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Problem: Show that if

m
d

dτ

(
vi√

1− v2

)
= qFi0 + qFijv

j (0.1)

is satisfied then so is

−m d

dτ

(
1√

1− v2

)
= qF0iv

i (0.2)

Solution: We simply multiply (0.1) by vi and use the anti-symmetry of Fij to deduce

−m d

dτ

(
vi√

1− v2

)
vi = qF0iv

i (0.3)

Now the left hand side is

−m d

dτ

(
vi√

1− v2

)
vi = −mv2 d

dτ

(
1√

1− v2

)
− m√

1− v2
vi
dvi

dτ

= −mv2 d
dτ

(
1√

1− v2

)
− 1

2

m√
1− v2

dv2

dτ

= −mv2 d
dτ

(
1√

1− v2

)
−m(1− v2) d

dτ

(
1√

1− v2

)

= −m d

dτ

(
1√

1− v2

)
(0.4)

This agrees with the left hand side of (0.2) and since the right hand sides already agree
we are done.

Problem: Show that, in static gauge X0 = τ , the Hamiltonian for a charged particle is

H =
√
m2 + (pi − qAi)(pi − qAi)− qA0 (0.5)

Solution: In static gauge the Lagrangian is

L = −m
√

1− Ẋ iẊ i + qA0 + qAiẊ
i (0.6)

so the momentum conjugate to X i is

pi =
∂L

∂Ẋ i

= m
Ẋ i

√
1− v2

+ qAi

(0.7)
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Inverting this gives
Ẋ i

√
1− v2

= (pi − qAi)/m (0.8)

We square to find v2

v2

1− v2
= (p− qA)2/m2 ⇐⇒ v2 =

(p− qA)2

m2 + (p− qA)2
(0.9)

and hence

Ẋ i =
pi − qAi√

m2 + (p− qA)2
(0.10)

Finally we calculate

H = piẊ
i − L

=
(pi − qAi)pi√
m2 + (p− qA)2

+
m2√

m2 + (p− qA)2
− qA0 − q

(pi − qAi)Ai√
m2 + (p− qA)2

=
√
m2 + (p− qA)2 − qA0 (0.11)

Problem: Find the Schödinger equation, contraint and effective action for a quantized
particle in the backgroud of a classical electromagnetic field using the action

Spp = −
∫ 1

2
e
(
− 1

e2
ẊµẊνηµν +m2

)
− AµẊµ (0.12)

Solution: Proceeding as before we first calculate

pµ =
∂L
∂Ẋµ

=
1

e
Ẋνηµν + Aµ

(0.13)

Inverting this gives
Ẋµ = eηµν(pν − Aν) (0.14)

Thus the main effect is merely to shift pµ → pµ − Aµ. The constraint is unchanged as
the new term is independent of e:

1

e2
ẊµẊνηµν +m2 = 0 (0.15)

however in terms of the momentum it becomes

(pµ − Aµ)(pν − Aν)ηµν +m2 = 0 (0.16)
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In the calculation of the Hamiltonian we have two effects. The first is that we which
find from the replacement pµ → pµ − Aµ in the old Hamiltonian. The second is the
addition of the AµẊ

µ term which leads to an addition term

AµẊ
µ = eηµν(pν − Aν)Aµ (0.17)

The factors of Aµ from these two effects combine and we find

H =
e

2

(
ηµν(pµ − Aµ)(pν − Aν) +m2

)
(0.18)

Next consider the quantum theory where we consider wavefunctions Ψ(Xµ, tau) and
promote

p̂µΨ = −i ∂Ψ

∂Xµ
, X̂µΨ = XµΨ (0.19)

Thus the Schrodinger equation is

i
∂Ψ

∂τ
=
e

2

(
−ηµν

(
∂

∂Xµ
− iAµ

)(
∂

∂Xν
− iAν

)
+m2

)
Ψ (0.20)

and the constraint is(
−ηµν

(
∂

∂Xµ
− iAµ

)(
∂

∂Xν
− iAν

)
+m2

)
Ψ = 0 (0.21)

Thus we again find that Ψ is independent of τ . The effective action is just found by
replacing ∂µ → −ipµ + Aµ and hence we have

S =
1

2

∫
dDx(∂µΨ− iAµΨ)(∂νΨ− iAνΨ)ηµν +m2Ψ2 (0.22)

You should recognize this as a Klein-Gordon scalar field coupled to a background Elec-
tromagnetic field.

Problem: Show that by solving the equation of motion for the metric γαβ on a d-
dimensional worldsheet the action

SHT = −1

2

∫
ddσ

√
− det(γ)

(
γαβ∂αX

µ∂βX
νηµν −m2(d− 2)

)
(0.23)

one finds the action

SNG = m2−d
∫
ddσ

√
− det (∂αXµ∂βXνηµν) (0.24)

for the remaining fields Xµ, i.e. calculate and solve the γαβ equation of motion and then
substitute the solution back into SHT to obtain SNG. Note that the action SHT is often
referred to as the Howe-Tucker form for the action whereas SNG is the Nambu-Goto

form. (Hint: You will need to use the fact that δ
√
− det(γ)/δγαβ = −1

2
γαβ

√
− det(γ)
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Solution: From SHT we calculate the γαβ equation of motion

−1

2
∂αX

µ∂βX
νηµν +

1

4
γαβ

(
γγδ∂γX

µ∂δX
νηµν −m2(d− 2)

)
= 0 (0.25)

This implies that
γαβ = b∂αX

µ∂βX
νηµν (0.26)

for some b. To determine b we substitute back into the equation of motion to find

−1

2
+
b

4
(d/b−m2(d− 2)) = 0 (0.27)

where we have used the fact that if gαβ = ∂αX
µ∂βX

νηµν then

γαβgαβ = d/b (0.28)

This tells us that b = m−2. Substituting back into SHT gives

SHT = −1

2
m−d

∫
ddσ

√
− det g

(
dm2 −m2(d− 2)

)
= m2−d

∫
ddσ

√
− det g

(0.29)

where again gαβ = ∂αX
µ∂βX

νηµν . This is precisely SNG.

Problem: What transformation law must γαβ have to ensure that SHT is reparameter-
ization invariant? (Hint: Use the fact that

∂σ′γ

∂σ′α
∂σβ

∂σ′γ
= δβα (0.30)

why?)

Solution: Under a reparameterization σα = σα(σ′) we have that

∂Xµ

∂σα
=
∂Xµ

∂σ′β
∂σ′β

∂σα
(0.31)

Since the m2 term is invariant it must be that

γαβ∂αX
µ∂βX

νηµν (0.32)

is invariant in order for the expression to make sense. Thus we are lead to postulate
that

γ′αβ =
∂σγ

∂σ′α
∂σδ

∂σ′α
γγδ ⇐⇒ γ′αβ =

∂σ′α

∂σγ
∂σ′β

∂δα
γγδ (0.33)
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since
∂σ′γ

∂σα
∂σβ

∂σ′γ
= δβα and

∂σγ

∂σ′α
∂σ′β

∂σγ
= δβα (0.34)

It remains to check that
ddσ

√
− det(γ) (0.35)

is invariant. However this follows from the above formula and the Jacbobian transfor-
mation rule for integration

ddσ = det

(
∂σα

∂σ′β

)
ddσ′ (0.36)

Problem: Show that if xµ, pµ 6= 0 then we also have

[xµ, pν ] = iηµν (0.37)

with the other commutators vanishing.

Solution: Recall that we have

X̂µ = xµ + pµτ +

√
α′

2
i
∑
n6=0

(
aµn
n
ein(τ+σ) +

ãµn
n
ein(τ−σ)

)

P̂ µ =
1

2πα′

pµ −
√
α′

2

∞∑
n6=0

aµne
in(τ+σ) +

√
α′

2

∞∑
n6=0

ãµne
in(τ−σ)

 (0.38)

and we require
[X̂µ(τ, σ), P̂ν(τ, σ

′)] = iδ(σ − σ′)δµν (0.39)

In the lectures we considered terms that come from two oscillators, i.e. terms with
a factor of einτ+imτ . It should be clear that any term in the commutator with a single
exponential must also vanish. Thus we see that the commutator of xµ, wµ, pµ with any
oscillators aµn, ã

µ
n must vanish. Thus the remaining terms are

1

2πα′
[xµ + wµσ, α′pν ] =

i

2π
δµν (0.40)

where on the right hand side we have included a left over term from the calculation of
the oscilators (i.e. the n = 0 term from the Fourier decomposition of δ(σ − σ′)). Okay,
it is clear that the term linear in σ on the left hand side must vanish. Thus we find

[xµ, pν ] = iδµν , [wµ, pν ] = 0 (0.41)

Problem: Show that in these coordinates

T̂++ = ∂+X̂
µ∂+X̂

νηµν

T̂−− = ∂−X̂
µ∂−X̂

νηµν

T̂+− = T−+ = 0

(0.42)
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Solution: We have

T̂αβ = ∂αX
µ∂βX

νηµν −
1

2
ηαβη

γδ∂γX
µ∂δX

νηµν (0.43)

The new coordinates are

σ+ = τ + σ
σ− = τ − σ ⇐⇒

τ = σ++σ−

2

σ = σ+−σ−

2

(0.44)

and hence it follows that ds2 = −dτ 2 + dσ2 = −dσ+dσ−. From this we read off that
η++ = η−− = 0 and η−+ = η+− = −1

2
. Hence η++ = η−− = 0 and η−+ = η+− = −2.

Thus we see that

T̂++ = ∂+X̂
µ∂+X̂

νηµν

T̂−− = ∂−X̂
µ∂−X̂

νηµν

(0.45)

For the T̂−+ components we note that

ηγδ∂γX
µ∂δX

νηµν = −4∂−X
µ∂+X

νηµν (0.46)

so that

T̂−+ = ∂−X
µ∂+X

νηµν −
1

2

1

2
4∂−X

µ∂+X
νηµν = 0 (0.47)

Problem: Show that

< 0, 0; 0| : L2 :: L−2 : |0; 0, 0 >=
D

2
(0.48)

Solution: We have

|2 > = L−2|0; 0, 0 >

=
1

2

∑
n

ηµνα
µ
−2−nα

ν
n|0; 0, 0 >

=
1

2
ηµνα

µ
−1α

ν
−1|0; 0, 0 >

(0.49)

so

< 2|2 > =
1

4
ηµνηλρ < 0, 0 : 0|αλ1α

ρ
1α

µ
−1α

ν
−1|0; 0, 0 >

=
1

4
ηµνηλρ < 0, 0 : 0|αλ1α

µ
−1α

ρ
1α

ν
−1|0; 0, 0 > +

1

4
ηµνηλρη

ρµ < 0, 0 : 0|αλ1αν−1|0; 0, 0 >

=
1

4
ηµνηλρη

ρν < 0, 0 : 0|αλ1α
µ
−1|0; 0, 0 > +

1

4
ηµνηλρη

ρµηλν < 0, 0 : 0|0; 0, 0 >
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=
1

4
ηµνηλρη

ρνηλµ < 0, 0 : 0|0; 0, 0 > +
1

4
ηµνηλρη

ρµηλν < 0, 0 : 0|0; 0, 0 >

=
1

2
ηµνηλρη

ρνηλµ

=
D

2
(0.50)

Problem: Show that the state (a0−1 + a1−1)|0 > has zero norm.

Solution:

< 0|(a01 + a11)(a
0
−1 + a1−1)|0 > = < 0|a01a0−1 + a11a

1
−1|0 >

= η00 + η11

= 0 (0.51)

Problem: Show that the boundary conditions on an open string are

ηµνδX
µ∂σX

ν = 0 (0.52)

at σ = 0, π.

Solution: In calculating the Euler-Lagrange equations for the action one integrates by
parts:∫

d2σηµνη
αβ∂αX

µ∂βδX
ν = −

∫
d2σηµνη

αβ∂β∂αX
µδXν +

∫
d2σηµνη

αβ∂β(∂αX
µδXν)

(0.53)

Thus we need to discard the second term∫
d2σ∂β(ηµνη

αβ∂αX
µδXν) = ηµν∂σX

µδXν (0.54)

where we have used the fact that the normal to the boundary is σ = σ1. Locally implies
that this term should vanish at each end point separately.

Problem: Show that the constraints imply that pµGµν = pνGµν = 0 for the level one
closed string states |Gµν >= Gµνα

µ
−1α̃

ν
−1|0; p >

Solution: Consider L1 first. We find

L1Gµνα
µ
−1α̃

ν
−1|0; p > =

1

2

∑
n

ηλρα
λ
1−nα

ρ
nα

µ
−1α̃

ν
−1|0; p >

(0.55)
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Now if n > 1 then αρn can be commuted through until is annhilates |0; p >. Similarly if
n < 0 αλ1−n can be commuted through until is annhilates |0; p >. Thus we have

L1Gµνα
µ
−1α̃

ν
−1|0; p > =

1

2
ηλρ(α

λ
0α

ρ
1 + αλ1α

ρ
0)Gµνα

µ
−1α̃

ν
−1Gµν |0; p >

= ηλρα
λ
0α

ρ
1α

µ
−1α̃

ν
−1Gµν |0; p >

= ηλρα
λ
0 α̃

ν
−1α

ρ
1α

µ
−1Gµν |0; p >

= ηλρα
λ
0 α̃

ν
−1[α

ρ
1, α

µ
−1]Gµν |0; p >

= ηλρα
λ
0 α̃

ν
−1η

ρµGµν |0; p >

=

√
α′

2
pµα̃ν−1Gµν |0; p >

(0.56)

Since this must vanish we find pµGµν = 0. Similarly evaluating L̃1Gµνα
µ
−1α̃

ν
−1|0; p >= 0

will lead to pνGµν = 0.

Problem: Show that

gµν = G(µν) −
1

D
ηλρGλρηµν

bµν = G[µν]

φ = ηλρGλρ (0.57)

will transform into themselves under spacetime Lorentz transformations.

Solution: Let us adopt a matrix notation. Under a Lorentz transformation a tensor G
transforms as

G′ = ΛGΛT (0.58)

and Lorentz transformations satisfy η = ΛηΛT . Now

b′ =
1

2
(G′ −G′T )

=
1

2
(ΛGΛT − (ΛGΛT )T )

=
1

2
(ΛGΛT − ΛGTΛT )

= ΛbΛT (0.59)

so indeed b transforms into itself. It also follows that the symmetric part of G transforms
into itself so we need only show that φ = Tr(η−1G) is invariant. To do this we note that

η−1 = (Λ−1)Tη−1Λ−1 (0.60)
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so that

φ′ = Tr(η−1G′)

= Tr(η−1ΛGΛT )

= Tr((Λ−1)Tη−1Λ−1ΛGΛT )

= Tr((Λ−1)Tη−1GΛT )

= Tr(η−1G)

= φ

(0.61)

Problem: Show that in light cone gauge

X− = x− + p−τ +

√
α′

2
i

(∑
n

α−n
n
e−inσ

+

+
α̃−n
n
e−inσ

−
)

(0.62)

where

α−n =
1

2p+
∑
m

αin−mα
j
mδij (0.63)

and similarly for α̃−n .

Solution: We need to solve

−2α′p+Ẋ− +
1

2
Ẋ iẊjδij +

1

2
X ′

i
X ′

j
δij = 0

−2α′p+X ′
−

+ Ẋ iX ′
j
δij = 0

(0.64)

We have that

Ẋ i =

√
α′

2

∑
n

(
αine

−inσ+ + α̃ine
−inσ−

)

X ′i =

√
α′

2

∑
n

(
αine

−inσ+ − α̃ine−inσ−
)

(0.65)

where αi0 = α̃i0 =
√
α′/2pi. Thus

Ẋ iX ′
j
δij =

α′

2
δij
∑
nm

αinα
j
me
−i(n+m)σ+ − α̃inα̃jme−i(n+m)σ− (0.66)

From the second equation we find that

X− = F (τ) +
i

4p+
δij

∑
m+n 6=0

αinα
j
m

n+m
e−i(n+m)σ+ +

α̃inα̃
j
m

n+m
e−i(n+m)σ− (0.67)
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where F (τ) is an integration constant.
Let us now consider the first equation so we calculate

Ẋ iẊjδij =
α′

2
δij
∑
nm

αinα
j
me
−i(n+m)σ+ + α̃inα̃

j
me
−i(n+m)σ− + (αinα̃

j
m + α̃inα

j
m)e−inσ+−imσ−

X ′
i
X ′

j
δij =

α′

2
δij
∑
nm

αinα
j
me
−i(n+m)σ+ + α̃inα̃

j
me
−i(n+m)σ− − (αinα̃

j
m + α̃inα

j
m)e−inσ+−imσ−

(0.68)

and hence

Ẋ iẊjδij +X ′
i
X ′

j
δij = α′δij

∑
nm

αinα
j
me
−i(n+m)σ+ + α̃inα̃

j
me
−i(n+m)σ− (0.69)

Substituting our solution into the first equation leads to

0 = −2α′p+Ḟ − α′

2
δij

∑
n+m=0

αinα
j
me
−i(n+m)σ+ + α̃inα̃

j
me
−i(n+m)σ−

+
α′

2
δij
∑
nm

αinα
j
me
−i(n+m)σ+ + α̃inα̃

j
me
−i(n+m)σ− (0.70)

This implies that

2α′p+Ḟ =
α′

2
δij
∑
p

αipα
j
−p + α̃ipα̃

j
−p (0.71)

Thus F = α′p−τ + x− is linear with

−2α′p+p− +
1

2
δij
∑
p

αipα
j
−p + α̃ipα̃

j
−p = 0 (0.72)

Seperating out the zero-mode piece we can rewrite this as

−4α′p+p− + α′pipjδij + 2(N + Ñ = 0 (0.73)

where

N + Ñ =
1

2
δij
∑
n6=0

αinα
j
−n + α̃inα̃

j
−n (0.74)

can be identified with the total oscillator number of the transverse coordinates.
Lastly we summarise our expression by writing

X− = x− + α′p−τ + i
∑
n6=0

α−n
n
e−inσ+ +

α̃−n
n
e−inσ− (0.75)

where

α−n =
1

4p+
∑
m

αin−mα
j
mδij α̃−n =

1

4p+
∑
m

α̃in−mα̃
j
mδij (0.76)
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Problem: Show that for a periodic Fermion, where L0 =
∑
l ld−ldl +

1
24

and {dn, dm} =
δn,−m, one has

Z1 = q
1
24

∞∏
l=1

(1 + ql) (0.77)

and for an anti-periodic Fermion, where L0 =
∑
r rb−rbr − 1

48
, {br, bs} = δr,−s and

r, s ∈ Z + 1
2
, one has

Z1 = q−
1
48

∞∏
l=1

(1 + ql−
1
2 ) (0.78)

Solution: Everything follows as it did for the Boson. However there are only two
possible cases for each oscillator dl, either it isn’t present or it is present once. In other
words because of the anti-commutivity there are just two states |0 > and d−n|0 > so
one has

∑
qld−ldl = 1 + ql and hence

Z1 = q
1
24

∞∏
l=1

(1 + ql) (0.79)

Similarly for the anti-Periodic Fermion only now we simply write r = l − 1
2

with l =
1, 2, 3, ... to find

Z1 = q−
1
48

∞∏
l=1

(1 + ql−
1
2 ) (0.80)

Problem: Obtain the equations of motion of

Seffective =
1

2α′12

∫
d26x
√
−ge−2φ

(
R− 4(∂φ)2 +

1

12
HµνλH

µνλ
)

(0.81)

and show that they agree with

Rµν = −1

4
HµλρH

λρ
ν + 2DµDνφ

DλHλµν = 2DλφHλµν

4D2φ− 4(Dφ)2 = R +
1

12
H2 (0.82)

You may need to recall that δ
√
−g = −1

2

√
−ggµνδgµν and gµνδRµν = DµDνδg

µν −
gµνD

2δgµν .

Solution:
The equations of motion for φ follows pretty much as normal and one finds

8Dµ(e−2φDµφ)− 2e−2φ
(
R− 4∂µφ∂

µφ+
1

12
HµνλH

µνλ
)

= 0 (0.83)
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or

8D2φ− 8DµφD
µφ− 2R− 1

6
HµνλH

µνλ = 0 (0.84)

The equation for bµν is also fairly standard and leads to

Dµ(e−2φD[µbνλ]) = 0 (0.85)

or
DµH

µνλ − 2DµφH
µνλ = 0 (0.86)

The important point here is that when we vary the metric we find a term like∫ √
−ge−2φgµνδRµν (0.87)

appearing. We have that

gµνδRµν = DµDνδg
µν − gµνD2δgµν (0.88)

is a total derivative. But now this won’t be the case. Integrating the above term by
parts gives∫ √

−ge−2φgµνδRµν =
∫ √
−ge−2φ

(
DµDνδg

µν − gµνD2δgµν
)

=
∫ √
−ge−2φ

(
4DνφDµφ− 4DλφDλφgµν

−2DµDνφ+ 2D2φgµν
)
δgµν

(0.89)

Thus one finds, after including all the usual terms,

0 = Rµν −
1

2
gµνR + 4DµφDνφ− 4DλφDλφgµν − 2DµDνφ+ 2D2φgµν

−4DµφDνφ+ 2DλφD
λφgµν +

1

4
HµλρH

λρ
ν − 1

24
gµνHλρσH

λρσ

= Rµν −
1

2
gµνR− 2DλφDλφgµν − 2DµDνφ+ 2D2φgµν

+
1

4
HµλρH

λρ
ν − 1

24
gµνHλρσH

λρσ

(0.90)

Next we substitute in the scalar equation, writen as

R = 4D2φ− 4DµφD
µφ− 1

12
HµνλH

µνλ (0.91)

and find that

0 = Rµν − 2DµDνφ+
1

4
HµλρH

λρ
ν (0.92)
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Problem: Show that

S = − 1

4πα′

∫
d2σ∂αX

µ∂βX
νηµνη

αβ + iψ̄µγα∂αψ
νηµν (0.93)

is invariant under
δXµ = iε̄ψµ , δψµ = γα∂αX

µε (0.94)

for any constant ε. Here ψ̄ = ψTγ0 and γα are real 2×2 matrices that satisfy {γα, γβ} =
2ηαβ. A convenient choice is γ0 = iσ2 and γ1 = σ1.

Solution: First we note that

δS = − 1

4πα′

∫
d2σ2∂αX

µ∂βδX
νηµνη

αβ + iδψ̄µγα∂αψ
νηµν + iψ̄µγα∂αδψ

νηµν

(0.95)

Looking at the final term we can write it as

iψ̄µγα∂αδψ
νηµν = ∂α(iψ̄µγαδψνηµν)− i∂αψ̄µγαδψνηµν

≡ −i∂αψ̄µγαδψνηµν
(0.96)

where we dropped a total derivative. Next we note that (using a, b for spinor indices)

∂αψ̄
µγαδψνηµν = ∂αψ

µ
a (γ0γ

α)abδψνb ηµν

= −δψνb (γ0γ
α)ab∂αψ

µ
aηµν

= −δψ̄µγα∂αψνηµν (0.97)

In the second line we used the fact that spinors are anti-commuting and in the third
line we used that γ0γ

α is a symmetric matrix (convince yourself of this!) and swapped
µ↔ ν. Thus putting these together we find

δS = − 1

2πα′

∫
d2σ∂αX

µ∂βδX
νηµνη

αβ + iδψ̄µγα∂αψ
νηµν

(0.98)

To continue we observe that

δψ̄µ = (γα∂αX
µε)Tγ0

= εT (γα)Tγ0∂αX
µ

= εTγ0γ
αγ0γ0∂αX

µ

= −ε̄γα∂αXµ (0.99)
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where in the third line we have used (γα)T = γ0γ
αγ0 (convince yourself of this too!).

We now have

δS = − 1

2πα′

∫
d2σi∂αX

µ∂β ε̄ψ
νηµνη

αβ − iε̄γβ∂βXµγα∂αψ
νηµν

= − 1

2πα′

∫
d2σi∂αX

µ∂β ε̄ψ
νηµνη

αβ − iε̄∂βXµ(ηαβ + γβα)∂αψ
νηµν

= − 1

2πα′

∫
d2σ − iε̄∂βXµγβα∂αψ

νηµν

= − 1

2πα′

∫
d2σ − i∂α

(
ε̄∂βX

µγβαψνηµν
)

≡ 0 (0.100)

Problem: Show that

S = − 1

4πα′

∫
d2σ∂αX

µ∂βXνηµν + iψ̄µ−γ
α∂αψ

ν
−ηµν + iλ̄A+γ

α∂αλ
B
+δAB (0.101)

is invariant under

δXµ = iε̄+ψ
µ
−

δψµ− = γα∂αX
µε+

δλA+ = 0 (0.102)

provided that γ01ε+ = ε+.

Solution: This calculation is an exact copy of the previous problem. The important
point is that the ε+ generator does not involve the wrong chiral component ψµ+ of ψµ:

1

2
(1− γ01)δψµ− =

1

2
(1− γ01)γα∂αXµε+

=
1

2
γα∂αX

µ(1 + γ01)ε+

= γα∂αX
µε+

= δψµ− (0.103)

Problem: Show that the action

S = − 1

4πα′

∫
d2σ∂αX

µ∂βXνηµν + iψ̄µ−γ
α∂αψ

ν
−ηµν + iλ̄A+γ

α∂αλ
B
+δAB (0.104)

can be written as

S = − 1

4πα′

∫
d2σ∂αX

µ∂βXνηµν+i(ψ
µ
−)T (∂τ−∂σ)ψν−ηµν+i(λ

A
+)T (∂τ+∂σ)λB+δAB (0.105)

So that ψµ− and λA+ are indeed left and right-moving respectively.
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Solution: Simply write

ψ̄µ−γ
α∂αψ

ν
−ηµν = (ψµ−)Tγ0(γ

0∂τ + γ1∂σ)ψν−ηµν

= (ψµ−)T (∂τ + γ01∂σ)ψν−ηµν

= (ψµ−)T (∂τ − ∂σ)ψν−ηµν (0.106)

and

λ̄A+γ
α∂αλ

B
+δAB = (λA+)Tγ0(γ

0∂τ + γ1∂σ)λB+δAB

= (λA+)T (∂τ + γ01∂σ)λB+δAB

= (λA+)T (∂τ + ∂σ)λB+δAB (0.107)
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