · (WX)↓↓(−∆)∗ · (ãD)↓↓(∆)∗
}

(A.64)

= ∂

∂Λ(aD)↑↓(∆)∗ (A.65)

Therefore, the relation (aA)∗ = dA is for all three channels A ∈ {P,X,D} consistent with the
flow equations.

Now we can check the consistency of vertex FDTs (2.237) with the flow equations (2.231)
and (2.233). In order to shorten notation, we simply write I instead of Ipp in the P - and Iph
in the X-channel.
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For the P -channel we have in thermal equilibrium

2i ∂
∂Λ Im(aP )σσ′ = ασσ

′[(ãP )σσ′[
I22|12 + I22|21

]σσ′

(ãR)σσ′ − (ãP )σσ′∗
[
I22|12 + I22|21

]∗
(ãP )σσ′∗

]
= ασσ

′[(ãP )σσ′[
I22|12 + I22|21

]
2i Im(aP )σσ′ + 2i Im(aP )σσ′[

I12|22 + I21|22
]σσ′

(ãP )σσ′∗

+ (ãP )σσ′[
I22|12 + I22|21

]σσ′

(ãP )σσ′∗ − (ãP )σσ′[
I12|22 + I21|22

]σσ′

(ãP )σσ′∗
]
,

(A.66)

where we used the flow equation (A.19) and the symmetry relations (2.221c) and I = IT (
analogous to (2.235)). Comparing this to the flow of bP in (A.19), it suffices to show that

− coth
(Π− 2µ

2T
)[
I22|12 + I22|21 − I12|22 − I21|22

]σσ′

=
[
I11|22 + I22|11 + I22|22

]σσ′

. (A.67)

We have[
I22|12 + I22|21 − I12|22 − I21|22

]σσ′

(A.68)

= ασσ
′ i

4π

ˆ
dω
[
SR↑(ω)GK↓(Π− ω) + SK↑(ω)GR↓(Π− ω) (A.69)

− SA↑(ω)GK↓(Π− ω)− SK↑(ω)GA↓(Π− ω) + [S ↔ G]
]

(A.70)

= −ασσ′ 2i
π

ImSRσ(ω) ImGRσ
′(Π− ω)

(
1− nF (X + ω)− nF (ω)

)
+ [S ↔ G]. (A.71)

Furthermore,[
I21|12 + I12|21 + I22|22

]σσ′

(X) (A.72)

= ασσ
′ i

4π

ˆ
dω
[
SAσ(ω)GAσ′(Π− ω) + SRσ(ω)GRσ′(Π− ω) (A.73)

+ SKσ(ω)GKσ′(Π− ω) + [S ↔ G]
]

(A.74)

= ασσ
′ i

4π

ˆ
dω
[
SRσ(ω)GRσ′(Π− ω) + SRσ(ω)∗GRσ′(Π− ω)∗ (A.75)

+ (2i)2(1− 2nF (ω))(1− 2nF (Π− ω)) ImSRσ(ω) ImGRσ
′(Π− ω) + [S ↔ G]

]
(A.76)

= ασσ
′ i

4π

ˆ
dω
[
SRσ(ω)GRσ′(Π− ω) + SRσ(ω)∗GRσ′(Π− ω)∗ (A.77)

− SRσ(ω)GRσ′(Π− ω)∗ − SRσ(ω)∗GRσ′(Π− ω) (A.78)

+ (2i)2(1− 2nF (ω))(1− 2nF (Π− ω)) ImSRσ(ω) ImGRσ
′(Π− ω) + [S ↔ G]

]
(A.79)

= −ασσ′ 2i
π

ImSRσ(ω) ImGRσ
′(Π− ω)

[
1− nF (ω)− nF (Π− ω) + 2nF (ω)nF (Π− ω) + [S ↔ G]

]
(A.80)

Comparing (A.80) with (A.71), it suffices to show the identity

coth
((Π

2 − µ
)
/T
)[

1− nF (ω)− nF (Π− ω)
]

= 1− nF (ω)− nF (Π− ω) + 2nF (ω)nF (Π− ω),
(A.81)
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which can be done by a straightforward computation, using the explicit form of the Fermi
function nF (2.106). Therefore we have

2i coth
((Π

2 − µ
)
/T
) ∂

∂Λ Im(aP )σσ′ = ∂

∂Λ(bP )σσ′
, (A.82)

i.e. the vertex FDT for the P -channel (2.237a) is conserved under the flow.
For the X-channel we have

2i ∂
∂Λ Im(aX)↑↓ = (ãX)↑↓

[
I22|12 + I21|22

]
(ãX)↑↓ − (ãX)↑↓∗

[
I22|12 + I21|22

]∗
(ãX)↑↓∗

= (ãX)↑↓
[
I22|12 + I21|22

]
2i Im(aX)↑↓ + 2i Im(aX)↑↓

[
I12|22 + I22|21

]
(ãX)↑↓∗

+ (ãX)↑↓
[
I22|12 + I21|22

]
(ãX)↑↓∗ − (ãX)↑↓

[
I12|22 + I22|21

]
(ãX)↑↓∗. (A.83)

Comparing this to the flow of bX in (A.19), it suffices to show that

− coth
( X

2T
)[
I22|12 + I21|22 − I12|22 − I22|21

]↑↓
(X) =

[
I21|12 + I12|21 + I22|22

]↑↓
(X) (A.84)

We have [
I22|12 + I21|22 − I12|22 − I22|21

]↑↓
(X) (A.85)

= i

2π

ˆ
dω
[
SR↑(ω)GK↓(X + ω) + SK↑(ω)GA↓(X + ω) (A.86)

− SA↑(ω)GK↓(X + ω)− SK↑(ω)GR↓(X + ω) + [S ↔ G]
]

(A.87)

= 4i
π

ImSR↑(ω) ImGR↓(X + ω)
(
nF (X + ω)− nF (ω)

)
+ [S ↔ G]. (A.88)

Furthermore,[
I21|12 + I12|21 + I22|22

]↑↓
(X) (A.89)

= i

2π

ˆ
dω
[
SR↑(ω)GA↓(X + ω) + SA↑(ω)GR↓(X + ω) (A.90)

+ SK↑(ω)GK↓(X + ω) + [S ↔ G]
]

(A.91)

= i

2π

ˆ
dω
[
SR↑(ω)GR↓(X + ω)∗ + SR↑(ω)∗GR↓(X + ω) (A.92)

+ (2i)2(1− 2nF (ω))(1− 2nF (X + ω)) + [S ↔ G]
]

(A.93)

= i

2π

ˆ
dω
[
SR↑(ω)GR↓(X + ω)∗ + SR↑(ω)∗GR↓(X + ω) (A.94)

− SR↑(ω)GR↓(X + ω)− SR↑(ω)∗GR↓(X + ω)∗ (A.95)

+ (2i)2(1− 2nF (ω))(1− 2nF (X + ω)) + [S ↔ G]
]

(A.96)

= 4i
π

ImSR↑(ω) ImGR↓(X + ω)
(
nF (ω) + nF (ω +X)− 2nF (ω)nF (X + ω)

)
+ [S ↔ G]

(A.97)
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Comparing (A.97) with (A.88), it suffices to show the identity

− coth
( X

2T
)[
nF (X + ω)− nF (ω)

]
= nF (X + ω) + nF (ω)− 2nF (ω)nF (X + ω), (A.98)

which again can be done by straightforward computation. Therefore we have

−2i coth
( X

2T
) ∂

∂Λ Im(aX)↑↓ = ∂

∂Λ(bX)↑↓, (A.99)

i.e. the vertex FDT for the X-channel (2.237b) is conserved under the flow.
For the D-channel, we have

2i ∂
∂Λ Im(aD)σσ′(∆) = −

{
(ãD)στ (∆) ·

[
I22|21 + I12|22

]Iττ
(∆) · (ãD)τσ′(∆) (A.100)

− (ãD)στ (∆)∗ ·
[
I22|21 + I12|22

]Iττ∗
(∆) · (ãD)τσ′∗(∆)

}
(A.101)

= −
{

(ãD)στ (∆) ·
[
I22|21 + I12|22

]Iττ
(∆) · 2i Im(aD)τσ′(∆) (A.102)

+ 2i Im(aD)στ (∆) ·
[
I21|22 + I22|12

]Iττ
(∆) · (ãD)τσ′(∆) (A.103)

+ (ãD)στ (∆) ·
[
I22|21 + I12|22

]Iττ
(∆) · (ãD)τσ′(∆)∗ (A.104)

− (ãD)στ (∆) ·
[
I21|22 + I22|12

]Iττ
(∆) · (ãD)τσ′(∆)∗

}
(A.105)

Comparing expression (A.105) to the flow of the bD-components (A.23), it suffices to show

coth
( ∆

2T
)[
I22|21 + I12|22 − I21|22 − I22|12

]σσ′

(∆) =
[
I21|12 + I12|21 + I22|22

]σσ′

(∆),
(A.106)

which is equivalent to Eq. (A.84). Therefore we have

2i coth
( ∆

2T
) ∂

∂Λ Im(aD)σσ′ = ∂

∂Λ(bD)σσ′
, (A.107)

i.e. the vertex FDT for the D-channel (2.237c) is conserved under the flow.

A.5 Ladder resumable flow
Equations references in this section that refer to our publication in Sec. 5.2 above are marked
with the prefix “P3:”.

In this section, we discuss in which sense our approximation P3:(33) leads in the case of
decoupled channel flow equations to a resumable RPA-like structure. We focus here on the
equal spin contribution of the P-channel, the other contributions can be treated analogously.
With this in mind, we suppress the channel and spin labels in the following calculation in
order to facilitate notation. The strategy for our calculation is simple. Let us start from (5.4)
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and take the derivative w.r.t. the flow-parameter Λ:

∂

∂Λa
lk
ji(Π) =

[(
1− ν 1

4J(Π)
)−1

ν
]ll1
jj1

[ ∂
∂ΛJ(Π)

]l1l2
j1j2

[(
1− ν 1

4J(Π)
)−1

ν
]l2k
j2i

(A.108)

=
∑

|l1|,|l2|≤Ld(Π)

[
all1jj1(Π) + νll1jj1

][ ∂
∂ΛJ(Π)

]l1l2
j1j2

[
al2kj2i (Π) + νll1jj1

]
+

∑
|l1|≤Ld(Π)<|l2|

{[
all1jj1(Π) + νll1jj1

][ ∂
∂ΛJ(Π)

]l1l2
j1j2

[(
1− ν 1

4J(Π)
)−1

ν
]l2k
j2i

+
[(

1− ν 1
4J(Π)

)−1
ν
]ll1
jj1

[ ∂
∂ΛJ(Π)

]l1l2
j1j2

[(
1− ν 1

4J(Π)
)−1

ν
]l2k
j2i

}
+

∑
Ld(Π)<|l1|,|l2|

[(
1− ν 1

4J(Π)
)−1

ν
]ll1
jj1

[ ∂
∂ΛJ(Π)

]l1l2
j1j2

[(
1− ν 1

4J(Π)
)−1

ν
]l2k
j2i
.

(A.109)

In the second line, we inserted definition (5.4) wherever possible, i.e. whenever both short
indices of a vertex factor are in the dynamical range. What is left is the evaluation of
quantities of the form [(

1− ν 1
4J(Π)

)−1
ν
]lk
ji
, , (A.110)

with l ≤ Ld(Π) and Ld(Π) < k, i.e. where one short index is inside and the other one is
outside of the dynamical range. For this, we make use of the structure of our bare vertex: ν
is of Coulomb type, i.e. the positions of the outgoing particles have to be the same as the
ingoing ones. In our short index formulation this implies that νlkji 6= 0 only if |k| = |l|. Using
this property, we can decompose (A.110)[(

1− ν 1
4J(Π)

)−1
ν
]lk
ji

=
∑

l1<Ld(Π)

[(
1− ν 1

4J(Π)
)−1

ν
]ll1
jj1

[(
1− 1

4J(2µ)ν̂
)−1]l1k

j1i
, (A.111)

where

ν̂lkji =
{
νlkji if |l|, |k| > Ld(Π)
0 else.

(A.112)

The last factor of (A.111) itself can be computed from the analog decomposition at the
feedback frequency 2µ[(

1− 1
4J(2µ)ν

)−1
ν
]lk
ji

=
∑

|l1|<Ld(Π)

[(
1− 1

4J(2µ)ν
)−1

ν
]ll1
jj1

[(
1− 1

4J(2µ)ν̂
)−1]l1k

j1i
, (A.113)

and thus, under the assumption that the first factor in (A.113) can be inverted in dynamical
block-matrix space, we obtain[(

1− 1
4J(2µ)ν̂

)−1]lk
ji

=
[((

1− 1
4J(2µ)ν

)−1
ν
)−1]ll1

jj1

(
1− 1

4J(2µ)ν
)−1

ν
)]l1k
j1i
. (A.114)

This inversion is here denoted by the red “−1” and is e.g. possible if the bare vertex ν itself is
invertible in block-matrix space. Note that for our model P3:(1) this is per se not the case,
due to the vanishing contribution at the sites coupling to the leads. However it can be made
invertible by adding a infinitesimal small contribution on the diagonal: νlkji → νlkji + εδlkδji.
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For our numerical results presented in Sec. 5.3 we added such a small additional term, the
resulting physics of the model does not change under such a small addition. Using (A.114),
we finally obtain[(

1− ν 1
4J(Π)

)−1
ν
]lk
ji

=
∑

|l1|,|l2|<Ld(Π)

[(
1− ν 1

4J(Π)
)−1

ν
]ll1
jj1

[((
1− 1

4J(2µ)ν
)−1

ν
)−1]l1l2

j1j2

(
1− 1

4J(2µ)ν
)−1

ν
)]l2k
j2i

=
∑

|l1|,|l2|<Ld(Π)

[
a(Π) + ν

]ll1
jj1

[(
a(2µ) + ν

)−1]l1l2
j1j2

[
a(2µ) + ν

]l2k
j2i
. (A.115)

A completely analog expression can be obtained when the rolls of l and k are interchanged,
|l| > Ld(Π) and |k| ≤ Ld(Π). In a final step, we replace terms of this type in (A.109) via
(A.115) and obtain exactly the modified flow introduced in Sec. 5.3.
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1.12 (a) Measured bias dependence of the conductance for various gate voltages.
Note the zero bias anomaly (ZBA) occurring at Vsd = 0 and small conductance
g.(b) Temperature dependence of the ZBA and the side peaks. Figures (a)
and (b) were reproduced from [CLGG+02] . . . . . . . . . . . . . . . . . . . . 17
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