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Abstract

In this diploma thesis, the propagation probability is calculated
for disordered systems of different underlying symmetry classes
(orthogonal and unitary) at the Anderson localization transition
point in the strong multifractality regime or in the case of mul-
tifractal insulators. A good toy model to analyze such systems
is the almost diagonal power law banded random matrix theory
(PLBRMT). This is a model of a one-dimensional chain with long-
range hopping which decay outside a band with bandwidth B � 1.
In this model, the system’s Hamiltonian is viewed as a real, sym-
metric or Hermitian N ×N random matrix. All matrix elements
are independent, Gaussian distributed random variables where the
off-diagonal elements are parametrically smaller Hi 6=j ∼ B than
the diagonal ones outside of a band with bandwidth B � 1 cen-
tered at the main diagonal. The standard non-linear supermatrix
σ-model fails to be applicable as a solution method. That is why
a supersymmetric version of a virial expansion which is analogous
to the one known from the theory of imperfect, dilute gases is
used. It is shown that the results of this thesis are in agreement
on scaling predictions made by J. T. Chalker. On the other hand,
our results can be straightforwardly used to calculate response
functions of the mentioned systems.
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1. Introduction

The consideration of perfect, periodic crystals has brought about deep insights
regarding the physics of such objects at the beginning of the last century. One of
the major discoveries has been the forming of energy bands for electrons moving
as Bloch waves in the periodic crystal potential. This has lead to a classification of
electronic systems by their band structures [1, 2]. It has become possible to distin-
guish between good metals, semiconductors and insulators. Yet, physical reality
is quite different. Unfortunately, a perfect crystal is rather an idealization than a
common occurrence. Usually, one must deal with disorder caused by impurities in
the system of interest. These impurities provide some randomness and irregularity
of the crystal potential and can thus cause electrons to get localized. The picture
below depicts the situations, on the one hand, of an ideal crystal with delocalized
(ergodic) wave functions and, on the other hand, of a strongly disordered crys-
tal with localized states. ξ is the “diameter” of the area around x0 in which an
electron is localized and which is called localization length.

ideal crystal strongly disordered crystal

crystal atoms
impurities

ergodic (Bloch) localized

The theory of localized wave functions started when P. W. Anderson in his sem-
inal paper [3], examined a model with random on-site energies and predicted that
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1. Introduction

electrons get localized depending on the strength of disorder and the dimensional-
ity of the system. This model of a transition from extended to localized states is
today referred to as the Anderson metal-insulator transition or Anderson localiza-
tion. In his original work, Anderson considered a particle on a lattice with nearest
neighbor couplings and random on-site energies. Such a model is normally hard
to solve analytically as one has in principle to solve the Schrödinger equation for
all realizations of the random disorder potential. Indeed, so far there exist merely
analytical solutions of the Anderson model for dimensions d ≤ 2 + ε (ε � 1).
Since Anderson’s discovery, there has been lots of techniques developed to tackle
disorder problems.

About 20 years later, based on ideas of D. J. Thouless [4], Abrahams et al. [5]
formulated a rather phenomenological one-parameter scaling theory of localization.
They considered the scaling function β(g(L)) where g denotes the dimensionless
conductance in one, two and three dimensions as a function of the length L of
a sample, and investigated its asymptotic behavior g −→ ∞ and g −→ 0 corre-
sponding to very weak and strong disorder respectively. In interpolating between
the two asymptotes, they drew the conclusion that one always has localized states
in one and two dimensions no matter how weak disorder is.

In the mean time, field-theoretical approaches for a bit more quantative analysis
of disordered systems were developed. F. Wegner used a replica non-linear σ-model
[6] where he considered n copies (replicas) of a system to average over disorder and
put n −→ 0 at the end. In 1983, K. B. Efetov published his supersymmetric version
of the non-linear σ-model which combines bosonic (commuting) and fermionic
(anti-commuting) degrees of freedom [7, 8]. This model managed to fuse together
the already existing field of random matrix theory (RMT) [9, 10] and the analysis of
the energy level and wave function statistics of small disordered metallic particles.
Thus, RMT has proven to be a good toy model for disordered condensed matter
systems.

The field of RMT dates back to E. P. Wigner, who originally studied the en-
ergy spectra of complex nuclei. Within the framework of RMT, one considers the
Hamiltonian of the system under consideration as a N × N matrix consisting of
independent and randomly Gaussian distributed matrix elements which fluctuate
around zero mean with constant variance. These random matrices can be classi-
fied by their underlying symmetries according to F. J. Dyson’s “Threefold Way”
[11] resulting in the three Gaussian ensembles: orthogonal (GOE), unitary (GUE)
and symplectic (GSE). In this thesis, we are only going to refer to the first two.
Since the development of the Wigner-Dyson random matrix theory which applies
to disordered, yet good metals, a variety of different random matrix models have
emerged [12]. RMT models where the variances depend on the indices of the ma-
trix elements have become interesting, especially banded RMTs which describe
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the insulator side of the Anderson metal-insulator transition. These RMTs are
characterized by variances which decay outside a band centered around the main
diagonal. Another representative, the so-called critical power law banded RMT
(PLBRMT), attracted special interest. It enables one to investigate the critical
point of the Anderson transition and examine all the features the wave functions
exhibit there [13]. These features range from strong amplitude fluctuations (mul-
tifractality) to a specific scaling behavior of wave function correlations (critical
correlations). Recently, the class of almost diagonal critical PLBRMT has drawn
attention [14, 15, 16]. This type of RMT is characterized by off-diagonal matrix
elements which are parametrically smaller than the diagonal ones.

The main task of this diploma thesis is the investigation of the propagation
probability in disordered systems with (almost) localized wave functions. Such
systems can be fractal insulators which are close to the localization transition or
critical systems at the point of the localization transition in the strong fractality
regime.

Structure of the thesis

The thesis is structured in the following way:

• The subsequent chapter, an introduction to the field of Anderson physics is
provided. Some early attempts to analyze disordered systems undergoing
a transition from localized to delocalized states are presented and the fea-
tures of wave functions at the critical point of the Anderson transition are
discussed.

• Chapter 3 deals with the development of the field of random matrix theory
and its application to disorderd systems. Furthermore, the idea behind the
supersymmetric virial expansion is reviewed.

• In chapter 4, the supersymmetric virial expansion is applied to the Gaussian
unitary and orthogonal ensembles of the almost diagonal random matric
theory (ADRMT), which is the main scientific work done for this thesis.
The calculations and results are presented.

• The last chapter contains a scaling discussion of the results obtained in chap-
ter 4. Applying the critical power law banded RMT, it is verified if the so-
called dynamical scaling assumption holds true and if it is sensitive to the
phases of wave functions.
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2. Anderson transition and criticality

This chapter is supposed to provide a short review of the critical phenomenon
known as Anderson localization: a quantum particle in a metal, say an electron,
may become localized depending on the disorder of the system.

2.1. Anderson model and localization

Today, it is well-known that a quantum particle can be localized due to a random
potential the particle is moving in. Localization of, say, electrons in a metallic
sample is caused by multiple interferences of the electrons’ wave functions which
scatter at the random disorder potential. More than 50 years ago, P. W. Anderson
[3] pointed out that the localization of initially extended electron states is mainly
dependent on the strength of disorder and the dimenion d of the system under
consideration. Depending on the dimensionality, there is a critical amount of
disorder causing extended wave functions to get exponentially localized such that
the envelope of the wave functions become

|ψ(~x)|ext ∼ 1 −→ |ψ(~x)|loc ∼ e−
|~x−~x0|
ξ , (2.1)

where ξ denotes the localization length.
In his considerations, Anderson used a tight-binding model with random on-site

energies and constant nearest neighbor couplings. The Hamiltonian of his model
reads

Ĥ = t
∑
(i,j)

ĉ†i ĉj +
∑
i

εiĉ
†
i ĉi , (2.2)

where (i, j) under the first summation symbol is to imply that the summation runs
over nearest neighbor sites and t is the coupling constant controlling the hopping
between these sites. As mentioned above, the on-site energies εi are assumed to be
independent (not correlated) and equally distributed random variables reflecting
disorder in the system. This model predicts a transition from a metallic phase
of the system to an insulating one. Eq. (2.2) is also a good starting point for
numerical studies.

This disorder-induced metal-insulator transition is highly sensitive to the under-
lying symmetries of the system. There are three basic symmetry classes disordered

7



2. Anderson transition and criticality

mesoscopic systems can be classified by. These are the three Wigner-Dyson sym-
metry classes which can be characterized by the natural numbers β = 1, 2, 4 [9, 10]:

• orthogonal, β = 1: This class corresponds to all systems with time-reversal
invariance and spin-rotational symmetry. The Hamiltonians Ĥ of such sys-
tems can thus be represented by real and symmetric matrices (the bar denotes
the complex conjugate in this thesis)

H = H , H = HT . (2.3)

• unitary, β = 2: Systems where time-reversal symmetry is broken, e.g. by
an applied external magnetic field, but with spin-rotational symmetry are
contained in this class. Here, the matrices of the Hamiltonians can be chosen
to be Hermitian

H = H† . (2.4)

• symplectic, β = 4: This symmetry class includes time-reversal invariant
systems and broken rotation invariance. In this class, the Hamiltonians can
be expanded in terms of Pauli matrices σi

H = h0σ0 − i
3∑
i=1

hiσi , (2.5)

where σ0 is the unity matrix and hi (i = 1, 2, 3) are real, antisymmetric
matrices. h0 is real and symmetric.

We are going to focus only on the orthogonal and unitary classes here. The sym-
plectic case and higher symmetry classes of disordered systems (see [13]) are beyond
the scope of this diploma thesis.

2.1.1. One-parameter scaling at the localization transition

A phenomenological approach to the Anderson localization transition was made by
Abrahams et al. [5] where the basis of considerations is the scaling function β(g)
defined as the logarithmic derivative of the dimensionless conductance g = ~

e2
G

with respect to the length L of the system (see also [17])

β(g) =
dln g

dlnL
. (2.6)

The dimensionless conductance is assumed to serve as the scaling parameter in-
dicating localization. The sign of the β-function then signals whether the system
is in the localized or the metallic regime. The discussion of the β-function is
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2.1. Anderson model and localization

dlng
dlnL

lng

d = 3

d = 2

d = 1

Figure 2.1.: Qualitative plot of β(g) vs. ln g for dimensions d = 1, 2, 3.

just based on simple asymptotic arguments about the dimensionless conductance
in arbitrary dimensions d of the system. Considering a “hypercube” of size Ld,
where L is larger than the mean free path l, one can say that, in the case of large
conductances g, the macroscopic Ohmic law certainly holds

G(L) = σLd−2 (2.7)

with the conductivity σ given by the Drude formula

σ =
ne2τ

m
=
ne2l

~kF
. (2.8)

n denotes the electron density and τ is the relaxation time between two scattering
events τ = l

vF
with the electron velocity vF at the Fermi edge. Thus, β(g) acquires

the form
lim
g−→∞

β(g) = d− 2 . (2.9)

9



2. Anderson transition and criticality

In the opposite case of very small conductance, one can assume that electron states
are exponentially localized and therefore

g(L) = g0e
−αL , (2.10)

where g0 is a constant of the order of one. We get

lim
g−→0

β(g) = lim
g−→0

L
d ln g

dL
= −αL = ln

(
g

g0

)
, (2.11)

which is independent of dimension. By interpolating between Eqs. (2.9) and (2.11)
and assuming smoothness, it is possible to sketch β(g) for the dimensions one, two
and three (see Fig. 2.1). Qualitatively speaking, it is obious that in one dimension,
the β-function is negative for all values of g. All electron states are hence localized
even if disorder is very weak. In contrast to that, β(g) in three dimensions shows a
change in sign when going from small to high conductances. There is a gc marking
a transition point from the localized to the delocalized regime. The dimension two
can be regarded as marginal case. β(g) is negative everywhere, but asymptotically
tends to zero, i.e. to a critical point.

2.1.2. 2 + ε expansion

The peculiarity of two dimensions and the question whether there may be a tran-
sition point for sufficiently large g can be investigated by a perturbative expansion
for g−1 � 1. This makes it possible to analyze β(g) in 2 + ε dimensions (ε � 1).
It was F. Wegner [18], who found expressions for the scaling function in different
symmetry classes. In the following the ai’s are just numerical factors depending
on the underlying symmetry class:

• orthogonal:

βorth(g) = ε− a1

g
− a4

g4
+O

(
1

g5

)
(2.12)

• unitary:

βunit(g) = ε− a2

g2
− a4

g4
+O

(
1

g6

)
(2.13)

In the limit ε −→ 0 (d = 2), β(g) is always negative, i.e. there is no real transition
point but for the case g −→∞.

10



2.2. Anderson localization: a critical phenomenon

2.2. Anderson localization: a critical phenomenon

Anderson localization exhibits all features of a critical transition and bears some
resemblance to continuous thermodynamic phase transitions [13]. One is able to
introduce an order parameter. This order parameter however has to be chosen
in a non-trivial way in order to reflect the spontaneous breaking of symmetry at
the phase transition point. It is suggested in [19, 20] that the order parameter
needs to be a function. This order parameter function is closely related to the
probability distribution of the local density of states. The symmetry-breaking
relies on the fact that, in terms of scattering theory, the scattering matrix loses
the unitarity which holds for systems without dissipation. Formally, dissipation
enters a system by applying boundary conditions. As an example, one can think
of a system with merely localized states coupled to a lead. These states do not
experience any dissipation because they are all localized. Therefore, the S-matrix
is unitary. When we cross the Anderson transition point to the metallic phase,
all states are now delocalized and are sensitive to dissipation which results in a
breakdown of unitarity of the S-matrix. In the close vicinity of the critical point,
some further significant characteristics arise:

• power-law behavior of physical quantities: An observable O(x) de-
pending on a physical parameter x behaves like

O(x) ∝ xδ (2.14)

when approaching the critical point. The exponent δ is called critical expo-
nent. It is assumed to be universal and have the same value on both sides of
the critical point. For example, the dc-conductivity σ and the localization
length ξ (or correlation length in the metallic phase) behave like

σ ∝ |E − Ec|s , ξ ∝ |E − Ec|−ν , (2.15)

where Ec denotes the mobility edge, the critical energy at which the local-
ization transition takes place. The critical exponents s and ν are related to
each other by

s = ν(d− 2) (2.16)

with d being the dimension of the system (see [21]). Critical exponents at the
Anderson transition point can be calculated in 2+ε dimensions (ε-expansion)
[18].

• long-range correlations: As one can see above, the correlation length
(metallic side) or localization length (insulator side) ξ starts to diverge when
approaching the localization transition point.

11



2. Anderson transition and criticality

• scaling invariance: This is rather a hypothesis than a rigorously proven
statement. All critical observables are invariant under rescaling the length
scale λ and obey a homogeneity law

O(cλ) = c∆OO(λ) . (2.17)

∆O is called the scaling dimension and c is the rescaling parameter. This
means a rescaling of λ is supposed to be compensated by a rescaling of O(λ).
Due to this behavior under rescaling, critical exponents and scaling dimen-
sions are related to each other. The diffusion constant D at the mobility
edge, for instance, scales in the following way [22, 23]:

D ∝ L2−d (2.18)

This holds for the case when the correlation length ξ is the shortest length
scale of the system.

2.2.1. Multifractality of critical wave functions

Coming closer to the Anderson transition point either from the metallic or the
insulating side, the electron wave functions start to fluctuate and acquire a par-
ticular, self-similar structure. On the metallic side, the extended spatial support
of the wave functions shrinks to a certain area of the sample called fractal. An
extended state can thus be considered as being made up of several such fractals
forming a kind of mosaic within the correlation length (multifractal metal). This
structure is referred to as being multifractal [24]. On the insulating side of the lo-
calization transition point, the wave functions within their localization areas bear
a quite similar structure compared to the one of a fractal of the multifractal metal
(multifractal insulator) (see Fig. 2.2 and Ref. [25]).

Such multifractal structures of the wave functions, as mentioned above, are
characterized by an anomalous scaling behavior, i.e. when one considers differ-
ent moments of an observable O[q](cλ), the scaling dimension is not just a linear
function of q but has a rather complicated dependence [26] such that

O[q](cλ) = c∆O(q)O[q](λ) . (2.19)

Let us consider in the following the various moments of the wave function inten-
sities |ψ(~x)|2 in dimensions d (see [13])

〈Pq〉 = Ld〈|ψ(~x)|2q〉 , (2.20)

where Pq is defined as

Pq =

∫
ddx |ψ(~x)|2q (2.21)
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2.2. Anderson localization: a critical phenomenon

metal multifractal metal insulator

increasing disorder

multifractal insulator

Figure 2.2.: Schematic demonstration of the multifractal structure evolving at the
Anderson transition point. The red areas refer to higher wave function
amplitudes.

and 〈. . .〉 denotes averaging over the wave function intensities. The specific case of
P2 is called inverse participation ratio (IPR). The moments describe the effective
fraction of space the wave functions occupy. One can immediately distinguish
between two limiting cases. In the purely metallic regime, the qth moment can be
estimated as follows:

〈Pq〉me = Ld〈|ψ(~x)2q|〉 ∼ LdL−dq = L−d(q−1) , (2.22)

which reflects how it scales with the length L. This scaling behavior is because
the electron states are delocalized and the probability to find an electron in a
tiny fraction of space around the point ~x is |ψ(~x)|2 ∼ L−d. For the completely
insulating regime, 〈Pq〉, one can argue that

〈Pq〉in ∼ 1 . (2.23)

This highlights the fact that all wave functions are localized and thus confined to
an area of volume ξd (ξ � L). Only in this area, the wave function intensities are
essentially different from zero and they are not sensitive to the system size. For
the intermediate region with multifractal (MF) structure, one can write

〈Pq〉MF ∼ L−dq(q−1) (2.24)

incorporating the two limiting cases (see [13]). dq is called fractal dimension with

dq = 0 insulator (2.25)

0 < dq < d multifractal region (2.26)

dq = d metal . (2.27)

13



2. Anderson transition and criticality

Usually, a continuous set of scaling exponents

τq = dq(q − 1) (2.28)

is introduced. One can now come up with the scaling or anomalous dimension ∆q

splitting τq in its normal (metallic) and anomalous parts

τq = d(q − 1) + ∆q = τme
q + ∆q (2.29)

with τme
q = d(q − 1). One obtains for ∆q

∆q = dq(q − 1)− τme
q = −τme

q

(
1− dq

d

)
. (2.30)

The case q = 2 with
∆2 = d2 − d (2.31)

will play an important role in the following.

Correlations of critical wave functions

One can use the scaling of the averaged inverse participation ratio 〈P2〉 to study
correlations C(|~x− ~x′|) of critical wave functions separated in space. One can, for
example, write for the correlations of one and the same wave function intensity at
different space points

C(|~x− ~x′|) = 〈|ψ(~x)|2|ψ(~x′)|2〉 = 〈|ψ2(~x)ψ2(~x′)|〉 . (2.32)

It can be assumed that this should equal to 〈P2〉 for slightly different space points
r = |~x − ~x′| ∼ 1, i.e. with a substitution ~x′ −→ ~x. Indeed, it was shown by F.
Wegner (see Ref. [27] and references therein) that the correlation function scales
like

C(r) = 〈|ψ(~x)|2|ψ(~x′)|2〉 ∼
( r
L

)−η
. (2.33)

Here, the definition ∆2 = −η was used. Furthermore, the assumption that the
wave functions are essentially uncorrelated at a distance r ∼ L was put in.

Nearly the same scaling relations hold for correlations of different wave functions
separated by an amount of energy ω = |εi − εj| with L being substituted by

Lω =
(

∆
ω

) 1
d (Lω < L). Lω is the edge length of a cube where the energy separation

ω is of the order of the mean level spacing ∆. This assumption is referred to as
dynamical scaling hypothesis [27]. Following the same reasoning and substituting
Lω for L when Lω < L, one can obtain the correlation function of two wave
functions at different energies

C(ω) = 〈|ψi(~x)|2|ψj(~x)|2〉 = 〈|ψ2
i (~x)ψ2

j (~x)|〉 ∼ L−ηω ∝
(
E0

ω

)1− d2
d

. (2.34)
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2.2. Anderson localization: a critical phenomenon

The latter estimate is valid for ∆ � ω � E0 with E0 being an upper cut-off of
critical scaling. J. T. Chalker has suggested [23] that the dynamical scaling holds
true for any correlations of multifractal wave functions separated in space and
energy:

C(r, ω) ∼
(
r

Lω

)−η
(r > l , Lω < L) . (2.35)

l is the mean free path. To give some examples of such correlations at the critical
point where the correlation length ξ diverges, let us consider the local density of
states (LDOS) correlation function

CLDOS(r, ω) = 〈ρ(~x,E)ρ(~x′, E ′)〉

=
∑
i,j

〈|ψi(~x)|2|ψj(~x′)|2δ(E − εi)δ(E ′ − εj)〉 (2.36)

with ω = |E − E ′| and the two-point correlation function or dynamic structure
factor [23]

S(r, ω) = 〈
∑
i,j

ψi(~x)ψi(~x′)ψj(~x
′)ψj(~x)δ(E − εi)δ(E ′ − εj)〉 . (2.37)

Both correlation functions scale, according to [23], like

CLDOS(r, ω)

S(r, ω)

}
∼
(
r

Lω

)−η
. (2.38)

As one can see, the relative phases of the wave functions contribute to the corre-
lations in Eq. (2.37) in contrast to Eq. (2.36). Though they do not change the
scaling (2.38) if Chalker’s idea holds true.

2.2.2. Weak and strong multifractality, critical PLBRMT

To sum up, the wave functions at the Anderson transition point undergo strong
fluctuations acquire a certain structure and obey particular scaling relations. This
shows up in terms of multifractality which can be weak or strong. The degree of
strength is related to the dimensionality of the system under consideration, i.e.
weak multifractality corresponds to small dimensions and strong multifractality
appears in systems with higher dimensions d� 1. The strength of multifractality
characterizes the behavior of the critical wave functions: weakly multifractal wave
functions are quasi-metallic (multifractal metal) and strongly multifractal ones are
quasi-insulating (multifractal insulator).

It has turned out that random matrix theory (RMT), ranging from the original
Wigner-Dyson RMT, applicable to disordered metals with ergodic wave functions,
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2. Anderson transition and criticality

to banded RMTs which are useful in describing localized and especially disordered
systems at criticality, is a suitable candidate to describe the properties of disordered
systems with global symmetries (orthogonal, unitary etc.). The so-called power-
law banded random matrix theory (PLBRMT) has in particular proven to be able
to describe disordered systems at the Anderson transition point exhibiting weak or
strong multifractality (see chapter 4). PLBRMT is characterized by a parameter
B which corresponds to the bandwidth of power-law banded random matrices,
i.e. within this bandwidth, the matrix elements are essentially different from zero
and outside of it, the matrix elements are decaying in a power-law fashion. The
magnitude of the bandwidth reflects the two multifractal regimes

• B � 1: multifractal metal

• B � 1: multifractal insulator.

It has been shown by a perturbative approach called supersymmetric virial ex-
pansion for the orthogonal and unitary symmetry class in [27, 28, 29] that the
parameter B is directly connected with the fractal dimension d2 of the wave func-
tion support in the limit of strong multifractality. Up to the first order of the
supersymmetric virial expansion, the fractal dimension d2 reads

dorth
2 =

√
2B +O(B2) , orthogonal (2.39)

dunit
2 =

πB√
2

+O(B2) , unitary. (2.40)

This indicates that the fractal dimension d2 shrinks to zero in the strong multi-
fractality regime. The supersymmetric virial expansion is going to be the subject
of the calculations done for this diploma thesis.
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3. Statement of the problem

We apply the supersymmetric version of a virial expansion to the propagation
probabilities for the Gaussian unitary and Gaussian orthogonal ensemble of the
almost diagonal random matrix theory to analyze universal properties of disordered
systems either at or close to the point of Anderson localization. These correlation
functions are the basis to calculate response functions of disordered systems. Be-
sides, it is shown with accuracy of the leading term of the virial expansion that
the dynamical scaling assumption at the Anderson transition point made by J. T.
Chalker is valid and that it is not sensitive to the phases of wave functions. As it
is known, this has not done before.
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4. Critical RMT and
supersymmetric virial expansion

A short introduction into the random matrix formalism is given in this chapter
with main focus on the almost diagonal power-law banded random matrix theory.
Moreover, the supersymmetric virial expansion, which is the calculational tool
used in this diploma thesis, is developed.

4.1. RMT as a toy model for complex quantum
systems

Random matrix theory is a mathematical formalism which helps to describe uni-
versal properties of large complex quantum systems with underlying global symme-
tries. It enables us to treat somehow randomised physical quantities on a statistical
footing and consider ensemble averages. In this thesis, we are going to dwell on
the Gaussian non-invariant random matrix theories.

The well-known Wigner-Dyson random matrix models are characterized by
Gaussian shaped probability distributions with constant variances. These models
have proven to be a good description for disordered metals. It is able to describe
the statistics of the energy levels and the extended wave functions. In contrast
to that, there are non-invariant RMTs like the so-called banded and power-law
banded RMT (PLBRMT) which have index-dependent variances, i.e. the vari-
ances are some functions of the matrix element indices. Concerning the special
case of the almost diagonal PLBRMT, all hopping entries, i.e. all off-diagonal
matrix elements are parametrically small. The banded RMT and the PLBRMT
are suitable to describe the insulating regime of disordered systems and all criti-
cal features at the Anderson transition point like multifractal wave functions and
long-ranged correlations.
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4. Critical RMT and supersymmetric virial expansion

4.2. Invariant RMT: Wigner-Dyson random matrix
model

One considers the Hamiltonian of a system as N × N matrix. Its entries Hij are
indepent and randomly Gaussian distributed variables. Hence, the probability
distribution function of such a random matrix H factorizes

P (H) =
∏
i,j

P (Hij) , (4.1)

where the product runs over all independent matrix elements. Additionally, it is
required that P (H) is invariant under canonical basis transformations, i.e. for
instance orthogonal and unitary transformations, T with respect to H

P (H ′) = P (H) , H ′ = T̃HT . (4.2)

T corresponds either to an orthogonal or unitary matrix with T̃ = T T (†). With H
being a real symmetric or Hermitian matrix, these assumptions lead to the Wigner-
Dyson Gaussian ensembles of random matrices: Gaussian orthogonal (GOE, β =
1) and Gaussian unitary ensemble (GUE, β = 2) (see [30], chapter 4). In both
cases, the probability distribution function reads

P (H) ∝ e−
trH2

2ν(β) (4.3)

with ν(β) being the site-independent variance of the matrix elements ν(β) =
〈|Hij|2〉 = 1

β
and distinguishing between the Gaussian ensembles. It was as-

sumed that all the matrix elements fluctuate around zero on average (〈Hii〉 = 0).
This random matrix model first used by E. P. Wigner to analyze the energy level
statistics of complex nuclei is referred to as Wigner-Dyson random matrix theory
(WDRMT) [9, 10, 31]. It provides a statistical description of the energy level
fluctuations in large quantum systems so that one need not take into account the
influence of every single interaction in the system on the interesting quantities,
but considers quantities averaged over ensembles of random matrices. The fields
of physical application of WDRMT range from nuclear physics to quantum chaos
[30] and mesoscopic physics, especially disordered metallic systems.

4.3. Basic results obtained in the framework of
WDRMT

4.3.1. Eigenvalue distribution and level repulsion

Let us consider a change of variables that makes the random matrix H diagonal
and thus casts the probability distribution P (H) for each independent matrix
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4.3. Basic results obtained in the framework of WDRMT

element Hij (see Eq.(4.3) into one for the eigenvalues or eigenenergies εi of the
random Hamiltonian matrix H

P (H) = P ({Hij}) −→ P ({εi}) = P (ε) . (4.4)

The normalization condition

1 =

∫
dHP (H) =

∫
dεJP (ε) (4.5)

must hold anyway. The integration measures dH and dε refer to integrating over
all independent random variables Hij and εi respectively. J is the Jacobian of
the variable transformation. One can realize how J in general looks like when
considering, for simplicity, the case of a 2 × 2 random matrix from the Gaussian
orthogonal ensemble. So, H can be chosen to be real and symmetric. We can
write the independent matrix elements of H in terms of the eigenenergies ε1 and
ε2

H11 = ε1 cos2 φ+ ε2 sin2 φ (4.6)

H22 = ε1 sin2 φ+ ε2 cos2 φ (4.7)

H12 = (ε1 − ε2) sinφ cosφ . (4.8)

It is now possible to write H as

H = OEOT , E =

(
ε1 0
0 ε2

)
, O =

(
cosφ − sinφ
sinφ cosφ

)
. (4.9)

O is an orthogonal matrix. The Jacobian J of this particular transformation reads

J = |ε1 − ε2| . (4.10)

The probability distribution for the eigenenergies ε1 and ε2 thus becomes

P (ε) ∝ |ε1 − ε2|e−
1
2

(ε21+ε22) . (4.11)

All the simple steps done here can be generalized to other symmetry classes, e.g.
unitary symmetry class (β = 2), and arbitrary matrix sizes N (see chapter 4 in
[30]). As a result, one obtains

P (ε) ∝
∏
i<j

|εi − εj|βe−
∑
i

ε2i
2ν(β) . (4.12)

All these considerations show that the probability to find an energy level close to
another one vanishes. This effect is called “level repulsion”.
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4. Critical RMT and supersymmetric virial expansion
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Figure 4.1.: Visualization of Wigner’s semi-circle.

4.3.2. Mean density of states and Wigner’s semi-circle law

The density of states is defined as

ρ(E) = trδ(E − Ĥ) . (4.13)

Ĥ is meant to be the Hamilton operator of a system as usual. Wigner calculated
the averaged density of states 〈ρ(E)〉 and obtained for it what is nowadays called
Wigner’s semi-circle law [31, 30]

〈ρ(E)〉 ∼
√

1− E2 . (4.14)

Here, E was chosen to be dimensionless. This result is valid for all the mentioned
Gaussian ensembles. Fig. 4.3.2 shows a plot of the semi-circle.

4.3.3. Level-level correlation function

The probability density to find two energy levels separated by an amount of energy
ω is given by the two-level or level-level correlation function defined as follows:

R2(ω) =
〈ρ(E + ω

2
)ρ(E − ω

2
)〉

〈ρ(E)〉2
. (4.15)
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4.4. From WDRMT to non-invariant random matrix models
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Figure 4.2.: Level-level correlation function R2(x) for the Gaussian unitary and
Gaussian orthogonal ensemble.

It is shown in [8, 9, 10] that R2(ω) takes different forms for the unitary and
orthogonal ensembles (see Fig. 4.3.3):

Runit
2 (x) = 1−

(
sinx

x

)2

(4.16)

Rorth
2 (x) = Runit

2 −
(
d

dx

(
sinx

x

))∫ ∞
1

dt
sin(xt)

t
, (4.17)

where x represents the rescaled energy separation x = π ω
∆

with ∆ being the mean
level spacing. It is noticeable that the probability density R2(x) in units of the
mean level spacing saturates for increasing values of x. Or stated the other way
round, the probability to find two energy levels close in energy to each other goes
down on the scale of the mean level spacing.

4.4. From WDRMT to non-invariant random matrix
models

The fields of application of the Wigner-Dyson random matrix theory are wide-
ranging. They include purely mathematical problems as looking for the zeros of
the Riemann ζ-function and physical problems ranging from the description of en-
ergy spectra of heavy nuclei to quantum chaos (kicked rotator) and the treatment
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4. Critical RMT and supersymmetric virial expansion
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Figure 4.3.: Cartoon of the concept of banded random matrices.

of small disordered metallic grains in mesoscopic physics, e.g. quantum dots. Con-
cerning the latter field of application, WDRMT manages to describe the statistics
of ergodic (delocalized) wave functions, which is mainly thanks to the development
of the so-called nonlinear supersymmetric σ-model by K. B. Efetov [8, 7]. This
model represents a field-theoretical approach to disordered metals and is based on
the combination of ordinary commuting and anti-commuting degrees of freedom
called Grassmanns (see chapter A). It is capable to reproduce all results originally
obtained by Wigner (see section 4.3 and [31]).

4.4.1. Non-invariant random matrix models

As opposed to invariant random matrix models like the Wigner-Dyson model, it is
sometimes preferable to examine non-trivial correlations between different energy
states. Therefore, one can define non-invariant Gaussian random matrix mod-
els which are characterized, unlike WDRMT, by variances with some functional
dependence on the indices of the matrix entries f(i, j)

〈|Hij|2〉 = f(i, j) . (4.18)

Whereas the archetypical Wigner-Dyson model describes extended states, non-
invariant RMTs are able to describe wave functions of other universality classes,
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4.4. From WDRMT to non-invariant random matrix models

for example, multifractality at the Anderson transition point, which is the case for
the critical power-law banded RMT (see below).

Certain unconventional non-invariant random matrix models have been devel-
oped to catch the features of systems where the wave functions are all localized
[13, 14, 15, 16]. These models reside under the name banded random matrix mod-
els (BRMM). This name stems from the fact that the elements of the random
matrices are essentially different from zero within a band of bandwidth B and the
variances of the off-diagonal matrix elements are functions decaying with distance
from the main diagonal

〈|Hi 6=j|2〉 = F(|i− j|) . (4.19)

The exact form of F(|i− j|) (e.g. exponential or power-law decrease) determines
the physical situation and the corresponding key features one wants to analyze.
Fig. 4.3 is supposed to show how the variances of the off-diagonal matrix elements
decay outside of the band or, in other words, how the mean of the off-diagonal
elements becomes sharply peaked around zero. A rather extreme representative of
such RMTs is the diagonal RMT where the random matrices are diagonal reflecting
complete localization. Further representatives of banded random matrices are the
ones reflecting exponentially localized eigenstates. The matrix entries decrease
exponentially with

〈|Hi 6=j|2〉 ∼ e−
|i−j|
B . (4.20)

This banded random matrix model describes quasi-one-dimensional disordered
wires [32]. A special type of banded RMT is the power-law banded RMT (PLBRMT)
where the off-diagonal variances decrease according to a power law. This random
matrix model and its capability to show all critical features of wave functions at
the Anderson transition point will be the subject of the next section.

4.4.2. Critical power-law banded RMT

This RMT model is characterized by the following:

〈Hij〉 = 0 (4.21)

〈H2
ii〉 =

1

β
(4.22)

〈|Hij|2〉 = F(|i− j|) =
1

β

1

1 + |i−j|2α
B2

(4.23)

with β indicating the underlying Wigner-Dyson symmetry class. The off-diagonal
matrix elements decay with a power law outside the band B. The PLBRMT can
be interpreted as an one-dimensional model with long-range hopping and powe-law
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4. Critical RMT and supersymmetric virial expansion

decreasing hopping amplitudes

F(|i− j|) ∼ 1

|i− j|2α
, |i− j| � B . (4.24)

For α > 1, the PLBRM model describes power-law localized wave functions. For
the value α = 1, it reflects criticality, i.e. it is able to reproduce all critical features
at the Anderson transition point. This is the case for all values of B [13, 33].
Furthermore, the critical PLBRM model is capable to distinguish between the two
multifractality regimes: strong (B � 1) and weak (B � 1).

RMT models like the critical PLBRMT for very small bandwidths B � 1 where
the off-diagonal matrix elements are parametrically smaller than the ones on the
diagonal

Hi 6=j ∼ B (4.25)

are usually referred to as almost diagonal [14, 15].

Analytical methods to study banded RMT with large and small bandwidth

In order to analyze and describe correlations and wave function statistics not only
for the critical PLBRMT, but for a broader range of banded RMTs, the case of the
quasi-metallic regime (B � 1) can be mapped onto the nonlinear supersymmetric
σ-model [8]. This supersymmetry approach allows one to find a solution using a
saddle-point approximation which is a basic step needed in the derivation of the
supersymmetric σ-model. Unfortunately, the application of this quite successful
method fails at describing the quasi-insulating regime with B � 1 because of the
invalidity of the mentioned saddle-point approximation. Thus, another approach is
here needed which brings us to the concept of the supersymmetric virial expansion
in the next section. This method bears some resemblance to the classical virial
expansion known from the theory of dilute, imperfect gases (see e.g. [34]).

4.5. Virial expansion

4.5.1. Idea behind a virial expansion

The supersymmetric virial expansion is a field-theoretical approach to calculate
various correlation functions averaged over the ensemble of almost diagonal random
matrices (disorder average). Such correlation functions (cf. Eqs. (2.36) and (2.37)
in section 2.2.1) can normally be expressed in terms of retarded and advanced
Green’s functions 〈

GR
kl

(
E +

ω

2

)
GA
mn

(
E − ω

2

)〉
. (4.26)
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4.5. Virial expansion

〈. . .〉 represents the disorder average. The Green’s functions in energy space are
defined by [35]

GR
kl(E) =

(
E − Ĥ + iη

)−1

kl
= 〈k|

(
E − Ĥ + iη

)−1

|l〉 (4.27)

GA
mn(E) =

(
E − Ĥ − iη

)−1

mn
= 〈m|

(
E − Ĥ − iη

)−1

|n〉 (4.28)

with η −→ +0 being a small regularizing parameter. The cases where k = l,
m = n 6= k and k = l = m = n〈

GR
kk

(
E +

ω

2

)
GA
mm

(
E − ω

2

)〉
,
〈
GR
kk

(
E +

ω

2

)
GA
kk

(
E − ω

2

)〉
(4.29)

were investigated for the GUE and GOE in [36, 37]. In this diploma thesis, we are
going to concentrate on the case k = n, l = m 6= k〈

GR
km

(
E +

ω

2

)
GA
mk

(
E − ω

2

)〉
. (4.30)

The idea for the supersymmetric virial expansion for the almost diagonal RMT
comes from the observation that the small and fast decaying off-diagonal part V̂
of the Hamiltonian

Ĥ = Ĥd + V̂ (4.31)

can be associated with interactions between localized states whereas the diagonal
part Ĥd corresponds to completely localized wave functions.

In analogy with the expansion of thermodynamic quantities of the theory of im-
perfect, dilute gases with respect to the number of interacting or colliding particles
where the small particle density serves as control parameter for the expansion (see
[34]), one can try to expand the correlation functions of interest in the number of
interacting localized states where the parameter B � 1 controls this perturbation
series. The bandwidth B being much smaller than one, but larger than the mean
level spacing ∆, sets a new energy scale

B∆� ∆ (∆� B � 1) . (4.32)

This leads to a small probability of higher interactions of localized energy states.
This idea was first implemented in a phenomenological real-space renormalization
group (RG) approach to critical systems with long-range interactions by Levitov
[38, 39, 40]. It has been used to study interactions of resonant energy levels where
two-level interactions were assumed to be the main source of delocalization, i.e.
in direct analogy with interactions of more than two particles in a dilute gas, the
probability to have higher interactions of localized energy levels decreases and thus
significant contributions become small. But, one major disadvantage of this RG
approach is that one is nearly unable to take into account higher interactions of
localized states and go beyond the leading term of the expansion of two interacting
states. Besides, there is no rigorous control of accuracy.
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4. Critical RMT and supersymmetric virial expansion

4.5.2. Brief review of the Trotter virial expansion

A virial expansion can be generated by using the Trotter formula [41]

eÂ+B̂ = lim
n−→∞

(
e
Â
n e

B̂
n

)n
. (4.33)

This is referred to as Trotter virial expansion. Though it is in principle very
well applicable [14, 15, 16], it has also some disadvantages. With increasing the
number of interacting states taken into account, the combinatorics involved during
the calculations grow tremendouly. In addition, the Trotter virial expansion is
practically only useful to calculate spectral correlations which can be written in
terms of powers of tr eiĤt like the spectral form factor and the level compressibility
(see [15, 16]). The basic procedure is as follows: once a correlation function can

be expressed in terms of tr eiĤt, one applies the Trotter formula to circumvent
the problem that the diagonal and off-diagonal parts of the Hamiltonian do not
commute in general [

Ĥd, V̂
]
6= 0 . (4.34)

This leads to

eiĤt = eitĤd+itV̂ = lim
n−→∞

(
eit

Ĥd
n eit

V̂
n

)n
. (4.35)

Contributions of m interacting states can now be considered by expanding m
exponentials up to the first order in the interaction term V̂

eit
V̂
n = 1 + it

V̂

n
+O(V̂ 2). (4.36)

and neglecting the contributions of all the other n −m off-diagonal exponentials
by setting V̂ −→ 0. This is where the combinatorics come in because one has
to allow for all possible combinations of choosing m exponential factors out of
n. The combinatorial part which increases with the number of interacting states
enormously is the reason why the Trotter virial expansion is finally just practicable
to take interactions of two and three states into account.

The supersymmetric virial expansion we are going to present in the subsequent
section can cope with many disadvantages and limitations of the Trotter virial
expansion.

4.5.3. Supersymmetric virial expansion

Basic principle

The supersymmetric version of the virial expansion has so far been developed only
for the almost diagonal RMT of the Gaussian unitary and Gaussian orthogonal
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4.5. Virial expansion

ensemble. In [36, 37], local density of states (LDOS) correlation functions were ex-
amined where the relative phases between wave functions do not play a significant
role.

The starting point of the derivation is already the disorder-averaged represen-
tation of Green’s functions in terms of superintegrals (see the appendix for more
details)

Gpq,qp(E,ω)
def.
=
〈
GR
pq

(
E +

ω

2

)
GA
qp

(
E − ω

2

)〉
(4.37)

= −
∫
D{Q}PRAQAR

N∏
i=1

eS0[Qi]

N∏
i,j=1
i<j

eS[Qi,Qj ] . (4.38)

D{Q} is a compact notation for

D{Q} =
N∏
i=1

D{Qi} . (4.39)

and PRAQAR are so-called supersymmetry-breaking factors which include four
Grassmann variables χ

PRAQAR = −χRp χRq χAq χAp . (4.40)

The Qks are 8
β
× 8

β
supermatrices which are basically constructed by the tensor

product of ensemble specific supervectors |ψRk 〉, |ψAk 〉

Qk =
β

2

(
|ψRk 〉〈ψRk | |ψRk 〉〈ψAk |
|ψAk 〉〈ψRk | |ψAk 〉〈ψAk |

)
. (4.41)

(For the precise parametrization depending on the ensemble, GUE or GOE, see the
appendix.) These supermatrices are associated with a site in a one-dimensional
chain. S0[Qi] represents a single-matrix action which corresponds to uncorrelated
localized states. It has the form

S0[Qi] = iEStrQi + i
Ω

2
Str(ΛβQi)−

1

2β
(StrQi)

2 (4.42)

Λβ =

(
1 0
0 −1

)
RA

, Ω = ω + iη .

The cross-term action S[Qi, Qj] reflects interactions between different states. It
originally comes from disorder-averaging over the off-diagonal matrix elements
which involve slight interactions between localized states represented by the ele-
ments on the main diagonal. It reads

S[Qi, Qj] = −2bijStr(QiQj) (4.43)

bij =
1

2β
F(|i− j|) ≡ 1

2β
B2g(|i− j|) . (4.44)
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4. Critical RMT and supersymmetric virial expansion

In the last equation, B2 was pulled out of F . The next step is to rewrite the
cross-term exponentials in the following way:

eS[Qi,Qj ] ≡ 1 + fij , (4.45)

where fij is a so-called Mayer function. This is absolutely analogous to the virial
expansion known from statistical mechanics. This makes it possible to cast the
product of the cross-term exponentials into a reordered sum of various combina-
tions of the fijs

N∏
i,j=1
i<j

eS[Qi,Qj ] = V(D) +
∞∑
m=2

V(m) (4.46)

= V(D) + V(2) + V(3) + · · · (4.47)

with

V(D) = 1 , V(2) =
N∑

i,j=1
i<j

fij (4.48)

V(3) =
N∑

i,j,k=1
i<j<k

(fijfikfjk + fijfjk + fijfik + fikfjk) . (4.49)

The V(m)s are referred to as the virial coefficients and bear information about
how m sites or Q-matrices (or particles in the classical gas theory) out of N can
interact with each other. Fig. 4.5.3 shows a cartoon how 3-particle interactions in
a 3-particle classical gas can appear. One can now write Eq. (4.38) as

Gpq,qp(E,ω) = −
∫
D{Q}PRAQAR

N∏
i=1

eS0[Qi]

N∏
i,j=1
i<j

eS[Qi,Qj ] (4.50)

= −
∫
D{Q}PRAQAR

N∏
i=1

eS0[Qi]

(
1 +

∞∑
m=2

V(m)

)
. (4.51)

In this diploma thesis, we are going to consider only contributions up to the second
virial coefficient V(2) into account, which is also referred to as two-supermatrix
approximation. How to proceed in principal to consider higher contributions from
V(3) (three-supermatrix approximation) can be found in Ref. [36].
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i j k

3-particle interactions of a 3-particle classical gas

Figure 4.4.: Visualization of the virial coefficient V(3) via 3-particle interactions in
a 3-particle classical gas. The colored dots represent different particles
and the black lines denote interactions.

Two-supermatrix approximation

So far, Eq. (4.51) is exact. We now merely consider leading terms up to the order
of V(2)

Gpq,qp(E,ω) ' −
∫
D{Q}PRAQAR

N∏
i=1

eS0[Qi]
(
1 + V(2)

)
(4.52)

= −
∫
D{Q}PRAQAR

N∏
i=1

eS0[Qi]

−
N∑

i,j=1
i<j

∫
D{Q}PRAQAR

(
N∏
i=1

eS0[Qi]

)
fij(Qi, Qj) . (4.53)

One can identify the zeroth order of the virial expansion

G(D)
pq,qp(E,ω) = −

∫
D{Q}PRAQAR

N∏
i=1

eS0[Qi] (4.54)
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(the superscript (D) refers to “diagonal” because it reflects completely localized
states without any interactions) and the first order

G(2)
pq,qp(E,ω) = −

N∑
i,j=1
i<j

∫
D{Q}PRAQAR

(
N∏
i=1

eS0[Qi]

)
fij(Qi, Qj) (4.55)

such that

Gpq,qp(E,ω) = G(D)
pq,qp + G(2)

pq,qp . (4.56)

This is the virial expansion up to the first virial coefficient V(2).

Zeroth and first order term of the virial expansion

Let us take a closer look at the zeroth and first order of the virial expansion
separately:

Zeroth order: It can be written in the form

G(D)
pq,qp(E,ω) = −

∫
D{Q}PRAQAR

N∏
i=1

eS0[Qi] (4.57)

= −
∫
D{Qp}PRAeS0[Qp]

∫
D{Qq}QAReS0[Qq ]

×
∏
i 6=p,q

∫
D{Qi}eS0[Qi] , (4.58)

i.e. all integrals can be factorized. Now, we use the fact that the supersymmetry
(cf. appendix A) is only broken for the integration over p and q variables due to
the supersymmetry-breaking Grassmann factors PRA = χRp χ

A
p and QAR = −χAq χRq

in front of the exponentials. Thus, all the other integrals where the supersymmetry
is unbroken yield unity. As a consequence, one obtains

G(D)
pq,qp(E,ω) = −

∫
D{Qp}PRAeS0[Qp]

∫
D{Qq}QAReS0[Qq ] . (4.59)

It can be shown that (see the calculations done for this thesis)

G(D)
pq,qp(E,ω) = 0 , p 6= q . (4.60)

A physical explanation for this is that the integrals over both p and q variables in
Eq. (4.59) correspond to correlations of wave functions at one and the same point,
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4.5. Virial expansion

but different energies, and such localized wave functions are uncorrelated in the
case of the diagonal RMT.

First order: The leading two-supermatrix contribution to the virial expansion
reads

G(2)
pq,qp(E,ω) = −

N∑
i,j=1
i<j

∫
D{Q}PRAQAR

(
N∏
i=1

eS0[Qi]

)
fij(Qi, Qj) (4.61)

= −
N∑

i,j=1
i<j

∫
D{Q}PRAQAR

(
N∏
i=1

eS0[Qi]

)(
eS[Qi,Qj ] − 1

)
. (4.62)

Basically, the same argumentation as above for the the zeroth order term allows
us to write

G(2)
pq,qp(E,ω) = −

∫
D{Qp}D{Qq}PRAQAReS0[Qp]+S0[Qq ]fpq (4.63)

−
∑
i<p,q

∫
D{Qp}D{Qq}D{Qi}PRAQAR (4.64)

× eS0[Qp]+S0[Qq ]+S0[Qi] (fip + fiq) (4.65)

−
∑
i>p,q

∫
D{Qp}D{Qq}D{Qi}PRAQAR (4.66)

× eS0[Qp]+S0[Qq ]+S0[Qi] (fpi + fqi) . (4.67)

For all the integrals with functions fij the indices of which do not correspond to
the ones contained in the supersymmetry-breaking factors, the supersymmetry is
unbroken and, thus, these terms cancel∫

D{Qi}D{Qj}eS0[Qi]+S0[Qj ]
(
eS[Qi,Qj ] − 1

)︸ ︷︷ ︸
= fij

= 1− 1 = 0 . (4.68)

The terms with functions fkl where just one of the indices corresponds to p or q
vanish, too. This is because the integral over the variables which bear an index
different from the indices of fkl yields zero, e.g.∫

D{Qp}D{Qi}PRAeS0[Qp]+S0[Qi]fip

∫
D{Qq}QAReS0[Qq ]︸ ︷︷ ︸

= 0

= 0 . (4.69)

The integral over q variables is zero because it again corresponds to uncorrelated
wave functions.
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4. Critical RMT and supersymmetric virial expansion

What remains at the end is

G(2)
pq,qp(E,ω) = −

∫
D{Qp}D{Qq}PRAQAReS0[Qp]+S0[Qq ]fpq . (4.70)

Thus, the two-supermatrix approximation of Gpq,qp reads

Gpq,qp(E,ω) ' G(D)
pq,qp + G(2)

pq,qp (4.71)

= −
∫
D{Qp}D{Qq}PRAQAReS0[Qp]+S0[Qq ]fpq . (4.72)

This will be the starting point of the calculations done for this thesis. We just
consider the case p 6= q. The case p = q corresponding to the LDOS-correlation
function has been considered in [36, 37].
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5. Calculations for the almost
diagonal GUE and GOE

In this chapter, we present original calculations which were done during this thesis.
The product of disorder-averaged Green’s functions

Gpq,qp(E,ω) =
〈
GR
pq

(
E +

ω

2

)
GA
qp

(
E − ω

2

)〉
(5.1)

= −
∫
D{Q}PRAQAR

N∏
i=1

eS0[Qi]

N∏
i,j=1
i<j

eS[Qi,Qj ] (5.2)

is calculated for the almost diagonal RMT in the cases of GUE and GOE. The
supersymmetric version of the virial expansion is applied and the results are cal-
culated in the two-supermatrix approximation

Gpq,qp(E,ω) ' G(D)
pq,qp + G(2)

pq,qp (5.3)

= −
∫
D{Qp}D{Qq}PRAQAReS0[Qp]+S0[Qq ]

−
∫
D{Qp}D{Qq}PRAQAReS0[Qp]+S0[Qq ]

(
eS[Qp,Qq ] − 1

)
. (5.4)

The calculations are referred to the band center E = 0 such that Gpq,qp(E = 0, ω) ≡
Gpq,qp(ω) and the single-matrix action S0[Qk] then reads

S0[Qk] = i
Ω

2
Str(ΛQk)−

1

2β
(StrQk)

2 , β = 1, 2 . (5.5)

For a deeper understanding where Eqs. (5.2) and (5.4) come from, the reader is
referred to section 4.5.3 and the appendix.
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5. Calculations for the almost diagonal GUE and GOE

5.1. Calculations for the GUE

5.1.1. First term of the virial expansion

We are going to show that the first term or zeroth order of the virial expansion is
zero as mentioned in the last chapter. The first term reads

G(D)
pq,qp(ω) = −

∫
D{Qp}D{Qq}PRAQAReS0[Qp]+S0[Qq ] . (5.6)

This expression can be factorized in the form

G(D)
pq,qp(ω) = −

∫
D{Qp}PRAeS0[Qp]

∫
D{Qq}QAReS0[Qq ] . (5.7)

Thus, it suffices to consider one of the integrals and show that it vanishes. Let us
consider the integral over p variables and apply the λ-parametrization in order to
make the supermatrix Qp block-diagonal (see appendix C):∫

D{Qp}PRAeS0[Qp] =

∫ (
dλdϕdξdξ

πλ

)R,A
p

λR,Ap ei(ϕ
R
p −ϕAp ) P̃RA eS0[λRp ,λ

A
p ] (5.8)

=

∫ (
dλdϕdξdξ

π

)R,A
p

ei(ϕ
R
p −ϕAp ) P̃RA eS0[λRp ,λ

A
p ] . (5.9)

The abbreviation (. . .)R,Ap,q denotes the product of all retarded and advanced vari-
ables labeled by p and q, for example

λR,Ap,q = λRp λ
R
q λ

A
p λ

A
q (5.10)(

dλdϕdξdξ
)R,A
p,q

=
(
dλpdϕpdξpdξpdλqdϕqdξqdξq

)R
×
(
dλpdϕpdξpdξpdλqdϕqdξqdξq

)A
. (5.11)

Eq. (5.9) yields zero because the integrals contain the full set of Grassmannian
variables and the factor ei(ϕ

R
p −ϕAp ). Thus, both integrals over {ξ} and {ϕ} give

zero while integrals over unbounded commuting variables converge, i.e. there is
no anomaly.

5.1.2. Leading term of the virial expansion

As a preliminary remark, we will drop all double indices (αij −→ α, bij −→ b,
etc.) during the calculations for the leading term because we only deal with the
indices p and q. The starting point is

G(2)
pq,qp(ω) = −

∫
D{Qp}D{Qq}PRAQAReS0[Qp]+S0[Qq ]f(Qp, Qq) (5.12)
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5.1. Calculations for the GUE

with

f(Qp, Qq) = eS[Qp,Qq ] − 1 =
∞∑
k=1

(−2bStr(QpQq))
k

k!
. (5.13)

By using the λ-parametrization, we obtain

G(2)
pq,qp(ω) = − 1

π4

∫
(dλdϕdξdξ)R,Ap,q P̃RAQ̃AReiθeS0[λRp ,λ

A
p ]+S0[λRq ,λ

A
q ]f({λ}, {α}, θ + ∆)

(5.14)
with α, θ and ∆ defined as in appendix C. Now, we can reduce the angle integration
over all four angles to just one single angle by making a Taylor expansion in the
nilpotent quantity ∆. In order to see this, we consider the integration with respect
to one single angle ϕ and perform the Taylor expansion. One obtains∫ 2π

0

dϕ ei(ϕ+c)f(ϕ+ c+ ∆) =

∫ 2π

0

dϕ ei(ϕ+c)

(
f(ϕ+ c) + ∆f ′(ϕ+ c)

+
∆2

2
f ′′(ϕ+ c)

)
. (5.15)

c contains all the other three angles. Next, we do the variable transformation

θ = ϕ+ c (5.16)

and make use of the 2π-periodicity of the function f . We can write∫ 2π

0

dθ eiθ
(
f(θ) + ∆f ′(θ) +

∆2

2
f ′′(θ)

)
=

∫ 2π

0

dθ eiθe−i∆f(θ) . (5.17)

The function f now contains only one angle such that all the other three angles
can be integrated out trivially. Furthermore, we integrated by parts to get the
right hand side of Eq. (5.17). In fact, ∆5 = 0, but Eq. (5.17) can be generalized
to higher nilpotents. Thus, we obtain

G(2)
pq,qp(ω) = − 8

π

∫
dθ(dλdξdξ)R,Ap,q P̃RAQ̃AReiθe−i∆eS0[λRp ,λ

A
p ]+S0[λRq ,λ

A
q ]

× f({λ}, {α}, θ) (5.18)

= − 8

π

∫
dθ(dλdξdξ)R,Ap,q P̃RAQ̃AR cos θ e−i∆eS0[λRp ,λ

A
p ]+S0[λRq ,λ

A
q ]

× f({λ}, {α}, θ) . (5.19)

In the last step, we used that f is an even function with respect to θ such that
only the real part of eiθ survives when integrating from −π to π. Let us now apply
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5. Calculations for the almost diagonal GUE and GOE

the RS-parametrization (see appendix C):

G(2)
pq,qp(ω) = − 1

2π

∫
dθ

(
dRdS√
S2 −R2

)
p,q

(dξdξ)R,Ap,q P̃RAQ̃AR cos θ e−i∆ei
Ω
2

(Sp+Sq)

× e−
(R2
p+R2

q)

4 f({R}, {S}, {α}, θ) . (5.20)

In order to disentangle the integrals over R and S variables, we perform now a
saddle-point approximation (see appendix B for more details) which gives

G(2)
pq,qp(ω) ' −2

∫ ∞
0

dSp,q

∫ 2π

0

dθ

∫
(dξdξ)R,Ap,q P̃RAQ̃AR cos θ e−i∆(SpSq)

−1 ei
Ω
2

(Sp+Sq)

× f({R = 0}, {S}, {α}, θ) (5.21)

with

f({R = 0}, {S}, {α}, θ) =
∞∑
k=1

(−2bSpSq)
k

k!4k

[
4 sin2

(
θ

2

)
− 2

(
αRαR + αAαA

)
× sin2

(
θ

2

)
− 1

2
αRαRαAαA cos θ

]k
. (5.22)

At this point, one is able to integrate out all the S variables using the integration
formula ∫ ∞

0

dSSk−1ei
Ω
2
S = (−2)k

Γ(k)

(iΩ)k
, (5.23)

where Γ(k) = (k − 1)! is the Gamma function [42], and one obtains

G(2)
pq,qp(ω) ' −2

∞∑
k=1

(
2b

Ω2

)k
(k − 1)!

k

∫ 2π

0

dθ

∫
(dξdξ)R,Ap,q P̃RAQ̃ARe−i∆ cos θ

×
[
4 sin2

(
θ

2

)
− 2

(
αRαR + αAαA

)
sin2

(
θ

2

)
− 1

2
αRαRαAαA cos θ

]k
.

(5.24)

Using the multinomial formula

(x1 + x2 + · · ·+ xm)k =
∑

j1+j2+···+jm=k

k!

j1!j2! · · · jm!
xj11 x

j2
2 · · ·xjmm (5.25)
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5.1. Calculations for the GUE

and the property of all the α variables to be nilpotent, we can evaluate the kth
power of the expression in square brackets:[

4 sin2

(
θ

2

)
− 2

(
αRαR + αAαA

)
sin2

(
θ

2

)
− 1

2
αRαRαAαA cos θ

]k
= 8 sin2k

(
θ

2

)
− 4k

(
αRαR + αAαA

)
sin2k

(
θ

2

)
+ kαRαRαAαA

(
2k sin2k

(
θ

2

)
− sin2k−2

(
θ

2

))
. (5.26)

The Grassmanns can now be integrated out by performing the Taylor expansion
of e−i∆ and writing

P̃RAQ̃AR e−i∆ = P̃RAQ̃AR − 1

2
P̃RAQ̃AR

(
ξRq ξ

R
p + ξAp ξ

A
q

)
+

1

4
P̃RAQ̃ARξRq ξRp ξAp ξAq .

(5.27)

Now, we split G(2)
pq,qp(ω) up into three terms:

G(2)
pq,qp(ω) = G(2)

pq,qp(ω)0 + G(2)
pq,qp(ω)2 + G(2)

pq,qp(ω)4 . (5.28)

The indices 0, 2, 4 refer to the number of additional Grassmanns which now
contribute to the supersymmetry-breaking factors. In the following, we will use
the helpful formulae:

• Supersymmetry-breaking factors:

P̃RAQ̃ARαRαR = P̃RAQ̃ARξRq ξRp (5.29)

P̃RAQ̃ARαAαA = P̃RAQ̃ARξAp ξAq (5.30)

P̃RAQ̃ARαRαRαAαA = P̃RAQ̃ARξRq ξRp ξAp ξAq . (5.31)

• Angle integration:∫ 2π

0

dθ sin2k

(
θ

2

)
= 2
√
π

Γ
(
k + 1

2

)
Γ(k + 1)

, k ≥ 0 . (5.32)

• Duplication formula for the Gamma function:

Γ(2k) =
√

2π 22k− 1
2 Γ(k)Γ

(
k +

1

2

)
. (5.33)
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5. Calculations for the almost diagonal GUE and GOE

Let us now turn to the three terms of G(2)
pq,qp(ω)m (m = 0, 2, 4) separately:

m = 0:

G(2)
pq,qp(ω)0 = −1

4

∞∑
k=1

(
8b

Ω2

)k
(k − 1)!

k

∫ 2π

0

dθ

∫
(dξdξ)R,Ap,q P̃RAQ̃AR cos θ

×
[
8 sin2k

(
θ

2

)
− 4k

(
αRαR + αAαA

)
sin2k

(
θ

2

)
+ kαRαRαAαA

(
2k sin2k

(
θ

2

)
− sin2k−2

(
θ

2

))]
(5.34)

= −2π
∞∑
k=1

(
2b

Ω2

)k
2k3 − 2k2 + 1

k(k + 1)(2k − 1)

Γ(2k)

Γ(k)
. (5.35)

m = 2:

G(2)
pq,qp(ω)2 =

1

8

∞∑
k=1

(
8b

Ω2

)k
(k − 1)!

k

∫ 2π

0

dθ

∫
(dξdξ)R,Ap,q P̃RAQ̃AR

(
ξRq ξ

R
p + ξAp ξ

A
q

)
× cos θ

[
8 sin2k

(
θ

2

)
− 4k

(
αRαR + αAαA

)
sin2k

(
θ

2

)
+ kαRαRαAαA

(
2k sin2k

(
θ

2

)
− sin2k−2

(
θ

2

))]
(5.36)

= −4π
∞∑
k=1

(
2b

Ω2

)k
Γ(2k)

(k + 1)Γ(k)
. (5.37)

m = 4:

G(2)
pq,qp(ω)4 = − 1

16

∞∑
k=1

(
8b

Ω2

)k
(k − 1)!

k

∫ 2π

0

dθ

∫
(dξdξ)R,Ap,q P̃RAQ̃ARξRq ξRp ξAp ξAq

× cos θ

[
8 sin2k

(
θ

2

)
− 4k

(
αRαR + αAαA

)
sin2k

(
θ

2

)
+ kαRαRαAαA

(
2k sin2k

(
θ

2

)
− sin2k−2

(
θ

2

))]
(5.38)

= −2π
∞∑
k=1

(
2b

Ω2

)k
Γ(2k)

k(k + 1)Γ(k)
. (5.39)

Combining all three terms yields

G(2)
pq,qp(ω) ' −4π

∞∑
k=1

(
2b

Ω2

)k
kΓ(2k − 1)

Γ(k)
. (5.40)
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5.1. Calculations for the GUE

This expression represents an asymptotic series with respect to Ω and is not very
suitable for further considerations. Therefore, we go to the time representation of
Eq. (5.40).

Time representation

We perform the Fourier transform of G(2)
pq,qp(ω)

G(2)
pq,qp(t) =

∫ ∞
−∞

dω

2πD
e−iωt G(2)

pq,qp(ω) , (5.41)

where D is the mean level spacing. Using the formula∫ ∞
−∞

dω

2π

e−iωt

(ω + iη)2k
=

(−1)k

Γ(2k)
t2k−1e−ηtθ(t) (5.42)

with θ(t) being the Heaviside step function, one obtains

G(2)
pq,qp(t) ' −

4π

D
e−ηtθ(t)

t

∞∑
k=1

(−2bt2)k

Γ(2k)

kΓ(2k − 1)

Γ(k)
. (5.43)

This expression can be summed up (e.g. with Wolfram Mathematica) and we
arrive at

G(2)
pq,qp(t) '

π

D
θ(t)

[√
2πb erf(

√
2b t) + 4b te−2bt2

]
, (5.44)

where erf(t) = 2√
π

∫ t
0
dx e−x

2
denotes the error function. The regularizer η has been

set to zero because it is not needed for the convergence of the Fourier backtransform
any more. G(2)

pq,qp(t) is bounded within the interval [0,∞) (see Fig. 5.1.). This is
the first main result of the present thesis.

Energy representation

Going back to the energy representation

G(2)
pq,qp(ω) = D

∫ ∞
−∞

dt eiωtG(2)
pq,qp(t) , (5.45)

and using the formula∫ ∞
−∞

dt eiωt
√

2πb erf(
√

2b t)θ(t) =
√

2πb

(∫ ∞
0

dt eiωt
(

erf(
√

2b t)− 1
)

+

∫ ∞
0

dt eiωt
)

(5.46)

=
√

2π3b δ(ω)−
√

2πb

ω
e−

ω2

8b erfi

(
ω√
8b

)
+ i

√
2πb

ω
e−

ω2

8b ,

(5.47)
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Figure 5.1.: Dimensionless plot of Eq. (5.44).

one gets for the energy representation

G(2)
pq,qp(ω) ' π

3
2

[
π
√

2b δ(ω) +
1√
π
−

(√
2b

ω
+

ω√
8b

)
erfi

(
ω√
8b

)
e−

ω2

8b

+ i

(√
2b

ω
+

ω√
8b

)
e−

ω2

8b

]
. (5.48)

or split into real and imaginary part

ReG(2)
pq,qp(ω) = π

3
2

[
π
√

2b δ(ω) +
1√
π
−

(√
2b

ω
+

ω√
8b

)

× erfi

(
ω√
8b

)
e−

ω2

8b

]
(5.49)

ImG(2)
pq,qp(ω) = π

3
2

(√
2b

ω
+

ω√
8b

)
e−

ω2

8b . (5.50)
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The function erfi(x) = −ierf(ix) denotes the imaginary error function. Eq. (5.48)
is the second main result of the present thesis.

5.2. Calculations for the GOE

Concerning the orthogonal symmetry class, all the steps of the calculations are
very similar to those of the GUE case. One can start considering the first and
leading order of the virial expansion after the saddle-point approximation because
the zeroth order vanishes for the same arguments as for the unitary symmetry
class. Hence, the starting point of the GOE calculations is

G(2)
pq,qp(ω) ' − 1

8π3

∫ ∞
0

dSp,q

∫ 2π

0

dϕR,Ap,q

∫ (
dξdξ

)R,A
p,q
P̃RAQ̃AReiφRe−iφA

× ei
Ω
2

(Sp+Sq)

SpSq
f({R = 0}, {S}, {α}, φR + ∆R, φA + ∆A) (5.51)

= − 1

8π3

∞∑
k=1

(−b)k

2kk!

∫ ∞
0

dSp,q

∫ 2π

0

dϕR,Ap,q

∫ (
dξdξ

)R,A
p,q
P̃RAQ̃AR

× eiφRe−iφA (SpSq)
k−1 ei

Ω
2

(Sp+Sq)

[
cos
(
φR + ∆R

)(
1− 1

2
αRαR

)
− cos

(
φA + ∆A

)(
1− 1

2
αAαA

)]2k

(5.52)

with φ and ∆ being defined for the retarded and advanced sector as in appendix
C. In total analogy with the calculations for the GUE, we can reduce the angle
integration for each sector to the integration over the relative angle φ whereas the
other angles can be integrated out. Moreover, by making a Taylor expansion in ∆
for each sector and integrating by parts, one can rewrite Eq. (5.52) in the form

G(2)
pq,qp(ω) ' − 1

2π

∞∑
k=1

(−b)k

2kk!

∫ ∞
0

dSp,q

∫ 2π

0

dφR,A
∫ (

dξdξ
)R,A
p,q
P̃RAQ̃ARe−i∆R

ei∆
A

× cosφR cosφA (SpSq)
k−1 ei

Ω
2

(Sp+Sq)

[
cosφR

(
1− 1

2
αRαR

)
− cosφA

(
1− 1

2
αAαA

)]2k

. (5.53)
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The S variables can be integrated out like for the GUE and Eq. (5.53) reads

G(2)
pq,qp(ω) ' − 1

2π

∞∑
k=1

(2b)k

kΩ2k
Γ(k)

∫ 2π

0

dφR,A
∫ (

dξdξ
)R,A
p,q
P̃RAQ̃ARe−i∆R

ei∆
A

× cosφR cosφA
[

cosφR
(

1− 1

2
αRαR

)
− cosφA

(
1− 1

2
αAαA

)]2k

.

(5.54)

Next, we integrate out the Grassmann variables. For this purpose, one must apply
the multinomial formula (see the GUE calculations) to evaluate the 2kth power of
the expression in square brackets:

[
cosφR

(
1− 1

2
αRαR

)
− cosφA

(
1− 1

2
αAαA

)]2k

=
(
cosφR − cosφA

)2k − kαRαR
(
cosφR − cosφA

)2k−1
cosφR

+ kαAαA
(
cosφR − cosφA

)2k−1
cosφA

− k

2
(2k − 1)αRαRαAαA

(
cosφR − cosφA

)2k−2
cosφR cosφA . (5.55)

To integrate out the Grassmanns and angles, it is convenient to split G(2)
pq,qp(ω) again

up into three terms (m = 0, 2, 4) corresponding to the number of additional Grass-
manns joining the supersymmetry-breaking factors by making a Taylor expansion
in ∆R, ∆A

P̃RAQ̃ARe−i∆R

ei∆
A

= P̃RAQ̃AR − 1

2
P̃RAQ̃AR

(
ξRq ξ

R
p + ξAp ξ

A
q

)
+

1

4
P̃RAQ̃ARξRq ξRp ξAp ξAq . (5.56)
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5.2. Calculations for the GOE

Let us consider the three terms separately:

m = 0:

G(2)
pq,qp(ω)0 = − 1

2π

∞∑
k=1

(2b)k

kΩ2k
Γ(k)

∫ 2π

0

dφR,A
∫ (

dξdξ
)R,A
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P̃RAQ̃AR

× cosφR cosφA
[

cosφR
(

1− 1

2
αRαR

)
− cosφA

(
1− 1

2
αAαA

)]2k

(5.57)

= − 1

2π

∞∑
k=1

(2b)k
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(
cosφR − cosφA

)2k−2
cosφR cosφA

]
(5.58)

The Grassmanns can now be integrated out

G(2)
pq,qp(ω)0 =

1

4π

∞∑
k=1

(2b)k

Ω2k
Γ(k)(2k − 1)

∫ 2π

0

dφR,A
∫ (

dξdξ
)R,A
p,q
P̃RAQ̃ARαRαRαAαA

×
(
cosφR − cosφA

)2k−2
cos2 φR cos2 φA (5.59)

= − 1

4π

∞∑
k=1

(2b)k

Ω2k
Γ(k)(2k − 1)

∫ 2π

0

dφR,A
∫ (

dξdξ
)R,A
p,q
P̃RAQ̃AR

×
(
cosφR − cosφA

)2k−2
cos2 φR cos2 φA . (5.60)

The angle integration is a bit more cumbersome, but can be done for the terms
G(2)
pq,qp(ω)2 and G(2)

pq,qp(ω)4 analogously. Let us consider the integral

Iφ =

∫ 2π

0

dφR,A
(
cosφR − cosφA

)2k−2
cos2 φR cos2 φA (5.61)

=
2k−2∑
j=0

(−1)j
(

2k − 2

j

)∫ 2π

0

dφR,A
(
cosφR

)2k−j (
cosφA

)j+2
. (5.62)

In the last step, the binomial formula

(a+ b)m =
m∑
j=0

(
m

j

)
am−jbj (5.63)
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5. Calculations for the almost diagonal GUE and GOE

was used. With the help of the integral identity∫ 2π

0

dφ cosjφ =
(−2)j (1 + (−1)j) π2

Γ(j + 1)Γ2
(

1
2
− j

2

) , j ≥ 0 (5.64)

one can carry out the angle integration

Iφ = 4k+1π4

2k−2∑
j=0

(
2k − 2

j

)
1 + (−1)j

Γ(2k + 1− j)Γ2
(

1
2
− k + j

2

)
Γ(j + 3)Γ2

(
− j

2
− 1

2

) .
(5.65)

Here, only even values of j survive in the sum and doing the summation over j
(e.g. with Wolfram Mathematica) yields

Iφ = π4k
2k3 − 2k2 + 1

2k

Γ2
(
k − 1

2

)
Γ(k)Γ(k + 2)

. (5.66)

Thus, one obtains

G(2)
pq,qp(ω)0 = −

∞∑
k=1

(8b)k

Ω2k

(2k − 1) (2k3 − 2k2 + 1)

8k

Γ2
(
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2

)
Γ(k + 2)

. (5.67)

The terms m = 2 and m = 4 are calculated in the same manner, so only the results
are presented below:

m = 2:

G(2)
pq,qp(ω)2 =

1

4π

∞∑
k=1

(2b)k

Ω2k
Γ(k)

∫ 2π
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(8b)k
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2

)
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. (5.69)

m = 4:

G(2)
pq,qp(ω)4 =

1

8π

∞∑
k=1

(2b)k

Ω2k

Γ(k)

k

∫
dφR,A cosφR cosφA
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= −
∞∑
k=1

(8b)k

Ω2k

1

2k

Γ2
(
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2

)
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. (5.71)
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5.2. Calculations for the GOE

Putting all three terms together then yields

G(2)
pq,qp(ω) ' −

∞∑
k=1

(8b)k

Ω2k

Γ
(
k + 1

2

)
Γ
(
k − 1

2

)
2Γ(k)

. (5.72)

Time representation

In the time domain and after performing the k-summation, we end up with

G(2)
pq,qp(t) '

2π

D
θ(t)I0(bt2)bte−bt

2

, (5.73)

where I0(t) =
∑∞

k=0

( 1
4
t2)

k

(k!)2 is the modified Bessel function of the first kind of the
order zero. This is the third main result of the present thesis.

1 2 3 4
t

2.2

2.4

2.6

2.8

GOE result in time domain

Figure 5.2.: Dimensionless plot of Eq. (5.73).
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5. Calculations for the almost diagonal GUE and GOE

Energy representation

The Fourier backtransform to the energy domain gives

G(2)
pq,qp(ω) '

√
2π3b

[
δ(ω) +

|ω|
16b

e−
ω2

16b

(
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√
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16b
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ω2

16b

(
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(
ω2

16b

)
+K1

(
ω2

16b
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, (5.74)

or, dividing into real and imaginary part, we obtain

ReG(2)
pq,qp(ω) =

√
2π3b

[
δ(ω) +

|ω|
16b

e−
ω2

16b

(
I1

(
ω2

16b

)
− I0

(
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ImG(2)
pq,qp(ω) =

√
2πb

ω

16b
e−

ω2

16b

(
K0

(
ω2

16b

)
+K1

(
ω2

16b
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. (5.76)

The functions Kν(x) = π
2
I−ν(x)−Iν(x)

sinπν
(ν = 0, 1) in the imaginary part are modified

Bessel functions of the second kind. Eq. (5.74) is the fourth and last main result
obtained for this thesis.

5.3. Brief discussion of the results and sum rule

Both the GUE and GOE results bear astonishing resemblance with results previ-
ously obtained for the second term of the virial expansion of the local density of
states correlation function 〈〈G(2)

pp (ω)〉〉 [36, 37]. One can notice that

〈〈G(2)
pp (ω)〉〉 ≡ −

∑
q
q 6=p

G(2)
pq,qp(ω) . (5.77)

This relation has a profound, physical reason. Let us consider the Fourier trans-
form with respect to time of the probability P (x, t) for a localized particle at time
t = 0 to travel the distance |x| = |p− q| between the space points p and q within
the time interval t > 0

P (x, ω) ∝ Gpq,qp(ω) . (5.78)

The probability is equivalent to the correlator we consider in this thesis (see [43]).
It is known that the zero-mode value (k = 0) of P (k, ω) in momentum represen-
tation, which is identical to the normalization condition of P (x, ω), yields

P (k = 0, ω) =

∫
dxP (x, ω) =

i

ω
. (5.79)
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5.3. Brief discussion of the results and sum rule

Eq. (5.79) reflects particle conservation and is a very profound feature. Thus,
one may expect that this feature should appear in the leading order of the virial
expansion (VE). So, when the virial expansion is applied up to the 2-supermatrix
approximation, one obtains:∑

p,q

Gpq,qp(ω) =
∑
p

Gpp,pp(ω) +
∑
p,q
q 6=p

Gpq,qp(ω)
VE' 〈〈G(D)

pp (ω)〉〉 ∝ i
ρ(E = 0)

ω
. (5.80)

This is because the 2-supermatrix term cancels due to Eq. (5.77) and only the

term 〈〈G(D)
pp (ω)〉〉 ∝ iρ(E=0)

ω
(see [36, 37]) survives since G(D)

pq,qp(ω) = 0. Therefore,
in order to see corrections, one must also take the 3-supermatrix terms (V(3)) into
account. Corrections to Eq. (5.80) may result from corrections to the density of
states ρ, but they are absent within the 2-supermatrix approximation [15].
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6. Critical scaling analysis

We apply the critical power law banded RMT (PLBRMT) to the results obtained
for the GOE (β = 1) and GUE (β = 2) in the last chapter. For the critical
PLBRMT, the function F(|p − q|) ≡ B2g(|p − q|) (B � 1) decreases in a power
law fashion

F(|p− q|) ≡ B2g(|p− q|) =
B2

B2 + |p− q|2
≈ B2

|p− q|2
, B � 1 . (6.1)

Thus, one must substitute

b =
1

2β
F(|p− q|) ≈ 1

2β

B2

|p− q|2
=

1

2β

B2

|x|2
(6.2)

for b with x = p − q. We perform a scaling analysis of G(2)
pq,qp(x, ω) and show that

the dynamical scaling hypothesis (see section 2.2.1) holds true for the correlation
function at criticality we investigate.

6.1. Dynamical scaling hypothesis

In section 2.2.1, it was pointed out that every correlation function C(|x|, ω) of
wave functions at the Anderson transition point which are separated in space and
energy scales in the following way:

C(|x|, ω) ∼
(
|x|
Lω

)−(1−d2)

, l < |x| < Lω . (6.3)

d2 is the second fractal dimension, l is the mean free path and Lω reads

Lω =
B
ω

(6.4)

with respect to the critical RMT. The scaling relation in Eq. (6.3) is the so-called
dynamical scaling hypothesis [13, 27, 23]. In the following, a scaling analysis of
the GUE and GOE results is done for the critical region |x| < Lω.
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6. Critical scaling analysis

6.2. Scaling behavior

6.2.1. GUE

Applying the critical PLBRMT to the GUE results of the last chapter (ω 6= 0)
yields

ReG(2)
pq,qp(x, ω̃) = π

[
1−
√
π

(
B

2ω̃|x|
+
ω̃

B
|x|
)

erfi

(
ω̃

B
|x|
)
e−

ω̃2

B2 |x|2
]

(6.5)

ImG(2)
pq,qp(x, ω̃) = π

3
2

(
B

2ω̃|x|
+
ω̃

B
|x|
)
e−

ω̃2

B2 |x|2 . (6.6)

The definition ω̃ = ω
β
√

2
has been introduced. In the limit d2 −→ 0, which accounts

for the fact that we deal with the critical almost diagonal RMT B � 1, i.e. the
strong multifractality regime, and

d2 ∝ B (6.7)

(see e.g. [37]), one expects, according to the dynamical scaling hypothesis, that

G(2)
pq,qp(x, ω̃) ∼

(
|x|
Lω̃

)−1

=
B
ω̃|x|

(6.8)

for |x| < Lω̃.

Critical region

We see that for |x| < Lω̃ the real part of G(2)
pq,qp(x, ω̃) vanishes in a power law fashion

ReG(2)
pq,qp(x, ω̃) ∼

(
ω̃

B
|x|
)2

, (6.9)

i.e. there is no critical region for the real part and it does not bear any information
about the fractality of the wave functions. However, the imaginary part scales like

ImG(2)
pq,qp(x, ω̃) ∼ B

ω̃|x|
, (6.10)

which is in accordance with Eq. (6.8).
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6.2. Scaling behavior

6.2.2. GOE

The same scaling analysis works for the critical GOE. Here, the real and imaginary
part of the correlator acquire the form

ReG(2)
pq,qp(x, ω̃) =

(π
2

) 3
2 |ω̃|
B
|x| e−

ω̃2

B2 |x|2
(
I1

(
ω̃2

B2
|x|2
)
− I0

(
ω̃2

B2
|x|2
))

(6.11)

ImG(2)
pq,qp(x, ω̃) =

√
π

2

ω̃

2B
|x| e−

ω̃2

B2 |x|2
(
K0

(
ω̃2

B2
|x|2
)

+K1

(
ω̃2

B2
|x|2
))

. (6.12)

In the critical region, the real part vanishes with

ReG(2)
pq,qp(x, ω̃) ∼ − ω̃

B
|x| . (6.13)

It is again the imaginary part which shows critical scaling

ImG(2)
pq,qp(x, ω̃) ∼ B

ω̃|x|
. (6.14)

To conclude, the dynamical scaling hypothesis obviously holds true for both the
GUE and GOE results.
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7. Conclusion

In this thesis, we have studied the propagation probability of critical disordered
systems, i.e. systems at the Anderson transition point, which are either strongly
multifractal or critical insulators. We have especially examined the propagation
probability for the orthogonal and unitary symmetry classes. As far as it is known
at the stage of the development of this thesis, such correlation functions have not
been considered before and our results are the first basic step for linear response
theory. The response functions can be straightforwardly obtained from our results
Eqs. (5.44), (5.48) and (5.73), (5.74).

In order to investigate universal properties of disordered systems which are at
or close to the point of the localization transition in the strong multifractality
regime, we have used almost diagonal random matrix theory. This type of RMT is
characterized by parametrically small off-diagonal matrix elements Hi 6=j ∼ B (B �
1). A specific representative of almost diagonal RMT which has been applied in this
thesis is the (critical) power law banded random matrix theory (PLBRMT). This
model describes a one-dimensional chain with long-range hopping and incorporates
all features of the wave functions at or close to the Anderson transition point.
The already existing non-linear supermatrix σ-model, which applies to the case
of weak multifractality (B � 1) very well, fails to apply to systems in the strong
multifractality regime. Therefore, we have used a supersymmetric version of a
virial expansion, which is a perturbative approach accounting for the fact that
contributions of terms taking higher and higher numbers of interacting localized
states into account decrease. Using this method, the propagation probabilities
for the orthogonal and unitary symmetry classes have been calculated up to the
leading term of the virial expansion.

To briefly sum up what the several chapters in this thesis were about, in chapter
2, we gave an introduction to the field of Anderson physics. We presented some
early attempts to analyze disordered systems undergoing a transition from local-
ized to delocalized states and took a closer look at the features of wave functions at
the critical point of the Anderson transition. These features range from a critical
scaling behavior to weak and strong fractality of the wave functions. Furthermore,
it was mentioned that the Anderson transition can be regarded as second-order
phase transition with a non-trivially defined order parameter which is rather an
order parameter function. The first part of chapter 3 dealt with the development
of the field of random matrix theory and its application to disorderd systems. The
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7. Conclusion

main focus was on the critical power law banded RMT describing low-dimensional
and high-dimensional critical systems by a very broad (B � 1) or narrow (B � 1)
bandwith B outside of which interactions of localized states decay in a power law
fashion. The second part reviewed the ideas for the virial expansion to exam-
ine high-dimensional critical systems because, as already mentioned, the method
called non-linear supermatrix σ-model fails to apply to these critical systems with
very narrow bandwidth. In chapter 4, our results for the unitary and orthogonal
symmetry classes of the almost diagonal RMT were presented. We have found (see
Eqs. (5.44), (5.48) and (5.73), (5.74)):

unitary symmetry class:

G(2)
pq,qp(t) '
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∆
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[√
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√
2b t) + 4b te−2bt2

]
(7.1)
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+ i

(√
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ω
+

ω√
8b
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. (7.2)

orthogonal symmetry class:

G(2)
pq,qp(t) '
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∆
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(7.3)

G(2)
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√
2π3b

[
δ(ω) +

|ω|
16b

e−
ω2

16b

(
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(
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16b

)
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(
ω2
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2πb
ω

16b
e−

ω2

16b
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(
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16b

)
+K1

(
ω2

16b
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. (7.4)

Furthermore, we have found a sum rule indicating that there are no corrections to
the space-integrated propagation probability within the 2-supermatrix approxima-
tion of the supersymmetric virial expansion, i.e. when considering the zero-mode
of the propagation probability to get from point p to point q 6= p:∑

p,q

Gpq,qp(ω) ' i
ρ(E = 0)

ω
. (7.5)

This is due to particle conservation and due to the fact that corrections are ex-
pected to contribute when considering higher terms of the virial expansion. In the
last chapter, applying the critical PLBRMT, the results have been compared with
scaling predictions made by J. T. Chalker [23]. It has been shown with accuracy
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of the leading term of the virial expansion that the dynamical scaling hypothesis
holds true, which demonstrates that it is not sensitive to phases of wave functions.
To the best of our knowledge, this result has never been obtained before.

The next steps will be to compare our results with numerical calculations and
to relate them to the critical conductance. Additionally, we intend to study a
crossover between the conductivity at the Anderson transition point and Mott’s
conductivity.

As an outlook to the future, there is still plenty of work to do concerning the
theoretical description of localization. From an analytical point of view, it is
always favorable to have exact methods. As it was mentioned in this thesis, the
non-linear supermatrix σ-model provides an exact solution at least for the situation
of multifractal metals or weak multifractality, i.e. for the critical power law banded
RMT with bandwidth B � 1. But, concerning the case of a multifractal insulator
and the case of strong multifractality where this model ceases to be valid, there
exist only perturbative approaches such as the supersymmetric virial expansion
used here. To close the gap between the weak and strong multifractality regimes, a
supermatrix field-theoretical approach named superbosonization, which has been
suggested in [44], appears to be a promising candidate. It has been applied to
calculate the density of states for an almost diagonal random matrix ensemble. At
the next step, one can use superbosonization for multipoint correlation functions
using the recently suggested idea of analytic continuation [45].
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A. A short introduction to
supermathematics

This chapter is meant to give a brief survey of the mathematics we will be dealing
with in this thesis.

In supermathematics, one deals with ordinary (commuting) variables and anti-
commuting variables at once, so-called Grassmann variables or Grassmanns [46].
In analogy to boson and fermion fields in field theory, the mentioned variables are
also referred to bosonic (commuting) and fermionic (anti-commuting) variables,
respectively.

A.1. Grassmanns and their properties

The Grassmanns χ form an anti-commuting algebra, i. e. different elements of
this algebra χi and χj anti-commute

{χi, χj} = χiχj + χjχi = 0 . (A.1)

The curly brackets denote the anti-commutator. As a consequence, all Grassmanns
are nilpotent

χ2
i = 0 . (A.2)

It is also possible to define the complex conjugate of Grassmanns

χiχj = χiχj . (A.3)

It is further defined to have some kind of norm which does not change under
complex conjugation

χχ = χχ . (A.4)

This implies that

χ = −χ (A.5)

for all Grassmanns. It should be mentioned that χ itself anti-commute with χ.
Even functions of Grassmann variables as their arguments can be defined. Let, as
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A. A short introduction to supermathematics

an example, χ and ξ be two Grassmanns, then a function of these two variables
can be made sense of through its Taylor expansion

f(χ, ξ) = f(χ, ξ = 0) +
∂

∂ξ
f(χ, ξ = 0)ξ (A.6)

= f(χ = 0, ξ = 0) +
∂

∂χ
f(χ = 0, ξ = 0)χ+

∂

∂ξ
f(χ = 0, ξ = 0)ξ

+
∂

∂ξ∂χ
f(χ = 0, ξ = 0)χξ , (A.7)

where the derivative with respect to anti-commuting variables was used. It has
the properties defined as follows:

∂

∂χ
χ = 1 ,

∂

∂χ
ξ = 0 (A.8){

∂

∂χ
,
∂

∂ξ

}
= 0 (A.9){

∂

∂χ
, χ

}
= 0 =

{
∂

∂χ
, ξ

}
. (A.10)

So, a function with anti-commuting arguments can in general be viewed as a series
of all combinations of containing Grassmanns {χ}

f({χ}) =
∑
ik=0,1

k=1,2,...,N

ai1i2···iNχ
i1
1 χ

i2
2 · · ·χ

iN
N . (A.11)

A.2. Supervectors

Supervectors are objects consisting of commuting and anti-commuting variables.
They can be viewed as the direct product of two vectors, the one containing only
commuting variables s and the other one only Grassmanns χ

Ψ =

(
s
χ

)
. (A.12)

The transpose of Ψ is defined as usual

ΨT = (s, χ) . (A.13)

Together with the transpose, the adjoint vector reads

Ψ† = (s, χ) . (A.14)
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A.3. Supermatrices

The squared norm of Ψ thus gets

|Ψ|2 = Ψ†Ψ = ss+ χχ , (A.15)

which is invariant under complex conjugation due to the definition of the complex
conjugate.

A.3. Supermatrices

Apart from supervectors, one can also call for supermatrices which have the form

Q =

(
a σ
ρ b

)
, (A.16)

where a, b and σ, ρ are ordinary matrices containing commuting variables and
anti-commuting variables, respectively. This definition is because Q is to map an
element from superspace to superspace

Ψ′ = QΨ , (A.17)

where Ψ′ is again a supervector. The transpose of a supermatrix is defined as

QT =

(
aT ρT

−σT bT

)
(A.18)

in order to make a supermatrix be unchanged when applying the Hermitian con-
jugate two times (

Q†
)†

= Q . (A.19)

Of course, one is also able to diagonalize supermatrices in the following way:

Q = UDV † , (A.20)

where U , V are two different unitary supermatrices and D is diagonal. In the
special case of Hermitian supermatrices, both U and V coincide.

The trace of a supermatrix Q (see Eq. (A.16) called supertrace is defined as

StrQ = tr a− tr b (A.21)

in order to equip it with the same invariance under cyclic permutations as the
trace of ordinary matrices. The superdeterminant of Q is computed as follows:

SdetQ =
det (a− σb−1ρ)

det b
. (A.22)

It has the same properties as the determinant of conventional matrices.
To avoid confusions regarding the calculations done for this thesis, it should be

pointed out that one must differentiate between two supermatrix representations:
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A. A short introduction to supermathematics

• boson-fermion
This representation refers to the definition of supermatrices described above
where the diagonal blocks consist of commuting variables and the off-diagonal
blocks contain anticommuting ones.

• retarded-advanced
The situation is now a bit different. The supermatrices in this representation
have the shape

Q|RA =

(
QRR QRA

QAR QAA

)
(A.23)

and their supertrace reads

StrQ|RA = StrQRR + StrQAA . (A.24)

The matrices Qkl (k, l ∈ {R,A}) are supermatrices in boson-fermion repre-
sentation (cf. Eq. (A.16)).

All the subsequent definitions and explanations on supermathematics will rely on
the first representation.

A.4. Integral calculus

A.4.1. Integrals over Grassmanns

The whole integral calculus with respect to anti-commuting variables is based just
on two definitions ∫

dχ =

∫
dχ = 0 ,

∫
dχχ =

∫
dχχ = 1 . (A.25)

The same anti-commutation relations hold for the differentials as in Eqs. (A.9)
and (A.10). One sees that differentiation and integration are closely connected
to each other and can principally be used interchangeably. As a result of the
definitions (A.25), one can deduce the property that the integral over a function
of Grassmanns is “translation” invariant∫

dχ f(χ+ ξ) =

∫
dχ f(χ) . (A.26)
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Linear transformation of variables

Sometimes, it can be useful to change the integration variables from one set of
Grassmanns to another by a linear transformation of the form

χ =


χ1

χ2
...
χN

 =


a11 a12 · · · a1N

a21
. . .

...
aN1



ξ1

ξ2
...
ξN

 = Aξ . (A.27)

The integral then has to transform in the following way to keep up the definitions
(A.25): ∫

dχ1dχ2 · · · dχNf(χ) = (detA)−1

∫
dξ1dξ2 · · · dξNf(Aξ) . (A.28)

The Jacobian J of this transformation is therefore

J = (detA)−1 . (A.29)

Gaussian Grassmann integrals

This kind of integrals plays an important role for the calculations in this thesis.
It is known from their counterparts with ordinary commuting variables that the
integral equation ∫ ∞

−∞

N∏
i=1

d2si
π

e−s
†As = (detA)−1 (A.30)

holds. A can be an arbitrary complex N×N matrix under the condition ReA > 0.
The integration measure d2si stands for d(Re si)d(Im si). It is also possible to go
from an integration over real and imaginary parts to one over the actual complex
variables and their conjugates such that

d2si = d(Re si)d(Im si) =
dsidsi

2i
. (A.31)

Nearly the same integral equation (A.30) can be found for Grassmann variables
with one exception: ∫ N∏

i=1

dχidχi e
−χ†Aχ = detA . (A.32)

The determinant on the right hand side of this equation stands in the numerator
and not in the denominator. Eq. (A.32) is proven for arbitrary matrices in [30]. Let
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A. A short introduction to supermathematics

us here consider the case of a Hermitian matrix H. We know that any Hermitian
matrix can be diagonalized by a unitary transformation U in the form

H = UEU † , (A.33)

where E is diagonal and contains all the eigenvalues of H. Thus, Eq. (A.32)
becomes ∫ N∏

i=1

dχidχi e
−χ†Hχ =

∫ N∏
i=1

dξidξi e
−ξ†Eξ (A.34)

=

∫ N∏
i=1

dξidξi e
−ξiEiξi (A.35)

=

∫ N∏
i=1

dξidξi
(
1− Eiξiξi

)
(A.36)

=
N∏
i=1

Ei = detH . (A.37)

In the first line, the change of variables was made:

χ†U = ξ† , U †χ = ξ . (A.38)

The Jacobian of such a transformation is always unity. There is another property
of Gaussian Grassmann integrals analogous to the ordinary case. The matrix
elements of an inverse matrix can be expressed through the formula

(
A−1

)
kl

= (detA)−1

∫ N∏
i=1

dχidχi χkχl e
−χ†Aχ . (A.39)

This can be shown when we denote the left hand side of Eq. (A.32) by I and take
the derivative of its logarithm with respect to the matrix element Alk

∂

∂Alk
ln I = (detA)−1

∫ N∏
i=1

dχidχi χkχl e
−χ†Aχ . (A.40)

Simultaneously, one has to take the same derivative of the logarithm of the right
hand side

∂

∂Alk
ln detA =

(
A−1

)
kl
. (A.41)

Hence, it follows that (
A−1

)
kl

=
∂

∂Alk
ln I (A.42)

and Eq. (A.39) holds true.
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A.4.2. Superintegrals

When one now combines integration over commuting and anti-commuting vari-
ables, this leads to the notion of superintegrals∫

D

N∏
i=1

dsi

∫ M∏
j=1

dχj f(s1, s2, . . . , sN , χ1, χ2, . . . , χN) . (A.43)

This class of integrals is well-defined as long as the integrals over the commuting
sector do not diverge, i.e. the integrand with respect to the commuting variables
must be bounded within the integration domain D and go sufficiently fast to zero
at the boundaries of it. Such requirements are not needed for the integrals over
Grassmanns since they only yield zero or one according to the definitions (A.25).

Gaussian superintegrals

By combining the conventional Gaussian integral and the one for Grassmann vari-
ables, one immediately obtains∫

dΨ†dΨ e−Ψ†FΨ = SdetF = 1 , (A.44)

where Ψ is a supervector of the form (A.12) and dΨ†dΨ =
∏N

i=1
d2si
π
dχidχi. F is

a supermatrix containing only the matrix A in the upper left and bottom right
block

F =

(
A 0
0 A

)
. (A.45)

As a result, we can rewrite Eq. (A.39) in terms of a superintegral

(
A−1

)
kl

=

∫
dΨ†dΨχkχl e

−Ψ†FΨ . (A.46)

We can conclude that the “supersymmetry” is preserved for Eq. (A.44) unless no
Grassmanns which break this symmetry are in front of the Gaussian exponential.

A.4.3. Change of variables

In some situations, it can be favorable to choose another set of integration vari-
ables which may simplify the integrals tremendously. This change of variables
can of course be performed either with respect to the sector of commuting or
anti-commuting variables. Changing variables in the sector of anti-commuting
variables can be done in the standard way described in section A.4.1. However,
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A. A short introduction to supermathematics

one sometimes has to choose parametrizations that mix commuting variables and
anti-commuting ones such that the old variables are functions of both types of
variables:

si = si ({λ}, {ξ}) , χi = χi ({λ}, {ξ}) , i = 1, 2, . . . , N . (A.47)

{λ} and {ξ} denote the full sets of new variables. Such a change of variables is
now carried out by the so-called Berezinian B named after F. A. Berezin, who
is said to be the originator of supermathematics. The Berezinian is analogous to
the Jacobian of ordinary variables, which arises from the change of the integration
measure

dΨ†dΨ −→ BdΨ̃†dΨ̃ . (A.48)

The Berezinian is the superdeterminant of a matrix containing the partial deriva-
tives of the old variables with respect to the new ones and can be calculated as
follows:

B = Sdet

(
a α
β b

)
(A.49)

with

aij =
∂si
∂λj

, αij =
∂si
∂ξj

(A.50)

βij =
∂χi
∂λj

, bij =
∂χi
∂ξj

. (A.51)
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B. Representation of Green’s
functions in terms of
superintegrals

This appendix is meant to give an outline of the calculations done for this diploma
thesis.

B.1. Superintegral representation

The retarded and advanced Green’s functions ĜR
(
E + ω

2

)
and ĜA

(
E − ω

2

)
at

different energies are defined as

ĜR
(
E +

ω

2

)
=

((
E +

Ω

2

)
1̂− Ĥ

)−1

, ĜA
(
E − ω

2

)
=

((
E − Ω

2

)
1̂− Ĥ

)−1

(B.1)
with Ω = ω+ iη and η −→ 0+ being a regularizing parameter as usual. According
to Eq. (A.46), it is possible to express every arbitrary matrix element of the
Green’s functions in terms of Gaussian superintegrals

GR
pq

(
E +

ω

2

)
=

∫
dΨR†dΨR χRp χ

R
q e

iΨR†FRΨR (B.2)

GA
qp

(
E − ω

2

)
=

∫
dΨA†dΨA χAq χ

A
p e
−iΨA†FAΨA . (B.3)

Here, FR/A is a supermatrix

FR =

((
E + Ω

2

)
1−H 0

0
(
E + Ω

2

)
1−H

)
(B.4)

FA =

((
E − Ω

2

)
1−H 0

0
(
E − Ω

2

)
1−H

)
. (B.5)

The regularizing parameter in Ω ensures convergence of the integrals over com-
muting variables. The product of the Green’s functions can be written in the
form

GR
pq

(
E +

ω

2

)
GA
qp

(
E − ω

2

)
= −

∫
dΨ†dΨPRAQAR eiΨ†FΨ (B.6)
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using

PRAQAR = −χRp χRq χAq χAp (B.7)

F =

(
FR 0
0 −FA

)
(B.8)

Ψ =

(
ΨR

ΨA

)
. (B.9)

B.2. Disorder average and supermatrix
parametrization

In this thesis, the disorder-averaged product of the Green’s functions in Eq. (B.6)
is considered, i.e. we assume H to be a random N × N matrix from the almost
diagonal Gaussian unitary and orthogonal ensemble introduced in chapter 4 and
perform the ensemble average. The probability distribution of the diagonal and
off-diagonal matrix elements for the GUE and the GOE respectively read

• GUE: H is a complex Hermitian matrix

P (Hii) =
1√
π
e−H

2
ii , P (Hi<j) =

1

2πbij
e
−
|Hij |

2

2bij (B.10)

bij =
1

4
F(|i− j|) ≡ 1

4
B2g(|i− j|) , B � 1 . (B.11)

• GOE: H is real and symmetric

P (Hii) =
1√
2π
e−

H2
ii
2 , P (Hi<j) =

1√
2πbij

e
−
H2
ij

2bij (B.12)

bij =
1

2
F(|i− j|) ≡ 1

2
B2g(|i− j|) , B � 1 . (B.13)

Let us start with the GUE.

B.2.1. Gaussian unitary ensemble

Let us analyze the exponential in the expression for the product of Green’s func-
tions. In terms of commuting and anti-commuting variables, it looks like as follows:

eiΨ
†FΨ = exp

{
i
∑
i,j

[(
E +

Ω

2

)
δij −Hij

](
sRi s

R
j + χRi χ

R
j

)
− i
∑
i,j

[(
E − Ω

2

)
δij −Hij

](
sAi s

A
j + χAi χ

A
j

)}
. (B.14)
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We define now (just for notational convience)

Rij = sRi s
R
j + χRi χ

R
j (B.15)

Aij = sAi s
A
j + χAi χ

A
j . (B.16)

So, one can obtain

eiΨ
†FΨ = exp

{
iE
∑
i

(Rii − Aii) + i
Ω

2

∑
i

(Rii + Aii)− i
∑
i

Hii (Rii − Aii)

− i
∑
i 6=j

Hij (Rij − Aij)
}
. (B.17)

Disorder averaging according to the probability distributions for the matrix ele-
ments from the GUE yields〈
eiΨ

†FΨ
〉

= exp

{
iE
∑
i

(Rii − Aii) + i
Ω

2

∑
i

(Rii + Aii)−
1

4

∑
i

(Rii − Aii)

−
∑
i<j

bij
2

(
(Rij − Aij +Rji − Aji)2 − (Rij − Aij −Rji + Aji)

2)} .
(B.18)

The next step is to introduce supervectors

|ψRi 〉 =

(
sRi
χRi

)
, |ψAi 〉 =

(
sAi
χAi

)
(B.19)

which yield supermatrices Qi defined as the direct product of the supervectors
|ψRi 〉 and |ψAi 〉 (see [36])

Qi =

(
|ψRi 〉〈ψRi | −|ψRi 〉〈ψAi |
|ψAi 〉〈ψRi | −|ψAi 〉〈ψAi |

)
=

(
QRR
i −QRA

i

QAR
i −QAA

i

)
. (B.20)

This enables us to write Eq. (B.18) in terms of supertraces of Q-matrices〈
eiΨ

†FΨ
〉

= exp

{∑
i

(
iEStrQi + i

Ω

2
Str(ΛQi)−

1

4
(StrQi)

2

)
−
∑
i<j

2bijStr(QiQj)

}
(B.21)

with

Λ =

(
1 0
0 −1

)
. (B.22)
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Here, it was used that

Rii − Aii = 〈ψRi |ψRi 〉 − 〈ψAi |ψAi 〉 = Str
(
|ψRi 〉〈ψRi |

)
+ Str

(
−|ψAi 〉〈ψAi |

)
(B.23)

= StrQRR
i + StrQAA

i = StrQi (B.24)

Rii + Aii = Str(ΛQi) (B.25)

and

(Rij − Aij +Rji − Aji)2 − (Rij − Aij −Rji + Aji)
2 = 4Str(QiQj) . (B.26)

The last equation can be obtained by very straightforward calculations. Now, we
are able to transform the disorder-averaged product of Green’s functions into an
integral over supermatrices Qi

〈
GR
pq

(
E +

ω

2

)
GA
qp

(
E − ω

2

)〉
= −

∫
D{Q}PRAQAR

N∏
i=1

eS0[Qi]

N∏
i,j=1
i<j

eS[Qi,Qj ]

(B.27)
with the help of the definitions

S0[Qi] = iEStrQi + i
Ω

2
Str(ΛQi)−

1

4
(StrQi)

2 (B.28)

S[Qi, Qj] = −2bijStr(QiQj) (B.29)

D{Q} =
N∏
i=1

D{Qi} =
N∏
i=1

dsRi ds
R
i

2πi
dχRi dχ

R
i

dsAi ds
A
i

2πi
dχAi dχ

A
i . (B.30)

The expression Eq. (B.27) is the starting point of all the considerations in this
thesis.

B.2.2. Gaussian orthogonal ensemble

All the steps till the disorder average is carried out are identical to those for the
GUE. So, let us begin with disorder averaging. The averaged exponential becomes〈

eiΨ
†FΨ
〉

= exp

{
iE
∑
i

(Rii − Aii) + i
Ω

2

∑
i

(Rii + Aii)−
1

2

∑
i

(Rii − Aii)

−
∑
i<j

bij
2

(Rij − Aij +Rji − Aji)2

}
. (B.31)
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For the GOE case, we make use of a supermatrix parametrization developed and
used in [37]. We define the supervectors

|ψRi 〉 =


sRi
χRi
sRi
χRi

 , |ψAi 〉 =


sAi
χAi
sAi
χAi

 . (B.32)

The Q-matrices read

Qi =
1

2

(
|ψRi 〉〈ψRi | −|ψRi 〉〈ψAi |
|ψAi 〉〈ψRi | −|ψAi 〉〈ψAi |

)
=

(
QRR
i −QRA

i

QAR
i −QAA

i

)
(B.33)

Eq. (B.33) yields

Rii − Aii = StrQi (B.34)

Rii + Aii = Str(ΛQi) , Λ =

(
1 0
0 −1

)
(B.35)

(Rij − Aij +Rji − Aji)2 = 4Str(QiQj) . (B.36)

Note that, in contrast to the GUE where the Q-matrices are 4 × 4 matrices, the
Q-matrices for the GOE are doubled in size, i.e. 8 × 8 matrices which a direct
consequence of the underlying symmetry class. Again using the definitions

S0[Qi] = iEStrQi + i
Ω

2
Str(ΛQi)−

1

2
(StrQi)

2 (B.37)

S[Qi, Qj] = −2bijStr(QiQj) (B.38)

D{Q} =
N∏
i=1

D{Qi} =
N∏
i=1

dsRi ds
R
i

2πi
dχRi dχ

R
i

dsAi ds
A
i

2πi
dχAi dχ

A
i (B.39)

with the difference that 1
4

(StrQi)
2 for the GUE has become 1

2
(StrQi)

2, we are
able to express the ensemble average of the product of the Green’s functions in
terms of superintegrals over supermatrices

〈
GR
pq

(
E +

ω

2

)
GA
qp

(
E − ω

2

)〉
= −

∫
D{Q}PRAQAR

N∏
i=1

eS0[Qi]

N∏
i,j=1
i<j

eS[Qi,Qj ] .

(B.40)
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B.3. Saddle-point approximation

During the calculations in this thesis, a crucial step, namely a saddle-point approx-
imation, is performed in order to disentangle the integration variables and make
the integrals much easier to carry out. We come across an integral of the kind∫ ∞

−∞
dx e−x

2

F
(√

bx,
√
by
)
, b� 1 . (B.41)

assuming that the function F is slow as concerns oscillations. We rescale the
variables x and y by

√
b such that

x̃ =
√
bx (B.42)

ỹ =
√
by (B.43)

and the integral expression is transformed into∫ ∞
−∞

dx̃√
b
e−

x̃2

b F (x̃, ỹ) . (B.44)

The characteristic scale of x̃ is
√
b, i.e. the main contribution comes from values

around x̃ ≈ 0 and it is possible to perform a saddle-point approximation:∫ ∞
−∞

dx̃√
b
e−

x̃2

b

(
F (0, ỹ) +O(x̃2)

)
. (B.45)

F (x̃, ỹ) has been expanded in a Taylor series around x̃ ≈ 0. It is obvious that all
odd orders vanish. Since x̃ ∼

√
b, we neglect all higher orders as well. This leads

to the approximation∫ ∞
−∞

dx̃√
b
e−

x̃2

b

(
F (0, ỹ) +O(x̃2)

)
'
∫ ∞
−∞

dx̃√
b
e−

x̃2

b F (0, ỹ) (B.46)

=
√
πF (0, ỹ) . (B.47)

Afterwards, the scaling with
√
b is made undone and we arrive at∫ ∞

−∞
dx e−x

2

F
(√

bx,
√
by
)
'
√
πF (0,

√
by) . (B.48)

Unfortunately, the situation in the virial expansion is a little more intricate. We
have to deal with multiple integrals and the function F entangles the integra-
tion variables in a complicated way. Furthermore, F contains an oscillating part
Fosc(y) ∼ eiΩy (Ω = ω+ iη, η −→ 0+) which decides about the applicability of the
saddle-point approximation as the typical scale of y is y ∼ ω−1, i.e. the saddle-
point approximation should only be valid for not too fast oscillations (ω � 1) [36].
Nevertheless, there is numerical evidence (e.g. see Fig. B.3 and [36, 37]) that this
approximation is also applicable in a very broad energy range of our interest.
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0.01 0.1
0.1

1

10

Figure B.1.: Numerical evidence for the broad range of applicability of the saddle-
point approximation (this figure has been taken from [37], figure 1)
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C. Parametrizations of integration
variables

C.1. l-parametrization

This parametrization was used in a sllightly different form in [47]. One defines

s = λeiϕ
(

1− 1

2
ξξ

)
(C.1)

χ = λeiϕξ (C.2)

λ ∈ [0,∞) , ϕ ∈ [0, 2π] . (C.3)

ξ is a new Grassmann variable. The advantage of this parametrization is that it
makes the Q-matrices block-diagonal. Again, one must differentiate between the
GUE and GOE.

C.1.1. Gaussian unitary ensemble

With this variable transformation, which was previously used in [36], it is possible
to write Q as

Q = UDU † . (C.4)

U is a unitary supermatrix

U =

(
uR 0
0 uA

)
, U †U =

(
1 0
0 1

)
(C.5)

uR/A =

(
1− 1

2
ξR/AξR/A −ξR/A
ξR/A 1 + 1

2
ξR/AξR/A

)
, uR/A †uR/A = 1 . (C.6)

The matrices uR/A are ordinary unitary supermatrices. D is a block-diagonal
supermatrix

D =

(
DRR DRA

DAR DAA

)
=


(
λR
)2

0 −λRλAeiφ 0
0 0 0 0

λRλAe−iφ 0 −
(
λA
)2

0
0 0 0 0

 (C.7)
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with φ = ϕR − ϕA. Thus, the supertrace of a single Q-matrix has the form

StrQ = Str
(
UDU †

)
=
(
λR
)2 −

(
λA
)2

(C.8)

Str(ΛQ) =
(
λR
)2

+
(
λA
)2
. (C.9)

The supertrace of the product of two different supermatrices is hard to calculate,
but can be simplified using the formula taken from [48]

u†(ξi)u(ξj) = u(ξj − ξi)e
1
2

(ξiξj−ξjξi) (C.10)

for retarded and advanced variables respectively. The us are the unitary superma-
trices for the Grassmanns ξ defined in Eq. (C.6). With the formula in Eq. (C.10),
one obtains

Str(QiQj) = Str
(
UiDiU

†
i UjDjU

†
j

)
(C.11)

=
(
λRi
)2 (

λRj
)2

(1− αRijαRij) +
(
λAi
)2 (

λAj
)2

(1− αAijαAij)

− 2λRi λ
R
j λ

A
i λ

A
j (1− 1

2
αRijα

R
ij)(1−

1

2
αAijα

A
ij) cos(θij + ∆ij) , (C.12)

where

αij = ξi − ξj (C.13)

θij = φi − φj (C.14)

∆ij =
i

2

(
ξRi ξ

R
j − ξRj ξRi −

(
ξAi ξ

A
j − ξAj ξAi

))
. (C.15)

The Berezinian B of this variable transformation for one set of variables (retarded
or advanced) is

B =
2i

λ
. (C.16)

Therefore, the integration measure with respect to one single supermatrix becomes

D{Qi} −→
(
dλdϕdξdξ

πλ

)R,A
i

=
dλRi dϕ

R
i dξ

R
i dξ

R
i

πλRi

dλAi dϕ
A
i dξ

A
i dξ

A
i

πλAi
(C.17)

The supersymmetry breaking factors transform into

PRAQAR −→ λRp λ
A
p λ

R
q λ

A
q P̃RAQ̃AR eiθpq = −λRp λAp λRq λAq ξRp ξRq ξAq ξAp eiθpq . (C.18)
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C.1. l-parametrization

C.1.2. Gaussian orthogonal ensemble

What changes for the GOE is that the rank of the Q-matrices is twice as big
as that for the GUE. One must deal with 8 × 8 supermatrices, which makes the
diagonalization procedure more complicated. Yet, it can be achieved (see [37]) by
defining the block-diagonal 8× 8 unitary supermatrix

U =


uReiϕ

R
0 0 0

0 uRe−iϕ
R

0 0
0 0 uAeiϕA 0

0 0 0 uAe−iϕ
A

 (C.19)

with the same uR/A defined in the preceeding section and using the symmetric and
orthogonal matrix

σ =

(
σ′ 0
0 σ′

)
, σ′ =


1√
2

0 1√
2

0

0 1 0 0
1√
2

0 − 1√
2

0

0 0 0 1

 (C.20)

σT = σ , σT = σ−1 ⇒ σσ = 1 . (C.21)

As a result, one can write for Q

Q = UσDσU † (C.22)

with D being the desired block-diagonal matrix which can be written as a tensor
product

D =

((
λR
)2 −λRλA

λAλR −
(
λA
)2

)
⊗


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (C.23)

For the supertraces of one single supermatrix Q and the product of two different
supermatrices, we thus obtain

StrQ = Str
(
UσDσU †

)
=
(
λR
)2 −

(
λA
)2

(C.24)

Str(ΛQ) =
(
λR
)2

+
(
λA
)2

(C.25)

Str(QiQj) = Str
(
U †jUiσDiσU

†
i UjσDjσ

)
=

[
λRi λ

R
j cos

(
φRij + ∆R

ij

)(
1− 1

2
αRijα

R
ij

)
− λAi λAj cos

(
φAij + ∆A

ij

)(
1− 1

2
αAijα

A
ij

)]2

. (C.26)

79



C. Parametrizations of integration variables

φij and ∆ij are defined for each sector (retarded and advanced) as follows:

φij = ϕi − ϕj (C.27)

∆ij =
i

2

(
ξiξj − ξjξi

)
. (C.28)

C.2. RS-parametrization

We change variables from λR, λA to R, S:

R =
(
λR
)2 −

(
λA
)2

(C.29)

S =
(
λR
)2

+
(
λA
)2

(C.30)

R ∈ (−∞,∞) , S ∈ [0,∞) (C.31)

λR =

√
S +R

2
, λA =

√
S −R

2
. (C.32)

In this parametrization, the supertraces of a single supermatrix Q are the same
for the GUE and GOE

StrQ = R (C.33)

Str(ΛQ) = S . (C.34)

The supertraces of the product of two supermatrices read for the GUE and GOE:

Str(QiQj)GUE =
1

4
(Si +Ri)(Sj +Rj)(1− αRijαRij)

+
1

4
(Si −Ri)(Sj −Rj)(1− αAijαAij)−

1

2

√
(S2

i −R2
i )(S

2
j −R2

j )

× (1− 1

2
αRijα

R
ij)(1−

1

2
αAijα

A
ij) cos(θij + ∆ij) (C.35)

Str(QiQj)GOE =

[
1

2

√
(Si +Ri) (Sj +Rj) cos

(
φRij + ∆R

ij

)(
1− 1

2
αRijα

R
ij

)
− 1

2

√
(Si −Ri) (Sj −Rj) cos

(
φAij + ∆A

ij

)(
1− 1

2
αAijα

A
ij

)]2

.

(C.36)

The Jacobian of this variable transformation is

J =
1

4
√
S2 −R2

. (C.37)
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