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We show that the paradigmatic Ruderman-Kittel-Kasuya-Yosida (RKKY) description of two local
magnetic moments coupled to propagating electrons breaks down in helical Luttinger liquids when the
electron interaction is stronger than some critical value. In this novel regime, the Kondo effect overwhelms
the RKKY interaction over all macroscopic interimpurity distances. This phenomenon is a direct
consequence of the helicity (realized, for instance, at edges of a time-reversal invariant topological
insulator) and does not take place in usual (nonhelical) Luttinger liquids.
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The seminal problem of the indirect exchange interaction
[Ruderman-Kittel-Kasuya-Yosida (RKKY)] between two
spatially localized magnetic moments, i.e., Kondo impu-
rities (KIs), weakly coupled to propagating electrons has a
well-known solution [1]. The paradigmatic approach can be
reformulated in the contemporary language as follows: one
integrates out fermionic degrees of freedom and reduces
the resulting nonlocal Lagrangian to the effective spin
Hamiltonian. The second step is usually justified by a scale
separation; the spin dynamics is slower than the electron
one if the electron-spin coupling is weak. RKKY induces
perceptible interimpurity correlations if an interimpurity
distanceR is smaller then the thermal length and the electron
coherence length. This RKKY theory is the obvious
simplification since it neglects another fundamental phe-
nomenon, namely, the Kondo effect [2]. If the temperature
is below the Kondo temperature, T < TK , the antiferromag-
netic Kondo coupling drives the single KI to the strong
coupling limit where the electrons screen KI. Hence, the
Kondo screening is an antagonist of the RKKY interaction.
The RKKY-Kondo interplay has attracted large attention

for several decades [3–7] and remains a hot topic of
research because of its importance for new systems, such
as graphene [8,9], strongly correlated quantum wires, and
carbon nanotubes, which are described by the Luttinger
liquid model [10,11]. The latter are especially interesting
because the Kondo effect can be enhanced by the inter-
actions [12–14]. The common wisdom is that the RKKY
physics dominates in a broad macroscopic range of R in
three- and low-dimensional systems.
In this Letter, we will demonstrate that, surprisingly, the

paradigmatic RKKY approach breaks down in strongly
correlated helical systems—helical Luttinger liquids
(HLLs). We will show that the reason for this unexpected
finding is the nontrivial and unusually increased RKKY-
Kondo competition.

Helicity means the lock-in relation between electron spin
and momentum: helical electrons propagating in opposite
directions have opposite spins. This protects the helical
transport against effects of spinless impurities. HLL can
appear at edges of time-reversal invariant 2D topological
insulators [15–19] and in purely 1D interacting systems
[20,21]. The Kondo effect [22–26] and RKKY [27–32] in
the topological insulators have been intensively studied for
the past several years. This increasing interest is partly
related to the hypothesis that Kondo-RKKY effects can be
responsible for deviations of the helical conductance from
its ideal value; see Refs. [33–37] and discussions therein.
At a simple phenomenological level, one can find “the

winner of the RKKY-Kondo competition” by comparing
TK with the characteristic energy of RKKY, ERKKY. The
latter has the meaning of the energy gap, which opens after
the RKKY correlations lift a degeneracy in the energy
of the uncorrelated KIs. In the absence of Coulomb

interactions, Tð0Þ
K ∝ expð−1=ρ0JÞ and Eð0Þ

RKKY ∝ J2=Rd,
where ρ0 is the density of states of the electrons at the
Fermi surface, J is the Kondo coupling constant, and d is
the space dimension. If ρ0J ≪ 1, there is a broad range of

macroscopic distances where Eð0Þ
RKKY ≫ Tð0Þ

K , T. In this
case, RKKY is expected to overwhelm the Kondo
screening.
The situation drastically changes in HLL with the strong

interaction. Let us concentrate on the XXZ Kondo coupling
with small constants J⊥, Jz ≪ 1=ρ0; see the formal
definition in Eqs. (5) and (6) and temporarily neglect Jz.
The electron repulsion is reflected by the Luttinger param-
eter of HLL: K ≤ 1 [38]; K ¼ 1 corresponds to non-
interacting fermions. Both ERKKY [see Eq. (13)] and TK
(see Ref. [22]) are modified by the interaction

ERKKY ∼Dðρ0J⊥Þ2ðξ=RÞ2K−1; 1=2 < K ≤ 1; ð1Þ
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TK ∝

(
Tð0Þ
K ; 0 < 1 − K ≪ 1;

Dðρ0J⊥Þ 1
1−K ≫ Tð0Þ

K ; 1 − K ≫ ρ0J⊥:
ð2Þ

Here ξ (D) is the spatial (energy) UV cutoff, i.e., the lattice
spacing (bandwidth). A naive formal extension of Eq. (1)
to the regime K < 1=2 would lead to a paradoxical result:
ERKKY seems to grow without bound with the increase of
the interimpurity distance. The results presented below
ultimately refute any possibility of such an effect.
Based on the above explained phenomenological argu-

ments, we expect that, if ERKKYðR ∼ ξÞ > TK , there exists
a broad range of macroscopic distances where RKKY
dominates over the Kondo effect. In the opposite case,
ERKKYðR ∼ ξÞ < TK , the Kondo physics dominates every-
where. The border between these two phases is defined
by the condition ERKKY ∼ TK . We will show that it
corresponds to the critical value of the effective interaction
parameter

K̃ ¼ Kð1 − ρ0Jz=2KÞ2; K̃crit ¼ 1=2; ð3Þ

see the phase diagram in Fig. 1 [39]. The paradigmatic
RKKY theory is valid only at K̃ > 1=2 and fails at
K̃ < 1=2. Namely, the spin subsystem cannot be described
by an effective (RKKY-like) Hamiltonian at K̃ < 1=2.
These statements, which are proven below at a more formal
level, are our main result.
The rest of this Letter is organized as follows: First,

we will rederive the RKKY Hamiltonian by integrating
out HLL degrees of freedom and discuss the difference
between helical and usual (not helical but spinful) cases.
We will combine the microscopic diagrammatic approach
with one-loop renormalization group (RG) arguments to

explain how RKKY stops Kondo renormalizations and
why the paradigmatic theory of RKKY is valid in the range
1=2 < K̃ and fails at K̃ < 1=2. By exploiting the extreme
situation close to the decoupling limit [24], we will
demonstrate that the strong effective interaction makes
the RKKY-induced spin correlations irrelevant. We thus
could conclude that the physics is fully dominated by the
Kondo effect at K̃ < 1=2.
The model.—We use functional integrals in the

Matsubara formulation with the imaginary time τ. The
bosonized Lagrangian density of HLL [18,22,24,35,40] is

LHLL ¼ ½ð∂τϕÞ2 þ ðu∂xϕÞ2�=ð2πuKÞ; ð4Þ

here u is the velocity of bosonic excitations. The electron-
KI interaction is described by Lagrangians of the forward
or backward scattering,

Lfs ¼ iJzafs=ðπuKÞ
X
j¼1;2

δðx − xjÞSzj∂τϕ; ð5Þ

Lbs ¼ J⊥=ð2πξÞ
X
j¼1;2

δðx − xjÞ½Sþj e−2iabsϕ þ c:c:�: ð6Þ

Here xj are impurity positions with R ¼ jx1 − x2j, Sμj are
fields describing KI spin degrees of freedom, and we have
introduced auxiliary dimensionless constants afs;bs, which
are explained below. Equations (4)–(6) describe the low
energy physics; i.e., all fields are smooth on the scale of ξ.
In particular, 2kF oscillations (kF is the Fermi momentum)
are eliminated from Lbs by the spin rotation S�j e

∓2ikFxj →
S�j . We note in passing that, unlike previously studied
examples [41–43], features of a single particle density of
states and the precise level of the chemical potential are
unimportant for the RKKY-Kondo physics, which we
explore. This is the peculiarity of the interacting 1D
systems described by the bosonization approach [40].
We emphasize that the helicity of our model implies that
it has only U(1) spin symmetry, but no SU(2) symmetry.
We restrict ourselves to the case of spin-1=2KIs and choose
a parametrization for S fields in terms of Grassmann fields
corresponding to Dirac fermions [44,45],

Sþj ¼ ðd̄j þ djÞc̄j; Szj ¼ c̄jcj − 1=2: ð7Þ

Each Grassmann field has the usual dynamical Lagrangian
Lf ¼ ψ̄ j∂τψ j, ψ j ¼ fcj; djg [46,47].
In the initial formulation, one chooses afs;bs ¼ 1;

however, the gauge transformation of c fermions, cj →
cj exp½iλϕðxjÞ�, which is equivalent to the Emery-Kivelson
rotation [24,48], allows one to represent the theory in two
extreme forms,

Representation 1∶ afs ¼ 0; abs ¼ 1 − κ; ð8Þ
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FIG. 1. Phase diagram of the two Kondo impurities coupled
to the HLL. Green and orange regions demonstrate the RKKY
and the Kondo phases, respectively. Axes show values of the
Luttinger parameter 1=4 ≤ K ≤ 1 and the dimensionless cou-
pling constant jρ0Jzj < 1; see Eqs. (4) and (5). The critical line,
which separates the phases, is defined by the equation K̃ ¼ 1=2.
The decoupling limit corresponds to K̃ ¼ 0 [24].
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Representation 2∶ afs ¼ 1 − 1=κ; abs ¼ 0; ð9Þ

where κ ≡ ρ0Jz=2K, ρ0 ¼ 1=πu.
RKKY phase.—Let us start from Eq. (8) and derive the

effective Hamiltonian of KIs from the perturbation theory
in J⊥. To this end, we expand expð− R

dfx; τgLbsÞ up to
OðJ2⊥Þ, integrate over ϕ, and reexponentiate the result. This
yields the action which describes spin interactions,

S¼−
J2⊥

ð2πξÞ2
X
j;j0

Z
dτ1dτ2S

þ
j ðτ1ÞΠðτ1− τ2ÞS−j0 ðτ2Þ; ð10Þ

Π is governed by the correlation function of the bulk
bosons [40,49]

ΠðtÞ¼
��

βu
πξ

�
2
�
sin2ðπtTÞþsinh2

�
xj−xj0

LT

���
−K̃

: ð11Þ

Here β≡ 1=T; LT ≡ βu=π is the thermal length. We will
consider the macroscopic spatial range ξ ≪ R ≪ LT . If
1=2 < K̃ ≤ 1, the main contribution to Sj;j0 results from a
small time difference, Tjτ1 − τ2j ∼ jxj − xj0 j=LT ≪ 1. This
allows us to reduce Sj;j0 to the local action of RKKY,

SRKKY ¼ −ERKKY

Z
dτ½Sþ1 ðτÞS−2 ðτÞ þ c:c:�: ð12Þ

The terms with j ¼ j0 do not contribute to Eq. (12) because
Sþj ðτÞS−j ðτÞ ∝ ðd̄j þ djÞ2 ¼ 0. We have introduced in
Eq. (12) the RKKY energy

ERKKY ¼ 2J2⊥
ð2πξÞ2

Z
β

0

dtΠðtÞ: ð13Þ

ERKKY can be expressed in terms of the hypergeometric
functions. Its asymptotic behavior for R=LT ≪ 1 is

ERKKY ∝
J2⊥
uξ

�
Γð1

2
− K̃Þ

Γð1 − K̃Þ
�

ξ

LT

�
α

þ ΓðK̃ − 1
2
Þ

ΓðK̃Þ
�
ξ

R

�
α
�
;

α ¼ 2K̃ − 1: ð14Þ

If 1=2 < K̃ < 1 and T → 0, the first term in Eq. (14)
vanishes and the second one reproduces the usual RKKY
energy. The failure of the paradigmatic theory starts from
K̃ ¼ 1=2, where both terms of Eq. (14) are needed to cancel
out divergences. Both contributions must be kept also at
K̃ < 1=2: neglecting the first term leads to nonphysical
results, like growth of ERKKY with increasing R
(cf. Ref. [31]). However, the first term diverges at K̃ <
1=2 in the T → 0 limit. Moreover, the local time approxi-
mation used to derive Eq. (12) loses its validity because the
UV singularity of Π becomes too weak and the integral is
now given by all (not small) time differences jτ1 − τ2j < β.

All this signals that the physics changes at the point
K̃ ¼ 1=2 and the RKKY theory cannot be extended to
smaller values of K̃.
We emphasize the difference between Eq. (13) and its

counterpart for the spinful (almost) SU(2) symmetric
Luttinger liquid: in the latter case, Π is a product of the
charge and the spin sector contributions Πc;s with the
Luttinger parametersKc;s [10]. This makesΠmore singular
at small times. For example, if Jz ¼ 0 and the electron
interaction is SU(2) symmetric, the exponent K̃ in Eq. (11)
reduces to ðKc þ 1Þ=2 > 1=2. In this case, the integral in
Eq. (13) converges at small times, the theory is local in time
and the effective Hamiltonian approach is valid. Therefore,
the above described crossover in the behavior of ERKKY is
absent and a new phase does not appear in the nonhelical
spinful Luttinger liquid. Note that 1D interacting systems
driven far from the SU(2) symmetry may possess an
emergent helicity with physics being similar to that of
our helical model [50].
When the RKKY approach is valid, it is easy to

calculate different spin correlation functions, e.g., Gzz ¼
−T̂τhŜz1ðτ0ÞŜz2ðτÞi, by using the effective Hamiltonian
ĤRKKY ¼ −ERKKYðŜþ1 Ŝ−2 þ H:c:Þ, which corresponds to
the local action Eq. (12). Calculations at T → 0 and the
analytical continuation to the upper half-plane yield the
retarded Green’s function

GR
zzðωÞ ¼ −

π

2

jERKKYj
ω2þ − ð2ERKKYÞ2

; ωþ ≡ ωþ i0: ð15Þ

RKKY-Kondo transition.—To understand the transition
to the new phase, let us switch from the perturbation theory
to the one-loop RG. We still work with the theory of
Eq. (8), where the dimension of the backscattering vertex
equals K̃. Thus, the leading in J⊥ RG equation for this
coupling constant reads as

∂lJ⊥ ¼ ð1 − K̃ÞJ⊥: ð16Þ

Here l is the logarithm of the energy Ω. The difference
between RG for one [24] and two impurities is not visible
at this level. Moreover, Eq. (16) looks precisely like RG
for the backscattering amplitude of the static impurities
[51,52], though with renormalized K. These two analogies
are not accurate because the renormalization of J⊥ stops
quickly.
Let us find the RG cutoff by adapting the scattering

approach of Refs. [53,54] to the problem we study.
The main idea of that approach is to consider the weak
electron interaction and to find logarithmic corrections to
Green’s function of the backscattered electron, Gbs ¼
−T̂τhψ̂Lðτf; xfÞψ̂†

Rðτi; xiÞi. Here xi;f → −∞, ψ̂†
R (ψ̂L) is

the creation operator for the right- (the annihilation operator
for left-) moving fermion. The leading correction to
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backscattering caused by the static impurity appears in
the first order in the interaction, δGbs ∼ ð1 − KÞ
logðD=ΩÞ, Ω > T.
Now we recall that backscattering in HLL is caused by

KI and requires spin flip. Hence, Green’s function describ-
ing backscattering must account for changing the spin state.
Formally, one has to add the spin operator in the definition
of Green’s function,

GðKIÞ
bs ¼ −T̂τhŜ−ðτfÞψ̂Lðτf; xfÞψ̂†

Rðτi; xiÞi; ð17Þ
the impurity number is omitted here. The leading in (1 − K)

and J⊥;z correction to G
ðKIÞ
bs , δGðKIÞ

bs , is given by the diagram

shown in Fig. 2. The difference between δGbs and δGðKIÞ
bs

is due to the spin propagator G−þ ¼ −T̂τhŜ−ðτfÞŜþðτ1Þi.
Using the parametrization Eq. (7), we obtain G−þ ¼
−2hcðτfÞc̄ðτ1ÞihdðτfÞd̄ðτ1Þi; d fields have the bare
Lagrangian Lf½d̄; d�. Because of the interimpurity correla-
tions, the spin flip of one KI costs the energy of the gap
ERKKY, which can be qualitatively described by adding
the mass term to the Lagrangian of c fields: Lf½c̄; c� →
Lf½c̄; c� þ ERKKYc̄c. This yields

G−þ ¼ 2θ½ðτf − τ0ÞERKKY�e−ðτf−τ0ÞERKKY ; ð18Þ
with the step function θðx ≥ 0Þ ¼ 1. G−þ changes the
cutoff of the logarithm from Ω to max½Ω; ERKKY�.
The one-loop RG comes from resummation of the

leading logarithms. Therefore, we conclude that RKKY
correlations change the scale at which the RG flow
stops, from a self-consistently obtained scale Esc, which
marks the strong coupling limit of the RG flow, to
max½Esc; ERKKY�. According to Eq. (16), Esc coincides
with TK in the second line of Eq. (2) with K̃ being
substituted for K. The crossover occurs at TKðK̃Þ∼
ERKKY, which obviously means the transition between
RKKY and Kondo physics at

K̃ ¼ 1=2: ð19Þ

This explains failure of the paradigmatic theory for RKKY
when K̃ < 1=2. The RKKY-Kondo transition is illustrated
by the phase diagram in Fig. 1. We have restricted axes to
the relevant range of K and jρ0Jzj < 1 and have excluded
the extremely strong coupling and the second critical line
from this figure. The phase diagram of Fig. 1 is different
from that for the single KI [24]: the border between two
phases is defined by Eq. (19) for two KIs and by K̃ ¼ 1 for
the single KI.
Kondo phase.—Two impurities coupled to HLL is not

the exactly solvable model; therefore, one cannot say much
about the Kondo phase without numerics. One possibility
for analytics is provided by the vicinity of the so-called
decoupling limit [24], which can be conveniently analyzed
by using Eq. (9) with jafsj ≪ 1 [55]. In this case, the spin
Green’s function Gzz can be calculated perturbatively in
ðρ0JzafsÞ and exactly in J⊥. Similar to Eq. (15), we do the
analytic continuation to the upper half-plane at T → 0 and
find GR

zz near the decoupling limit

GR
zzðωÞ ≃ i

�
π

2

�
3

ðρ0JzafsÞ2
�

Ω⊥
ω2þ −Ω2⊥

�
2 ω

K
ei

Rωþ
u ; ð20Þ

with Ω⊥ ≡ J⊥=2πξ.
The difference between two phases becomes obvious

after comparing the frequency dependence of GR
zz in

Eqs. (15) and (20). In the Hamiltonian description of the
RKKY phase, there is no retardation and GR

zz becomes
constant at jωj ≪ ERKKY. This reflects the RKKY-induced
interimpurity correlation. The retardation is present in
Eq. (20) (note the oscillating exponential) and, much more
importantly, GR

zz decays as ω=Ω⊥ at jωj ≪ Ω⊥. This decay
shows the absence of the noticeable interimpurity correla-
tion near the decoupling limit. When ω → 0, i.e., the
observation time goes to infinity, (almost) uncorrelated
dynamics of two KIs leads to the suppression of GR

zz. If the
interimpurity correlation is weak, we can make use of the
RG for the single KI, which shows the flow toward
the decoupling limit where KIs are not correlated and only
the Kondo-like backscattering remains relevant [24].
All these observations confirm that the Kondo physics

fully dominates at K̃ < 1=2.
Summary.—We have shown that the paradigmatic

RKKY theory is not applicable if the indirect exchange
interaction of two spin-1=2 Kondo impurities is mediated
by strongly correlated helical electrons with the effective
Luttinger parameter K̃ < 1=2 [Eq. (3)]. The physical
reason for this counterintuitive finding is the competition
between RKKY-induced spin correlations and Kondo
screening of localized spins. This competition is crucially
intensified by helicity. Phenomenological arguments com-
bined with the perturbation theory and with a scaling
analysis of the one-loop renormalization group have

FIG. 2. The diagram that yields the leading in interaction (wavy
line) and in the coupling constants J⊥;z correction to Green’s
function describing backscattering of a helical electron by a
Kondo impurity. KI is located at the position x1. Solid lines show
the electron propagators before (blue) and after (green) back-
scattering. The dashed line denotes the spin propagator G−þ,
which stops logarithmic divergences of the theory of Refs. [53,54]
at ERKKY.
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allowed us to identify a border between phases where either
the RKKYor the Kondo physics dominates (Fig. 1). These
phases emerge when the (effective) electron interaction is
weak or strong, respectively.
We have encountered an instructive example of the

interacting system where the usual description of a sub-
system in terms of an effective Hamiltonian is impossible
due to helicity and strong interaction. Physical situations
where the effective Hamiltonian of a subsystem cannot be
constructed put forward a conceptual problem of treating
such strongly correlated systems.
Our results give new insight into the fundamental

phenomenon of the RKKY-Kondo competition. In particu-
lar, they indicate that the Doniach phase diagram [56] can
be very nontrivial in systems with spin-orbit interaction.
This famous diagram describes a crossover of a Kondo
lattice between magnetically ordered phases and phases
of heavy fermion Fermi liquid, which are dominated by
correlations between local magnetic moments and by the
Kondo screening, respectively.
Our predictions may serve as a basis for describing an

influence of a rare Kondo array on transport in helical
systems. Measurements of Ref. [57] suggest that HLL on
the edges of 2D topological insulators made of InAs/GaSb
can have a really small Luttinger parameter, K ∼ 0.2 <
1=2. We thus expect that our predictions are relevant for the
experimental studies of the topological insulators. Another
possible platform, where the unusual RKKY-Kondo com-
petition can be detected, is provided by recently fabricated
1D wires with interaction-induced helicity [58–61]. Further
development of the theory may include a detailed study of a
vicinity of the transition and an extension to the case of
larger spins.
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