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Abstract

We study the Fermi-edge singularity, describing the response of a degenerate electron
system to optical excitation, in the framework of the functional renormalization group
(fRG). Results for the (interband) particle-hole susceptibility are tested against the
summation of all leading logarithmic diagrams, achieved by a solution of parquet equa-
tions. We analytically reproduce the (first-order) parquet formula by a truncation of
the fRG flow, keeping four-point and higher one-particle-irreducible vertices constant,
resulting in an exactly solvable system of differential equations. In the simplified case
of immobile valence-band electrons (X-ray-edge singularity), corresponding to a two-
level scattering impurity, the flow equations are solved numerically. We use different
truncation schemes, one of which includes a fully dynamic, fermionic four-point vertex,
and confront the data with the analytic result in terms of Matsubara frequencies. Ex-
amining low-order diagrams, we show that the fRG flow does not generate all parquet
graphs, irrespective of performing a Hubbard-Stratonovich transformation or including
photon fields to rephrase the particle-hole susceptibility as a flowing self-energy. Corre-
spondingly, the full, analytic result originates from a fortuitous partial cancellation of
diagrams, specific to the problem at hand.
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1 Introduction

The motivation for the study of Fermi-edge physics in this thesis is twofold. The ad-
vance in the experimental techniques of cavity quantum electrodynamics has renewed
the need for a precise understanding of the response of degenerate Fermi systems to
optical excitation. From a theoretical perspective, the study of the X-ray-edge sin-
gularity serves as “a prototype of a fermionic problem with a divergent perturbation
theory” and is “instrumental in understanding more complicated problems such as the
Kondo problem” [1]. Whereas a solution of the (interband) particle-hole susceptibility
via so-called parquet equations amounts to extensive computational effort, only very
recently, it has been suggested to perform this resummation via simple approximations
in a functional-renormalization-group (fRG) scheme [2]. Before we, indeed, reproduce
the (leading-order) parquet result, first obtained in 1969 [3], in a consistent way from a
truncated fRG flow and critically review the underlying structure (section 3), we need
to introduce a variety of theoretical techniques (section 2) and get familiar with the
standard simplifications (section 1.3, 1.4). First, let us, however, go into more detail
about the characteristics of the Fermi-edge problem.

Experimentally, X-ray absorption in metals has been a topic of interest for a long
time. Similar measurements with infrared light can be performed using heavily doped
semiconductors. Whereas photon absorption in metals typically excites a localized, deep
core electron, effects due to the mobility of valence-band electrons in semiconductors
can significantly alter the spectrum [4]. When a quasi-two-dimensional layer of such a
semiconducting material is placed inside an optical cavity, the reversible light-matter
coupling leads to the formation of half-light, half-matter excitations, attributed to the
so-called polariton. We describe an experiment investigating cavity polaritons in the
presence of a high-mobility sample [4] in section 1.1 and give qualitative explanations
to the measurement outcomes in section 1.2.

The basic, theoretical formulation of the X-ray-edge singularity employs a localized
scattering impurity, corresponding to a deep core level of a metal. In this form, the
problem is exactly solvable in a one-body approach, as performed by Nozières and De
Dominics [5]. This is, however, limited to the particular situation where the scattering
impurity is structureless. If the problem is tackled in a many-body treatment, the solu-
tion allows to be generalized to more complicated situations and has relevance for other
problems involving logarithmic divergences. This includes not only the Kondo problem,
but also the generalization to scattering processes involving a finite-mass valence-band
hole, as necessary for the description of optical absorption in semiconductors.

In a diagrammatic treatment of the Fermi-edge problem, logarithmic divergences
appear at all orders. Therefore, simple perturbation theory is meaningless and resum-
mation procedures are essential. A suitable resummation can be phrased in terms of
parquet equations, which consist of coupled Bethe-Salpeter equations corresponding to
singular channels distinguished by parallel or antiparallel particle-hole lines. Parquet
equations are used in a wide variety of theoretical applications, and it seems highly
desirable to obtain equivalent resummation techniques. Whether, judging from the
case study of the Fermi-edge singularity, such a technique is given by the functional
renormalization group is the main concern of this work. Analytic, numeric, as well as
diagrammatic arguments concerning the calculation of the particle-hole susceptibility
are collected in section 3 to settle this conjecture raised by Lange et al. [2].
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1.1 Polariton experiment

We describe a cavity-polariton experiment using the example of a publication of the
Imamoğlu group in 2014 by Smolka et al. [4]. The setup employs a quantum well to
confine electrons in a thin, semiconducting layer embedded in a barrier material. The
surrounding mircrocavity, i.e., two mirrors separated by a few micrometers, is tuned to
couple light primarily to the two-dimensional electron gas (2DEG) in the layer. The
optical properties of this system are examined using differential reflection (dR) mea-
surements at very low temperatures (T = 0.2 K).

More precisely, one considers two different 20 nm-wide GaAs samples positioned
at the antinodes of the electromagnetic field in a distributed Bragg reflector (DBR)
microcavity (cf. Fig. 1.1a). The electron density of each sample can be modified by
applying a gate voltage between a doped top layer and the sample. White light or a
tunable diode laser are used to shine on the cavity and generate reflected light, which
is recorded after passing a beam splitter (cf. Fig. 1.1b). The dR spectrum is obtained
by subtracting the reflection measurement, when the cavity is resonant with the optical
transition in the material, from the bare cavity reflection, which is recorded when the
cavity is far red-detuned. Variable tuning of the cavity is achieved by a wedged mirror
geometry, providing different distances between the mirrors and, thus, varying resonance
frequencies.

Differential-reflectivity spectra allow to make statements about the elementary ex-
citations of the cavity system. Pure light excitations can be understood from a classical
as well as from a quantum point of view. A cavity can be seen as a Fabry-Pérot inter-
ferometer, which sharply transmits resonant electromagnetic waves1. Correspondingly,
light at resonant frequencies excites the cavity by populating photonic eigenmodes, such
that light at these frequencies is not reflected. By definition of dR, it will show up as
a peak, and variable tuning of the cavity will directly shift this signal. By contrast,
independent of cavity tuning, light at a frequency that induces an optical transition in
the 2DEG, i.e., a matter excitation, will not be reflected.

Fig. 1.2 shows dR spectra for the two different samples in terms of energy and tuning
of the cavity. Sample B exhibits a doubled electron density compared to sample A, but
more importantly, an order-of-magnitude-higher mobility. For sample A, one can see
clear signatures of a diagonal line, corresponding to the cavity’s resonance, and a vertical

1In a follow-up experiment by the Imamoğlu group [7] focusing on exciton-polaritons, the cavity
finesse is specified to be 200, which can be interpreted as giving an estimate of how often a photon is
reflected between the mirrors.

(a) Standing electromagnetic waves in the cav-
ity induce exciton formation in the 2DEG. Fig-
ure taken from [6].

(b) Reflection measurement using a
doped quantum well in a DBR cavity.
Figure taken from [4].

Figure 1.1: Illustrations for a cavity-polariton experiment. Differential reflection measurements
are performed on a distributed Bragg-reflector (DBR) microcavity surrounding a quasi-two-
dimensional, semiconducting layer (2DEG).
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Figure 1.2: Differential reflectivity spectra for a low- (A) and high-mobility sample (B) in terms
of energy E and tuning of the cavity. Detuning δ is measured as the difference of the resonance
frequency of the cavity from the optical excitation energy of the semiconducting layer. Reduced
mode splitting for sample B is attributed to the influence of the recoil energy of valence-band
electrons. Figure taken from [4].

line for the optical transition in the material. Combined, one observes a typical avoided-
crossing behavior. As light and matter excitations mix, new quasiparticles emerge,
which are called polaritons2. However, for sample B, there is hardly any structure on
the vertical to be noted. The signal rather corresponds to a diagonal, photonic line,
which is broadened for high energies. While the polariton identification in the spectrum
of sample A is commonly known, the measurements for sample B provide a surprising
outcome, which is attributed to the fact that the material has a high mobility. A
qualitative explanation will be given next.

1.2 Qualitative understanding of Fermi-edge polaritons

The features of the measurements shown in Fig. 1.2 can be understood from a simple
model of the semiconducting material. Absorption of a suitably tuned photon leads
to creation of a conduction-band-electron and valence-band-hole pair. The mobility of
a sample is incorporated by the effective mass of the valence band (hole mass). Low-
mobility samples are approximated to have infinite hole mass, whereas mobile samples
require a finite-mass description. The implications of the additional conservation of
momentum for finite hole mass are already explained in the works of Mahan [8] and
Gavoret et al. [9].

A heavily doped, direct-gap semiconductor at very low temperatures, such as used
in the experiment explained in the previous section, is modeled by the bandstructure
depicted in Fig. 1.3a, focusing on the conduction and heavy-hole valence band. The cav-
ity is tuned close to the threshold frequency for creation of a conduction-band-electron
and valence-band-hole pair. In this regime, the Fermi-liquid picture is valid and the
final-state, attractive interaction between the hole and the conduction band is the dom-
inant effect. It is the long time required for the Fermi sea to react to the new local
environment, allowing conduction-band electrons to keep exchanging with the photo-
excited electron, that enhances the low-frequency part of the spectrum and results in
an infrared-divergent spectrum [3]. A similar effect is known from the phenomenon of
Anderson orthogonality yielding a subleading contribution to the Fermi-edge singular-
ity [10].

2The expression polariton for the quasiparticles of “hybrid light-matter nature” [6], due to Hopfield,
is merged from the words polarization and photon.
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Figure 1.3: Bandstructure illustrations for a direct-gap, heavily doped semiconductor. Tuning
of the cavity allows one to focus on the conduction and heavy-hole valence band in a Fermi-liquid
picture. Physical parameters are the chemical potential µ, the gap energy EG, and the recoil
energy ER of the valence-band hole.

Let us consider first an immobile sample with a single-level valence band without
kinetic energy to account for. In the case of a previously empty Fermi sea (Fig. 1.4a),
the photo-excited conduction electron and the valence-band hole form a hydrogenic
bound state, the so-called exciton. This excitation energy is independent of the tuning
of the cavity and responsible for the vertical signal, which is still visible in the middle
of the energy window of the spectrum of sample A (Fig. 1.2). Excited bound states
are not resolved in the spectrum; instead, for energies above the exciton line, the signal
is significantly broadened. This is due to a continuum of matter excitations, which
starts once the photon energy is large enough to lift an electron into the conduction
band without binding to the hole. As a matter of fact, the setting for sample A is
already part of the Fermi-edge regime; as a doped semiconductor, the 2DEG has a finite
conduction-band filling prior to light absorption and is more comparable to the model
of Fig. 1.4b. The presence of a whole Fermi sea interacting with and screening the hole
results in a weaker effective interaction responsible for the bound state. Consequently,
the excitonic signal in the discussed spectrum is less prominent.

Going over to sample B, we have to account for an even higher density. The increased
number of conduction electrons will screen the hole even more and completely destabilize
the exciton. Indeed, the vertical line is hardly to be found in the spectrum of the
mobile sample in Fig. 1.2. In addition, bearing in mind the increased mobility of this
sample, we have to include kinetic energy in the valence band as depicted in Fig. 1.4c.
The important observation is that the transition energy in the non-interacting case
(symbolized by the arrow in Fig. 1.4c), required for lifting an electron to the upper band
at Fermi momentum, is not the actual threshold anymore. Interaction with conduction
electrons, that scatter on top of the Fermi surface, allows the hole to decay into its
zero-momentum ground state at infinitesimal energy cost. Compared to the static limit,
as in the discussion of sample A, where after hole creation a conduction electron could
scatter off the hole at finite momentum transfer and zero energy cost, the situation is
drastically changed. In Fig. 1.3b, one can see that, at the actual absorption threshold,
any interaction with the hole at finite momentum transfer costs at least the hole’s kinetic
energy, the so-called recoil energy. The reduced scattering phase space at low energies
results in the effect that the light-absorption rate sets in slowly at this threshold. Thus,
in addition to the destabilization of the exciton, sample B has a smoothly increasing
absorption rate, such that the spectrum is less sharp and the mode splitting between
the upper and lower polariton has vanished. We mainly see a photonic mode, which is
broadened due to the continuum of matter excitations.
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Figure 1.4: Photon absorption processes for different material settings. Without prior filling
of the conduction band, the photo-excited electron and hole form a bound state. The presence
of a Fermi sea in the upper band leads to screening of the interaction. Scattering of conduction
electrons and the hole lower the threshold frequency by the hole recoil energy.

The above elaborated points can be very well supported by calculation of the cavity
photon’s self-energy in the presence of light-matter interactions, resulting in the for-
mulae (1.8) and (1.10) for the infinite- and finite-mass case, respectively, as shown by
Pimenov [11, 12]. A quantitative comparison to the experimental curves in Fig. 1.2 is,
however, hardly meaningful, as a multitude of experimental parameters strike in. Even
more so, the experimental situation in [4] does not correspond to a tractable theoretic
regime. A 20 nm-wide sample cannot really be considered two-dimensional given an
excitonic Bohr radius of similar magnitude [11]. Most importantly, the situation neither
belongs to an excitonic nor Fermi-edge regime, since the excitonic binding energy is
comparable to the chemical potential, both on the order of meV [11]. Nevertheless, a
mathematical derivation of the physical effects, which are described above and give a
qualitative understanding, is desirable, the basis for which is given in the following.

1.3 Specification of the Fermi-edge problem

The elementary excitations of the cavity system can be formally traced back to the
underlying light-matter interaction. The effect of the 2DEG on the propagating photon
is ultimately reduced to a property of the pure matter system [11–14]. Finding a good
approximation of the relevant particle-hole susceptibility [Eq. (1.4)] is of great interest
and (here) referred to as Fermi edge problem.

First, let us specify the underlying matter Hamiltonian3 for the semiconducting layer
in correspondence with the standard literature on Fermi-edge singularities [3,5,8–10,15]:

Hmat =
∑

k

εkc
†
kck +

∑

k

Ekd
†
kdk −

1

V

∑

k,q,Q

UQc
†
k+Qckdqd

†
q−Q . (1.1)

Here, conduction (valence) electrons with momentum k are created by c†k (d†k) and
annihilated by ck (dk). The Coulomb interaction, hereafter simplified to the contact
type UQ = U > 0, is a final-state interaction, as it has no contribution given a full
valence band. It can be understood as an attraction of all conduction electrons to
a newly created hole in the valence band. The interaction excludes any Auger-type
transitions, mixing three c operators with one d operator and vice versa, since interband

3The Fourier transform is defined by f(x) = 1√
V

∑
k e

ik·xfk, etc., where V is the volume of the
material, i.e., the area of the 2D layer.
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transitions are suppressed respecting the size of the band gap (EG). Neither does it
contain intraband Coulomb interaction. This, on the other hand, is contained in a
Fermi-liquid picture of a renormalized band gap as well as renormalized quasiparticles.
The quasiparticles are described by parabolic dispersions in an effective-mass (m, M)
sense, where the bandwidth is respected by an intrinsic ultraviolet cutoff ξ0 on the order
of the Fermi energy µ:

εk =
k2

2m
, Ek = −EG −

k2

2M
, 0 ≤ εk ≤ µ+ ξ0 , ξ0 ∼ µ . (1.2)

The Fermi-liquid picture is supposed to work well when electron energies close to the
Fermi energy dominate. Furthermore, lattice effects can be neglected [5], and spin
can be traced back to a few factors of 2 at the end of calculations; in fact, for a spin
conserving interaction, the leading-order solution of the particle-hole susceptibility is
merely affected by a doubled density of states [5]. Since our calculations will not treat
any angular dependencies, the solutions are independent of space dimension. They are
effectively one-dimensional, and we are allowed to consider V as a generalized volume.
In two space dimensions, the (Fermi-liquid) single-spin density of states ρ = m/(2π) is
de facto constant; for three dimensions, one approximates ρ by its value at Fermi level.

Moving on to light in the cavity system, note that due to the enclosing mirrors,
electromagnetic waves in the cavity can be separated into standing waves between the
mirrors. The particular mode4 with an energy close to the optical transitions of the
layer is further specified by its in-plane momentum q. Next to its energy, determined
by the dispersion ωq, the light-matter interaction is of importance. It can be obtained
from a minimal-coupling Hamiltonian with a few approximations [16]. First, in the
rotating-wave approximation, photon processes beyond simple absorption and emission
are omitted5. In the dipole approximation, the electromagnetic polarization vector is
considered constant over the scale of the unit cell6. If the material has a dipole moment
−Mq, the Hamiltonian (with creation and annihilation operators a†, aof a photon)
describing light in the cavity and its interaction to matter is given by

Hlight-mat =
∑

q

ωqa
†
qaq +

1√
V

∑

p,q

(
iMqc

†
p+qdpaq + h.c.

)
. (1.3)

As already mentioned, the combined quasiparticle responsible for the elementary
excitations of the microcavity system is the polariton. The polariton, on the other
hand, is nothing but the photon dressed by its interaction to matter [6]. As elementary
excitations can then be deduced from the polariton spectral function, it is sufficient to
calculate the photon self-energy. For simplifying reasons, the photon self-energy will
only be calculated in leading order in the light-matter coupling. This can be motivated
as in [12]: In a regime where ρ|M0|2 � µ, photon absorption and emission happens on a
much larger timescale than electronic processes. Thus, photo-excited electron-hole pairs
are hardly altered by intermediate photon propagation, and the leading contribution to
the photon self-energy is dominant. With standard perturbation methods, it is found7

4The eigenenergies are separated on a scale c/L (~ = 1), which is sufficiently large for a cavity size
L of a few micrometers.

5This is supposed to be accurate, particularly for III-V based samples [6].
6Since the typical length scale of the electron dynamics is much shorter than the in-plane optical

wavelength, the light-matter interaction is usually approximated with its zero-momentum behavior [6].
In fact, in an effective-mass description of the photon due to spatial confinement [6], the wavelength
associated to the in-plane momentum is much larger than the resonant wavelength between the mirrors,
which is already on the order of micrometers.

7The corresponding relation in frequency space will be explicitly derived within the Matsubara for-
malism in section 2.1.
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that the leading-order self-energy is given by |Mq|2Πγ(t, q), where8

iΠγ(t, q) =
1

V

∑

k,p

〈T d†k(t)ck+q(t)c†p+q(0)dp(0)〉 . (1.4)

The effect of light-matter interaction on the photon is reduced to a correlation func-
tion of the fermionic system. The correlation function describes a conduction-valence-
band particle-hole pair in the interacting system; for positive times, a valence-band
hole is initially created, and the final-state interaction of Eq. (1.1) has a crucial effect.
The quantity Πγ is the particle-hole susceptibility to be calculated in the Fermi-edge
problem. By abuse of notation, we will also refer to it as photon self-energy (irrespec-
tive of its dimension). The form of the Hamiltonian [Eq. (1.1)] and the band structure
(cf. Fig. 1.3a) have several a priori implications for the calculation of the particle-hole
susceptibility, which will be elucidated next.

1.4 Theoretical background

In this section, we list typical simplifications made in a diagrammatic treatment of
the Fermi-edge singularity. The first aspect already influenced the specification of the
Hamiltonian in the previous section: The band gap dominates all other energy scales
and is considered as an experimental parameter. This allowed us to restrict the inter-
action to be particle-number-conserving for two different fermion species. Whereas we
are ignorant towards the precise position of the absorption threshold, we focus on the
shape of the singularity in the response function at this particular threshold. Secondly,
we confine ourselves to summing only those diagrams with the leading logarithmic di-
vergence (leading log. diagrams). Depending on whether we consider a finite or infinite
valence-band (hole) mass, this has different consequences. Let us give the arguments
along the lines of the standard literature in more detail.

Large, renormalized gap energy: The interacting four-point correlator, upon ex-
pansion in the interaction and using Wick’s theorem, is traced back to two-point Green’s
functions9. All correlation functions are expectation values of operators with respect to
certain states. Irrespective of considering a ground-state expectation value or a thermal
average, one only considers states with a full valence band, the reason being that the
gap energy, separating both bands, is the largest energy scale and by far larger than the
available thermal energy10. Various simplifications immediately follow: First, a valence-
band Green’s function is purely advanced. For a time difference t, using the Heaviside
step function Θ and the time-ordered expectation value as before, it is given by

iGdk(t) = 〈T dk(t)d†k(0)〉 ∝ Θ(−t) . (1.5)

For positive times, the creation operator d†k applied to a state with full valence band
gives vanishing contribution. By the same argument, the particle-hole susceptibility,
defined in Eq. (1.4), is automatically retarded.

Concerning fermionic self-energies, for both bands, there is always the constant
Hartree contribution proportional to the electronic density of the other band. We con-
sider such a contribution already contained in the renormalized gap. Moreover, since we
only consider an attractive Coulomb interaction between conduction-band electrons and

8The following expression is a purely fermionic, time-ordered expectation value (with time-ordering
operator T ) of operators in the Heisenberg picture, such that dk(t) = eiHmattdke

−iHmatt, etc.
9This is done within the Matsubara formalism and up to second order in U in section 3.1.

10Typically, one has EG ∼ eV (EG = 1.518 eV for GaAs, table 8.2 in [17]), whereas kBT ∼ 0.1 meV
for T = 0.4 K as in the experiment [4].
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valence-band holes, any diagram with a closed d loop is proportional to the (valence-
band) hole density in the averaging state, which is zero. Importantly, there are no further
contributions to the conduction-band self-energy. Any higher-order diagram contains d
propagators with positive and negative time arguments and consequently vanishes [cf.
Eq. (1.5)]. Summarizing, in diagrammatic calculations, c propagators stay bare and the
Hartree part of the valence-band self-energy is irrelevant. There are no closed valence-
band loops and, therefore, no kind of closed loops at all in diagrams for the particle-hole
susceptibility.

Leading log. summation: We have already mentioned that the particle-hole sus-
ceptibility of the Fermi-edge problem is logarithmically divergent. There repeatedly
appear terms of the type (n, p ∈ N0)

un
[

ln

(
ξ0

|ω − ω0|

)]n−p
, u = ρU . (1.6)

Here, u, the coupling constant, is much smaller than one11. With ω0 being the threshold
frequency and ξ0 the intrinsic UV cutoff [cf. Eq. (1.2)], the logarithm, on the other hand,
constitutes a diverging quantity. Diagrammatic calculations in the Fermi-edge problem
are usually done with logarithmic accuracy. This means that one takes into account
terms with the largest power of the logarithm in Eq. (1.6) only; contributions with p > 0
are negligible. In particular, next to a logarithmically diverging term, contributions of
order 1 are negligible, which includes factors in the argument of the logarithm. For
different types of diagrams, the cutoff, which in Eq. (1.6) is given by ξ0, corresponds to
the number of filled or empty states in the conduction band. In the simplified case of
a half-filled band [cf. Eq. (1.2)], in both cases, the constant is ξ0 = µ. Modifications
to that, still in the regime of a large Fermi energy and a large number of unoccupied
states, have minor effects in the given accuracy.

The product of the small coupling constant and the logarithmically diverging factor
still diverges for small enough frequencies ω̃ (measured from the threshold frequency).
Only in the intermediate regime u ln ξ0/ω̃ . 1 can the subleading term be neglected a
priori, viz., u2 ln ξ0/ω̃ � 1. Further comments are separately given for infinite and finite
hole mass.

Ladder diagrams: In an early work, Mahan [8] used a summation of ladder dia-
grams to approximate the particle-hole susceptibility. In such a rigid-Fermi-sea approx-
imation, no conduction-band holes are allowed. Higher-order diagrams factorize into a
sequence of bare particle-hole bubbles carrying the external energy-momentum. A num-
ber of n consecutive interactions lead to a contribution to the particle-hole susceptibility
(at zero external momentum) of12 (cf. section A.2)

Π(n,L)(ω) = (−u)n
[

ln

(−(ω − ω0)− i0+

ξ0

)]n+1

, ξ0 � ω − ω0 . (1.7)

A geometric series, irrespective of the infinitesimal nature of 0+, directly leads to a bound
state, the so-called Mahan exciton, at an energy −EB = ωB − ω0 = −ξ0 exp(−1/u). It
is physically transparent that such a bound state in the middle of a filled band would
immediately be broadened. In fact, in our regime of interest13, µ� EB, the Fermi-sea
shakeup, manifested by diagrams containing conduction-band holes, reduces the weight

11If the interaction parameter is deduced from screened Coulomb interaction, one typically has u ∼
0.1 . . . 0.5 for metals [3] and u ∼ 0.1 . . . 0.2 for semiconductors [9].

12The following equation is the infinite-mass result. For finite mass (close to the direct threshold),
the logarithm is divided by 1 +m/M and ξ0 multiplied by the same expression [8, 9].

13For a treatment of the opposite case, µ� EB , see [12].
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of ladder diagrams and eliminates the δ peak. In a following publication, Mahan [15]
hinted at this by explicitly calculating the lowest-order diagrams for infinite hole mass.
The first diagram which contains a conduction-band hole is called the crossed diagram,
since, with propagating interaction lines, it can be drawn to have two crossed ones of
these. With logarithmic accuracy, it can be shown to give −1/3 of the contribution of the
second-order ladder diagram (cf. section A.2), and, thus, forms the lowest-order graph
to reduce the divergence of the ladder diagrams. Let us first consider the infinite-mass
case in more detail.

Infinite hole mass: Roulet et al. [3] have achieved a summation of all leading
log. diagrams for the particle-hole susceptibility via a solution of parquet equations. This
parquet technique classifies diagrams according to whether they are reducible in the par-
allel or antiparallel channel, i.e., whether they can be separated into two valid diagrams
upon cutting (anti)parallel c, d lines. Relating these contributions self-consistently via
coupled Bethe-Salpeter equations, one has to insert the totally irreducible vertex (irre-
ducible in both channels). The first-order parquet solution, corresponding to the leading
log. summation, is obtained when the irreducible vertex is taken to be at lowest order
and reads

Πγ(ω) =
1

2U

[
1−

(−(ω − ω0)− i0+

ξ0

)−2u
]
, ω0 = EG + µ . (1.8)

Corrections to it are of lower logarithmic singularity. Similarly, it can easily be shown
that the valence-band self-energy (reduced from its Hartree contribution) behaves at low-
est order as u2ω̃ ln ξ0/ω̃ and is hence not needed for summing up the relevant diagrams.
In a later work, Nozières et al. [10] showed that including these subleading divergences
does not alter the first-order parquet result. The validity thus appears to hold for all
frequencies and not just where u ln ξ0/ω̃ . 1. The one-body solution of Nozières and De
Dominics [5] gives an exact result, adding u2 with respect to u corrections.

In total, the initial parquet calculation gives a very good understanding of the shape
of the singularity following a power law. The contributing parquet graphs, being the
appropriate extension to two channels compared to the ladder summation in a single
channel, can be obtained by successively inserting parallel and antiparallel bubbles for
the bare vertex [3]. The logarithmic divergence of these bubbles with opposite sign
underlies the first-order parquet solution.

Finite hole mass: For finite hole mass, the situation is more complicated. We have
already explained that different thresholds appear. A photon can already be absorbed
at the indirect threshold, coinciding with the infinite-mass threshold, ωI = EG + µ,
where the problem is totally perturbative and easily described [9, 11]. At the direct
threshold ωD = ωI + bµ, b being the mass ratio m/M , logarithmic divergences appear
as for infinite hole mass and a resummation is needed. The crucial difference is that,
at this direct threshold, the valence-band hole is not in its ground state and underlies
significant influence of its self-energy. In fact, it can be shown [11] that the value of the
self-energy at Fermi momentum and on-shell is of the form Σd ∼ u2bµ. Including this
self-energy in, e.g., the ladder diagrams cuts the coupling-times-logarithm product at a
maximal value u ln(u2b). A necessity for resummation is only given when u| ln b| ∼ 1,
i.e., when b is exponentially small in the coupling, b ∼ exp(−1/u). Otherwise, higher-
order diagrams are totally negligible. For exponentially small coupling, logarithmic
terms in the calculation of non-ladder diagrams can be simplified according to ln(u2b) ∼
ln b—as | lnu| � | ln b|—and the contribution of the crossed diagram (at zero external
momentum) is shown [11] to be analogous to the infinite-mass case:

Π(2,C)(ω, 0) = −1

3
Π(2,L)(ω, 0) , when ln(u2b) ∼ ln b . (1.9)
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Setting up a Bethe-Salpeter equation similar to the infinite-mass scenario, an approixi-
mate solution yields [9, 11]

Re Πγ(ω, 0) =
1

2U

[
1−

(
max{|ω − ωD|, bµ}

ξ0

)−2u
]
. (1.10)

The power-law behavior for |ω − ωD| � bµ is unchanged. However, the singularity is
cut off by the recoil energy of the valence-band hole.

Having collected numerous background information, it is time to develop the theo-
retical tools distinct to our analysis of the Fermi-edge singularity. It is not until section 3
that we gain results from the functional-renormalization-group formalism—to be estab-
lished in section 2.2—and come back to the parquet formulae (1.8) and (1.10).
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2 Methods

Our treatment of the Fermi-edge singularity is based on the functional renormalization
group, which itself is most easily devised in an imaginary-time action formalism. The
fRG framework has proven to work very well for problems with infrared divergences and
will be our means to approximately compute correlation functions, viz., the particle-
hole susceptibility or photon self-energy [Eq. (1.4)]. Before we state the flow equations
central to fRG in section 2.2, we will briefly recapitulate the standard field-theoretical
methods which we make use of in order to familiarize the reader with the notation and
conventions.

2.1 Field-theoretical methods

In condensed-matter physics, it is common to work with second-quantized Hamiltoni-
ans as well as imaginary-time actions. The action formalism allows to derive identi-
ties and perform transformations very naturally, one of the latter being the Hubbard-
Stratonovich transformation, which introduces auxiliary fields into the theory. Such
a theory with different types of particles can be compactly phrased using a superfield
notation. Next to these aspects, we shall define a generating functional for one-particle-
irreducible vertices, as this is a central quantity in the chosen implementation of an
exact renormalization group treatment.

2.1.1 Imaginary-time action

Given a normal-ordered14 Hamiltonian of a system of indistinguishable particles in terms
of creation and annihilation operators with quantum numbers i, H({ψ†i }, {ψi }), it is well
known that the grand-canonical partition function has a functional-integral representa-
tion of the form

Z = Tre−β(H−µN) =

∫
D
[
{ψ̄i}, {ψi}

]
e−S
[
{ψ̄i},{ψi}

]
. (2.1)

Here, β = 1/(kBT ) is the inverse of temperature multiplied by the Boltzmann constant,
µ the chemical potential, N the number operator, and S the imaginary-time action given
by

S
[
{ψ̄i}, {ψi}

]
=

∫ β

0
dτ

∑

i

ψ̄i(τ)∂τψi(τ) +
(
H − µN

)[
{ψ̄i(τ)}, {ψi(τ)}

]
. (2.2)

In this representation, ψ̄i(τ) and ψi(τ) are complex (bosons) or Grassmann (fermions)

fields, corresponding to the operators ψ†i , ψi and depending on imaginary time τ in the
interval [0, β). Furthermore, bosonic fields are periodic and fermionic fields antiperiodic,
such that we can define a frequency representation

ψi(τ) =
1√
β

∑

ω

ψi,ωe
−iωτ =:

1√
β

∫

ω
ψi,ωe

−iωτ , ψ̄i(τ) =
1√
β

∫

ω
ψ̄i,ωe

iωτ . (2.3)

14Here, normal ordering means to bring all creation operators to the left of any annihilation operator.
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The so-called Matsubara frequencies ω run over π/β ·2Z for bosons and π/β ·(2Z+1) for
fermions. Consequently, a Matsubara sum with prefactor 1/β (henceforth encoded in
a primed integral sign) translates in the limit of zero temperature (given an integrable
function) into

1

β

∫

ω
ψω =:

∫ ′

ω
ψω , lim

β→∞

∫ ′

ω
ψω =

∫ −∞

−∞

dω

2π
ψ(ω) . (2.4)

The crucial point is that expectation values of fields in terms of Matsubara frequen-
cies relate to real-frequency correlation functions via an analytic continuation. A general
(field) correlator (corresponding to a time-ordered expectation value of operators) is de-
fined via

〈ψi · · ·ψj〉 :=
1

Z

∫
D
[
{ψ̄i}, {ψi}

]
ψi · · ·ψje−S

[
{ψ̄i},{ψi}

]
. (2.5)

Now, consider, e.g., the four-point correlator relevant for the photon self-energy. Using
the fields c̄, c for the conduction and d̄, d for the valence band, one transforms from
Matsubara to real frequencies according to

∫ ′

ω,ν
〈d̄ωdν c̄ω̄+νcω̄+ω〉 = Πγ(ω̄, q)

iω̄→ω+i0+

−−−−−−−→ Πγ(ω, q) =

∫
dt eiωtΠγ(t, q) , (2.6)

where the (automatically retarded) particle-hole susceptibility Πγ(t, q) was defined in
Eq. (1.4). Note that we use arguments to distinguish different functions and have further
adopted a condensed notation, in which field indices label both Matsubara frequency
and momentum15.

For the problem at hand, the matter Hamiltonian from Eq. (1.1) is not normal-
ordered yet. With the standard anticommutation relation, changing the order of d
and d† yields an opposite sign in the interaction and a shifted dispersion εk − UQ=0 in
the quadratic part of the conduction electrons. Now that one has a repulsion between
electrons instead of an attraction between electrons and holes, the shift accounts for
the interaction between the conduction electrons and the whole valence band. In our
treatment, such a shift is already contained in the renormalized band gap, and we can
readily move on to the appropriate action

Smat + Sint =

∫

ω
(ξck − iω)c̄ωcω +

∫

ω
(ξdk − iω)d̄ωdω +

U

βV

∫

ω,ν,ω̄
c̄ω+ω̄cωd̄ν−ω̄dν , (2.7)

where the quartic part has been assigned to Sint for future purposes. Note that, again,
single indices label frequencies and momenta. The bare propagators can be read off to

be G
c/d
0,ω = 1/

(
iω − ξc/dk

)
, with ξck = εk − µ and ξdk = Ek − µ, k = |k|.

The photonic Hamiltonian from Eq. (1.3) leads to an additional action

Slight + Slight-mat =

∫

ω̄
(ωq − iω̄)āω̄aω̄ +

i√
βV

∫

ω̄
(Mω̄Āω̄aω̄ −M∗ω̄Aω̄āω̄) , (2.8)

with

Mω̄ = M(q) , Aω̄ =

∫

ω
d̄ωcω̄+ω . (2.9)

For dimensional reasons, let us transform the complex photon fields ā, a. Propagators
and self-energy, for symmetry reasons diagonal in the energy-momentum coordinate,
transform accordingly:

γω̄ = Mω̄aω̄ , γ̄ω̄ = M∗ω̄āω̄ ⇒ Gγ(0,)ω̄ = |Mω̄|2Ga(0,)ω̄ , Πγ
ω̄ = |Mω̄|−2Πa

ω̄ . (2.10)

15In such cases, the index ω̄ actually stands for (ω̄, q), and
∫
ω̄

for
∫
ω̄,k

. Each prime represents one

factor of 1/(βV ) in analogy to Eq. (2.4). Bosonic Matsubara frequencies are denoted by a bar.
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The effect on the functional-integral measure will be canceled in any correlation function.
In most cases, one is interested in the (q = 0) case anyway, and considers a constant
matrix element. The desired effect is that we have the simplified action

Slight + Slight-mat = −
∫

ω̄
Gγ,−1

0,ω̄ γ̄ω̄γω̄ +
i√
βV

∫

ω̄
(Āω̄γω̄ −Aω̄γ̄ω̄) . (2.11)

Due to the factor |M |2 the propagator Gγ0 is very small; intermediate photon propa-
gation is suppressed. In fact, the leading-order photon self-energy is recovered in the
transformed quantities when the limit |M |2 → 0 is considered:

Πγ
ω̄ = lim

Gγ0,ω̄→0

(
Gγ0,ω̄

)−2(
Gγω̄ −Gγ0,ω̄

)
= − lim

Gγ0,ω̄→0

(
Gγ0,ω̄

)−2(〈γω̄γ̄ω̄〉γ −Gγ0,ω̄
)

= − lim
Gγ0,ω̄→0

(
Gγ0,ω̄

)−2
∫

ν̄,η̄
〈γω̄γ̄ω̄

( −i√
βV

Āν̄γν̄

)( i√
βV

Aη̄γ̄η̄

)
〉

= − 1

βV
〈Aω̄Āω̄〉 =

∫ ′

ω,ν
〈d̄ωdν c̄ω̄+νcω̄+ω〉 . (2.12)

Here, we made use of Wick’s theorem and the fact that higher orders in the expansion
of exp(−Slight-mat) vanish after taking Gγ0 → 0. Whereas the first expectation value was
a correlation function in presence of the interacting photon field, the following averages
are to be taken without Slight-mat. In the final form, similarly as in Eq. (1.4), the
photon—decoupled and immediately integrated out—is of no more relevance.

2.1.2 Superfield notation

In a theory with both fermionic and bosonic fields, it is useful to introduce the notation
of so-called superfields Φ. A superfield carries a multi-index α, which specifies the
field type, conjugation, and all further quantum numbers. The partition function Z is
compactly stated as

Z =

∫
D[Φ]e−S[Φ] , S[Φ] = S0[Φ] + S1[Φ] . (2.13)

Here, the action S is written in a way to single out the quadratic part S0. Nevertheless,
as there is no restriction on S1, we maintain full generality by specifying

S0[Φ] = −1

2

(
Φ, G−1

0 Φ
)

:= −1

2

∫

α

∫

α′
Φα[G−1

0 ]αα′Φα′ . (2.14)

In the case of two species of electrons (c and d) and full detail, this unfolds to

S0[Φ] = −1

2

∫

ω,k

(
cω,k, c̄ω,k, dω,k, d̄ω,k

)

diag

([
0 −Gc,−1

0, ω,k

Gc,−1
0, ω,k 0

]
,

[
0 −Gd,−1

0, ω,k

Gd,−1
0, ω,k 0

])



cω,k
c̄ω,k
dω,k
d̄ω,k


 . (2.15)

When the superfield index specifies a fermionic field, two superfields anticommute;
for bosons they commute. Regarding the quadratic action, we have to demand G0,αβ =
ζαG0,βα, where ζα is −1 for fermions and 1 for bosons. A single-particle propagator is
given by

Gα1α2 = −〈Φα1Φα2〉 = − 1

Z

∫
D[Φ]Φα1Φα2e

−S[Φ] , (2.16)

which can read, e.g.,
Gcω,k = G(c,ω,k)(c̄,ω,k) = −〈cω,kc̄ω,k〉 . (2.17)
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2.1.3 Hubbard-Stratonovich transformation

Under certain circumstances, it can be helpful to introduce auxiliary fields into the
theory. In particular, quartic terms in the action can be converted to quadratic terms
multiplied by an auxiliary field, with the help of the so-called Hubbard-Stratonovich
(HS) transformation. The underlying property is

∫

R
dx e−x

2
=

∫

R
dx e−(x+c)2 ∀c ∈ C , (2.18)

and, consequently,
∫

C
dzdz̄ e−z̄z =

∫

C
dzdz̄ e−(z̄+a)(z+b) ∀a, b ∈ C . (2.19)

From now on, we use the freedom in the definition of the functional-integral measure
D[Φ] by setting a constant such that the functional integral with only the quadratic
part S0[Φ] of the action gives unity. A HS transformation then looks as follows (Ux > 0,
γx ∈ R),

e
∫
ω̄ Uxγ

2
xĀω̄Aω̄ =

∫
D[χ̄, χ]e−

∫
ω̄ χ̄ω̄U

−1
x χω̄e

∫
ω̄ Uxγ

2
xĀω̄Aω̄

=

∫
D[χ̄, χ]e−

∫
ω̄(χ̄ω̄+γxUxĀω̄)U−1

x (χω̄+γxUxAω̄)e
∫
ω̄ Uxγ

2
xĀω̄Aω̄

=

∫
D[χ̄, χ]e−

∫
ω̄ U
−1
x χ̄ω̄χω̄+γx(Aω̄χ̄ω̄+Āω̄χω̄) , (2.20)

for a repulsive interaction between Ā and A. An attractive interaction can be trans-
formed via (Up > 0, γp ∈ R)

e−
∫
ω̄ Upγ

2
pB̄ω̄Bω̄ =

∫
D[ψ̄, ψ]e−

∫
ω̄ ψ̄ω̄U

−1
p ψω̄e−

∫
ω̄ Upγ

2
pB̄ω̄Bω̄

=

∫
D[ψ̄, ψ]e−

∫
ω̄(ψ̄ω̄+iγpUpB̄ω̄)U−1

p (ψω̄+iγpUpBω̄)e−
∫
ω̄ Upγ

2
pB̄ω̄Bω̄

=

∫
D[ψ̄, ψ]e−

∫
ω̄ U
−1
p ψ̄ω̄ψω̄+iγp(Bω̄ψ̄ω̄+B̄ω̄ψω̄) . (2.21)

Here, χ̄, χ and ψ̄, ψ are complex fields, which describe bosonic degrees of freedom.
With the simplifying choice of a constant interaction (Ux, Up), as opposed to physical
fields, χ and ψ have a constant bare propagator. In order to eliminate an interaction
term comprising four fermionic fields, A and B might be chosen to contain two of them.
In our case, we wish to eliminate the interaction

Sint =
U

βV

∫

ω,ν,ω̄
c̄ω+ω̄cωd̄ν−ω̄dν = − Ux

βV

∫

ω̄
Āω̄Aω̄ +

Up
βV

∫

ω̄
B̄ω̄Bω̄ . (2.22)

The indices x and p refer to the exchange and pairing channel, respectively. The second
equality is apparent after shifting summation indices and requiring

Ux + Up = U , Aω̄ =

∫

ω
d̄ωcω̄+ω , Bω̄ =

∫

ω
d−ωcω̄+ω . (2.23)

Making use of the formulae (2.20) and (2.21) and including the auxiliary fields in
the theory, the additional action is given by

SHS =

∫

ω̄

[
U−1
x χ̄ω̄χω̄+

1√
βV

(Aω̄χ̄ω̄ + Āω̄χω̄)
]

+

∫

ω̄

[
U−1
p ψ̄ω̄ψω̄+

i√
βV

(Bω̄ψ̄ω̄ + B̄ω̄ψω̄)
]

(2.24)
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with the identification
Smat + Sint → Smat + SHS . (2.25)

We see that the χ field couples similarly to the fermionic fields as the photon in
Eq. (2.11). To make that precise, let us give an expression for the χ self-energy without
internal χ propagation, completely analogous to Eq. (2.12):

lim
Ux→0

Πχ
ω̄ = lim

Gχ0,ω̄→0

(
Gχ0,ω̄

)−2(
Gχω̄ −Gχ0,ω̄

)
= − lim

Gχ0,ω̄→0

(
Gχ0,ω̄

)−2(〈χω̄χ̄ω̄〉 −Gχ0,ω̄
)

= − lim
Gχ0,ω̄→0

(
Gχ0,ω̄

)−2
∫

ν̄,η̄
〈χω̄χ̄ω̄

( −1√
βV

Aν̄χ̄ν̄

)( −1√
βV

Āη̄χη̄

)
〉0χ

= − 1

βV
〈Aω̄Āω̄〉0χ =

∫ ′

ω,ν
〈d̄ωdν c̄ω̄+νcω̄+ω〉0χ . (2.26)

Again, we made use of Wick’s theorem, but now, the latter averages are to be computed
without the interaction terms containing χ. The same calculation for the other channel
yields

lim
Up→0

Πψ
ω̄ =

∫ ′

ω,ν
〈d̄−ωd−ν c̄ω̄+ωcω̄+ν〉0ψ . (2.27)

2.1.4 One-particle-irreducible vertices

In the fRG flow, one usually considers one-particle-irreducible vertices. The definition
of these proceeds via connected correlation functions (index c); in the next section, it is
more practical to deal with plain correlation functions. The corresponding generating
functionals can be defined as16

G[J ] =

∫
D[Φ]e−S[Φ]+(J,Φ)

∫
D[Φ]e−S[Φ]

, Gc[J ] = ln

∫
D[Φ]e−S[Φ]+(J,Φ)

∫
D[Φ]e−S0[Φ]

,
(
J,Φ

)
=

∫

α
JαΦα ,

(2.28)
such that correlators are given by

〈Φαn · · ·Φα1〉 =
δnG[J ]

δJαn · · · δJα1

∣∣∣∣
J=0

, 〈Φαn · · ·Φα1〉c =
δnGc[J ]

δJαn · · · δJα1

∣∣∣∣
J=0

. (2.29)

Define further the expectation value at non-zero sources

Φ̄α :=
δGc[J ]

δJα
. (2.30)

We will restrict ourselves to cases without spontaneous symmetry breaking and use
J = 0 ⇔ Φ̄ = 0. Here, we only need sources with values in an arbitrarily small
neighborhood of 0. Using the convexity of the generating functional Gc[J ], we can define
a Legendre transform

L[Φ̄] =
(
J [Φ̄], Φ̄

)
− Gc

[
J [Φ̄]

]
, Φ̄α =

δGc[J ]

δJα
→ J [Φ̄] . (2.31)

Finally, the generating functional for the one-particle-irreducible vertices Γ(n) is given
by

Γ[Φ̄] = L[Φ̄] +
1

2

(
Φ̄, G−1

0 Φ̄
)
, Γ(n)

α1...αn =
δnΓ

δΦ̄αn · · · δΦ̄α1

∣∣∣∣
Φ̄=0

. (2.32)

16Note that using S0 in the denominator for Gc[J ] does not affect any derivatives and is chosen for
convenience.
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Γ(n) will be called n-point one-particle-irreducible (1PI) vertex, and in reference 18,
chapter 6, it is shown that, indeed, the following relations are fulfilled:

Γ(2)
α1α2

= Σα1α2 ,

〈Φα1Φα2Φα3〉c = −
∫

β1

. . .

∫

β3

Gα1β1Gα2β2Gα3β3Γ
(3)
β1β2β3

,

〈Φα1Φα2Φα3Φα4〉c = −
∫

β1

. . .

∫

β4

Gα1β1Gα2β2Gα3β3Gα4β4Γ
(4)
β1β2β3β4

,

−
∫

β1

. . .

∫

β6

Gα1β1Gα2β2Gα3β3Gα4β4Γ
(3)
β1β2β5

Gβ5β6Γ
(3)
β6β3β4

−
∫

β1

. . .

∫

β6

Gα1β1Gα2β2Gα3β3Gα4β4Γ
(3)
β1β5β4

Gβ5β6Γ
(3)
β6β2β3

− ζ(α1 ↔ α2) . (2.33)

Σ is the self-energy, and in the last line, the next-to-last line (without the minus sign)
is repeated with indices α1 and α2 exchanged and an additional minus sign if at least
one of α1 and α2 is a fermionic index.

Let us see how symmetries in the action translate into properties of the 1PI vertices.
Given a symmetry, i.e., an isomorphism F acting on Φ which leaves the action invariant,
Γ is left invariant, too (cf. [18], section 6.3):

S[FΦ] = S[Φ] ⇒ Γ[FΦ] = Γ[Φ] . (2.34)

In particular, translational invariance in space and time of the action leads to vertices
which conserve energy and momentum. For the symmetry upon conjugation of the
arguments, let us show the relevant cases explicitly. First, note that the behavior of
Γ(n) under reordering of indices is already set by the definition of Γ(n) in Eq. (2.32)
via functional derivatives. Depending on the sign of the permutation, a minus sign is
required when a fermionic index is involved. The action including light-matter coupling
is symmetric under the following operation with corresponding properties for the three-
point vertex (suppressing frequency and momentum labels):

Slight-mat =
i√
βV

∫

ω̄
(Āω̄γω̄ −Aω̄γ̄ω̄) ,

F(c̄, c, d̄, d, γ̄, γ) = (−c,−c̄, d, d̄,−γ,−γ̄) ⇒ Γ
(3)
c̄dγ = −Γ

(3)

d̄cγ̄
. (2.35)

In contrast, the coupling to the HS-fields and its symmetry result in

SHS-coupling =
1√
βV

∫

ω̄
(Āω̄χω̄ +Aω̄χ̄ω̄) +

i√
βV

∫

ω̄
(B̄ω̄ψω̄ +Bω̄ψ̄ω̄) ,

F(c̄, c, d̄, d, χ̄, χ, ψ̄, ψ) = (−c,−c̄, d, d̄, χ, χ̄, ψ, ψ̄)

⇒ Γ
(3)
c̄dχ = Γ

(3)

d̄cχ̄
, Γ

(3)

c̄d̄ψ
= Γ

(3)

dcψ̄
. (2.36)

2.1.5 Schwinger-Dyson identities

Studying the behavior of generating functionals under transformation of the integration
variable, one can derive identities between correlation functions and, using Eq. (2.33),
one-particle-irreducible vertices. For the problem at hand, we want to calculate the
particle-hole susceptibility, i.e., the photon self-energy in the limit |M |2 → 0, and ignore,
e.g., fermionic self-energies (cf. section 1.4). Useful identities, in the form of Schwinger-
Dyson equations, are obtained when using the invariance of the generating functional
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G[J ] under shifting the integration variable Φ → Φ + ∆. Clearly, the measure is not
affected, and for infinitesimal ∆, one easily derives

(
ζαJα −

δS

δΦα

[ δ
δJ

])
G[J ] = 0 . (2.37)

If we choose α = (γ, ω̄) and further take a derivative with respect to Jγ,ω̄, we arrive at

0 =
δ

δJ(γ,ω̄)

(
Jγ,ω̄ +Gγ,−1

0,ω̄

δ

δJ(γ̄,ω̄)
− i√

βV

∫

ω

δ2

δJ(c̄,ω+ω̄)δJ(d,ω)

)
G[J ]

=

(
1 +Gγ,−1

0,ω̄

δ2

δJ(γ,ω̄)δJ(γ̄,ω̄)
− i√

βV

∫

ω

δ3

δJ(c̄,ω+ω̄)δJ(d,ω)δJ(γ,ω̄)

)
G[J ] . (2.38)

Expectation values of interest for us are obtained for vanishing sources and in the limit
|M |2 → 0, such that the photonic action does not contribute. Due to symmetry, expecta-
tion values of one field alone vanish, and we can directly revert to connected correlators.
Using previous relations such as Eq. (2.33) and Eq. (2.35), we find that the self-energy
is completely determined by the 1PI three-point vertex:

Πγ
ω̄ = Gγ,−1

0,ω̄ −Gγ,−1
ω̄ =

∫ ′

ω
Gcω+ω̄G

d
ωΓ̃c̄dγω+ω̄,ω,ω̄ , Γ̃c̄dγ =

√
βV

i
Γc̄dγ . (2.39)

If, in Eq. (2.39), we derive with respect to sources of c and d̄ instead of γ, we get

0 =

(
Gγ,−1

0,ω̄

δ3

δJ(d̄,ω)δJ(c,ω+ω̄)δJ(γ̄,ω̄)
+

i√
βV

∫

ν

δ4

δJ(d̄,ω)δJ(d,ν)δJ(c̄,ν+ω̄)δJ(c,ω+ω̄)

)
G[J ] .

(2.40)
By expressing G[J ] in terms of Gc[J ], one reverts the four-point correlator coming from
the second summand to connected expectation values. Further using Gγ,−1

0,ω̄ Gγω̄ → 1

in the limit |M |2 → 0, we express the three-point vertex and, using Eq. (2.39), the
self-energy as

Γ̃c̄dγω+ω̄,ω,ω̄ = Gd,−1
ω Gc,−1

ω+ω̄

∫

ν
〈d̄ωdν c̄ν+ω̄cω+ω̄〉 = 1 +

∫ ′

ν
GdνG

c
ν+ω̄Γ̃d̄dc̄cω,ν,ν+ω̄,ω+ω̄ ,

Πγ
ω̄ =

∫ ′

ω
GdωG

c
ω+ω̄ +

∫ ′′

ω,ν
GdωG

d
νG

c
ω+ω̄G

c
ν+ω̄Γ̃d̄dc̄cω,ν,ν+ω̄,ω+ω̄ , Γ̃d̄dc̄c = −βV Γd̄dc̄c . (2.41)

Eq. (2.39) and (2.41) state identities between the particle-hole susceptibility (in the
form of the leading-order photon self-energy), the photonic three-point vertex, and the
fermionic four-point vertex, which will prove useful in the analysis in section 3.

2.2 Functional renormalization group

The functional renormalization group (fRG) merges quantum-field-theoretical techniques
with the renormalization-group idea. It enables a controlled unfolding of complex macro-
scopic phenomena from microscopic laws. In a certain procedure, one can let the system
flow from a theory of pure microphysical interactions to a coarse-grained picture of
an interacting many-body system. This evolution is described exactly in terms of a
functional differential equation for the scale-dependent effective action.

Technically, the formalism mainly consists of the study of the effective action upon
variation of an artificially introduced parameter Λ from an initial value, say, Λ = ∞,
to a final value, say, Λ = 0. This flow parameter is usually introduced such that it can
be interpreted as an effective infrared cutoff, where modes with energy less than Λ are
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suppressed. If initially all modes are suppressed, the system is trivially described by
the bare microscopic physical laws, say, a two-body Coulomb interaction in a fermionic
system. Decreasing the flow parameter means zooming out, allowing high-energy, i.e.,
small-length-scale modes to propagate and renormalize the initial, bare interactions.
Finally, no mode is suppressed anymore, and one arrives at the original, full theory.

As already seen, we describe physical degrees of freedom by fields in a theory gov-
erned by a certain action. The suppression of modes can be achieved by modification
of the bare propagator of a field, being the main part of the one-particle, quadratic
part of the action. The procedure sketched above sets the propagator of all degrees of
freedom to be zero at the initial scale Λ =∞. At the end of the flow, Λ = 0, they have
to regain their original value. A useful quantity to study when propagators vary from
zero to their original value is the already mentioned effective action, which is nothing
but the generating functional for one-particle-irreducible vertices. It describes not only
some flowing, low-energy coupling constants but is a functional containing all coupling
constants with their full dependencies. It is physically transparent (and can be proven
as, e.g., in reference 18, section 7) that without internal propagation, an irreducible
vertex is simply the vertex given in the defining action. For the example of a pure
two-body Coulomb interaction, only the four-point vertex contributes, with weight set
by the interaction parameter. At the end of the flow, with original propagators G0, the
effective interaction has evolved from the microscopic action Sint to the full functional
Γ. This is illustrated in Fig. 2.1.

In any concrete procedure, one starts with an initial theory (with a quadratic action
described by G0,Λ=∞) which is simple enough to be tractable. This is obviously the
case for G0,Λ=∞ = 0, resulting in ΓΛ=∞ = Sint, but certainly other initial conditions are
possible. In fact, we will employ a different one as described in the next section. When
the initial condition has been specified and the final form of ΓΛ is looked for, one has to
solve the intermediate evolution, described by ∂ΛΓΛ. In the appendix, section A.1, we
explicitly derive this functional differential equation, often called Wetterich equation [19].
If the evolution could be solved exactly, the exact solution of the problem would be
obtained. In particular, this would be independent of the specific dependence of G0,Λ

on the flow parameter. In a renormalization group sense, different initial theories flow
to the same final theory. However, the functional differential equation is in general
impossible to solve. Truncations and approximations in the flowing scheme and all
internal calculations are needed and influence the quality of the final solution.

An approach which has proven to be useful for problems in condensed-matter physics
is the so-called vertex expansion. The generating functional for the 1PI vertices is

FRG FLOW Λ = 0Λ =∞
trivial
theory

full
theory

0 G0,Λ G0

ΓΓΛSint

Figure 2.1: FRG flow: The flow parameter Λ, introduced in the quadratic part of the action,
makes the theory evolve from a trivial to the original, full one. At the initial scale, the effective
action Γ can directly be read off from the interacting part of the action Sint. Finally, the desired
generating functional for 1PI vertices Γ is obtained.
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expanded in terms of powers of its arguments, the 1PI vertices, which are functions of
an increasing number of internal quantum numbers. The functional differential equation
is transformed to a system of infinitely many coupled differential equations for all the
vertices. This hierarchy of differential equations exhibits interesting properties. In
particular, the derivative of a vertex Γ(n) is determined by other vertices only up to
order n+ 2. Typically, higher-order vertices are zero at the initial scale and, in a weak-
coupling expansion, are of increasing orders in the coupling constant. So, it is often a
good approximation to truncate the hierarchy by setting vertices starting from some n0

to their initial value, typically zero. Consequently, the system reduces to a finite number
of differential equations and can be solved with standard methods.

2.2.1 Regularizing procedure

As argued in section 1.4, the propagation of conduction-band electrons is not renor-
malized by the final-state interaction, whereas the valence-band propagator exhibits a
power law similar to the particle-hole susceptibility [5]. We are mainly concerned with
diagrams for the photon self-energy, which always consists of conduction and valence
electrons. Hence, it is sufficient to set only the bare d propagator to be zero initially in
order to extinguish all diagrams for this correlator. Thereby, we also reduce the number
of terms in the flow equations: We have ∂ΛG0,αβ 6= 0 only if α and β specify a d or d̄
field.

In order to achieve the boundary conditions

Gd0,Λ=∞ = 0 , Gd0,Λ=0 = Gd0 , (2.42)

there are endless possibilities for the specific Λ dependence of Gd0. We will use two
particularly useful types of regulators. On the one hand, the simplest curve between
two values seems to be a step function, yielding a δ distribution in the derivative. On the
other hand, Litim has suggested a functional form, in which the frequency dependence
of infrared modes is substracted from the inverse propagator [20].

δ-regulator: Gd0,Λ, ω,k = Θ(|ω| − Λ)Gd0, ω,k =
Θ(|ω| − Λ)

iω − ξdk
,

∂ΛG
d
0,Λ, ω,k = −δ(|ω| − Λ)Gd0, ω,k =

−δ(|ω| − Λ)

iω − ξdk
,

Litim regulator: Gd0,Λ, ω,k =
1

iω − ξdk + isgn(ω)(Λ− |ω|)Θ(Λ− |ω|) ,

∂ΛG
d
0,Λ, ω,k =

−isgn(ω)Θ(Λ− |ω|)
[isgn(ω)Λ− ξdk ]2

. (2.43)

As we will see soon, in the flow equations for the 1PI vertices, a typical combination
of propagators appear and are summarized under the so-called single-scale propagator,

SΛ = −GΛ

(
∂ΛG

−1
0,Λ

)
GΛ = (1 +G0,ΛΣΛ +G0,ΛΣΛG0,ΛΣΛ + . . . )

×
(
∂ΛG0,Λ

)
(1 + ΣΛG0,Λ + ΣΛG0,ΛΣΛG0,Λ + . . . ) . (2.44)

Diagrammatically, this is sensible as various diagrams are resummed by allowing all
combinations of self-energy insertions in a differentiated line [21]. Only if self-energy
corrections are omitted, one has the simple relation SΛ = ∂ΛG0,Λ.

In a Litim-regulated scheme, the single-scale propagator is easily calculated to be

Litim regulator: SdΛ, ω,k =
−isgn(ω)Θ(Λ− |ω|)

[isgn(ω)Λ− ξdk − Σd
Λ(ω,k)]2

. (2.45)
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Using the δ regulator, one simultaneously encounters a δ distribution and discontinuous
Θ functions17. This can be shown to be well-defined by virtue of a Lemma due to
Morris, and if the integrand contains no more discontinuities except for the single-scale
propagator, one finds [22]

δ regulator: SdΛ, ω,k =
−δ(|ω| − Λ)

iω − ξdk − Σd
Λ(ω,k)

. (2.46)

2.2.2 Algebraic statement of the flow equations

In the appendix, section A.1, we show a condensed version of the derivation of the
functional differential equation for Γ along the lines of reference 18. Here, let us merely
state the important steps and results.

As already explained, the flow parameter is used to modify the bare propagator. In
a general description, the quadratic part of the action is changed to

S0,Λ[Φ] = −1

2

(
Φ, G−1

0,ΛΦ
)
. (2.47)

Clearly, the generating functional for connected correlation functions with a general
argument J is affected:

Gc,Λ[J ] = ln

∫
D[Φ]e−S0,Λ[Φ]−S1[Φ]+(J,Φ)

∫
D[Φ]e−S0,Λ

. (2.48)

Furthermore, Γ has as its argument Φ̄, now specified by

Φ̄α =
δGc,Λ[J ]

δJα
→ J = JΛ[Φ̄] . (2.49)

So, for the generating functional of the 1PI vertices, we have the relation

ΓΛ[Φ] =
(
JΛ[Φ̄], Φ̄

)
− Gc,Λ

[
JΛ[Φ̄]

]
+

1

2

(
Φ̄, G−1

0,ΛΦ̄
)
. (2.50)

Differentiating with respect to the flow parameter gives, after a few intermediate
steps, the fundamental flow equation for the effective action:

∂ΛΓΛ[Φ̄] = −1

2
STr

{(
∂ΛG

−1
0,Λ

)([(δ2ΓΛ[Φ̄]

δΦ̄δΦ̄

)T

−G−1
0,Λ

]−1

+G0,Λ

)}
. (2.51)

The supertrace STr runs over multi-indices and additionally contains a minus sign if the
first index is fermionic.

As argued before, an expansion in terms of the physically transparent 1PI vertices
on both sides of Eq. (2.51) is desirable. In this expansion, permutations of fields play a
large role. According to reference 18 (sections 6 and 7), these kind of permutations can
be encoded in a symmetrization operator, defined by

Sα1...αn1 ;...;αn−nν+1...αnFα1...αn =
1

(n1! . . . nν !)

∑

P

sgnζ(P )FαP (1)...αP (n)
. (2.52)

Let us mention that, in particular, S (anti)symmetrizes groups of indices separated by
semicolons. If the indices in the groups are already (anti)symmetric, one ends up with

17Another subtlety is that scale-dependent quantities might be discontinuous at Λ = ∞ due to the
sharp cutoff [22]. In the flow equations we consider, there always appear more than one propagator
(resulting in a high-energy decay faster than 1/ω) or vertices which vanish at the initial scale, such that
this phenomenon does not appear.
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n!/(n1! . . . nν !) summands, a prefactor of unity and a sign corresponding to the exchange
of bosonic (+) or fermionic (−) indices. Furthermore, note that in the trace formulation
of the flow equations to follow, we use matrix indices (say, β and γ) for the 1PI vertices

with the identification [Γ
(n)
Λ,α1...αn−2

]βγ = Γ
(n)
Λ,βγα1...αn−2

.
The flow equation for the two-point vertex, i.e., the self-energy is

∂ΛΓ
(2)
Λ,α1α2

= −1

2
STr

{
SΛΓ

(4)
Λ,α1α2

+ Sα1;α2SΛΓ
(3)
Λ,α2

GΛΓ
(3)
Λ,α1

}
. (2.53)

Three-point vertices behave as follows, where the two-point vertex is hidden in the
self-energy for SΛ and GΛ:

∂ΛΓ
(3)
Λ,α1α2α3

= −1

2
STr

{
SΛΓ

(5)
Λ,α1α2α3

+ Sα1α2;α3SΛΓ
(4)
Λ,α2α3

GΛΓ
(3)
Λ,α1

+ Sα1;α2α3SΛΓ
(3)
Λ,α3

GΛΓ
(4)
Λ,α1α2

+ Sα1;α2;α3SΛΓ
(3)
Λ,α3

GΛΓ
(3)
Λ,α2

GΛΓ
(3)
Λ,α1

}
. (2.54)

Neglecting odd vertices, we further note for the four-point vertex

∂ΛΓ
(4)
Λ,α1α2α3α4

= −1

2
STr

{
SΛΓ

(6)
Λ,α1α2α3α4

+ Sα1α2;α3α4SΛΓ
(4)
Λ,α3α4

GΛΓ
(4)
Λ,α1α2

}
. (2.55)

In the following, we will explicitly state the flow equations for the various actions
derived in the beginning of this chapter. In intermediate steps, we will leave out ar-
guments and detailed indices for notation’s sake; external labels will be underlined for
clarity. Once again, labels signify both frequencies and momenta, and we will raise
the particle index for propagators [in accordance with the definition in Eq. (2.17)] and
vertices when all arguments are written and traces dissolved, such that the number
superscript becomes redundant. Hence, we write Gcω = G(c,ω)(c̄,ω), S

d
ω = S(d,ω)(d̄,ω),

Γ
(n)

(c,ω1)...(d̄,ωn)
= Γc...d̄ω1,...,ωn , etc.

In solving flow equations, truncations are essential. Numerically, one can hardly go
beyond the treatment of a four-point vertex since the number of arguments drastically
increases the computational effort. Therefore, we will leave out several terms in each
differential equations. Nevertheless, these approximations will be noted and their signif-
icance illuminated in the diagrammatic validation of the flow equations in section 3.2.

2.2.3 Flow equations for the matter system

In the purely fermionic system described by the action in Eq. (2.7), only 1PI vertices
with an even number of fields remain. As fermionic self-energies do not contribute
to the first-order parquet result (cf. section 1.4), we immediately go over to the flow
of the four-point vertex Γd̄dc̄c, relevant for the particle-hole susceptibility according to
Eq. (2.33). Hence, we apply Eq. (2.55) for our scenario, where SΛ requires d indices for
a non-vanishing contribution.

The first summand in Eq. (2.55) contains a six-point vertex. By truncation of the
flow, we set it to its initial value, meaning

Tr
{
SΛ,dd̄ΓΛ,d̄dd̄dc̄c

}
≈ 0 since Γd̄dd̄dc̄cΛ0

= 0 . (2.56)

In the second summand of Eq. (2.55), we will find terms with external indices distributed
separately in the field indices, e.g., according to c̄c and d̄d. By the further determination
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of indices via SΛ, the resulting expression looks as follows. With the graphic representa-
tion introduced in section 3, such a term is easily seen to demand forward propagation
of a valence-band electron, which is excluded from the choice of states according to
section 1.4, whence

Tr
{
SΛ,dd̄ΓΛ,d̄dc̄cGΛ,dd̄ΓΛ,d̄dd̄d

}
= 0 . (2.57)

Within this level of accuracy, the flow equation of the four-point vertex becomes

∂ΛΓ̃d̄dc̄cΛ, ω,ν,ω̄+ν,ω̄+ω =
βV

2
STr

{
SΓ

(4)
(c̄,ω̄+ν)(d,ν)GΓ

(4)

(c,ω̄+ω)(d̄,ω)
+ SΓ

(4)

(c,ω̄+ω)(d̄,ω)
GΓ

(4)
(c̄,ω̄+ν)(d,ν)

+ SΓ
(4)

(c̄,ω̄+ν)(d̄,ω)
GΓ

(4)
(d,ν)(c,ω̄+ω) + SΓ

(4)
(d,ν)(c,ω̄+ω)GΓ

(4)

(c̄,ω̄+ν)(d̄,ω)

}

= −βV
2

Tr
{
Sdd̄Γ

(4)

d̄cc̄d
Gcc̄Γ

(4)

c̄dcd̄
+ Sd̄dΓ

(4)

dc̄cd̄
Gc̄cΓ

(4)

cd̄c̄d

+ Sd̄dΓ
(4)

dcc̄d̄
Gcc̄Γ

(4)

c̄d̄dc
+ Sdd̄Γ

(4)

d̄c̄dc
Gc̄cΓ

(4)

cdc̄d̄

}

=

∫ ′

ω′
SdΛ, ω′

(
Γ̃d̄dc̄cΛ, ω,ω′,ω̄+ω′,ω̄+ωG

c
ω̄+ω′Γ̃

d̄dc̄c
Λ, ω′,ν,ω̄+ν,ω̄+ω′

+ Γ̃d̄dc̄cΛ, ω,ω′,ω̄+ν,ω̄+ω+ν−ω′G
c
ω̄+ω+ν−ω′Γ̃

d̄dc̄c
Λ, ω′,ν,ω̄+ω+ν−ω′,ω̄+ω

)
. (2.58)

From it, we can directly deduce that the solution to the differential equation will be
symmetric in ω ↔ ν at all scales. Given this property at the initial scale, since the
propagators only depend on ω̄ and ω + ν, it applies to the first-order derivative and by
iteration to all higher-order derivatives as well.

2.2.4 Flow equations for the light-matter system

A complete description of our problem also contains the photonic degrees of freedom.
We have already shown how to extract the photon self-energy in leading order after a
transformation and the limiting case of its propagator going to zero. In the interacting
part of the action, there additionally appear three-point vertices between a photon and
two fermions

Slight-mat =
i√
βV

∫

ω̄
(Āω̄γω̄ −Aω̄γ̄ω̄) , Aω̄ =

∫

ω
d̄ωcω̄+ω . (2.59)

Contrary to the fermionic four-point vertex Γd̄dc̄c, in Sint, a four-point vertex con-
necting photons and fermions does not occur. Yet, the first summand in Eq. (2.53),
where external labels are photonic and SΛ sets the trace indices to label d fields, re-
quires Γd̄dγ̄γ . The flow of such a four-point vertex in the presence of vertices with an
odd number of fields has not been given in section 2.2.2, the rather long equation is
graphically illustrated in reference 18 (Fig. 7.4). As we neither allow intermediate pho-
ton propagation nor forward propagation of valence electrons, one can show that the
flow of Γd̄dγ̄γ is determined by five- and six-point vertices only. Thus, in our level of
truncation, we might consider Γd̄dγ̄γ constant, meaning

Tr
{
SΛ,dd̄ΓΛ,d̄dγ̄γ

}
≈ 0 since Γd̄dγ̄γΛ0

= 0 . (2.60)

The resulting flow of the photon self-energy extracted from Eq. (2.53) is of the form

∂ΛΠγ
Λ, ω̄ = ∂ΛΓ

(2)
Λ,(γ,ω̄)(γ̄,ω̄) = −1

2
STr

{
SΓ

(3)
(γ̄,ω̄)GΓ

(3)
(γ,ω̄) + SΓ

(3)
(γ,ω̄)GΓ

(3)
(γ̄,ω̄)

}

=
1

2
Tr
{
Sdd̄Γ

(3)

d̄cγ̄
Gcc̄Γ

(3)
c̄dγ + Sd̄dΓ

(3)
dc̄γGc̄cΓ

(3)

cd̄γ̄

}

=

∫

ω
SdΛ, ωΓd̄cγ̄Λ, ω,ω̄+ω,ω̄G

c
ω̄+ωΓc̄dγΛ, ω̄+ω,ω,ω̄ =

∫ ′

ω
SdΛ, ωG

c
ω̄+ω

(
Γ̃c̄dγΛ, ω̄+ω,ω,ω̄

)2
. (2.61)
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Here, the three-point vertex plays a crucial role. With the prefactors set in Eq. (2.39),

one has the initial condition Γ̃c̄dγΛ0, ω̄+ω,ω,ω̄ = 1. In the flow of Γc̄dγ according to Eq. (2.55),
we neglect the five-point vertex contribution as a form of truncation,

Tr
{
SΛ,dd̄ΓΛ,d̄dc̄dγ

}
≈ 0 since ΓΛ0,d̄dc̄dγ

= 0 , (2.62)

and obtain the flow equation

∂ΛΓ̃c̄dγΛ, ωc,ωc−ω̄,ω̄ =

√
βV

i
∂ΛΓ

(3)
Λ,(c̄,ωc)(d,ωc−ω̄)(γ̄,ω̄)

= −
√
βV

2i
STr

{
SΓ

(4)
(c̄,ωc)(d,ωc−ω̄)GΓ

(3)
(γ,ω̄) + SΓ

(3)
(γ,ω̄)GΓ

(4)
(c̄,ωc)(d,ωc−ω̄)

}

=

√
βV

2i
Tr
{
Sdd̄Γ

(4)

d̄cc̄d
Gcc̄Γ

(3)
c̄dγ + Sd̄dΓ

(3)
dc̄γGc̄cΓ

(4)

cd̄c̄d

}

=

∫ ′

ω
SdΛ, ωΓ̃c̄dγΛ, ω̄+ω,ω,ω̄G

c
ω̄+ωΓ̃d̄dc̄cΛ, ω,ωc−ω̄,ωc,ω̄+ω . (2.63)

Note that in general, three-point vertices, as the one above, would modify the flow of
the four-point vertex Γd̄dc̄c. Nevertheless, we can omit these contributions as they come
with intermediate photon lines, and these vanish in the limit |M |2 → 0, appropriate for
getting the leading part of the photon self-energy.

2.2.5 Flow equations for the HS-transformed matter system

The explicit flow equations for the transformed matter system are deduced analogously
to the previous ones starting from Eq. (2.53) and Eq. (2.54). The truncation arguments
are different, though, as there is no restriction on internal bosonic propagation. Here, we
argue that the HS transformation transfers the role of the fermionic four-point vertex in
the original action to the bosonic three-point vertices Γc̄dχ, Γc̄d̄ψ. Having one argument
less compared to Γ(4), they are favorable in terms of computational effort. Although
n-point vertices with n ≥ 4, which do no longer appear in the action, are generated
by the flow, we neglect these contributions and explore the resummation intrinsic in
bosonic self-energies and three-point vertices.

Without the term first summand in Eq. (2.53), coupling external bosonic lines to
two valence electrons, the flow of the χ and ψ self-energies is given by

∂ΛΠχ
Λ, ω̄ = ∂ΛΓ

(2)
Λ,(χ,ω̄)(χ̄,ω̄) = −1

2
STr

{
SΓ

(3)
(χ̄,ω̄)GΓ

(3)
(χ,ω̄) + SΓ

(3)
(χ,ω̄)GΓ

(3)
(χ̄,ω̄)

}

=
1

2
Tr
{
Sdd̄Γ

(3)

d̄cχ̄
Gcc̄Γ

(3)
c̄dχ + Sd̄dΓ

(3)
dc̄χGc̄cΓ

(3)

cd̄χ̄

}

=

∫

ω
SdΛ, ωΓd̄cχ̄Λ, ω,ω̄+ω,ω̄G

c
ω̄+ωΓc̄dχΛ, ω̄+ω,ω,ω̄ =

∫ ′

ω
SdΛ, ωG

c
ω̄+ω

(
Γ̃c̄dχΛ, ω̄+ω,ω,ω̄

)2
, (2.64)

∂ΛΠψ
Λ, ω̄ = ∂ΛΓ

(2)

Λ,(ψ,ω̄)(ψ̄,ω̄)
= −1

2
STr

{
SΓ

(3)

(ψ̄,ω̄)
GΓ

(3)
(ψ,ω̄) + SΓ

(3)
(ψ,ω̄)GΓ

(3)

(ψ̄,ω̄)

}

=
1

2
Tr
{
Sd̄dΓ

(3)

dcψ̄
Gcc̄Γ

(3)

c̄d̄ψ
+ Sdd̄Γ

(3)

d̄c̄ψ
Gc̄cΓ

(3)

cdψ̄

}

= −
∫

ω
SdΛ, ωΓdcψ̄Λ, ω,ω̄−ω,ω̄G

c
ω̄−ωΓc̄d̄ψΛ, ω̄−ω,ω,ω̄ =

∫ ′

ω
SdΛ, ωG

c
ω̄−ω

(
Γ̃c̄d̄ψΛ, ω̄−ω,ω,ω̄

)2
. (2.65)

Referring to SHS in Eq. (2.24), Γ̃c̄dχ =
√
βV Γc̄dχ and Γ̃c̄d̄ψ =

√
βV Γc̄d̄ψ/i have the initial

conditions Γ̃c̄dχΛ0, ω̄+ω,ω,ω̄ = 1 and Γ̃c̄d̄ψΛ0, ω̄−ω,ω,ω̄ = 1.
The flow of the three-point vertices, without a five-point or the fermionic four-point

vertex, is determined by the coupling of different three-point vertices. In the exchange
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channel, we get the flow equation

∂ΛΓ̃c̄dχΛ, ωc,ωc−ω̄,ω̄ =
√
βV ∂ΛΓ

(3)
Λ,(c̄,ωc)(d,ωc−ω̄)(χ̄,ω̄)

= −
√
βV

2
STr

{
SΓ

(3)
(χ,ω̄)GΓ

(3)
(d,ωc−ω̄)GΓ

(3)
(c̄,ωc)

+ SΓ
(3)
(c̄,ωc)

GΓ
(3)
(d,ωc−ω̄)GΓ

(3)
(χ,ω̄)

}

=

√
βV

2
Tr
{
Sd̄dΓ

(3)
dc̄χGc̄cΓ

(3)

cψ̄d
Gψ̄ψΓ

(3)

ψd̄c̄
+ Sdd̄Γ

(3)

d̄ψc̄
Gψψ̄Γ

(3)

ψ̄cd
Gcc̄Γ

(3)
c̄dχ

}

=

∫ ′

ω
SdΛ, ωΓ̃c̄dχΛ, ω̄+ω,ω,ω̄G

c
ω̄+ωΓ̃c̄d̄ψΛ, ω̄+ω,ωc−ω̄,ωc+ωG

ψ
Λ, ωc+ω

Γ̃c̄d̄ψΛ, ωc,ω,ωc+ω
(2.66)

and similarly for the pairing channel

∂ΛΓ̃c̄d̄ψΛ (ωc, ω̄ − ωc, ω̄) =

√
βV

i
∂ΛΓ

(3)

Λ,(c̄,ωc)(d,ω̄−ωc,)(ψ̄,ω̄)

= −
√
βV

2i
STr

{
SΓ

(3)
(ψ,ω̄)GΓ

(3)
(d,ω̄−ωc)GΓ

(3)
(c̄,ωc)

+ SΓ
(3)
(c̄,ωc)

GΓ
(3)
(d,ω̄−ωc)GΓ

(3)
(ψ,ω̄)

}

=

√
βV

2i
Tr
{
Sdd̄Γ

(3)

d̄c̄ψ
Gc̄cΓ

(3)

cχ̄d̄
Gχ̄χΓ

(3)
χdc̄ + Sd̄dΓ

(3)
dχc̄Gχχ̄Γ

(3)

χ̄cd̄
Gcc̄Γ

(3)

c̄d̄ψ

}

=

∫ ′

ω
SdΛ, ωΓ̃c̄d̄ψΛ, ω̄−ω,ω,ω̄G

c
ω̄−ωΓ̃c̄dχΛ, ω̄−ω,ω̄−ωc,ωc−ωG

χ
Λ, ωc−ωΓ̃c̄dχΛ, ωc,ω,ωc−ω . (2.67)

2.3 Computational considerations

The flow equations in the different forms stated throughout section 2.2 can be solved
numerically. Generally speaking, after discretization of continuous variables, one has a
first-order ordinary differential equation for a large vector containing the different 1PI
vertices at any of their argument configurations. The numerical difficulty lies in the size
of this vector.

We are mainly concerned with an infinite valence-band mass. In this case, all relevant
quantities are effectively only frequency-dependent. This can be shown by a transfor-
mation in the functional integral, as done in reference 2. Here, let us confine ourselves
to a diagrammatic argument. The bare vertices are momentum-independent. Any
renormalization via connected diagrams contains propagating lines of the valence-band
electron, which absorbs any momentum dependence without being affected. Merely
the conduction-band propagator has to be integrated over its momentum dependence,
yielding a local c propagator.

Even without momentum dependencies in the 1PI vertices, in principle, infinitely
many Matsubara frequencies contribute. However, there are two limitations to this.

Sharp cutoff in Gc: In the flow equations, there always appears at least one conduction-
band propagator. Its local, purely frequency-dependent form is obtained after integra-
tion (note that, being a fermionic Matsubara frequency, ω 6= 0):

Gcω =

∫ ′

k

1

iω − ξck
= ρ

∫ µ+ξ0

0
dε

1

iω − ε+ µ
= ρ

∫ ξ0

−ξ0
dξ

1

iω − ξ = −2iρ arctan
(ξ0

ω

)

= −iπρ sgn(ω)

[
1− 2

π
arctan

( |ω|
ξ0

)]
≈ −iπρ sgn(ω)Θ(ξ0 − |ω|) . (2.68)

With the last approximation, we ignore any details of the cutoff, which are of no physical
relevance. Note that, in the third step, we made use of a half-filled band, µ = ξ0 (cf.
section 1.4), which renders the propagator purely imaginary.
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Due to the sharp cutoff, in each integration in the flow equations, only a finite
number of summands appear. Still, the c propagator and not the vertices themselves
have a sharp cutoff. The highest frequency value appearing on the right-hand side of a
flow equation always exceeds the one on the left-hand side. To deal with this, we give a
second argument.

Analyticity of Green’s functions: The Matsubara formalism is well suited for
calculations with a relatively small number of data points. Retarded Green’s functions
are analytic in the upper-half complex plane; all poles lie on or below the real axis.
Therefore, the structure encoded in such functions in terms of Matsubara frequencies
decreases with the distance of the frequency to the poles on the real axis, i.e., with its
modulus. Furthermore, the problem at hand is known to be infrared-divergent. The
physically interesting part of the corresponding functions happens at iω̄+ξd → ω−ω0 �
ξ0. At large enough frequencies, we can thus approximate a 1PI vertex to be constant.

The size of the vector, comprising all vertices and subject to the differential equation,
is dominated by the number of frequency configurations of its constituent with the
largest number of arguments. By energy conservation, an n-point 1PI vertex Γ(n) has
n− 1 independent arguments. If we have 2N data points for each Matsubara frequency,
including Γ(n) in our solution requires (in principle) storing (2N)n−1 complex values.
Reasonably demanding a number of positive Matsubara frequencies on the order of 100
(in fact, we mostly take N = 200 in our calculations), one clearly sees a limit at the
four-point vertex:

Γ(4), N = 200 :

4003 data points ∼ 6 · 107 complex values ∼ 109 Bytes . (2.69)

All higher-order 1PI vertices are impossible to treat exactly18. Including the symmetry
of a Green’s function upon inversion of all Matsubara frequencies and the symmetry of
Γ(4) in its first two arguments (cf. section 2.2), we ultimately have to store N2 · (2N +1)
data points for Γ(4).

Finally, let us justify the choice of parameters for our numerical calculations. In
section 1.4, we have pointed out the special diagrammatic situation of the Fermi-edge
problem. In particular, we argued that neither valence-band particle-hole bubbles nor
closed loops occur. It follows, that there always is exactly one valence-band hole in
diagrams for the particle-hole susceptibility. The bosonic frequency ω̄ can be chosen to
be always carried by the valence band. Hence, it is always accompanied by the band
gap encoded in ξd, which, after the above mentioned manual adjustments, has the single
effect of shifting arguments in the logarithm away from the branch cut (cf. section A.2).
Since we want to notably observe the infrared singularities close to the threshold ω0

also in Matsubara frequency space, we choose ξd to be small but finite. Moreover,
the parquet result (1.8) is usually obtained in a zero-temperature formalism. In order
to reproduce this behavior with sufficient resolution in imaginary-frequency space, we
choose temperature small enough compared to ξ0 = µ. In practice, we take the following
values

βξ0 = 500 , ξd/ξ0 = −1/25 , u = ρU = 0.28 . (2.70)

The value for the coupling parameter u comes from the following consideration: It should
be large enough to see the influence of high powers of u ln |ξ0/(iω̄ + ξd)|; nevertheless,
neglecting higher-order vertices is a perturbative strategy, and we need small enough u
to justify this. The strictest limitation comes from the dynamic χ propagator, since the

18In the finite-mass case, already a three-point vertex has five arguments (two frequencies, two moduli
of momenta, and a relative angle) and is out of reach for an exact treatment.
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χ self-energy, similarly to the photon self-energy, diverges at small frequencies. In the
function Gχω̄ = −Ux/(1 +UxΠχ

ω̄), Πχ
ω̄ acquires large negative values. Thus, the condition

for stability is |UxΠχ| < 1. For Ux = U/2, this turns out to be fulfilled only for u < 0.3.
The corresponding perturbative parameter at u = 0.28,

u ln

(
ξ0

|iω̄ + ξd|

)
≤ u ln

(
ξ0

|ξd|

)
≈ 0.9 , (2.71)

is perfectly suited for our needs.
The differential equation will ultimately be solved with a Runge-Kutta-4 algorithm.

Settled by convergence studies, we choose the initial value to be ρV Λ0 = 104 Λ0/xi0 =
2×103 and evolve in a few hundred iteration steps on a logarithmic grid. In a δ-regulated
scheme, all functions are considered piecewise constant, and the δ distribution acquires
finite weight β/(2π). The Litim regulator is perfectly applicable to finite-temperature
calculations but requires significantly higher computational effort as a whole sum over
frequencies has to be performed.
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3 Analysis

Having collected a variety of computational tools (section 2) and theoretical background
(section 1.4), we begin our analysis of the Fermi-edge singularity. Any of our results
for the particle-hole susceptibility will be tested against the famous parquet formulae
(1.8) and (1.10), originating from an exact summation of all leading log. diagrams. We
aim not only to resolve the infrared singularity, but to find exact agreement with the
power-law divergence of the first-order parquet result.

Foremost, it is important to bear in mind that we can tackle this problem following
two different approaches. On the one hand, we can consider the particle-hole susceptibil-
ity as a correlation function of four fermionic operators and express it via 1PI vertices.
In the matter system, we only need the appropriate fermionic four-point vertex; in the
HS-transformed matter system, also three-point vertices connecting auxiliary fields to
fermions are of importance. These vertices can be computed via the flow equations,
and only at the very end of the flow, the correlator is constructed. On the other
hand, noting that the four-point correlation function is integrated over two external
(fermionic) variables, we can view the particle-hole susceptibility as the leading contri-
bution to a bosonic (photon) self-energy19. In this light-matter system, the correlator,
expressed as the self-energy, is directly included in a system of coupled flow equations.
Hubbard-Stratonovich fields are not used anymore because the additional irreducibility
in the exchange channel hinders the equivalence between the photon self-energy and the
particle-hole susceptibility.

Either way, we have different means to apply the fRG flow equations. First, for
infinite hole mass, the flow equations can be solved numerically and their solution pre-
sented as curves for the particle-hole susceptibility in terms of Matsubara frequencies.
Knowing the parquet result analytically, we can simply transform it to imaginary fre-
quencies and compare it to the numerical data. Secondly, a diagrammatic validation
of the fRG flow sheds light on the underlying structure of the system of differential
equations. Examining the involved parquet graphs, one can explain why certain curves
match the prediction better than others. In a third approach, we are able to extract
analytic solutions from the flow equations in the light-matter system. Truncating the
flow at the level of a constant four-point vertex, we find, without further approxima-
tions, that we exactly reproduce the parquet result (1.8). In the finite-mass situation,
a few hand-waving arguments allow us to get close to the functional dependence from
Eq. (1.10).

We will combine all these insights to address the question of how the fRG results
can—or cannot—be generalized to other problems or even used to gain solutions be-
yond first-order parquet. Beforehand, let us, however, calculate the lowest-order par-
quet graphs by standard perturbation theory to introduce the diagrammatic language
used throughout our analysis and get familiar with the parquet formula in imaginary-
frequency space.

19This seems very natural, given our introduction in terms of polariton physics, but can also be seen
as a computational trick.
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3.1 Perturbative calculation

The lowest-order parquet graphs are obtained by expanding the four-point correlator in
the interaction parameter U . Given the restriction to leading log. diagrams (by applying
the simplifications of section 1.4), a certain order in the coupling u = ρU is equivalent
to this order in the parameter u ln ξ0/w̃ (ω̃ measured from the threshold). For the
scope of this work, full lines denote conduction (c) and dashed lines valence-band (d)
propagators. A bare vertex, symbolized by a solid circle, demands energy-momentum
conservation and multiplication by −U . Summations over internal variables include
the appropriate prefactor corresponding to dimension-full integrals. Apart from that,
there are no combinatorial or sign factors attached to diagrams. In diagrams for the
particle-hole susceptibility,

Π(ω̄) =

∫ ′

ω,ν
〈d̄ωdν c̄ω̄+νcω̄+ω〉 , (3.1)

conduction- and valence-band-electron energy-momentum will differ by ω̄ at the bound-
ary points. As we ignore self-energies, we will denote bare propagators without the index
0. Modifications to that in the finite-mass case will be treated separately in section 3.3.2.

The lowest-order diagrams of the particle-hole susceptibility are shown in Fig. 3.1.
While the first three diagrams belong to the class of ladder diagrams, the last diagram,
which by contrast contains a conduction-band hole, is the crossed diagram already men-
tioned in section 1.4. The zeroth-order contribution is simply a non-interacting particle-
hole bubble:

U0 :

∫ ′

ω,ν
〈d̄ωdν c̄ω̄+νcω̄+ω〉0 =

∫ ′

ω
GdωG

c
ω̄+ω . (3.2)

In higher-orders, only connected (index c) expectation values remain, since loops
and retarded valence-band propagators are excluded (cf. section 1.4). The first-order
diagram shows how multiple bubbles factorize in the integral:

−U1 :

∫ ′′

ω,ν,ω̄1,ω1,ν1

〈d̄ωdν d̄ν1−ω̄1dν1 c̄ω̄+νcω̄+ω c̄ω̄1+ω1cω1〉0,c

=

∫ ′′

ω,ν
GdωG

d
νG

c
ω̄+ωG

c
ω̄+ν . (3.3)

The crossed diagram in second order does not factorize. Wick’s theorem gives

U2 :
1

2

∫ ′′′

ω,ν,ω̄1,ω1,ν1,ω̄2,ω2,ν2

〈d̄ωdν d̄ν1−ω̄1dν1 d̄ν2−ω̄2dν2 c̄ω̄+νcω̄+ω c̄ω̄1+ω1cω1 c̄ω̄2+ω2cω2〉0,c

=

∫ ′′′

ω,ν,η,ω1,ν1,ω2

GdωG
d
νG

d
η〈c̄ω̄+νcω̄+ω c̄η−ν+ω1cω1 c̄ω−η+ω2cω2〉0,c

=

∫ ′′′

ω,ν,η
GdωG

d
νG

d
η

[
Gcω̄+ωG

c
ω̄+νG

c
ω̄+η +Gcω̄+ωG

c
ω̄+ω+ν−ηG

c
ω̄+ν

]
. (3.4)

We calculate the integrals within logarithmic accuracy, for infinite hole mass and fre-
quencies close to the threshold in the appendix, section A.2. Due to factorization, the

+ + +

Figure 3.1: Four-point correlator 〈d̄dc̄c〉 up to second order, consisting of the first three ladder
diagrams [(0L), (1L), (2L)] and the crossed diagram [(2C)]. Full (dashed) lines denote conduction-
(valence-) electron propagators. Dots represent bare vertices with a factor −U .
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= +

(a) Four-point correlator given by the dis-
connected and 1PI part [cf. Eq. (2.41)].

+ +

(b) First- and second-order contributions
to Γ̃d̄dc̄c in agreement with Fig. 3.1 and
3.2a.

+ +

+ + +

(c) Γ̃d̄dc̄c in third order in the interaction parameter −U .

Figure 3.2: Diagrammatic relations for the four-point 1PI vertex Γd̄dc̄c determining the four-
point correlator in the matter system. External lines represent amputated legs.

ladder diagrams Π(n,L) can be computed at any order, and, consistent with Mahan [15],
the crossed diagram Π(2C) has reduced weight compared to Π(2L) with opposite sign:

Π(n,L)(ω̄) = (−U)n
[
ρ ln

(−iω̄ − ξd
ξ0

)]n+1

, Π(2C)(ω̄) = −1

3
Π(2L)(ω̄) . (3.5)

For higher-order contributions to the four-point correlator, let us merely show the
diagrams. In fact, as “the absence of closed dotted loops severely limits possible graphs”
[3], one only has to connect the interaction vertices between a series of d lines in all
possible ways with conduction-band lines. In Fig. 3.2b and Fig. 3.2c, we show the
diagrams up to third order for the one-particle-irreducible four-point vertex. As already
seen in Eq. (2.41), the four-point correlator is given by the non-interacting and the
connected contribution. According to Eq. (2.33), in the absence of vertices with an odd
number of fields, the connected four-point correlator can be expressed by the 1PI four-
point vertex only; external legs attached appropriately. Fig. 3.2a shows this relation with
the four-point correlator on the left-hand side and the four-point vertex Γ̃d̄dc̄c denoted
by a full square.

The summation of all leading log. diagrams produces the power law in the infinite-
mass parquet result (1.8). Its representation in terms of Matsubara frequencies and,
particularly, the real part, which will be compared to numerical data in the following
sections, read

Πγ
ω̄ =

1

2U

[
1−

(−iω̄ − ξd
ξ0

)−2u
]

=
ρ

2u

[
1− e−2u ln

(
−iω̄−ξd
ξ0

)]
,

Re Πγ
ω̄ =

ρ

2u

[
1− e−2u ln

(
|iω̄−ξd|
ξ0

)
cos

(
2u arg

(
iω̄ + ξd

))]

=
ρ

2u

[
1−

(
ω̄2 + (ξd)2

ξ2
0

)−u
cos

(
2u arctan

( ω̄
ξd

))]
. (3.6)

Note that, in the chosen frequency regime |iω̄+ξd| → |ω−ω0| � ξ0, every summand
in a power series in u is negative and that the functions remain finite even at zero
Matsubara frequency. It is easy to check that, indeed, the first two orders in u equal
the sum of the diagrams shown in Fig. 3.1. In Fig. 3.3, one can see how the orders build
up to the power law; in the logarithmic inset, here and henceforth, the constant 1/(2u)
is subtracted for all functions before the negative part is plotted.
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Figure 3.3: Parquet formula in terms of Matsubara frequencies [Eq. (3.6)] at increasing orders
in the coupling u. In the logarithmic plot of the negative parts, the constant 1/(2u) is subtracted
for all functions.

3.2 Numerical data and diagrammatic validation

We commence the fRG analysis by studying the four-point correlator obtained from
the flow of 1PI vertices. After examining the diagrammatic structure of the flow in
the pure matter system, we consider the resummation effects of dynamic HS fields.
In section 3.2.3, we include the photon and allow its self-energy to flow in the light-
matter system. The leading contribution, the particle-hole susceptibility, is produced,
since the flow equations in section 2.2.4 do not allow intermediate photon propagation,
corresponding to the limit |M |2 → 0 [cf. Eq. (2.12)].

3.2.1 Four-point correlator in the matter system

The mathematical relation between the four-point correlator and the four-point 1PI
vertex from Fig. 3.2a [cf. Eq. (2.41)] reads

〈d̄ωdν c̄ω̄+ωcω̄+ν〉c = −GdωGdνGcω̄+ωG
c
ω̄+νΓd̄dc̄cω,ν,ω̄+ω,ω̄+ν ,

Πγ(ω̄) =

∫ ′

ω
GdωG

c
ω̄+ω +

∫ ′′

ω,ν
GdωG

d
νG

c
ω̄+ωG

c
ω̄+νΓ̃d̄dc̄cω,ν,ω̄+ω,ω̄+ν . (3.7)

Inserting the numerical solution for Γ̃d̄dc̄c from the flow of Eq. (2.58) results in the
correlator shown in Fig. 3.5.

= +

Figure 3.4: Diagrammatic representation of the flow equation (2.58) for the four-point 1PI
vertex Γ̃d̄dc̄c. A dot denotes a fully differentiated diagram; lines with a vertical dash symbolize
the single-scale propagator. The contribution of the six-point vertex is neglected [Eq. (2.56)].
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Figure 3.5: Four-point correlator Πγ or 〈d̄dc̄c〉 computed via Γ(4) [Eq. (3.7)], where Γ(4) is
obtained from a numeric solution of the fRG flow equation (2.58). Different results are generated
using a δ or Litim (L) regulator [cf. Eq. (2.43)] and compared to the parquet formula (3.6).
Neglecting Γ(6) by truncation, the flow misses parquet graphs starting at third order in U (cf.
Fig. 3.9).

We observe qualitative agreement of the curves. The δ-regularized solution follows
the exact curve extremely well. By contrast, the curve which results from using a Litim
regulator overestimates the singularity and shows deviations from a pure power law, as
seen in the logarithmic inset.

Let us try to understand the numerical outcome, based on a solution of the flow
equation (2.58), from a diagrammatic perspective. The truncated flow equation is rep-
resented graphically in Fig. 3.4. A d line with a vertical dash next to the arrow represents
the single-scale propagator; the derivative of a whole diagram is denoted by a dot on
top of it. As we know all diagrams of the four-point vertex up to third order (Fig. 3.2),
we can check whether they are generated by the flow. For this, note that since, in the
infinite-mass case, we can neglect any self-energy contributions, a d propagator is simply
differentiated by changing it to a single-scale propagator. A diagram containing multiple
d lines is differentiated by respecting the product rule, i.e., summing all diagrams where
one d line is changed to a single-scale line at a time.

1 = 2 = +

Figure 3.6: First- and second-order diagrams of Γ̃d̄dc̄c group together.

1 1 + 1 1 = + = 2

Figure 3.7: The flow equation of Γ̃d̄dc̄c is fulfilled in second order (cf. Fig. 3.4, 3.6).
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Figure 3.8: First- and second-order diagrams of Γ̃d̄dc̄c (Fig. 3.6) are inserted in the right-hand
side of the flow equation (Fig. 3.4) to form ∂ΛΓ̃d̄dc̄c at third order. Four diagrams can be grouped
together to form two fully differentiated (dotted) ones.

+ + +

Figure 3.9: The missing diagrams in Fig. 3.8 to complete the derivative of Γ̃d̄dc̄c at third order
come from Tr{SΓ(6)} contributions (S is graphically separated) to the flow [cf. Eq. (2.56)].

If we group the leading-order diagrams of Fig. 3.2 according to Fig. 3.6, we immedi-
ately see that only diagrams starting at second order contain d lines and thus are scale
dependent. Inserting the first-order diagram on the right-hand side of the flow equation
(Fig. 3.4), we find that, indeed, the derivative of the four-point vertex at second order
is generated (cf. Fig. 3.6, 3.7). To study the flow equation at the next order, we have
to insert first- and second-order diagrams on the right-hand side of Fig. 3.4, forming
the third-order diagrams shown in Fig. 3.8. Four diagrams can be grouped as two fully
differentiated ones (having a dot on top of them); the other contributions cannot be
expressed in this way. In light of our earlier observation that, due to the simplified
flow, Γd̄dc̄c is symmetric in the external valence-band frequencies (cf. section 2.2.3), it is
not surprising that the fully differentiated diagrams are exactly the ones respecting this
symmetry. It is interesting to note that precisely these two diagrams are the ones giving
a negative contribution to the particle-hole susceptibility at third order [15]. Assuming
a similar imbalance for higher orders as well, one might expect the approximate solution
to exaggerate the negative divergence (cf. Fig. 3.5).

The reason why the derivatives of the other diagrams of Γd̄dc̄c are only partly con-
tained stems from the fact that we neglected the six-point vertex in our truncation
of the hierarchy of flow equations. In fact, the missing terms that would be needed
to fully recover the derivative of Γd̄dc̄c at third order come from the contribution of
Eq. (2.56), Tr{Sdd̄Γd̄dd̄dc̄c}, as illustrated in Fig. 3.9. (Out of twelve inequivalent possi-

bilities for diagrams of Γ(6) at third order, only the four diagrams shown in Fig. 3.9 are
one-particle-irreducible.)

Since a numerical calculation of Γ(6) is hopeless (cf. section 2.3), we conclude that the
approach via the fermionic four-point vertex deviates from the parquet result starting at
third order. It seems therefore legitimate, that the Litim result deviates at small enough
frequencies. Surprisingly however, the δ solution matches the prediction extraordinarily
well. Next, we will explore whether a better approximation is obtained after using a
Hubbard-Stratonovich transformation.
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Figure 3.10: Four-point correlator 〈d̄dc̄c〉 after a HS transformation determined by HS three-
point vertices and the fermionic four-point vertex [cf. Eq. (3.8)]. A wavy (zig-zag) line denotes
a full χ (ψ) propagator. Both three-point vertices Γ̃c̄dχ and Γ̃c̄d̄ψ are depicted by a full triangle
and can be distinguished by the attached bosonic line.

3.2.2 Four-point correlator in the HS-transformed matter system

In the presence of Hubbard-Stratonovich fields, the new relation from Eq. (2.33) between
the (connected) correlator and 1PI vertices is given by the equation

〈d̄ωdν c̄ω̄+ωcω̄+ν〉c = GdωG
d
νG

c
ω̄+ωG

c
ω̄+ν

(
− Γd̄dc̄cω,ν,ω̄+ω,ω̄+ν

)

+GdωG
d
νG

c
ω̄+ωG

c
ω̄+νG

χ
ω̄Γc̄dχω̄+ν,ν,ω̄Γd̄cχ̄ω,ω̄+ω,ω̄

+GdωG
d
νG

c
ω̄+ωG

c
ω̄+νG

ψ
ω̄+ω+ν

(
Γc̄d̄ψω̄+ν,ω,ω̄+ω+ν/i

)(
Γdcψ̄ν,ω̄+ω,ω̄+ω+ν/i

)
(3.8)

and illustrated in Fig. 3.10. Graphically, we represent the full χ propagator by a wavy
and the full ψ propagator by a zig-zag line. Both three-point vertices (recall the sym-
metry relations derived in section 2.1.4) Γ̃c̄dχ and Γ̃c̄d̄ψ are denoted by a full triangle
and can be distinguished by their attached lines.

Note that a bosonic χ or ψ propagator to lowest order is simply given by −Ux or −Up,
respectively. A bare propagating boson thus reduces to the instantaneous interaction
with adjusted weight Ux or Up. At second order, the propagators are renormalized by
the leading self-energy contributions. For χ, this gives a bubble of antiparallel lines
[Eq. (2.26)] times U2

x ; for ψ, it is a bubble of parallel lines [Eq. (2.27)] multiplied by
U2
p . Second-order diagrams from the second and third summand in Fig. 3.10, of course,

also come from two first-order three-point vertices and a bare bosonic propagator. The
lowest-order diagrams of the three-point vertices in the exchange and pairing channel
are shown in Fig. 3.11. The bare three-point vertices (gray circles) require energy-
momentum conservation and simply have a prefactor of unity.

If we put bosonic self-energies and three-point vertices together in Fig. 3.10, we get:

Exchange channel: Ux × (1L) + (U2
x + 2UxUp)× (2L) ,

Pairing channel: Up × (1L) + (U2
p + 2UxUp)× (2C) , (3.9)

where (1L), (2L) are the first- and second-order ladder, (2C) the crossed diagram, which
were already shown in Fig. 3.1. With Ux + Up = U according to Eq. (2.23), combining
both channels, the first-order contribution is fully contained. However, at second order,
the weight U2 is not fully recovered. In fact, although the HS transformation by con-
struction ensures that the four-point vertex Γd̄dc̄c does not contribute to first order, it
does contribute to second order. The second-order diagrams for Γ̃d̄dc̄c which are irre-
ducible in fermionic as well as bosonic lines are the ones represented in Fig. 3.12. Their

= + = +

Figure 3.11: First-order diagrams of the three-point vertices Γ̃c̄dχ and Γ̃c̄d̄ψ. The bare vertex,
a gray circle, requires energy-momentum conservation with weight unity; the χ or ψ propagator
to lowest order is given by −Ux or −Up, respectively.

33



+

Figure 3.12: After a HS transformation, Γ̃d̄dc̄c contributes, with the above diagrams, starting
at second order. It is therefore needed to produce all parquet graphs (up to second order) in the
correlator via the relation in Fig. 3.10.

contribution

Four-point vertex: U2
x × (2C) + U2

p × (2L) (3.10)

completes the weight to fully recover the second-order graphs (Fig. 3.1), since adding
Eq. (3.9) and Eq. (3.10) yields

U × (1L) + U2 ×
[
(2L) + (2C)

]
. (3.11)

We conclude that the use of a HS transformation does not save us from having
to calculate the four-point vertex even at second order in U . Nevertheless, it is in-
teresting to numerically check how the three-point vertices, evolved by the flow in the
HS-transformed matter system, form the four-point correlator, where the computational
advantage of this strategy is only present if the four-point 1PI vertex is excluded from
the system. By using only the first three terms on the right-hand side of Fig. 3.10, but
discarding the forth, we incorporate the hypothetically useful resummation of dynamic
HS fields but omit important contributions starting at second order in U .

In the plot in Fig. 3.13, we show the four-point correlator obtained via the HS
three-point vertices. The curves give qualitatively reasonable results at intermediate
frequencies, but for small enough frequencies the penalty of ignoring Γ(4) manifests itself
in strong deviations from the analytic formula. This time, the δ regularized solution
shows a stronger divergence, and the Litim curve seems to fit somewhat better.
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Figure 3.13: Four-point correlator Πγ or 〈d̄dc̄c〉 obtained from Γ̃c̄dχ and Γ̃c̄d̄ψ according to the
first three terms on the right-hand side of Fig. 3.10. Contributions from Γ̃d̄dc̄c, starting at second
order (cf. Fig. 3.12), are neglected. The three-point vertices were obtained by solving the flow
equations in section 2.2.5, using the two (δ and Litim) regulators.
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Figure 3.14: Truncated flow equations of the photon self-energy (Πγ , circle) and three-point
vertex (Γ̃c̄dγ , triangle) in the light-matter system [Eq. (2.61) and (2.63)], where the contributions
of Γd̄dγγ̄ [for Πγ , Eq. (2.60)] and Γd̄dc̄dγ [for Γ̃c̄dγ , Eq. (2.62)] are neglected. External wavy lines
denote amputated photon legs, and the flow of the four-point vertex Γ̃d̄dc̄c is still given by
Eq. (2.58) (i.e., Fig. 3.4).

= = +

= + =

Figure 3.15: Given the approximate flow of Πγ and Γ̃c̄dγ according to Eq. (2.61) and Eq. (2.63)
(i.e., Fig. 3.14), the evolution of Πγ respects the Schwinger-Dyson equation (2.39).

3.2.3 Self-energy in the light-matter system

We move on to the light-matter system, including the photon into the theory (but
disregarding HS fields). One obtains the particle-hole susceptibility in the form of the
photon self-energy, since the fRG scheme set up in section 2.2.4 incorporates the limit
|M |2 → 0. The truncated flow equations involving the photon, Eq. (2.61) and (2.63), are
graphically represented in Fig. 3.14. External (quickly oscillating) wavy lines symbolize
the amputated photon legs, the full circle the photon self-energy, and the full triangle
attached to a photonic line the three-point vertex Γ̃c̄dγ (not to be confused with the
HS three-point vertices from the previous section). The fermionic four-point vertex,
relevant for the flow of Γ̃c̄dγ , still obeys the flow equation in Fig. 3.4, which is closed in
itself.

The flow of the γ self-energy only depends on Γ̃c̄dγ . In fact, given a three-point vertex

= + +

+ + +

+ + +

Figure 3.16: Derivative of the leading-order photon self-energy Πγ (i.e., the four-point correla-
tor) up to second order obtained from Fig. 3.1 by changing a d line to a single-scale propagator
in all possible ways. The gray circle attached to amputated photon legs is the bare (rescaled)
photon three-point vertex equal to unity.

= +

Figure 3.17: Flow equation of Πγ up to second order in terms of Γ̃c̄dγ (cf. Fig. 3.16, 3.18).
Whereas neglected in Fig. 3.14, the four-point vertex Γd̄dγ̄γ is needed for parallel Sd-Gc lines
and contributes via Tr{SΓ(4)} (cf. Eq. (2.60), S is graphically separated).
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= 0 + 1 + 2L + 2C = 0 + 1 + 2

Figure 3.18: Low-order contributions to Γ̃c̄dγ following from the Schwinger-Dyson equation
(2.41) and the diagrammatic expansion of Γ̃d̄dc̄c (Fig. 3.2). Definitions are made for future
purposes.

= + + +

+ = +

Figure 3.19: Flow of Γ̃c̄dγ up to second order. Rewriting via Γ̃d̄dc̄c as in Eq. (2.63) shows that
the five-point vertex Γd̄dc̄dγ [cf. Eq. (2.62)], neglected in Fig. 3.14, is needed for parallel Sd-Gc

lines. (S is graphically separated in the term Tr{SΓ(5)}).

obeying the truncated flow of Fig. 3.14 (right), it is equivalent to calculate the self-energy
from its respective, approximate flow (Fig. 3.14, left) or from the (exact) Schwinger-
Dyson equation (2.39). This is diagrammatically proven in Fig. 3.15. Inserting the form
of the photonic three-point vertex given by the fermionic four-point vertex [Eq. (2.41)]
into the derivative of the self-energy, and using its flow of Fig. 3.14, the derivative
of the self-energy is equally obtained as if the Schwinger-Dyson equation (2.39) were
differentiated in the first place. As a minor remark, one can understand the approximate
nature of the truncated flow of Γ̃c̄dγ in Fig. 3.14 also by differentiating the second
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Figure 3.20: Self-energy obtained from the flow of the light-matter system (Fig. 3.14), where
the evolving Γd̄dc̄c (Fig. 3.4) is used. Stronger deviations (for both regulating schemes) from the
parquet curve compared to Fig. 3.5 are explained by the neglected contributions of the truncated
flow (cf. Fig. 3.17, Fig. 3.19), omitting the derivatives of parallel bubbles.
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Schwinger-Dyson equation (2.41). Inserting the exact flow of Γd̄dc̄c, one finds that the
truncated flow of Γc̄dγ not only neglects Γ(6) contributions but also the “crossed” part
of the derivative of Γ(4), i.e., the second summand in Fig. 3.4.

The diagrams forming the derivative of Πγ up to second order can be deduced from
the low-order diagrammatic representation of the particle-hole susceptibility in Fig. 3.1.
By changing a d line to single-scale propagator in all possible ways, we arrive at the set
of graphs shown in Fig. 3.16. A gray circle denotes the bare (rescaled) photon three-
point vertex equal to unity. Rewriting these second-order diagrams in terms of the
three-point 1PI vertex, known from its connection to the four-point vertex [Eq. (2.41)]
and graphically represented up to second order in Fig. 3.18, one obtains the relation
shown in Fig. 3.17.

We see that a diagram with a single-scale propagator parallel to a c line cannot be
rephrased in terms of only two photonic three-point vertices. Instead, the four-point ver-
tex Γd̄dγ̄γ , connecting photons and fermions, is needed (cf. Eq. (2.60), second diagram
on the right-hand side of Fig. 3.17). Similarly, expressing the second-order derivative of
Γ̃c̄dγ according to Fig. 3.14, parallel single-scale and c lines require a higher-order, viz.,
five-point vertex (cf. Fig. 3.19). In the truncated flow equations of section 2.2.4, rep-
resented in Fig. 3.14, these higher-order, initially vanishing contributions are neglected.
Here, we see that, at second order, they contain important contributions originating
from the derivative of the crossed diagram.

The numeric solutions in the light-matter system also omits these contributions,
since generating Γd̄dγ̄γ or Γd̄dc̄dγ in the flow requires at least five-point vertices (cf. sec-
tion 2.2.4), which are inaccessible due to computational limitations (cf. section 2.3). The
results for the particle-hole susceptibility obtained from the truncated flow (Fig. 3.14,
3.4) are shown in Fig. 3.20. The curves differ more strongly from the analytic formula
than the ones which are obtained by forming the correlator via the four-point vertex di-
rectly (Fig. 3.5). This is understood as the approximations in the photonic flow weaken
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Figure 3.21: Self-energy obtained from the flow of the light-matter system (Fig. 3.14), where
the bare four-point vertex Γ̃d̄dc̄c = −U is used. The outstandingly good agreement with the
parquet formula, independent of the regulating scheme, is explained by partial diagrammatic
cancellations (cf. Fig. 3.26). Increasing β and N enables perfect congruence with the prediction.
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a = a 2a = 2 - 1
2

2L - 2C

Figure 3.22: Flow equation for an approximate photonic three-point vertex, when Γ̃d̄dc̄c is
reduced to its bare part (cf. Eq. (2.63), Fig. 3.14), and its solution at second order (whose
ingredients are defined in Fig. 3.18).

= +
?
= a a

Figure 3.23: Second order flow of Πγ according to Fig. 3.17 and in the truncated form of
Fig. 3.14 with the approximate three-point vertex from Fig. 3.22.

the predictive power of the fRG solution. One can even employ the following argument.
The simplifications in the flow equations neglect the derivatives of parallel bubbles at
all orders. At second order, we have explicitly seen that the parallel bubble is part of
the crossed diagram (cf. Fig. 3.1), which gives a positive contribution and reduces the
singularity arising from the summation of (negative) ladder diagrams. Missing diagrams
with parallel bubbles should therefore lead to a more strongly diverging result.

Now, observe a surprising effect. The numerical effort in solving the system of flow
equations decreases dramatically when using a static four-point vertex. Instead of Γ̃d̄dc̄c

being evolved and generating all sorts of diagrams, it is kept at the initial value of
a constant, bare vertex Γ̃d̄dc̄c = −U (granted energy conservation in the arguments).
In Fig. 3.21, we see an agreement of the corresponding numerical solution to the an-
alytic prediction superior to any previous treatment (especially when using the Litim
regulator). In fact, the system of differential equations is simplified so much that it
is numerically feasible to increase β and N until a perfect matching (of both numeric
curves) to the parquet formula is achieved.

Let us explain this outcome. First, we show the underlying idea at second order;
then, we extend our argument to all orders. Fig. 3.22 depicts the flow equation for
an approximate three-point vertex Γ̃c̄dγ without higher-order vertices and where the
fermionic four-point vertex (as in Fig. 3.14) is kept bare, i.e., Γ̃d̄dc̄c = −U . Its solution at
second order can be obtained by modifying the original three-point vertex from Fig. 3.18,
subtracting the crossed part and half of the second-order ladder diagram (Fig. 3.22).
Making use of the factorizing properties of ladder diagrams, the solution to the simplified

+(1
2

2L + 2C ) 0 + 0 (1
2

2L + 2C )

= + 1
2

+ 1
2

= + 1
3

= 0

Figure 3.24: Inserting the approximate three-point vertex from Fig. 3.22 in Fig. 3.23, and
bringing its modifications to the left-hand side, we see that the additional terms exactly cancel
the Γd̄dγ̄γ contribution in the flow of Πγ , using the factorization of subsequent bubbles and
Π(2L) = −3Π(2C) [Eq. (3.5)].
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Figure 3.25: Approximate three-point vertex at order n and its derivative fulfilling the ap-
proximate flow equation with bare Γ(4) (cf. Fig. 3.22).

flow equation is easily confirmed. Can this approximate three-point vertex give a correct
photon self-energy upon neglecting the four-point photon-fermion vertex Γd̄dγ̄γ , i.e., does
the equality in Fig. 3.23 hold?

This is indeed true thanks to a cancellation procedure. Inserting the approximate
three-point vertex in the approximate flow of Πγ (rightmost diagram in Fig. 3.23), one
finds that the subtracted terms exactly make up for the four-point vertex contribu-
tion (second summand in the middle of Fig. 3.23). A diagrammatic proof is shown in
Fig. 3.24, where the modifications of Γ̃c̄dγ are brought to the left-hand side and combined
with the Γd̄dγ̄γ graph. Using the factorization properties of ladder diagrams and the fact
that, for infinite hole mass and with logarithmic accuracy, the crossed diagram counts
−1/3 of the value of the second-order ladder diagram [cf. Eq. (3.5)], the cancellation
is perfect. Consequently, the diagrammatic solution of the simplified system of flow
equations exactly agrees with the parquet graphs up to and including second order.

A closer look at the approximate three-point vertex in Fig. 3.22 reveals that it
consists only of ladder diagrams with a factor of 1/2 in second order; as a matter of
fact, the crossed contribution has been completely subtracted. If we extrapolate this to
all orders, we can define a new three-point vertex as in Fig. 3.25. Clearly, the simplified
flow equation is fulfilled. In fact, one can easily see that it is the unique solution of this
flow equation: Starting by inserting the bare vertex in the flow equation, the derivative
of the first-order ladder diagram is generated. Iterating this procedure, only ladder
diagrams are possible and the appropriate prefactor is 1/n!.

Inserting this three-point vertex in the truncated self-energy flow (as in Fig. 3.14),
we can simplify the equation, again using the factorizing properties of ladder diagrams.
In Fig. 3.26, the flow of the self-energy at order n, ∂ΛΠγ,(n), determined by both ladder-
type three-point vertices summed up to the same order, is related to the derivative of the
nth-order ladder diagram Π(n,L). In the last step, we made use of the following identity,

n =
n∑

m=0

m n-m

=
n∑

m=0

1
m!(n−m)!

. . . . . .

︸ ︷︷ ︸
m

︸ ︷︷ ︸
n−m

= 2n

(n+1)!
. . .

︸ ︷︷ ︸
n

Figure 3.26: Inserting the approximate three-point vertex from Fig. 3.25 in the approximate
flow of Πγ (cf. Fig. 3.23), we relate the self-energy to ladder diagrams at arbitrary order n in
exact agreement with the parquet result [cf. Eq. (3.14)].
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and Π(n,L) is known from Eq. (3.5):

n∑

m=0

1

m!(n−m)!
=

2n

n!
, Π(n,L) = (−U)n(ρL)n+1 , L = ln

(−iω̄ − ξd
ξ0

)
. (3.12)

The last line in Fig. 3.26 relates two derivatives of diagrams, where both sides con-
tain d-lines, thus vanish at the initial scale Λ = ∞. Consequently, they remain equal
throughout the flow:

Πγ,(n) =
2n

(n+ 1)!
Π(n,L) . (3.13)

Summation of all orders precisely yields the parquet result [cf. Eq. (3.6)]

Πγ
ω̄ =

∞∑

n=0

Πγ,(n) =

∞∑

n=0

2n

(n+ 1)!
Π(n,L) = − 1

2U

∞∑

n=0

(−2uL)n+1

(n+ 1)!

= − 1

2U

(
e−2uL − 1

)
=

1

2U

[
1−

(−iω̄ − ξd
ξ0

)−2u
]
. (3.14)

We conclude that in the combined, truncated flow of the light-matter system parquet
graphs are missed starting at second order due to a mistreatment of parallel bubbles. If,
however, only the bare fermionic four-point vertex Γ̃d̄dc̄c = −U is used, the indispensable
and initially neglected contributions to Πγ from higher-point vertices are fortuitously
generated by the approximate flow itself, resulting in the full parquet result.

3.3 Analytic results

Inspired by numerical data and diagrammatic considerations from the previous section,
we are able to reproduce the infinite-mass parquet result analytically (and purely alge-
braically). This proceeds in a straightforward manner from a truncated system of flow
equations. Hereafter, we will extend our arguments to the finite-hole-mass case and with
a few ideas come close to the generalized parquet result of Eq. (1.10).

3.3.1 Parquet formula from a static four-point vertex

Let us adopt a harsh but sensible truncation of the flow equations: we keep all 1PI
vertices starting from the four-point vertex at their initial value. Only the (energy-
momentum conserving) fermionic four-point vertex has a non-vanishing value at Λ =∞
and is constantly equal to −U . The simplified flow equations [Eq. (2.61), (2.63)] then
read

∂ΛΠγ
Λ, ω̄ =

∫ ′

ω
SdΛ, ωG

c
ω̄+ω

(
Γ̃c̄dγΛ, ω̄+ω,ω,ω̄

)2
,

∂ΛΓ̃c̄dγΛ, ωc,ωc−ω̄,ω̄ =

∫ ′

ω
SdΛ, ωΓ̃c̄dγΛ, ω̄+ω,ω,ω̄G

c
ω̄+ωΓ̃d̄dc̄cΛ, ω,ωc−ω̄,ωc,ω̄+ω

= −U
∫ ′

ω
SdΛ, ωG

c
ω̄+ωΓ̃c̄dγΛ, ω̄+ω,ω,ω̄ (3.15)

and can be visualized by replacing the full four-point vertex in Fig. 3.14 by its bare part
(cf. Fig. 3.2b, 3.22).

The important observation is that the first derivative (and consequently any higher

derivative) of Γ̃c̄dγΛ is independent of ωc, i.e., completely independent of the first argu-
ment. (The second argument is fixed by conservation anyway.) Since also the initial
condition is independent of the first argument, the vertex only depends on ω̄ for all

40



scales. It is easy to see that the (2C) diagram from Fig. 3.18 in the three-point vertex
is not independent of fermionic frequencies. Hence, this is a violation of the actual
properties of the renormalized three-point vertex and corresponds to the fact that one
effectively only sums up ladder diagrams (cf. Fig. 3.25).

It follows that ω̄ merely acts as an external parameter for these flow equations, and
its effect can be restricted considerably. The solution of the differential equations (3.15)

is easily obtained with the definition gΛ, ω̄ =
(
Γ̃c̄dγΛ, ·,·,ω̄

)2
, such that

∂ΛgΛ, ω̄ = −2UgΛ, ω̄

∫ ′

ω
SdΛ, ωG

c
ω̄+ω ,

∂ΛΠγ
Λ, ω̄ = gΛ, ω̄

∫ ′

ω
SdΛ, ωG

c
ω̄+ω = − 1

2U
∂ΛgΛ, ω̄ . (3.16)

Evidently, gΛ, ω̄ is given by an exponential of an auxiliary function fΛ, ω̄:

gΛ, ω̄ = gΛ0, ω̄e
−2ufΛ, ω̄ , fΛ, ω̄ =

∫ Λ

Λ0

dΛ′
∫ ′

ω
SdΛ′, ωG

c
ω̄+ω/ρ . (3.17)

The self-energy is directly related and becomes

Πγ
Λ, ω̄ = Πγ

Λ0, ω̄
− gΛ, ω̄ − gΛ0, ω̄

2U
= Πγ

Λ0, ω̄
− gΛ0, ω̄

2U

[
e−2ufΛ, ω̄ − 1

]
. (3.18)

Inserting the boundary conditions when Λ flows from ∞ to 0 gives the following
result, where the external energy-momentum ω̄ enters only as parameter for the auxiliary
function:

fω̄ =

∫ 0

∞
dΛ

∫ ′

ω
SdΛ, ωG

c
ω̄+ω/ρ , Πγ

ω̄ =
1

2U

[
1− e−2ufω̄

]
. (3.19)

This result is as applicable for infinite hole mass as it is to the finite-mass case;
the valence-band self-energy is still included in the single-scale propagator. However,
in the infinite-mass case, where self-energies are irrelevant, we have the tremendous
simplification SdΛ = ∂ΛG

d
Λ. A trivial integration yields the parquet result [cf. Eq. (3.6)]:

fω̄ =

∫ ′

ω
GdωG

c
ω̄+ω/ρ = ln

(−iω̄ − ξd
ξ0

)
, Πγ

ω̄ =
1

2U

[
1−

(−iω̄ − ξd
ξ0

)−2u
]
. (3.20)

Note that, our numerical solution solves the set of differential equations as stated
in Eq. (3.15). In particular, this amounts to calculating the “single-scale bubble”∫ ′
ωS

d
ωG

c
ω̄+ω first and then evolving in flow parameter space. This can also be done

analytically; details for illustration are shown in the appendix, section A.3. If desired,
in the advanced form of Eq. (3.19) and in the more general case of SdΛ 6= ∂ΛG

d
Λ, one can

interchange the limits and compute an adjusted bubble,

fω̄ =

∫ ′

ω
G̃dωG

c
ω̄+ω/ρ , G̃dω =

∫ 0

∞
dΛ SdΛ, ω . (3.21)

Let us give a minor remark about a possible extension beyond leading-order par-
quet, where the valence-band self-energy Σd needs to be accounted for. The next-order
correction to the exponent is −2u → −2u + u2, as can be extracted from the exact
solution of Nozières and De Dominics [5]. We have already explained that, attributing
the constant Hartree part to the renormalized gap, Σd starts at second order in the
interaction. Correspondingly, for weak coupling, its exact solution is an even function of
u [5]. Therefore, including Σd in the single-scale bubble cannot generate the correction
linear in u, f = L → L · (1 − u/2), needed for the exponent of the extended parquet
result. Similarly as the diagrammatic cancellations relied on leading log. arguments, the
above analytic solution does not extend beyond first-order parquet.
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3.3.2 Application for finite hole mass

The flow equations in section 2 have been stated in full generality. For finite hole mass,
every 1PI vertex also has momentum dependencies; one merely has to identify each
label ω with a multi-index (ω,k). Due to the increased number of arguments, a numeric
treatment along the lines of the infinite-mass case is impossible.

On the other hand, the finite-mass case (still in first-order parquet) involves a new,
important aspect: at the direct threshold ωD, the valence-band self-energy can no longer
be neglected (cf. section 1.4) and incorporates the “dramatic consequence of [...] indi-
rect transitions” [9]. We have already clarified that a resummation of infinitely many
diagrams is only needed when the mass ratio b is exponentially small in the coupling.
Using ln(bu2) ≈ ln b, the crossed diagram is proportional to the ladder diagram [cf.
Eq. (1.9)] with the same factor as for infinite hole mass. Hence, we can hope that the
cancellation of diagrams that led to the parquet result using a static four-point vertex is
similarly applicable in the finite-mass situation. Thus, Eq. (3.19) has to be solved with
the finite-mass single-scale propagator.

Given the smallness of b, it is easy to believe that the qualitative difference of the
finite-mass case does not arise from the modification of the valence-band propagator
by changing ξd → ξdk = ξd0 + bεk. It arises from the self-energy, which can be treated
very simplistically, namely to cut the integration range [cf. [9], Eq. (22), (23), appendix
A; [11], Eq. (2.129), (4.44)–(4.48)]. The real-frequency self-energy at Fermi momentum
is taken to be very large for ω < −ωI and to vanish otherwise, such that, for some
function h,

1

h(ω,k)− Σd
real freq.(ω, kF )

≈ Θ(ω + ωI)

h(ω,k)
=

Θ(ω − bµ+ ωD)

h(ω,k)
. (3.22)

Using kF in Σd is justified by the presence of the conduction-band propagator centered
around the Fermi momentum [cf. Eq. (3.23)]. The Θ function will eventually produce
cut logarithms, which are treated with logarithmic accuracy again, ln(u2b) ∼ ln(b), etc.,
such that factors exceeding orders of magnitude next to b can be ignored.

It will be advantageous to set the frequency threshold ξdkF = ωD to zero. In our
discussion in section 2.3, we have already mentioned that, after including all physical
implications of a large gap energy, ξd merely gives a real shift to the imaginary-frequency
dependence encoded in iω̄. However, since intermediate calculations in imaginary-
frequency space are discontinuous with respect to ξd at ξd = 0 [cf. Eq. (A.27)], one
loses analytic properties via the phase of the logarithm and is limited to the real part
ln |ω̄|/ξ0. Thankfully, one can use general analyticity properties such as Kramers-Kronig
relations for the real-frequency Green’s function to revert to the full functional form a
posteriori.

Going back to the valence-band self-energy in Eq. (3.22) and changing to Matsubara
frequencies, we cannot expect to get such a sharp cutoff. The singularity at the threshold
frequency appears in real-frequency space only. However, if—with logarithmic accuracy
as just discussed—we measure the imaginary frequencies right from the threshold fre-
quency, we can use the following consideration. Σd is analytic in the upper-half complex
plane, and its modulus for real frequencies above ωI = ωD − bµ → −bµ is considered
large enough to completely suppress the integral. For small enough temperature, the
Matsubara frequencies come arbitrarily close to the real axis, and in a neighborhood of
ωI extending into the upper half-plane20, Σd will still have a large value and dominate
the integral at small Matsubara frequencies. The cutoff in our treatment comes from
the scale dependence seen as follows.

20The Matsubara self-energy in the lower half-plane is of course related via Σd(−w, k) = Σd(w, k)∗.
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We follow the strategy of integrating first in frequency and then in parameter space
(as done in the appendix, section A.3, for infinite hole mass). Recalling the local form
of the c propagator [Eq. (2.68)], and |ω̄| � ξ0 when setting ξdkF = ωD → 0, we calculate
the single-scale bubble (at zero external momentum) using a δ-regulated procedure:

∫ ′

ω,k
SdΛ, ω,kG

c
ω̄+ω,k/ρ =

1

ρ

∫ ′

ω,k

−δ(|ω| − Λ)

iω − ξdk − Σd
Λ(ω, k)

1

iω + iω̄ − ξck
≈ 1

ρ

∫ ′

ω

−δ(|ω| − Λ)

iω − ξdkF − Σd
Λ(ω, kF )

∫ ′

k

1

iω + iω̄ − ξck

≈ i

2

∫ ξ0

−ξ0
dω sgn(ω̄ + ω)

δ(|ω| − Λ)

iω − Σd
Λ(ω, kF )

. (3.23)

The self-energy’s frequency argument is determined by the flow parameter. In the finite-
mass regime, a small energy scale is given by the recoil energy bµ. Factors multiplying
this cutoff are ignored anyway. We make the approximation

Σd
Λ>bµ(|ω| > bµ) ≈ Σd

Λ=∞ = 0 , Σd
Λ<bµ(|ω| < bµ) ≈ Σd

Λ=0(|ω| < bµ) , (3.24)

where the value Σd(|ω| < bµ) is dominantly large. We thus have

1

iω − Σd
|ω|(ω, kF )

≈ Θ(|ω| − bµ)

iω
. (3.25)

Inserting this self-energy in the single-scale bubble yields

∫ ′

ω,k
SdΛ, ω,kG

c
ω̄+ω,k/ρ =

i

2

∫ ξ0

−ξ0
dω δ(|ω| − Λ)

sgn(ω̄ + ω)

iω − Σd
|ω|(ω, kF )

≈ i

2
Θ(ξ0 − Λ)Θ(Λ− bµ)

∑

ω=±Λ

sgn(ω̄ + ω)

iω

= Θ(ξ0 − Λ)Θ(Λ− bµ)Θ(Λ− |ω̄|) 1

Λ

=
Θ(ξ0 − Λ)Θ(Λ−max{|ω̄|, bµ})

Λ
. (3.26)

Compared to the infinite-mass case [Eq. (A.40), Eq. (3.29)], we find the additional
factor Θ(Λ − bµ) and, thus, have the interpretation that the recoil energy cuts off the
flow. This results in a real part (due to ωD → 0) of the parquet formula with the
modification

ln
|ω̄|
ξ0
→ ln

max{|ω̄|, bµ}
ξ0

. (3.27)

Assuming that the analytic version of the full finite-mass parquet function has a similar
effect in a neighborhood sufficiently close to the threshold, we arrive at the real-frequency
result known from [9,11,12] and anticipated in Eq. (1.10):

Re Π(ω, 0) =
1

2U

[
1−

(
max{|ω − ωD|, bµ}

ξ0

)−2u
]
. (3.28)

Yet, the above hand-waving arguments about the structure of the self-energy at variable
scale in imaginary-frequency space seem rather tricky and far from optimal to decode sin-
gle, physically distinctive features of the real-frequency particle-hole susceptibility.
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3.4 Comparsion to a related work

In a recent publication, Lange, Drukier, Sharma, and Kopietz (LDSK) [2] treated the
X-ray-edge problem similarly as done in this work. In fact, it is their paper which has
drawn our attention to the problem at hand and deeply inspired our approach. LDSK,
too, obtain the parquet formula in the infinite-mass case and from this draw conclusions
about the relation between parquet resummations and the functional renormalization
group. We hope that our analysis has further elucidated the derivation of the analytic
parquet result and added valuable arguments to the discussion about fRG and parquet
graphs. Let us comment on various interesting points from LDSK’s treatment in detail
and relate them to our work.

Interchangeability of γ and χ: LDSK extract the particle-hole susceptibility from
a bosonic (χ) self-energy arising from a multi-channel Hubbard-Stratonovich transfor-
mation in the exchange (χ, Ux) and pairing (ψ, Up) channel with Ux = Up. We have
shown that χ couples similarly to fermions as the photon γ; in fact, the leading-order
self-energies of both γ and χ are given by the four-point correlator. Crucially however,
to obtain the parquet result for the particle-hole susceptibility, only the leading-order χ
self-energy (i.e., the part of the self-energy without internal χ propagation) can be used.
This is easily seen in terms of diagrams: The χ self-energy at zeroth order is given by a
conduction-valence-band particle-hole bubble. At first order in the interaction, it is only
affected by ψ propagation, since an intermediate χ line would result in a reducible dia-
gram. Hence, to fully account for the first-order ladder diagram, the ψ propagator must
have full weight, Up = U . On the other hand, at second and higher orders, irreducible
diagrams with internal χ lines occur. Allowing for Ux > 0 then overcounts these contri-
butions. Summarizing, the exact parquet graphs for the particle-hole susceptibility can
only be reproduced from the χ self-energy by using Up = U and Ux = 0.

Interestingly enough, the latter choice simplifies the approximate analytic approach
of LDSK compared to their choice Ux = Up. In an integration of the frequency-
independent, squared χ three-point vertex gl from a logarithmic scale parameter l = 0
up to l∗ = ln(ξ0/|ω̄|), LDSK approximated cosh(2ul) by unity (Eq. (52) in [2]) although,
in the first-order parquet regime, u ln(ξ0/|ω̄|) . 1. However, the need for such an ap-
proximation does not arise if one uses Ux = 0, since in the previous equation (Eq. (49)
in [2]), Ux = 0, Up = U naturally yield gl = e2ul instead of gl = e2ul/ cosh(2ul). Accord-
ing to the diagrammatic argument above, it is not surprising that the error introduced
by using Ux 6= 0 alters gl and consequently the particle-hole susceptibility21 at second
order in U , where cosh(2ul) 6= 1.

It is worth noting that we were able to produce the parquet formula by employing
a simplification of the fermionic four-point vertex and LDSK’s argumentation remains
valid for Ux = 0, i.e., without propagation in the exchange channel. Thus, our analysis
suggests that a multi-channel Hubbard-Stratonovich approach has no advantage over
the version advocated in this work, based on the flow in the light-matter system.

Restricted flow ξ0 ≥ Λ ≥ ω̄: We find that our analytic study comparing different
regulators can be used to shine light on the intriguing approximate derivation of the par-
quet formula presented by LDSK. They used an approximation scheme where frequency
dependencies in all 1PI vertices were omitted initially. Viewing this as a low-energy
approximation, they chose to perform the flow in parameter space from ξ0 to ω̄ instead
of the expected range ∞ to 0. The fact that this scheme successfully reproduces22 the

21Carrying out the calculation (Eq. (52) in [2]) including cosh(2ul) in the denominator yields the
function − ρ

2u
ln[(e2ul∗ + 1)/2], which deviates from the parquet formula starting at second order in u.

22In fact, in logarithmic accuracy one only produces the real part after choosing ξd = 0 (cf. our
discussion in section 3.3.2).
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parquet result can also be seen from another perspective.
With Ux = 0, the three-point vertex Γ̃c̄d̄ψ remains equal to unity, and, without

bosonic self-energy reinsertions, Gψ = −Up = −U . Hence, the flow equations for Πχ

and Γc̄dχ reduce to exactly the same ones as in Eq. (3.15) (with Γc̄dγ/i replaced by Γc̄dχ).
In section 3.3, we have explained that the effect of ω̄ is limited to that of a parameter
only relevant in the single-scale bubble [cf. Eq. (3.19)]. This single-scale bubble can be
integrated first in frequency and then in parameter space (as done in section A.3), which
is very simple making use of the δ regulator [Eq. (2.46)], ξd = 0 (such that |ω̄| � ξ0),
and the (simplified) local c propagator [Eq. (2.68)]:

∫ ′

ω
SdΛ, ωG

c
ω̄+ω/ρ =

∫ ξ0−ω̄

−ξ0−ω̄
dω sgn(ω̄ + ω)

δ
(
|ω| − Λ

)

2ω

≈
∫ ξ0

−ξ0
dω sgn(ω̄ + ω)

δ
(
|ω| − Λ

)

2ω

= Θ
(
ξ0 − Λ

) ∑

ω=±Λ

sgn(ω̄ + ω)

2ω
=

Θ
(
ξ0 − Λ

)
Θ
(
Λ− |ω̄|

)

Λ
. (3.29)

Using this single-scale bubble as a factor in the relevant flow equations, similarly as
in Eq. (3.16), naturally restricts the integration range for Λ precisely in the way chosen
by LDSK.

Applications beyond: To focus on the diagrammatic representation of the flow
equations most relevant for the particle-hole susceptibility, let us compare the flow of
Πχ, Γc̄dχ (Figure 4 in [2]) and Πγ , Γc̄dγ in Fig. 3.14. All of these exclusively contain
antiparallel Sd-Gc lines. Therefore, the derivatives of diagrams with parallel Gd-Gc

lines [as, e.g., coming from the crossed diagram (cf. Fig. 3.1)] are never fully generated.
Obtaining a full result in this manner can only be possible due to fortuitous partial
cancellation of diagrams. For the specific bare propagators of the X-ray-edge problem
and for infinite hole mass, a cancellation due to relations such as Π(2L) = −3Π(2C)

holds with logarithmic accuracy (cf. section A.2). Already in the finite-mass case (cf.
section 1.4) and surely for more general actions, such a cancellation can only occur if
additional simplifying assumptions are made.

Staying with the (infinite-mass) X-ray-edge singularity but aspiring a higher-order
parquet result, we have mentioned in section 3.3 that the relevant, full valence-band
self-energy is symmetric in u. Merely inserting Σd in the existent analytic approach
cannot suffice to produce a correction in the single-scale bubble linear in u, required for
a second-order correction in the exponent of the particle-hole susceptibility.

As already indicated above, our calculation of Πγ with the simplified Γ̃d̄dc̄c = −U is
equivalent to the study of Πχ as in LDSK’s work using Ux = 0 and no insertion of Πψ.
One can easily convince oneself that, to get parallel Sd-Gc lines, higher-order vertices
like Γd̄dχχ̄ (for Πχ) or Γd̄dc̄dχ (for Γc̄dχ) are needed. Furthermore, we have already
mentioned that Γd̄dc̄c is of importance in the HS system starting at second order. We
have numerically checked that the perfect agreement with the parquet result of the
particle-hole susceptibility, obtained by using Ux = 0 (cf. Fig. 3.21), is spoilt when
including bosonic self-energies, see Fig. 3.27. This applies to both subdivisions of the
interaction strength, i.e., to Ux = 0, Up = U as well as to Ux = Up. With two dynamic
and equally contributing channels, Ux = Up = U/2, the result is more similar to that
of the parquet formula with U/2, since the effect of using Ux > 0 enters only at second
and higher orders. As a minor remark, we attribute the numerical sensitivity, attested
by strongly differing δ and Litim solutions, for Ux = Up to internal Gχ lines, containing
themselves the singular self-energy (cf. section 2.3).

45



-0.4 -0.2 0 0.2 ω̄/ξ0

-10

-8

-6

-4

-2

R
e

Π
χ
/ρ

Parquet

Γ(3) in flow, Ux=0 (L)

Γ(3) in flow, Ux=0 (δ)

Γ(3) in flow, Ux=U/2 (L)

Γ(3) in flow, Ux=U/2 (δ)

Parquet using U/2
0.04 0.2

|iω̄ + ξd|/ξ0

3

10

−
R

e
Π
χ
/
ρ

Figure 3.27: Self-energy in the exchange channel, Πχ, obtained by a numerical solution of
the flow equations in the HS-transformed system (section 2.2.5). Whereas using Ux = 0 and
no reinsertion of bosonic self-energies during the flow is equivalent to the scenario which lead
to perfect agreement (Fig. 3.21), allowing for a dynamic field in the pairing channel spoils the
compatibility with the parquet result. Giving both HS fields equal weight, Ux = Up = U/2,
results in a curve more similar to the particle-hole susceptibility at U/2, since intermediate χ
lines only occur at second order. The divergent nature of Πχ present in full χ lines (if Ux 6= 0)
is responsible for strong deviations between the two regulating schemes when Ux > 0.

3.5 Limitations of the fRG treatment

The parquet resummation covers all leading log. diagrams. As mentioned in section 1.4,
these can be obtained by successively replacing bare vertices by parallel and antiparallel
bubbles. It is not possible to reproduce all these parquet graphs from a truncated system
of fRG flow equations for 1PI vertices. This is due to the simple fact that the parquet
graphs comprise 1PI vertices of all orders. Consider, e.g., the flow of Γd̄dc̄c (cf. Fig. 3.9).
Cutting a valence-band line that is not accompanied by a single conduction-band line
yields to amputated d legs, thus generating a six-point vertex, which contributes to the
flow via TrSdd̄Γd̄dd̄dc̄c. This can be iterated to arbitrarily high order without leaving the
class of parquet graphs. The part of the flow equation

∂ΛΓ
(n)
Λ,α1...αn

= Tr
{
Sdd̄Γ

(n+2)

Λ,d̄dα1...αn
+ . . .

}
(3.30)

is present for any n ∈ 2N [23] and requires the 1PI vertex of order two higher. This does
not change at all after performing a Hubbard-Stratonovich transformation. In Fig. 3.12,
we have seen that when computing the four-point vertex in the presence of auxiliary
fields, leading log. diagrams start contributing at second order. Obviously, there exist
one-particle-irreducible contributions at all orders in the coupling; e.g., the diagrams
in Fig. 3.12 could be connected iteratively. Similarly to the procedure just described,
by cutting d lines at appropriate places, higher-order 1PI vertices are generated, which
encode indispensable parquet graphs.

Now, which ingredient of the parquet algebra of Roulet et al. [3] is missing in our
treatment? It is the right classification of diagrams. Even though the language of one-
particle-irreducible vertices decisively groups diagrams, we have just seen that parquet
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graphs enter in 1PI vertices of arbitrary order. These diagrams are of divergent nature,
and, consequently, leaving out any of these vertices is fatal. The proper parquet classi-
fication proceeds via reducibility in two lines. Any graph of Γ(4), which determines the
four-point correlator of interest is either reducible in parallel or antiparallel c-d lines [3].
To relate such components of the four-point vertex self-consistently, one has to insert a
vertex that is totally irreducible with respect to two lines (i.e., in both channels). This
quantity no longer contains leading log. contributions and can be replaced by its trivial
part: the bare interaction [3].

Using the Fermi-edge singularity as a counterexample, we can conclude that, in gen-
eral, a truncated fRG flow formulated in terms of 1PI vertices is not equivalent to parquet
resummation. Nonetheless, the fundamental Wetterich equation is exact and the compu-
tational flexibility thanks to the freedom of choice for the regulator is advantageous. It
might therefore be worthwhile to consider different expansion and truncation schemes in
the fRG flow. One might even step back and examine other functionals paraphrasing the
many-body problem. Particularly, formulations of a two-particle-irreducible functional
renormalization group (cf. e.g. [24]) seem suitable to reproduce the parquet algebra used
in [3]. Such studies are, however, beyond the scope of this work.
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4 Summary

In this work, we applied the functional renormalization group to the Fermi-edge singu-
larity, aspiring to a resummation of diagrams as achieved by solving parquet equations.
This problem—also referred to as X-ray-edge problem—is motivated by its experimen-
tal applications in, e.g., the vivid field of polariton physics as well as by its theoretical
relevance, being a typical problem with a logarithmically diverging perturbation series.
The quantity of interest is the particle-hole susceptibility, a four-point correlation func-
tion describing the evolution of a conduction-valence particle-hole pair in an interacting
many-body environment.

The fRG formalism was motivated and developed in an imaginary-time action frame-
work, transferring energy configurations in correlators and one-particle-irreducible ver-
tices to discrete Matsubara frequencies. Its flow equations were set up for the different
theories of a pure matter, Hubbard-Stratonovich-transformed matter, and a light-matter
system. In the latter formulation, we expressed the particle-hole susceptibility as the
leading-order contribution (in the light-matter coupling) to the photon self-energy. This
seems natural talking about polariton physics, but can also be seen as a computational
trick to incorporate an integrated, fermionic four-point correlator directly in the flow.

For an infinite valence-band (hole) mass, the different sets of differential equations
were solved numerically. Among various solution schemes, we included a dynamic,
fully frequency-dependent, fermionic four-point vertex and comparatively employed a
δ and Litim regulator. Whereas the δ regulator not only proved useful for analytic
calculations but is also favorable in terms of computational effort, results from a second,
Litim-regulated procedure allowed to make statements about the error originating from
an approximate solution of the fRG flow—without truncations all regulators would give
equivalent results. In particular, we observed high numerical sensitivity to the choice of
regulator when reinserting the divergent self-energy in the flow.

From the numerical data as well as from diagrammatic considerations, usually fo-
cused on low-order parquet graphs, we were able to draw a number of conclusions about
the structure of solutions obtained from the fRG scheme. First, we constructed the
four-point corelator from fully evolved 1PI vertices. We found that including dynamic
HS fields in the exchange and pairing channel does not suffice for a parquet-like resum-
mation. In fact, although the HS transformation ensures that the fermionic four-point
vertex does not contribute to first order, it does comprise important parquet graphs
starting at second order. A numerical solution of the particle-hole susceptibility matched
the parquet result much better if the fermionic four-point vertex was used without a HS
transformation. As we included the photon into the flow, extracting the correlator from
the self-energy, the truncated flow equations relating the photon self-energy, three-point
vertex, and full, fermionic four-point vertex were shown to dismiss relevant contributions
from parallel bubbles. The numerical solution followed the prediction reasonably well
but still worse than when evolving only the four-point vertex. Finally, a perfect match of
numerical curves to the parquet formula was obtained in the light-matter system as the
fermionic four-point vertex was kept constant at its initial value—the bare interaction.
We diagrammatically proved that ladder diagrams are generated with the correct pref-
actor at all orders. The perfect match is thus due to a partial cancellation procedure.
Intermediate quantities such as the interacting three-point vertex between a photon and
a particle-hole pair are mistreated—one loses any dependence on a fermionic energy.
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However, for the particle-hole susceptibility, the simplified flow generates the right re-
sult; we explicitly illustrated the partial cancellation of crossed and ladder contributions
at second order.

This reproduction of the parquet formula was also performed analytically. Setting
any 1PI vertex starting from four-point vertices to their initial value, we exactly solved
the corresponding system of flow equations in the light-matter system. The simplifica-
tion is due to the reduced frequency dependence of the three-point vertex, reminiscent
of the effective ladder structure. The infinite-mass parquet result was recovered without
further approximations. For an exponentially small mass ratio, where the above men-
tioned cancellations are still expected to hold, hand-waving arguments allowed us to
reproduce an infrared cutoff, which was related to the recoil energy of the valence-band
hole.

Judging from our treatment of the Fermi-edge singularity as a counter-example,
a solution of a truncated fRG flow expanded in terms of one-particle-irreducible ver-
tices is in general not able to resum all parquet graphs; n-point vertices for arbitrarily
high n contain singular, non-negligible contributions irrespective of the introduction of
Hubbard-Stratonovich fields or inclusion of photonic vertices in the flow. Compared to
the parquet algebra of Roulet et al. [3], the classification into diagrams irreducible in
two lines is not performed and the reduction to the regular, totally irreducible vertex
not possible. Nonetheless, the flexibility and computational access of the fRG flow has
allowed us to resolve the infrared divergence of the particle-hole susceptibility extraor-
dinarily well. Even if not incorporating the fortuitous partial cancellation of diagrams,
we found very good agreement to the predicted power law. For future studies, we sug-
gest the consideration of different expansion and truncation techniques and especially
point out the development of two-particle-irreducible fRG formulations in order to find
equivalent resummation procedures to the solution of parquet equations.
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A Appendix

A.1 Derivation of the flow equation

The derivation of the fundamental fRG flow equation, as already sketched in sec-
tion 2.2.2, starts with the modified quadratic part of the action

S0,Λ[Φ] = −1

2

(
Φ, G−1

0,ΛΦ
)
. (A.1)

Our aim is to see how this functional dependence is carried over to the 1PI generating
functional Γ in terms of a derivative. According to the equation

ΓΛ[Φ] =
(
JΛ[Φ̄], Φ̄

)
− Gc,Λ

[
JΛ[Φ̄]

]
+

1

2

(
Φ̄, G−1

0,ΛΦ̄
)
, (A.2)

it is sensible to start by differentiating the generating functional for connected Green’s
functions with respect to the flow parameter. We have

∂ΛGc,Λ[J ] = ∂Λ ln

∫
D[Φ]e−S0,Λ[Φ]−S1[Φ]+(J,Φ)

∫
D[Φ]e−S0,Λ[Φ]

= ∂Λ ln

∫
D[Φ]e−S0,Λ[Φ]−S1[Φ]+(J,Φ) − ∂Λ lnZ0,Λ , (A.3)

and further

∂Λ ln

∫
D[Φ]e−S0,Λ[Φ]−S1[Φ]+(J,Φ)

=
1∫

D[Φ]e−S[Φ]+(J,Φ)
∂Λ

∫
D[Φ]e−S0,Λ[Φ]−S1[Φ]+(J,Φ)

=
1∫

D[Φ]e−S[Φ]+(J,Φ)

1

2

∫
D[Φ]

(
Φ,
(
∂ΛG

−1
0,Λ

)
Φ
)
e−S+(J,Φ)

=
Z0,Λ∫

D[Φ]e−S+(J,Φ)

1

2

( δ

δJ
,
(
∂ΛG

−1
0,Λ

) δ
δJ

)∫ D[Φ]e−S+(J,Φ)

Z0,Λ

= e−Gc,Λ
1

2

( δ

δJ
,
(
∂ΛG

−1
0,Λ

) δ
δJ

)
eGc,Λ . (A.4)

This expression can be rewritten as (summation over repeated indices)

(
∂Λ[G−1

0,Λ]αβ

)
e−Gc,Λ

δ

δJα

δ

δJβ
eGc,Λ =

(
∂Λ[G−1

0,Λ]αβ

)(δGc,Λ
δJα

∂Gc,Λ
∂Jβ

+
δ2Gc,Λ
δJαδJβ

)

=
(

Φ̄,
(
∂ΛG

−1
0,Λ

)
Φ̄
)
−
(
∂Λ[G−1

0,Λ]αβ
)
GJΛ,αβ , (A.5)

where the Green’s function in presence of sources GJΛ,αβ is fundamentally related to the
Legendre transform of Gc. By definition, we have

L[Φ̄] =
(
J [Φ̄], Φ̄

)
− Gc

[
J [Φ̄]

]
,

δL[Φ̄]

δΦα
= ζαJα , (A.6)

and a short calculation shows

δα,γ =
δΦ̄γ

δΦ̄α
=
δJβ
δΦ̄α

δΦ̄γ

δJβ
= ζβ

δ2L
δΦ̄αδΦ̄β

δ2Gc
δJβδJγ

= − δ2L
δΦ̄αδΦ̄β

GJγβ . (A.7)
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It directly follows that

GJγβ = −
[(

δ2L
δΦ̄δΦ̄

)−1]

βγ

, where

[
δ2L
δΦ̄δΦ̄

]

αβ

=
δ2L

δΦ̄αδΦ̄β
. (A.8)

We summarize, using transposition and the supertrace (which subjoins ζ, i.e., a
minus sign for fermions, to the summation index),

∂ΛGc,Λ[J ]− 1

2

(
Φ̄,
(
∂ΛG

−1
0,Λ

)
Φ̄
)

= −1

2

(
∂Λ[G−1

0,Λ]αβ
)
GJΛ,αβ − ∂Λ lnZ0,Λ

=
1

2

(
∂Λ[G−1

0,Λ]αβ

){[( δ2L
δΦ̄δΦ̄

)−1]

βα

+G0,Λ,αβ

}

=
1

2
STr

{(
∂Λ[G−1

0,Λ]
)[( δ2L

δΦ̄δΦ̄

)−1,T

+G0,Λ

]}
. (A.9)

Finally, for the 1PI generating functional, we have

ΓΛ[Φ] =
(
JΛ[Φ̄], Φ̄

)
− Gc,Λ

[
JΛ[Φ̄]

]
+

1

2

(
Φ̄, G−1

0,ΛΦ̄
)
, (A.10)

and due to a typical cancellation in the derivatives of the first two summands

∂ΛΓΛ[Φ] = −∂ΛGc,Λ[J ]

∣∣∣∣
J=JΛ[Φ̄]

+
1

2

(
Φ̄, ∂ΛG

−1
0,ΛΦ̄

)

= −1

2
STr

{(
∂ΛG

−1
0,Λ

)([(δ2ΓΛ[Φ̄]

δΦ̄δΦ̄

)T

−G−1
0,Λ

]−1

+G0,Λ

)}
. (A.11)

This is the flow equation for the generating functional of the one-particle-irreducible
vertices stated in Eq. (2.51).

A.2 Ladder diagrams and the crossed diagram

We will derive explicit expressions for the diagrams which determine the four-point cor-
relator up to second order in the interaction parameter U . We confine ourselves to
infinite hole mass and calculations in the zero-temperature limit with logarithmic accu-
racy. As already explained, in this work, a diagram exclusively specifies the propagators
and their functional dependencies, which are integrated over. Each vertex requires
energy-momentum conservation and a multiplication by −U .

In section 2.3, we already argued that, due to the immobile valence-band hole, the
correlation function is only frequency-dependent. The conduction-band propagator ap-
pears in its local form [cf. Eq. (2.68)].

Ladder diagrams, like the first three ones in Fig. A.1, factorize for each bubble and
can therefore be calculated at any order. One has

Π(n,L) = (−U)n
(

Π(0L)
)n+1

, Π(0L)(ω̄) =

∫ ′

ω
Gdω−ω̄G

c
ω . (A.12)

In the zero-temperate limit, the integral is evaluated to be

−iπρ
2π

∫ ξ0

−ξ0
dω

sgn(ω)

iω − iω̄ − ξd =
ρ

2

[
ln
( −iω̄ − ξd
iξ0 − iω̄ − ξd

)
+ ln

( −iω̄ − ξd
−iξ0 − iω̄ − ξd

)]
. (A.13)

Note that −ξd = µ − E0 = EG + µ = ω0 is the threshold frequency for photon
absorption. After analytic continuation iω̄ → ω + i0+, ω − ω0 will be very small, in
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Figure A.1: Four-point correlator 〈d̄dc̄c〉 up to second order, consisting of the first three ladder
diagrams [(0L), (1L), (2L)] and the crossed diagram [(2C)].

particular small compared to ξ0. Therefore, we can make the approximation ±iξ0− iω̄−
ξd ≈ ±iξ0 and have the simplified form

Π(0L)(ω̄) ≈ ρ ln

(−iω̄ − ξd
ξ0

)
, Π(n,L)(ω̄) ≈ (−U)n

[
ρ ln

(−iω̄ − ξd
ξ0

)]n+1

. (A.14)

In Eq. (A.13), the real additive −ξd = ω0 has shifted the argument of the logarithm
away from the negative real axis and therefore saved us any troubles with the logarithm’s
branch cut. When we carry the external frequency ω̄ always in the d propagator, we can
spare notation by including ξd in iω̄ and perform the analytic continuation afterwards
by iω̄ → ω−ω0 +i0+. Yet, we have to keep in mind the real part in iω̄ for the logarithms
to be well-defined. More details are given in the next section.

Employing this, let us calculate the crossed diagram (the fourth one in Fig. A.1).
The integral we have to compute [cf. Eq. (3.4)] is

I =

∫ ′′′

ω,ν,η
Gdω−ω̄G

d
ω+ν−η−ω̄G

d
ν−ω̄G

c
ωG

c
νG

c
η

=
(−iπρ

2π

)3
∫ ξ0

−ξ0
dωdνdη

sgn(ω)

iω − iω̄
sgn(ν)

iν − iω̄
sgn(η)

iω + iν − iη − iω̄ . (A.15)

We begin by integrating over η:
∫ ξ0

−ξ0
dη

sgn(η)

iΩ̄− iη = i ln
( iΩ̄− iξ0

iΩ̄

)
+ i ln

( iΩ̄ + iξ0

iΩ̄

)
≈ −2i ln

( iΩ̄
ξ0

)
. (A.16)

Here, Ω̄ = ω+ν− ω̄ is composed of integration variables and not always small compared
to ξ0. However, in order to proceed with a simple calculation, we make the more severe
approximation anyhow to obtain

I ≈ ρ3

4

∫ ξ0

−ξ0
dωdν

sgn(ω)

iω − iω̄
sgn(ν)

iν − iω̄ ln
( iω − iω̄ + iν

ξ0

)
. (A.17)

For the next integral, let us first use symmetry
∫ ξ0

−ξ0
dν

sgn(ν)

iν − iω̄ ln
( iω − iω̄ + iν

ξ0

)

=

∫ ξ0

0
dν

1

iν − iω̄ ln
( iω − iω̄ + iν

ξ0

)
+
[
(ξ0, ω, ω̄)→ −(ξ0, ω, ω̄)

]
(A.18)

and then employ logarithmic accuracy via

ln
(
iω + iν − iω̄

)
≈ ln

(
imax{ω, ν} − iω̄

)
. (A.19)

With the known approximation of a dominant ξ0 in succeeding steps, we get
∫ ξ0

0

dν

iν − iω̄ ln
( iω − iω̄ + iν

ξ0

)
≈
∫ ω

0

dν

iν − iω̄ ln
( iω − iω̄

ξ0

)
+

∫ ξ0

ω

dν

iν − iω̄ ln
( iν − iω̄

ξ0

)

= −i ln
( iω − iω̄
−iω̄

)
ln
( iω − iω̄

ξ0

)
− i

2
ln2
( iν − iω̄

ξ0

)∣∣∣
ξ0

ω

≈ −i ln
( iω − iω̄
−iω̄

)
ln
( iω − iω̄

ξ0

)
+
i

2
ln2
( iω − iω̄

ξ0

)
(A.20)
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and in total

I ≈ iρ3

2

∫ ξ0

−ξ0
dω

sgn(ω)

iω − iω̄
[1

2
ln2
( iω − iω̄

ξ0

)
− ln

( iω − iω̄
−iω̄

)
ln
( iω − iω̄

ξ0

)]

=
iρ3

2

∫ ξ0

0

dω

iω − iω̄
[1

2
ln2
( iω − iω̄

ξ0

)
− ln

( iω − iω̄
−iω̄

)
ln
( iω − iω̄

ξ0

)]

+
[
(ξ0, ω̄)→ −(ξ0, ω̄)

]
. (A.21)

Starting from left, we finally calculate

1

2

∫ ξ0

0

dν

iω − iω̄ ln2
( iω − iω̄

ξ0

)
=
−i
6

ln3
( iω − iω̄

ξ0

)∣∣∣
ξ0

0
≈ i

6
ln3
(−iω̄
ξ0

)
,

−
∫ ξ0

0

dν

iω − iω̄ ln
( iω − iω̄
−iω̄

)
ln
( iω − iω̄

ξ0

)

= −
∫ ξ0

0

dν

iω − iω̄
[

ln
( iω − iω̄

ξ0

)
− ln

(−iω̄
ξ0

)]
ln
( iω − iω̄

ξ0

)

=
i

3
ln3
( iω − iω̄

ξ0

)∣∣∣
ξ0

0
− i

2
ln2
( iω − iω̄

ξ0

)∣∣∣
ξ0

0
ln
(−iω̄
ξ0

)
≈ i

6
ln3
(−iω̄
ξ0

)
. (A.22)

Bringing everything together and reinserting the shift, it remains the simple result

Π(2C)(ω̄) = U2I ≈ −U2 ρ
3

3
ln3
(−iω̄ − ξd

ξ0

)
≈ −1

3
Π(2L)(ω̄) , (A.23)

and we see that the crossed diagram takes away part of the weight of the ladder diagram.

A.3 Calculations of the single-scale bubble

In the following, we will calculate the single-scale bubble
∫ ′
ωS

d
Λ, ωG

c
ω̄+ω/ρ for infinite

hole mass and the different regulating schemes [cf. Eq. (2.43)]. Since without fermionic
self-energies SdΛ, ω = ∂ΛG

d
Λ, ω, it is the total derivative of the particle-hole bubble, for

the use in Eq. (3.19), where the single-scale bubble is integrated in parameter space,
such a procedure is merely a computational gimmick. However, in the finite-mass case
(section 3.3.2) and for some arguments in this work, we use the single-scale bubble; plus,
for insight into the regulating scheme, it is interesting to perform the calculation. In
order to point out the relevance of the real constant −ξd = EG +µ = ω0 in the valence-
band propagator Gd = 1/(iω− ξd), let us take a step back to the ordinary particle-hole
bubble. The integral [using the local c propagator, Eq. (2.68)]

I(ω̄) =

∫ ′

ω
GdωG

c
ω̄+ω/ρ =

−i
2

∫ ξ0−ω̄

−ξ0−ω̄
dω

sgnω̄ + (ω)

iω − ξd (A.24)

can be divided into three sections, and due to general Matsubara Green’s function
properties, it is sufficient to calculate the integrals for ω̄ > 0:

[−ξ0 − ω̄, ξ0 − ω̄] = [−ξ0 − ω̄,−ω̄) ∪ [−ω̄, ω̄] ∪ (ω̄, ξ0 − ω̄] ,

I = I1 + I2 + I3 , I(−ω̄) = I(ω̄)∗ . (A.25)
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With ω̄ > 0, it is then computed as follows:

I1 =
−i
2

∫ ξ0−ω̄

ω̄

dω

iω − ξd =
1

2
ln
( iω̄ − ξd
iξ0 − iω̄ − ξd

)
,

I2 =
−i
2

∫ ω̄

−ω̄

dω

iω − ξd =
1

2
ln
(−iω̄ − ξd
iω̄ − ξd

)
, (A.26)

I2 = i

∫ ω̄

0
dω

ξd

(ξd)2 + (ω̄)2
= i arctan

( ω̄
ξd

)
, (A.27)

I3 =
i

2

∫ −ω̄

−ξ0−ω̄

dω

iω − ξd =
1

2
ln
( −iω̄ − ξd
−iξ0 − iω̄ − ξd

)
. (A.28)

We have written I2 in two ways. In Eq. (A.26), we see that, by addition of I1 and I2,
the numerator in the logarithm’s argument of I1 is adjusted. Only then, we get, using
the argument that upon continuation iω̄ + ξd → ω − ω0 + i0+ � ξ0, the correct result,

I =
1

2
ln
( −iω̄ − ξd
iξ0 − iω̄ − ξd

)
+

1

2
ln
( −iω̄ − ξd
−iξ0 − iω̄ − ξd

)

≈ 1

2
ln
(−iω̄ − ξd

iξ0

)
+

1

2
ln
(−iω̄ − ξd
−iξ0

)
=
(−iω̄ − ξd

ξ0

)

→ ln
(−(ω − ω0)− i0+

ξ0

)
. (A.29)

In the end, I depends on precisely the same expression −iω̄ − ξd as the propagator
Gdω−ω̄ = 1/(iω − iω̄ − ξd). Can one ignore ξd in all calculations and reinsert it by
continuing iω̄ → ω − ω0 + i0+ � ξ0 at the end? No, one cannot, since intermediate
calculations, such as the integral I2, are discontinuous with respect to ξd at ξd = 0. For
illustration, we initially set ξd = 0 in Eq. (A.27), I2 vanishes23, and one gets

Ĩ =
1

2
ln
( iω̄

iξ0 − iω̄
)

+
1

2
ln
( −iω̄
−iξ0 − iω̄

)
≈ 1

2
ln
( iω̄
iξ0

)
+

1

2
ln
(−iω̄
−iξ0

)

≈ ln
( ω̄
ξ0

)
, ω̄ > 0 ⇒ Ĩ = ln

( |ω̄|
ξ0

)
. (A.30)

This result is still useful, since it correctly gives the logarithmic singularity of the bub-
ble. Only the logarithm’s phase, being of order one, is ignored. However, the analytic
structure of a Green’s function is lost and has to be adjusted a posteriori.

Since the single-scale bubble is the derivative of the particle-hole bubble I, the
same phenomenon occurs. Due to the boundary condition of a regulated propagator
GΛ=0 = GΛ, we have

I = I(Λ = 0) , I(Λ) =

∫ ′

ω
GdΛ, ωG

c
ω̄+ω/ρ , I ′(Λ) =

∫ ′

ω
SdΛ, ωG

c
ω̄+ω/ρ . (A.31)

Using the Litim regulator [Eq. (2.43)], the bubbles are given by

IL(Λ) =
−i
2

∫ ξ0−ω̄

−ξ0−ω̄
dω

sgn(ω̄ + ω)

iω − ξd + isgn(ω)
(
Λ− |ω|

)
Θ(Λ− |ω|

) ,

I ′L(Λ) =
−1

2

∫ ξ0−ω̄

−ξ0−ω̄
dω

sgn(ω̄ + ω)sgn(ω)Θ(Λ− |ω|
)

[isgn(ω)Λ− ξd]2 . (A.32)

23Note that, for a fermionic frequency ω and any temperature, 1
β

∑
|ω|<Ω

1
iω

= 0 such that, even in

the zero-temperature limit,
∫
|ω|<Ω

1
iω

is well-defined and equal to zero.

57



With the same division into three parts as in Eq. (A.28), one calculates

I ′L,1(Λ) = −1

2

∫ ξ0−ω̄

ω̄
dω

Θ(Λ− |ω|
)

(
iΛ− ξd

)2 = Θ(Λ− |ω̄|
)min{Λ, ξ0 − ω̄} − ω̄
−2
(
iΛ− ξd

)2 ,

∫ 0

∞
dΛ I ′L,1(Λ) = −1

2

[∫ ξ0−ω̄

∞
dΛ

ξ0 − 2ω̄
(
iΛ− ξd

)2 +

∫ ω̄

ξ0−ω̄
dΛ

Λ− ω̄
(
iΛ− ξd

)2

]

=
1

2
ln
( iω̄ − ξd
iξ0 − iω̄ − ξd

)
, (A.33)

as the non-logarithmic terms all cancel.

I ′L,2(Λ) =
−1

2

∫ ω̄

−ω̄
dω

sgn(ω)Θ(Λ− |ω|
)

[isgn(ω)Λ− ξd]2 =
min{Λ, ω̄}

2
(
iΛ + ξd

)2 −
min{Λ, ω̄}

2
(
iΛ− ξd

)2 ,

∫ 0

∞
dΛ I ′L,2(Λ) =

1

2

∫ ω̄

∞
dΛ ω̄

[
1

(
iΛ + ξd

)2 −
1

(
iΛ− ξd

)2

]
+

1

2

∫ 0

ω̄
dΛ Λ

×
[

1
(
iΛ + ξd

)2 −
1

(
iΛ− ξd

)2

]
=

1

2
ln
(−iω̄ − ξd
iω̄ − ξd

)
. (A.34)

As before, the final integral is already treated due to symmetry, and we conclude

I ′L,3(Λ) =
−1

2

∫ −ω̄

−ξ0−ω̄
dω

Θ(Λ− |ω|
)

(
iΛ + ξd

)2 = I ′L,1(Λ)
∣∣
ξd→−ξd, ξ0→ξ0+2ω̄

,

∫ 0

∞
dΛ I ′L,3(Λ) =

1

2
ln
( −iω̄ − ξd
−iξ0 − iω̄ − ξd

)
,

∫ 0

∞
dΛ I ′L(Λ) = I . (A.35)

Note that with the simplified usage of ξd = 0, ξ0 � ω̄, the full derivative becomes

Ĩ ′L(Λ) = Θ(Λ− |ω̄|
)min{Λ, ξ0} − ω̄

Λ2
. (A.36)

Only when integrating over the whole semiaxis, due to scale invariance of measure and
boundaries, two parts cancel, and we get as expected:

∫ 0

∞

dΛ

Λ

[
Θ
(
Λ− ξ0

)ξ0

Λ
−Θ

(
Λ− ω̄

) ω̄
Λ

]
= 0 ,

∫ 0

∞
dΛ Ĩ ′L(Λ) =

∫ |ω̄|

ξ0

dΛ

Λ
= ln

( |ω̄|
ξ0

)
= Ĩ . (A.37)

With the δ regulator, the algebra is much simpler:

Iδ(Λ) = − i
2

∫ ξ0−ω̄

−ξ0−ω̄
dω sgn(ω̄ + ω)

Θ
(
|ω| − Λ

)

iω − ξd ,

I ′δ,1(Λ) =
i

2

∫ ξ0−ω̄

ω̄
dω

δ
(
|ω| − Λ

)

iω − ξd =
i

2

Θ
(
Λ− |ω̄|

)
Θ
(
ξ0 − ω̄ − Λ

)

iΛ− ξd ,

I ′δ,2(Λ) =
i

2

∫ ω̄

−ω̄
dω

δ
(
|ω| − Λ

)

iω − ξd =
iΘ
(
|ω̄| − Λ

)

2

( 1

iΛ− ξd −
1

iΛ + ξd

)
,

I ′δ,3(Λ) = I ′1(Λ)
∣∣
ξd→−ξd, ξ0→ξ0+2ω̄

. (A.38)
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Naturally, one reproduces the correct results

∫ 0

∞
dΛ I ′δ,1(Λ) =

∫ ω̄

ξ0−ω̄
dΛ

i

2

1

iΛ− ξd =
1

2
ln
( iω̄ − ξd
iξ0 − iω̄ − ξd

)
,

∫ 0

∞
dΛ I ′δ,2(Λ) =

∫ 0

−ω̄
dΛ

i

2

( 1

iΛ− ξd −
1

iΛ + ξd

)
=

1

2
ln
(−iω̄ − ξd
iω̄ − ξd

)
,

∫ 0

∞
dΛ I ′δ,3(Λ) =

1

2
ln
( −iω̄ − ξd
−iξ0 − iω̄ − ξd

)
. (A.39)

In this case, again using ξd = 0, ξ0 � ω̄, the full derivative directly simplifies to the
minimal structure:

Ĩ ′δ(Λ) =
Θ
(
Λ− |ω̄|

)
Θ
(
ξ0 − Λ

)

Λ
,

∫ 0

∞
dΛ Ĩ ′δ(Λ) =

∫ |ω̄|

ξ0

dΛ

Λ
= ln

( |ω̄|
ξ0

)
= Ĩ . (A.40)
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