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Introduction

Recently, there has been a lot of interest in the phyics of systems called topological
insulators, which includes the so called quantum spin Hall insulators. These are
materials, which are insulating in the bulk, but support gapless modes on the
boundary. The presence of time-reversal symmetry in these systems implies
a special structure of the edge modes, where spin-up and spin-down particles
counterpropagate. Such edge modes are called helical.

The net charge Hall conductance supported by the edge modes vanishes,
but the spin Hall conductance is finite. In addition to that, potential disorder
can not backscatter electrons, as it is unable to flip their spins. Localization
therefore, does not occur in the presence of potential disorder only. In contrast,
magnetic impurities can induce backscattering. A recent work by Altshuler et
al. considers a non-interacting edge state of a quantum spin Hall insulator
with in-plane coupled to Kondo impurities. It is shown, that the conductance
is still ideal as long as the coupling between electrons and spins is isotropic
in the plane, so that the total sz component of electrons and spins is con-
served. In contrast, it vanishes, if one adds random anisotropy, which breaks the
U(1) symmetry of the localized spins and the conservation of the total sz component.

The aim of this thesis is to generalize the work by Altshuler et al. beyond
the conditions given above. Hence, we will add an out-of-plane component of
electron-impurity coupling and interactions to the scenario. It will be shown, that
a finite out-of-plane coupling can be accounted for, by a change of interaction
parameters. A rich phase diagram will be presented, depending on the interaction
strength. For weakly attractive or repulsive interactions, the system stays an
Anderson insulator, as in the case of absent interactions, which was discussed by
Altshuler et al., while for strongly repulsive and strongly attractive interactions, it
undergoes insulator-conductor phase transitions. The mechanisms underlying this
phase transitions are discussed.

In Chapter 1 we will review the properties of quantum spin Hall insulators. Their
edge states and the effect of Kondo impurities on them is the topic in Chapter 2.
We will also give an extended recap of the work by Altshuler et al.. In Chapter 3
we will discuss the impact of a finite out-of-plane Kondo coupling Jz, which was
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neglected in the work by Altshuler et al.. Chapter 4 is devoted to an RG analysis of
interacting helical edge states with Kondo impurities. The RG analysis will motivate
us to establish an effective gapped action for the system, which is developed in
chapter 5. The effective action will serve us as a starting point for the discussion
of the phase diagram of helical edge modes with Kondo impurities in Chapter 6.
We will conclude by outlining further developments and open questions in the final
Chapter 7.
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Chapter 1

Quantum Spin Hall Effect

The quantum spin Hall effect (QSH) is a close relative of the Integer Quantum Hall
Effect (IQHE), which was discovered in the late 1970s.

Figure 1.1: Chiral edge states of a quantum Hall device (Source: [16])

Integer quantum Hall effects are observed in 2D electron systems with a
perpendicular magnetic field applied, which breaks time-reversal symmetry
[20, 9, 34]. The prominent properties of such systems are that they are insulators
in the bulk, but still support charge transport via chiral gapless edge states (c.f.
figure 1.1). Conductivity is quantized and proportional to a topological invariant of
the bulk spectrum, which is known as the TKNN-invariant or first Chern number [33].
It is a topological insulator, because finite, local perturbations of the Hamiltonian
like weak interaction and impurities can not alter its physics. Specifically, its chi-
ral edge states are immune to any kind of backscattering and localization by disorder.

Ideal quantum Spin Hall systems are also bulk insulators with gapless edge
modes [15, 29, 3, 10]. As opposed to quantum Hall systems, time reversal
symmetry is not broken. Therefore, the edge states are not chiral but helical, which
means that the direction of the momentum is fixed by the sz component of the
spin. The net charge transport is zero, but a finite quantized spin current is carried.
Similarly to the IQHE case, the spin conductivity is connected to a topological
invariant of the bulk.

In the following chapter we will describe the first model of a QSH system, which
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Chapter 1 Quantum Spin Hall Effect

was proposed by Kane and Mele in 2005 [17]. We will introduce the Z2 topological
invariant and show how it relates to the spin Hall conductance [18, 30]. Then we
are going to argue on the existence of gapless edge states, their properties and
the relation to the poperties of the bulk. At the end of the chapter we will discuss
results on Kondo impurities on edges of QSH insulators, which are important for
our further discussion.

1.1 Kane-Mele Model

Kane and Mele realized in 2005 that Graphene with spin-orbit coupling could exhibit
a quantum spin Hall effect [17]. Eventually, it turned out that the spin-orbit coupling
in graphene is too weak. Nevertheless, we will present it, for it is simple and shows
all the features, which are important for a quantum spin Hall device. The first real
physical realization of a quantum spin Hall insulator was found to be HgTe-CdTe
quantum wells as proposed by Bernevig, Hughes and Zhang [4, 21]. Although the
mechanisms that lead to the quantum spin Hall effect are slightly different, the
basic principles are shared by both models.

1.1.1 Graphene

A review of the physics of Graphene and Hall effects therein is given in the book by
E. Fradkin [9], which is followed in the following sections closely. Graphene is a 2D
state of carbon atoms on a honeycomb lattice. One can devide the honeycomb
lattice into two triangular sublattices A and B, as shown in the figure. Let ψ(rA)
and χ(rA + dj) be fermionic operators on the A and B sublattices, where dj
(j = 1, 2, 3) are vectors between nearest-neighbor atoms. The simplest tight-binding
hamiltonian with nearest neighbor hopping reads

H = t
∑
rA,j

[
ψ†(rA)χ(rA + dj) + h.c.

]
= (1.1)

= t

3∑
i=j

∫
BZ

d2k

(2π)2
(
ψ†(k) χ†(k)

)( 0 eik·dj

e−ik·dj 0

)(
ψ(k)
χ(k)

)
= (1.2)

= t

3∑
j=1

∫
BZ

d2k

(2π)2
(
ψ†(k) χ†(k)

) [
cos
(
k · dj

)
σx − sin

(
k · dj

)
σy
](ψ(k)
χ(k)

)
, (1.3)

with single-particle energies

E±(k) = ±t

∣∣∣∣∣∣
3∑
j=1

eik·dj

∣∣∣∣∣∣. (1.4)
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1.1 Kane-Mele Model

Figure 1.2: Unit cell of Graphene (Source: [9])

Therefore, there are two bands, which meet at two points K and K ′ in the Brillouin

zone, where
3∑
j=1

eiK·dj = 0.

Figure 1.3: Brillouin zone of Graphene (Source: [9])

Near the band crossing points K and K ′ the dispersion relation can be linearized

E± (q := k−K) = ±t|q| (1.5)

For charge neutral graphene the Fermi energy is zero. Thus, an effective low
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Chapter 1 Quantum Spin Hall Effect

energy theory is obtained by considering only states in the vicinity of K and K ′. The
Hamiltonian has the form of two Dirac Hamiltonians

H = vF

∫
d2q

(2π)2
∑
a=1,2

Ψ†a(q) (σxqx + σyqy)Ψa(q), (1.6)

where Ψa(q) are two component spinors. It is important to note that, the absence of
terms that are proportional to σz, both in the lattice and the contiuum Hamiltonian,
is a consequence of parity and time-reversal invariance. It is for their presence
that forbids having a gap in the band structure and therefore a gap in the Dirac
Hamiltonian.

1.1.2 Spin-Orbit Coupling

In 2005 Kane and Mele [17] have realized, that, if one considers spinful fermions
with spin-orbit coupling, the effective low energy Dirac Hamiltonian gains a mass
term, although preserving time-reversal invariance.

H = vf

∫
d2q

(2π)2
∑
a=1,2
σ,σ ′=±1

Ψ†a,σ(q) [(σxqx + σyqy)⊗ 1]Ψa,σ ′(q)+

+∆Ψ†a,σ(q) [σz ⊗ sz]Ψa,σ ′(q) (1.7)

with

Ψ1,σ =

(
ψk,σ
χk,σ

)
, Ψ2,σ =

(
−iχk,σ
iψk,σ

)
. (1.8)

In the next subsection the Hall conductance σxy for this Hamiltonian will be
computed using the Kubo formula. Each spin species contributes with σ↑,↓xy = ±e2h ,
which sums to zero (another consequence of time-reversal symmetry) but their
difference gives a finite and quantized spin conductance

σSxy =
 h

2e

(
σ↑xy − σ↓xy

)
=
e

2π
. (1.9)

1.1.3 Hall conductance for one spin species

Consider the spin-up component of the Hamiltonian (1.7). It has the general form of
a two-level system

h(k) = h0(k)1+
∑
a

ha(k)σa, (1.10)

with

h0(k) = 0 h1(k) = qx h2(k) = qy h3(k) = ∆.
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1.1 Kane-Mele Model

The Hall conductance is given by

σxy = lim
ω→0

i

ω
Πxy(ω,Q = 0), (1.11)

with the polarization operator

Πxy(ω,Q = 0) =
∫

d2k
(2π)2

∫
dΩ
2π

[Jx(k)G(k,ω+Ω)Jy(k)G(k,Ω)] , (1.12)

where Jl =
h(k)
∂kl

and G(k,ω) = (ω1− h(k) + iε)−1.

Using the fact, that we are in an insulator, so that we band with the lower energy
is completely filled and the band with the higher energy is completely empty, the
expression simplifies to

σxy =
e2

8π2

∫
d2kεlmnĥl∂kxĥm∂kyĥn, (1.13)

where ĥi =
ĥi
‖ĥi‖

. The conductance can be recognized to be proportional to a
winding number. More precisely, it is the first Chern number N, which characterizes
the mapping between the two-dimensional Brillouin zone and the Bloch sphere
corresponding to the two-level system. Consequently, the Hall conductances of
each of the spin species are topologicaly quantized [28, 37].

σxy =
e2

h
N, (1.14)

with the first Chern number

N =
1
4π

∫
d2kεlmnĥl∂kxĥm∂kyĥn. (1.15)

Since h0(k) → −h0(k), for from the spin-down part of the Hamiltonian, it’s
contribution to the conductance has equal magnitude, but opposite sign compared
to the contribution from the spin-up part of the Hamiltonian. Therefore, the total
charge conductance is equal to zero, but the spin conductance is finite and
topologicaly quantized.
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Chapter 1 Quantum Spin Hall Effect

1.2 Z2 Topological Invariant

In the previous chapter, the simple Kane-Mele model of a quantum spin Hall device
was presented. It can be understood as a combination of two quantum Hall devices,
one for each spin species, with opposite Hall conductances. It was seen, that
the Hall conductance of each of the quantum Hall devices could be computed
using a topological bulk invariant. The total Chern number of the two spin species
is always equal to zero, reflecting the absence of total charge conductance and
therefore not a good characteristic for the system. Nevertheless, one can expect
the existence of a topological invariant, which discriminates quantum spin Hall
insulators, which have edge states, that are protected from finite, local perturbations
from topologically trivial insulators, which don’t have them. Further, it will be argued,
that as opposed to quantum Hall insulators, that are characterized by an integer,
for time-reversal invariant insulators it makes only sense to distinguish two different
states. Hence, we have a Z2 instead of a Z classification.

1.2.1 Time-Reversal Invariance

In order to understand the appearance of a Z2 topological invariant, one needs to
gain deeper insight into time-reversal symmetry. For a single spin-1/2 particle the
time-reversal operator has the form [16]

Θ = exp (iπσ)K, (1.16)

where K is the complex conjugation operator. Θ has the important property

Θ2 = −1. (1.17)

We consider a time-reversal invariant Bloch Hamiltonian

H(k) = e−ik·rHeik·r, (1.18)

so that the single-particle Hamiltonian H satisfies [H,Θ] = 0, which implies

ΘH(k)Θ−1 = H(−k). (1.19)

Condition (1.17) requires each eigenstate of the Hamiltonian to be degenerate. To
prove this let us for a moment assume, that there is an eigenstate |χ〉, which is
non-degenerate. As Θ |χ〉 must also be an eigenstate of the Hamiltonian,

Θ |χ〉 = c |χ〉 (1.20)

must hold for |χ〉. Further, equations (1.17) and (1.20) require

|c|2 = 〈χΘ|Θχ〉 =
〈
χ
∣∣Θ2∣∣χ〉 = −1, (1.21)
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1.2 Z2 Topological Invariant

which is a contradiction. This special kind of degeneracy is called Kramers
degeneracy. For systems without spin-orbit coupling, Kramers degeneracy is
equivalent to the degeneracy between spin-up and spin-down states, while for
systems including spin-orbit coupling it is more intricate.

1.2.2 Bulk-Boundary Correspondence

Figure 1.4: Electronic dispersion between two boundary Kramers degenerate points.
In the left the number of surface states crossing the Fermi energy is even, whereas
in the right panel it is odd. (Source: [10])

Figure 1.4 shows two halves of Brillouin zones (Γa = 0 < kx <
π
a = Γb) of

time-reversal invariant two-dimensional insulators. Considering only one half
is sufficient, since the other half is the mirror images of the first one due to
time-reversal invariance, with partners of Kramers pairs being reflected on each
other. The shaded regions show the bulk conductance and valence bands, which
are separated by a gap. Besides, it is assumed, that the system has edge states
inside the gap. The aforementioned mirror symmetry requires the Kramers partners
to connect at the points at the borders of the half of the Brillouin zone Γa and
Γb. The connection can occur twofold. Either the Kramers pairs connect pairwise,
as in the left panel, so that all edge states can be pulled below the chemical
potential by shifting it, or, as in the right panel the edge states connect to cross
the bulk gap. The first case is equivalent to absence of any edge states, while
the second corresponds to the existence of topologically protected edge states,
vulgo a quantum spin Hall insulator. From another persepective, we see, that the
topologically trivial and non-trivial cases are distinguished by whether the chemical
potential crosses the bands an even or and odd number of times. We can therefore
define ν, the Z2 topological invariant for time-reversal invariant insulators as the

9



Chapter 1 Quantum Spin Hall Effect

parity of Kramers pairs crossing the bulk gap [16],

ν = Nk mod 2. (1.22)
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Chapter 2

Edge States of Quantum Spin Hall
Insulators

2.1 Basic properties of the edge states

For the quantum Hall insulator the edge states are chiral [9, 34], which means that
the direcion of the edge electrons is determined by the magnetic field. The quantum
spin Hall insulator as realised in the Kane-Mele model can be understood as two
copies of a quantum Hall insulator, one for each spin component, with opposite Hall
conductances. Thus, the edge mode of the quantum spin Hall insulator consists of
two gapless Dirac fermions that have opposite spin and are counterpropagating. It
was dubbed "helical" by Wu et al.. For the Bernevig-Hughes-Zhang [4] model this
picture of edge states was confirmed explicitly analytically and numerically [29].
Realistic models of quantum spin Hall insulators usually have additional Rashba
spin-orbit coupling which breaks conservation of sz component of the spin. Still,
most properties that hold for the ideal quantum spin Hall edge states, can be shown
to hold also for edges with Rashba spin-orbit coupling.

2.2 Disorder on the edge of a quantum spin Hall insulator

Consider impurities without internal degrees of freedom on the edge of a quantum
spin Hall insulator. As discussed in the previous section, in a perfect quantum spin
Hall insulator edge mode, left moving and right moving particles have opposite
spin, so that for such disorder backscattering is impossible and, thusly edge states
can not be localized. A more general argument from the symmetry properties of
S-matrices was given by Kane and Mele [?, 16].
They consider an edge state, which is disordered in a finite region. The solution of
the scattering problem can be expressed in terms of an S-matrix which maps the
incoming on the outgoing states

Φin = SΦout, (2.1)

11



Chapter 2 Edge States of Quantum Spin Hall Insulators

where Φ =
(
φL φR

)T
is a spinor of left- and right-movers.

As was mentioned in the previous chapter, the time-reversal operator for spin-1/2
particles has the form

θ = exp(iπσy)K. (2.2)

Time-reversal invariance demands the S-matrix to satisfy

S = σyS
Tσy, (2.3)

from which it is straightforward to deduce, that the S-matrix has no off-diagonal
elements which would correspond to backscattering.

Nethertheless, if the impurities have a spin-structure, the form of the time-reversal
operator changes, so that the argument above breaks down and backscattering
becomes possible.

2.3 Kondo impurity on the edge of a quantum spin Hall

insulator

Figure 2.1: Kondo impurity on the edge of a quantum spin Hall insulator (Source:
PRB 84 195310 (2011))

The problem of a Kondo impurity on the edge of a quantum spin Hall insulator
was first considered by Wu et al. [35]. Later Maciejko et al. [25] have given an
extended review of its physics. Consider a bosonized Hamiltonian of the helical
edge

HTL =
1
2π

∫
dx
[
uK (∂xθ)

2 +
u

K
(∂xφ)

2
]

(2.4)

and a Kondo impurity at x = 0 coupled to it

HK =
J⊥a

2πξ

[
S+e−i2φ(0) + h.c.

]
−
Jza

π
Sz∂xθ(0). (2.5)
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2.3 Kondo impurity on the edge of a quantum spin Hall insulator

Figure 2.2: Backscattering is only
possible with a flip of the spins of
the electron and the impurity

Figure 2.3: Forward scattering is
only possible without flipping any
spins

The first part in the Kondo term of the Hamiltonian correspond to spin-flip
backscattering (c.f. figure 2.2), whereas the second term describes forward
scattering with conserved spin (cf. figure 2.3). Other processes are not compatible
with the helical structure of the edge. In particular, there is no spin-flip forward
scattering in a helical liquid.

The one-loop RG equation’s for the Kondo model in a helical edge state read

dJ⊥
dl

= (1− K)J⊥ + J⊥Jz (2.6)

dJz
dl

= J2⊥, (2.7)

which can be understood as type of anisotropic Kondo model [12] with Jz shifted to
Jz + 1− K.

The Kondo temperature has the form

TK = D exp
(
−

1
J⊥

sinh−1 α

α

)
, (2.8)

where α =

[(
Jz+1−K
J⊥

)2
− 1
] 1
2

is an anisotropy parameter. It shows two character-

estic regions, depending on whether α2 . 0 or α2 � 0. In the first case it has the
exponential form known from the regular Kondo model

TK = D exp
(
−

1
J⊥

)
, (2.9)

13



Chapter 2 Edge States of Quantum Spin Hall Insulators

Figure 2.4: RG flow of the Kondo model in a helical edge state (Source:[35])

while in the latter case its form resembles the Kondo temperature of the spinful
Luttinger Kondo model [23, 11]

TK = D

(
J⊥

1− K

) 1
1−K

. (2.10)

As shown in figure 2.4 for weak ferromagnetic and anti-ferromagnetic couplings
the system flows to a Kondo singlet fixed point (c.f. figure 2.5). For a Luttinger

Figure 2.5: Physical picture of the Kondo singlet fixed point in a helical edge state
(Source: [25]

liquid one would expect, that conductance through the Kondo singlet is impossible
[11]. However, as spin-flip backscattering of a spin-1/2 electron from the spin-0
Kondo singlet is impossible, conductance is not affected by the screened impurity.
It decouples from the helical edge state [25] and ideal conductance is restored (c.f.
figure 2.5).

14



2.4 Conductance of a helical edge state with a Kondo impurity

2.4 Conductance of a helical edge state with a Kondo
impurity

The conductance through a helical edge state with a Kondo impurity was first
discussed by Maciejko et al. [25] for the case of dc conductance and was later
revised and expanded to finite frequencies by Tanaka et al. [32]. In this section, we
will follow the paper by Tanaka et al..

The Hamiltonian has the same form as in the previous section plus an additional
source term, which couples to the spin density ∂xθ

H = HTL +HK −
eV

2π

∫
dx∂xθ(x). (2.11)

The source term assigns different chemical potentials to the left- and right moving
particles. One can achieve the same effect by introducing an effective magnetic
field which is applied to the Kondo impurity

HV = −eVSz. (2.12)

Qualitatively this substitution can be justified, because as long as the z component
of the total spin of the system is conseved, one can use the localized impurity
as a counter for scattering processes in the system. Forward scattering does
not influence the spin conductance and can therefore be neglected. Each
backscattering of an electron is accompanied by a flipping of the magnetic
impurity. The energy cost of a backscattering cost is either due to the difference
in chemical potentials, if we use the former type of source term or due to one
configuration of the Kondo impurity being more favorable than the other, with the
latter form of the source term. More formally, one can justify the equivalence of
the two terms by seeing, that their difference commutes with the Hamiltonian.
It is convenient to rescale the fields by

√
K and to eliminate the Jz-dependent

term from the Hamiltonian using the transformation operator U = e
i Jz
πu
√
K
φ(x)Sz , so

that the effects of both are described by a common parameter K̃ = K
(
1− Jz

2πu
√
K

)2
.

Using the qualitative picture provided above we can compute the correction to
the conductance due to backscattering of electrons off the impurity. The correction
to the current is given by

δI = −e∂tS
z =

ieJ⊥
2πξ

[
S+ei2

√
K̃Φ(0) − h.c.

]
. (2.13)

Using Kubo formula the correction to the conductance can be evaluated to lowest
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Chapter 2 Edge States of Quantum Spin Hall Insulators

order in J⊥ to be

δG(ω) = −2e2
(
J⊥
2πξ

)3(
πT

D

)2K̃

sin
(
πK̃
)
×

× 1
ıω

∞∫
0

dt
eiωt − 1

[sinh (πTt)]2K̃
. (2.14)

In the low frequency limit ω� T the formula above simplifies to

δG = −
e2γ0

2T
, (2.15)

where

γ0 = J
2
⊥Υ Υ =

[
Γ(K̃)

]2
(2π)2ξuΓ(2K̃)

(
2πT
D

)2K̃−1

. (2.16)

The parameter γ0 can be understood as the rate of spin-flips of the Kondo impurity
at zero voltage bias. In the paper by Maciejko et al.the same result was derived
by a similar approach. However, one must pay attention to the fact, that the
formula is perturbative in J⊥. Hence, it describes well the physics in the limit
T � ω � γ0 ∝ J2⊥, where the dynamics of the impurity is dominated by the ac
driving voltage, but deviations are observed in the limit ω � γ0, where the spin
persists for a long time in one of the configurations.

To account more properly for this regime, one can make an augmented ansatz
for the dynamics of the impurity. Denote therefore by P↑ and P↓ the probabilities of
the localized spin to be in its up- or down state, respectively. The time-evolution of
the probalities is governed by a rate equation

∂tP↑ = γ+P↓ − γ−P↑, (2.17)

where γ± are the transition rates between the states. Besides, the probabilities
suffice conservation of total probability P↑ + P↓ = 1 at all times. For small voltages
eV � T , the transition rates are given by

γ± = γ0

(
1± eV

2T

)
. (2.18)

Analogously to the discussion above, the correction to the current is ∂I = −e∂tP↑
and the correction to the conductance is δG(ω) = δI

V , where V = V0e
iωt. Solving

the rate equations yields a correction to the conductivity of the form

δG(ω) = −
e2γ0

2T
ω

ω+ 2iγ0
. (2.19)
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2.4 Conductance of a helical edge state with a Kondo impurity

Figure 2.6: Real and imaginary parts of correction to conductance at different
temperatures (Source: [32])

The correction of the correction to the conductance is plotted against the
frequency for several different temperatures in figure 2.6. As predicted, one
retrieves the perturbative result from Equation (2.15) on the preceding page in the
limit γ0 � ω � T , while in the dc limit the correction to the conductance goes
down to zero. This is in accordance to the qualitative picture, because in this
limit for every left moving particle, that is backscattered, there is exactly one right
moving particle, that is backscattered subsequently, so that the total number of
left- and right movers is conserved. This is true as long as the in-plane Kondo
coupling is isotropic. Anisotropic in-plane Kondo coupling (Jx 6= Jy) breaks the
conservation of the z-component of the total spin, so that a finite correction to the
dc conductance can be obtained from the rate equation

δG = −
e2γ0

2T
(Jx − Jy)

2(Jx + Jy)
2

J2x + J
2
y

. (2.20)

The qualitative picture can be expected to hold beyond the region, where the rate
equation applies, but it breaks down for T � TK, where the Kondo impurity become
screened and can not be spin-flipped by electrons any more. As mentioned in
the previous section, a Kondo singlet decouples from the helical liquid and the
correction to the conductance vanishes.

17



Chapter 2 Edge States of Quantum Spin Hall Insulators

2.5 Array of Kondo impurities on the edge of a quantum
spin Hall insulator

2.5.1 Isotropically in-plane coupled impurities

In the last section we outlined the properties of edge states of quantum spin Hall
insulators with Kondo impurities. In a recent paper Altshuler et al. [2] went one
step further by considering a non-interacting helical edge state with a distribution
of Kondo impurities and discussed the transport properties of such systems. The
impurities and the edge state are assumed to be coupled only in-plane (Jz = 0,
J⊥ 6= 0). The system, which is at zero temperature, is described by the Matsubara

Figure 2.7: Localized magnetic impurities interact with ege states of a quantum
spin Hall insulator (Source: [2])

action

S =

∫
dxdτ

(
ψL ψR

)( ∂+ + h(x, τ) ∆(x)
√

1− n2ze−iα

∆(x)
√

1− n2zeiα ∂− + h(x, τ)

)(
ψL
ψR

)
+ SWZ

(2.21)

SWZ = −i

∫
dxdτρ(x)nz(x, τ)∂τα(x, τ) (2.22)

where SWZ is the Wess-Zumino term, where we assumed α(x, τ) to be smooth,
h(x, τ) is a source field, the localized spins are parametrized by Sz(x, τ) = Snz(x, τ)
and S±(x, τ) = S

√
1− n2z(x, τ)e±i2kFxe±iα(x,τ) and ∆(x) = Sρ(x)J⊥, where ρ(x) is

the density distribution of the impurities. The phase ei2kFx comes originally from
the electrons and is here included in the definition of the spins. It can be absorbed
into a redefinition of α(x, τ), as long as one is not interested in the exact type of
ordering of the spins. The action has the form of gapped Dirac fermions, so one is
tempted to believe, that transport through these systems is supressed. Altshuler et
al. have shown, that this is not the case, but an ideal conductance is supported
by composite electron-spinon excitation. To see this a gauge transformation is
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2.5 Array of Kondo impurities on the edge of a quantum spin Hall insulator

performed, which couples electon and spin degrees of freedom

ψR → e−iα(x,τ)/2ψR (2.23)

ψL → eiα(x,τ)/2ψL. (2.24)

Thereby the action gains an additional term from the chiral anomaly

San =
vF
8π

∫
dxdτ (∂xα)2 −

1
2π

∫
dxdτh(x, τ)∂xα (2.25)

and the total action reads

S =

∫
dxdτ

(
ψL ψR

)(∂+ − i
2∂+α(x, τ) + h(x, τ) ∆(x)

√
1− n2z

∆(x)
√

1− n2z ∂− + i
2∂−α(x, τ) + h(x, τ)

)(
ψL
ψR

)
+

+SWZ + San. (2.26)

2.5.2 Separation of lengthscales

The electrons are mediating an effective interaction between the Kondo impurities,
known as RKKY interaction [19]. It can be obtained as first order perturbation
correction of the energy in the exchange coupling. For Kondo impurities in an
helical edge state, which are only coupled in-plane (Jz = 0, J⊥ 6= 0) it has the form

HRKKY = −
J2⊥

8πvF
S+(xj)S

−(xl)e
i2kF(xj−xl) + S−(xl)S

+(xj)e
−i2kF(xj−xl)

|xj − xl|
. (2.27)

The RKKY interaction induces an ordering of the spins in the x− y-plane, as long
as it dominates Kondo screening of the impurities. For non-interacting edge-states
this is a valid assumption, because the characteristic energy scale, which describes
Kondo screening, the Kondo temperature is smaller than the energy scale of the
exchange interaction. The variables corresponding to the ordered spins α(x, τ)
and nz(x, τ) are considered to be slow, varying on lengthscales much larger than
the electron coherence length vF∆ , while the gapped fermionic fields vary on short
distances, which are much smaller than that. Hence, one can assume the spin

Figure 2.8: Ordering of the Kondo impurities by elecronically mediated exchange
interactions, induce a separtion of lengthscales

variables to attain a constant average value during calculations with the fermionic
fields.

19



Chapter 2 Edge States of Quantum Spin Hall Insulators

2.5.3 Effective action for α(x, τ)

Using the separation of scales one can integrate out the gapped fermionic modes
and derive an effective action for nz. Hence, the part of the action, which describes
the interaction between electrons and impurites, is divided in two parts, one of
which is independent of nz and the other depends on nz

Se−imp = Snz=0 + δS, (2.28)

Snz=0 =

∫
dxdτ

(
ψL ψR

)( ∂+ ∆(x)
∆(x) ∂−

)(
ψL
ψR

)

δS =

∫
dxdτ

(
ψL ψR

) 0 ∆(x)
(√

1− n2z − 1
)

∆(x)
(√

1− n2z − 1
)

0

(ψL
ψR

)
,

(2.29)

where we left out the source and neglected gradients of α, which are small
compared to gradients of ψ, due to separation of scales.

Integrating out the fermions gives a functional determinant, which can be
rexponentiated

tr logG−1
e−imp = (2.30)

= tr log


(
∂+ ∆(x)
∆(x) ∂−

)
︸ ︷︷ ︸

G−1
nz=0

+

 0 ∆(x)
(√

1− n2z − 1
)

∆(x)
(√

1− n2z − 1
)

0


︸ ︷︷ ︸

δG−1

 =

= tr logG−1
nz=0 + tr log

(
1+Gnz=0δG

−1) . (2.31)

The latter term can be expanded to quadratic order in nz

tr log
(
1+Gnz=0δG

−1) ≈ tr logGnz=0δG
−1 ≈ (2.32)

≈ −∆2(x)

∫
dωdq
(2π)2

1
ω2 + (vfq)2 + ∆2(x)

n2z =

=
1

2πvF
∆2(x) log

(
D

∆(x)

)
n2z, (2.33)

where D is an ultra-violett cut-off, which corresponds to the gap in the bulk of the
quantum spin Hall insulator. By restoring the integrations over long lengthscales we
receive an effective action for nz(x, τ), which reads

Snz =
1

2πvF

∫
dxdτ∆2(x) log

(
D

∆(x)

)
n2z. (2.34)
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2.5 Array of Kondo impurities on the edge of a quantum spin Hall insulator

The sign of the effective contribution to the action from nz(x, τ) reassures, that the
assumption of nz being small and its fluctuations supressed, was correct.

It is then possible to integrate out nz(x, τ), which leads to an effective action for
α(x, τ)

Seff =
1

2πuK

∫
dxdτ

[
(∂τα)

2 + u2 (∂xα)
2
]
−

1
2π

∫
dxdτ h(x, τ)∂xα, (2.35)

where u = ∆
2πSρ

√
log
(
D
∆

)
and K = 4 uvF . Note, that K =

2
√
log(D∆ )
πS

1
ρ

ξ � 1, because
the coherence length of the electrons ξ is much greater than the average distance
between the electrons 1

ρ .

The effective action described by equation (2.35) has the form of a strongly
repulsive (K� 1) Luttinger liquid [12], with the source field h(x, τ), which was initially
coupled to the electron density, now coupled to ∂xα(x, τ). By taking variational
derivatives, one can derive the conductance of the system

σ(ω) =
ie2vF
2πω

u2

v2F
, (2.36)

which corresponds to ballistic conductance, with a drude weight of u
2

v2F
. The

dielectric response contribution from the fermionic determinant (2.31) was
neglected, because it vanishes in the limit of small frequencies.

2.5.4 Anisotropically in-plane coupled impurities

The physics changes drastically, if one introduces random anisotropy to the
coupling between electrons and impurities. The modified action has the form

S =

∫
dxdτ

(
ψR,ψL

)( ∂+
√

1− n2z∆(x)e−iα
[
1+ ε(x)ei2α

]√
1− n2z∆(x)eiα

[
1+ ε∗(x)e−i2α

]
∂−

)(
ψR
ψL

)
.

(2.37)
Apparantly, introducing such anistropic couplings is tantamount to breaking the
conservation of the total z-component of spin. Following the steps from above,
one can derive an effective action for α(x, τ) with an additional correction from the
random anisotropy

Seff =
1

2πuK

∫
dxdτ

[
(∂τα)

2 + u2 (∂xα)
2
]
−

1
vF

∫
dxdτ E2(x) cos [2α(x, τ) − γ(x)] ,

(2.38)

21



Chapter 2 Edge States of Quantum Spin Hall Insulators

where E2 = ρ2πu2|ε(x)| and γ(x) = arg[ε(x)].

In contrast to the effective action for α(x, τ) in the isotropic case (equation (2.35)
on the previous page), which corresponded to a strongly repulsive clean Luttinger
liquid, the effective action in the anisotropic case (equation (2.38) on the preceding
page) describes a strongly repulsive disordered Luttinger liquid. Giamarchi and
Schulz [13] have shown, that such a system is an Anderson insulator, specifically
the dc conductance σ(ω → 0) = 0 vanishes, which is again in stark contrast to
the case of isotropic couplings. A brief review of their work can be found in the
appendix.
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Chapter 3

Role of Jz

We are using the work by Altshuler et al. as starting point for a discussion of
transport properties of edge states of quantum Hall insulators with Kondo impurities.
Hence, we are going to investigate the ramifications of their assumptions and
generalize the result beyond these.

The first assumption, that was made, is that out-of plane coupling of electrons
and localized spins can be safely disregarded without altering significantly the
physics. Let us therefore consider the bosonized Hamiltonian of an interacting
helical edge state with embedded magnetic impurities, described by a impurity
density ρ(x)

H =
1
2π

∫
dx
[
uK (∂xθ)

2 +
u

K
(∂xφ)

2
]

︸ ︷︷ ︸
HTL

−

−
Jz

π

∫
dxρ(x)Sz∂xθ+

J⊥
2π

∫
dxρ(x)

[
S+e−i2φ(x) + h.c.

]
. (3.1)

Further, we will assume, for the sake of simplicity, the impurity distribution to

be point-like of the form ρ(x) =
Nimp∑
b=1

δ(x − xb), where xb are the positions of the

impurities. This can be done, since we can represent any continous distribution as
a limit of such point-like distributions.

Consider the unitary operator, which was first proposed for such systems by
Maciejko in [24]

U = exp

iλNimp∑
b=1

φ(xb)S
z

 , (3.2)

where λ is a real parameter, to be chosen a posteriori. It induces the following
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Chapter 3 Role of Jz

transformation properties

Uf [φ(x),∂xφ(x), ...]U† = f [φ(x),∂xφ(x), ...] (3.3)

U [∇θ(x)]2U† = [∇θ(x)]2 − 2λSzπ∇θ(x)
Nimp∑
b=1

δ(x− xb) (3.4)

USzU† = Sz (3.5)

US±U† = S±e±iλφ(x). (3.6)

Thus, the Hamiltonian (3.1) transforms as

UHU† = HTL −
Jz + λuKπ

π

∫
dxρ(x)Sz∂xθ+

J⊥
2π

∫
dxρ(x)

[
S+e−i2(1−

λ
2 )φ(x) + h.c.

]
.

(3.7)
To proceed further in our analysis we can pick λ = − Jz

uKπ and rescale(
1+

Jz

2πuK

)
φ(x)→ φ(x) (3.8)(

1+
Jz

2πuK

)
K→ K̃

(
1+

Jz

2πuK

)−1

u→ ũ uK = const., (3.9)

so that the transformed Hamiltonian has the form

H̃ =
1
2π

∫
dx
[
uK (∂xθ)

2 +
ũ

K̃
(∂xφ)

2
]
+
J⊥
2π

∫
dxρ(x)

[
S+e−i2φ(x) + h.c.

]
. (3.10)

The transformed Hamiltonian can again be understood as an interacting helical
edge with Kondo impurities, which now couple via their in-plane spin components
only. During the transformation interaction parameters K and u are altered. In other
words, it is possible to map an Hamiltonian with in- and out-of-plane couplings
between electrons and spins to an Hamiltonian with in-plane couplings only, but
with different strength of electron-electron interactions. Moreover, tuning the out-of
plane coupling stregth Jz is shown to be equivalent to tuning the interaction stregth.
As will be shown in the following chapters, finite interactions can significantly
change the transport of the edge state and so does a finite Jz. Therefore, the
assumption of Jz being negligible is in general not justified.
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Chapter 4

Renormalization Group Analysis of
Interacting Edge Modes of Topological
Insulators with Kondo Impurities

4.1 Perturbative renormalization group around a fixed

point from operator product expansion

Special properties of RG fixed points, give rise to elegant methods for the derivation
of RG flow equations around them. We will follow the books by J. Cardy and E.
Fradkin [5, 9] for the development of the method, which will be applied to our
problem in the next section.

4.1.1 Conformal symmetry

A system at a fixed points of the renormalization group (RG) is scale invariant, which
means that the actions does not change under RG transformations. Hence, there
can be no finite length scales for the system at a RG fixed point, specifically, the
correlation length ξ is either inifnite or zero. Consider a homogenous and isotropic
system at an RG fixed point, where the correlation lengths diverges (ξ→∞) and
therefore much larger than the short distance cutoff, which is usually the lattice
spacing α. Such systems are well approximated by a continous field theory, which
has conformal symmetry.

Conformal symmetry imposes strong conditions onto the transformation proper-
ties of correlation functions. Let {φn(r)} be a family of operators at a fixed point
with a scale invariant action, which transforms under scale transformations as

φn(br) = b
−∆nφn(r). (4.1)

Such operators are called primary operators. It is further assumed, that the φn(r)
operators are normal ordered at the fixed point 〈φn(r)〉∗ = 0 and their correlation
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functions are decaying at large distances. Conformal symmetry implies rotational,
translational and scale invariance, which is only fulfilled for a power law decay

〈φn(ri)φn(rj)〉∗ =
1

|ri − rj|
2∆n

, (4.2)

where ∆n is the scaling dimension of the operator φn. The scaling dimension
can be undestood as a quantum number, labeling an irreducible representation
of the conformal group, similarly to an angular momentum quantum number, that
corresponds to a representation of SU(2). In analogy, an orthogonality condition
holds

〈φn(ri)φm(rj)〉∗ =
δ∆n,∆m

|ri − rj|
2∆n

. (4.3)

Confromal symmetry also constraints the form of three-point functions. Belavin
et al. have shown, that three-point functions of primary fields have the form

〈φn(ri)φm(rj)φl(rk)〉∗ =
Cnmk

|ri − rj|
∆nm |ri − rl|

∆nk |rl − rj|
∆km

, (4.4)

with

∆nm = ∆n + ∆m − ∆k (4.5)

∆nk = ∆n + ∆k − ∆m (4.6)

∆km = ∆k + ∆m − ∆n. (4.7)

4.1.2 Operator Product Expansion

Consider a general multipoint function at the fixed point 〈...φn(rn)φm(rm)...〉∗. A
family of operators is called complete, if a decomposition

lim
ri→rj

φn(ri)φm(rj) =
∑
k

Cnmk

|ri − rj|
∆n+∆m−∆k

φk

(
ri + rj

2

)
(4.8)

exists. Such a decomposition is called operator product expansion (OPE) and the
coefficients Cnmk are its structure constants. It describes how two operators fuse
to a new local composite operator in the vicinity of each other.

4.1.3 Perturbative renormalization group

One can use the scaling dimensions and structure constants to derive the RG
equations of a system, in the vicinity of one of its fixed points. Let S be the action of
a system and S∗ be the fixed point action of the same system.

S = S∗ + δS, (4.9)
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expansion

with
δS =

∫
dDx

∑
n

gnα
∆n−Dφn(r), (4.10)

where gn are dimensionless coupling constants and α is the ultra-violet (UV) cutoff.
It is assumed that the perturbation operators φn(r) are primary and obey the
properties, which were presented in the previous subsection. The deviation of the
partition function from its value at the fixed point is given in third order perturbation
theory by

Z

Z∗
=1+

∑
n

∫
dDr
αD−∆n

gn〈φn(r)〉∗+

+
1
2

∑
n,m

∫
dDr1
αD−∆n

∫
dDr2
αD−∆m

gngm〈φn(r1)φm(r2)〉∗+

+
1
6

∑
n,m,k

∫
dDr1
αD−∆n

∫
dDr2
αD−∆m

∫
dDr3
αD−∆k

gngmgk〈φn(r1)φm(r2)φk(r3)〉∗ + ...

(4.11)

The partition function Z shall be fixed during an RG transformation, which consists
of 1) change of UV cutoff and 2) rescaling of the dimensionless couplings. It is
convenient to parametrize the change of the UV cutoff logarithmically α → eδlα.
Rescaling of α affects the partition sum (4.11) twofold: via the denominator of the
integrand and at the lower boundary of the integration region. The denominator of
the integrand transforms as

gn

αD−∆n
→ gn

αD−∆ne(D−∆n)δl
, (4.12)

which can be compensated by a change of the dimensionless couplings

gn → gne
(D−∆n)δl ≈ gn + gn (D− ∆n) δl. (4.13)

Apparently, this gives the familiar one loop contribution to the RG equations

dgn

dl
= (D− ∆n)gn. (4.14)

The contribution to the RG equations from changing the lower boundary of the
integrals can be evaluated using the OPE. Consider therefore the second order
contribution to the partition sum. The double integral can be divided into two
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subregions∫
|r1−r2|>α(1+δl)

dDr1dDr2 F(r1, r2) =

=

∫
|r1−r2|>α

dDr1dDr2 F(r1, r2) −
∫

α(1+δl)>|r1−r2|>α

dDr1dDr2 F(r1, r2).

(4.15)

The first gives simply the original contribution to Z, while the second can be
expanded into an OPE

1
2

∑
n,m

∫
dDr1
αD−∆n

∫
dDr2
αD−∆m

gngm〈φn(r1)φm(r2)〉∗ =

=
1
2

∑
n,m,k

∫∫
dDr1dDr2

gngm

α2D−∆n−∆m

Cnmk

|r1 − r2|
∆n+∆m−∆k

〈
φk

(
r1 + r2

2

)〉
∗
=

=
1
2

∑
n,m,k

Cn,m,kgngma
∆k−∆n−∆m+1

∫
dDr

a2D−∆n−∆m
〈φk(r)〉∗SDaD−1δl =

=
1
2

∑
n,m,k

Cn,m,kgngm

∫
dDr
aD−∆k

〈φk(r)〉∗SDδl, (4.16)

where SD is the D-dimensional volume of the D-sphere.
From Equation (4.16) we can read off the appropriate rescaling of the couplings,
which compensates for this contribution to be

gk → gk −
1
2
SD
∑
n,m

Cn,m,kgngmδl. (4.17)

Apparently, this gives the one-loop contribution to the RG equations. Because
only infinitesimal transformations of α are considered, the total RG flow equation is
provided by the sum of the two contributions, which reads after a redefinition of the
couplings gk → 2

SD
gk

dgk
dl

= (D− ∆k)gk −
∑
n,n

Cn,m,kgngm. (4.18)
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4.2 Derivation of the RG equations for the helical edge
state with Kondo impurities

In order to acquire a rough understanding of the properties of the system it is useful
to perform a renormalization group analysis. A similar work for a discrete lattice of
magnetic impurities has been done by Maciejko [24], by mapping the problem to the
2D Coulomb gas model. We will focus on the case of a continuous distribution of
impurities and treat it using operator product expansion (OPE). We consider again
a bosonized action of interacting helical edge electrons with magnetic impurities,
where the Jz in-plane component of coupling between electrons and localized spins
was eliminated by the procedure described in the last section.

S =
1

2πK

∞∫
−∞

dx
∞∫
0

dτ
[
1
u
(∂τφ)

2 + u (∂xφ)
2
]
+

J⊥S

2πξ

∞∫
−∞

dx
∞∫
0

dτ ρ(x)
[√

1− n2z(x, τ)e
iα(x,τ)e−i2φ(x,τ) + h.c.

]
+ SWZ. (4.19)

It is instructive to shift the φ field φ(x, τ) − α(x,τ)
2 → φ(x, τ). The action then reads

S =
1

2πK

∞∫
−∞

dx
∞∫
0

dτ
[
1
u
(∂τφ)

2 + u (∂xφ)
2
]
+

1
2πK

∞∫
−∞

dx
∞∫
0

dτ
[
1
u
(∂τα)

2 + u (∂xα)
2
]
+

+
J⊥S

πξ

∞∫
−∞

dx
∞∫
0

dτ ρ(x)
√

1− n2z(x, τ) cos [2φ(x, τ)] + SWZ. (4.20)

It is further assumed, that nz is still a slow variable. So that the model essentially
reduces to a sine-gordon model, which RG equations are the well-known Kosterlitz-
Thouless RG equations.
The scaling dimension d of the cosine can be derived from the two-point correlation
function 〈

ei2φ(x,τ)e−i2φ(0,0)
〉
=

1
[x2 + u2τ2]K

, (4.21)

so that
d = K. (4.22)

The terms from the OPE, which contribute to the RG equations are

lim
x→y

: einφ(x) :: e−inφ(y) =
1

|x− y|2K
−

1
|x− y|2K−2

n2

2

[
(∂xφ)

2 +
1
u2

(∂τφ)
2
]

(4.23)
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We can read off the OPE coefficient of interest

Cn,−n,0 =
n2

2
(4.24)

from which one immeadiately arrives at the RG equations

dJ⊥
dl

= (2− K)J⊥ (4.25)

dK
dl

=
1
2
J2⊥K

2 (4.26)

Figure 4.1: RG flow for the density of magnetic impurities embedded into a helical
edge liquid (Source: [24])

4.3 Discussion of the RG equations

The picture above suggests that J⊥ flows to strong coupling at all K < 2. However,
we know from the case of K = 1 (red line), which corresponds exactly to the work
by Altshuler et al., that strong coupling does not correctly capture the physics. In
the fermionic calculation the RG flow can cut by the large gap in the fermionic
spectrum. So, while the RG equations are significant in the strongly attractive
region, where they suggest that backscattering becomes irrelevant and perfect
conductance is restored, in the region K < 2 the only information we can extract
from them is, that we are deeply in a massive regime. To gain further insight into
the physical properties of this regime we are required to construct an effective
massive theory for this regime. This will be the subject of the next chapter.
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Chapter 5

Effective Action for the Interacting Edge
Mode of Topological Insulators with
Kondo Impurities

In the last section we have argued, that in order to access the transport properties
of the region K < 2, we need to construct an effective gapped action. We will do so
self-consistently using Feynman’s variational principle [12].

5.1 Construction of a variational free energy functional

The basic idea behind Feynman’s variational principle is to construct a variational
free energy funtional from an upper bound of the true free energy and minimize it
in the subspace of all variational actions. The subspace of variational actions is
usually, like in our case, the space of all quadratic actions.

Let Sini be the full action of our problem and S0 an action from the subspace of
variational actions. It is possbile to express the free energy of the system described
by Sini using averages with respect to S0 as follows

F = −T log
(∫
Dφ e−Sini

)
= −T log

(∫
Dφ e−S0e−(Sini−S0)

)
=

= F0 − T log〈e−(Sini−S0)〉0. (5.1)

The expression on the right hand side is exact and usually very difficult to compute
Using the convexity property of the exponential function, 〈eX〉 > e〈X〉, one can
derive an upper bound for the free energy (5.1)

F 6 Fvar[S0] = F0 + T〈Sini − S0〉0. (5.2)

If we have chosen an appropriate subspace of variational actions, it is possible
to evaluate Equation (5.2) for every one of them. By minimizing Fvar[S0] over
the subspace of all variational actions, we arrive at an effective action, which
approximates the full action Sini.

31



Chapter 5 Effective Action for the Interacting Edge Mode of Topological Insulators
with Kondo Impurities

5.2 Computation of the effective action for the interacting
helical edge

Let us apply the procedure outlined before to our system. The full action reads

S =
1

2πK

∞∫
−∞

dx
∞∫
0

dτ
[
1
u
(∂τφ)

2 + u (∂xφ)
2
]
+

1
2πK

∞∫
−∞

dx
∞∫
0

dτ
[
1
u
(∂τα)

2 + u (∂xα)
2
]
+

+
J⊥S

2πξ

∞∫
−∞

dx
∞∫
0

dτ ρ(x)
√

1− n2z(x, τ) cos [2φ(x, τ)] + SWZ. (5.3)

As before, we will assume the fields α(x, τ),nz(x, τ) to be constant on the
characteristic scale of the bosonic field φ(x, τ), so we will disregard the terms
which depend only on them for a moment and focus on deriving an effective action
for the bosonic sector gapped due to backscattering off magnetic impurities

Sini =
1

2πK

∞∫
−∞

dx
∞∫
0

dτ
[
1
u
(∂τφ)

2 + u (∂xφ)
2
]

−
J⊥S

2πξ

∞∫
−∞

dx
∞∫
0

dτ ρ(x)
√

1− n2z(x, τ) cos [2φ(x, τ)] . (5.4)

The variational quadratic action has the general form

S0 =
1

2βL

∑
q

G−1 (q)φ∗ (q)φ (q) . (5.5)

By plugging 5.4 and 5.5 into Equation (5.2) on the previous page, we can compute
the variational free energy dependeng on G (q)

Fvar = −
T

2

∑
q

G (q) +
T

2πuK

∑
q

[
ω2 + u2k2

]
G (q)−

−
J⊥SN

√
1− n2z

2πξ
e−

2
βL

∑
qG(q). (5.6)

The stationarity condition δFvar
δG(q)

!
= 0 implies a self-consistent equation for the

Green’s function G (q)

G−1 (q) =
1
πuK

[
ω2 + u2k2

]
+

2J⊥S
√

1− n2zρ
πξ

e−
2
βL

∑
qG(q), (5.7)
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which can be solved with the ansatz

G−1 (q) =
1
πuK

[
ω2 + u2k2 + ∆2] . (5.8)

The gap can be computed by plugging the ansatz 5.8 into 5.7, which leads to

∆2

πuK
=

2J⊥S
√

1− n2zρ
πξ

e−K log(D∆ ), (5.9)

whihc can be solved for ∆

∆ = D

(
2J⊥S

√
1− n2zρK
D

) 1
2−K

. (5.10)

5.3 Properties of the effective action

5.3.1 Form of the gap

1.0

1.0

Figure 5.1: Plot of the gap for 0 < K < 2

The qualitative dependence of the gap on the Luttinger parameter is depicted in
Figure 5.1. It is maximal for moderate attractive or repulsive interaction strengths.
For strongly attractive interactions backscattering becomes irrelevant, so that the
gap goes to zero. Near K = 0 backscattering is supressed by the onset of Wigner
cristallization, so that the gap becomes zero as well. The gap naturally also goes to
zero, if the density of the impurities is reduced.
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5.3.2 Free energy

Figure 5.2: Spectrum of the gapped bosons, the lower branch of the spectrum is
unphysical

It is well known [22], that in bosonic systems the chemical potential must lie at or
below the lowest occupied energy level. Hence, a gapped bosonic system at zero
temperature has free energy zero. If one looks at our effective bosonic action, one
is tempted to believe, that this doesn’t hold in our case. The chemical potential
is at zero, while the dispersion relation ω = ±

√
u2k2 + ∆2 is unbound from below.

Therefore we need to subtract the free energy that comes from the unphysical
occupied states below the chemical potential, in order to be capable of properly
extracting physical quantities.
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Chapter 6

Physics from the effective action

6.1 Transport properties of an helical edge state coupled
to magnetic impurities from bosonization

6.1.1 Isotropically in-plane coupled impurities

In the same spirit as in Altshuler et al [2]. for the case of non-interacting helical
edge states, we want to derive an effective action for α(x, τ). Hence, we start with
the effective gapped gaussian action derived in the previous section together with
the terms, which describe the degrees of freedom of the impurity, which were
disregarded in equation (5.5) on page 32 and an additional source term h(x, τ),
which initally coupled to the density ∂xφ(x, τ) and after the shift (equation (4.20) on
page 29) couples both to the ∂xφ(x, τ) and ∂xα(x, τ)

S = Seff +

∞∫
−∞

dx
∞∫
0

dτ h(x, τ)∂xφ(x, τ)+

+
1

2πK

∞∫
−∞

dx
∞∫
0

dτ
[
1
u
(∂τα)

2 + u (∂xα)
2
]
+ h(x, τ)∂xα(x, τ) + SWZ. (6.1)

Following the ideology from chapter 2, we want to derive the contribution to the
action from quadratic fluctuations of the out-of-plane component of the impurity
spins nz(x, τ). In the previous section, we briefly outlined, that we need to subtract
contributions to the free energy from an ill branch of the bosonic spectrum, that
lies below the chemical potential. Fluctuations of nz lead to fluctuations of the
magnitude of the gap and so for a change in the energy, which is subtracted. It
is this contribution, where we can extract the contribution of fluctuations of nz to
the action from. The precise technicalities of the procedure are presented in the
appendix. The effective term has the same form as for the non-interacting helical
edge, except that the bosonic gap from equation (5.10) on page 33 is substituted
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in place of the fermionic gap

Snz =

∫
dxdτ∆2(x) log

(
D

∆(x)

)
n2z. (6.2)

By integrating out nz(x, τ) we get the effective action for α(x, τ):

Seff =
1

2πuαKα

∫
dxdτ

[
(∂τα)

2 + u2 (∂xα)
2
]
−

1
2π

∫
dxdτ h(x, τ)∂xα, (6.3)

which has, as expected, the form of a Tomonaga-Luttinger action with

Kα = K
uα

u
uα = u

√
4∆2 log

(
D
∆

)
uKρ2 + 4∆2 log

(
D
∆

) (6.4)

We have therefore ideal conductance with Drude weight u
2

v2F
.

6.1.2 Anisotropically in-plane coupled impurities

Analogously to the non-interacting case, adding a random anisotropy to the
boson-impurity coupling will add an disorder term to Seff . To show this, we start
with action (4.19) and add a random anisotropy term to the coupling between
electrons and bosons

Sani = S+
J⊥S

2πξ

∞∫
−∞

dx
∞∫
0

dτ ρ(x)
[√

1− n2z(x, τ)ε(x)e
iα(x,τ)ei2φ(x,τ) + h.c.

]
. (6.5)

As before, we shift the φ field φ(x, τ) − α(x,τ)
2 → φ(x, τ)

Sani = S+
J⊥S

2πξ

∞∫
−∞

dx
∞∫
0

dτ ρ(x)
[√

1− n2z(x, τ)ε(x)e
i2α(x,τ)ei2φ(x,τ) + h.c.

]
(6.6)

Following the steps from previous section, we arrive at a modified expression for
the gap, where we neglect terms, that are higher order in nz and ε.

∆ = D

(
2J⊥S

√
1− n2z

[
1+ ε(x)ei2α(x,τ) + ε∗(x)e−i2α(x,τ)

]
ρK

D

) 1
2−K

(6.7)

The derivation of the contributions of nz and the anisotropy to the action is outlined
in the appendix. Compared to the isotropic case, anisotropy gives here, exactly as
in the non-interacting fermionic case, rise to an additional term of the form

Sani = Seff +

∫
dxdτ E2(x) cos [2α(x, τ) − γ(x)] . (6.8)
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6.2 Helical edge states at attractive interaction with magnetic impurities

Such action describes an disorder Luttinger liquid. Its physics have been discussed
using a renormalization group approach by Giamarchi and Schulz. A short review
of their work is provided in the appendix. For Kα < 3

2 disorder induces Anderson
localization, so that the dc conductance goes down to zero. At Kα = 3

2 the system
undergoes a phase transition to a conductor.

6.2 Helical edge states at attractive interaction with
magnetic impurities

The scenario described in the previous section holds for small attractive
interactions, 1 < K < 2. As long as backscattering of the bosons by the Kondo im-
purities and the anisotropy in their coupling is relevant, the system stays an insulator.

As already outlined in the discussion of the RG flow of the system, the picture
drastically changes for K > 2. In this region backscattering is irrelevant, so that the
systen becomes an ideal helical edge state.

The analysis from the previous section relies heavily on the fact that one is
deep in the massive phase, where the spins are ordered and we have separate
characteristic lengthscales for the fields describing bosons and spins. This does not
hold for the region K . 2, so that our bold analysis is not capable of capturing the
essential features of that region. However, as we know that we are in an insulating
phase for K = 1 and in an ideal conducting helical edge state for K > 2, we can
conclude, that there must be an insulator-conductor phase transition inbetween.
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Chapter 6 Physics from the effective action

6.3 Helical edge states at repulsive interaction with
magnetic impurities

For weak interacting helical edge states K . 1 we have a gap that is large compared
to the Kondo temperature, so that all of our arguments from the first section
hold true and we have an Anderson insulator, due to random anisotropy. For
strong interactions (K → 0) and low density (ρ → 0) the gap goes to zero. The
range of correlations between magnetic impurities becomes smaller until single
impurity physics becomes important [38, 8]. As was discussed in Chapter 2, at
zero temperature, single Kondo impurities become screened and decouple from
the helical liquid. The characteristic energy scale for this process is provided by the
Kondo temperature

TK = D

(
J⊥

1− K

) 1
1−K

. (6.9)

0.1 0.5

0.2

0.8

Figure 6.1: Plot of TK
100D for J⊥ = 0.01 (limit of 1− K� J⊥)

As opposed to the gap ∆, the Kondo temperature grows as K→ 0. In the region,
where TK � ∆ Kondo screening dominates the physics of the edge state. When all
impurities are screened and decoupled from the helical edge, it becomes again an
ideal conductor. Thus, the system undergoes an insulator-conductor transition.
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6.4 Phase diagram of helical edge states with magnetic impurities

6.4 Phase diagram of helical edge states with magnetic
impurities

Figure 6.2: Phase diagram of the helical edge state with Kondo impurities

The discussion above is summarized in the diagram 6.2. For strong repulsive
interactions and low density of impurities, the gap goes to zero and the Kondo
impurities become screened. Screened impurities decouple from the edge, which
thusly becomes conducting.

When interactions are reduced, magnetic ordering of the spins prevents the
impurity from being screened. Then, if the coupling between the edge and the
impurity is in-plane and randomly anisotropic, the edge state becomes localized. The
localized state is stable for small-to-intermediate repulsive or attractive interactions,
until backscattering becomes irrelevant at strongly attractive interaction strengths,
turning the edge again ideally conducting.
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Chapter 7

Conclusion, Open questions and
Outlook

7.1 Conclusion

We have discussed the properties of interacting edge states of quantum spin Hall
insulators coupled to magnetic impurities. The out-of-plane coupling between
impurities and edge plays an improtant role, as it was shown to be equivalent
to altered interactions inside the edge. From Feynman’s variational principle, an
effective gapped gaussian action for the system was constructed. A rich phase
diagram was uncovered using the effective action. For high impurity densities
and weak-to intermediate interactions, the system is an Anderson insulator, like in
the non-interacting case, which was considered by Altshuler et al., previously. At
low density and strong repulsive interactions the system undergoes a insulator-
conductor phase transition due to the onset of Kondo screening. At strong attractive
interactions, the system undergoes a insulator-conductor phase transition as well,
since backscattering becomes irrelevant there.

7.2 Open questions

7.2.1 Critical properties of the transition region

While our approach is sufficient to argue for the presence of phase transitions, it
does not capture accurately the critial properties in the transition region. In the
repulsive region, we can argue, that at some point Kondo screening dominates
over the ordering of the spins, but neither the exact value of K nor the type of
phase transition can be deduced from that reasoning. Similarly for attractive
interactions, we could naively expect a phase transition at K = 2, however, as the
gap deacreases, the do not have a clear separation of lengthscales, deeming our
derivation and the effective action for α(x, τ) inapplicable.
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7.2.2 Z2 Invariant

While our discussion implies a series of phase transitions, we have so far not
touched at all the question of how this should be understood in terms of bulk-
boundary correspondence and the Z2 invariant. Our predicitions are supported by
purely one-dimensional calculations, although we use the fact, that the underlying
physical object is two-dimensional, when we claim, that the screened Kondo
impurity decouples from the edge liquid, instead of blocking any transport through
it, as would be the case in a truly one-dimensional Luttinger liquid. In fact, it was
shown by Wu et al., that a helical edge state can not exist as a one-dimensional
object. Thus, in order to understand, whether our results imply topological phase
transitions, it is undispensable to perform a calucaltion of theZ2 invariant with a
two-dimensional Hamiltonian of a quantum spin Hall insulator.
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Appendix A

Bosonization of an helical edge state

A.1 Construction of a bosonic representation of the
Hamiltonian

The edge state of a quantum spin Hall insulator is effectively one dimensional and
consists of two species of counterpropagating Dirac fermions [29]

H = −ivf

∫
dx
[
ψR∂xψR −ψL∂xψL

]
. (A.1)

Figure A.1: Comparison between single particle excitations in (a) higher dimensions
and (b) one dimension (Source: [12])

It is a special feature of one dimensional systems, that unlike in higher dimensions,
it is not possible to excite a single particle-hole excitation in them, but every
excitation is a collective density fluctuation

ρ†(q) =
∑
k

ψ
†
k+qψk. (A.2)

Therefore, one can expect, that it is possible to represent the Hamiltonian in
terms of such density fluctuations. For the construction, we follow the book by
Giamarchi [12]. One is interested in doing so, because density-density interactions

Hint =
1
2L

∑
q

V(q)ρ†(q)ρ(q) (A.3)
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are quadratic in these operators, so that the problem of interacting fermions
becomes exactly solvable.

Since one would like to derive a representation of the Hamiltonian in terms of
excitations from the ground state and to avoid divergences, which come from the
unboundness of the spectrum of Dirac fermions from below, one considers normal
ordered operators. Define

:ρr(x): = :ψ†r(x)ψ(x): =
1
L

∑
p

:ρr(p):e
ipx, (A.4)

the density of right/left (r = R/L) movers, with the Fourier component

:ρr(p): =

{∑
kψ
†
r,k+pψr,k, p 6= 0

Nr, p = 0
, (A.5)

where Nr is defined as

Nr =
∑
k

[
ψ
†
r,kψr,k −

〈
0
∣∣∣ψ†r,kψr,k∣∣∣ 0〉] . (A.6)

Using the commutation relations of the fermions, it is possible to derive
commutation relations for the density fluctuation operators. Densities of different
species commute [

ρ
†
R(p), ρ

†
L(p
′)
]
= 0. (A.7)

For identical species one has to take properly care of subtraction of divergences, in
order to arrive at the correct result[

ρ†r(p), ρ
†
r(−p

′)
]
=
∑
k,k ′

[
ψ
†
r,k+pψr,k ′ ,ψ

†
r,k ′−p ′ψr,k ′

]
=

=
∑
k,k ′

(
ψ
†
r,k+pψr,k ′δk,k ′−p ′ −ψ

†
r,k ′−p ′ψr,kδk ′,k+p

)
=

=
∑
k

(
ψ
†
r,k+pψr,k+p ′ −ψ

†
r,k+p−p ′ψr,k

)
=

=
∑
k

(
:ψ†r,k+pψr,k+p ′ : − :ψ†r,k+p−p ′ψr,k:

)
︸ ︷︷ ︸∑

k:ψ
†
r,k+pψr,k+p ′ :−

∑
k ′ :ψ

†
r,k ′+pψr,k ′+p ′ :=0

+ (A.8)

+
∑
k

(〈
0
∣∣∣ψ†r,k+pψr,k+p ′∣∣∣ 0〉−

〈
0
∣∣∣ψ†r,k+p−p ′ψr,k∣∣∣ 0〉) =

=
∑
k

(〈
0
∣∣∣ψ†r,k+pψr,k+p ′∣∣∣ 0〉−

〈
0
∣∣∣ψ†r,k+p−p ′ψr,k∣∣∣ 0〉) . (A.9)
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A.1 Construction of a bosonic representation of the Hamiltonian

Equation (A.9) on the facing page can be evaluated for given single particle creation-
and anihilation operators. In the simple case of periodic boundary conditions[

ρ†r(p), ρ
†
r(−p

′)
]
= −δr,r ′δp,p ′

rpL

2π
. (A.10)

Up to a normalization factor, this is the commutation relation for a species of
bosonic particles (p > 0)

b†p =

√
2π
L|p|

∑
r

θ(rp)ρ†r(p) (A.11)

bp =

√
2π
L|p|

∑
r

θ(rp)ρ†r(−p), (A.12)

where the Heaveside functions θ(rp) ensure, that left moving excitations have
negative momentum and right moving excitations have positive momentum.

Assume, that the b operators generate a complete basis of all possible excitations,
so that it is also possible to represent the Hamitonian H = vF

∑
r,q rqψ

†
r,qψr,q with

them. Consider therefore the commutator (p 6= 0)

[bp,H] =

√
2π
L|p|

∑
r,r ′,k,q

vFqθ(rp)
[
ρ†r(−p),ψ

†
r ′,qψr ′,q

]
=

=

√
2π
L|p|

∑
r,r ′,q,k

vFqθ(rp)
[
ψ
†
r,k−pψr,k,ψ

†
r,qψr,q

]
=

=

√
2π
L|p|

∑
r,r ′,q,k

vFqθ(rp)
(
ψ
†
r,k−pψr,qδr,r ′δk,q −ψ†r,qψr,kδr,r ′δk−p,q

)
=

= vFp

√
2π
L|p|

∑
r,k

θ(rp)ψ†r,k−pψr,k = vFp

√
2π
L|p|

∑
r

θ(rp)ρ†r(−p) =

= vFpbp. (A.13)

The commutator between the Hamiltonian and a bosonic creation operator can be
derived analogously.

Apparently, a Hamiltonian, that would suffice the commutation relation (A.13) has
the form

H =
πvF
L

∑
r

N2
r +
∑
p6=0

vF|p|b
†
pbp, (A.14)

where the first term on the latter side corresponds to the p = 0 contribution to the
Hamiltonian.
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A.2 Bosonic representation of the single-particle
operators

In order to express every fermionic process through bosonic operators, one would
like to find a bosonic representation of the single particle creation- and anihilation
operators. Similarly to the derivation of the Hamiltonian one can compute the
commutator[

ρ†r(p),ψr(x)
]
=

1
L

∑
k,q

eiqx
[
ψ
†
r,k+pψr,k,ψr,q

]
= = −eipxψr(x).

An operator that fulfills this commutation relation is given by

ψr(x) = Ure

∑
p

2πr
pL e

ipxρ
†
r(−p)

, (A.15)

where Ur is a so called Klein factor. Klein factors are needed, because bosonic
excitation, which correspond to densitry fluctuations, are charge neutral, while
the creation or annihilation of a fermion increases or reduces the total carge
in the system. Therefore, to make the mapping between the bosonic and the
fermionic basis a rigorous identity on the operator level, one needs to introduce
such additional operators.

A.3 Chiral fields φ(x) and θ(x)

Instead of using the bosonic operators, it is often convenient for computations a
representation in terms of chiral fields φ(x) and θ(x). They are defined as

φ(x) = −π(NR +NL)
x

L
−
iπ

L

∑
p6=0

√
L|p|

2π
1
p
exp

(
−
1
2
χ|p|− ipx

)(
b†p + b−p

)
(A.16)

θ(x) = π(NR −NL)
x

L
+
iπ

L

∑
p6=0

√
L|p|

2π
1
|p|

exp
(
−
1
2
χ|p|− ipx

)(
b†p − b−p

)
(A.17)

where χ is a short-distance cutoff, which in the case of an edge state of a quantum
spin Hall insulator, usually taken to be the penetration depth into the bulk of the
material.

In the following, all quantities are understood to be evaluated in the thermodynamic
limit L → ∞. Using the commutation relations of the bosons, one gets the
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A.3 Chiral fields φ(x) and θ(x)

commutation relations for the chiral fields

[φ(x), θ(y)] =iπsgn(x− y) (A.18)

⇒
[
φ(x),

1
π
∇θ(y)

]
=iδ(x− y), (A.19)

(A.20)

the latter has the form of a canonical comutation relation, so we can define the
conjugate momentum to the field φ(x)

Π(x) =
1
π
∇θ(x). (A.21)

From Equation (A.17) on the preceding page one can give Π(x) a physical meaning:

Π(x) = ρR(x) − ρL(x), (A.22)

which is in the case of the helical edge, where right movers are spin-up particles
and left movers are spin-down particles a spin density. Similarly equation (A.16) on
the facing page indicates that

1
π
∇φ(x) = ρR(x) + ρL(x), (A.23)

which is the charge density of the edge state.
Finally, the Hamiltonian and the single-particle operators can be rewritten in terms
of the chiral fields

H =
vF
2π

∫
dx
[
(πΠ(x))2 + (φ(x))2

]
(A.24)

and
ψr(x) =

Ur√
2πχ

eirkFxe−i[rφ(x)−θ(x)] (A.25)
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A.4 Bosonization of an interacting helical edge state

Figure A.2: Possible interaction processes in an helical edge liquid

As mentioned above, the usefulness of the bosonization procedure comes from
the fact, that we can exactly the problem of one dimensional interacting fermions
with it. The interaction is assumed to be short ranged. All possible interaction
processes are illustrated in Figure A.2. The helical structure of the edge state only
allows forward scattering, of which there are two types. Forward scattering of
particles with equal chirality is described by the coupling strength g4. It can be cast
in terms of the chiral fields using equations (A.22) and (A.23):

g4

2

∑
r

ψ†r(x)ψr(x)
∑
r

ψ†r(x)ψr(x) =
g4

2

∑
r

ρr(x)ρr(x) =

=
g4

8π2
∑
r

(∇φ(x) − r∇θ(x))2 = g4

8π2
[
(∇φ(x))2 + (∇φ(x))2

]
. (A.26)

Moreover, we can have forward scattering between particles of opposite chirality.
That process is characterized by the g2 coupling. Similarly to g4 it can be rewritten
in bosonic form

g2ψ
†
R(x)ψR(x)ψ

†
L(x)ψL(x) = g2ρR(x)ρL(x) =

=
g2

4π2
[
(∇φ(x))2 − (∇θ(x))2

]
. (A.27)

Eventually, one can sum the kinetic part (A.24) and the two interaction parts (A.26)
and (A.27) to form a generic Hamiltonian of an interacting helical edge

H =
1
2π

∫
dx
[
uK (πΠ(x))2 +

u

K
(∇φ(x))2

]
, (A.28)
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where the effective constants u and K

u =vF

[(
1+

g4

2πvF

)2

−

(
g2

2πvF

)2
]

(A.29)

K =

√√√√1+ g4
2πvF

− g2
2πvF

1+ g4
2πvF

+ g2
2πvF

(A.30)

were introduced. u has the units of a velocity and can be understood as the velocity
of the bosonic excitations. K is dimensionless and can in general be understood as
a measure of interaction strength. K > 1 corresponds to systems of attractively
interacting fermions, while K < 1 characterize phases of repulsive fermions.

49





Appendix B

Giamarchi-Schulz renormalization
group

The problem of disordered interacting electrons in one dimension is described by
the Hamiltonian [13]

H = H0 +Hint +Hdis, (B.1)

where H0 +Hint is the Hamiltonian of interacting fermions and

Hdis =

∫
dx η(x)

[
ψ̃
†
R(x)ψ̃R(x) + ψ̃

†
L(x) + ψ̃

†
L(x)

]
+ (B.2)

+

∫
dx ξ(x)

[
ψ̃
†
R(x)ψ̃L(x) + ψ̃

†
L(x) + ψ̃

†
R(x)

]
, (B.3)

where η(x) and ξ(x) are random forward- and backscattering potentials obeying
gaussian statistics

η(x)η(x ′) = Dδ(x− x ′) (B.4)

η(x)ξ(x ′) = 0 (B.5)

ξ(x)ξ∗(x ′) = Dδ(x− x ′) (B.6)

ξ(x)ξ(x ′) = Dδ(x− x ′). (B.7)

This problem was discussed using a bosonization and renormalization group
approach by Giamarchi and Schulz [13, 12]. As outlined before, bosonization
allows to treat interactions in this problem exactly. Disorder is then added as a
perturbation, so that the total bosonized Hamiltonian reads

H = HTL +Hdis (B.8)

HTL =
1
2π

∫
dx
[
uK (πΠ(x))2 +

u

K
(∇φ(x))2

]
(B.9)

Hdis = −

∫
dx η(x)

∇φ
π

+
1

2πα

∫
dx
[
ξ∗(x)ei2φ(x) + h.c.

]
(B.10)
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Forward scattering can be absorbed into a shift of the φ field

φ→ φ̃(x) = φ−
K

u

x∫
dy η(y) (B.11)

and therefore does not affect the conductivity, because current-current correlation
functions are proportional to correlators of θ. The additional phase in the
backscattering change does not change the statistics of the random backscattering
and can be included in a redefinition of ξ(x):

ξ(x)→ ξ̃(x) = ξ(x)e−i
2K
u

∫x dy η(y). (B.12)

Hence, only the backscattering part of the disorder terms is relevant for conduc-
tance properties of the system.

When expectation value of observables are computed, one has to average over
the field configurations for a given realization of disorder V

〈O〉V =

∫
DφO(φ)e−SV(φ)∫
Dφe−SV(φ)

(B.13)

and over all possible realizations of the disorder

〈O〉 =
∫
DVp(V)〈O〉V∫
DVp(V)

. (B.14)

In practise it is more reasonable to perform the average over disorder before the
ensemble average, so that translational symmetries of the system are restored,
which simplifies the calculations. Averaging over the gaussian disorder distribution
would be simple, if only the numerator would be dependent on the disorder
configuration. The denominator can be transformed into a numerator turn using the
replica trick. The replica trick relies on the limit

1∫
Dφe−SV(φ)

= lim
n→0

[∫
Dφe−SV(φ)

]n−1

. (B.15)

Hence, one can replace the denominator by a set of replica fields and take the limit
of zero replica fields at the end after the disorder averaging

〈O〉V = lim
n→0

∫
Dφ1Dφ2...DφnO(φ1)e

−
∑n
a=1 SV(φa). (B.16)

The disorder averaged quantity reads then

〈O〉 = lim
n→0

∫
Dφ1Dφ2...DφnO(φ1)e

−Seff(φ1,...,φn), (B.17)
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with an effective disorder averaged action Seff(φ1, ...,φn), where the replica fields
are in genral coupled with each other.

For the disordered Luttinger liquid the replicated effective action has the form

Seff =

n∑
a=1

SaTL −
D

(2πα)2

n∑
a=1,b=1

∫
dxdτdτ ′ cos

(
φa(x, τ) − φb(x, τ ′)

)
. (B.18)

The RG equations can be derived in a similar fashion as was outlined in chapter 4.
On the tree level the flow equation for the disorder strength is

dD̃
dl

= (3− 2K)D̃, (B.19)

where D̃ = 2Dα
πu2

is the unitless disorder strength.

For K < 3
2 disorder is relevant and corresponds to an Anderson insulating

phase [1]. When K goes above K = 3
2 the disorder becomes irrelevant and the

Luttinger liquid is restored. For the Anderson localized phase one can estimate the
localization length as the lengthscale at which D becomes of order one. Integrating
the flow equations till the localization length and then solving for it gives

ξloc = α

(
1
D

) 1
3−2K

. (B.20)
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Appendix C

Free energy of the fluctuations of nz and
ε(x) from shift of vacuum energies

We consider a gapped bosonic system, as the one corresponding to the effective
action derived in chapter 5. The dispersion relation has the ill form

ω = ±
√
u2k2 + ∆2, (C.1)

which is unphysical since it allows states below the chemical potential. Therefore
we need to subtract the unphysical lower branch from all of our calculations.

In our problem, the gap has the form given by Equation (5.10) on page 33 and
we are interested in the change of the free energy due to finite fluctuations of the
nz from nz = 0. The change of the free energy under an arbitrary change of gap
∆i → ∆f is given by

δF = Ftot,∆f − Ftot,∆i +
T

2

∑
k

log
1− exp

(√
u2k2 + ∆2

i

)
1− exp

(√
u2k2 + ∆2

f

) , (C.2)

where the first term is the free energy, which we would naively get from the path
integral, which takes both branches into account and the last term corresponds to
the aforementioned subtraction of the unphysical branch.

C.1 Application to the case of isotropically in-plane
coupled impurities

The gap for isotropically impurities is computed in Equation (5.10) on page 33

∆ = D

(
2J⊥S

√
1− n2zρK
D

) 1
2−K

. (C.3)
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energies

If we expand the subtracted term in nz we get

δF = exp

(
−
n2z
2

∑
k

∆2

T
√
u2k2 + ∆2

)
= exp

[
−
n2z
2
∆2 log

(
D

∆

)]
, (C.4)

which is exactly the term, which we expected to get, judging from the fermionic
calculation in Chapter 2.

C.2 Application to the case of anisotropically in-plane
coupled impurities

Analogously, using the gap, which includes the anisotropy terms

∆ = D

(
2J⊥S

√
1− n2z

[
1+ ε(x)ei2α(x,τ) + ε∗(x)e−i2α(x,τ)

]
ρK

D

) 1
2−K

(C.5)

and expanding in both nz and ε(x), ε∗(x) one gets

δF = exp
[(

−
n2z
+
ε(x)ei2α(x,τ) + ε∗(x)e−i2α(x,τ)

)
2∆2 log

(
D

∆

)]
. (C.6)
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