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1 Introduction
The invention of quantum mechanics in the beginning of the last century has started
one of the biggest changes of human life in modern history. It led to new types of mi-
croscopes, expanding the frontier of research to unexpected small scales and an exciting
understanding of biological and chemical processes, and it was the foundation of the
technological progress which resulted in society changing inventions such as the laser
or the personal computer. Nowadays, the ongoing technological development causes
electronic devices of our every day life being manufactured on the scale of nanometers.
The same holds true for biological and chemical systems, which are investigated and
manipulated on increasingly small length-scales. To understand and use the occur-
ring physics of these systems, it becomes increasingly important to understand how
solid state systems behave on a quantum mechanical scale when interacting with their
surroundings.

To describe such systems with only a few degrees of freedom coupled to an envi-
ronment with generally infinite number of degrees of freedom in theoretical physics,
one resorts on so-called quantum impurity models. In such models, the environment
is represented by a non-interacting bath consisting optionally of fermionic (e.g. the
Kondo-model [1, 2]) or bosonic particles (e.g. spin-boson model [3, 4]) allowing to de-
scribe charged or non-charged environments.

However, only few quantum impurity models can be solved exactly due to the
large number of degrees of freedom of the environment. In addition, describing such
situations theoretically in terms of perturbation theories can fail to capture all physical
properties since multiple energy scales can become important. Nowadays, the preferred
methods to fully investigate the characteristics of such models are numerical schemes
such as the Numerical Renormalization Group (NRG) [5, 6] and the Density Matrix
Renormalization Group (DMRG) [7, 8].

In 1987 first introduced by Leggett [3], the spin-boson model came into focus be-
cause it is the easiest non-trivial quantum impurity model with a bosonic environment
that can not be solved exactly. Nevertheless, this model poses a huge challenge to
both numerical and analytical approaches, especially towards the understanding of
the critical properties. The first numerical results investigating its critical phenomena
were contradictory and lead to huge discussions in the scientific community. Although
the outcome of bosonic NRG suggested a failure of quantum-to-classical correspon-
dence [9, 10, 11], an analytic technique describing the quantum phase transition of the
spin-boson model by mapping it onto the classical one-dimensional Ising chain, other
numerical schemes confirmed its validity [12, 13, 14]. Until now, NRG and DMRG are
not able to completely capture the physical behavior of the spin-boson model. More
recent results showed that the reason seems to be the way the continuous bath modes
are treated numerically [15], resulting in an incorrect description of thermal critical
properties and implying wrong numerical predictions for bosonic impurity models in
certain parameter regimes in the phase diagram.

Motivated by this conceptual problem, we present an alternative way of setting up
the starting point of NRG or DMRG calculations, which allows us to keep track of all
important quantities of the environment. We discuss how to implement the information
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of these so-called ”open Wilson chains” and verify that this approach leads to results in
agreement with the theoretical predictions for the spin-boson model and the dissipative
harmonic oscillator.

This thesis is structured as follows: In chapter 2 we start introducing the matrix
product state formalism and then give an overview over bosonic NRG and DMRG,
where the usage of open Wilson chains plays a crucial role to describe the investigated
system correctly. Both methods are used in this thesis to obtain the numerical results.

In the beginning of chapter 3, we concentrate on the iterative construction of an
open Wilson chain and show that we can keep track of all relevant quantities of the
model when carrying out this construction. In the end of the chapter, we discuss a
proper implementation of an open Wilson chain within NRG and DMRG, the so-called
”reduced Wilson chains”.

Using reduced Wilson chains, we investigate the dissipative harmonic oscillator
(DHO) and the spin-boson model (SBM) in chapter 4. We show that the critical
finite-temperature susceptibility of the DHO and SBM are now, in contrast to previous
results, in agreement with theoretical predictions. Additionally, we take a look at the
energy-flow diagram of the DHO and compare results obtained by diagonalizing the
Hamiltonian exactly with results obtained with VMPS when optimizing not only the
ground state but the m lowest levels.

In the last chapter 5, we summarize the main results of this thesis and give an
outlook on possible topics for future research and improvements of the presented meth-
ods.
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2 Numerical Methods
In this chapter, we introduce two numerical methods used to study quantum impurity
models, which are the basic methods in this thesis: the Numerical Renormalization
Group (NRG) [5, 6] and the Density Matrix Renormalization Group (DMRG) [7, 8].
Both methods can be formulated in terms of Matrix Product States (MPS) which lead
to a deeper understanding of the methodology and modifications, hard to develop in
the conventional framework [16, 17, 18].

This section is based on more extensive reviews on the topic [17, 19] without covering
every detail and giving derivations. We first summarize the most important properties
of MPS, focusing on applications to bosonic systems only. Afterwards, we discuss
bosonic NRG [9, 20] and DMRG, pointing out the crucial differences [14] between
these two methods.

2.1 Matrix Product States

The starting point of our introduction is an one-dimensional chain consisting of N
equal sites with local and nearest-neighbor interaction only. On each site we have a
local Hilbert space with dimension d and thus a total Hilbert space H describing the
whole system of dimension dim(H) = dN . A generic quantum many body state |ψ〉 in
H can be written as

|ψ〉 =
∑

n1...nN

ψn1...nN |n1〉 . . . |nN 〉 , (2.1)

where ni = 1, . . . , d labels the local basis states of site i. By decomposing and reor-
ganizing the coefficients in Eq. (2.1), we can write a quantum many body state as a
product of matrices A[nk]

|ψ〉 =
∑

n1...nN

A[n1]A[n2] . . . A[nN ]|n1〉 . . . |nN 〉 . (2.2)

In doing so, |ψ〉 consists of N ×d so-called A-tensors, because each of the d local states
nk on every site is described by one matrix A[nk]. Since we consider a chain with open
boundaries, the first index of A[n1] and the second index of A[nN ] are equal to one.
Therefore A[n1] and A[nN ] are normal row and column matrices.

If the dimension of the A-tensors is sufficiently large, the representation of |ψ〉 into
an MPS is mathematically exact. However, an exact representation often is numerically
not feasible but fortunately also not necessary. Even if we truncate the A-tensors with
respect to some upper cutoff dimension D, we still can find a very good approximation
of the ground state in one-dimensional systems. Since the entanglement entropy of
the ground state scales according to an area law [21, 22, 23], which in case of of a
one-dimensional chain with short-ranged interaction and a gapped spectrum predicts
an even constant entropy, we only need a small partition of the total Hilbert space to
describe the ground state accurately.
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(b)

|lk〉 |rk〉

|nk〉

A[nk]

(a) A[nN−1]DD D D

|n1〉 |n2〉 |nN−1〉 |nN 〉

A[nN ]A[n2]A[n1]1 1

A[nk+1]

|nk+1〉 |nN 〉

A[nN ]A[nk−1]

|nk−1〉|n1〉

A[n1]

dd d d

Figure 1: (a) Graphical representation of a matrix product state in the global picture. Every
A-tensor A[nk] describes the contribution of one local basis set |nk〉, constituting of d elements,
to the described state |ψ〉. The upper cutoff dimension D truncates the dimension of the indices
connecting the A-tensors. The left index of A[n1] and the right index of A[nN ] connect the state
to the vacuum (indicated by a circle) which has by construction dimension one. (b) Matrix
product state in the local picture, where site k is treated specially. All A-tensors to the left of
site k are combined to an effective left basis |lk〉. Similarly, the part of the MPS right of site k
is described by the effective basis |rk〉.

2.1.1 Global and local picture

If a matrix product state is written in the form of Eq. (2.2), where the state is stored in
the A-tensors and described as product of the local Hilbert spaces, we speak of a MPS
in the global picture. In this picture all sites are treated equally.

An alternative, yet equivalent way to depict a MPS is the so-called local picture,
where one specific site is chosen as local site and all other sites are combined to effective
basis sets |lk〉 and |rk〉 for the left and right part of the chain with respect to the local
site k. The MPS state than can be written as

|ψ〉 =
∑
lkrknk

A
[nk]
lk,rk
|lk〉|nk〉|rk〉 , (2.3)

where

|lk〉 =
∑

n1...nk−1

(
A[n1] . . . A[nk−1]

)
lk
|n1〉 . . . |nk−1〉 , (2.4)

and

|rk〉 =
∑

nk+1...nN

(
A[nk+1] . . . A[nN ]

)
rk
|nk+1〉 . . . |nN 〉 . (2.5)

The A-tensor A[nk] describes the complete state as linear combination of the orthonor-
mal many-body basis sets |lk〉, |rk〉 and |nk〉. In Fig. 1, the difference between the local
and global picture is presented graphically.

This definition in mind, Eq. (2.4) and Eq. (2.5) can be reformulated to yield an
iterative construction of the effective basis sets in terms of A-tensors and local state



2 NUMERICAL METHODS 5

spaces

|lk〉 =
∑
nk−1

∑
lk−1

∑
n1...nk−2

(
A[n1] . . . A[nk−2]

)
lk−1
|n1〉 . . . |nk−2〉︸ ︷︷ ︸

|lk−1〉

A
[nk−1]
lk−1,lk

|nk−1〉

=
∑
nk−1

∑
lk−1

A
[nk−1]
lk−1,lk

|lk−1〉|nk−1〉 , (2.6)

and

|rk〉 =
∑
nk+1

∑
rk+1

A
[nk+1]
rk,rk+1 |rk+1〉|nk+1〉 . (2.7)

Usually, numerical schemes such as NRG or DMRG strongly exploit the resulting or-
thonormality conditions we derive in the next section and treat every site of the chain
iteratively in the local picture. For this case, Eqs. (2.6) and (2.7) provide the update
formalism toward the next nearest neighbor.

2.1.2 Update formalism

In principle, only the local basis states |nk〉 in Eq. (2.3) form an orthonormal basis but
every state ψ can be transformed such that the effective basis sets also obey orthonor-
mality conditions

〈lk|l′k〉 = δl,l′ (2.8)
〈rk|r′k〉 = δr,r′ . (2.9)

Applying the orthonormality conditions on Eqs. (2.6) and (2.7), it follows immediately
that the A-tensors have to fulfill the following conditions∑

ni

A[ni]†A[ni] = 1 if i < k (2.10)∑
ni

A[ni]A[ni]† = 1 if i > k . (2.11)

If we now assume that a given state |ψ〉 in the local picture at site k has an orthonormal
effective basis set |lk〉, then we can switch the local site to k+1 by performing a singular
value decomposition (SVD) of the tensor A[nk]

A[nk]A[nk+1] =
∑
i

A
[nk]
lk,i

A
[nk+1]
i,rk+1

=
∑
i

A(lknk),iA
[nk+1]
i,rk+1

=
∑
i,m

U(lknk),m

[(
SV †

)
m,i

A
[nk]
i,rk+1

]
= Ã[nk]Ã[nk+1] . (2.12)

The SVD decomposes the A-tensor in the column-orthonormal U and V matrices and
the diagonal matrix S consisting of real elements si called singular values. Therefore,
U fulfills automatically the orthonormality condition Eq. (2.10) and can be interpreted
as the new A-tensor Ã[nk] which forms with Eq. (2.6) the new orthonormal effective
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(c) left orthogonal

(a) right orthogonal

(b) local picture

Figure 2: (a) MPS in right orthogonal form, obtained by performing a number of singular value
decompositions, starting on the right end of the MPS and moving to the left end. The arrows
indicate in which direction a contraction with the conjugate A-tensor yields the identity matrix
according to the orthonormalization condition Eq. (2.10) and Eq. (2.11). Performing a number
of singular value decompositions on the left end of the chain and moving to the right constructs
a MPS in the local picture of an arbitrary site (b). Arriving at the end of the chain in this way,
we construct a left orthogonal MPS (c).

basis set |lk+1〉. SV † contracted onto A[nk+1] yields the A-tensor Ã[nk+1] of the new
local site k+1. Note that the overall state |ψ〉 does not change when all singular values
are kept. Applying this scheme iteratively starting at site 1, which by construction has
the orthonormal vacuum state as left basis, we construct a left-canonical MPS.

In the same way, we can generate a right-canonical MPS with orthonormalized right
basis set, starting at site N where the right basis is the orthonormal vacuum state by
construction and sweeping to the left, as illustrated in Fig. 2.

2.1.3 Reduced density matrix

We already mentioned in this chapter that finding the exact ground state of a many-
body system is not feasible from a numerical point of view because of the large Hilbert
space H. Nevertheless, for most cases finding a very good approximation is possible.
This can be explained via the von-Neumann entropy, indicating the entanglement of
the system

S(ρred) = −tr(ρred ln(ρred)) , (2.13)

with ρred the reduced density matrix of a subsystem (i.e. a part of the chain). In
contrast to a generic many-body state, where the entanglement and with it the size of
the coefficient space ψ scales with the system size, the entropy of the ground state scales
according to an area law [21, 22, 23]. In case of an one-dimensional chain with short-
ranged interaction and a gapped spectrum, the entropy stays constant with increasing
system size. Therefore, only a small part of the total Hilbert space is necessary to
describe the ground state accurately. To use this fact, we start again in the local
picture of site k and calculate the reduced density matrix ρredk = ρln1...nk = trrk |ψ〉〈ψ|.
Using the orthonormality conditions in the local picture, we can write the reduced
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density matrix as

ρredk =
∑

n1...nk

∑
n′1...n

′
k

(
A[n1] . . . A[nk]

)∗ (
A[n1] . . . A[nk]

)
|n1〉〈n′1| . . . |nk〉〈n′k|

=
∑
ll′

ρll′ |lk+1〉〈l′k+1| , (2.14)

and see that only its spectrum quantifies the entanglement of the left and right part of
the chain at site k. If the spectrum is distributed equally, the von-Neumann entropy S
is high, indicating a strongly entangled left and right part of the chain. On the other
hand, one dominant eigenvalue implies a small von-Neumann entropy, i.e. an almost
disentangled state. DMRG uses this fact as a truncation criterion by discarding the
smallest eigenvalues of ρredk and the corresponding state space, thus truncating only
those parts of the Hilbertspace which are the less relevant for a accurate description
of the ground state. Because of the orthonormality conditions, the spectrum of the
reduced density matrix is equivalent to the squared singular values obtained by a SVD
of A[nk]. This allows an effective combination of the truncation of the Hilbertspace with
the update formalism when moving from one local site to the next via a systematic use
of SVD [17].

2.2 Bosonic Numerical Renormalization Group

The Numerical Renormalization Group (NRG) was developed in the 1970s by Kenneth
Wilson [5, 24] and proved to be a powerful numerical method for treating fermionic
quantum impurity models. Its non-perturbative character allows the treatment of in-
teracting quantum many-body systems with a continuum of excitations with energies
spread over many orders of magnitude. This is one of its major advantages and has been
used on numerous quantum impurity models, e.g. answering many questions regarding
transport, dissipation or Kondo physics [25, 26, 27, 28, 29].

The only major restriction for the applicability of NRG is the assumption of non-
interacting baths or reservoirs the impurity is coupled to, while many-body interactions
affect only the impurity. However, there are no further constrains on the baths which
can consists of bosonic or fermionic particles.

Bulla et al. [9] applied NRG 2003 for the first time to a bosonic model in order
to calculate the critical properties of the spin-boson model. Prior to that, NRG was
only applied to fermionic systems such as the single impurity Anderson model because
bosonic baths are more challenging to treat numerically than fermionic ones and contain
problems hard to deal with. Due to Pauli’s principle, the local fermionic Hilbert spaces
stay finite and small because two fermions are restricted from occupying the same state.
However, such constraints do not exist for bosons, which can occupy a state infinitely
often yielding infinitely large Hilbert spaces that are more challenging for numerical
approaches.

Since we only consider bosonic quantum impurity models in this thesis, we introduce
NRG in the context of bosonic baths only following the description in [20]. First, we
describe the basic steps of the NRG algorithm, after which we discuss the connection
between NRG and MPS [16]. We close this section by pointing out the main problem
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of bosonic NRG [30] which lead directly to the method of Variational Matrix Product
States (VMPS).

2.2.1 Spin-boson model

Since the focus of this thesis is on the SBM and the dissipative harmonic oscillator, we
introduce bosonic NRG based on the spin-boson model, its first application. For the
conceptual understanding of NRG we only need to introduce the basic properties of the
model in this chapter. We will give a more detailed discussion on physical properties
in chapter 4. The starting point is the continuous version of the spin-boson model
Hamiltonian

Ĥ = ε

2 σ̂x −
∆
2 σ̂z︸ ︷︷ ︸

Ĥimp

+
∑
i

ωiâ
†
i âi︸ ︷︷ ︸

Ĥbath

+ σ̂z
2
∑
i

λi(âi + â†i )︸ ︷︷ ︸
Ĥcoupling

, (2.15)

where the impurity is a two state system with energy difference ε and tunneling ampli-
tude ∆. The impurity is fully described by the Pauli matrices σ̂x and σ̂z and coupled via
the last term with the bosonic bath. Each oscillator is coupled linearly with strength
λi to the impurity spin. Thus, the effect of the bath on the impurity can be completely
described by the bath spectral function

Γ(ω) = π
∑
i

λ2
i δ(ω − ωi) , (2.16)

consisting of the density of states in the bath ρ(ω) = π
∑
i δ(ω − ωi) and the coupling

strength λi. For the study of the low-temperature properties, only the low-energy
spectrum of the bath is important. Therefore a cutoff frequency ωc is introduced and
the spectrum above neglected, whereas the spectrum below is parametrized by a power
law

Γ(ω) = 2παω1−s
c ωs, 0 < ω < ωc, s > 0 . (2.17)

The dimensionless constant α describes the dissipation strength of the system and the
bath exponent s distinguish between the ohmic (s = 0), sub-ohmic (s < 1) and super-
ohmic(s > 1) dissipation, indicating different qualitative behavior. Typically, the cutoff
frequency ωc is set equal to one (also in this thesis).

2.2.2 Logarithmic discretization

Since the bath consists of an infinite number of oscillators, we need to discretize the
system to make it numerically accessible. In the case of NRG, the discretization scheme
must fulfill some crucial requirements. On the one hand, the physics of many quantum
impurity models is influenced by exponentially small energy scales, therefore a high low-
energy resolution is required. On the other hand, the discretization should separate
consecutive energy intervals to enable a controlled numerical treatment within the
iterative diagonalization procedure of NRG. A logarithmic discretization can meet both
requirements and is therefore the method of first choice.
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To discuss the discretization procedure, we start with the continuous version of
Eq. (2.15) by replacing the discrete sum over frequencies by an integral over the energy
variable ε

Ĥ = Ĥimp +
∫

dε(εâ†εâε) + σ̂z
2

∫
dε
√
ρ(ε)λ(ε)(âε + â†ε) . (2.18)

Here we introduce the new operators âε =
√
ρ(ε)âi as well as the density of states ρ(ε)

and the coupling function λ(ε) which are related to the spectral function via

1
π

Γ(ω) = ρ(ε(ω))|λ(ε(ω))|2 . (2.19)

In contrast to fermionic baths, where the spectral function Γ(ω) is defined in general
for positive (e.g. electrons) and negative frequencies (e.g. holes), the bosonic spectral
function is restricted to positive frequencies in the interval [0, ωc = 1] only. We define
the dimensionless parameter Λ > 1 and divide the spectral function into intervals χk,
whose boundaries are determined by ωk = Λ−k (see Fig. 3(a)), where k ∈ {0, 1, 2, . . .}.
In each of the intervals we define a complete set of orthonormal functions

Ψkp(ε) = 1√
dk
eiωkpεχk(ε) , (2.20)

with p ∈ N, ωk = 2π/dk and dk the width of the interval given by dk = Λ−k(1− Λ−1).
χ is the characteristic function of the respective interval

χk(ε) =
{

1 if Λ−(k+1) < ε < Λ−k

0 else
. (2.21)

The annihilation and creation operators âε and â†ε can be expanded in this basis corre-
sponding to a Fourier expansion in each interval

âε =
∑
kp

âkpΨkp(ε) (2.22)

â†ε =
∑
kp

â†kpΨ
∗
kp(ε) (2.23)

Similar to the fermionic case, we impose that the impurity couples to the p = 0 com-
ponent of the bosonic operators âkp and â†kp only. The other components p 6= 0 are
still present through their coupling to the p = 0 component of the free bath. In the
following step we define

âk = 1√
N2
k

∫ √Γ(ε)
π

âk0Ψk0dε (2.24)

â†k = 1√
N2
k

∫ √Γ(ε)
π

â†k0Ψ∗k0dε , (2.25)



2 NUMERICAL METHODS 10

with Nk being a normalization constant such that the relation [âk, â′†k ] = δk,k′ still holds

N2
k =

∫ Λ−k

Λ−(k+1)

Γ(ε)
π

dε . (2.26)

Using the relations for âk and â†k in the continuous spin-boson Hamiltonian Eq. (2.18),
we receive the discretized Hamiltonian (see Fig. 3(b)) in the star-geometry

Ĥstar = Ĥimp +
∑
k

ζkâ
†
kâk + σ̂z

2
√
π

∑
k

γk(âk + â†k), (2.27)

where the impurity is coupled linearly to all bosonic degrees of freedom, similar as
the original Hamiltonian but with a discrete spectral function consisting of δ-peaks at
energies ζk with weight γ2

k obtained from the bath spectral function Eq. (2.17)

γ2
k =

∫ Λ−(k+1)

Λ−k
dωΓ(ω) = 2πα

s+ 1ω
2
c

(
1− Λ−(s+1)

)
Λ−k(s+1) (2.28)

ζk = 1
γ2
k

∫ Λ−(k+1)

Λ−k
dωωΓ(ω) = s+ 1

s+ 2
1− Λ−(s+2)

1− Λ−(s+1)ωcΛ
−k . (2.29)

From the proposed definition it is clear that every discrete bosonic degree of freedom in
the star-Hamiltonian essentially represents the continuous spectrum of bosonic degrees
of freedom in its energy interval.

2.2.3 The chain-Hamiltonian

The next step in standard NRG is the unitary transformation of the discretized star-
Hamiltonian onto a semi-infinite chain with nearest-neighbor interaction only. Numer-
ically, this is best achieved by a standard tridiagonalization procedure (e.g. Lanczos
algorithm). In the resulting chain-Hamiltonian

Ĥchain = Ĥimp +
√
η0
π

σ̂z
2 (b̂0 + b̂†0) +

∞∑
k=0

[
εk b̂
†
k b̂k + tk(b̂†k b̂k+1 + b̂†k+1b̂k)

]
, (2.30)

we define b̂k =
∑∞
m=0 Ukmâm, obtained from the unitary transformation U , and η0 =∫

Γ(ω)dω describing the overall coupling between bath and impurity. On this so-called
Wilson chain, the impurity is located on the very first site and coupled only to one
bosonic site, as illustrated in Fig. 3(c). Every site has an on-site energy εk and a hopping
amplitude tk which decay exponentially as Λ−k and depend only on the spectral function
Γ(ω). For the fermionic case, the approach works in a similar way resulting in hopping
elements and on-site energies decaying with Λ−

k
2 because the spectral function is also

defined for negative frequencies.

2.2.4 NRG iteration

The crucial idea of NRG is to solve the model iteratively by diagonalizing a series of
Hamiltonians ĤN which in the limit N →∞ converge to the Ĥchain

Ĥchain = lim
N→∞

Λ−NĤN . (2.31)
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Figure 3: (a) Parametrized spectral function Γ of the spin-boson model in the super-ohmic
(s > 1), ohmic (s = 1) and sub-ohmic (s < 1) case up to the cutoff frequency ωc. The exponent
s determines the number of states near ω = 0. The logarithmic discretization (Λ > 1) generates
the star-Hamiltonian illustrated in (b). The impurity is coupled linearly to an infinite number of
discrete degrees of freedom. Mathematically, this can be mapped exactly to a semi-infinite chain
with nearest-neighbor interaction only, where the impurity sits on the first site and couples
only to the first bosonic site k = 0 (c). Because of the logarithmic discretization of Γ, both
coupling strength tk and on-site energies εk decrease exponentially with Λ. This is indicated by
the thickness of the lines connecting the different sites.

Each Hamiltonian ĤN consists of N + 2 sites and is rescaled by ΛN to improve the
resolution of the the low-energy spectrum. From the form of ĤN

ĤN = ΛN
[
Ĥimp +

√
η0
π

σ̂z
2 (b̂0 + b̂†0) +

N∑
k=0

εk b̂
†
k b̂k +

N−1∑
k=0

tk(b̂†k b̂k+1 + b̂†k+1b̂k)
]
, (2.32)

we can deduce the relation between two successive Hamiltonians

ĤN+1 = ΛĤN + ΛN+1
[
εN+1b̂

†
N+1b̂N+1 + tN (b̂†N b̂N+1 + b̂†N+1b̂N )

]
. (2.33)

The NRG iteration starts with the Hamiltonian Ĥ0 describing the impurity and the
first bosonic site

Ĥ0 = Ĥimp +
√
η0
π

σ̂z
2
(
b̂0 + b̂†0

)
+ ε0b̂

†
0b̂0 . (2.34)

Ĥ0 is diagonalized and a set of eigenstates and eigenenergies is obtained. Next, we
use Eq. (2.33) to obtain a rescaled new Hamiltonian in terms of the eigenstates |s0〉
of the previous Hamiltonian and |n1〉 of the new bosonic site and diagonalize it. The
eigenstates obtained in each iteration are connected with the states of the previous
iteration via a unitary transformation, described by the A-tensor A[nN+1]

|sN+1〉 =
∑

nN+1,sN

A[nN+1]
sN ,sN+1 |sN 〉|nN+1〉 . (2.35)
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Because this connection shows the same structure as an MPS in the local picture
Eq. (2.2), NRG can be formulated in matrix product states giving rise to many advan-
tages [31, 18].

In each iteration step, we create a new product space |sN 〉 ⊗ |nN+1〉, whose dimen-
sion grows exponentially with each added site. Without a truncation procedure, this
leads to a numerically not feasible size of Hamiltonians to diagonalize. Because of the
logarithmic discretization, the energy scales of the eigenstates of different Hamiltoni-
ans are separated sufficiently to have no influence on later iterations. That allows us
to discard the high-energy eigenstates in each iteration and therefore keep the Hilbert
space small enough, while describing the physics correctly. This truncation can either
be accomplish with respect to a fixed number D of lowest-lying states or a rescaled
energy Ekeep up to which on wants to keep eigenstates. Which truncation criterion is
best depends on the investigated model and has to be evaluated for each model with
respect to the convergence of the NRG results, e.g. in terms of the discarded weight
[32].

2.2.5 Energy-level flow diagrams

Typically, one focuses in a renormalization group procedure on transformationsR[H(r)] =
H(r’) which leave the Hamiltonian invariant but rescale parameters or coordinates,
leaving the physical features of the system invariant. Eventually, the sequence of trans-
formations converges to one or more fixed points which are invariant in the sense that
the parameters do not change under the transformation R[H(r∗)] = H(r∗) anymore.
These fixed points give information over possible macroscopic states and the physics
driving the model.

In the case of NRG, the Hamiltonian changes after each iteration according to
Eq. (2.33). Nevertheless, we can adapt the idea of the renormalization group and study
the behavior of the rescaled eigenenergies EN along the Wilson chain. The resulting
diagram depicturing the energy-level flow in the model allows us to distinguish differ-
ent fixed points indicating different physical behavior of the model. Fig. 4 shows two
examples of energy-level flow diagrams of the spin-boson model. In both cases, the
spectrum does not change anymore after the first 20 iterations. In contrast to the case
of a fermionic model, we do not have to distinguish between even and odd iterations.

2.2.6 The limitation of bosonic NRG

When dealing with bosonic systems, we encounter some systematic problems which
impose a serious challenge to the NRG procedure.

First of all, the local bosonic basis |nk〉 on each site of the Wilson chain is in principle
infinitely large. Since local state spaces are no longer restricted by Paulis’s principle,
we have to truncate each local basis set to a finite number dk of states, typically around
25. This can lead to a non-trivial truncation error in the NRG scheme.

The dk states of each local Hilbert space have to be chosen a priori in a way that the
lowest-lying eigenstates of the Hamiltonian ĤN+1 in each iteration are approximated
best. That is problematic especially in different fixed points regimes. To illustrate this,
we consider a mean-field approach to the spin-boson Hamiltonian in Eq. (2.15) which
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Figure 4: Energy-flow diagram of the spin-boson model calculated with NRG showing two dif-
ferent fixed points. In the left panel, after the first 20 iterations, the system converges in the
fixed point corresponding to the delocalized regime, while in the right panel the dissipation is
strong enough to localize the spin in one direction, resulting in a degenerate ground state. Not
only the ground state but the whole spectrum of energy levels looks characteristic in different
fixed point regimes.

lead to

ĤMF = ε

2 σ̂x −
∆
2 σ̂z + σ̂z

2
∑
i

λi〈âi + â†i 〉︸ ︷︷ ︸
Ĥimp

+ 〈σ̂z〉2
∑
i

λi(âi + â†i ) +
∑
i

ωiâ
†
i âi︸ ︷︷ ︸

Ĥbath

. (2.36)

We concentrate on the two cases of a delocalized fixed point 〈σ̂z〉 = 0 and a localized
fixed point 〈σ̂z〉 6= 0. In the first case, the coupling term in Ĥbath vanishes and thus
the optimal basis to describe ĤN+1 are the dk lowest eigenstates |ni〉 of every site.
In the case of a localized fixed point, the coupling does not disappear and each mode
is displaced by δi ∝ λi〈σ̂z〉/(2ωi). Therefore, the optimal basis choice to describe
the system would be a set of displaced oscillators, but in general the displacements
are not known a priori and grow exponentially along the chain. If not dealt with
correctly, this leads to serious systematic errors, e.g. when calculating critical properties
of the investigated models [30, 33]. Even though there were attempts within NRG
[20], until now there exists no complete algorithm to form an optimal bosonic basis
in the complete parameter spectrum of the spin-boson model. A way to deal with
these problems is to use variational matrix product states, where the displacement is
determined variationally and used to create the optimal bosonic basis in a controlled
way. The next section gives an introduction to this method based on Guo et al. [14],
who developed this approach in 2012.
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2.3 Variational Matrix Product State

Even though NRG has been used successfully in the non-perturbative calculation of
various static and dynamic properties on numerous quantum impurity models, it is
limited in the sense that hopping amplitudes have to decrease exponentially. This
led to the development of the Density Matrix Renormalization Group (DMRG) by
Steven White [7, 34]. In contrast to NRG and despite of its name, DMRG does not
contain the essential features of a renormalization group and is therefore able to solve
one-dimensional lattice models which feature constant hopping amplitudes such as the
Hubbard model.

DMRG allows not only the calculation of ground state properties of one-dimensional
real-space interacting lattice models in a very efficient and accurate way, but was devel-
oped further to calculate dynamical [35, 36] and thermodynamical properties [37, 38]
in one- as well as in higher-dimensional systems [39, 40, 41, 42]. Furthermore, DMRG
can also be formulated in terms of matrix product states [43, 44, 17] where it works as a
variational optimization scheme for the ground-state in the space of all matrix product
states. Often the acronym DMRG is replaced in this context by the term variational
matrix product states (VMPS).

Not only NRG but the VMPS procedure as well can be understood in terms of MPS,
as Weichselbaum et al. [31] showed in 2005. Applied to a Wilson chain, both methods
produce a similar MPS representation of the ground state of the model. Because VMPS
and NRG use two different truncation criteria to keep the size of the bosonic Hilbert
space feasible, the results are not fully equivalent. While VMPS truncates according to
the singular-value decomposition of the matrices building up the MPS, NRG discards
the highest-energy eigenstates of an effective Hamiltonian in each iteration step. That
means, the energy-scale separation imbedded in NRG is in general not present in VMPS.

Depending essentially on the quantum impurity model of interest, the application of
VMPS or NRG can have advantages with respect to numerical efficiency and accuracy.
For systems with fermionic baths a comparison between the two methods is given in [45].
For bosonic systems, VMPS should be the method of first choice, since the corrections
of open Wilson chains introduced in chapter 3 can so far only be incorporated correctly
with the sweeping character of VMPS (see chapter 4). Additionally, VMPS allows the
implementation of an optimal displace oscillator basis which gives access to parameter
regimes not so easily available in NRG.

2.3.1 Variational optimization scheme

Again, we introduce the idea of VMPS in the context of an one-dimensional Hamiltonian
Ĥ, i.e. the chain-Hamiltonian Eq. (2.30) of the spin-boson model with a fixed length
N . The VMPS scheme determines the ground state variationally in terms of matrix
product states by iteratively optimizing each site in the local picture and thus sweeping
several times back and forth the chain. We start at an arbitrary site of the chain with
a random initialized state. To find the ground state of the system, we have to find the
state fulfilling the minimization equation

E0 := min[E] = min
|ψ〉

(〈ψ|Ĥ|ψ〉 − λ(〈ψ|ψ〉 − 1)) , (2.37)
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where λ is a Lagrange multiplier for the constraint of a proper normalization of the
ground state. Switching into the local picture of site k, the non-linear minimization
problem Eq. (2.37) reduces to a linear one

E0 = min
A[nk]

 ∑
lrnkl′r′n

′
k

A
[n′k]∗
l′r′ Ĥl′r′n′

k
lrnkA

[nk]
lr − λ

∑
lrnk

A
[nk]∗
lr A

[n′k]
l′r′ − 1

 , (2.38)

where we have to optimize only one A-tensor, while all others are kept constant. Dif-
ferentiating Eq. (2.38) with respect to A[n′k]∗

l′r′ , we obtain

Ĥk

∑
lrnk

A
[nk]
lr |l〉|nk〉|r〉 = λ

∑
lrnk

A
[nk]
lr |l〉|nk〉|r〉 . (2.39)

This local eigenvalue problem can be solved by standard techniques. Since we are
only interested in the ground state of the system, we do not need to diagonalize the
whole Hamiltonian but calculate ĤkA

[nk]
lr and determine the optimal A-tensor employ-

ing e.g. the Lanczos algorithm implemented in a normal sparse eigensolver. Thus, the
eigenvalue λ takes the role of E0 in Eq. (2.38), whereas the eigenvector gives the de-
sired optimized version of the A-tensor. The last thing to do is to calculate the sparse
Hamiltonian in the local picture, which can be written as

Ĥk = Ĥ l ⊗ 1k ⊗ 1r +
∑
α

Ôlα ⊗ Ôkα ⊗ 1r

+ 1l ⊗ Ĥk ⊗ 1r +
∑
α

1
l ⊗ Ôkα ⊗ Ôrα + 1l ⊗ 1k ⊗ Ĥr , (2.40)

where the superscript indicates the space on which the operators act and 1l,1k,1r
represent the identity matrices in the effective left, local and right basis, respectively.
While the Hamiltonian Ĥk and the operators Ôkα are naturally given in the local space
of site k, the other terms have to be calculated iteratively.

Ôlα and Ôrα can be constructed by an iterative transformation of their local basis
sets to the effective basis sets |lk〉 and |rk〉 of site k. The most efficient way is therefore
to calculate Ôlα and Ôrα in every iteration step out of Ôk−1

α and Ôk+1
α , which then can

be combined with Ôkα to construct the coupling Hamiltonian Ĥ l,k =
∑
α Ô

l
α ⊗ Ôkα ⊗ 1r

written in components

Ĥ l,k
lk,l
′
k
,nk,n

′
k

=
∑
α

∑
nk−1,n

′
k−1,lk−1

(
A

[nk−1]∗
lk−1,l′

k

Ôk−1,α
nk−1,n

′
k−1

A
[nk−1]
lk−1,lk

)
Ôk,αnk,n′k

=
∑
α

Ôl,αlk,l′k
Ôk,αnk,n′k

(2.41)

and Ĥk,r =
∑
α 1

l ⊗ Ôkα ⊗ Ôrα

Ĥr,k
nk,n

′
k
,rk,r

′
k

=
∑
α

Ôk,αnk,n′k

∑
nk+1,n

′
k+1,rk+1

(
A

[nk+1]∗
rk−1,r′

k

Ôk+1,α
nk+1,n

′
k+1

A
[nk+1]
rk+1,rk

)

=
∑
α

Ôk,αnk,n′k
Ôr,αrk,r′k

. (2.42)
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The parts of the Hamiltonian acting on the left and right part of the chain can then
be constructed iteratively from the coupling Hamiltonians. For more details see the
Appendix of [19].

We work in this thesis with NRG and VMPS on the same bosonic Wilson-chain
Hamiltonians for which by construction the energy scales decay exponentially along
the chain with Λ−k. Because of the limited accuracy of computers (double precision),
we apply the rescaling procedure presented in the context of NRG 2.2.4 also in the
VMPS scheme, ensuring that the optimization always take place on the same energy
scale. This can be done by multiplying Ĥk by Λk before running the sparse eigensolver
to determine the optimized version of A[nk].

2.3.2 Truncation and convergence

Dealing with large many-body systems, VMPS also encounters the problem of an ex-
ponentially growing Hilbert space. However, the systematic truncation relies not on
energy, as employed in NRG. We already mentioned in Section 2.1.2 that VMPS usually
uses a SVD of the A-tensor of site k when switching to site k±1 for truncation. Instead
of performing an exact SVD, only the singular values with the most relevance are kept
which are the largest ones as discussed in section 2.1.3. Arriving at the new site k+ 1,
we can optimize A[nk+1] and move in this way to the end of the chain. Carrying the
process out in the other direction, one can sweep back and forth along the chain until
the state |ψ〉 converges in the ground state.

As convergence criterion we used in this thesis the variance of the unscaled ground
state energies Ek calculated at each site of the length-N chain

var(Ek) =

√
1

N−1
∑
k(Ek − Ē)2

|Ē|
, (2.43)

where we defined the average value of the energy as Ē. If after a sweep var(Ek) drops
below a lower bound ε ≈ 10−13−10−15, we consider the calculated state |ψ〉 as a reliable
approximation of the real ground state.

2.3.3 Optimal bosonic basis and variational shift

We introduced VMPS in this thesis because of the limitations of bosonic NRG regard-
ing the choice of the optimal bosonic basis that can lead to severe errors for example
in the localized regime of the spin-boson model. We now elaborate on how to solve
this problem in the context of VMPS following Guo et al. [14]. The presented modi-
fication allows the study of bosonic quantum impurity models across the entire phase
diagram. Since the originally introduced variational determination of the displacements
of the bosonic basis is time-consuming, we also introduce another method developed
by Güttge [46], where all the local displacements are calculated simultaneously after
one sweep, reducing the time of the VMPS calculation enormously.

In NRG the local basis of site k is immutable after the Hamiltonian is diagonalized
and the next site is added. One of the main advantages of VMPS is the adaptability
of the local basis on each site during the whole calculation.
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This can be utilized in two steps. First of all, an optimal bosonic basis (OBB)
|ñk〉 can be obtained from the original local harmonic oscillator basis |nk〉 by a unitary
transformation V first introduced by [47]

|ñk〉 =
dk−1∑
nk=0

Vñk,nk |nk〉 , (2.44)

where ñk ∈ 0, . . . , dopt − 1 with dk and dopt giving the size of the original and optimal
basis. The transformation matrix can be included in the structure of the A-tensors,
preserving the MPS description of VMPS, as illustrated in Fig. 5(a),

A
[nk]
lk,rk

=
dopt−1∑
ñk=0

Ã
[ñk]
lk,rk

Vñk,nk (2.45)

and allowing us to increase the size of the local bosonic basis drastically up to dk ≤ 104,
while keeping the OBB small and thus the numeric in the optimization procedure
feasible. The update procedure of site k has to be adapted in such a way that it
consists of two steps, first optimizing the transformation matrix V and then the matrix
Ã

[ñk]
lk,rk

, again switching between the two local pictures by a SVD (see Fig. 5(b)).
To incorporate the natural shift of the bosonic basis in the set up of the basis itself,

we follow [13] and introduce the unitary transformation

Û(δk) = e
δk√

2
(b̂†
k
−b̂k)

, (2.46)

acting on the local bosonic operators b̂†k and b̂k as

b̂′k = Û †(δk)b̂kÛ(δk) = b̂k + δk√
2
, (2.47)

b̂†
′

k = Û †(δk)b̂†kÛ(δk) = b̂†k + δk√
2
. (2.48)

Since the oscillator coordinates can be written in terms of bosonic operators x̂k =
1√
2(b̂k + b̂†k), Û shifts the coordinate such that

x̂′k = 1√
2

(b̂′k + b̂†
′

k ) = x̂k + δk . (2.49)

Therefore, Guo et al. proposed to calculate the equilibrium expectation value 〈x̂k〉
after the optimization procedure for site k described above and then apply the unitary
transformation U on the chain-Hamiltonian Û †Ĥ(b̂k, b̂†k)Û = Ĥ(b̂′k, b̂

†′
k ), resulting in a

shift of the bosonic operators only. By choosing δk = −〈x̂k〉, the oscillator coordinates
get shifted such that the OBB describes the quantum fluctuations near 〈x̂k〉, allowing us
to simulated an effective local basis that would require a local dimension of deffk = 1010

with only dk = 102 local basis states. After the shift, the optimization of the actual
site k is repeated with the shifted basis until 〈x̂k〉 converges.

This is done for each site of the Wilson chain separately, thus additionally elimi-
nating the problem of the exponentially growing shift to the end of the chain. In this
thesis, dopt = 12 and D = 40 are both chosen such that all singular values larger than
10−5 are kept.
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V1

|ñ1〉
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Figure 5: Diagram of a MPS with an optimal bosonic basis (a). The A-tensors of each site
links the large local bases |nk〉 to all other sites but only with a finite number of states D. The
Vk matrices transform the local bases to smaller effective basis sets |ñk〉 used to optimize the
Ã-matrices. This optimization procedure must be adapted slightly (b). We start at site k (i)
and use a SVD (ii) to move the physical information to the corresponding V -matrix. After
optimizing this matrix with respect to the ground state energy (iii), we use again a SVD (iv) to
move back to the A-tensor and optimize it (v). We iterate the steps (ii)-(v) until convergence of
local displacements is reached and then move to the next site using a SVD (vi), thus sweeping
along the chain and optimizing the whole MPS.

2.3.4 Analytic shift

Instead of determining the displacement of the oscillators on each site variationally,
Güttge [46] showed that on the level of the Hamiltonian Eq. (2.30), the general idea to
find a unitary transformation to a basis which minimizes the expectation value |〈b̂†0+b̂0〉|
yield the same displacements of the local bosonic bases as the variational approach.

We start with the chain Hamiltonian of the spin-boson model of length N and use
the unitary transformation Eq. (2.46) to replace b̃†k = b̂†k + δ′k/

√
2 and b̃k = b̂k + δ′k/

√
2

such that the Hamiltonian takes the form

H̃ = Ĥimp +
√
η0
π

σ̂z
2 (b̃0 + b̃†0)− 2 δ

′
0√
2

√
η0
π

σ̂z
2 + E0({δ′k}) (2.50)

+
N−1∑
k=0

εn

(
b̃†k b̃k −

δ′k√
2

(b̃k + b̃†k) + δ′k
2

2

)
(2.51)

+
N−2∑
k=0

tk

(
b̃†k b̂
†
k+1 + b̃†k+1b̂

†
k −

δ′k+1√
2

(
b̃†k + b̃k

)
− δ′k√

2

(
b̃†k+1 + b̃k+1

)
+ 2

δ′kδ
′
k+1
2

)
.

(2.52)

Note that we neglect E0(δ′k) because we are not interested in the shift of the ground state
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energy. The resulting Hamiltonian can be divided into two parts H̃ = H̃d+H̃no−d,where
H̃d contains all terms including the displacement operator b̃†k+ b̃k and H̃no−d all others.
Since the OBB is supposed to minimize |〈b̂†0 + b̂0〉|, the displacement Hamiltonian must
vanish

H̃d ≡ 0 =
(√

η0
π

σ̂z
2 −

δ′0√
2
ε0 − t0

δ′1√
2

)(
b̃†0 + b̃0

)
(2.53)

−
N−1∑
k=1

(
εk
δ′k√

2
+ tk

δ′k+1√
2

(1− δk,N−1) + tk−1
δ′k−1√

2

)(
b̃†k + b̃k

)
. (2.54)

These N + 1 coupled linear equations can be written as matrix equation where we
replaced the operator σ̂z by its expectation value

ε0 t0 0 0 . . .
t0 ε1 t1 0 . . .
0 t1 ε2 t2 . . .
...

... . . . . . . . . .



δ′0
δ′1
δ′2
...

 =


√

η0
4π 〈σ̂z〉

0
0
...

 . (2.55)

Inverting the matrix on the left hand site of the equation gives us the desired displace-
ments

δ′k = −δ′k−1
t2i−1

εi −
t2i

εi+1 −
t2i+1
. . .

, (2.56)

for 0 ≤ i ≤ N with t2−1 =
√

η0
4π and δ′−1 = 〈σ̂z〉.

Because we replace σ̂z by its expectation value, these equations have to be solved
self consistently. Therefore, the expectation value 〈σ̂z〉 is determined after each VMPS
sweep and the new displacements are calculated, which are used to perform the next
DMRG run. This is done until convergence is reached, i.e. the ground state as well as
〈σ̂z〉 do not change anymore. Usually convergence of the magnetization is reached much
faster than convergence of the ground state and occurs already after a few iterations.
This can be seen in Fig. 6(a), where we pictured the magnetization for different values
of s. In Fig. 6(b), we show the difference between the variational determined and the
analytic shift which confirms that both methods yield the same shift.

2.3.5 Energy-level flow diagrams

We can also generate an energy-level flow diagram employing VMPS to a Wilson chain
Hamiltonian. When sweeping from the left to the right end of the chain, we calculate in
each iteration step the eigenvalues of the left block Hamiltonian Ĥl, shift them such that
the lowest eigenvalue E0 = 0 and multiply them with the correct rescaling factor Λk−1.
The resulting spectrum corresponds to the energy-level flow generated in NRG and
contains the same information about the fixed points of the model. In Fig. 7, we show
two energy-level flow diagrams calculated with VMPS using the same parameters as in
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Figure 6: (a) Expectation value of the spin component σ̂z for different values of s against
the number of VMPS sweeps (iterations). After the first few iterations the expectation value
converges to a constant value and thus also the displacements following from Eq. (2.56). Plotting
the same data without the absolute value would show the alternating sign of the displacements.
(b) Relative difference between the variational δk and analytic δ′k determined displacements for
s = 0.4, showing that both methods yield essentially the same shift.

Fig. 4, where the energy-level flow is generated via NRG. Since VMPS is optimized with
respect to the ground state, the high-energy levels are not calculated exactly, resulting
in discontinuities. This effect is even stronger in the localized regime since the problems
concerning the local bosonic basis play a crucial role. It becomes even worse using a
shifted bosonic basis, since the shift focuses only on the ground state, resulting in a
basis not able to describe the high-energy levels correctly and breaking energy-scale
separation. However, the qualitative cross-over of the fixed points behavior is nearly
pictured correctly in both regimes.

2.3.6 Variational calculation of m lowest eigenstates

As discussed in the previous section, NRG is often not able to capture the physics
of a bosonic system correctly. If we are only interested in ground state properties,
VMPS is clearly the better choice. Going beyond ground state physics, it is possible
to adapt the VMPS procedure to simultaneously describe the lowest m energy states
exactly. We now present a simple modification of the procedure discussed in section
2.3.1, that allows us to calculate an arbitrary number of energy states. In our approach,
we have neither used an optimal bases for the various levels nor any shift of the local
bosonic basis. This is motivated by the fact that we want to calculate in section 4.1.6
the energy-level flow diagram of the dissipative harmonic oscillator in a regime where



2 NUMERICAL METHODS 21

0 10 20 30 40
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
s=0.4, ∆=1, ε=0, Λ=2

k  
(a)

Λ
k E

k

0 10 20 30 40
k  
(b)

α=0.318α=0.305

Figure 7: Energy-level flow diagram of the spin-boson model calculated with VMPS in delocal-
ized (a) and localized (b) phase using the same parameters as in Fig. 4. Since the variational
calculation focuses only on the ground state, the higher energy-levels are not determined cor-
rectly, resulting in non-smooth high-energy levels. The discrepancies to the NRG energy-level
flow diagram are worse in the localized regime, because of the problems concerning the local
bosonic bases.

neither a OBB nor a shift is necessary.
Our strategy will be as follows: we start again with a Wilson chain constituting

of N sites and stay in the formulation of matrix product states. We describe all m
states simultaneously in the local picture by defining on the local site k an array Ak

of m A-tensors (Fig. 8) where each tensor describes one state. We build up the Krylov
subspace generated by the array Ak and the Hamiltonian Ĥk in the local picture of site
k. We diagonalize the Hamiltonian in this subspace and construct from its eigenvectors
an improved version of the array Ak, whose components therefore are orthonormal by
construction. To then move to site k + 1, we use a generalized version of a singular-
value decomposition by contracting the A-tensors of Ak with the A-tensor of site k+1,
tracing out the rest of the chain to obtain a reduced density matrix ρ, diagonalizing it
with the transformation matrix U , retaining only the largest eigenvalues of the density
matrix and using the truncated transformation matrix Ũ to define the final version of
the the A-tensor of site k and the array Ak+1.

Let us now describe the procedure explicitly: To describe the m lowest states we
define the array Ak of site k as

A
k = {A[nk]

1 , A
[nk]
2 , . . . , A[nk]

m } . (2.57)

Note that we use the same effective left |lk〉 and right basis |rk〉 for all A-tensors in
the array to stay in formulation of matrix product states presented in section 2.1 for
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Figure 8: Illustration of the variation of a MPS to describe the m-lowest states. The A-tensor
on site k is replaced by an array of m A

[nk]
i -tensors, each one describing one state. All other

A-tensors remain unchanged. This makes an adaption of the optimization and update procedure
necessary.

VMPS. This is equivalent to using an extra index with the local Ak, i.e.Ak becomes a
four-dimensional tensor.

Similar to the procedure of optimizing one single A-tensor of site k described in
section 2.3.1, in the next step we build up the Krylov subspace generated by the A-
tensors of Ak and the Hamiltonian Ĥk in the local picture of site k. Note that the
Hamiltonian is the same for all A-tensors, because we choose an effective common left
basis for all states. We define the first m basis elements of the Krylov space as

|1〉 = A
k
1, |2〉 = A

k
2, . . . |m〉 = A

k
m, (2.58)

which are by construction orthonormal. The next m basis elements we obtain by
application of Ĥk and using the Gram-Schmidt process to form an orthonormal basis
set

|m+ j〉 = Ĥk|j〉 −
m+j−1∑
i=1
〈i|Ĥk|j〉|i〉, j ∈ {1, . . . ,m} (2.59)

|m+ j〉 = |m+ j〉
Nm+j

, Nm+j =
√
〈m+ j|m+ j〉 . (2.60)

Repeating the application of Ĥk on the last m elements of the basis n− 1-times we can
increase the Krylov space up to a chosen size nm. Since the Gram-Schmidt process
is numerically unstable, we repeat the orthonormalization procedure a few times to
ensure a orthonormal basis set. From Eq. (2.59) and Eq. (2.60) we can already deduce
some information about the general structure of Ĥk. Therefore, we assume j ≤ j′ with
j, j′ ∈ {1, . . . , nm} and obtain

〈j|Ĥk|j′〉 =

〈m+ j|+
j+m−1∑
i=1
〈j|Ĥk|i〉〈i|

 |j′〉 (2.61)

= δj+m,j′Nj′ +
j+m−1∑
i=1
〈j|Ĥk|i〉δi,j′ . (2.62)
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We conclude that the Hamiltonian is a sparse matrix with non-zero elements contained
in form of block matrices of the size m ×m located along the diagonal and first off-
diagonal of Ĥk which are calculated while building up the Krylov space basis. Eq. (2.63)
shows Ĥk in the Krylov space basis with m = 3 starting states and two iteration steps
(n = 3).

Ĥk =



〈1|Ĥk|1〉 〈1|Ĥk|2〉 〈1|Ĥk|3〉 N4 0 0 0 0 0
〈2|Ĥk|1〉 〈2|Ĥk|2〉 〈2|Ĥk|3〉 〈2|Ĥk|4〉 N5 0 0 0 0
〈3|Ĥk|1〉 〈3|Ĥk|2〉 〈3|Ĥk|3〉 〈3|Ĥk|4〉 〈3|Ĥk|5〉 N6 0 0 0
N4 〈4|Ĥk|2〉 〈4|Ĥk|3〉 〈4|Ĥk|4〉 〈4|Ĥk|5〉 〈4|Ĥk|6〉 N7 0 0
0 N5 〈5|Ĥk|3〉 〈5|Ĥk|4〉 〈5|Ĥk|5〉 〈5|Ĥk|6〉 〈5|Ĥk|7〉 N8 0
0 0 N6 〈6|Ĥk|4〉 〈6|Ĥk|5〉 〈6|Ĥk|6〉 〈6|Ĥk|7〉 〈6|Ĥk|8〉 N9
0 0 0 N7 〈7|Ĥk|5〉 〈7|Ĥk|6〉 〈7|Ĥk|7〉 〈7|Ĥk|8〉 〈7|Ĥk|9〉
0 0 0 0 N8 〈8|Ĥk|6〉 〈8|Ĥk|7〉 〈8|Ĥk|8〉 〈8|Ĥk|9〉
0 0 0 0 0 N9 〈9|Ĥk|7〉 〈9|Ĥk|8〉 〈9|Ĥk|9〉


.

(2.63)

Diagonalizing Ĥk, we obtain the lowest m eigenvalues and the corresponding improved
eigenvectors representing the new optimized A-tensors of site k. Together, they form
the optimized array Ãk whose components are orthonormal to each other by construc-
tion. Since Hk in general is small and all its matrix elements are calculated during the
construction of the Krylov space basis, the calculation time is dominated either by the
stabilized Gram-Schmidt process or by the construction of the basis set. While the sta-
bilized Gram-Schmidt process scales with O

(
(nm)2D2dk/2

)
where (nm)2/2 describes

the necessary number and D2dk the numerical costs of one operation, the construc-
tion itself is dominated by the application of Ĥk on the A-tensors and scales with
O
(
D3dknm

)
. Thus, depending on the ratio nm/2D the necessary time for the opti-

mization procedure is dominated by the former or the latter process.
Because we want the effective right and left basis to be the same for all components

of A, we cannot switch to the next site by a simple SVD. Instead in the spirit of
targeting multiple DMRG states, we form the reduced density matrix. For this, we
contract each element of Ãk (Fig. 9(i)) with the A-tensor of the next site(

B
k,k+1
i

)
lk,rk+1

=
∑
j

(
Ã
k
i

)
lk,j

A
[nk+1]
j,rk+1

, (2.64)

where i indicates the elements of Ãk and Bk,k+1 (Fig. 9(ii)). Then, we determine the
reduced density matrix of each component ρred,ik,k+1 and sum them up (Fig. 9(iii))

ρk,k+1 =
m∑
i=1

ρred,ik,k+1

=
m∑
i=1

∑
n1...nk+1

∑
n′1...n

′
k+1

(
A[n1] . . . A[nk−1]

B
k,k+1
i

)∗
(2.65)

(
A[n1] . . . A[nk−1]

B
k,k+1
i

)
|n1〉〈n′1| . . . |nk+1〉〈n′k+1| . (2.66)
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As we already discussed in section 2.1.3, the spectrum of a density matrix and the
singular values obtain by a SVD contain the same information about the entanglement
of the system. Therefore, we diagonalize the resulting matrix ρk,k+1 = UTDU and
discard the eigenvectors in U corresponding to the smallest eigenvalues. Using the
relation ŨT Ũ = 1, the tilde indicating the truncated spectrum, we insert the transfor-
mation matrices on the left site of Bk,k+1

i (Fig. 9(iv)). Then, we interpret ŨT as the
new A-tensor of site k, while

A
k+1
i = ŨBk,k+1

i , (2.67)

forms the new A-array in the local picture of site k+ 1 (Fig. 9(v)). The switching from
site k+ 1 to site k can be defined analogously, leading to the same sweeping scheme as
before.

The convergence criterion can be adopted from the VMPS procedure presented in
chapter 2, but we now demand that each energy Ei with i ∈ {1, . . . ,m} is converged
within an upper bound ε

var(Eik) =

√
1

N−1
∑
k(Eik − Ēi)2

|Ēi|
≤ ε (2.68)

separately.

(iii)
B

[k,k+1]
i

B
k,k+1
i

∗=
∑
iρ

Ã
k
2

Ã
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1

Ã
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3
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Figure 9: Update procedure to move from site k to site k+ 1 in the local picture of the modified
MPS describing the lowest m levels. We start with an optimized site k (i) and contract each
tensor of Ãk with the A-tensor of the next site (ii), forming the array Bk,k+1. Diagonaliz-
ing the reduced density matrix ρred, calculated by summing up the reduced density matrices of
each element (iii), we obtain the transformation matrix U . Since we want to keep only states
corresponding to eigenvalues values up to a fixed size, we truncate the transformation matrix
(compare Sec. 2.1.3). In the next step, we insert the projection 1 = Ũ†Ũ (iv) on the left site
of Bk,k+1, where the tilde indicates the truncation of the smallest eigenvalues. The matrix ŨT
represents the new site Ã[nk] whereas the rest forms the array in the local picture of site k + 1
(v).
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3 Open Wilson Chains
Quantum impurity models describe discrete quantum degrees of freedom coupled to a
continuous bath of excitations. As we already elaborated on in chapter 2, it is necessary
to discretize the continuous bath spectrum before mapping it onto a semi-infinite Wilson
chain in order to make it numerically accessible for the application of NRG or VMPS.
Furthermore, the chain is truncated to a finite length N , with N chosen such that all
relevant energy-scales are sufficiently resolved. Then, this ”length-N” chain is used to
calculate both dynamic and thermodynamic quantities in the framework of NRG or
VMPS.

Although the Wilson chain setup is highly successful for numerous applications,
it contains some potentially problematic features especially in the context of NRG.
Since the bath is discretized at the outset, a Wilson chain of any finite length actually
constitutes of a closed quantum system with a discrete spectrum. These spectra must
be broadened by hand after the NRG calculations to obtain smooth spectral functions.
Another problem in NRG applications arises from the fact that the system at site k of
a length-N chain has no information on ”truncated” bath modes (TBMs), consisting of
the high-energy modes neglected at previous sites and the low-energy modes associated
with all later sites. While the latter information is available in the VMPS procedure
with exception of the low-energy modes of sites k > N , the former is still missing.
For models with asymmetric bath spectral functions, TBMs induce systematic energy
shifts for the on-site energies that are missing in standard Wilson chain setups. This
occurs for example in case of the spin-boson model [15] and leads to wrong predictions
for the temperature dependence of the static spin susceptibility.

In this chapter, we introduce an iterative construction of an open Wilson chain
(OWC) first presented by Frithjof Anders [48], in which each site is coupled to a separate
bath of its own, thus keeping track of TBMs and avoiding discrete bath modes. This
procedure allows to implement the effect of TBMs on the one hand and offers possible
prescription for a naturally broadening of discrete spectral data on the other hand. In
this thesis, we focus on the implementation of TBMs and its influence on numerical
results. How to use OWC to obtain a natural description of broadening is topic of
further research.

3.1 Iterative construction of an OWC

For our construction of an OWC, we only consider quantum impurity models of the
form

H = H imp +HS (3.1)

where H imp describes the impurity located at site k = −1 and its coupling via tS−1b
†
S,−1

and its hermitian conjugate to a free bath HS (Fig. 10(i)). tS−1 denotes the coupling
strength and b†S,−1 a normalized linear combination of bath operators defined later. For
such models, the retarded bath correlator plays a central role because it incorporates
the complete physics of the system. Therefore, the key idea for constructing an OWC
is to represent the bath correlator of the impurity on site k = −1 in terms of a site
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Figure 10: Iteration to construct an OWC. We start with the impurity coupled to a bath S−1
with coupling constant tS−1 (i), which we replace by a new bath B0 coupled to a single degree
of freedom with energy ε0 (ii) and coupling constant tB0 . The impurity now couples only to the
single site. In the next step, we split the bath into a part of fast (F0) and a part of slow modes
(S0) (iii) and again replace the bath of slow modes by a single site and another bath B1 (iv).
Iterating this scheme N -times yields the OWC of length N , where each site is coupled to a bath
of fast modes and the last site N additionally to a bath of slow modes (v). The parameters
are determined such that the impurity correlator does not change, thus preserving the original
physical behavior.

correlator associated with a specified site k 6= −1, coupled to a new bath. To simplify
the notation we define the bath Hamiltonian ĤX

k and the normalized linear combination
of bath operators b̂†Xk coupled to site k of an OWC

ĤX
k =

X∑
q

ωqk b̂
†
qk b̂qk (3.2)

b̂†Xk =
X∑
q

λXqk b̂
†
qk . (3.3)

whereXk denotes the different baths occurring in the context of OWC, withX standing
for B (bath), F (fast) and S (slow) and k denoting the site on which the bath couples.
The sum indicates a summation over a specified energy range ωqk ∈ IXk and the bath
operators obey [b̂Xk, b̂†Xk]± = 1 with a plus for the fermionic anticommutator and a
minus for the bosonic commutator. Thus, we can write the retarded bath correlator
GXk (ω), describing the dynamics of the b̂Xk generated by HX

k , as

GXk (ω) = 〈〈bXk; b†Xk〉〉ω =
X∑
q

|λXqk|2

ω − ωqk + i0+ (3.4)

which reduces for k = −1 and X = S to the bath correlator of the impurity. Knowing
the spectral function AXk (ω) = − 1

π=G
X
k (ω) which describes the coupling between site
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k and the bath Xk, we know the correlator completely due to the Kramers-Kronig
relation

<GXk (ω) =
∫

dω′ AXk
ω − ω′ + i0+ . (3.5)

We define the weight and the average energy εXk of the spectral function by

1 =
∫

dωAXk (ω) (3.6)

εXk =
∫

dωωAXk (ω) . (3.7)

The central iteration for constructing an OWC of arbitrary length is to express the
dynamics of site k− 1 encoded in GSk−1 by the correlator of the next site. Starting with
GS−1 (k = 0), we replace b̂†S,k−1 by a new operator f̂ †k with [f̂k, f̂ †k ]± = 1 and ĤS

k−1 by a
new Hamiltonian Ĥk

Ĥk = εkf̂
†
k f̂k + (tBk b̂

†
Bkf̂k + h.c.) +HB

k , (3.8)

describing a discrete degree of freedom site k linearly coupled to a new bath Bk
(Fig. 10(ii)). This generates the site correlator for f̂ †k

GBk (ω) = 〈〈f̂k; f̂ †k〉〉 = 1
ω − εk − ΣB

k (ω)
, (3.9)

where we define the self-energy ΣX
k (ω) = |tXk |2GXk (ω). To ensure that the described

dynamics does not change due to this transformation, we have to assure that GBk (ω) =
GSk−1(ω) which gives

|tBk |2GBk (ω) = ω − εk −
|tSk−1|2

ΣS
k−1(ω)

, (3.10)

with the on-site energy εk determined from the imaginary part of the general relation∫
dωGBk (ω)GSk−1(ω) = 0

0 = =
(∫

dωGBk (ω)GSk−1(ω)
)

(3.11)

= =
(∫

dω
[(
ω − εk −

1
GSk−1(ω)

)
GSk−1(ω)

])
(3.12)

=
∫

dωωASk−1(ω)− εk
∫

dωASk−1(ω) (3.13)

= εSk−1 − εk . (3.14)

Thus, Eq. (3.10) and the condition Eq. (3.6) on the imaginary part of the correlator
determine both GBk and |tBk |. Note that Eq. (3.10) implies that the spectral function
ABk has the same support as ABk−1, i.e. IBk = ISk−1.
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To ensure energy-scale separation at each iteration step, we have to split the bath
into two subbaths, Bk = Fk

⋃
Sk with ĤB

k = ĤF
k + ĤS

k (Fig. 10(iii)). This is done by
partitioning the energy range associated with bath Bk, i.e. IBk = [ω−Bk, ω

+
Bk] into disjoint

fast and slow subranges IFk = [ω−Fk, ω
+
Fk] and ISk = [ω−Sk, ω

+
Sk] with IBk = IFk

⋃
ISk and

|ω±Sk| ≤ |ω
±
Fk|. The two subranges have to be chosen such that

max
(
|εSk |, |tSk |

)
< max

(
|εSk−1|, |tSk−1|

)
(3.15)

holds. Depending on whether the initial coupling spectrum Γ−1(ω) has a flat or power-
law form or has a non-trivial structure, one would choose ω±Sk = ω±Bk/Λ with Λ > 1 or
would have to fine-tune the cutoff-frequencies ω±k in each step.

By defining the rescaled couplings tF/Sk = α
F/S
k tBk with weights |αF/Sk |2 =

∫
I
F/S
k

dωABk (ω),

we can set λF/Sqk = λBqk/α
F/S
k and decompose b̂†Bk into orthogonal fast and slow parts,

and similarly for ΣB
k

b̂†Bk = αFk b̂
†
Fk + αSk b̂

†
Sk (3.16)

ΣB
k (ω) = ΣF

k (ω) + ΣS
k (ω) . (3.17)

Now we are ready to perform the next iteration step. After every iteration, we obtain
a bath of fast modes Fk and slow modes Sk and replace the slow mode bath by a new
site k + 1 coupled to a new bath Bk+1 while ensuring Gk+1 = GSk (Fig. 10(iv)). Then,
we split Bk+1 again into a slow and fast part, etc.. After N + 1 iteration steps, the
initial H has been replaced by ĤOWC

N = ĤSWC
N + ĤTBM

N where

ĤSWC
N = Ĥ imp +

N∑
k=0

εkf̂
†
k f̂k +

N−1∑
k=0

tSk (f̂ †k+1f̂k + f̂k+1f̂
†
k) (3.18)

ĤTBM
N =

N∑
k=0

tFk (b̂†Fkf̂k + b̂Fkf̂
†
k) +

N∑
k=0

ĤF
k + tSN (b̂†SN f̂N + b̂SN f̂

†
N ) + ĤS

N , (3.19)

with Ĥ imp describing the impurity and the coupling to the fast bath F−1 (Fig. 10(v)).
For any value of N ≥ 0, HOWC and H generate the same impurity dynamics by
construction, since G0 = GS−1. While ĤSWC

N has the structure of a length-N standard
Wilson chain, ĤTBM

N describes the coupling to all fast fast mode baths Fk≤N and the
coupling of the last site N to its bath of slow modes SN . These truncated bath modes
are normally neglected in a SWC, but can be kept track of in OWC.

3.2 General implementation

Iterating Eqs. (3.10) and (3.17) yields an exact continued fraction expansion (CFE) for
G0, e.g. for a length-2 OWC:

G−1(ω) = 1

ω − ε0 − ΣF
0 (ω)− |tS0 |2

ω − ε1 − ΣF
1 (ω)− |tS1 |2

ω − ε2(ω)− ΣF
2 (ω)− ΣS

2 (ω)

. (3.20)
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The CFE can be used to numerically verify that the determined chain parameters
indeed reproduce the initial bath correlator G−1. Furthermore, we can see the influence
of the TBMs, namely that (i) the real part of the baths self energy shifts the energy
of the corresponding local site and (ii) its imaginary part broads the states of the
corresponding Wilson shells.

For numerical calculations, we have to approximate the OWC to the structure of
a reduced SWC (RWC), that can be treated with standard NRG or VMPS methods
while incorporating the effects of the TBMs. The static approximation replaces the
self-energies of the TBMs in the CFE Eq. (3.20) by their real part evaluated at ω = 0

ε̃k = εk + δεFk + δkNδε
S
N , δε

F/S
k = <

(
ΣF/S
k (0)

)
, (3.21)

which lead simply to shifted on-site energies. Therefore, the real part of the zero-
frequency correlator G0(ω = 0), is reproduced correctly for a RWC of arbitrary length,
in contrast to a SWC, where the absence of the TBMs leads to the mass flow error for
the sub-Ohmic spin-boson model [15]. If ones starts with a symmetric bath spectral
function, Γbath(ω) = Γbath(−ω), as it is the case for fermionic systems with particle-
hole symmetry, the effect of the TBMs is negligible since contributions from positive
and negative frequencies cancel, resulting in δεF/Sk = 0∀k. The evaluation of the real
part of the self-energies at ω = 0 yield Wilson shell energies that become increasingly
inaccurate for larger energies within the shell. However, it is a suitable approximation
for the calculation of ground state properties.

In the following discussions we distinguish three different types of RWCs to compare
our results and understand the influence of the TBMs. A C0 chain is a RWC without
any energy correction due to the TBMs, whereas the baths of fast modes are incorpo-
rated via energy shifts of the on-site energies εk + δεFk and the bath of slow modes on
the last site is neglected for a C1 chain . Finally, a C2 chain additionally contains the
shift of the on-site energy on the last site N due to the influence of the bath of slow
modes εk + δεFk + δkN ε

S
N .

The implementation of higher order perturbation theory to capture the effects of the
TBMs more correctly, is still topic of further research. Since we neglect the imaginary
parts of all self-energies, dissipative effects are not captured, but they are a perfect
starting ground for a natural broadening of the spectra obtained with NRG.
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4 Applications
In this chapter, we use the concept of OWC introduced in chapter 3 to investigate two
models, the dissipative harmonic oscillator (DHO) and the spin-boson model (SBM).
Both models show qualitative erroneous behavior [9, 15] when investigated in the stan-
dard Wilson chain setup with NRG and VMPS. The DHO provides the possibility to
compare numerical result with analytic calculations via exact diagonalization of the
quadratic Hamiltonian, whereas the SBM is the first bosonic model which has been
investigated and is analytically not solvable for the whole parameter regime. We show,
that even the simple static approximation that leads us from open to reduced Wil-
son chains, solves the problems encountered so far with bosonic NRG and VMPS and
reproduces the correct results confirmed by analytic calculations or other numerical
methods like quantum Monte Carlo.

4.1 Dissipative harmonic oscillator

The dissipative harmonic oscillator describes a displaced, harmonic oscillator coupled
to a bath of bosonic modes. In contrast to the SBM, it is exactly solvable since the
Hamiltonian is bilinear. Thus, we are able to compare numerical with analytic results
by exact diagonalization that do not suffer the errors due to the truncation of the local
bosonic basis.

In this section, we first concentrate on the critical coupling of the DHO and then
show some iteration details of the RWC, numerically confirming the ideas of the pre-
vious chapter and highlighting the effects of the TBMs on the CFE and Wilson chain
parameters. Then, we present different methods to calculate the static susceptibility of
the DHO and conclude that, so far, only VMPS is able to capture the effects of TBMs
correctly. In the end of this section, we focus on the energy flow diagrams and compare
the numerical results with the method of exact diagonalization.

4.1.1 Determination of critical coupling

The DHO is described by the Hamiltonian

ĤDHO = Ωâ†â+ ε

2(â+ â†) + 1
2
∑
q

λq(â+ â†)(b̂q + b̂†q) +
∑
q

ωq b̂
†
q b̂q , (4.1)

with Ω > 0 denoting the impurity oscillator frequency, ε the field conjugate to the
oscillator displacement and ωq > 0 the frequencies of the bath oscillators. The spectral
density completely describes the interaction with the bosonic bath,

Γ(ω) = π
∑
q

λ2
qδ(ω − ωq) , (4.2)

since its fully determines the impurity correlator G−1. Similar to the SBM, we choose
the typical parametrized power-law form

Γ(ω) = 2παω1−s
c ωs , (4.3)
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when focusing on the low-energy behavior, with the cutoff frequency ωc = 1 and α
describing the dissipation strength. This model becomes unstable for α > αc [49]
because the coupling to the bosonic bath renormalizes the oscillator frequency Ω which
becomes zero at α = αc. This characteristic behavior can also be observed by studying
the susceptibility χ, associated with the displacement of the impurity oscillator

χ = d〈â+ â†〉T
dε , (4.4)

where 〈〉T denotes a thermal average. Using the relation χ = Gx(ω = 0)/2 with

Gx(ω) = 〈〈â+ â†; â+ â†〉〉 (4.5)

= 2Ω
ω2 + i0+ − Ω2 − Ω(G−1(ω) + G−1(ω))/2 (4.6)

we obtain

χ = 1
Ω + <G−1(ω = 0) . (4.7)

Note that the susceptibility is temperature independent and only determined by Ω and
the real part of the bath correlator. The critical dissipation strength αc is defined by
Ω+<G−1(ω = 0) = 0 where the lowest eigenenergy turns negative and the susceptibility
diverges. Knowing the spectral function, we can immediately determine the real part
of the impurity correlator at ω = 0

<G−1(ω = 0) = 2αωc
s

(4.8)

and thus have αc = sΩ
2ωc . With the parameter choice α = 0.4, ε = 0 and Ω = 1 the

predicted critical coupling is αc = 0.2. Numerically, αc can be found by determining
the α-value for which the susceptibility Eq. (4.7) diverges or by studying the behavior
of the energy-flow diagrams obtained with NRG or VMPS. The value of the impurity
correlator at ω = 0, by construction of the RWC, is independent of the chain length. It
only depends on the tightness of the frequency grid ω representing the spectral function
Γ(ω) via Kramers-Kronig. Therefore, the discrepancies between the numerical and the
theoretical values of αc can systematically be reduced, by improving the resolution of
the frequency grid. Our best obtained value is αc = 0.19997 which can be improved
straightforwardly. This is the first improvement to the DHO when investigated with
SWC, where a different critical coupling of αc ≈ 0.228 is obtained numerically [15]. In
the following, we use a more coarser grid to reduce calculation times, which results in
a critical coupling strength of αc ≈ 0.19986. For VMPS calculation, we use D = 40 as
upper dimension bond and dk = 12 as dimension for the optimal bosonic basis.

4.1.2 Iteration details

We have explored two ways to construct a RWC, that differ only in the choice of the
cutoff frequencies ω+

Sk. In the first version, we tuned the cutoff frequencies such that the
resulting hopping elements tSk of the OWC agree with those obtained with the scheme
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Figure 11: (a-d) Comparison of the Wilson chain parameters tk and εk for α = 0.199, obtained
using the standard discretization scheme of BTV [9] for Λ = 4, or using two versions of the
RWC-approach described above: for version 1 (left two columns), ωS,k was fine-tuned to ensure
that tk = tBTVk ; for version 2 (right two columns), we simply chose ωS,k+1 = ωS,k+1/Λ. (a)
tBTVk used by BTV (black) and our tSk (red dashed). (b) The on-site energies εBTVk (black),
our C0 on-site energies εk (red dashed), and the shifts −ε̃Fk (blue) and −ε̃Sk (green). Evidently,
they all scale the same way with k. (c) Relative difference ∆t = (tBTVk − tSk )/tBTVk in hopping
elements. The noisy structure seen for version 1 (left) reflects the ω-discretization grid used to
represent the bath correlators GXk (ω) during the OWC construction. (d) Relative differences ∆ε

of various on-site energies: ∆C0
ε = (εBTVk − εk)/εBTVk (red); ∆C1

ε = (εBTVk − εk − δεFk )/εBTVk

(purple); ∆F
ε = δεFk /εk (blue); and ∆S

ε = δεSk /εk (green). For version 1 (left), the relative
difference between BTV and C0 energies (no shifts) is quite significant throughout (∆C0

ε ' 0.2).
The relative difference between BTV and C1 energies (only fast shifts) is significant for early
iterations, but becomes small (∆C1

ε . 10−3) once the iteration scheme reaches self-similarity.
For version 2 (right), both ∆C0

ε and ∆C1
ε differ significantly from 0. Both the fast and last slow

mode shifts are comparable in magnitude to the bare OWC energies, O(∆F/S
ε ) = 1.

by Bulla, Tong, and Vojta tBTVk [15] with an relative error below 10−3. With a finer
ω grid in the calculation of the spectral functions Γk(ω) and more evolved integration
methods, the agreement could be further improved. In the second version, we used
the already suggested relation ω+

Sk = ω+
Bk/Λ. In panel (a)-(d) of Fig. 11, we show a

comparison of the two different versions and note the following.
(i) All quantities decrease with the same exponential decay along the Wilson chain.

Note that even the fast and slow shifts δεF/Sk have the same order of magnitude as the
bare OWC energies εn and are comparable in magnitude.

(ii) The on-site energies of a RWC without any correction on the last site ε̃k =
εk+δεFk , (C1-chain), and with correction ε̃k = εk+δεFk +δk,N εSk (C2-chain), are in general
different from the SWC energies εBTVk Fig. 11(d). Note that the relative difference
becomes negligible after the first iterations. Nevertheless, the scheme developed by
BTV does not incorporate the effects of the TBMs of the first sites and of the slow
bath of the last site, which leads to wrong predictions.

(iii) The power-law coupling spectrum Γ takes on a self-similar structure after the
first few iterations, i.e.<

(
ΣB
k (ω)

)
/max

(
<ΣB

k (ω)
)
and =

(
ΣB
k (ω)

)
/max

(
=ΣB

k (ω)
)
,

plotted against ω/ωBk, do not change with k (Fig. 12(a)-(b)). This can be used to ex-
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Figure 12: Similar to Fig. 11 the left columns depict the results for version 1, whereas the right
columns illustrate the results for version 2. Both version yield qualitatively similar results:
(a) <[ΣBk (ω)]/max(<[ΣBk (ω)]) and (b) =[ΣBk (ω)]/max(=[ΣBk (ω)]), plotted vs. ω/ω+

B,k for k =
1, 2, 5, 10 (different colors), showing that the spectral functions and self-energies have a self-
similar structure. (c) <[G−1(ω)] and (d) =[G−1(ω)] vs. ω/ωc, calculated directly from Γ−1(ω)
(solid black), or from the CFE (Eq. 3.20) with N = 25, while including both ΣFk (ω) and ΣSN (ω)
(dashed red), only ΣFk (ω) with N = 5 (cyan) and N = 25 (green), or neither of the two (blue).
In the latter case, the absence of any imaginary parts in the CFE causes =[G−1(ω)] to vanish
and <[G−1(ω)] to have divergences. Behavior of (e) <[G−1(ω)] and (f) =[G−1(ω)] for ω → 0
with coloring as in (g). The missing slow-mode term in the CFE using only ΣFk (ω) (green)
causes discrepancies only at the vicinity of ω = 0 for both the imaginary and the real part.

trapolate the hopping elements tn and bare on-site energies εk of an OWC, reducing the
numerical costs to determine the chain parameters drastically. To avoid numerical cal-
culations of the chain parameters < 10−16 with quadruple precision, such extrapolation
schemes are necessary.

(iv) The CFE with a chain length of N = 25 (Fig. 12(c)-(f)) reproduces G−1(ω)
(solid black) exactly if ΣF

k (ω) and ΣS
N (ω) are included (dashed red). If the slow mode

contribution on the last site is neglected, we observe in the reconstruction of the im-
purity correlator a dependence on the chain length. For N = 25 (dashed green), only
in the vicinity of ω = 0 we see discrepancies between the real and imaginary part of
G−1 (Fig. 12(e)-(f)) and the reconstruction. Reducing the chain length to N = 5 (cyan)
increases the differences significantly to the whole frequency interval. If we do not
consider the TBMs (blue), =G−1 vanishes because of the absence of imaginary con-
tributions in the CFE, and <G−1 diverges. We see, that the TBMs are necessary to
reconstruct the correct impurity dynamics in form of the impurity correlator G−1. The
longer the chain, the less important is the influence of the slow bath on the last site of
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the chain. However, in this case the fast baths contain already most of the information
of the system dynamics and are thus crucial for NRG and VMPS calculations.

4.1.3 Susceptibility calculation

We now investigate, whether a RWC chain is able to determine the correct behavior of
the susceptibility for the DHO, which poses an impossible task for a SWC [15].

To understand the influence of the TBMs, we used the three different types of RWCs
and several different ways to calculate the susceptibility Eq. (4.4). On the one hand,
we calculated the static susceptibility via the dynamical correlation function

C(ω) = 1
2π

∫ ∞
−∞

eiωtC(t)dt , (4.9)

where C(t) = 1
2〈[â+â†, â+â†]〉T is the displacement correlation function. The dynamical

susceptibility is then given by

χdyn(T ) = 4
∫ ∞

0

C(ω)
ω

dω , (4.10)

which can be shown to be equal to the static susceptibility χ(T ) = χdyn(T ). This can
be used as an important consistency check for the numerical NRG calculations. For all
three types of chains (C0,C1,C2), calculating χ(T ) by evaluating the thermal average
in a Wilson shell and using fdm-NRG to determine the dynamical susceptibility χdyn
yield the same results. However, none of these approaches reproduce the exact result
(Eq. 4.7).

On the other hand, we approximated the thermal expectation value by an expec-
tation value with respect to one single state: the ground state |G〉WNT of a Wilson shell
NT , or the variational obtained ground state |G〉VNT of a length-NT chain. NT is the
length of a RWC whose smallest excitation energies are comparable to the temperature

max{|εNT |, |tNT |} ≈ T . (4.11)

In contrast to all other methods and types of RWC, using VMPS on a C2 chain re-
produces the correct susceptibility χ, as we now will discuss in detail. Fig. 13 shows
the calculated susceptibility for the three types of RWCs, C0 (blue), C1 (green), C2
(red), calculated in four different ways: Using the CFE (solid lines), a thermal average
(TW, triangles), the expectation value with respect to the ground state of a Wilson
shell (GW, squares) or with respect to the ground state obtained with VMPS (GV,
circles). Additionally, we show the susceptibility calculated with the hopping elements
and energies obtained with the scheme of BTV (dashed purple) and the exact results
χexact (dashed black). All derivatives were evaluated numerically by using several ε
values close enough around zero to fit the linear behavior of the expectation value.
Note that for every epsilon value a separate calculation is necessary. To apply NRG on
a C2 chain, the iteration presented in section 2.2 must be adapted slightly. For details
see Appendix A.
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Figure 13: Static susceptibility χ(T ) as function of temperature for α = 0.199 and s = 0.4. The
black dashed line indicates the exact result calculated from Eq. (4.7) while the dashed purple line
is the solution obtained with the hopping amplitudes and on-site energies from the discretization
scheme of BTV. The other data are numerical results for three types of RWC: C0 (blue), C1
(green) and C2 (red), calculated with 4 different methods. The solid lines are obtained with a
CFE of length NT to evaluate Eq. (3.20), the triangles by evaluating 〈〉T in Eq. (4.4) as thermal
average over a Wilson shell (NT ), the circles by an approximation of 〈〉T by an expectation
value with respect to the ground state |G〉WNT

of a Wilson shell NT and the squares by using
the variational ground state |G〉VNT

as approximation. In all cases, the derivative d/dε was
evaluated numerically using several ε-values close enough to zero. TW-, GW- and GV-averages
require separate runs for each combination of T and ε.
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First of all, all four methods consistently yield the same results for both C0 (blue)
and C1 (green) but not for C2 (red) chains. Consequently, the only difference between
the methods is their treatment of the slow modes on the last site, which are only present
for C2 chains. Since the correction to the on-site energies due to the slow modes on the
last site has the same order of magnitude as the bare on-site energy εN (see Fig. 11), this
correction has influence on the previous sites. In contrast to NRG, where we diagonalize
a sequence of Hamiltonians from the left end to the right end of the chain without any
feedback of later to previous sites because of energy scale separation, VMPS sweeps
several times along the chain. Thus, it carries the information of the slow modes on the
last site to the previous sites, as needed to produce the correct temperature-independent
behavior of χ.

Secondly, in the C0 case (red) where we have no information on any TBMs, we
observe two important differences to the exact result: instead of being temperature
independent, χC0(T ) increases with decreasing T and saturates at a constant value
orders of magnitude below the exact result χexact. The susceptibility calculated with
the BTV energies and hopping elements shows the same behavior, but saturates at a
higher value. Looking at Fig. 11(d), this makes sense since the on-site energies of a SWV
obtained with BTV differ only on the first sites from those of a C1 chain. Therefore,
BTV already incorporates some effects of the baths of fast modes on later sites. As we
already investigated, the effect of the TBMs are important for the actual value of the
critical coupling. Thus, because we used the same coupling strength α = 0.199 for all
types of RWCs, with a C0 chain we are farther away from the critical coupling strength
than with a BTV chain, wheres we are the closest to αc with a C1 chain. This results
in lower saturation values of the susceptibility χ from C1 to BTV to C0 chains.

For a C1 chain, the temperature dependence of χC1(T ) persist but the saturation
value agrees with the exact value χC1(0) = χexact. Since the bath of slow modes on
the last site of the chain has decreasingly influence with increasing chain length, as we
can see in Fig. 12(c)-(f), in a C1 chain nearly the complete information of the TBMs
is present for small temperatures. Thus, theχC1(T ) displays the correct behavior for
small T .

In contrast, for the C2 chain two methods reproduce the full T -independent result
χC2(T ) = χexact, namely CFE and GV. Both methods incorporate the slow mode
contributions completely, the one by construction (CFE) and the other because of the
sweeping process and thus the ability to deal with the large energy shift on the last site
of the RWC.

The other two methods, TW- and GW-averaging, fail to deal correctly with the
large energy shift on the last site because no feedback to earlier sites is possible. We
note that GW produces a better result than TW. Probably, the reason is that the static
approximation leading from an OWC to a RWC focuses on ω = 0, which seems to work
less well when incorporating information from higher lying Wilson states, as done for
a thermal average, than for the ground state |G〉WNT .

Since the missing fast mode contribution in the BTV energies leads to a different
critical coupling strength than for the C2 RWC, in Fig. 14 we show the susceptibility
calculated with BTV and C2 GV for different α-values, chosen to yield comparable
distances to the αc-values of each method. One can easily see, that only the missing slow
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mode correction and therefore the different amount of information on the environment
for every chain length leads to the temperature dependent susceptibility. The slow
mode correction becomes negligible for low temperatures such that the saturation value
is approximately the same for both chains. Thus, the fast mode correction is necessary
to predict the actual correct value of χ.
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Figure 14: Susceptibility χ(T ) as function of temperature, calculated using BTV cou-
plings and on-site energies and standard NRG with TW expectation values (blue) for α =
0.1, 0.22, 0.228, 0.2284682 (from bottom to top). The red lines show the results for C2 chains
using GV expectation values for α = 0.1, 0.19, 0.199, 0.19986 (from bottom to top) while the
black dashed lines show exact results. The α-values are chosen such that the distance to the
critical coupling strength is similar for both cases. BTV-TW incorrectly predicts a temperature
dependent susceptibility, especially near αc, but the same saturation value χ(T → 0) as C2-GV.
C2-GV correctly leads to a temperature independent susceptibility that agrees fully with the exact
one.

4.1.4 Exact diagonalization

Before discussing energy-level flow diagrams, we will concentrate on the exact solution
of the DHO. Since the Hamiltonian

ĤDHO = Ωâ†â+
√
η0
4π (â+â†)(â0+â†0)+

N−1∑
k=0

εkâ
†
kâk+

N−2∑
k=0

tk
(
â†kâk+1 + â†k+1âk

)
, (4.12)
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is bilinear, we are able to transform it into diagonal form and incorporate the TBMs
as energy shift on the on-site energies. The Hamiltonian has the general matrix repre-
sentation

ĤDHO = 1
2~α
†M~α− Tr[A] , (4.13)

with the vector ~α constituting of operators defined as

~α† =
(
â† â†0 â†1 . . . â â0 â1 . . .

)
, (4.14)

which obeys the bosonic commutation relation [~αi, ~α†j ] = 1− with

1− =
(
1

−1

)
. (4.15)

Because of the second term in Eq. (4.12), the matrix M is defined as

M =
(
A B
B∗ A∗

)
, (4.16)

with the submatrices

A =



Ω
√

η0
4π 0 0 0√

η0
4π ε0 t0 0 0
0 t0 ε1 t1 0
0 0 t1 ε2 t2

0 0 0 t2
. . .


, B =



0
√

η0
4π 0 0 0√

η0
4π 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 . . .


,

(4.17)

obeying A = A†, B = BT and thus makingM hermitian. We now employ a transforma-
tion that diagonalizes ĤDHO and preserve these commutation relation. This Boguliubov
transformation ~β = T~α has the form

T =
(
X Y ∗

Y X∗

)
(4.18)

and must obey

T1−T
† = 1− (4.19)

to preserve the commutation relation. Since the matrix M is hermitian, there exists
always a unitary transformation to diagonalize the Hamiltonian. In general, this trans-
formation cannot fulfill Eq. (4.19) because the vector Eq. (4.14) now consist of operators
and not complex numbers [50]. A possible solution is to diagonalize the dynamical ma-
trix D instead (compare [50])

i
d
dt ~α = D~α , (4.20)
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with

D =
(

A B
−B∗ −A∗

)
= 1−M (4.21)

defined by the Heisenberg equation of motions

i
d
dt â = Ωâ+

√
η0
4π (â0 + â†0) (4.22)

i
d
dt â0 = ε0â0 +

√
η0
4π (â+ â†) (4.23)

i
d
dt ân = εnân + tnâ

†
n+1 + tn−1ân−1 (4.24)

and d
dt ·̂
† = − d

dt ·̂ because of the commutation relations. The dynamical matrix has a
number of important properties [50]: (i) it is in general not hermitian, in contrast to
the Hamiltonian HDHO. (ii) D has 2N eigenvalues, of which only N are independent,
with ωn = −ω∗k+N , k ≤ N . (iii) If the matrix M has an eigenvalue equal or below zero,
the transformation breaks down, in the sense that the eigenvalues of D become partly
complex. We concentrate on the case where all eigenvalues of D are real and choose the
first N eigenvalues to be positive. (iv) With this choice, the transformation matrix built
up by the eigenvectors T = [~V1, ~V2, . . .] fulfills Eq. (4.19), yielding the transformation
of the bosonic operators

b̂†k = ~α†1−~Vk (4.25)

b̂k = ~V †k 1−~α . (4.26)

(v) Additionally, T also diagonalizes M . The eigenvalues of the dynamical matrix
T−1DT = diag(ω1, . . . ,−ω1, . . .) and the ones of the original Hamiltonian T †MT are
related by

T †MT = T †1−DT = 1−T
−1DT = 1−diag(ω1, . . . ,−ω1, . . .) , (4.27)

where we used Eq. (4.19) in the second step.
Therefore, the diagonalization of the dynamical matrix D yields the eigenvalues ωn

ofM as well as the Boguliubov transformation of the bosonic annihilation and creation
operators, such that Hamiltonian can be written in diagonal form

H =
∑

k,ωk>0
ωk b̂
†
k b̂k + E0 (4.28)

E0 = 1
2
∑

k,ωk>0
ωk −

1
2Tr[A] . (4.29)

Since αc indicates the critical coupling strength for which the model becomes unstable,
i.e. one mode becomes zeros, the transformation works for all α < αc. In Fig. 15 the
lowest eigenvalues of M are plotted against the length of the Wilson chain N for
a C1 and a C2 chain and three different coupling strengths below αc. For the C2
chain, we can see clearly that the lowest eigenvalue approaches zero for α → αc while
the higher eigenvalues do not change significantly. With increasing chain length, the
lowest eigenvalue increases towards a saturation value slightly below that of the lowest
eigenvalue of the C1 chain.
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Figure 15: One-particle spectrum of the DHO obtained by diagonalizing HDHO exactly for a C1
(left) and a C2 chain (right). If α approaches αc (up to down), the lowest eigenvalue approaches
zero for the C2 chain. With increasing chain length, the gap between the lowest two eigenvalues
decreases. In the case of the C1 chain, the changes with increasing α value are small and not
discernable in this figure.

4.1.5 Calculation of the occupation number

To see whether a variational calculation of the many-body spectrum is numerical fea-
sible, we calculate the occupation number of the impurity and chain site for the DHO,
following [46]. We start with occupation number given by the thermal expectation
value

〈n̂imp〉 = Tr
[
eβĤ â†â

]
Z . (4.30)

To express the number operator â†â trough the new operators, we need to invert the
transformation

η~β = V †η~α , (4.31)

with V having the form

V =
(
X Y ∗

Y X∗

)
. (4.32)
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This yields

a = ~X0~b+ ~Y ∗0
~b† (4.33)

a† = ~Y0~b+ ~X∗0
~b† , (4.34)

where we defined ~X0 and ~Y0 to be the first column vector of X and Y respectively.
Inserting this relations in the expression for the occupation number of the impurity
Eq. (4.30), we obtain

〈n̂imp〉 =
∑
k,k′

e−βĤ b̂†k b̂k′

Z︸ ︷︷ ︸
δk,k′g(ωk)

X∗0kX0k′ +
∑
k,k′

e−βĤ b̂k b̂
†
k′

Z
Y ∗0kY0k′ (4.35)

=
(
X · diag(g(ω1), g(ω2), . . .) ·X†

)
00

+
∑
k

Tr
[
e−βĤ b̂†k b̂k

]
+ Tr

[
e−βĤ

]
Z︸ ︷︷ ︸

g(ωk)+1=−g(−ωk)

Y ∗0kY0k

(4.36)

=
(
X · diag(g(ω1), g(ω2), . . .) ·X†

)
00
−
(
Y · diag(g(ω1), g(ω2), . . .) · Y †

)
00

,

(4.37)

with g(ω) denoting the Bose function at temperature β. An analog calculation yields
the occupation number of the different chain sites

〈n̂k〉 =
(
X · diag(g(ω1), g(ω2), . . .) ·X†

)
k+1,k+1

−
(
Y · diag(g(ω1), g(ω2), . . .) · Y †

)
k+1,k+1

.

(4.38)

In Fig. 16, the calculated occupation number of the ground state of a C2 chain is plotted
against the chain site for different chain lengths N and three coupling strengths. We
observe an exponential increase of the occupation number towards the end of the chain.
However, 〈n̂k〉 saturates on a moderate value at the critical chain length N∗, with N∗
increasing when approaching the critical coupling strength αc.
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Figure 16: Calculated occupation number of the impurity and the chain sites plotted against the
chain site n for different chain lengths N (colors) and three coupling strengths far from (left) and
near (right) αc in the upper row. In the lower row, semilogarithmic plot of the same data. While
the occupation number of a special site decreases with increasing chain length, the occupation
number of the last site grows exponentially with N , but saturates beyond a characteristic chain
length N∗. This correspond to the one-particle spectrum of Fig. 15 where the lowest energy
level saturates at the same chain length. N∗ depends on the distance to αc and increases when
approaching the critical coupling strength.

4.1.6 Energy-level flow diagrams

After calculating the one-particle spectrum of the DHO via exact diagonalization and
checking that the occupation number stays finite and thus a VMPS approach to the
DHO is numerically promising, we apply the modified VMPS procedure presented in
section 2.3.6 to calculate the energy-level flow diagrams of the DHO. Note that, because
of the correction to the on-site energy on the last site of the C2 chain due to the TBMs,
we have to run separate calculations for every chain length.

In Fig. 17 we show the energy-level flow diagram of the four lowest levels for three
different values of α, both for a C1 and a C2 chain. Since a C1 chain is equivalent
to a SWC with renormalized critical coupling strength αc, we observe on the left site
of Fig. 17 the typical behavior of an energy-level flow diagram of the DHO. In the
critical regime the energy-levels are constant over a number of different chain lengths
and equidistant, with an energy difference equivalent to the lowest energy-level of the
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Figure 17: Energy-level flow diagrams with the four lowest lying energy-levels of the DHO
calculated with the modified VMPS procedure of section 2.3.6 for a C1 chain (left) and a C2
chain (right). When the dissipation strength α approaches αc (from top to bottom), we observe
the development of a constant energy-level flow over a number of different chain lengths, for
both C1 and C2 chains. For every chain length we need a separate calculation due to the energy
correction on the last site of the chain. The non-smooth behavior for longer chain lengths is
attributed to convergence problems.

one-particle spectrum λ0 for all calculated α-values. E.g. , for α = 0, 199789588, we find
λ0 = 8.783 · 10−2, whereas the energies εn of the four lowest levels of the many-particle
spectrum are ε0 = 0 (blue line), ε1 = 8.783 ·10−2 = 1λ0 (green line), ε2 = 1.757 ·10−1 =
2λ0 (red line) and ε3 = 2.635 · 10−1 = 2λ0 (cyan line) and can therefore be constructed
exactly by taking the lowest eigenenergy of the one-particle spectrum zero times, once,
twice, and three times.

For a C2 chain and α = 0.199 far away from the critical coupling strength αc, we also
find that the energy-levels are equidistant and that the flow diagram can be constructed
by taking the lowest energy-level of the one particle spectrum not once, once, twice and
three times. However, moving closer to αc, the equidistant behavior one would expect
by studying the one-particle spectrum Fig. 15 vanishes. Instead, we observe for a chain
length of N = 20 and α ≈ αc a ground state energy of the one-particle spectrum of
λ0 = 1.401 · 10−5, whereas the energy-levels of the many-particle spectrum are ε0 = 0
(blue line), ε1 = 1.968 · 10−3 = λ0 (green line), ε2 = 5.239 · 10−3 = λ0 (red line)
and ε3 = 9.811 · 10−3 = λ0 (cyan line). Since the lowest level of the one-particle
spectrum increases with longer chain lengths and the many particle spectrum stays
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constant for different chain lengths, these relations vary for different N . Studying the
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Figure 18: Occupation number 〈n̂k〉 along the chain of the m = 4 lowest levels obtained with
the modified VMPS procedure for a C1 chain (left) and a C2 chain (right) for three different
values of α. We note that the occupation number increases towards the end of the chain and
that higher levels result in higher occupation numbers. While for a C2 chain, 〈n̂k〉 increases for
all levels when approaching αc, it stays the same in case of a C1.

calculated occupation number 〈n̂k〉m along the chain for the different levels displayed
in Fig.18, we note that the occupation number increases with k towards the end of the
chain and that 〈n̂k〉m is larger for higher lying levels. In case of the C1 chain and for
results of the C2 chain with α = 0.199, we observe a maximal occupation number of
comparable magnitude, whereas, when approaching αc for a C2 chain, the occupation
number increases for all levels, even the lowest one. Note the saturation of the increase
of 〈n̂N 〉m with increasing m, indicating a possible lack of convergence. This could
also be the cause of the unexpected behavior of the energy-level flow diagrams near
αc. However, increasing the upper bond dimension D and the dimension of the local
bosonic bases dk just confirmed previous results.

The non-smooth behavior of the energy levels for longer chains length is caused by
convergence problems due to numerical imprecision. This is illustrated in Fig. 19, where
we depicted the difference between the energy convergence of a short (N = 20) and long
chain (N = 30). For the short chain, after the first 3 sweeps (k = 60 iterations), the
energy levels are converged. For the longer chain, we observe jumps in all energy-levels
mostly after sweeping back from the right to the left end of the chain. Those occur so
often that the system cannot converge.
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Figure 19: Energy Ek of the lowest four levels calculated at each site of the Wilson chain during
several numbers of sweeps plotted against the iteration step k. To illustrate the convergence
behavior, the results obtained during consecutive sweeps are merged. For a chain with length
N = 20, we observe straight convergence of all energy-levels, whereas for N = 30 the energy-
levels suddenly jump before convergence is reached.
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4.2 Spin-boson model

The spin-boson model is one of the most simple non-trivial models for studying compet-
ing interactions and consists of a two-state system (e.g. a spin-1/2 impurity) coupled to
a bath of non-interacting bosonic degrees of freedom. In the last years, the model has
gained a lot of attention because of its wide range of applications for example in quan-
tum dissipation [3, 51], interaction of qubits with the environment [52, 53], cold atom
quantum dots [54] or trapped ions [55]. The SBM shows an impurity quantum phase

∆

ε
σz =↑

σz =↓

Figure 20: Illustration of the spin- boson model. The two states σz =↑ and σz =↓ differ in
energy by the bias ε and are connected via the tunneling constant ∆.

transition at zero temperature, which corresponds according to quantum-to-classical
correspondence (QCC) to the classical transition of an one-dimensional Ising chain
with long ranged interaction. First results from NRG calculations [9, 12, 30] suggested
a breakdown of the QCC principle but turned out to be affected by the bosonic trun-
cation and mass flow error [15, 30, 56]. Subsequent works based on quantum Monte
Carlo, exact diagonalization or VMPS confirm the validity of quantum-to-classical cor-
respondence. However, the application of VMPS to the SBM is also affected by the
neglected TBMs and thus yields the wrong critical exponent x for the susceptibility χ.

In this section, we first give a short overview of the different physical properties of
the spin-boson model and show that also for this more complicated model the numerical
results obtained with a RWC are in agreement with results from other methods like
quantum Monte Carlo, thus confirming the effectiveness of OWCs.

4.2.1 Ground state phases

We already discussed the spin-boson model briefly in the section of bosonic NRG 2.2.1,
where we started with the Hamiltonian

Ĥ = ε

2 σ̂x −
∆
2 σ̂z︸ ︷︷ ︸

Ĥimp

+
∑
q

ωqâ
†
qâq︸ ︷︷ ︸

Ĥbath

+ σ̂z
2
∑
q

λq(âq + â†q)︸ ︷︷ ︸
Ĥcoupling

. (4.39)

The impurity consist of a spin 1/2 system described by the Pauli matrices, coupled lin-
early to a bath of bosonic modes represented by harmonic oscillators with corresponding
creation â†q and annihilation âq operators and frequencies ωq. ε denotes an energy level
bias in coupling direction while the tunneling amplitude ∆ describes the interaction
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of the two eigenstates of the spin-1/2 system. As already discussed in chapter 3, the
system is completely described by the spectral function

J(ω) = π
∑
q

λ2
qδ(ω − ωq) . (4.40)

Again, we choose the power-law parametrization for the low-temperature behavior up
to a critical frequency ωc = 1

J(ω) = 2παω1−s
c ωs, 0 < ω < ωc, s > 0 . (4.41)

The dissipation strength is given by the dimensionless parameter α while s takes on the
role of an effective dimension, determining the low-energy density of states. We can
distinguish three different parameter regimes for the SBM: ohmic (s = 1), sub-ohmic
s < 1 and super-ohmic s > 1. To apply the VMPS procedure on the SBM, we discretize
the model and map it onto a semi-infinite chain (see Sec. 2.2.2 and Sec. 2.2.3)

Ĥchain = Ĥimp +
√
η0
π

σ̂z
2 (b̂0 + b̂†0) +

∞∑
k=0

[
εk b̂
†
k b̂k + tk(b̂†k b̂k+1 + b̂†k+1b̂k)

]
. (4.42)

In all following calculations, we choose the upper bond dimension D = 40 and the
dimension for the optimal bosonic basis dopt = 16, if not stated otherwise.

At zero temperature and zero bias, we can distinguish two different regimes dif-
fering by the type of the occurring ground state. In the first case, the interplay be-
tween the dissipation and the spin precession is dominated by the coupling α yield-
ing a strongly localized ground state with finite magnetization 〈σ̂z〉 6= 0 because
the spin localizes in direction of the bath coupling. In this case, the ground state
is two-fold degenerate and exhibits spontaneous symmetry breaking. In the second
case, the coupling is too weak to localize the spin, thus generating a weakly cou-
pled, delocalized ground state with no magnetization 〈σ̂z〉 = 0 and no degeneracy of
the ground state. In Fig. 21, a VMPS energy-flow diagram for s = 0.4 is displayed,
where we can see that both types of ground states correspond to stable fixed points.
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Figure 22: VMPS phase diagram showing a transition
from the delocalized (α < αc) to the localized phase (α >
αc).

The definition in mind, panel
(a) shows the energy-flow in the
delocalized regime with a non-
degenerate fixed point at the lat-
est iterations, while panel (c)
shows the flow into the local-
ized regime. Separating this
two regimes, the quantum phase
transition in the sub-ohmic case
corresponds to another fixed
point shown in panel (b), called
critical fixed point. The fixed
point behavior of the system de-
pends on the the interplay be-
tween coupling α, tunneling coefficient ∆ and the exponent of the spectral function
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Figure 21: VMPS energy-level flow diagram for the sub-ohmic SBM with s = 0.4. Panel (a) and
(c) show the flow from the critical towards the delocalized and localized fixed point respectively,
while in (b) the system is located at the critical fixed point directly at the phase boundary. In
this case, the smooth energy-level flow is characteristically.

s. Fig. 22 illustrates the resulting phase diagram. The critical coupling αc denotes the
appearance of the fixed point corresponding to the phase transition from the localized
to the delocalized regime. Since the exponent s of the spectral function determines
the density of states of the bosonic bath, it also influences how strong the coupling
has to be in order to localize the spin. Thus, for larger s a larger dissipation strength
α is required to localize the spin. The critical coupling reaches its maximum in the
ohmic regime for s = 1, whereas in the super-ohmic regime no phase transition occurs
since the system always delocalizes. The tunneling between the two eigenstates of the
spin system has the opposite effect, i.e. a delocalization of the spin. Therefore, with
increasing tunneling strength, αc increases.

4.2.2 Determining the critical coupling strength

There exist a number of ways to determine the critical coupling strength αc numeri-
cally. One approach developed by [57] is based on the behavior of the bosonic ground
state occupation number 〈n̂k〉 along the chain. In the localized phase, the occupation
number increases towards the end of the chain as illustrated in Fig. 23(a), whereas in
the delocalized phase the number of bosons decays steadily. Thus αc can be found by



4 APPLICATIONS 49

tuning the coupling strength such that the occupation number stays constant along
the chain, apart from the sharp decay at the end of the chain. However, this approach
does not work any more when using OWCs which can be seen in Fig. 23(b). Since the
energy corrections due to the TBMs lower the on-site energy of the last site of the C2
chain (Sec. 4.1.2), the occupation number always increases towards the end of the chain
independent of the investigated parameter regime.
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Figure 23: (a) Behavior of the bosonic occupation number 〈n̂k〉 along the SWC for the sub-ohmic
SBM with s = 0.6 in the delocalized (blue), localized (green) phase and at the quantum phase
transition (red). The characteristic behavior can be used to determine αc for which the phase
transition occurs, (b) Bosonic occupation number for a RWC with s = 0.6. While the behavior in
the localized phase (green) does not change qualitatively compared to a SWC, the behavior in the
delocalized regime is different. Far away from αc the occupation number decreases exponentially
along the chain, but near the critical coupling 〈n̂k〉 starts increasing towards the end of the
chain (blue curves) with the same number of bosons on the last chains sites. For α ≈ αc (red)
determined via energy-level flow diagrams we observe the same behavior.

In the context of the dissipative harmonic oscillator, we encountered that the sus-
ceptibility shows a characteristically different behavior below and above the critical
coupling strength. This is also the case for the spin-boson model. With decreasing
temperature, the susceptibility χ(T ) increases with a typical power-law behavior near
the critical coupling strength α = αc. The susceptibility saturates at a constant value
for low temperatures in the delocalized regime and diverges in the localized regime.
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Since there exists no analytic expression for the susceptibility, αc has to be determined
numerically by calculating χ(T ) for different coupling strengths. However, this is nu-
merically expensive, because we have to evaluate the derivative χ = d〈σ̂z〉

dε numerically
by calculating the expectation value 〈σ̂z〉 for different biases ε. Additionally, OWCs
make it necessary to use separate VMPS calculations for different chain lengths corre-
sponding to different temperatures T .

Another approach to determine αc in the Wilson chain setup of the SBM uses the
characteristics of the energy-level flow diagrams. As illustrated in Fig. 21, they display
a crossover from the critical to the localized α > αc or delocalized (α < αc) fixed
point at site N∗. This crossover can be characterized by a low-energy scale T ∗ ∝ Λ−N∗

allowing us to determine αc [20]. In the limit of α → αc, the system is located at the
critical fixed point, hence N∗ →∞. For our calculations we employ the latter method
to determine αc.

To access critical properties, we need a resolution down to the low-energy scale
T ∗ ∝ |α − αc|ν as discussed in [14], where ν is the critical exponent of the correlation
length. Since the energy scale accessible by a Wilson chain scales with Λ−N , both ν
and N govern for the accuracy of the determination of αc. Thus, for an accuracy of
10−a we need a minimum length of

N ∝ aν ln(10)
ln(Λ) . (4.43)

4.2.3 Critical exponents

The physics of systems near critical points in continuous phase transitions is in general
well described by the behavior of some basic variables. Near the phase transition,
these variables can be characterized by their power-law exponents which are the so-
called critical exponents. One appealing example is a ferromagnet, whose temperature
is decreased until it reaches the critical temperature Tc. Above Tc, the magnetization
m of the ferromagnet changes linearly with respect to a small applied magnetic field
h. Below Tc, the magnetization follows a super-linear power-law. If we define the
susceptibility χ = dm

dh , we observe that χ ∝ h
1/δ−1 for h→ 0 and can define the critical

exponent δ. Such critical exponents describe the degree of singularity and specify the
critical phenomena as we will see in the following discussion of the SBM. In table (1), we
summarize the critical exponents used to describe the quantum phase transition of the
SBM and their definitions. We mentioned already that the SBM displays a quantum

Table 1: Critical exponents used to describe the SBM.

physical Quantity Definiton Condition
Local magnetization 〈σ̂z〉 ∝ |α− αc|−β |α− αc| → 0, ε = 0, T = 0
Local susceptibility χ ∝ |α− αc|−γ |α− αc| → 0, ε = 0, T = 0
Local magnetization 〈σ̂z〉 ∝ |ε|1/δ α = αc, ε→ 0, T = 0
Correlation length ξ ∝ |α− αc|−ν |α− αc| → 0, ε = 0, T = 0
Local susceptibility χ ∝ T−x α = αc, ε = 0, T → 0

phase transition in the regime of 0 < s < 1 at zero temperature between the localized
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and delocalized phase. Due to quantum-to-classical correspondence, it is possible to
predict certain features of the SBM analog to the behavior of the one-dimensional Ising
chain. First of all, since s determines the power law of the spectral function and thus
the density of states near ω = 0, it acts as an effective dimension with an upper and
lower critical dimension at s = 1/2 and s = 1, as showed by Luitjen and Blöte [58].
Therefore, for 0 < s < 1/2 the effective dimension is above the upper critical dimension,
resulting in mean-field behavior for the SBM. This is reflected in the critical exponents
being

β = 1
2 , δ = 3, ν = 1

s
, γ = 1, x = 1

2 . (4.44)

If s lies between its upper and lower critical dimension, 1/2 < s < 1, the system
shows non-trivial critical behavior. The critical exponents obey so-called hyperscaling
relations

δ = 1 + x

1− x, 2β = ν(1− x), x = s . (4.45)

Finally, for s = 1 the quantum phase transition shows a diverging correlation length
and the absence of a critical fixed point. This typical behavior when reaching the
lower critical dimension is called a Kosterlitz-Thouless phase transition. As already
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Figure 24: (a) Absolute value of the magnetization |〈σ̂z〉| for different values of α and s = 0.5
(blue squares). A non-linear fit (red) within the dashed lines shows the power-law behavior over
four orders of magnitude with the exponent βfit. Parameters above the panel. (b) Determined
values of β (blues squares with error bars) for different values of s in the sub-ohmic regime of
the SBM. The predicted mean-field behavior above the upper critical dimension 0 < s < 1/2 is
indicated by a dashed line and confirmed by the numerical results.
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mentioned, the first NRG results from Bulla et al.[9] in 2003 confirmed the Kosterlitz-
Thouless transition at s = 1 but predicted hyperscaling relations for the entire sub-
ohmic regime 0 < s < 1 thus contradicting the quantum-to-classical correspondence
principle. These unexpected results, even reinforced by further works on the SBM and
the Bose-Fermi Kondo model [10, 11], lead to further studies based on other numerical
methods like quantum Monte Carlo [12], exact diagonalization [13] and VMPS [14]
which found the predicted mean-field exponents for 0 < s < 1/2. The reason for the
misleading results of NRG were traced back to the two limitations of bosonic NRG: the
truncation and the massflow error [13, 30]. Consequently, the mean-field value for the
critical exponents δ = 3 and β = 1/2 were found [14] with a displayed OBB according
to Sec. 2.3.3. Fig. 24 and Fig. 25 displays δ and β as function of s obtained with VMPS
and OWCs showing that our method is able to reproduce these results.
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Figure 25: (a) Absolute value of the magnetization |〈σ̂z〉| for different values of ε and s = 0.4
(blue squares). A non-linear fit (red) within the dashed lines shows the power-law behavior over
five orders of magnitude with the exponent δfit. Parameters above the panel. (b) Determined
values of δ (blues squares with error bars) for different values of s in the sub-ohmic regime of
the SBM. The predicted mean-field behavior above the upper critical dimension 0 < s < 1/2 is
indicated by a light gray dashed line while the hyperscaling relations for the regime between the
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4.2.4 Determination of ν with spin-projected displacements

It is also possible to determine the other critical exponents x and ν in the VMPS
framework. While x describes the temperature dependence of the susceptibility, ν
determines the behavior of the correlation length and thus the low-energy scale

T ∗ ∝ |α− αc|ν , (4.46)



4 APPLICATIONS 53

for which quantum critical phenomena are observable. This energy-scale can be read
off the energy-level flow diagrams because T ∗ is related via T ∗ ∝ Λ−N∗ to the chain
site N∗ where the transition from the critical to the localized or delocalized fixed point
occurs. However, ν can also be determined from the behavior of the spin-projected
displacements δ↑i and δ↓i . Decomposing the ground state |G〉 into the eigenbasis of the
spin-1/2 system

|G〉 = |G+〉| ↑〉+ |G−〉| ↓〉 , (4.47)

we can define

δ↑i = 〈G+|x̂i|G+〉
〈|G+|G+〉

(4.48)

δ↑i = 〈G−|x̂i|G−〉
〈|G−|G−〉

, (4.49)

with i denoting the energy level of the discretized star Hamiltonian Eq. (2.27). Fig. 26
displays the spin projected displacements in the sub-ohmic regime near the phase tran-
sition, moving from the delocalized to the localized phase. For α < αc we observe that
both spin parts of the ground state wave function have equal weight while the spin
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Figure 26: Spin-projected displacement δi versus energy ζ for three different α-values in the
delocalized, critical and in the localized phase, for s = 0.5. Lower panels show the spin-up
projected date in a double-logarithmic plot. The dashed black line indicates the transition energy
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projected displacements δ↑i and δ↓i have opposite sign and same amplitude. This results
in a total displacement δi = 〈G|x̂i|G〉 of zero, as expected in the localized phase without
bias. In the low-energy regime, the spin projected displacements vanish simultaneously,
indicating the transition from the critical to the delocalized regime. Due to the last
term of the Hamiltonian Ĥstar and the minimization property of the ground state,
the spin-up displacement picks up a negative sign while the spin-down displacement is
positive.

Moving closer to the critical coupling, the energy at which the spin-projected dis-
placements vanish moves towards zero. This is the same behavior as for the energy-level
flow diagrams where the transition from the critical fixed point to the localized or delo-
calized occurs at later iterations N∗ →∞. In the localized phase for high energies, the
spin-projected displacements have opposite sign as in the delocalized phase, resulting
in a vanishing total displacement. For low energies, they coincide and increase towards
low energies such that the the total displacement also increases exponentially towards
low energies, which corresponds to an increasing displacement toward the end of the
Wilson chain. The energy, where δ↑i and δ↓i coincide, increases when moving away from
αc, indicating an earlier transition to the localized phase.

Studying the spin-projected displacements in the delocalized phase in a double-
logarithmic plot (lower panels of Fig. 26), one can see that the low-energy behavior is
governed by a different exponent than the high-energy behavior. The energy ζ∗ where
the behavior changes determines the critical exponent ν. In Fig. 27, we illustrated the
calculated exponents for different values of s. The results are in agreement with the
theoretical predictions for 0 < s < 1/2 and follow the hyperscaling predictions in the
regime 1/2 < s < 1 as illustrated in Fig. 28(b).

4.2.5 Susceptibility calculation

Similar to chapter 4.1.6, we can calculate the susceptibility χ(T ) = d〈σ̂z〉
dε of the spin-

boson model via a numerical derivative of the ground state expectation value of the mag-
netization |〈σ̂z〉|, where 〈〉 indicates the expectation value with respect to the ground
state of the VMPS calculation, for a C2 chain. Note that we use different chain lengths
N such that the smallest excitation energies are comparable to the temperature T and
thus have to run separate VMPS calculations for every temperature. Fig. 28(a) shows
the susceptibility plotted over temperature for s = 0.4 with the corresponding non-
linear fit to determine x. The value of the critical exponent is close the theoretically
predicted value 1/2. In Fig. 28(b), we illustrated x for different values of s. While we
find excellent agreement between the hyperscaling relations and the numerical results,
for 0 < s < 1/2 the VMPS results with RWCs are slightly above the mean-field value
xMF = 1/2. Since the static approximation evaluates the real part of the self-energies
at ω = 0, the energy corrections of the on-site energies become increasingly inaccurate
for larger energies. The implementation of higher order perturbation theory to capture
the effects of the TBMs more correctly, could be improve the numerical results. How-
ever, the obtained results are clearly a huge improvement to previous VMPS results
where x follows the hyper-scaling relations over the whole sub-ohmic regime.

Having calculated x, we can check the validity of the second hyperscaling relation
x = 1 − 2β/ν (Fig. 28(b)). As expected, the results are in good agreement with the
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theoretical predictions proving again the accuracy of the employed VMPS method.
VMPS applied to a SWC yields x = s in the whole sub-ohmic regime 0 < s < 1

by studying the finite-size scaling of the magnetization |〈σ̂z〉| [57]. This turns out to
be correct for the hyperscaling regime 1/2 < s < 1, but not for the mean-field regime
0 < s < 1/2. The reason for the latter problem is the massflow error. We now present
the method used by [57] and show that the finite size effects used to calculate x are
not present when using a C2 chain. Assuming that in the limit of infinite system size
L → ∞ |〈σ̂z〉| approaches a well defined value |〈σ̂z〉|0, and that for finite systems we
expect corrections to this limiting value in case of a SWC, we can deduce that

|〈σ̂z〉| = |〈σ̂z〉|0 + a
1
Lp

= |〈σ̂z〉|0 + a(Λ−N )p . (4.50)

Here we used that the system size is related to the discretization parameter Λ and the
length of the Wilson chain N as

1
L
∝ 1

ΛN . (4.51)

This behavior can be seen in Fig. 29(a). The magnetization of a gapped system close
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4 APPLICATIONS 56

to a critical fixed point scales as |〈σ̂z〉| ∝ ∆(1−x)/2 [60], where ∆ is a finite energy gap.
We can relate the exponent p of the finite size corrections in Eq. (4.50) to x, because
for a SWC the low-energy cut-off Λ−N acts as an effective energy gap [57] ,

(Λ−N )p = (Λ−N )(1−x)/2 , (4.52)

which gives x = 1− 2p. In contrast, since for OWC the TBMs are included completely
for any chain length N , the systems stays at the critical coupling strength αc. Thus,
the finite size effect vanishes and |〈σ̂z〉| stays zero for all N . This behavior is indeed
obtained numerically, as illustrated in Fig. 29(b).
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Figure 28: (a) Susceptibility χ for a RWC with s = 0.4 and α values below and above the
critical coupling strength. For α ≈ αc the susceptibility shows a power-law behavior with the
exponent x which is determined by a non-linear fit (red). As α is lowered farther below αc, the
susceptibility becomes temperature independent for T → 0 and saturates at a lower value of χ,
in contrast, the susceptibility diverges if the dissipation strength is above αc. (b) Behavior of
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and numerical results for small s values is presumably due to the static approximation.
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5 Conclusion
Since Leggett et al. popularized the spin-boson model in 1987 in the context of quantum
dissipation [3, 4], it has been applied to a variety of physical systems from biophysics
(e.g. electron transfer processes in biomolecules [59]), over condensed matter (e.g. cold
atom quantum dots [54]) to quantum information (e.g. noisy qubits [53]). Because an
interacting systems is considered, the model displays a high degree of complexity, not
solvable by most of the analytic approaches. To describe the underlying physics and
especially critical phenomena of such bosonic models, one has to rely on numerical first-
principle methods such as the Numerical Renormalization Group (NRG) [5, 6] and the
Density Matrix Renormalization Group (DMRG) [7, 8].

However, the investigation on the first bosonic quantum impurity model showed
huge discrepancies between analytic predictions and numerical results obtained with
NRG [9, 10, 11], which could be partially be fixed by DMRG application [15, 57]. This
thesis builds on this methodical problem and pursued two goals: (i) to present the con-
struction of an improved Wilson chain, called open Wilson chain (OWC), which can be
used for NRG and DMRG to capture the physics of impurity quantum systems com-
pletely. (ii) to investigate two bosonic quantum impurity model with OWCs, namely
the dissipative harmonic oscillator and the spin-boson model.

We started this thesis (chapter 2) with an introduction to the numerical meth-
ods used in this thesis: Matrix Product States (MPS), the Numerical Renormalization
Group (NRG) and Variational Matrix Product States (VMPS). Additionally, we pre-
sented a variation of VMPS to determine not only the ground state but an arbitrary
number of the lowest lying states. Afterwards, we discussed the iterative construction
of open Wilson chains (OWC) where each site is coupled to a bath of its own. The
influence of those baths on the Wilson chain parameters is partly neglected in stan-
dard Wilson chains. A simple implementation of these truncated bath modes (TBM)
into the setup of NRG and VMPS via a static approximation, dubbed reduced Wilson
chains (RWC), was introduced in the end of the chapter.

In chapter 4, we used RWCs on two models: the dissipative harmonic oscillator
(DHO) and the spin-boson model (SBM). Whereas the DHO investigated with VMPS
or NRG and a standardWilson chain (SWC) displayed a temperature depending suscep-
tibility, we showed that VMPS and a RWC including all TBMs were able to describe the
temperature-independent susceptibility correctly. Additionally, we demonstrated that
the critical coupling strength of the DHO is in agreement with theoretical predictions
when using RWCs.

The application of VMPS and a RWC to the spin-boson model showed that the
critical properties of the system were in agreement with the predictions of the quantum-
to-classical correspondence. While VMPS applied to a SWC were able to determine
the critical exponent x of the susceptibility via finite-size effects for limited parts of
the parameter regime, these effects were not present anymore using RWCs. Moreover,
calculating the susceptibility directly, we demonstrated that the usage of RWC led to
the predicted behavior of the critical exponent x in the whole sub-ohmic regime, with
only small derivations for small bath exponents s.

Two possible path of topics for future research can be distinguished. On the one
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hand, the improvement of the presented incorporation of the OWCs into NRG and
VMPS in form of a more sophisticated usage of perturbation theory to calculate the
effects of the TBMs. Although the simple static approximation led to theoretical pre-
dicted results in the case of the DHO, for the SBM we observed small derivations
indicating that this approach possibly overestimates the influence of the TBMs. On
the other hand, the bath describing the environment is discretized at the outset in
NRG and DMRG applications such that a Wilson chain of any finite length actually
constitutes of a closed quantum system with a discrete spectrum. These spectra must
be broadened by hand after the calculations to obtain smooth spectral functions. The
construction of OWC offers a natural prescription for broadening discrete spectra since
the presented scheme keeps track of all TBMs.
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A Appendices

A NRG and RWCs

The NRG scheme is based on repeating always the same iteration step, namely adding
a new site of the Wilson chain and diagonalizing the resulting Hamiltonian. Therefore,
all sites are treated similarly. Consequently, we obtain the results of all chain length
N ′ < N when using NRG on a standard Wilson chain of length N .

However, when using a RWC this is not possible anymore with the standard NRG
scheme. The static approximation incorporates the effects of the TBMs by evaluation
of the self-energies of the baths and slow modes at ω = 0 and shifting the on-site
energies of corresponding sites by this amount

ε̃n = εn + δεFn + δnNδε
S
N , δεF/Sn = <

(
ΣF/S
n (0)

)
. (A.1)

Note that the last site N takes on a special role since not only the fast modes but
also the slow modes lead to an energy shift. Therefore, we must decide before starting
the NRG calculation how long the RWC has to be. At iteration step n < N , the
Hamiltonian has only information about the baths of fast modes but no information
about the slow mode bath describing the low-energy spectrum.

To adapt the NRG procedure to RWCs, we modify the iteration step Eq. (2.33)
relating two consecutive Hamiltonians by adding the slow mode shift of the current site
and a counter-term to remove the slow mode correction of the previous iteration

ĤN+1 = Λ(ĤN − δSN ) + ΛN+1
[
(ε̃FN+1 + δSN+1)b̂†N+1b̂N+1 + tN (b̂†N b̂N+1 + b̂†N+1b̂N )

]
.

(A.2)

Note that in the occurring energy ε̃FN = εN + δεFN the fast mode shift is already em-
bedded. With this modification, each site is treated similarly by the NRG procedure
and the Hamiltonian HN incorporates the TBMs via the static approximation in every
iteration step.

This adaption is only possible if the basis of eigenstates generated by diagonalizing
the Hamiltonian ĤN do not differ significantly compared to the case where no slow
mode shift on the last site is inserted. In the case of the dissipative harmonic oscillator,
the results for the susceptibility obtained with the adapted procedure in one calculation
and the results of several standard NRG are in perfect agreement.
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Figure 30: Magnetization 〈σz〉 over bias ε for different values of s. The dashed lines show the
range used for the non-linear fit (red) to determine the critical exponent β. Parameters used:
∆ = 1, α ≈ αc = 0, Λ = 2, N = 60.
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Figure 31: Magnetization 〈σz〉 over distance to the critical coupling strength αc for different
values of s. The dashed lines show the range used for the non-linear fit (red) to determine the
critical exponent δ. Parameters used: ∆ = 1, ε = 0, Λ = 2, N = 60.
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