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Basic properties

@ Theories with a metric, but “physical” correlation functions are metric
independent : topological !

@ Existence of a fermionic symmetry operator Q : nilpotent
Q> =0
@ “Physical” operators are defined to be Q-closed
{Q, Ophyst =0
@ They lie in the cohomology of Q

® The energy-momentum tensor of the theory is Q-exact

Top =1Q,Gap}

(O01...0,) = {(O1...04 {Q, CGas)) =0

Correlation functions of physical operators are
metric independent !
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Topological String Theory

Twisting String Theory makes it possible to define Q on any Riemann surface ! ( Witten 1988 )

® Start with N=(2,2) worldsheet SCFT {T,G*,G~,J}

@ Twist by redefining the energy momentum tensor to eliminate the central charge
1
T(z) = T(z) — 5&](2)

@ All operators have their conformal weights shifted by -q/2

)

|dentify the superpartner of T with +1 U(l) charge and h=Iwith topological BRST current

Q- fcr

® The energy-momentum tensor of the twisted theory becomes BRST-exact
Q.67 = $67-G () =T(3
@ Identify G- with the reparametrization ghost b

® For a Riemann surface of genus g, there are 3(g-1) Beltrami differentials which, together

with G™(z) form the invariant integration measure over moduli space
3(g—1)

F, = /( H |G~ (u;)|?)  Topological String partition function
A, =1
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3(9—1)
g — /< H G~ (1)) Topological String partition function
M, =1

G- has -1 U(l) charge under |(z), but the correlator does not vanish !

J current is anomalous

T(Z)J(w) = 6/2 3 + J(w) 5 + aJ(w) introduces é(g — 1)/2 units of
(z —w) (z —w) Z—w U(1) background charge, providing a
¢/2 possible cancellation of the U(1)
J(2)J (w) = (z — w)? charge of the measure !

The topological partition function is non-vanishing for any genus for ¢/2 = 3 (CY3)
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What is the relation of F; to the full String Theory ?
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graviphoton vertex operator in (-1/2,-1/2) ghost picture

Same as computing an amplitude in the untwisted string theory involving 2(g-1)
graviphoton vertex operators

® -(g-1) units of superghost charge

® 3(g-1) units of U(I) charge

Insert 3(g-1) PCO’s e’Tr =e*G™ + ...

@® Only G part contributes and cancels the U(I) charge

@® Remaining 2(g-1) charge cancels the superghost background charge

® 3(g-1) G- insertions already present
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3(9—1)

g — /< H G~ (1)) Topological String partition function
M, =1

What is the relation of F; to the full String Theory ?

® Hence, consider the amplitude with 2(g-1) graviphoton vertex operators in the
(-1/2,-1/2)-ghost picture, coming in pairs of opposite 4d helicity (to cancel also the
Lorentz charge)

(VO(RZV Y2 (T )9= 1y (12 yo—1 3oy

~ 2 Riemann tensor insertions to soak up fermion zero modes

( Antoniadis, Gava, Narain, Taylor 1993 )
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Topological String Theory

3(9—1)
g — /< H G~ (1)) Topological String partition function
M, =1

What is the relation of F; to the full String Theory ?
(VORPVEV(T )tV (T )t VESSY )~ F,

Topological string partition function computes 1/2 BPS F-terms in the effective action:

[ dto a0 F, 00 WEWEY = [ % Fy( )R R (FE 0 FET

4d N=2 supergravity multiplet : Weyl chiral superfield

ij _ G, i I i _ponj
Wu‘z/ = F(—)iuu -+ 9[ Bg—),uu — (9 o 9“7) R(_),,uypa + ...

the coupling function Fg(X) depends only on holomorphic vector multiplets

XI — ¢I —|_ 92)\,{ —I— %F(I_),uyeij(ei(f'uyej) —|— ..
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Topological String Theory

Topological string partition function computes 1/2 BPS F-terms in the effective action:

[t a0 F, 00 WEWEY = [ % Fy( )R R (FE )\ FET Y .

NO perturbative or non-perturbative corrections to the F; in Type |
® Fois identified with the Seiberg-Witten prepotential

@ For g>1 the F; are interpreted as higher derivative gravitational corrections

@ Relation to Nekrasov partition function for N=2 SU(2) gauge theory

i 939_2 kg

9=0

— 10 Z € — O7 €_ —=
field theory 5 Nek( + gs>

Refinement : one-parameter deformation that captures also €+
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Omega background & Nekrasov partition function

Nekrasov’s partition function is defined as the trace 4

3 3 3 Can be regarded as the
ZNek(€1,€6_) =Tr (—)F e~ 2¢-J= 726+ (JitTR) vacuum amplitude in the
Omega background

over the 4d Hilbert space of the N=2 theory .

® J3:,)3 are the Cartan generators of SU+(2) x SU.(2) Lorentz group

@ J3r is the Cartan current of SU(2) R-symmetry

Consider N=1 gauge theory in 6d and compactify it on T?

@® Example: 4d N=2 Heterotic String Theory on K3xT?

® Melvin-like fibration  ds® = (dX" + Q*dX + Q*dX)? + dXdX
® X: complexified T? coordinate

@® XV: 4d spacetime coordinates

® Omega background : dQY = e, dX* NdX? + eadX> NdX?
o 1

2 parameters : €4 = 5(61 + €3)
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dt —2 2e, 1
ZNek (€, € / cos =~ ) e M
sin(e_ — ey )t sin(e_ — ey )t

0
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The result is (the perturbative part of) Nekrasov’s partition function

Nekrasov 2002
dt —2 COS(2€+t) —ut Nekrasov, Okounkov 2003
€

t sin(e_ — ey )t sin(e_ — ey )t

ZNek(€4,€_) = /
0

® for £:=0 this is precisely the partition function of the Topological String

Z ggg_QFg = log ZNek<6—|— = 0,e_ = 98)
g=0

@ Alternatively, N=2 scattering background of 2 gravitons and 2g-2 graviphotons

® & is then interpreted as the graviphoton field strength
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Traditionally, most attempts at refinement do not follow the worldsheet approach !

® Refined A-model : BPS index of M2-branes wrapping 2-cycles of a CY manifold
(topological vertex formalism)

4 )

Gopakumar,Vafa 1998
Hollowood, Igbal,Vafa 2003
Dijkgraaf, Vafa,Verlinde 2006

- J

> Refined B-model : Holomorphic Anomaly Equation (descendant of a puncture
operator)

4 )

Krefl,Walcher 2007,2010
Huang, Kashani-Poor, Klemm 201 |

- J

No convincing proposal for refinement at the worldsheet level so far (twisted CFT)...
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|deally, a good proposal for refinement should satisfy the following requirements :
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A Exact sigma model

A Correct Field Theory limit
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Consider perturbative string amplitudes as a definition of the worldsheet
partition function of the refined topological string

2 proposals in the literature...
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Proposals for Refinement so far

@ Antoniadis, Hohenegger, Narain & Taylor 2010

@ Nakayama & Ooguri 201 |

Both proposals share similar starting points

o

o

Go to dual theory : N=2 Heterotic string on K3xT?

Consider scattering amplitudes of the form: F), ,, = <R%_)(F(€))29_QV(%L”) )
First appear at genus | in the Heterotic theory (+corrections)

Weak coupling limit : captures perturbative part of the genus-g Type Il amplitude
For n=0, one recovers the Topological String partition function Fg0=F,

(-) : anti-self-dual fields whereas (+) :self-dual

couple to either SU-(2) or SU+(2) factors of the 4d Lorentz group
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Proposals for Refinement so far

& Antoniadis, Hohenegger, Narain & Taylor 2010

@ Nakayama & Ooguri 201 |

The difference lies in the choice of the self-dual vertices V()

[ AHNT 10 j

=

o
o
o
o

Field strength of vector partners of the S modulus
First computed by Morales & Serone (1996)
Exact string amplitude

Fails to reproduce the Nekrasov partition function (misses

an &€+ dependent phase)

Field strengths of vector partners of T, U moduli + Fl terms
Claims to reproduce the Nekrasov partition function
Cannot be evaluated exactly as a string amplitude

Higher €-corrections

Non-compact limit only
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Motivation

| will discuss a new proposal that satisfies all 3 requirements :

& Reduces to the (unrefined) Topological String for €+=0
&) Can be calculated exactly as a string amplitude

& Reproduces the Nekrasov partition function

oo o TEEEEEEEES= N
/dt t —2cos(2e.t) ot
> e
t sin(e_ — e, )t sin(e_ — e )t

ZNek(E—I—a 6—) —
0
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Modulo spin-structure independent prime forms E(a,b), the fermionic contractions can be
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Fermionic Generating Functions

The K3 correlator is encoded into the generating function

G (es) =(exp| — e / P2 (' - X)X ])

h,g

Evaluated in the odd spin structure

Realize K3 as T4/Zn with N=2,3,4,6
h : orbifold sector 2

[(h,g) — N(avb)] [Cb,bEZN]
g : orbifold projection

The resulting functional determinant can be evaluated by C-function regularization
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Full Amplitude

Putting all the pieces together, the full amplitude is

h h
Gle—,ey) = G™ (e €1) nfﬂlv > G @) 2] T oo (TU3Y)

a,bEZ N

Z is the orbifold block of the K3 lattice together with the partition function of E7xSU(2)

[2,2+8) is the partition function of the T? and Eg lattices deformed by the Wilson line

p
1
h hy 1 —Tk1-Tk+h1-Tk—h
AR E DA M PN U,
g s g Qkéo ¢l Ll+gl Ll—g
- m <f F<4,g;> ) (h,g9) = (0,0)
= 2sin(mA 3
g Q([H[f?]])” (h,g) # (0,0)
\ 1+g
Fopry = ¢PlgPelraa@ =ity
miani7Qa€Z

® modular invariant

@ exactly calculable
order by order
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Gauge Symmetry Enhancement

A generic Wilson line along T? breaks Es down to U(I)8

Around a point of enhanced gauge symmetry, the amplitude develops singularities

® close to the singularity, the amplitude is dominated by its field theory limit
@ Consider SU(2) enhancement point
Y\ ** Ya’*—(z,z,y,...,yS)
@ The BPS states becoming massless are
(mi,n')* =0 Q™ = +(1,-1,0,...,0)
® they have left-right moving momenta
Y -Q

Pr, = Pr =
J@T =D =T) = 5(¥ V)2

~
-]

[Y =Y —UY1 complexified Wilson Iinej
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Field Theory Limit

Take the field theory limit around this SU(2) enhancement point :

® Only untwisted h=0 sector is relevant

0
® Up to exponentially suppressed terms Z[ } =1+ O(e ™)
9

@® Z\ projected fermionic correlator

ii Z Gferm{o}(éjL) _ i Z ‘9[1+215/N](é—|—§T>9[1_215/N](é+37_)
N

4 6
U beEZ N 9 beEZ N g

= —2cos(2méL) + O(e ™)

the ZN projected fermionic contribution produces the Nekrasov phase
in the field theory limit !
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Field Theory Limit

Including all contributions, we extract the amplitude at the SU(2) enhancement point

o

Fleen~ (@ - &) [

0

dt —2 cos(2e. t)
t sin(e_ — e, )t sin(e_ + €1 )t

e Kt

BPS mass parameter u~Y - ()

Leading singularity power of F(,n) correctly given as p2-2&2"

Reproduces precisely the perturbative part of Nekrasov’s partition function in 4d !
Holomorphic dependence on the complexified Wilson line Y

Even powers of €+, &- : coupling to self- / anti-self dual field strengths (Lorentz invariance)

Asymmetry under exchange of &+, €- : phase / R-symmetry twist
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Before expanding around the enhancement point, take the volume of T2 to be much
larger than the string scale

T> = Vol(T?) > 1
® Windings decouple n'=n2=0

® Kaluza-Klein spectrum becomes dense and we have to retain the sum over momentum modes
® Keep the complex structure modulus U of T2 fixed
@® Expand the e-parameters, Poisson resum the momenta and perform Ta-integral

One obtains a deformed version of Nekrasov’s partition function
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Radius Deformations & Nekrasov-Okounkov formula

Nekrasov and Okounkov considered the partition function of a 5d theory with 8
supercharges, compactified on a circle S' of radius f and with Q-twist in the 4 non-compact
dimensions

@® Pick rectangular torus T2=S'xS' and send one of the circles to zero : Vo' < Ry < R;

@ Ry — 0 ; . > ()
® Rescale (i/R2)e; — ¢

We then recover precisely the B-deformed partition function of Nekrasov and Okounkov
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Dual Type | Theor’y [Antoniadis, Partouche, Taylor I998j

Heterotic-Type | duality in D=4 on K3xT? : weakly coupled regimes

T = Bys +iG*/? > S’ = Byy +iGYAV 127

® Realize K3 ~T4/Z, orbifold

® 16 D9 and 16 D5 branes at orbifold fixed point : U(16) x U(16) ( Bianchi, Sagnotti 1991 )

@ Wilson Lines for the D9’s : study enhancement points

® S,S associated with gauge couplings of the D9 and D5 branes
L Narain, Zein Assi 2013

Antoniadis, IF, Hohenegger, J

Anti-self-dual graviphoton

{(5}( +ip - xU)(OZ* +ip - xX*) — py(ULW)Oéﬂe—(¢+€5)/25a§66i(¢3+q~53)/22+i—} e”? + L < R]

Self-dual S’-vector (b=+1) or S-vector (b=-1)

[(8X +ip - xU)(0Z* +ip - XXH*) + bpy(5uV)d56—(¢+<5)/25dg6673(¢3+q33)/2§3+i—} e”? 1+ L < R]



Narain, Zein Assi 2013

Dual Type | Theory [ Antoniadis, IF, Hohenegger, J

One loop effective coupling, expanded around SU(2) enhancement point, correctly
reproduces the perturbative part of Nekrasov’s partition function

What about the non-perturbative part ?

@ Realize gauge theory instantons as D-brane configurations (point-like in 4d)
® D9 gauge theory effective action contains 5 / Ce NTr| F N\ F']
@® Instanton configuration on D9 carries Cs charge : D5 instanton
® N D9’ and k D5-instantons wrapping entirely internal space [ Sector || Field || R [ NS
9-9 AH NS
® 9.9 :perturbative N=2 SYM gauge theory U(N) LA R
Aaa R
@ 5-5:unmixed instanton moduli ° NS
D-D at NS
® 9-5and 5-9 : mixed instanton moduli ve NS
Mas R
AaA R
5-0/9-5 || wa,ws NS
i R




Instanton corrections

Study instanton configurations in the closed string background of graviphotons and
S’-vectors

In pure graviphoton background (€+=0) reproduces ()-deformed ADHM action

( Billo, Frau, Fucito, Lerda 2006 )

Consider now full background with self-dual S’-vectors of field strength ~ €+

@® Calculate all disc diagrams and take field theory limit
® D9-D9 diagrams : N=2 SYM action
® D5-D5 diagrams ]ap
® D9-D5 diagrams '," \‘
Xt b
—_— |
\ Or,
\“ "l




Instanton corrections
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Instanton corrections
Narain, Zein Assi 2013

Antoniadis, IF, Hohenegger, J

|dentify constant field strength of self-dual S’-vectors with &+

S’ —C €+
Fiy — nluy 536 7

Adding all disc diagrams together reproduces the full QQ-deformed ADHM action
SaDHM = —Tr([xT, a,5l([x, @] + e_(a73)"*) — xTwa(wx — dw®) — (x@a — Wa@)w X'

-------------------------------

unmixed mixed

Integrating over instanton moduli yields the non-perturbative Nekrasov partition function

Nek L Nekrasov 2002
Z (6_, €+) o Zpert (6_’ 6"") Znon'pert (6_’ 6"‘) [Nekrasov, Okounkov 2003 J
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Outlook
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