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ABSTRACT
We provide a detailed exposition of our computational framework designed for the accurate calculation of real-frequency dynamical correla-
tion functions of the single-impurity Anderson model in the regime of weak to intermediate coupling. Using quantum field theory within the
Keldysh formalism to directly access the self-energy and dynamical susceptibilities in real frequencies, as detailed in our recent publication
[Ge et al., Phys. Rev. B 109, 115128 (2024)], the primary computational challenge is the full three-dimensional real-frequency dependence
of the four-point vertex. Our codebase provides a fully MPI+OpenMP parallelized implementation of the functional renormalization group
(fRG) and the self-consistent parquet equations within the parquet approximation. It leverages vectorization to handle the additional com-
plexity imposed by the Keldysh formalism, using optimized data structures and highly performant integration routines. Going beyond the
results shown in the previous publication, the code includes functionality to perform fRG calculations in the multiloop framework, up to
arbitrary loop order, including self-consistent self-energy iterations. Moreover, implementations of various regulators, such as hybridization,
interaction, frequency, and temperature, are supplied.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0221340

I. INTRODUCTION

In the study of strongly correlated electrons, dynamical cor-
relation functions are quantities of major interest, as they provide
insights into the collective behavior and emergent phenomena
arising from electronic interactions. Capturing the effects of
two-particle (or four-point) correlations is one of the current major
frontiers in the field. Their dynamical properties are inherently
difficult to compute, as they involve three independent frequency
arguments.

While most previous works on this subject focused on
four-point functions in imaginary frequencies in the Matsubara

formalism2,3 (MaF), obtaining real-frequency information is cru-
cial for direct comparisons to experiments. The extraction of
real-frequency data from the results of a calculation in the MaF
is, in principle, possible via analytic continuation.4 However,
it is hard to do so reliably in practice, as the conditions
for the procedure outlined in Ref. 4 are not met by finite
amounts of numerical data. This renders analytic continuation
an ill-defined problem, despite numerous attempts.5–7 Further-
more, it had not been worked out in full detail until very
recently8 how analytic continuation of four-point functions could
be achieved even under the assumption of analytically available
results.
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Pioneering attempts to directly compute real-frequency
dynamical four-point correlation functions using simplified
approaches made use of diagrammatic ladder approximations9,10

or were restricted to a simplified frequency dependence.11–13 The
first fully unbiased treatment of the fluctuations contributing to
the four-point vertex was achieved only a few years ago using
a multipoint extension of the numerical renormalization group
(NRG).14,15

Even more recently, we presented a similarly unbiased treat-
ment of the four-point vertex of the single-impurity Anderson
model using a QFT framework within the Keldysh formalism
(KF), employing two related diagrammatic methods: the functional
renormalization group (fRG) and the self-consistent parquet equa-
tions in the parquet approximation.1 While we focused on the
conceptual aspects and discussed the performance of the methods
in great detail in the previous publication, here we wish to provide
a detailed exposition of the computational framework for the
numerical calculations of self-energies and vertex functions. In
addition to what was shown in Ref. 1, the code discussed in this
paper is capable of performing fRG calculations in the multiloop
framework up to an arbitrary loop order, which connects the fRG
to the parquet formalism.16–18

This paper aims to serve as a reference for future extensions or
revisions of the code. The codebase discussed here was developed
by several people over the course of multiple years, during which
some goals and priorities changed and the code had to be adapted
accordingly. This paper will document how the code works and what
was learned during its development.

Some general design choices made during development
resulted in convenient features of the code and are recommended
for future projects. In the following, we briefly discuss the most
important features:

a. Modularity. Every main building block of the code and each
functionality is implemented individually, using classes and func-
tions that serve one purpose only. As a consequence, a developer can
keep an overview of the functionality. It is also comparatively easy to
reuse existing features and combine them into new functionality. For
example, for both the computation of the Schwinger–Dyson equa-
tion during parquet computations and the evaluation of the flow
equation for the self-energy during the solution of an mfRG flow,
the same classes for vertices, propagators, self-energies, and the same
function for contracting a loop are used, as described in Secs. II C
and II D. In addition, modularity enables unit-testing of each
functionality, something too often ignored during research software
development. Modularity is probably the most important feature
that should be prioritized in developing any research software.

b. Flexibility. A modular design makes the code flexible, too.
Some additional choices were made to improve its flexibility even
further. Most importantly, the code enables computations in three
different formalisms: the finite-temperature Matsubara formalism
(MaF), the zero-temperature Matsubara formalism, and the Keldysh
formalism (KF), which works at any temperature and generalizes to
systems out of thermal equilibrium. Consequently, some function-
ality had to be implemented multiple times, such as contractions,
which require summations over discrete Matsubara frequencies
in the finite-temperature MaF but integrations over continuous
frequencies in the zero-temperature MaF and the KF. Additionally,

in the KF, all quantities are complex-valued, whereas they are
real-valued in the MaF for particle–hole symmetry. Template
parameters were introduced to enable the same functions to work
with objects of different types. Despite the resulting additional com-
plexity, this conveniently enables computations in each of these
three formalisms in the same codebase, still using much of the same
functionality.

c. Performance. Computing dynamical correlation functions is
a computationally demanding task, especially for four-point func-
tions that depend on three frequency arguments. Depending on
the desired resolution, this requires both excessive memory to store
these functions during computations and central processing unit
(CPU) power to perform computations for each combination of
arguments. Concerning the latter, using optimized data structures
for efficient readouts of data as well as an efficient but still precise
algorithm for integrating over frequencies (the numerical bottle-
neck) improved matters significantly. In addition, using a compiled
programming language is basically a must, and keeping track of
constant variables and member functions helps the compiler
optimize the code.

d. Scalability. Apart from the simplest calculations, most dia-
grammatic calculations would not be feasible without paralleliza-
tion. This is because practically all calculations in parquet formalism,
or mfRG, require computations for all possible combinations of
external arguments of the correlation functions. As those are inde-
pendent from each other, it is possible and advisable to parallelize
the demanding computations of bubbles and loops (see Sec. II D)
in the external arguments. Using the OpenMP and MPI interfaces,
this can easily be achieved for parallelization across different threads
on the same node and across multiple nodes, respectively (for more
details, see Sec. II G 1). As long as the memory requirements are
met, the performance of the code scales almost perfectly with the
computational resources.

At this point, we disclose that the present code also has a num-
ber of weaknesses that evolved over the course of development. If the
reader intends to set up a new codebase for the purpose discussed
here, we recommend considering the following points:

a. Too many preprocessor macros (“flags”). The code contains
far too many preprocessor macros, used to specify different para-
meters and settings before compilation (see Sec. II I). This not only
hampers readability but also increases the risk of errors, as it is never
possible to test the full functionality of the code because one would
have to compile and test all possible configurations independently.
With simple combinatorics, this quickly becomes an overwhelming
task. Using preprocessor macros is, however, useful for quick imple-
mentations of new functionality, which is why they accumulate over
time.

b. Too many overly complicated structures. The code contains
several classes that are way more complicated than they need to be,
such as the different vertex classes or the data buffer (see Secs. II C 1
and II G 8). When they were set up, the goal was to keep them as
general as possible, such that they could be used for all kinds of
models in all kinds of formalisms. For this purpose, templates are
used excessively as well. As a consequence, they are indeed flexible,
but they are cumbersome to use in any specific context, and their
implementations are difficult to grasp. In addition, the code takes a
long time to compile and link, which is inconvenient for everyday

J. Chem. Phys. 161, 054118 (2024); doi: 10.1063/5.0221340 161, 054118-2

© Author(s) 2024

 07 August 2024 12:57:10

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

development. Ultimately, as a developer, one has to find the right
trade-off between flexibility and simplicity.

c. Too little use of existing implementations. Several textbook
algorithms, such as the Gauβ-Lobatto routine for frequency integra-
tions or the Cash–Karp routine for solving ODEs (see Secs. II G 5
and III C 1), were implemented by hand. The reason for this was
the desire to comprehend and track the inner workings of the
algorithms at every point during a calculation. In hindsight, much
time and effort could have been saved if existing implementations of
these algorithms had been used as “black boxes.”

d. Language. C++ is a very versatile language that runs on
essentially any computer and can produce very fast code. However,
a codebase written in C++ requires a lot of work to write and main-
tain. Initially, C++ was chosen for performance reasons. By now,
however, there are established alternative programming languages
that are easier to use, less error-prone, and (almost) as fast, such as
Julia,19 Rust,20 or Mojo.21

e. Priorities. Driven by the desire to obtain data with maximal
resolution and precision, the top priority has always been perfor-
mance. While this is very typical for codes written by physicists, it is
not in line with the typical recommendation in software engineering,
which would prioritize correctness and maintainability over perfor-
mance.22 While we are confident that the code produces correct
results after extensive benchmarks,1 the code is not written in the
simplest way and is not easily readable and maintainable. While we
acknowledge that generating results quickly is deemed to be the most
important aspect of research at present, we advocate for reconsider-
ing the priorities during research software development for future
projects.

The rest of the paper is structured as follows: In Sec. I A,
we briefly introduce the single-impurity Anderson model (AM). In
Sec. I B, we briefly recapitulate the main concepts of diagrammatic
many-body theory. In Sec. I C, we comment on the complica-
tions that arise by performing computations in the very general
Keldysh formalism, which is the main selling point of the present
codebase.

In the second part of the paper, we give details on the code itself,
introducing the main objects in Sec. II C and explaining the main
functionality in Sec. II D. We list several options for postprocessing
the raw data obtained after a completed calculation in Sec. II E
and briefly explain how the data are organized in Sec. II F. Special
emphasis is placed on performance-critical aspects of the code in
Sec. II G. We comment on how the code is tested in Sec. II H. Finally,
we provide an overview of the most important options for parameter
choices that can be performed in Sec. II I, illustrating the versatility
of the codebase.

In the third main part of the paper, we elaborate on how three
different diagrammatic algorithms, perturbation theory, the parquet
equations, and the mfRG, are implemented. In particular, we list the
different flow schemes that are available in mfRG. Finally, Sec. IV
presents a conclusion.

Before the end of this introduction, a disclaimer is in order: This
paper does not mention every single class or function in the code
but focuses on the most important aspects and functionalities. In
addition, while the code enables computations in the KF and the
MaF at both finite and zero temperatures, we focus our specific
descriptions mainly on the KF functionality, as this is a unique
feature of our codebase.

A. Model
We consider the single-impurity Anderson model (AM) in

thermal equilibrium, one of the most studied models in all of con-
densed matter physics. Its physical behavior is well understood,
and numerically exact benchmark data for single-particle correlation
functions is available from NRG,23 as are exact analytical results for
static quantities at zero temperature from the Bethe ansatz.24,25 This
makes it an ideal candidate for studies focused on reliable method
development.

The AM is a minimal model for localized magnetic impurities
in metals introduced by Anderson to explain the physics behind the
Kondo effect.26 It is defined by the Hamiltonian

H =∑
εσ

εc†εσcεσ +∑
σ

εdnσ +Un↑n↓ +∑
εσ
(Vεd†

σ cεσ +H.c.), (1)

describing a local impurity d level with on-site energy εd, hybridized
with spinful conduction electrons, created by c†εσ , of the metal
via a matrix element Vε. Hence, it qualifies as an open quantum
system. The electrons in the localized d state, where nσ = d†

σ dσ ,
interact according to the interaction strength U, whereas the c elec-
trons of the bath are non-interacting. The bath electrons are hence
formally integrated out, yielding the frequency-dependent retarded
hybridization function −Im ΔR

(ν) = ∑ε π∣Vε∣
2δ(ν − ε). We consider

a flat hybridization in the wideband limit, ΔR
(ν) = −iΔ, so that the

bare impurity propagator reads GR
0 (ν) = (ν − εd + iΔ)−1.

The code can treat all choices for the on-site energy εd. For
the special choice εd = −U/2, the model has particle–hole symme-
try and is referred to as the symmetric Anderson model (sAM).
This setting simplifies the calculations somewhat. For instance, in
this case, the Hartree-term of the self-energy is constant ΣH = U/2
(see also Sec. III A 1). In addition, in the MaF, all quantities become
real-valued, whereas they are complex-valued otherwise. Hence, the
code supplies a parameter flag to make use of these properties
(see Sec. II I). For general εd ≠ −U/2, we speak of the asymmetric
Anderson model (aAM).

Some physical applications require an additional external
magnetic field h, described by an additional term h(n↑ − n↓) in
the Hamiltonian. At present, the codebase is, however, not appli-
cable in this setting, as this would break SU(2) symmetry, which
is heavily used and hard-coded into the codebase (see Sec. II G 3).
A generalization to h ≠ 0 is possible but would require major
effort.

While the present implementation is restricted to the AM, the
code in principle can also treat other models: all data structures pos-
sess an additional internal index suitable for encoding additional
dependencies and quantum numbers of more complicated models,
such as a momentum dependence or multiple orbitals. Indeed, the
first attempts to study the 2D Hubbard model had been started; how-
ever, the simplest KF perturbation theory calculations turned out to
be too demanding at the time. The corresponding functionality is,
therefore, not included in this release.

B. Diagrammatic many-body theory
The basic objects of interest in all our calculations are one- and

two-particle correlation functions. Their non-trivial contributions
due to interaction effects are contained in the self-energy Σ and the
four-point vertex Γ,
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(2)

The self-energy is used together with the bare propagator G0 to
express the one-particle propagator G via the Dyson equation

(3)

which is formally solved by G = 1/(G−1
0 − Σ). The vertex is the

connected and amputated part of the two-particle correlation
function G(4),

(4)

from which physical susceptibilities can be obtained by contracting
pairs of external legs (see. Appendix C of Ref. 1 for details). The first-
order contribution to the vertex is given by the fully antisymmetric,
local, and instantaneous bare vertex, represented as a single dot,

(5)

in standard Hugenholtz notation. Using the bare vertex and the
bare propagator G0, diagrammatic perturbation series for both the
self-energy and the vertex can be derived, which will be the sub-
ject of Sec. III A. A perturbation series up to finite order in Γ0 is,
however, only appropriate for weak coupling strengths. In order to
reach larger couplings, an infinite number of diagrams have to be
summed. This is the purpose of two related formalisms, the parquet
formalism and the multiloop functional renormalization group, to
be discussed in Secs. III B and III C, respectively. Both formalisms
employ the parquet decomposition to organize all diagrammatic
contributions to Γ into one of four distinct categories: Two-particle
reducible diagrams in one of the three two-particle channels a, p,
and t, included in the three two-particle reducible vertices γr∈ {a,p,t} or
two-particle irreducible diagrams, included in the fully irreducible
vertex R,

(6a)

(6b)

Any specific diagram is said to be two-particle reducible if it can be
disconnected by splitting a propagator pair. Otherwise, it is said to be
two-particle irreducible. The parquet decomposition is exact, as it in
essence just provides a classification of all diagrams that contribute
to Γ. However, neither the parquet formalism nor the mfRG provide
equations for R. In practice, some approximation is required. The
simplest one is the parquet approximation (PA)

R = Γ0 +O[(Γ0)
4
] ≈ Γ0, (7)

which approximates the fully irreducible vertex R by the bare vertex
Γ0. As it introduces an error in the fourth order in perturbation
theory, it fails for large coupling strengths and is hence applicable
only up to intermediate couplings. The PA was applied throughout
in Ref. 1 and is the only one so far implemented in the codebase (see
Sec. II C 1 for a comment on other possibilities).

C. Keldysh formalism
The following section assumes familiarity with the KF and

describes challenges arising for computations with the KF rather
than the more widespread MaF (for a more extensive discussion of
the KF, see Refs. 27 and 28).

The KF29–31 works both out of equilibrium and in thermal
equilibrium at arbitrary temperature, in a real-frequency descrip-
tion. This is an advantage over the more popular MaF, which works
at imaginary (“Matsubara”) frequencies, requiring analytical con-
tinuation, a mathematically ill-defined problem if one works with
a finite amount of imperfect numerical data. Still, the KF is seldomly
used because practical calculations are more complicated for two
main reasons.

In the KF, all operators acquire an additional contour index,
which specifies whether they sit on the forward or backward branch
of the Keldysh double-time contour. It follows that the four-point
vertex, for example, has 24

= 16 different components. While some
of these components can be eliminated by causality or related
to other components by fluctuation–dissipation relations in ther-
mal equilibrium or symmetries, this additional index structure
complicates the implementation and the numerics.

In thermal equilibrium, energy conservation can be leveraged
by Fourier-transforming all correlation functions into frequency
space. In contrast to the MaF at finite temperatures, this dependence
is continuous. Hence, contractions over frequency arguments
require numerically more expensive integrations instead of
summations. The integrations become more costly at lower
temperatures as the frequency dependence of the correlation
functions becomes more sharply peaked. The four-point functions,
which depend on three continuous frequency arguments, are the
numerical bottleneck for which arbitrarily high resolutions are
out of reach due to both computation and memory demands.
Discretizing the frequency dependence in a clever way and using
adaptive integration routines is, therefore, key, as discussed in
Secs. II G 4 and II G 5.

Finally, the KF also allows for computations outside of thermal
equilibrium. However, the present discussion is restricted to thermal
equilibrium. Extending the code out of equilibrium is possible with
moderate effort.

II. THE CODE
In part II of the paper, we describe the main building blocks

of the code—the classes representing correlation functions and
other functions for combining them in diagrammatic computations.
Furthermore, we describe post-processing schemes and emphasize
aspects important for performance. More information on the
technical details of individual code pieces can be found in the doc-
umentation attached to the source code (see the code availability
statement at the end of this paper).
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A. Prerequisites
The code itself is written in C++1732 and is built using CMake,33

demanding at least version 3.10. It requires the GSL,34 boost,35

and Eigen336 libraries, as well as the HDF537 library for input and
output. For parallelization, the OpenMP38 and MPI39 interfaces are
used. Notably, we do not supply precompiled executables that could
be run directly, for several reasons: First, the code makes heavy use
of preprocessor flags that must be set before compilation and that are
in part used to specify the concrete problem at hand (see Sec. II I).
Second, special compilers for the particular architecture at hand
might be available, which could optimize the code during compila-
tion and linking, improving the performance. The user should hence
adapt the file CMakeLists.txt accordingly, such that the required
libraries are included and linked properly and all compiler settings
are as desired.

The technical documentation supplied with the code is gener-
ated automatically using the tools Doxygen,40 Sphinx,41 Breathe,42

and CMake.

B. Basic structure
The structure of the main part of the codebase is depicted in

Fig. 1. The main objects of interest are the SelfEnergy Σ and the
four-point Vertex Γ. Separate classes have been implemented for
both, discussed in detail below. Both classes use instances of the class
that defines suitably chosen FrequencyGrids, to be discussed in
Sec. II G 4, for discretizing the continuous frequency dependence. A
self-energy and a vertex always come together in any practical calcu-
lation, representing data for a step of an mfRG flow or an iteration
of the parquet solver. The self-energy and vertex classes are hence
combined in a State class Ψ = (Σ, Γ). The algorithms discussed
in Sec. III require computing bubble- and loop-type diagrams, the
main functionality of the codebase. As detailed in Sec. II D 1 below,
the bubble_function contracts two input vertices with a pair of
propagators in one of the three two-particle channels to yield a new
four-point vertex, which is stored as an instance of the Vertex class.
For example, contracting two vertices Γ1 and Γ2 in the a channel is
denoted as

(8)

see also Appendix C in Ref. 1 for a fully parametrized version.
The required propagator pair Π belongs to a separate Bubble

FIG. 1. Schematic depiction of the main parts of the codebase.

class, ensuring the correct combination of propagators and their
parametrization. The propagators themselves are defined in the
Propagator class, which essentially implements the Dyson equa-
tion, Eq. (3), combining G0 and Σ. The former contains all the system
parameters, including the regulator in mfRG; the latter encodes
the interaction effects. Both the Propagator and Bubble classes
can handle differentiated objects arising in mfRG (see Sec. III C).
Finally, the loop function is used to contract two external legs of a
four-point Vertex with a Propagator, yielding an instance of the
SelfEnergy class, for example,

(9)

These types of diagrams are required, e.g., for the mfRG flow equa-
tion of the self-energy or for the evaluation of the SDE after a
previous bubble diagram computation.

C. Correlation function classes
In the following, we discuss the main building blocks of the

code in more detail. We begin by outlining the self-energy and vertex
classes. In addition, there are two helper classes: the first represents
propagators, combining the bare propagator and the self-energy; the
second combines a pair of propagators as needed for bubble-type
diagrams.

1. The Vertex classes
In total, the code contains the four classes irreducible,

rvert, fullvert, and GeneralVertex to store different types of
four-point vertices.

The irreducible class contains the two-particle irreducible
part of the vertex, R. In the PA, its 16 Keldysh components are just
constants. It can easily be extended to hold nontrivial input data, for
example, in the context of diagrammatic extensions43 of dynamical
mean-field theory44 such as DΓA45 or DMF2RG.46

The rvert class stores the two-particle reducible vertices
γr∈ {a,p,t}. Each of them is split up into their asymptotic classes,47 K1,
K2, and K3, where the K2′ class is inferred from K2 by crossing
symmetry. Being one-, two-, and three-dimensional objects, respec-
tively, each of those naturally has its own frequency grid. The rvert
supplies several methods to store and read out data, either directly
or interpolated. Conveniently, it can return all vertex parts where
external legs either do or do not meet at the same bare vertex
on the left or on the right-hand side by suitably combining the
K1, K

2(
′) , or K

2(
′) and K3 classes, respectively. This turned out to

be very handy for keeping track of contributions for the differ-
ent asymptotic classes during calculations. In addition, the rvert
class can track and, if desired, enforce symmetries in the Keldysh-,
spin-, and frequency domains (see Sec. II G 3 for details). For
debugging purposes, functionality not using symmetries is provided
as well.

The fullvertex class combines one instance of the
irreducible class and three instances of the rvert class, one for
each two-particle channel a, p, t. It can then return the value of the
full vertex, which is the sum of the four contributions for a given
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Keldysh and spin component, interpolated at a given combination
of frequencies. As each individual rvert instance, it can collect all
those parts of the vertex where the external legs either do or do not
meet at the same bare vertex on the left or on the right-hand side and
includes functionality to exploit various symmetries. In addition, it
can compute the p-norm of each asymptotic contribution, which
is useful for debugging purposes and convergence criteria, e.g., in
parquet computations.

While instances of the fullvertex class hold the data of
the symmetry-reduced sector of a full vertex, certain diagrammatic
equations involve subsets of vertex diagrams. One example is the
r-channel-irreducible vertex used in the Bethe–Salpeter equations
outlined in Sec. III B. Such diagrams do not necessarily obey all the
symmetries of a full vertex, so they must be treated differently. These
asymmetric cases are, therefore, encoded in the GeneralVertex
class. It uses multiple instances of fullvertex, which together
cover the symmetry-reduced sector of the asymmetric vertex data.
Let us comment here that, while this approach is feasible, it turned
out to be inconvenient in practice, as one always has to make
sure that all sectors are covered, i.e., that all required fullvertex
instances are provided. This is a source of logical errors that can
sometimes be hard to find. In retrospect, it would have been better
to pay the increased cost in memory to store all vertex contribu-
tions in the same object, making the code easier to read and to
work with.

All vertex classes allow adding or subtracting two instances of
the respective classes or multiplying a number with a vertex instance.

Splitting up the vertex functionality into so many different
classes was made at the beginning of developing the code to provide
enough flexibility, in particular regarding symmetries and a possible
non-trivial input for the irreducible vertex. In hindsight, it turned
out that for the computations performed in Ref. 1, this structure
would not have been required in this generality.

2. The SelfEnergy class
The SelfEnergy class comes with a dataBuffer that stores

the discrete values of the retarded and Keldysh components of the
self-energy on a given frequency grid (see Secs. II G 4 and II G 8).
When instantiating an object of the SelfEnergy type, a given
frequency grid can either be supplied or a suitable one is generated
automatically based on the value of the regulator Λ. In addition,
the asymptotic value of the retarded component of the self-energy
has to be set. Most of the time, this should be the Hartree value
ΣH, as the SelfEnergy inside the code is supposed to be used
only for the dynamical, i.e., frequency-dependent, contributions of
the self-energy, which excludes the constant Hartree value. For the
sAM, the Hartree value is constant, ΣH = U/2; in the asymmetric
case, it has to be computed self-consistently beforehand. This can
be performed inside the code using the HartreeSolver class (see
Sec. III A 1).

The SelfEnergy class provides a host of methods used
throughout the code. Most importantly, it can return the value of
the self-energy either directly at a given input on the frequency grid
(fast) or return an interpolated value at a given continuous frequency
(not so fast). It can also set the value of Σ for a given input. In addi-
tion, one can compute the p-norm of Σ and the relative deviation
to a different SelfEnergy instance using the maximum norm. This

is used to check convergence in parquet computations detailed in
Sec. III B.

Finally, multiple operators are defined for the SelfEnergy
class, which are used to add or subtract two SelfEnergy instances
or to multiply some number with a SelfEnergy instance.

3. The State class
Instances of the State class are the high-level objects that are

mainly used by the high-level algorithms discussed in Sec. III. The
State class combines a GeneralVertex and a SelfEnergy, which
together contain all non-trivial information that one might wish to
compute. In that sense, it suffices to completely specify the “state”
of the calculations. For the purpose of fRG calculations, the State
class also holds the value of the flow parameter Λ.

As with the vertex classes and the SelfEnergy class, the State
class also comes with operators that can be used to add and subtract
states from one another and to multiply a number with a state.
Under the hood, these operators just invoke the corresponding
operators previously defined for the vertex and self-energy. Hence,
all high-level algorithms can manipulate instances of the State class
directly, e.g., by combining several iterations of the parquet solver in
a mixing scheme.

4. The Propagator class
The Propagator class is special in the sense that it stores

almost no data itself. Instead, it references instances of the
SelfEnergy class and combines the analytical form of the bare
propagator G0 with the self-energy via the Dyson equation,
G = 1/[(G0)

−1
− Σ]. To that end, it can return the value of a given

propagator at some point, interpolated on the frequency grid of the
referenced self-energy. This can be performed either directly for a
given Keldysh component at some continuous frequency or vector-
ized over all Keldysh components. As G0 depends on the formalism
used and in mfRG on the choice of the regulator, separate methods
for a variety of choices are provided. In addition, one can specify
whether the full propagator G shall be computed, or the single-scale
propagator S, the differentiated propagator including the Katanin
extension,48 or just the Katanin extension by itself (see Sec. III C).
Note that the Katanin extension requires the self-energy differen-
tiated with respect to the flow parameter Λ; hence, the propagator
class references two SelfEnergy instances, one non-differentiated
and one differentiated.

5. The Bubble class
Finally, the Bubble class combines two propagators to yield a

bubble in one of the three two-particle channels a, p, and t, according
to Eqs. (C1a)–(C1c) in Ref. 1. For evaluating differentiated bubbles
in mfRG, one of the propagators can be chosen to be the single-
scale propagator S or the fully differentiated one Ġ. In that case,
the bubble already takes care of the product rule, giving (sym-
bolically) Π̇ S

= GS + SG or Π̇ = GĠ + ĠG. Otherwise, it just yields
Π = GG. The Bubble class provides functions for obtaining the
value of a bubble in a given channel at specified bosonic and
fermionic frequencies, either for one specific Keldysh compo-
nent directly or vectorized over the Keldysh structure. This class
simplifies bubble computations using the bubble_function (see
Sec. II D 1).
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D. Main functions for diagrammatic computations
Computing bubbles and loops involves contractions over quan-

tum numbers and Keldysh indices, including integrations over
frequencies for all possible combinations of external arguments, and
is by far the most costly part for the numerics. A clean and efficient
implementation of this functionality is, therefore, paramount and
should be of the highest priority when setting up a new code. In the
following, we provide technical details on this most important part
of the code.

1. The bubble_function

The bubble_function implements Eqs. (C2a)–(C2c) from
Ref. 1. It takes references to three vertices as arguments, one to
store the result of the computation and two others to be connected
by a Bubble object. This Bubble object can either be supplied
as well or is initialized by an overload of the bubble_function,
which in addition requires the two propagators that shall be used
for the Bubble. The main work is then performed by an instance
of the class BubbleFunctionCalculator, which performs the
bubble contractions for each diagrammatic class separately. This is
performed for every possible combination of external arguments,
i.e., Keldysh indices and frequencies. At this point, the calculations
are parallelized as outlined in Sec. II G 1. For each set of argu-
ments, an Integrand object is instantiated, which puts together
the two vertices and the bubble and performs the contraction over
Keldysh indices if the flag SWITCH_SUM_N_INTEGRAL is set to 1. The
Integrand class provides an operator that reads out the integrand
at a given frequency. It is called by the integrator, invoked subse-
quently, and described in detail in Sec. II G 5. The results of all the
frequency integrations are finally collected and added to the vertex
object that was given as the first argument to the bubble_function.
The choice not to output a completely new vertex but instead to add
the result to an existing vertex has historical reasons to save memory.
This increased the risk of logical errors during high-level algorithm
implementations, though, and in hindsight, the bubble_function
should better have been designed to output a completely new vertex
object.

2. The loop function
The loop function implements Eq. (C3) from Ref. 1 and is

structured similarly to the bubble_function. It takes a reference
to self-energy for storing the result as well as references to a ver-
tex and a propagator as arguments for the loop. For each external
fermionic frequency, in which the computation is parallelized again,
it invokes the integrator to perform a frequency integration using the
IntegrandSE class. For the aAM, the asymptotic value of the just
computed self-energy is extracted from the Hartree- and the K1,t and
K2′ ,t terms after the calculation. For the sAM, the asymptotic value
of the self-energy is a known constant.

E. Postprocessing
The code provides a host of postprocessing functions. These

are not required for the actual calculations themselves but are
useful to extract additional information from their results, either
as consistency checks or to infer derived quantities for later
analysis.

1. Causality check for the self-energy
By causality, the imaginary part of the retarded component

of the self-energy is strictly non-positive;49 Im ΣR
(ν) ≤ 0 for all fre-

quencies ν ∈ R. A violation of this condition not only constitutes an
unphysical result but often leads to numerical instabilities. The code,
therefore, provides the function check_SE_causality that checks
this condition for a supplied instance of SelfEnergy. Typically, this
function is invoked after each ODE step during an mfRG calculation
or after each iteration of the parquet solver.

2. Fluctuation dissipation relations
In thermal equilibrium at temperature T, one has

a fluctuation–dissipation relation (FDR)11,27 between the
retarded and the Keldysh components of the propagator,
GK
(ν) = 2i tanh ( ν

2T ) Im GR
(ν), and the self-energy, ΣK

(ν)
= 2i tanh ( ν

2T ) Im ΣR
(ν). This relation can be used to infer the

Keldysh components of the self-energy from the retarded compo-
nent or vice versa; hence, it would in principle suffice to compute
only one of the components. However, in the vectorized form of the
code, both components of the self-energy are computed anyway.
The FDR can hence be used as an internal consistency check,
provided by the function check_FDTs_selfenergy. It computes
ΣK from ΣR via the FDR and compares it to the independently
computed Keldysh-component of the self-energy by computing the
2-norm of the difference.

As an additional consistency check, the fulfillment of
fluctuation–dissipation relations for the K1 classes, reading

Im KR
1 (ω) = −

i
2

tanh(
ω

2T
)KK

1 (ω), (10)

can be examined. One may also want to check generalized FDRs for
three-point and four-point contributions of the vertex.50

3. Kramers–Kronig relation
For functions f(ω) that are analytic in the upper half plane, like

retarded single-particle correlation functions, the Kramers–Kronig
transform relates the real and imaginary parts via

Re f (ω) =
1
π
𝒫∫

∞

−∞
dω′

Im f (ω′)
ω′ − ω

, (11)

where 𝒫 denotes the Cauchy principal value. Inside the code, the
function check_Kramers_Kronig can be used to test how well this
generic analytic property is fulfilled.

4. Sum rule for the spectral function
The fermionic spectral function A(ν) = −Im GR

(ν)/π must
obey the sum rule

∫

∞

−∞
dν A(ν) = 1. (12)

The function sum_rule_spectrum implements this integral as a
consistency check.
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5. Susceptibilities
Susceptibilities, which are of significant physical relevance,

are derived from the vertex by contracting pairs of external legs.
Diagrammatically, the formula for the a-channel susceptibility reads

(13)

and similarly for the susceptibilities in the p and t channel.
The fully parametrized equations are provided in Eq. (C7)
of Ref. 1. Linear combinations of these diagrammatic sus-
ceptibilities yield the physical susceptibilities [see Eq. (C8) of
Ref. 1]. The code computes susceptibilities using the func-
tion compute_postprocessed_susceptibilities, which can
be invoked after a completed calculation using the name of the file
that stores the results. It iterates through all layers that correspond
to ODE steps or parquet iterations (see Sec. II F), evaluates Eq. (C7)
using the vertex and self-energy for each, and stores the results as a
new dataset in the same file.

It was found in Ref. 47 that for converged parquet computa-
tions, susceptibilities can more easily be extracted directly from the
K1 class. As discussed in Refs. 1 and 51, one can also choose to com-
pute susceptibilities that way during fRG computations, even though
the two schemes are inequivalent if multiloop convergence is not
reached. The two different schemes of computing susceptibilities can
then be used to gauge the quality of the truncation.

6. Vertex slices
Finally, the function save_slices_through_fullvertex

can be used to read out two-dimensional “slices” of the full
vertex. It takes the filename corresponding to the results of a fin-
ished calculation as an argument, iterates through all layers, and
saves a two-dimensional cut of all Keldysh components of the full
vertex in the t-channel parametrization for zero transfer frequency
(ωt = 0, νt , ν′t) for a given spin component. While this function does
not perform any non-trivial calculations, it is useful for visual-
ization purposes. If desired, the function can be straightforwardly
adapted to store vertex slices at finite transfer frequencies, enabling
full scans through the three-dimensional structure of the four-point
vertex.

F. I/O
We use the HDF5 file format37 for input and output pur-

poses throughout. To organize the data for output, the contents of
a state are split into different datasets that correspond, e.g., to all the
asymptotic classes of the vertex in each channel, the self-energy, the
frequency grids, and the most important parameters of the calcula-
tion. The output file is then organized on a high level in terms of
“Λ layers,” the idea being that each layer enables access to a differ-
ent state stored in the same file. Thereby, a single file contains, e.g.,
the results of a full mfRG flow, where each “Λ layer” corresponds
to a different value of the regulator. Alternatively, this structure
can be used to store the results of all iterations needed for solving
the parquet equations. Of course, one can equally well use just a
single layer to store the end result of a computation, such as a
converged solution of the parquet equations or the result of a PT2
computation.

The function write_state_to_hdf creates a new file with
a fixed number of layers and saves an initial state into the first
layer. Additional states generated during subsequent computations
can be added to the same file (but into a different layer to be
specified) using the function add_state_to_hdf. In effect, these
functions are wrappers of a host of additional functions that are
able to store various data structures, such as scalars, vectors, or even
Eigen-matrices, in an HDF file.

When using parallelization, as detailed in Sec. II G 1, one has to
ensure that only one single process writes data into the output file.
Collisions, where multiple processes simultaneously try to write to
the same location in memory, will cause the program to crash.

It is possible to read data from an existing HDF file to gener-
ate a new state for subsequent computations. For this purpose, the
function read_state_from_hdf reads a state from a specified layer
of a provided HDF file. One can thus do checkpointing: If all steps
of an mfRG flow or all iterations of the parquet solver are stored
separately, a computation that was interrupted can be continued
from the last step stored. This design feature is useful for large
computations that have to be split over several separate jobs or
in the case of a hardware error causing a job to crash. Setting up
checkpointing functionality is, therefore, strongly recommended.

G. Performance
In the following, we discuss parts of the code of special

importance for performance. Of course, there is always a trade-
off between accuracy and performance, as, e.g., an arbitrary high
frequency resolution quickly becomes prohibitive. Nevertheless,
efficient implementations are necessary for challenging compu-
tations.52 For the precision-focused calculations for which this
codebase was developed, these parts are, therefore, of utmost
importance.

1. MPI+OpenMP parallelization
As mentioned in the beginning, mfRG and parquet compu-

tations can be heavily parallelized since the correlation functions
are (repeatedly) evaluated independently for every possible combi-
nation of external arguments. Parallelization is especially advisable
for computing bubbles of two four-point vertices, as outlined in
Sec. II D 1. We use the OpenMP interface for parallelization across
multiple threads on a single node and the MPI interface for paral-
lelization across multiple nodes. While OpenMP parallelization works
with shared memory, meaning that all threads have access to the
same data on the node that they are running on, one has to be careful
with MPI parallelization working on distributed memory. Processes
that run on different nodes to compute, say, a four-point vertex for
different sets of external arguments cannot write their results into
the same instance of a four-point vertex. Hence, we introduce addi-
tional buffers distributed across the nodes. After the computation
of, say, a four-point vertex is finished, these buffers are collected,
and their contents are put together to yield the full result. While
this scheme is initially somewhat cumbersome to set up, it pays
off tremendously, as the code’s performance scales well with the
computational resources, including multiple nodes. This is because,
first, computations for different external arguments are independent
from each other, so there is minimal communication between the
nodes. Second, the number of external arguments required for
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precision-focused calculations is large, so individual threads have
little downtime waiting for other threads to finish. For example, the
most expensive calculations in Ref. 1 involved 125 points along each
of the three frequency axes, which were parallelized across 32 nodes
running 32 threads each. Provided enough CPU power, the resolu-
tion could, in principle, be increased further but is ultimately limited
by memory.

2. Vectorization
As outlined in Sec. I C, KF calculations require computing

2n Keldysh components of n-point functions. These components
can be arranged into a matrix, yielding, e.g., a 4 × 4 matrix for the
four-point vertex. This structure can be exploited for summing over
Keldysh indices by using vectorization and the data structures of the
Eigen library,36 significantly improving performance. This works
because all Keldysh components are stored in contiguous sections of
memory. Of course, the other parts of the code have to be able to use
these data structures properly, which is why all functions that enable,
e.g., access to the correlation functions (see Sec. II C) have two
versions: one that can handle matrix-valued data when vectorization
is used, and another used otherwise.

When using vectorization, all Keldysh components have to be
stored explicitly. As a consequence, identities that relate different
Keldysh components, such as certain symmetries or FDRs, cannot be
used to reduce the numerical effort. Although maximal exploitation
of symmetries initially was one of our main objectives, we later found
that vectorization over Keldysh components is preferential despite
the larger memory costs.

In the finite-T MaF, we use vectorization to represent the
Matsubara frequency dependence of all correlation functions. This
leads to massive speedups when performing Matsubara sums as
matrix-multiplications.

3. Symmetries
Many symmetries for reducing the number of data points to

be computed directly can still be used together with vectorization
over Keldysh indices. These include crossing symmetry of the vertex,
which relates a vertex to itself with one pair of external fermionic
legs exchanged; complex conjugation of the vertex; SU(2) symmetry
in the absence of a magnetic field (which, in combination with cross-
ing symmetry, reduces the number of independent spin components
to 1); and frequency symmetries in the presence of particle–hole
symmetry. For explicit details on these symmetries, see Appendix
A in Ref. 1.

Since frequency integrations are the most costly part of the
computations, symmetry operations are not used for evaluating
integrands on the fly. Instead, they are used to reduce the num-
ber of vertex components to be computed. Since the vectorized
version of the code performs sums over Keldysh indices by matrix
multiplication, the result of the integration contains all Keldysh
components. Hence, we use the symmetry relations to reduce the
other arguments, i.e., spin and frequency. Information about the
symmetry-reduced components is encoded in symmetry tables.
These contain entries for every channel, asymptotic class, spin com-
ponent, and frequency sector and indicate whether a data point
belongs to the symmetry-reduced sector or, otherwise, how to
retrieve a value via symmetry relations.

4. Frequency grids
For numerical calculations, the continuous frequency depen-

dence of correlation functions in the KF (and in the MaF at
T = 0) must be discretized. Since these functions can become sharply
peaked around certain frequencies, especially at lower temperatures,
but simultaneously decay only slowly asymptotically (typically ∼1/ν2

or even ∼1/ν for some components), finding a suitable discretization
that resolves all sharp structures but still captures the asymptotic
decay is hard. Since the sharp features mostly occur at smaller
frequencies (measured relative to the hybridization Δ), we use a fre-
quency grid that provides high resolution at small frequencies and
fewer points at high frequencies. To achieve this, an equidistant
grid of an auxiliary variable Ω ∈ [−1, 1] is mapped to frequencies
according to ν(Ω) = AΩ∣Ω∣/

√

1 −Ω2. The parameter A > 0 can be
suitably chosen automatically or by hand for all quantities, as further
explained in Appendix G of Ref. 1. However, we do not recom-
mend optimizing A automatically, as this can become expensive and
unreliable in the presence of numerical artifacts.

The frequency grid is implemented in the FrequencyGrid
class. It specifies the grid parameters such as the number of grid
points or the scale factor A, and can access both continuous frequen-
cies ν and auxiliary variables Ω corresponding to a given discrete
index. Crucially, this also works the other way around, yielding the
discrete index that corresponds to the frequency closest to a given
continuous frequency. This is needed for interpolations, discussed
in Sec. II G 7.

An instance of the FrequencyGrid class is instantiated in
every instance of one of the correlation function classes to param-
eterize their respective frequency dependencies. The vertex classes
naturally require up to three instances of the FrequencyGrid
each.

The frequency grids are rescaled during mfRG flow calcula-
tions, which use the hybridization flow scheme (see Sec. III C). The
FrequencyGrid class provides all the functionality required for that
purpose.

As a side note, two alternative frequency grids have been imple-
mented. One is a hybrid grid, which consists of a quadratic part
at small frequencies, a linear part at intermediate frequencies, and
a rational part at large frequencies. The other uses polar coordi-
nates to parametrize the two-dimensional frequency dependence of
three-point functions, i.e., the K2 and K2′ classes. Which grid is to be
used is controlled by the GRID flag (see Sec. II I). In our experience,
the non-linear grid explained at the beginning of this section is the
most useful if the scale parameters A are chosen suitably.

5. Frequency integration
The following passage is taken almost verbatim from the Ph.D.

thesis of E. Walter.28

Computing numerical integrals with high accuracy is a cru-
cial ingredient for obtaining correct results in the context of the
diagrammatic calculations discussed here. At the same time, the
integrator is also critical for the performance of the computa-
tion, since evaluating integrals constitutes the computationally most
expensive part of the code. For these reasons, we use an adaptive
integration routine that automatically determines where to evaluate
the integrand within the integration domain. Regions with sharp fea-
tures require many evaluation points in order to get high accuracy,
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while in regions where the integrand is smooth, fewer evaluations
suffice, which increases the performance of the computation. Such
an adaptive integrator is really indispensable for the problem at
hand. Non-adaptive routines like a simple trapezoidal or Simpson
rule on an equidistant grid often lead to systematically wrong
results.

We use n-point integration rules that approximate integrals of
the kind ∫

b
a F(x) dx ≈ ∑n

j=1 F(x j)w j with nodes xj and correspond-
ing weights wj. The integrator we use and which is implemented in
the Adapt class in the code is an adaptive 4-point Gauss–Lobatto
routine with a 7-point Kronrod extension and a 13-point Kronrod
extension as an error estimate, as detailed in Ref. 53. The ben-
efit of Gauss–Lobatto rules, compared to, e.g., the widely used
Gauss–Kronrod rules, is that the nodes include the endpoints of
the integration domain. This allows us to subdivide the domain at
the nodes of the integration rule and reuse points that have been
computed previously, which is preferential in terms of performance.
Similarly, the Kronrod extensions of a Gauss–Lobatto rule reuse
all points from a corresponding lower-point rule and simply add
additional points, which effectively allows us to get two different
rules from one set of evaluation points.

The nodes xj of the 4-point Gauss–Lobatto rule with 7-point
and 13-point Kronrod extensions are distributed as shown in Fig. 2.
There, the lower row indicates the values of the nodes for integra-
tion boundaries a = −1, b = 1 (for other values of a, b, the values
have to be rescaled correspondingly). The four-point Gauss–Lobatto
rule (GL4) and four-point Gauss–Lobatto with seven-point Kronrod
extension (GLK7) use the following points:

GL4(x0, x6) = ∑
j∈{0,2,4,6}

F(xj)wj , (14a)

GLK7(x0, x6) =
6

∑
j=0

F(xj)wj . (14b)

The smaller marks between the nodes x0, . . . , x6 in the graphical
representation above indicate the additional 6 points that are
added in the 13-point Kronrod extension (GLK13), which are
only known numerically (these and the weights wj are found in
Ref. 53).

The recursive algorithm of the integrator then works as shown
in Fig. 3. Note that the error estimate Is is determined only once
for the full integral and then reused for each subinterval in order
to avoid infinite recursions in subintervals. A typical recommended
value for the relative accuracy is ε = 10−5, which is set by the global
variable integrator_tol (see Table II).

FIG. 2. Distribution of the nodes xj of the 4-point Gauss–Lobatto rule with 7-point
and 13-point Kronrod extensions. The lower row indicates the values of the nodes
for integration boundaries a = −1, b = 1.

FIG. 3. Schematic illustration of the integration algorithm: an adaptive 4-point
Gauss–Lobatto routine with a 7-point Kronrod extension and a 13-point Kronrod
extension as an error estimate.

6. Asymptotic corrections to frequency integrals
In Sec. II G 5, it was explained how frequency integrations over

a finite interval [a, b] are performed. Since diagrammatic calcula-
tions require integrations over the full frequency axis (or summa-
tions over an infinite set of discrete Matsubara frequencies for the
finite-T MaF), the contributions to the integral resulting from the
high-frequency asymptotics of the integrands have to be treated as
well. This is particularly relevant for slowly decaying integrands,
which occur often, as the correlation functions arising in the present
context typically only decay as ∼1/ν or ∼1/ν2.

In the KF and the zero-T MaF, involving continuous frequency
integrations, a naïve treatment turned out to be sufficient: Since
the frequency axes are discretized non-uniformly, as described in
Sec. II G 4, the largest discrete frequency grid point is always so
large that the high-frequency tails can be treated via quadrature,
ignoring the minuscule contributions of even larger frequencies. For
finite-T MaF computations, which involve infinite sums, the code
provides two options for the treatment of high-frequency tails in
the integrand: (i) The tails can be treated via quadrature by approx-
imating the sum with an integral and then following the same logic
as in the KF. (ii) For bubble computations, the lowest order con-
tribution from the bare bubble, which is known analytically, can
be used. This is justified by the fact that in the high-frequency
asymptotic limit, the non-trivial contributions due to interactions
encoded in the self-energy have decayed, and only the bare contri-
bution is responsible for the asymptotic behavior. The first or second
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option is chosen with the ANALYTIC_TAILS parameter flag (see also
Sec. II I).

7. Interpolation routines
Whenever the value of a correlation function at some

continuous frequency argument is required, in particular during
frequency integrations, the data stored on discrete frequency grids
has to be interpolated. In addition, the diagrammatic algorithms dis-
cussed here have feedback between the three two-particle channels,
which all have their own channel-dependent parametrizations. This
necessitates accurate interpolations between different frequency
parametrizations; otherwise, errors accumulate over the course of a
computation.

To handle the interpolation of multidimensional correla-
tion functions, we implemented multilinear interpolation and
cubic spline interpolation using cubic Hermite splines. While
spline interpolation is robust against minor inaccuracies of the
data points and offers faster convergence in the number of
frequency points for smooth functions, multilinear interpolation
is generally faster numerically. Having tried out both options,
we prefer linear interpolation, as spline interpolation only really
becomes useful for better precision if the function is already well
resolved.

Regarding linear interpolation, the code offers options: One
can either interpolate on the grid of frequencies ν or on the grid of
auxiliary frequencies Ω, which are equidistantly spaced on the inter-
val [−1, 1] (see Sec. II G 4). We found the latter option to be more
accurate. The global parameter INTERPOLATION specifies which
type of interpolation shall be used (see also Sec. II I).

8. Data structures
The central low-level data structure used for storing and

retrieving numerical data inside the code is the dataBuffer class.
It was devised with the two main intentions of efficiency and
flexibility in mind (see also our discussion of the main design
choices for the codebase in the introduction, Sec. I). On the one
hand, it should enable building integrands that return scalar- or
vector-valued entries as efficiently as possible, particularly avoiding
conditional (“if-else”) statements during runtime, as these prevent
optimizations such as loop-vectorization or function inlining. On
the other hand, it should be useable in all parts of the codebase, e.g.,
for both calculations with interpolations on continuous frequency
grids and for finite-T MaF calculations, which only require indexing
of discrete data points.

The dataBuffer class is structured as follows. It builds
upon the dataContainerBase class, which is used to represent
multi-dimensional tensors, allowing scalar and vector-valued access
to contiguous elements. The DataContainer class then inher-
its dataContainerBase, adding frequency information. It con-
tains a multi-dimensional frequency grid (see Sec. II G 4) to
parameterize all its associated frequency arguments and provides
functions to analyze the resolution of frequency grids. Inheriting
the DataContainer class, the Interpolator classes then imple-
ment the different interpolation routines outlined in Sec. II G 7.
Multilinear cubic spline interpolations require pre-computation and
storage of interpolation coefficients, whereas linear interpolations
happen on the fly. Finally, the dataBuffer class inherits both the

Interpolator and the DataContainer classes and can be used
in actual computation. In addition, it can update and optimize grid
parameters as required.

9. Template arguments
Another performance-critical aspect of the codebase is its heavy

use of templates. In particular, the propagation of template argu-
ments as specified by preprocessor flags enables the determination
of the required diagrammatic combinations for any given computa-
tion at compile time. Selecting and combining the necessary vertex
contributions this way, e.g., for contributions to specific asymptotic
classes, enables further optimization by the compiler. However, the
ubiquity of template arguments comes at the expense of readability
in many places.

H. Tests
The code includes a large number (178 as of writing) of self-

explanatory unit tests that run checks on the low-level parts of the
codebase. They are implemented using the popular Catch2 library54

and are invoked from a separate C++ source file, unit_tests.cpp,
which should be built separately from the main source file. From
inside this file, more involved and expensive tests can be started if
desired. These include detailed tests of the ODE solver or pertur-
bation theory, which are too expensive to be part of the unit test
suite. Finally, the code includes functionality to produce reference
data that can be used later to compare the results of a calcula-
tion after changes to the code have been made. We have found it
immensely useful to include many unit tests in the codebase, as they
can tell almost immediately if a single technical part of the code
has broken. Moreover, having a way to compare the results of very
involved computations that involve large parts of the codebase at
once is useful to catch logical errors. We wholeheartedly recommend
both.

I. Parameters
Before any individual calculation can be started, a number of

parameters have to be set. As the code provides a large degree of
flexibility, the number of possible parameter choices is large. Most
of these parameters are set inside the corresponding header files
before compilation. The reason for this is that, depending on these
choices, often different functionality of the code is invoked, depend-
ing, e.g., on the choice of formalism. This is achieved by defining
preprocessor macros accordingly, which makes the correspond-
ing functionality accessible. As discussed previously in too many
preprocessor macros (“flags”), while this approach was useful for
implementing new functionality quickly, in the long run, it turned
out to be problematic with regard to the readability and maintain-
ability of the code. Table I provides a list (albeit incomplete) of the
most important preprocessor flags used in the code with a short
description of each.

In addition, global parameters have to be set, which specify
settings like the resolution of the frequency grid, convergence
criteria, or start- and end-points of an mfRG flow. Table II provides
a non-exhaustive list of those.

Finally, it should be mentioned that once the code has been
compiled and the resulting executable is to be called, it requires
three run-time arguments: The first one invokes an mfRG run if it
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TABLE I. Incomplete list of the most important preprocessor macros to be set before compilation.

Macro name Possible values Description

ADAPTIVE_GRID ⋅ ⋅ ⋅ If defined, use the optimization routine to find the best scale factor A of the
frequency grid; if undefined, just rescale the grid. Warning: Can be expensive
and unreliable in the presence of numerical artifacts

ANALYTIC_TAILS 0, 1 0 for false; 1 for true. If true, the analytic expression for the bare bubble is
used to treat the high-frequency asymptotics during bubble computations in
the finite-T MaF

BARE_SE_FEEDBACK ⋅ ⋅ ⋅ If defined, only bare selfenergy is used. It only makes sense if
STATIC_FEEDBACK is defined. Useful for benchmarks with previous Keldysh
fRG schemes

CONTOUR_BASIS 0, 1 0 for false, 1 for true: If true, no Keldysh rotation is performed, and the
contour basis is used instead to parameterize the Keldysh components of
all correlation functions. It is useful for comparisons with results that use
this convention. Not as well tested and, therefore, not recommended for
production runs

DEBUG_SYMMETRIES 0, 1 0 for false; 1 for true. Performs computations without the use of symmetries,
if true. Useful for debugging purposes

GRID 0, 1, 2 Controls which frequency grid is to be used. 0 for the non-linear grid, 1
for the hybrid grid, and 2 for the polar grid. Recommendation: 0. See also
Sec. II G 4

KATANIN ⋅ ⋅ ⋅ If defined, the Katanin extension is used during fRG computations
KELDYSH_FORMALISM Determines whether calculations shall be performed in the Keldysh or

Matsubara formalism. 0 for Matsubara formalism (MaF); 1 for Keldysh
formalism (KF)

MAX_DIAG_CLASS 1, 2, 3 Defines the diagrammatic classes that will be considered: 1 for only K1,
2 for K1 and K2, and 3 for the full dependencies. Useful for debugging
purposes and for computations in second-order perturbation theory, or if
STATIC_FEEDBACK is defined, when only K1 is required

NDEBUG ⋅ ⋅ ⋅ If defined, assert functions are switched off. Recommended setting for
production runs

PARTICLE_HOLE_SYMM 0, 1 0 for false; 1 for true. If true, particle–hole symmetry is assumed
PT2_FLOW ⋅ ⋅ ⋅ If defined, only compute the flow equations up to O(U2

). Only makes sense
for pure K1 calculations. It is useful as a consistency check together with
independent PT2 calculations

REG 2, 3, 4, 5 Specifies the mfRG flow regulator to be used. 2: Δ-flow, 3: ω-flow, 4: U-flow,
5: T-flow. For details, see Sec. III C 2

REPARAMETRIZE_FLOWGRID ⋅ ⋅ ⋅ If defined, the flow parameter is reparametrized according to Sec. III C 1.
Only recommended for the Δ-flow

SBE_DECOMPOSITION 0, 1 0 for false; 1 for true. If true, the SBE decomposition is used to parameterize
the vertex and the flow equations. Only implemented in the MaF!

SELF_ENERGY_FLOW_CORRECTIONS 0, 1 0 for false; 1 for true. If true, corrections to the flow equations for the vertex
from the self-energy, starting at ℓ = 3, are included

STATIC_FEEDBACK ⋅ ⋅ ⋅ If defined, use static K1 inter-channel feedback as performed in 11. Only
makes sense for pure K1 calculations

SWITCH_SUM_N_INTEGRAL 0, 1 0 for false; 1 for true. If true, the sum over internal Keldysh indices is
performed before the frequency integration. Recommended setting: 1

USE_ANDERSON_ACCELERATION 0, 1 0 for false; 1 for true. If true, Anderson acceleration is used to converge
parquet iterations and self-energy iterations in mfRG faster

USE_MPI ⋅ ⋅ ⋅ If defined, MPI is used for parallelization across multiple nodes
USE_SBEb_MFRG_EQS 0, 1 Determines which version of the SBE approximation shall be used. 0 for

SBEa, 1 for SBEb. Only implemented in the MaF!
VECTORIZED_INTEGRATION 0, 1 0 for false; 1 for true. If true, integrals are performed with vector-valued

integrands. For Keldysh, vectorization over Keldysh indices. For Matsubara
at finite T, vectorization over the Matsubara sum

ZERO_TEMP 0, 1 0 for false; 1 for true. If true, temperature T = 0 is assumed
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TABLE II. Incomplete list of global parameters to be set before compilation.

Parameter name Type Description

converged_tol double Tolerance for loop convergence in mfRG
COUNT int Used to set the number of frequency points in the MaF. For details,

see the definitions in the file frequency_parameters.hpp
Delta_factor_K1 int Scale factor for the frequency grid of the K1 vertex class
Delta_factor_SE int Scale factor for the frequency grid of the self-energy
Delta_factor_K2_w int Scale factor for the frequency grid of the bosonic frequency of the

K2 and K2′ vertex classes
Delta_factor_K2_v int Scale factor for the frequency grid of the fermionic frequency of the

K2 and K2′ vertex classes
Delta_factor_K3_w int Scale factor for the frequency grid of the bosonic frequency of the

K3 vertex class
Delta_factor_K3_v int Scale factor for the frequency grid of the fermionic frequencies of

the K3 vertex class
EQUILIBRIUM bool If true, use equilibrium FDRs for propagators
glb_mu double Chemical potential – w.l.o.g. ALWAYS set to 0.0 for the AM!
integrator_tol double Integrator tolerance
inter_tol double Tolerance for closeness to grid points when interpolating
INTERPOLATION linear, linear_on_aux, cubic Interpolation method to be used. linear: linear interpolation on

the frequency grid. linear_on_aux: linear interpolation on the
grid for the auxiliary frequency Ω. cubic: Interpolation with cubic
splines (warning: expensive!)

Lambda_ini double Initial value of the regulator Λ for an mfRG flow
Lambda_fin double Final value of the regulator Λ for an mfRG flow
Lambda_scale double Scale of the log substitution, relevant in the hybridization flow
dLambda_initial double Initial step size for ODE solvers with adaptive step size control
nBOS int Number of bosonic frequency points for the K1 vertex class
nFER int Number of fermionic frequency points for the self-energy
nBOS2 int Number of bosonic frequency points for the K2 and K2′ vertex

classes
nFER2 int Number of fermionic frequency points for the K2 and K2′ vertex

classes
nBOS3 int Number of bosonic frequency points for the K3 vertex class
nFER3 int Number of fermionic frequency points for the K3 vertex class
U_NRG std::vector<double> Vector with the values of U in units of Δ that an mfRG flow should

cover. Serve as checkpoints for the flow. It is useful for bench-
marking purposes if data from other methods at precise parameter
points are available

VERBOSE bool If true, detailed information about all computational steps is writ-
ten into the log file. Recommended setting for production runs:
false

nmax_Selfenergy_iterations int Maximal number of self-energy iterations to be performed during
an mfRG flow for ℓ ≥ 3. Default value: 10

tol_selfenergy_correction_abs double Absolute tolerance for self-energy iterations in mfRG. Default
value: 10−9

tol_selfenergy_correction_rel double Relative tolerance for self-energy iterations in mfRG. Default
value: 10−5

is a positive integer, specifying the maximal number of loop orders
calculated during the mfRG flow. Alternatively, if it is set to 0 or
−1, a parquet or PT2 calculation is started, respectively. The second
is a positive integer and specifies the number of nodes to be
utilized. The third runtime argument defines the temperature for the

calculation and was introduced to easily enable parameter sweeps
without having to recompile the code every time. Note that its value
is irrelevant for calculations that have the flag ZERO_TEMP set to 1
or if an mfRG run is performed with the flag REG set to 5, which
employs the temperature flow.
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III. ALGORITHMS
In the third main part of the paper, we finally describe three

diagrammatic algorithms that have been implemented. These are
second-order perturbation theory (PT), a self-consistent solution
of the parquet equations, and the flow equations provided by the
multiloop functional renormalization group (mfRG). For all three
methods, we first give some theoretical background before describ-
ing schematically how the algorithms are implemented and what
functions are being used.

A. Perturbation theory
The simplest computations that can be performed with the

code are perturbation theory calculations. While these are easy to
implement in the second order, going to higher orders involves an
increasing number of diagrams, which can in principle be evalu-
ated separately. This is, however, not always straightforward, e.g.,
if symmetries are to be exploited: individual diagrams of the pertur-
bation series do not all have the same symmetries as a full vertex,
such that symmetry-related diagrams have to be provided, which
can become tedious. Alternatively, the flag DEBUG_SYMMETRIES can
be set to 1, see Sec. II I, in which case the code does not attempt
to exploit symmetries. As higher-order perturbation theory has
so far only been performed for testing purposes and consistency
checks (see, e.g., Chap. 7 in Ref. 28), we refrain from going into
further detail here. Instead, we focus just on the second-order
case and on Hartree–Fock theory for the self-energy relevant to
the aAM.

1. Hartree–Fock
As elaborated in Ref. 1, it is helpful to replace the bare prop-

agator G0 by the Hartree-propagator GH, which is shifted by the
Hartree-term of the self-energy,

GR
0 → GR

H =
1

ν − εd + iΔ − ΣR
H

. (15)

For the sAM, this is almost trivial, as the retarded component of the
Hartree term reads ΣR

H = U/2, which simply yields GR
H = (ν + iΔ)−1.

For the aAM, on the other hand, the Hartree-term can be computed
self-consistently.

For this purpose, the class Hartree_Solver provides
the function compute_Hartree_term_bracketing. It computes
ΣR

H via

ΣR
H = U ∫

dν′

2πi
G<H(ν

′
), (16)

where in thermal equilibrium, the relation G<(ν)
= −2i nF(ν)Im GR

(ν) is used with the Fermi function nF(ν)
= 1/(1 + eν/T

). As ΣR
H enters both sides of Eq. (16), this calculation is

performed self-consistently using a simple bracketing algorithm.
In addition, the Hartree_Solver class provides the func-

tion compute_Hartree_term_oneshot, which evaluates Eq. (16)
just once, given a provided self-energy for GR

(ν). This function is
invoked in the context of parquet iterations and evaluations of mfRG
flow equations to update the Hartree term of the aAM.

FIG. 4. Schematic depiction of the function sopt_state.

Finally, the Hartree_solver class provides function-
ality to check the fulfillment of the Friedel sum rule55

⟨nσ⟩ =
1
2−

1
π arctan [(εd + Σ(0))/Δ], which the self-consistent

Hartree term fulfills at T = 0.

2. Second order perturbation theory (PT2)
The self-energy and vertex in second-order perturbation the-

ory are computed via the function sopt_state, which works as
depicted in Fig. 4. It first initializes a bare state (see Sec. II C 3),
given the system parameters and the current value of the regulator
Λ. For the aAM, this already includes a self-consistent calculation
of the Hartree term (see Sec. III A 1). Then, it invokes the func-
tion selfEnergyInSOPT, which computes the single diagram for
the dynamical part of the self-energy in PT2 by first computing
a bare bubble in the a-channel using the bubble_function (see
Sec. II D 1), with two bare vertices, and then closing the loop
over that bare bubble with the Hartree-propagator using the loop
function (see Sec. II D 2).

Thereafter, the vertex is computed using the function
vertexInSOPT, which simply invokes the bubble_function three
times, once for each of the three two-particle channels a, p, and t,
using two bare vertices, adding each result to the vertex.

In total, this procedure yields all diagrams for the dynamical
part of the self-energy and the vertex in PT2, using the Hartree-
propagator GH. For the precise diagrammatic definition of PT2, see
Appendix F in Ref. 1.

B. Parquet equations
The parquet formalism56 provides a self-consistent set of equa-

tions for the self-energy Σ and the three two-particle reducible ver-
tices γr with r ∈ {a, p, t}. The latter are given by the Bethe–Salpeter
equations (BSEs)

(17a)

(17b)

J. Chem. Phys. 161, 054118 (2024); doi: 10.1063/5.0221340 161, 054118-14

© Author(s) 2024

 07 August 2024 12:57:10

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 5. Schematic depiction of the parquet_solver function.

(17c)

where Ir = Γ − γr is the two-particle irreducible vertex in channel r.
The self-energy is given by the Schwinger–Dyson equation (SDE),

(18)

which includes the Hartree term discussed in Sec. III A 1. Together,
these equations close once the fully irreducible vertex R is provided,
for example, by employing the PA, as discussed in Sec. I B.

In practice, these equations are solved iteratively. The code pro-
vides functions to evaluate the right-hand sides of the BSEs and
the SDE, called compute_BSE and compute_SDE. Schematically,
the parquet solver works as depicted in Fig. 5. Inside the code,
a parquet computation is started by the function run_parquet.
It first initializes a state using PT2, as detailed in Sec. III A 2,
before the parquet_solver function is called. Internally, the
parquet_solver calls parquet_iteration, which evaluates the
BSEs and the SDE, given a provided input state, and combines them
into an output state. The corresponding functions compute_BSE
and compute_SDE use the machinery described in Secs. II C and II D
to evaluate Eqs. (17) and (18). In practice, symmetrizing Eq. (17),
i.e., computing the sum of the right-hand side as is and with Ir and Γ
interchanged and dividing by two, has proven beneficial for stability.

In addition, we found it helpful to combine all three ways to evaluate
the SDE, Eq. (18) (see Appendix D in Ref. 1).

The parquet_solver can either proceed directly from one
iteration to the next, or it can combine multiple results from pre-
vious iterations using mixing schemes to improve convergence. For
example, one can combine the two most recent iterations with a mix-
ing factor as outlined in Eq. (G4) of Ref. 1. One may start with a
mixing factor of around 0.5, which can be reduced automatically if
the convergence properties of the calculation are poor. In addition,
one can use Anderson acceleration57,58 to combine multiple previ-
ous iterations for a prediction of the next iteration. We have found
that this leads to faster convergence in the vicinity of the solution
but does not extend the parameter range where convergence can be
reached.

The parquet solver can also be used for calculations in the ran-
dom phase approximation (RPA). Switching off the BSEs in two of
the three two-particle channels readily yields the RPA-ladder in the
other channel.

C. mfRG
In fRG,59 the self-energy and vertex are interpolated between

the initial and final values of a single-particle parameter Λ intro-
duced into the bare propagator G0. The initial value Λ = Λi should
be chosen such that the theory is solvable at that point; in practice,
it typically suffices that very good approximations of ΣΛi and ΓΛi can
be obtained by PT2 or by converging the parquet equations. The fRG
then provides a set of differential “flow” equations in Λ for ΣΛ and
ΓΛ, which yield the final results ΣΛ f and ΓΛ f at the actual point of
interest Λ = Λ f . In the multiloop fRG framework, these flow equa-
tions are derived from the parquet equations by differentiation with
respect to the flow parameter Λ, as detailed in Ref. 18. This yields an
infinite set of contributions of increasing “loop order” ℓ,

Γ̇ = ∑
r∈{a,p,t}

γ̇r , (19a)

γ̇r =
∞
∑
ℓ=1

γ̇(l)r , (19b)

where a dot represents a derivative with respect to Λ. Diagrammati-
cally, the ℓ-loop contributions in the a channel read

(20a)

(20b)

(20c)
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and analogously in the other two channels p and t. Here,
γ(ℓ)r̄ = ∑r′≠r̄ γ(ℓ)r′ , and Eq. (20c) applies for all higher loop orders
ℓ + 2 ≥ 3. The double-dashed bubble in Eq. (20) corresponds to
a sum of two terms, Π̇ = ĠG +GĠ, where Ġ = S +GΣ̇G with the
single-scale propagator S = ∂ΛG∣Σ=const. and the Katanin substitu-
tion.48

The multiloop flow equation for the self-energy reads

(21a)

(21b)

with γ̇t̄,C = ∑ℓ (γ̇
(ℓ)
a,C + γ̇(ℓ)p,C ), where the single-dashed line denotes

the single-scale propagator S from above.
Historically, fRG flow equations have been derived from a

generating functional, yielding an exact hierarchy of flow equations
which couple n-point vertices of increasing order.60 As the six-point
vertex, which contributes to the flow equation of Γ, see Eq. (19) in
Ref. 1, is inaccessible numerically, its contribution is often neglected
completely, resulting in the so-called “one-loop” flow equations.
This, however, results in an unphysical dependence of the final result
of the flow on the choice of regulator (as the flow equations no longer
constitute total derivatives) and also introduces a bias toward ladder
diagrams.16,61

The multiloop framework builds upon the one-loop scheme
by iteratively adding precisely those two-particle reducible dia-
grammatic contributions to the flow equations that are required to
reinstate total derivatives with respect to Λ and thereby reproduce
the solution of the parquet equations. In that sense, it provides an
alternative scheme for solving the parquet iterations via differen-
tial equations. From a computational standpoint, the mfRG flow
equations introduce a complication compared to the one-loop flow
equations, in that the right-hand sides of the flow equations for both
Γ and Σ involve the differentiated self-energy and vertex. In order to
still be able to use standard algorithms for ordinary differential equa-
tions, a scheme was outlined in Ref. 16 to include those differentiated
quantities iteratively. Starting from the one-loop term Eq. (21a) to
evaluate the flow Eq. (20) for Γ, these are then iterated with the
multiloop corrections (21b) at every step of the flow until conver-
gence is reached. The number of iterations required for convergence
at this point can again be reduced using Anderson acceleration, as
described in Sec. III B.

From the code, an mfRG-flow computation can be started with
the function n_loop_flow, which requires only the string for the
name of the output file and a set of parameters. It is overloaded
to enable checkpointing, i.e., it is possible to continue a previ-
ously started computation from a given iteration. This is particularly
useful for demanding jobs that take a long time, and it is highly
recommended to any user.

FIG. 6. Schematic depiction of the function n_loop_flow.

The function n_loop_flow works as shown in Fig. 6. It first
initializes a state using PT2 with the function sopt_state, see
Sec. III A 2, and then uses this result as a seed for a full parquet
computation at the initial value of the regulator Λi with the
parquet_solver function, see Sec. III B. This provides a suitable
starting point for the following mfRG calculation.

The ode_solver function carries out the actual calcula-
tion of solving the mfRG flow. It uses an instance of the
rhs_n_loop_flow_t class, which provides a wrapper to the
function rhs_n_loop_flow, which in turn evaluates the right-
hand side of the flow equations given an input state at a
given value of Λ. This is performed iteratively by loop order
according to flow Eq. (20), including self-consistent iterations for
the self-energy starting at the three-loop level, as outlined ear-
lier. The function rhs_n_loop_flow is structured as shown in
Fig. 7. Starting from the self-energy and vertex from the previ-
ous step of the ODE-solver, it evaluates the right-hand sides of
the flow equations by first computing the one-loop term of the
flow equation for the self-energy, Eq. (21a), with the function
selfEnergyOneLoopFlow. The result is then used to evaluate the
one-loop term of the flow equation for the two-particle reducible
vertices γ̇r and Eq. (20), involving a fully differentiated bubble.
Then, the one-loop result is used to evaluate the two-loop con-
tribution, Eq. (20b), which consists of two terms: one where the
differentiated one-loop contribution γ̇(1)r is used as the left part
of a bubble contraction with the full vertex, and one where it
is used on the right side. These two terms are computed using
the functions calculate_dGammaL and calculate_dGammaR,
respectively. Next, the three-loop contribution is computed,
which involves both the one-loop and the two-loop results
[see Eq. (20c)]. Again, the functions calculate_dGammaL and
calculate_dGammaR are invoked, and in addition, the function
calculate_dGammaC is invoked to compute the “center term”
involving two bubble contractions of γ̇(1)r with the full vertex, once
to the left and once to the right. As the structure of the flow
equations does not change from this point on, this part is iterated
until the maximally desired loop number n (which is given as a
runtime parameter; see Sec. II I) is reached. The resulting cen-
ter terms of the a and p channels are then used to evaluate the
multiloop corrections to the self-energy, according to Eq. (21b).
This updates the differentiated bubble used in the computation
of the one-loop terms γ̇(1)r , such that the whole process is finally
iterated from that point on until convergence is reached, as deter-
mined by the parameters tol_selfenergy_correction_abs and
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FIG. 7. Structure of the function rhs_n_loop_flow, including multiloop itera-
tions up to loop order ℓ = n and self-consistent self-energy iterations due to the
multiloop corrections.

tol_selfenergy_correction_rel (see Sec. II I). All functions
invoked by rhs_n_loop_flow, of course, make heavy use of the
main functionality outlined in Sec. II D.

As a side note, it is possible to parameterize the vertex using the
single-boson exchange (SBE) decomposition62–67 and to rewrite the
mfRG flow equations in this language, as outlined in Ref. 68. This is
achieved by setting the flag SBE_DECOMPOSITION to 1. Two versions
of the SBE approximation can be used, known as “SBEa” and “SBEb”
in the literature.69 Which version is to be used is controlled by the
flag USE_SBEb_MFRG_EQS (see Sec. II I). This functionality is, so far,
only implemented in the MaF. We, therefore, refrain from providing
further details here.

In the final two parts of this section, we discuss the ODE-solver
and the different flow schemes.

1. Details on the ODE-solver
To solve the mfRG flow equations accurately, a Cash–Karp

routine70 is implemented, which constitutes a fourth-order
Runge–Kutta solver with adaptive step size control. An adaptive
step-size control is crucial for obtaining accurate results and is
hereby strongly recommended for solving fRG flow equations
precisely. For a good first guess of the step size in the Δ-flow
(see Sec. III C 2 a), the flow parameter is reparametrized as Λ(t)
= 5t∣t∣/

√

1 − t2. For equidistant t, this parametrization provides
large steps for large Λ and small steps for small Λ. This is sensible in
the context of the Δ-flow, where Λ is gradually reduced to enter ever
more challenging parameter regimes.

2. Flow schemes
In fRG, one chooses a regulator introduced into the bare prop-

agator G0 → GΛ
0 , i.e., the flow scheme. While the solution of a

truncated set of fRG flow equations will depend on this choice,
a converged multiloop flow will not, as it reproduces the self-
consistent solution of the parquet equations. It is generally advisable
to choose the most convenient flow scheme for the problem at hand.
In particular, the fRG flow can be used to compute a full parameter
sweep in one go by choosing a physical parameter as the regulator.
Compared to direct solutions of the parquet equations, which have
to be computed individually at every point in parameter space, this
makes mfRG computations more economical, provided they can be
quickly converged in the loop order. In the following, we outline the
flow schemes that have been implemented and can be used by set-
ting the REG flag and the Lambda_ini and Lambda_fin parameters
accordingly (see Tables I and II).

a. Δ-flow. The hybridization flow11 uses Δ as the flow para-
meter, starting at a very large value and decreasing Δ to a smaller
value, keeping the other parameters U and T fixed. The hybridiza-
tion flow thus performs a parameter sweep in U/Δ for fixed T/U.
The Keldysh fRG single-scale propagator reads

SR
(ν) = ∂Δ GR

(ν)∣Σ=const.
= −i[GR

(ν)]2.

In practice, we start the fRG flow from a solution of the par-
quet equations at large Δ (small U/Δ), where that solution can
be easily obtained. For historical reasons, the hybridization flow is
implemented as

GR
Λ(ν) =

1
ν − εd + i(Γ +Λ)/2 − ΣR

Λ(ν)
, (22)

inside the code, where Γ is fixed to some arbitrary value and Λ is used
to fix the hybridization Δ = (Γ +Λ)/2. Note that keeping T/U fixed
during the Δ-flow is a somewhat unconventional choice, as in most
works on the AM, the scale T/Δ is kept constant. As explained in
Ref. 28, keeping T/Δ fixed during the Δ-flow would lead to addi-
tional sharply peaked terms in the single-scale propagator and has
hence not been pursued yet.

b. U-flow. An alternative to the Δ-flow is the following flow
scheme, first introduced in Ref. 71,

GR
Λ(ν) =

Λ
ν − εd + iΔ −Λ ΣR

Λ(ν)
, (23)

starting at Λi = 0 (or very small, in practice) and flowing toward
Λ f = 1. The corresponding single-scale propagator then reads

SR
(ν) = ∂Λ GR

(ν)∣Σ=const.
=

ν − εd + iΔ
[ν − εd + iΔ −Λ ΣR

Λ(ν)]
2 . (24)

This flow scheme is called interaction- or U-flow because increasing
Λ effectively amounts to increasing U. This can be shown by a simple
rescaling argument: A bare diagram for Σ (or Γ) at order n has n fac-
tors of U and 2n − 1 (or 2n − 2) factors of G0,Λ, each contributing
one factor of Λ. The same scaling behavior in Λ can be achieved
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without a Λ-dependent G0 by multiplying U with Λ2 and dividing
out an extra Λ (or Λ2). It hence holds that

ΣΛ(U) = Σ(Λ2U)/Λ, (25a)

ΓΛ(U) = Γ(Λ2U)/Λ2. (25b)

Note that at zero temperature, the two flow schemes discussed so far
should be equivalent: For T = 0, the only energy scales of the AM
in the wideband limit are U and Δ, so there is only one external
parameter U/Δ and it does not matter whether U is increased or
Δ is decreased.

Historically, the U-flow has not been very popular, as it does
not regulate IR divergences.59 Nevertheless, it can be used for the
AM. In Ref. 1, we found that, for a truncated 1-loop Keldysh fRG
flow at finite T, this scheme produces inferior results compared to
the Δ-flow when benchmarked against numerically exact NRG data.
Still, the U-flow has the nice property that it keeps T/Δ fixed.

c. T-flow. Using temperature as the fRG flow parameter has
been popular in the past when performing fRG computations in the
MaF.72,73 It has been argued that temperature cannot be used for
this purpose in Keldysh fRG computations,11 the reason being that
a truncated fRG flow does not preserve fluctuation–dissipation rela-
tions (FDRs). However, solutions to the parquet equations do fulfill
the FDRs. If the FDRs are not used explicitly during mfRG calcula-
tions (as this would mix FDRs at different temperatures and hence
introduce an inconsistency), it should also be possible to obtain these
solutions by converging an mfRG flow. Instead of the standard FDR,
which relates GK and GR, in this scheme, the general expression for
the Keldysh component of the propagator should be used, which
reads28

GK
(ν) = GR

(ν)[ΣK
(ν) − 2iΔ tanh(

ν
2T
)]GA

(ν). (26)

The Keldysh component of the single-scale propagator is then

SK
(ν) = ∂TGK

(ν)∣Σ=const.
=

iΔν
T2 cosh2

( ν
2T )
∣GR
(ν)∣2. (27)

Note that its retarded component is zero; SR
(ν) = 0, as GR

(ν) does
not depend explicitly on T. While preliminary numerical results
suggest that this scheme indeed performs well, a systematic study
of the temperature flow in Keldysh fRG is left for future work. So
far, at the time of writing, the temperature flow described earlier can
only be used in the KF; corresponding regulators in the MaF, as in
Refs. 72 and 73, have not been implemented.

d. ν-flow. Using a frequency regulator of the form G0,Λ(iν)
= G0(iν)ΘΛ(iν) with ΘΛ(iν) = ν2

/(ν2
+Λ2
) has been a popular

choice in the literature for (m)fRG calculations in the Matsubara
formalism.74,75 However, in this form, the frequency regulator can-
not be used in the Keldysh formalism, as the analytical continuation
of ΘΛ(iν) gives ΘR

Λ(ν) = ν2
/(ν2
−Λ2

+ 2∣ν∣i0+) with a branch cut

for ν < 0. One can, however, change the form of the regulator to
ΘΛ(iν) = ∣ν∣/(∣ν∣ +Λ), for which the retarded counterpart reads

ΘR
Λ(ν) =

ν
ν + iΛ

, (28)

which is a well-behaved function. This choice is implemented as

GR
Λ(ν) =

ΘR
Λ(ν)

ν − εd + iΔ −ΘR
Λ(ν)Σ

R
Λ(ν)

. (29)

The corresponding single-scale propagator then reads

SR
(ν) = −

i
ν

[ΘR
Λ(ν)]

2
(ν − εd + iΔ)

[ν − εd + iΔ −ΘR
Λ(ν)Σ

R
Λ(ν)]

2 . (30)

With this choice, all causality relations and FDRs are satisfied. How-
ever, this regulator has two drawbacks compared to the other flow
schemes: First, it does not produce a parameter sweep, as Λ does not
directly correspond to a physical parameter. Second, computations
become ever more challenging for smaller Λ: Even if all correla-
tion functions are reasonably smooth in frequency space for Λ = 0,
for small but finite Λ, they exhibit sharp features. While this is not
an issue for finite-temperature Matsubara calculations, where only
sums over discrete Matsubara frequencies are performed, it turns
out to be a major inconvenience in the Keldysh context.

IV. CONCLUSION
In this paper, we outline the structure and design of our C++

codebase for diagrammatic calculations of the AM in the Keldysh
formalism. We explained the building blocks for representing real-
frequency correlation functions and the central routines used to
compute them. We elaborated on all performance-critical aspects,
allowing one to handle the three-dimensional frequency dependence
of the four-point vertex, and summarized the implementation of the
parquet and mfRG equations. By discussing the most convenient
features of the codebase—modularity, flexibility, performance, and
scalability—but also some of its design flaws in detail, we hope to
provide guidance and inspiration to others who plan to write code
for similar purposes.

Our codebase forms the basis for numerous future projects
involving the dynamical correlation functions of electronic many-
body systems. Since the AM is very well understood, we want to gen-
eralize our treatment to more complicated models with unexplored
physics, like lattice models, possibly including multiple bands. The
main problem in that regard is the numerical complexity. In addi-
tion to their real-frequency Keldysh structure, all functions would
acquire momentum dependencies and orbital indices. Parametriz-
ing those naively appears prohibitively costly. Fortunately, the new
quantics tensor cross interpolation (QTCI) scheme76–78 is cur-
rently being developed, which can be used to obtain highly com-
pressed tensor network representations of correlation functions and
promises exponential reductions in computational costs. It remains
to be seen how efficiently the Keldysh four-point vertex can be com-
pressed using this method. If it turned out to be highly compressible,
one could combine the diagrammatic approaches outlined here with
non-perturbative results from dynamical mean-field theory to access
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truly strongly correlated parameter regimes (see related works79–81

in the MaF). In particular, computing non-local real-frequency
dynamical vertex corrections beyond DMFT for observables like
optical conductivities with high precision is a formidable long-term
goal.

Another possible future direction relates to nonequilibrium
phenomena, for example, the influence of the full four-point vertex
on observables like differential conductivities.12,82 Nonequilibrium
physics has been the most popular application of the KF in the past,
and the AM with a finite bias voltage is tractable with only a minor
increase in both the numerical costs and the implementation effort.

In order to leverage ongoing efforts in the QTCI framework,
an interface to the corresponding Julia package83 would be required.
Given that, in recent years, multiple Julia codes have been developed
to perform calculations of two-particle correlation functions,84–87 it
would be natural to switch to that language in the future, especially
since it allows much simpler structures and, in general, performs
almost as well as C++.
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24V. Zlatić and B. Horvatić, “Series expansion for the symmetric Anderson
Hamiltonian,” Phys. Rev. B 28, 6904–6906 (1983).
25P. B. Wiegmann and A. M. Tsvelick, “Exact solution of the Anderson model: I,”
J. Phys. C: Solid State Phys. 16, 2281 (1983).
26P. W. Anderson, “Localized magnetic states in metals,” Phys. Rev. 124, 41–53
(1961).
27A. Kamenev, in Field Theory of Non-Equilibrium Systems, 2nd ed. (Cambridge
University Press, 2023).
28E. Walter, “Real-frequency dynamics of quantum impurity models studied with
fRG, NRG, CFT,” Ph.D. thesis, LMU München, 2021.
29L. V. Keldysh, “Diagram technique for nonequilibrium processes,” Sov. Phys.
JETP 20, 1018–1026 (1965).
30J. Schwinger, “Brownian motion of a quantum oscillator,” J. Math. Phys. 2,
407–432 (1961).
31L. P. Kadanoff and G. A. Baym, Quantum Statistical Mechanics (Benjamin, New
York, 1962).
32ISO/IEC 14882:2017 - Programming languages—C++, International Organiza-
tion for Standardization, 2017.
33Kitware, Inc., CMake documentation, https://cmake.org/documentation/.
34GNU Scientific Library Reference Manual: For GSL version 1.12, 3rd ed., edited
by M. Galassi (Network Theory, Bristol, 2009).
35See https://www.boost.org/ for Boost C++ Libraries.
36G. Guennebaud, B. Jacob et al., Eigen: A C++ linear algebra library,
http://eigen.tuxfamily.org.
37The HDF Group, Hierarchical data format, version 5, https://www.hdfgroup.
org/HDF5/.
38See https://www.openmp.org/ for the OpenMP API specification for parallel
programming.
39See https://hpc.nmsu.edu/discovery/mpi/introduction/ for message passing
interface: High performance computing.
40D. van Heesch, Doxygen: A documentation system for C++, C, Java, Python
and other languages, https://www.doxygen.nl/.
41See https://www.sphinx-doc.org/ for Sphinx Documentation Generator.
42See https://breathe.readthedocs.io/en/latest/ for Breathe “latest” documenta-
tion.
43G. Rohringer, H. Hafermann, A. Toschi, A. A. Katanin, A. E. Antipov, M. I.
Katsnelson, A. I. Lichtenstein, A. N. Rubtsov, and K. Held, “Diagrammatic routes
to nonlocal correlations beyond dynamical mean field theory,” Rev. Mod. Phys.
90, 025003 (2018).
44A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, “Dynamical mean-
field theory of strongly correlated fermion systems and the limit of infinite
dimensions,” Rev. Mod. Phys. 68, 13–125 (1996).
45A. Toschi, A. A. Katanin, and K. Held, “Dynamical vertex approximation: A step
beyond dynamical mean-field theory,” Phys. Rev. B 75, 045118 (2007).
46C. Taranto, S. Andergassen, J. Bauer, K. Held, A. Katanin, W. Metzner,
G. Rohringer, and A. Toschi, “From infinite to two dimensions through the
functional renormalization group,” Phys. Rev. Lett. 112, 196402 (2014).
47N. Wentzell, G. Li, A. Tagliavini, C. Taranto, G. Rohringer, K. Held, A. Toschi,
and S. Andergassen, “High-frequency asymptotics of the vertex function: Dia-
grammatic parametrization and algorithmic implementation,” Phys. Rev. B 102,
085106 (2020).
48A. A. Katanin, “Fulfillment of Ward identities in the functional renormalization
group approach,” Phys. Rev. B 70, 115109 (2004).
49F. B. Kugler, “Improved estimator for numerical renormalization group
calculations of the self-energy,” Phys. Rev. B 105, 245132 (2022).
50E. Wang and U. Heinz, “Generalized fluctuation-dissipation theorem for
nonlinear response functions,” Phys. Rev. D 66, 025008 (2002).
51C. Hille, F. B. Kugler, C. J. Eckhardt, Y.-Y. He, A. Kauch, C. Honerkamp,
A. Toschi, and S. Andergassen, “Quantitative functional renormalization group
description of the two-dimensional Hubbard model,” Phys. Rev. Res. 2, 033372
(2020).
52D. Rohe, “Hierarchical parallelisation of functional renormalisation group
calculations—hp-fRG,” Comput. Phys. Commun. 207, 160–169 (2016).

53W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, in Numerical
Recipes—The Art of Scientific Computing, 3rd ed. (Cambridge University Press,
2007).
54A modern, C++-native, test framework for unit-tests, TDD and BDD.
55D. C. Langreth, “Friedel sum rule for Anderson’s model of localized impurity
states,” Phys. Rev. 150, 516–518 (1966).
56N. E. Bickers, “Self-consistent many-body theory for condensed matter
systems,” in Theoretical Methods for Strongly Correlated Electrons, CRM Series
in Mathematical Physics, edited by D. Sénéchal, A.-M. Tremblay, and C.
Bourbonnais (Springer, New York, 2004).
57D. G. Anderson, “Iterative procedures for nonlinear integral equations,” J. ACM
12, 547–560 (1965).
58H. F. Walker and P. Ni, “Anderson acceleration for fixed-point iterations,”
SIAM J. Numer. Anal. 49, 1715–1735 (2011).
59W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K. Schönhammer,
“Functional renormalization group approach to correlated fermion systems,” Rev.
Mod. Phys. 84, 299–352 (2012).
60C. Wetterich, “Exact evolution equation for the effective potential,” Phys. Lett.
B 301, 90–94 (1993).
61F. B. Kugler and J. von Delft, “Fermi-edge singularity and the functional
renormalization group,” J. Phys.: Condens. Matter 30, 195501 (2018).
62F. Krien, “Efficient evaluation of the polarization function in dynamical mean-
field theory,” Phys. Rev. B 99, 235106 (2019).
63F. Krien, A. Valli, and M. Capone, “Single-boson exchange decomposition of
the vertex function,” Phys. Rev. B 100, 155149 (2019).
64F. Krien and A. Valli, “Parquetlike equations for the Hedin three-leg vertex,”
Phys. Rev. B 100, 245147 (2019).
65F. Krien, A. I. Lichtenstein, and G. Rohringer, “Fluctuation diagnostic of the
nodal/antinodal dichotomy in the Hubbard model at weak coupling: A parquet
dual fermion approach,” Phys. Rev. B 102, 235133 (2020).
66F. Krien, A. Valli, P. Chalupa, M. Capone, A. I. Lichtenstein, and A. Toschi,
“Boson-exchange parquet solver for dual fermions,” Phys. Rev. B 102, 195131
(2020).
67F. Krien, A. Kauch, and K. Held, “Tiling with triangles: Parquet and GWγ
methods unified,” Phys. Rev. Res. 3, 013149 (2021).
68M. Gievers, E. Walter, A. Ge, J. von Delft, and F. B. Kugler, “Multiloop flow
equations for single-boson exchange fRG,” Eur. Phys. J. B 95, 108 (2022).
69K. Fraboulet, S. Heinzelmann, P. M. Bonetti, A. Al-Eryani, D. Vilardi, A. Toschi,
and S. Andergassen, “Single-boson exchange functional renormalization group
application to the two-dimensional Hubbard model at weak coupling,” Eur. Phys.
J. B 95, 202 (2022).
70J. R. Cash and A. H. Karp, “A variable order Runge-Kutta method for ini-
tial value problems with rapidly varying right-hand sides,” ACM Trans. Math.
Software 16, 201–222 (1990).
71C. Honerkamp, D. Rohe, S. Andergassen, and T. Enss, “Interaction flow method
for many-fermion systems,” Phys. Rev. B 70, 235115 (2004).
72C. Honerkamp and M. Salmhofer, “Temperature-flow renormalization group
and the competition between superconductivity and ferromagnetism,” Phys. Rev.
B 64, 184516 (2001).
73B. Schneider, J. Reuther, M. G. Gonzalez, B. Sbierski, and N. Niggemann,
“Temperature flow in pseudo-Majorana functional renormalization for quantum
spins,” Phys. Rev. B 109, 195109 (2024).
74A. Tagliavini, C. Hille, F. B. Kugler, S. Andergassen, A. Toschi, and C. Hon-
erkamp, “Multiloop functional renormalization group for the two-dimensional
Hubbard model: Loop convergence of the response functions,” SciPost Phys. 6,
009 (2019).
75P. Chalupa-Gantner, F. B. Kugler, C. Hille, J. von Delft, S. Andergassen, and A.
Toschi, “Fulfillment of sum rules and Ward identities in the multiloop functional
renormalization group solution of the Anderson impurity model,” Phys. Rev. Res.
4, 023050 (2022).
76H. Shinaoka, M. Wallerberger, Y. Murakami, K. Nogaki, R. Sakurai, P. Werner,
and A. Kauch, “Multiscale space-time ansatz for correlation functions of quantum
systems based on quantics tensor trains,” Phys. Rev. X 13, 021015 (2023).

J. Chem. Phys. 161, 054118 (2024); doi: 10.1063/5.0221340 161, 054118-20

© Author(s) 2024

 07 August 2024 12:57:10

https://pubs.aip.org/aip/jcp
https://doi.org/10.1103/revmodphys.80.395
https://doi.org/10.1103/physrevb.28.6904
https://doi.org/10.1088/0022-3719/16/12/017
https://doi.org/10.1103/physrev.124.41
https://doi.org/10.1063/1.1703727
https://cmake.org/documentation/
https://www.boost.org/
http://eigen.tuxfamily.org
https://www.hdfgroup.org/HDF5/
https://www.hdfgroup.org/HDF5/
https://www.openmp.org/
https://hpc.nmsu.edu/discovery/mpi/introduction/
https://www.doxygen.nl/
https://www.sphinx-doc.org/
https://breathe.readthedocs.io/en/latest/
https://doi.org/10.1103/revmodphys.90.025003
https://doi.org/10.1103/revmodphys.68.13
https://doi.org/10.1103/physrevb.75.045118
https://doi.org/10.1103/physrevlett.112.196402
https://doi.org/10.1103/physrevb.102.085106
https://doi.org/10.1103/physrevb.70.115109
https://doi.org/10.1103/physrevb.105.245132
https://doi.org/10.1103/physrevd.66.025008
https://doi.org/10.1103/physrevresearch.2.033372
https://doi.org/10.1016/j.cpc.2016.05.024
https://doi.org/10.1103/physrev.150.516
https://doi.org/10.1145/321296.321305
https://doi.org/10.1137/10078356x
https://doi.org/10.1103/revmodphys.84.299
https://doi.org/10.1103/revmodphys.84.299
https://doi.org/10.1016/0370-2693(93)90726-x
https://doi.org/10.1016/0370-2693(93)90726-x
https://doi.org/10.1088/1361-648x/aaba2e
https://doi.org/10.1103/physrevb.99.235106
https://doi.org/10.1103/physrevb.100.155149
https://doi.org/10.1103/physrevb.100.245147
https://doi.org/10.1103/physrevb.102.235133
https://doi.org/10.1103/physrevb.102.195131
https://doi.org/10.1103/physrevresearch.3.013149
https://doi.org/10.1140/epjb/s10051-022-00353-6
https://doi.org/10.1140/epjb/s10051-022-00438-2
https://doi.org/10.1140/epjb/s10051-022-00438-2
https://doi.org/10.1145/79505.79507
https://doi.org/10.1145/79505.79507
https://doi.org/10.1103/physrevb.70.235115
https://doi.org/10.1103/physrevb.64.184516
https://doi.org/10.1103/physrevb.64.184516
https://doi.org/10.1103/physrevb.109.195109
https://doi.org/10.21468/scipostphys.6.1.009
https://doi.org/10.1103/physrevresearch.4.023050
https://doi.org/10.1103/physrevx.13.021015


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

77Y. Núñez Fernández, M. Jeannin, P. T. Dumitrescu, T. Kloss, J. Kaye, O. Parcol-
let, and X. Waintal, “Learning Feynman diagrams with tensor trains,” Phys. Rev.
X 12, 041018 (2022).
78M. K. Ritter, Y. Núñez Fernández, M. Wallerberger, J. von Delft, H. Shinaoka,
and X. Waintal, “Quantics tensor cross interpolation for high-resolution parsi-
monious representations of multivariate functions,” Phys. Rev. Lett. 132, 056501
(2024).
79M. Kitatani, T. Schäfer, H. Aoki, and K. Held, “Why the critical temperature
of high-Tc cuprate superconductors is so low: The importance of the dynamical
vertex structure,” Phys. Rev. B 99, 041115 (2019).
80D. Vilardi, C. Taranto, and W. Metzner, “Antiferromagnetic and d-wave pairing
correlations in the strongly interacting two-dimensional Hubbard model from the
functional renormalization group,” Phys. Rev. B 99, 104501 (2019).
81P. M. Bonetti, A. Toschi, C. Hille, S. Andergassen, and D. Vilardi, “Single-boson
exchange representation of the functional renormalization group for strongly
interacting many-electron systems,” Phys. Rev. Res. 4, 013034 (2022).

82T. Fujii and K. Ueda, “Perturbative approach to the nonequilibrium Kondo
effect in a quantum dot,” Phys. Rev. B 68, 155310 (2003).
83M. K. Ritter et al., Quanticstci.jl, 2022.
84D. Kiese, T. Müller, Y. Iqbal, R. Thomale, and S. Trebst, “Multiloop functional
renormalization group approach to quantum spin systems,” Phys. Rev. Res. 4,
023185 (2022).
85D. Kiese, A. Ge, N. Ritz, J. von Delft, and N. Wentzell, “MatsubaraFunctions.jl:
An equilibrium Green’s function library in the Julia programming language,”
SciPost Phys. Codebases 24 (2024).
86D. Kiese, A. Ge, N. Ritz, J. von Delft, and N. Wentzell, “Codebase
release 0.1 for MatsubaraFunctions.jl,” SciPost Phys. Codebases 24-r0.1
(2024).
87N. Niggemann, Nilsniggemann/pmfrg.jl: v2.1.9, 2023.
88N. Ritz and A. Ge, KeldyshQFT: A C++ Codebase for real-frequency mul-
tiloop functional renormalization group and parquet computations for the
single-impurity Anderson model.

J. Chem. Phys. 161, 054118 (2024); doi: 10.1063/5.0221340 161, 054118-21

© Author(s) 2024

 07 August 2024 12:57:10

https://pubs.aip.org/aip/jcp
https://doi.org/10.1103/physrevx.12.041018
https://doi.org/10.1103/physrevx.12.041018
https://doi.org/10.1103/physrevlett.132.056501
https://doi.org/10.1103/physrevb.99.041115
https://doi.org/10.1103/physrevb.99.104501
https://doi.org/10.1103/physrevresearch.4.013034
https://doi.org/10.1103/physrevb.68.155310
https://gitlab.com/marc.ritter/QuanticsTCI.jl
https://doi.org/10.1103/physrevresearch.4.023185
https://doi.org/10.21468/scipostphyscodeb.24
https://doi.org/10.21468/SciPostPhysCodeb.24-r0.1
https://doi.org/10.5281/zenodo.10255230
https://github.com/NepomukRitz/KeldyshDiagrammatics
https://github.com/NepomukRitz/KeldyshDiagrammatics
https://github.com/NepomukRitz/KeldyshDiagrammatics

