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Deutsche Zusammenfassung

Die vorliegende Arbeit trägt zum Verständnis von Störstellenmodellen bei. Sie ist in zwei
Hauptteile aufgeteilt, mit einer allgemeinen Einleitung in Teil I und den damit verbundenen
Untersuchungen in Teil II, wobei der zweite Teil in zwei Hauptprojekte aufgeteilt ist.

Das erste Projekt untersucht den Einfluss von zwei Vielteilcheneffekten, dem Kondo-
Effekt und der Singularität der Fermi-Kante, auf die Absorptions- und Emissionsspektren
von selbstgebildeten Quantenpunkten (QPs). Obgleich der Kondo-Effekt bis jetzt immer
mit Transportexperimenten untersucht wurde, zeigen wir, dass er das erste Mal mit op-
tischen Methoden beobachtet worden ist, indem wir die experimentellen Daten für die
Linienform der Absporptionsspektren von QPs mit Berechnungen mittels der numerischen
Renormierungsgruppe vergleichen. Wir fahren fort mit der Untersuchung eines QP mit
starker optischer Kopplung der Energieniveaus. Das sich ergebende Zusammenspiel von
Rabi-Oszillationen und Kondo-Effekt führt zu einem neuen Vielteilchenzustand, einem
sekundären, äußeren Kondo-Effekt, mit Kondo-artigen Korrelationen zwischen dem Spin-
Kondo- und dem Trionzustand. Die letzte Studie, die Optik an einem QP betrifft, be-
handelt die Singularität der Fermi-Kante. Wir zeigen, dass dieses Phänomen bei QPs
numerisch auf einem quantitativen Level beschrieben werden kann.

Das zweite Projekt betrifft die Transporteigenschaften von Störstellenmodellen. Zunächst
zeigen wir eine umfassende Studie des Kondo-Effekts für einen aus einem InAs-Nanodraht
bestehenden QP, ein System bei dem der Kondo-Effekt erst vor ein paar Jahren das er-
ste Mal beobachtet wurde. Die zweite Studie, die den Transport betrifft, betrachtet den
Kondo-Effekt in Massenmetallen mit magnetischen Störstellen. Obwohl der Kondo-Effekt
heutzutage oft an QPs untersucht wird, wurde er bei Eisenstörstellen in Edelmetallen wie
Gold und Silber entdeckt. Es war jedoch für lange Zeit nicht bekannt, welche genaue
mikroskopische Realisierung des Kondo-Modells diese Systeme beschreibt. Wir identi-
fizieren das Modell eindeutig, indem wir numerische Berechnungen für den spezifischen
Magnetowiderstand und die Dephasierungsrate für unterschiedliche Modelle mit exper-
imentellen Ergebnissen vergleichen. Die dritte Studie, die sich mit Transport befasst,
behandelt das Phänomen, dass für einen festgelegten Typ von Kondo-Modell Größen wie
der spezifische Magnetowiderstand, bzw. die spezifische Leitfähigkeit, für unterschiedliche
Parameter auf eine universelle Kurve skaliert werden können, wenn die Energien mit der
Kondo-Temperatur TK reskaliert werden, was die einzige relevante Energieskala des Prob-
lems ist. Bei endlicher Bandbreite führen unterschiedliche Definitionen von TK (die im
Limes unendlicher Bandbreite zusammenfallen) allerdings zu unterschiedlichen TK-Werten.
Wir zeigen, dass bei einer weit verbreiteten Definition von TK die endliche Bandbreite,
die bei numerischen Rechnungen immer vorhanden ist, die Universalität kompromittiert,
und wir zeigen eine alternative Definition von TK auf, die richtiges Skalieren sicherstellt.



viii Deutsche Zusammenfassung

In der letzten Studie dieser Arbeit berechnen wir die Fermiflüssigkeitskoeffizienten für
voll abgeschirmte Mehrkanal-Kondo-Modelle. Für Temperaturen unterhalb von TK zeigen
diese Modelle Fermiflüssigskeitsverhalten und die Zustandsdichte der Störstelle und bes-
timmte Größen, die davon abhängen, wie der spezifische Widerstand, zeigen quadratisches
Verhalten in Bezug auf Parameter wie Temperatur oder Magnetfeld, welches durch die
Fermiflüssigkeitskoeffizienten beschrieben wird. Wir berechnen diese Koeffizienten sowohl
analytisch als auch numerisch.



Abstract

This thesis contributes to the understanding of impurity models. It is divided into two
main parts, with a general introduction given in Part I and the research related to it
presented in Part II, with the second part being subdivided into two main projects.

In the first project, the influence of two many-body effects, the Kondo effect and the
Fermi edge singularity, on the absorption and emission spectra of self-assembled quantum
dots (QDs) is examined. Whereas the Kondo effect so far was always examined with
transport experiments, we show that it has been observed with optical methods for the first
time, by comparing experimental data for the absorption line shapes of QDs to calculations
with the numerical renormalization group. We continue by examining a QD with strong
optical coupling of the energy levels. The resulting interplay of Rabi-oscillations and Kondo
effect leads to a new many-body state, a secondary, outer Kondo effect, with Kondo-like
correlations between the spin-Kondo and the trion state. The last work regarding optics
at QDs addresses the Fermi edge singularity. We show that for QDs this phenomenon can
be described numerically on a quantitative level.

The second project concerns transport properties of impurity models. First, we present
a comprehensive study of the Kondo effect for an InAs-nanowire QD, a system for which
the Kondo effect was observed only a few years ago. The second study regarding transport
concerns the Kondo effect in bulk metals with magnetic impurities. Although nowadays
the Kondo effect is often studied with QDs, it was discovered for iron impurities in no-
ble metals like gold and silver. However, it was unknown for a long time which exact
realization of Kondo model describes these systems. We identify the model by compar-
ing numerical calculations for the magnetoresistivity and the dephasing rate for different
models to experimental results. The third work about transport concerns the phenomenon
that for a fixed type of Kondo model quantities like the magnetoresistivity or the con-
ductivity, respectively, can be scaled onto a universal curve for different parameters, when
energies are rescaled with the the Kondo temperature TK, since it is the only relevant low
energy scale of the problem. For finite bandwidth, however, different definitions of TK

(which coincide in the limit of infinite bandwidth) lead to different TK-values. We show
that with a very common definition of TK, finite bandwidth, which is always present at
numerical calculations, can deteriorate the universality of rescaled curves, and we offer an
alternative definition of TK which ensures proper scaling. In the last study presented in
this thesis we calculate the Fermi-liquid coefficients for fully screened multi-channel Kondo
models. For temperatures below TK, these models show Fermi-liquid behavior, and the
impurity density of states and certain quantities which depend on it, like resistivity, show
quadratic dependencies on parameters like temperature or magnetic field, described by the
Fermi-liquid coefficients. We calculate these coefficients both analytically and numerically.





Part I.

General Introduction





1. Introduction

The aim of physics is to understand and predict the observable processes in nature on a
quantitative level and to constantly extend the current understanding with experimental
and theoretical methods. While the experiment tries to improve measurement techniques
and control of physical processes, theory tries to find adequate models and methods to
treat them. At the process of research it is thereby essential that theory and experiment
are continuously compared to each other, the mutual feedback consolidates the prevail-
ing knowledge, so that further research can build on it. Regarding experiments, one can
distinguish between three main kinds in the field of condensed matter physics: experi-
ments probing thermodynamic coefficients, transport experiments, and spectroscopy [1].
Whereas thermodynamic experiments give static information on systems, which is quite
universal for very different kind of systems, transport and spectroscopy experiments, which
are considered in this thesis, can be used to obtain more system-specific and dynamical
information, which allows to identify individual energy levels or eigenstates.

Although in condensed matter physics the physical laws that govern single particles
are known, predicting the collective behavior that determines an energy level or another
measurable quantity is far from trivial [2]. This is not primarily because of the large
particle numbers one encounters here, but due to the fact that (i) the particles do not
behave independently of each other because of their mutual interactions, and (ii) quantum
mechanical superpositions of states have to be taken into account. The system therefore
has to be treated as a whole, where all possible combinations of single particle states have
to be considered. Since the Hilbert space grows exponentially with the number of particles,
an exact theoretical description is impossible since one would have to keep track of every
possible state of the system, however, even a system as small as 300 atoms with two states
per atom, has more possible global states than there are atoms in the observable universe!
Therefore theoretical methods always consider an effective system where the number of
degrees of freedom is drastically reduced.

Instead of simply being a necessary approximation that accompanies every theoretical
description, the reduction of degrees of freedom is the central paradigm of the renor-
malization group, which, based on previous ideas of renormalization, was developed by
K. G. Wilson in the 1970’s [3, 4, 5, 6]. The main idea of the renormalization group is
to set up a sequential transformation where a Hamiltonian with many degrees of freedom
is transformed into a Hamiltonian with new effective parameters and less degrees of free-
dom. Today there exist many methods which are based on renormalization ideas, which
have different strengths and drawbacks and are suited for different kinds of problems. The
numerical renormalization group (NRG) [4, 7, 8, 9] is one of the earliest renormalization
methods and is the method of choice for impurity problems. Its power was first demon-
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strated in one of Wilson’s seminal publications on this method [4], where it was used to
solve a many-body problem which had been unsolved for decades at that time: the Kondo
problem [10, 11].

This problem emerged from the observation in the 1930s that the resistivity of gold
shows an anomalous rise at low temperatures [12], which was later discovered to be due
to magnetic impurities. J. Kondo explained the increase of the resistivity [13] as spin-
flip scattering of conduction electrons off the impurities, which sets in below a certain
energy scale, the Kondo temperature TK. However, his perturbative solution diverged
for zero temperature, a phenomenon which became known as the Kondo problem. The
NRG as a non-perturbative method on the other hand could solve the problem. In this
thesis, the NRG method is used to extend the knowledge of impurity models with Kondo
correlations and related many-body effects, like the Fermi-edge singularity [14, 15] and
Anderson orthogonality [16], by examining optical and transport properties of these models.

When it comes to experiments on the Kondo effect, so far, Kondo correlations were
always examined with transport experiments. However, the possibility to perform optical
experiments with Kondo correlated systems opens up a whole new field of experiments. We
show that for self-assembled quantum dots (QDs) Kondo correlations have been observed
with optical methods for the first time, by comparing NRG calculations to experimental
data, giving a proof of concept of optical experiments with Kondo correlated systems.
But light can not only be used to examine a Kondo state, it can also be used to create
new physical processes within a system. For example, since two optically coupled discrete
energy levels show Rabi-oscillations, the local energy level of the impurity, which is nec-
essary to realize Kondo correlations, can be strongly optically coupled to a second level,
so that an interplay between Rabi and Kondo correlations emerges. Optical experiments
with quantum dots also allow the study of many-body effects beyond Kondo correlations,
like the Fermi edge singularity or Anderson orthogonality. Being able to perform optical
experiments with quantum dots, for which most model parameters are tunable, allows for
a controlled setting in which these effects can be studied, in contrast to prior experiments
with bulk materials, where the model parameters were given by material constants. We
compare numerical to experimental data and show that the Fermi-edge singularity can be
observed for quantum dots and can be understood theoretically on a quantitative level.

The second kind of the projects presented in this thesis concerns transport experiments.
We present a study of the Kondo effect at an InAs-nanowire QD, an experimental system
of increasing interest, where the Kondo effect was first observed a few years ago. Although
nowadays many experiments regarding the Kondo effect consider QDs, it was first observed
at iron impurities in gold and silver. However, despite the fact that the discovery of the
Kondo effect dates back roughly 80 years, it was unclear until very recently, which exact
type of Kondo model describes these systems. Here we identify the correct model by
comparing calculations of the resistivity [17] depending on temperature and magnetic field
and of the dephasing rate [18] for different models to experimental data. We thereby
make use of non-abelian symmetries of the models to make the calculations feasable. One
characteristic feature of the Kondo effect is that energy dependent quantities like the
magnetoresistivity collapse onto a universal curve for different model parameters, when the
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energy is rescaled with TK. At numerical calculations, however, TK can be influenced by the
finite bandwidth, which is always present there, and special care must therefore be taken
at the definition of TK. We investigate how the magnetic impurity susceptibility, which can
be used to define TK, must be calculated correctly to account for finite bandwidth. The
correct definition of TK is of special importance in the last study of this thesis, where we
calculate several Fermi liquid coefficients for multi-channel Kondo models with different
number of channels. At low temperatures (T � TK), fully screened Kondo models can
be described by Fermi liquid theory [19], at which the local density of states and related
quantities, like the resistivity, show quadratic behavior with respect to some parameters,
like temperature or magnetic field.

This thesis is organized as follows: Part I gives an introduction to the topics which are
examined in this thesis, as well as an introduction to the applied numerical method, the
NRG. Part II shows the results of these examinations and consists mainly of the published
papers. Three publications consider the topic of absorption and emission at quantum dots
and four publications consider transport experiments at quantum impurity models. Part
III contains an appendix and part IV contains the list of figures, the bibliography, the list
of publications and some acknowledgements.

Part I consists of four chapters: After this introduction follows Chap. 2 about quantum
dots and iron impurities in bulk metals. There we sketch the experimental systems and
explain the models used to describe them. We give a short introduction to quantum dots
(Sec. 2.1) and the Anderson and Kondo model (Secs. 2.2 and 2.3). Further we describe the
Kondo effect (Sec. 2.4) and give a summary of the physics of electron transport through
QDs (Sec. 2.5). We also mention multi-channel models, which are relevant for magnetic
impurities in bulk metals (Sec. 2.6). Chap. 3 describes the basic physics of optical ex-
periments at self-assembled quantum dots. We explain the physical processes at weak
optical coupling (Sec. 3.1), the relevant many-body effects like Anderson orthogonality
and the Fermi-edge singularity (Sec. 3.2), absorption in the presence of Kondo correlations
(Sec. 3.3), and the basic processes of emission at strong optical coupling (Sec. 3.4). Chap. 4
describes the NRG method, which is used to iteratively diagonalize the system. It starts
with the description of the NRG algorithm (Sec. 4.1) and continues with a description how
dynamic quantities like spectral functions can be calculated from the eigenstates (Sec. 4.2).
Additional sections explain the correct treatment of fermionic signs (Sec. 4.3) and describe
how symmetries, both abelian and non-abelian, can be used to speed up the calculations
(Secs. 4.4 and 4.5).

Part II contains the results of this work. In Sec. 5.1, NRG calculations of the absorption
spectrum of a QD with Kondo correlations are compared to experimental results. Sec. 5.2
describes the emission spectrum from resonance fluorescence of a QD with strong optical
coupling, which is examined with both numerical and analytical methods. In Sec. 5.3,
the Fermi-edge singularity of a QD is examined by comparing experimental data for the
absorption spectrum to NRG calculations. In Sec. 6.1 we present a study of the Kondo effect
at an InAs-nanowire QD, before we identify the correct model to describe iron impurities
in noble metals in Sec. 6.2. Sec. 6.3 examines how to calculate the magnetic susceptibility
and the Kondo temperature, which is derived from it, correctly in the presence of finite



6 1. Introduction

bandwidth, so that observable quantities show a scaling collapse, when energies are rescaled
with the Kondo temperature. The results of this work are a necessary requirement for
Sec. 6.4, where the Fermi liquid coefficients for a fully screened N -channel Kondo model
are calculated, both numerically and analytically. Finally, Chap. 7 completes this thesis
by giving a summary of the presented work and an outlook to future research.



2. Quantum dots and iron impurities in
bulk metals

Impurity models describe systems where few microscopic degrees of freedom are coupled to
a non-interacting macroscopic continuum. Being originally intended to describe magnetic
impurities in bulk metals, they received increased attention with the progress of nanotech-
nology since the 1990s, since they also describe the physics of quantum dots. In this
section we introduce the most important impurity models and address the Kondo effect, a
many-body effect that occurs in these models.

2.1. Quantum dots

Quantum dots are physical systems, made from a semiconductor material or a metal, which
are confined in all three dimensions to such small length scales that quantum effects of the
electrons populating the quantum dot become relevant. This means that the extent of
the QD is comparable or smaller than the de Broglie wavelength of the electron. The de
Broglie wavelength, on the other hand, is proportional to the inverse of the velocity vF of
the electrons close to the Fermi energy, and since vF in semiconductors is much smaller
than it is for metals, semiconductor quantum dots can be made larger than metal QDs,
while still allowing the study of quantum effects, which makes them experimentally easier
accessible than metal QDs.

One can distinguish according to the method of fabrication between electrostatically
defined QDs, QDs that resemble etched heterostructures and self-assembled QDs [20].
Electrostatically QDs are created by applying a voltage to electrodes that are on top
of a two-dimensional electron gas (2DEG), thus depleting the 2DEG region beneath the
electrodes of electrons and creating a quantum dot in the 2DEG-area surrounded by the
electrodes. The gate electrodes are defined by a lithographical pattern and are created
by an etching process. To produce heterostructure QDs, the QDs themselves are created
by an etching procedure. Like other lithographically produced devices, the final QDs
can consist of several layers of different material. Self-assembled QDs are created by
growing nanometer-sized crystals from a precursor in a solvent, a method known as colloidal
synthesis or by growing a material on a substrate whose lattice constant is different from
the growth material. With the latter method, due to the strain induced by the different
lattice constants, the material on the substrate will not grow homogeneously, but there
will be large areas with less material and small areas with more material, the final result of
the growing process is often compared to islands in an ocean. This kind of self-assembled
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QDs were used for the experiments described in Chaps. 5.1 and 5.3.

A less coarse classification scheme is to distinguish QDs according to their systematic
structure of energy levels. Due to this structure, which depends mainly on the physical
dimensions of the QD, QDs are often considered as artificial atoms, i. e. atoms with tailor-
made properties. There exist even a periodic table and magic numbers [21], comparable
to atom shells and atomic nuclei.

Depending on their specific properties, the different type of QDs have different appli-
cations. Self-assembled QDs are much smaller (∼ 10 nm) than lithographically produced
QDs. Because of that, they contain only very few electrons with a large energy level spac-
ing. The difference in energy is on the order of magnitude of optical wavelengths, which
makes these QDs ideally suited for optical experiments [22, 23, 24]. Lithographic QDs, on
the other hand, have a larger spatial extent (∼ 100 nm), however they have other advan-
tages: For electrostatically defined QDs many parameters are experimentally accessible,
for example the tunnel-barrier between the dot and the surrounding reservoir can be tuned
by electrodes. This property, together with the fact that single lateral QDs are experimen-
tally accessible in transport experiments, makes it possible to study certain phenomena,
e. g. the Kondo effect (see Sec. 2.4), in much more detail than this was possible before the
development of QDs. For heterostructure QDs on the other hand, less parameters can be
tuned experimentally. However, these QDs can be produced on a larger scale, which allows
for experiments involving many QDs simultaneously.

Besides their application in research, practical applications for QDs become visible in
the future. By including self-assembled QDs into displays, computer screens are able to
cover a greater range of the electromagnetic spectrum, while at the same time consuming
less energy. They even seem to have the potential to improve lasers and solar-cells in the
more distant future. For lithographic QDs, applications in electronics are very likely, which
is a logical consequence of the continuous miniaturization process of electronic devices and
which can be directly seen in the term “single-electron transistor”, which was formerly
used for QD.

A system which has great similarities with QDs coupled to a Fermionic reservoir are
magnetic impurities in bulk metals. The remainder of this chapter, where we present the
models used to describe QDs and give an explanation of the Kondo effect, is therefore valid
for both systems, since they show the similar physics. When this is not the case, it will
explicitely be pointed out.

2.2. Anderson model

One of the most basic impurity models is the Single Impurity Anderson model (SIAM),
which was proposed by Anderson in 1961 [25]. Although Anderson used it originally to
describe magnetic impurities in metals, nowadays it is also used to describe electrons in
a QD which is coupled to a Fermi reservoir. The SIAM Hamiltonian can be divided into
three parts, Himp, Hres and Hhyb, which describe dot, reservoir electrons of the conduction
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band and the hybridization via tunnel-coupling between them:

HSIAM = Himp +Hres +Hhyb, (2.1)

with

Himp =
∑

σ=↑,↓
εeneσ + Une↑ne↓, (2.2a)

Hres =
∑

kσ

εkσc
†
kσckσ, (2.2b)

Hhyb = Vk
∑

kσ

(e†σckσ + h.c.), (2.2c)

where εe is the energy of an electron localized at the dot, U is the Coulomb repulsion
between the dot electrons, eσ (e†σ) and ckσ (c†kσ) are the annihilation (creation) operators of
an electron with spin σ on the dot or in the reservoir with momentum k, respectively, neσ

is the number operator for a localized dot-electron with spin σ, and Vk is the k-dependent
coupling strength between dot and reservoir. For simplicity, we assume that the coupling
is the same for each electronic spin σ. We use a one-dimensional momentum representation
which is sufficient for all impurity systems that we analyze, QDs and magnetic impurities in
bulk metals, since one deals either with one dimensional reservoirs directly (e. g. the leads of
a QD), or with higher dimensional reservoirs, where s-wave scattering is the predominant
scattering mechanism, which again can be described with an effective one-dimensional
momentum representation.

Quite generally, the influence of the reservoir on the dot can be fully characterized by
the spectral function of the bath, the so called “hybridization function”[9],

Γ(ε) = π
∑

k

V 2
k δ(ε− εk), (2.3)

which describes hybridization with respect to energy ε, and which contains information of
both the tunnel coupling Vk and the reservoir density of states ρ(ε) =

∑
k δ(ε − εk). The

hybridization Γ(ε) fully determines the dynamics of the impurity. This reflects the fact,
that the tunneling rate between the dot and a certain energy interval of the FR depends
both on the tunneling strength and on the density of states. For practical purposes, it is
therefore always possible to make at least either Vk or ρ(ε) k-independent, by including
the k-dependence completely into the respective other quantity.

Although there are impurity problems for which a non-constant hybridization function
is crucial, e. g. for applications of dynamical mean field theory (DMFT) [9, 26], it is often
sufficient to consider a constant hybridization function, especially if one is interested only
in the low-energy behavior, as it is the case for the problems considered in this thesis.
For the examinations in part II we will therefore always assume a k-independent coupling
strength and a constant density of states with bandwidth 2D, ρ(ε) = Θ(D− |ε|) · 1/(2D).
According to Eq. (2.3) the prefactor of the tunneling term is then given by V =

√
Γ/πρ,

where Γ corresponds to the width of the dot energy level due to hybridization with the
reservoir.
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2.3. Kondo model

The Kondo model was proposed by J. Kondo in 1964 [13] in order to describe the resistivity
increase of noble metals for low temperatures (Sec. 2.4). The model is given by

HKondo = 2J ~S · ~s+
∑

kσ

εkσc
†
kσckσ, (2.4)

where J is the coupling constant between the spin ~S of the dot-electron and the spin ~s of
the conduction band at the position of the dot, which is given by

~s =
∑

kk′σσ′

1

2
c†kσ~τσσ′ck′σ′ , (2.5)

where ~τ are the Pauli matrices. The prefactor of 2 in the coupling term of Eq. (2.4), is

a widely used convention, however, there exist also publications, where J ~S · ~s is used to
describe the coupling. Although the spin-spin coupling of the Kondo model might look
more complicated to describe than the plain Coulomb repulsion of the Anderson model, the
opposite is the case. In fact, the physics of the Kondo model is a subset of the richer physics
of the Anderson model, which becomes visible by the Schrieffer-Wolff transformation [27].
This transformation maps the low energy subspace of the Anderson model, for which the
dot is always occupied by a single electron, to the Kondo model.

2.4. Kondo effect

The Kondo effect was discovered in 1934, when de Haas et al. discovered an anomalous
behavior of the resistivity for gold at low temperatures [12], namely that below a certain
temperature, which became later known as the Kondo temperature TK, the resistivity
starts to increase again and then saturates at a finite value. Later it was discovered that
this increase in the resistance arises from impurities with a magnetic moment (e. g. iron
atoms) in the metal. At the time of observation, however, the origin of this effect was
completely unknown and it was about 30 years later J. Kondo who explained this behavior
using perturbation theory, as the result of electrons spin-flip-scattering off the impurities
[13]. However, it turned out that his solution diverged for zero temperature, a feature
which became known as the Kondo problem.

After Kondo’s perturbative calculations, it was discovered that renormalization group
approaches yielded results that pointed into the right direction [11]. It was then already
expected, that a theoretical approach which can solve the Kondo problem, in some way
must include renormalization ideas. In 1975 then, K. G. Wilson published a seminal paper
describing the solution of the Kondo problem with the numerical renormalization group
[4] (c. f. Chap. 4). After this breakthrough, the Kondo problem was essentially solved, but
together with impurity models, the Kondo effect again attracted increasing interest with
the progress of nanotechnology [28, 29, 30].
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Nowadays, there are several methods to derive the low energy scale TK. For most of
these methods, the results differ by a prefactor of order 1, since TK defines a crossover
scale and not a sharp transition. One basic yet insightful method is the poor man scaling
approach [31, 32] which shows how the coupling is renormalized when going to ever lower
energy scales. TK is then defined as the energy scale for which the renormalized coupling
diverges. Other methods would be perturbation theory or Bethe ansatz [33].

A common analytical expression of TK is (for all chapters of part I we set kB, µB, ~ = 1
unless indicated otherwise) for the Kondo model [11]:

TK = D|2ρJ |1/2e−1/(2ρJ), (2.6)

and for the Anderson model,

TK =

√
ΓU

2
eπεd(εd+U)/2Γ. (2.7)

In numerical calculations, TK is often defined via the impurity contribution to the magnetic
susceptibility χ [34],

TK =
1

4χ
. (2.8)

This definition is particularly useful, when it comes to Fermi liquid theory, since it directly
relates TK to analytically calculable quantities.

Characteristic features of the Kondo state

For T < TK when a system shows Kondo correlations, there are several interesting features
[11]:

• Enhanced local density of states:
Due to the large phase space of the virtual excited states, that arise as intermediate
states at spin-flip scattering, the system shows an enhanced impurity density of states.
Most quantities which are measured at transport experiments in some way reflect
the existence of this enhanced spectral density, or its behavior when parameters like
temperature, magnetic field or source drain voltage are changed.

• Spin screening and Kondo cloud:
When there exist Kondo correlations in the system, the impurity spin is screened
by the Kondo screening cloud [35]. This means that the electrons surrounding the
impurity within a distance of ∼ vF/TK have slight preference of the opposite spin,
with a total cloud-spin of 1/2, so that the system which consists of impurity and
cloud, forms a Kondo singlet with net spin zero.

• Scaling collapse:
When the system is in a universal Kondo regime, TK is the smallest energy scale in
the system by far and therefore it is the only relevant energy scale of the problem.
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Energy dependent quantities for different model parameters thus collapse onto a sin-
gle universal curve, when the energy is rescaled with TK. Examples are the impurity
density of states with respect to energy or the resistivity with respect to temperature
or magnetic field.

• Fermi liquid behavior and phase shift:
Nozières [36, 37] showed that when being in a Kondo state, the whole system can be
considered as a Fermi liquid where the electrons at the Fermi surface have a phase
shift of π/2. Because of the single-particle nature of the Fermi liquid description,
this connection allows for an analytic treatment of the low-energy regime.

For more information on the Kondo effect, there is the popular review by Kouwenhoven
and Glazman [10], a detailed discussion in the book of Hewson [11] and Pustilnik and
Glazman describe the Kondo effect in QDs [38, 39]. For the numerical treatment of the
Kondo effect see Wilson for calculations on the Kondo model [4] and Krishna-Murthy and
Wilson for calculations on the Anderson model [7, 8].

2.5. Transport for impurity systems

Transport through quantum dots

In the field of low temperature physics, traditionally, quantum dots are subject to transport
experiments. Due to the quantum effects at low temperatures, the behavior of a QD is
qualitatively different from that at higher energies. For a QD whose single-particle level
spacing δ is much smaller than the Coulomb repulsion, δ � U , the effective level spacing
is given by U and the quantized structure of the energy levels therefore becomes visible,
when the temperature is lowered so that T � U , when Coulomb blockade effects [40] set
in. Then, only the two energy levels that are closest to the Fermi energy are relevant, so
that the system can be described by a SIAM. Here, it can be seen that transport through
the dot is not possible because an electron would be required to have a charging energy
E = U + εe � T to occupy the dot. When plotting the conductance with respect to
source-drain voltage Vsd and gate voltage Vg ∝ εe this leads to diamond-shaped areas of
zero conductance, the so called Coulomb diamonds. For temperatures and source-drain
voltages below the Kondo scale, T, Vsd � TK, one can observe increased conductance, since
transport is now possible via Kondo states (Fig. 2.1).

In general, the conductance G in the linear response regime can be calculated with the
Kubo formula [41] (in the following three equations, we include h or ~, respectively, to
make the quantization of the conductance in units of e2/h explicit):

G(T ) = lim
ω→0

1

~ω

∫ ∞

0

dteiωt〈[I(t), I]〉, (2.9)

with I being the current through the dot. A special case of the Kubo formula is the
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Figure 2.1.: (a) Schematic picture of the differential conductance depending on Vg and Vsd
for T � TK through a quantum dot with single-particle level-spacing δ � U .
Conductance is finite for the blue areas and vanishes for the white areas. (b)
Energetically possible and impossible processes for different configurations of
εe ∝ Vg and Vsd. For configurations (ii) and (iv) the dot is in the Coulomb
blockade regime and conduction is not possible. At configuration (i) conduc-
tion through the dot is possible via sequential tunneling, i. e. the electrons
have enough energy to hop on and off the local energy level. At configuration
(iii) the electrons are in a Kondo correlated state, transport takes place via
higher order tunneling processes. (c) Schematic picture of the behavior of the
conductivity on gate voltage for two different temperatures. For temperatures
U � T � TK conductance is only possible if an energy level of the dot is
close to the Fermi energy. For T � TK the conduction increases for situations
where the local level is in a position where it is clearly below the Fermi energy
for single occupation, but clearly above the Fermi energy for double occupa-
tion. In that case electron transport is mediated by Kondo correlated states
(iii). If an energy level is doubly occupied, Kondo correlations are absent and
transport through the QD is no longer possible (iv).
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Meir-Wingreen formula for the case of a QD with a left and a right lead [42, 43],

G(T ) =
dI

dVsd
=
e2

h

∑

σ

∫
dω

(
−df(ω, T )

dω

)
4π2ρ

|VL|2|VR|2
|VL|2 + |VR|2

Aσ(ω, T ), (2.10)

with ∂f(ω, T )/∂ω the derivative of the Fermi function, Aσ(ω, T ) the impurity density of
states, and where VL and VR are the hybridization parameters between the impurity and
the left or right lead, respectively. It can be shown that a QD with two symmetric leads
can be mapped onto a single impurity Anderson model with a single reservoir [44], and the
conductance is then given by

G(T ) =
e2

h

∑

σ

πΓ

∫
dω

(
−df(ω, T )

dω

)
Aσ(ω, T ), (2.11)

where Γ = πρ(V 2
L + V 2

R).

Transport in bulk metals in the presence of magnetic impurities

When investigating the Kondo effect at magnetic impurities in bulk metals instead of QDs,
one looks at the resistivity instead of the conductance. The reason for this is that here the
resistivity, like the conductance at QDs, is directly linked to the impurity density of states
by an integral over energy,

ρ(T ) ∝
∫
dω

(
−∂f(ω, T )

∂ω

)∑

σ

Aσ(ω, T ). (2.12)

The explanation for the correspondence between the conductance of QDs and the resistivity
of magnetic impurities in bulk metals starts from the Drude conductivity of a disordered
metal:

ρtot(T )−1 ∝
∫
dωτ(ω, T )

(
−∂f(ω, T )

∂ω

)
, (2.13)

with scattering time τ(ω, T ). The total scattering rate 1/τ(ω, T ) consists of the scattering
rates due to static disorder and due to magnetic impurities, 1/τ(ω, T ) = 1/τst+1/τmag(ω, T )
with 1/τmag(ω, T ) ∝ ∑σ Aσ(ω, T ). Eq. (2.12) can then be obtained [45], by expanding
τ(ω, T ) in τst/τmag(ω, T )� 1, and expanding the resistivity as ρtot = ρst +ρ(T ), where the
second contribution due to magnetic impurities is much smaller than the first.

Heuristically, this correspondence can be understood by the different geometries of the
two systems: for a QD, with the current flowing in one direction through the leads, an
increased density of states leads to increased forward scattering and therefore to increased
conductivity. For a bulk metal with magnetic impurities, however, electrons can be scat-
tered in all directions, and an increased density of states therefore leads to an increased
resistivity.
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2.6. Impurity models with several channels

Real physical systems of magnetic impurities in bulk metals are in general more complex
than the Kondo model in Eq. (2.4). A magnetic impurity can have several inner shell
orbitals with magnetic moments and the bulk metal can have several conduction bands.
For the Kondo model this means that the impurity can contain several electrons and is
coupled to several Fermi reservoirs (usually referred to as “channels” in this context).

The Hamiltonian for the general multi-channel Kondo model with n channels and m dot
electrons is given by

H =
n∑

α=1

(
2J ~Sm · ~sα +

∑

kσ

εkασc
†
kασckασ

)
, (2.14)

where ckασ, (c†kασ) are the annihilation (creation) operators of an electron in channel α
with momentum k and spin σ, ~sα (see Eq. (2.5)) is the spin of the electrons in channel α

at the position of the impurity, and ~Sm are the spin matrices for impurity spin S = m/2.

Multi-channel Kondo models of the form of Eq. (2.14) can be classified in fully-screened,
overscreened and underscreened Kondo models, depending on whether the number of chan-
nels is equal, larger or smaller than the number of impurity electrons [46].

Fully screened Kondo models (n = m)

The fully screened Kondo model for n channels shows qualitatively the same physics as the
single channel case (i. e. n = 1). This is supported by the fixed point spectra (see Sec. 4.1
for an explanation of fixed point spectra) of fully screened multi-channel Kondo models,
which are qualitatively equal to those of the single channel case. In particular, this means,
that their low energy regimes can be described by Fermi liquid theory. However for models
with several channels, although there exist exact solutions [47, 48, 49], the theoretical
treatment, both analytically and numerically, is more involved than for the one-channel
model.

Overscreened Kondo models (n > m)

In contrast to the fully screened case, an overscreened Kondo model shows a non-Fermi
liquid low-temperature behavior [50]. The non-Fermi liquid properties can be observed
through different quantities, such as the impurity spectral function or the impurity contri-
bution to the entropy [51]. The best studied multi-channel Kondo model is the overscreened
two-channel Kondo model, which is therefore sometimes simply referred to as “the two-
channel Kondo model”. For an analysis of the overscreened two-channel Kondo model,
see [52], detailed numerical calculations, including dynamical quantities, for overscreened
models with several channels can be found in [51].
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Underscreened Kondo models (n < m)

The underscreened Kondo model shows singular Fermi liquid behavior for T → 0. This
means, that when the energy of the reservoir electrons approaches the Fermi energy, the
S-matrix, that describes scattering of the reservoir electrons off the impurity, approaches
the unit circle in the complex plane non-analytically [53]. Due to their unusual scattering
processes, singular Fermi liquids show singular thermodynamic behavior that is usually
not associated with Fermi liquids, like a divergent specific heat [53].

Different realizations of multi-channel impurity models

There exists a variety of different physical realizations of impurity models whose effective
low-temperature behavior results in one of the multi-channel Kondo models described
above. For example, the impurity electrons can be tunnel-coupled to the Fermi reservoirs,
they can be coupled to each other via Hund’s coupling, they can occupy energy levels with
different energies, there can be a Coulomb repulsion on the impurity, or the model can
have Kondo correlations not with respect to spin, but with respect to impurity orbitals or
charge.

In Chap. 6.2, we will consider the following Kondo-Anderson hybrid Hamiltonian:

H = −JH

n∑

α,β=1

~Sα · ~Sβ +
n∑

α=1

∑

kσ

(
V 2(e†ασckασ + h.c.) + εkασc

†
kασckασ

)
. (2.15)

There the impurity is tunnel-coupled to the FR, as is the case for the Anderson model,
but with an additional Hund’s coupling term −JH

∑n
α,β=1

~Sα · ~Sβ on the impurity. The
Hund’s coupling favors parallel alignment of the spins of the impuriy electrons, so that
the impurity exhibits a single spin of n/2 [54, 55], as is the case for the fully screened
multi-channel Kondo model.



3. Absorption and emission spectra of
self-assembled quantum dots

This chapter presents the basic models and physical processes to describe optical experi-
ments at self-assembled quantum dots, which are examined in detail in part II. Since these
systems exhibit many-body correlations, examining them with optical methods builds a
bridge between the field of quantum optics and many-body physics. This becomes directly
visible for the model we use for the calculations, which is a combination of an optically
coupled two-level system, a system very common in quantum optics, and a single impurity
Anderson model, which is one of the basic models of many-body theory.

For optical experiments, information about the system is obtained from transition am-
plitudes between different states, which are experimentally determined by measuring the
absorption or emission rate with respect to photon energy. We will consider the absorption
spectrum in Secs. 5.1 and 5.3, whereas we will consider the emission spectrum in Secs. 5.2.
The type of spectrum usually depends on the experimental setup.

When calculating absorption or emission spectra of the system sketched above, one has
to distinguish whether the electromagnetic coupling of the two discrete levels by the inci-
dent photons is weak (Secs. 3.1, 3.2, 3.3) or strong (Sec. 3.4) with respect to their difference
in energy. When we investigate the spectrum for strong optical coupling in detail in part
II, we will examine how the line shape changes as optical coupling is increased. The physics
of weak optical coupling is therefore a necessary prerequisite for the discussion of strong
optical coupling, which leads to the following relations between the chapters concerning
optical spectra:

Weak optical coupling: sections 3.1, 3.2, 3.3 → relevant for sections 5.1, 5.2, 5.3
Strong optical coupling: section 3.4 → relevant for sections 5.2

3.1. Theoretical description of absorption for weak optical
coupling

To describe absorption for weak optical coupling we start from the excitonic Anderson
model, which consists of the Anderson model and an additional energy level, which is
energetically located far below the Fermi level εF. The energies of the lower and upper level
correspond to the energies of the valence and the conduction band of the dot material, and
since they allow for the creation of an exciton at photon absorption, the model is referred
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Figure 3.1.: Schematic picture of the excitonic Anderson model (EAM). The usual An-
derson model, consisting of the local energy level of the dot and the Fermi
reservoir (upper part), is extended by an energy level in the valence band with
hole-energy εh (lower part). When a photon is absorbed, the local level with
energy εie is pulled down to εfe by Ueh due to the attraction of the hole. Because
the electrons in the lower level have pseudo-spin 3/2, the spin of the excited
electron has the opposite direction as the hole spin.

to as the excitonic Anderson model (EAM). Its Hamiltonian is given by

HEAM = HSIAM + nhεh −
∑

σ

nhneσUeh, (3.1)

with εh the energy of the hole and nh the number operator for the hole. At the presence
of a hole, which can be created by absorption of a photon, the local level is pulled down
by the excitonic Coulomb attraction Ueh (c. f. Fig. 3.1).

In the case of weak optical coupling, the laser can be considered as a perturbation V (t)
to the unperturbed Hamiltonian HEAM and the transition rate between two eigenstates
|m〉, |m′〉 of HEAM can in first order perturbation theory be calculated through Fermi’s
Golden Rule:

pmm′ = 2π|〈m′|V |m〉|2. (3.2)
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In second quantization, the perturbation Hamiltonian in rotating wave approximation is
given by V = g(aσ̄e

−iωLte†σh
†
σ̄ + h.c.), with coupling strength g, laser frequency ωL, and

photon annihilation operator aσ̄ with polarization σ̄, where the first and second term
describe absorption and emission, respectively. Because the electrons in the lower level
have pseudo-spin 3/2, the spin of the excited electron has opposite direction as the hole
spin. By switching to a rotating frame and by looking only at single transition events that
are induced by single photons so that the photon creation and annihilation operators can
be neglected, the perturbation operator simplifies to: V = g(e†σh

†
σ̄ +h.c.). For weak optical

coupling, we will restrict our theoretical and experimental examinations to the absorption
spectrum and the perturbation term is therefore given by: V = ge†σh

†
σ̄.

Since h†σ̄ relates two decoupled parts of the Hamiltonian, the Hamiltonian can be divided
into an initial (nh = 0) and a final part (nh = 1) with states {|i〉} and {|f〉}, respectively,
(see Eq. (3.1)):

HEAM =

(
Hi 0
0 Hf

)
, H i = HSIAM, Hf = H i −

(∑

σ

Uehneσ − εh

)
. (3.3)

H i and Hf correspond to Anderson models with level positions εie and εfe = εie − Ueh, and
with an energy offset εh for Hf . The states |m〉 and |m′〉 of Eq. (3.2) are then replaced by
eigenstates of the Hamiltonians Hi and Hf and the transition probability is given by:

pif = 2πg2|〈f |e†σ|i〉|2. (3.4)

The absorption spectrum is then given by the frequency resolved sum of all possible
transitions, where the initial system is in thermal equilibrium,

A(ν) = 2π
∑

if

e−βEi

Z
|〈f |e†σ|i〉|2δ(ν − (Ef − Ei)), (3.5)

where we have set g = 1 and where ν = ωL − ωth is the photon energy with respect to
the threshold frequency ωth = EG,f − EG,i, which is given by the difference of the ground
state energies EG,i and EG,f of initial and final Hamiltonian, respectively. It describes the
frequency above which (for T = 0) absorption sets in.

3.2. Anderson orthogonality and Fermi-edge singularity

In all parts of this thesis that consider absorption or emission spectra of quantum dots, the
Fermi edge singularity (FES) is always present and hence needs to be kept in mind. The
term Fermi edge singularity is closely related to the terms Anderson orthogonality (AO),
Hopfield’s rule, Friedel sum rule and Mahan contribution. This section has the purpose
to explain these terms and show how they are interconnected. In this section we use the
most basic model for which the absorption spectrum exhibits the FES, the Fermi edge
Hamiltonian. The results, however, equally apply to the EAM introduced in Sec. 3.1.
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The Fermi edge singularity was first observed in the absorption of x-rays at metals and is
therefore also called the x-ray edge singularity. This is the physical system that underlies
the Fermi edge Hamiltonian [14]:

HFES =
∑

k

εkc
†
kck + εhh

†h+
∑

kk′

V c†kck′h
†h. (3.6)

It consists of a Fermi sea with energies εk, annihilation (creation) operators ck (c†k), and
an energy level well below the Fermi energy, described by a hole with energy εh and
annihilation (creation) operator h (h†). The hole is created at photon absorption, which
turns on a scattering term of strength V of reservoir electrons off the localized hole.

εh

εF δ

Figure 3.2.: Schematic picture of the absorption process which leads to the Fermi edge
singularity. At absorption of a photon, an electron from an inner shell is lifted
above the Fermi level. Due to the potential of the resulting core hole, the
electrons at the Fermi level acquire a phase shift and the resulting (divergent)
absorption spectrum can be explained by Anderson orthogonality.

At an absorption process, an electron is lifted from the lower level above the Fermi energy
into the conduction band (Fig. 3.2). Similar to absorption at a QD, the Hamiltonian can
be divided into a final and an inital Hamiltonian with and without a hole, respectively,
and analogous to Eq. (3.5) the absorption spectrum is given by Fermi’s Golden Rule:

A(ν) = 2π
∑

f

|〈f |f †0 |Gi〉|2δ(ν − (Ef − Ei)), (3.7)
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where we assumed T = 0. |Gi〉 is the ground state of the initial Hamiltonian and f †0 =
∑

k c
†
k

is the operator that creates an electron in the conduction band with bandwidth 2D at the
position ~r = 0 of the hole.

Since at the time the model was developed it was not clear how the corresponding ab-
sorption spectrum can be calculated explicitly, the x-ray edge problem caught the attention
of theoretical physicists. Nozières and de Dominicis [14] calculated the correlator

G(t) = −iθ(t)〈Gi|f0(t)f †0 |Gi〉 = −iθ(t)〈Gi|eiH
itf0e

−iHf tf †0 |Gi〉 (3.8)

whose imaginary part is proportional to the Fourier transform of the absorption spectrum,

A(ν) = −2 Im

(∫ ∞

−∞
dtei(ν+i0+)tG(t)

)
, (3.9)

to show that A(ν) diverges according to the non-universal power law,

A(ν) ∼ ν−2δ/π+( δπ )
2

, (3.10)

where δ is the phase shift of the scattered electrons. After their rather abstract derivation,
Schotte and Schotte [15] gave a much more stringent explanation for this behavior and
related it to the effect of Anderson orthogonality: Anderson [16] stated that the overlap of
the ground state |Gi〉 of a Fermi sea and the ground state |Gf〉 of a Fermi sea with a local
and finite ranged scattering potential decreases exponentially with system size,

|〈Gi|Gf〉| ∼ N−
1
2

∆2
AO , (3.11)

with N the particle number of the system and ∆AO the so called AO-exponent, which
depends only on the phase difference between |Gi〉 and |Gf〉.

Hopfield then made the connection, that in the correlator of Eq. (3.8), which is the
overlap between f †0 |Gi〉 and f †0 |Gi〉 time-evolved with the final Hamiltonian, the time-
evolved state can be equated with the ground state of the final Hamiltonian, which yields
an equation similar to Eq. (3.11). Identifying these states with phase shifts of π and δ, the
AO-origin of the divergence of Eq. (3.10) becomes evident, if it is written in the form

A(ν) ∼ ν−1+((π−δ)/π)2 , (3.12)

where π is the phase shift of f †0 |Gi〉 and δ is the phase-shift of the ground state of the final
Hamiltonian [56]. Combining Eq. (3.12) with Friedel’s sum rule [57, 58, 59], which can be
used to relate the phase shift to the change of occupation of the dot, one obtains

A(ν) ∼ ν−1+(∆n′)2 , (3.13)

which relates the exponent of the divergence to the occupation difference ∆n′ between
f †0 |Gi〉 and |Gf〉, and is known as “Hopfield’s rule of thumb”.

It is a priori not clear, how Anderson orthogonality, which originates from vanishing
overlap between different states, leads to a divergence, which corresponds to large transition
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matrix elements in Eq. (3.6). This can be understood by looking at G(t) which vanishes
in the long time limit [15], with its decay governed by the AO-exponent,

G(t) ∼ t−∆2
AO , (3.14)

and by recalling that according to Eq. (3.9) A(ν) is given by the Fourier transform of G(t),
which yields [60]

A(ν) ∼ ν−1+∆2
AO . (3.15)

In the context of Anderson orthogonality, the first part of the exponent in Eq. (3.10),
−2δ/π, is often referred to as the Mahan contribution, whereas the second part is called
the AO contribution [60]. These definitions, however, are somehow misleading, since the
whole exponent can be explained by the phenomenon of AO as shown above. The term
“Mahan contribution” originates from the fact that Mahan determined the exponent using
perturbation theory, but summed up only lower-order terms, which only gave a premature
result, namely the first part of the exponent [61].

An NRG treatment of the Fermi-edge Hamiltonian can be found in [62], for AO with
NRG calculations see [63], and a detailed discussion of AO after quantum quenches is given
in [60].

Generalized Hopfield’s rule

The AO-physics also governs the absorption spectrum of a quantum dot for low energies,
given by Eq. (3.5), for which the whole system consisting of dot and reservoir can be
described as a Fermi liquid whose states have acquired a phase shift, analogous to the
phase shift which is acquired by the scattered states at the x-ray problem.

Although Hopfield’s rule was originally formulated for the case of spinless fermions of the
Fermi edge Hamiltonian, it can readily be generalized to spinful fermions of the Anderson
model. First, note since the spin degrees of freedom decouple in a Fermi liquid, the states
|Gi〉 and |Gf〉 in Eq. (3.11) can be written as product states of a spin up and a spin down
part, |Ga〉 = |Ga↑〉|Ga↓〉, with a = i, f . The exponent in Eq. (3.11) then also consists of a
spin up and a spin down part,

|〈Gi|Gf〉| ∼ N−
1
2

(∆2
AO↑+∆2

AO↓). (3.16)

and the exponent in Eq. (3.13) is determined by the sum of the squared occupation differ-
ences for both spin directions (see Eq. (3.18) below). Because the excited electron has a
certain spin σ, the correlator G(t) is given by the overlap of e†σ|Gi〉 and e†σ|Gi〉 time-evolved
with the final Hamiltonian, which introduces a spin asymmetry in the change of occupa-
tion. In addition, for the Anderson model one must take into account, that the impurity
can have a finite occupation 〈Gi|neσ′ |Gi〉 before absorption. So for an absorption process,
the occupation difference for electrons with spin σ′ is

∆n′eσ′ = δσσ′ −∆neσ′ (3.17)
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with ∆neσ′ = 〈Gf |neσ′|Gf〉-〈Gi|neσ′ |Gi〉 the difference of the local occupation of the final
and initial Hamiltonian. This results in the generalized Hopfield’s rule for absorption
spectra of the Anderson model:

Aσ(ν) ∼ ν−1+
∑
σ′ (∆n

′
eσ′ )

2

. (3.18)

3.3. Absorption in the presence of Kondo correlations

In this section we answer the following question: How does the absorption spectrum accord-
ing to Eq. (3.5) of an initially empty dot look like if the final state shows Kondo correlations
(Fig. 3.3)?

This section therefore summarizes the work of my Diploma thesis, which has been pub-
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Figure 3.3.: Schematic picture of the excitonic Anderson model with Kondo correlations
in the final state. After absorption, the local level is in a position such that
it is occupied by a single electron, which can build a Kondo state with the
surrounding reservoir electrons.

lished in Ref. [64] (see appendix B for Ref. [64]), where this problem is examined. This
section presents the theory that underlies part II, Sec. 5.1, which describes the observation
of the Kondo exciton and compares experimental to numerical data.

The main result from Ref. [64] is that the lineshape for an absorption process according
to Fig. 3.3 where the dot is initially empty and in a Kondo state afterwards, can be divided
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Figure 3.4.: (a) Absorption lineshape on a double logarithmic scale. The blue line cor-
responds to the NRG-calculated absorption spectrum, the dashed red lines
correspond to the analytic expressions from Eq. (3.19a-3.19c), for the three
different energy regimes which correspond to the fixed points of the Anderson
model (indicated by thick yellow lines). The absorption lineshape is also shown
for the case of Γi = 0 (thin blue line), which corresponds to zero occupancy
before absorption which is assumed for the analytic expressions. Apart from
a slight deviation in the FO-regime, the spectra are equal. The inset shows
the absorption spectrum on a linear scale, which demonstrates AO divergence
close to the threshold frequency that is only cut off by temperature. Model
parameters are shown in panel (b). (b) Absorption lineshapes for different
temperatures on a logarithmic y-scale. For T � TK the threshold behavior of
the spectrum becomes smeared out, but the width of the peak, determined by
the Korringa rate, is significantly narrower than temperature.

into three distinct regimes that correspond to the different fixed points (free orbital (FO),
local moment (LM) and strong coupling (SC) fixed point, see Sec. 4.1) of the SIAM.
Fig. 3.4a shows the numerically calculated line shape, where the regimes are divided by
thick yellow lines. For the three different regimes, the line shape can be approximated by
analytic expressions, which for the symmetric case with εfe = −U/2 are given by:

|εfe | . ν . D : AFO
σ (ν) =

4Γ

ν2
θ(ν − |εfe |), (3.19a)

TK . ν . |εfe | : ALM
σ (ν) =

3π

4ν
ln−2(ν/TK), (3.19b)

T . ν . TK : ASC
σ (ν) ∝ T−1

K (ν/TK)−ησ , (3.19c)

shown as red dashed lines in Fig. 3.4a. For the FO- and the LM-regime, the analytic
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Figure 3.5.: (a) Absorption lineshapes for different magnetic fields. The different colors cor-
respond to different values of the magnetic field, the linestyle (solid or dashed)
indicates the orientation of the magnetic field. Changing the orientation of
magnetic field is equivalent to considering both absorption into the upper and
into the lower Zeeman-split level, as indicated by Aupper and Alower, which can
be tuned via the polarization of the incident photons. For absorption into
the upper level, the AO divergence is suppressed and the peak position is no
longer at the threshold frequency (indicated by the red line in the σgeB/TK-
plane). (b) B-field dependence of the local magnetization and the low-energy
exponent. The dashed and dashed-dotted lines show the universal curves of
the low-energy exponents and the magnetization, respectively, with respect to
geB/TK. The colored crosses correspond to the exponents extracted for low fre-
quencies from the NRG-calculated absorption spectra for different parameters.
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expressions are obtained with fixed point perturbation theory (FPPT). At FPPT one
makes use of the fact, that for T = 0 the absorption spectrum can be written as

Aσ(ν) = 2Re

∫ ∞

0

dteitν+ 〈Gi|eiH̄
iteσe

−iH̄f te†σ|Gi〉

= −2Im 〈Gi|eσ
1

ν+ − H̄f
e†σ|Gi〉, (3.20)

with H̄a = Ha − Ea
G for a = i, f and ν+ = ν + i0+. The final Hamiltonian H̄f = H∗r +H ′r

can be represented by a fixed point Hamiltonian H∗r of the SIAM and a perturbative term
H ′r, with r = FO,LM, respectively. This allows an expansion of the resolvent in powers of
H ′r which leads to:

Arσ(ν) ' − 2

ν2
Im 〈Gi|eσH ′r

1

ν+ −H∗r
H ′re

†
σ|Gi〉. (3.21)

For the FO-regime, the excitation energies are high enough to allow charge fluctuations
on the impurity, whereas for the LM-regime, the excitation energies are lower, so that real
charge fluctuations are frozen out and a local moment forms at the impurity. In this energy
regime, only virtual charge fluctuations are possible, which results in spin fluctuations of
the local moment. The fixed point Hamiltonians and the perturbations are therefore given
by:

H∗FO = Hres +Hf
imp + const., H ′FO = Hhyb, (3.22a)

H∗LM = Hres + const., H ′LM =
J(ν)

ρ
~S · ~s, (3.22b)

with Himp, Hres and Hhyb as in Eqs. (2.1) with (3.3) and where in Eq. (3.22b), ~S is the
impurity spin, ~s is the spin of the reservoir electrons at the position of the impurity, ρ
is the reservoir density of states and J(ν) = ln−1(ν/TK) is an effective, scale-dependent,
dimensionless coupling constant. FPPT can be generalized to finite temperatures according
to [65]. For the local moment regime one obtains:

ALM
σ (ν) =

3π

4

ν/T

1− e−ν/T
γKor(ν, T )/π

ν2 + γ2
Kor(ν, T )

, (3.23)

where γKor is the Korringa relaxation rate, given by γKor = πT/ln2[max(|ν|, T )/TK]. Since
for the local moment regime max(|ν|, T )/TK)� TK, γKor is smaller than temperature and
the absorption peak is narrower than one would expect from simple thermal broadening
(e. g. see red dashed line in Fig. 3.4).

For frequencies ν < TK, the spectrum can be described by a power law (Eq. (3.19c)),
where the exponent is given by the generalized Hopfield’s rule, ησ = 1 −∑σ′(∆n

′
eσ′)

2

(Sec. 3.2). Since the occupation can be changed not only by varying the position of the
local level via gate voltage, but also by applying a magnetic field (which corresponds to a
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spin-dependent splitting of the energy level: ε
i/f
e → ε

i/f
e + 1

2
σgeB), the exponent is B-field

dependent. The B-field dependence can be made explicit by expressing the exponent in
terms of the final magnetization for the case of zero occupancy before absorption ni = 0 and
half occupancy afterwards, nf = 1: ησ = 1

2
+ 2mf

eσ− 2(mf
e )

2, with the final magnetization

mf
e = 1

2
(nfe↑ − nfe↓) being a universal function of geB/TK. By varying the magnetic field,

Anderson orthogonality can therefore be tuned between being maximal (∆n′eσ′ = 1, ησ =
−1) and being completely absent (∆n′eσ′ = 0, ησ = 1) (Fig. 3.5).

3.4. Emission for strong optical coupling

3.4.1. Mollow triplet

In this section we explain the qualitative features of the resonance fluorescence (RF) spec-
trum, which originates from spontaneous emission of an optically strongly coupled two-level
system, before we add the FR and the tunnel-coupling to the impurity in the next section.

A two-level system with one optical mode, as it is the case for a laser, can be described
with the Jaynes-Cummings Hamiltonian:

HJC =
1

2
ωeg|e〉〈e| −

1

2
ωeg|g〉〈g|+ ωL

(
a†a+

1

2

)
+ g

(
|e〉〈g|a+ a†|g〉〈e|

)
, (3.24)

where |e〉 and |g〉 are the excited and the ground state of the two-level system, a (a†) are
the annihilation (creation) operators of a photon, ωeg is the transition frequency, ωL is
the frequency of the laser, and g the coupling constant for the laser with the two-level
system. Because the energy ωeg of the excited state and the energy ωL of a photon are
comparable, the Hilbert space can be divided according to the number of excitations into
so called excitation manifolds. If one looks at the bare states |e, n〉, |g, n+ 1〉 of the n+ 1-
manifold, with n and n + 1 photons, respectively, one can observe the well-known Rabi
oscillations between these states with Rabi frequency Ω = g

√
n+ 1. These occur since the

bare states are not eigenstates of the Hamiltonian due to the coupling described by the last
term in Eq. (3.24). Transforming the bare state basis to the eigenbasis of the Hamiltonian
yields the so called ”dressed states”, |+, n + 1〉 and |−, n + 1〉 of the n+1-manifold, with
eigenenergies E+,n+1 = (n + 1)ωL + g

√
n+ 1 and E−,n+1 = (n + 1)ωL − g

√
n+ 1, having

assumed ωeg = ωL [66].

For an excitation number n � 1 of the manifold, the energy splitting between the two
dressed states becomes 2g

√
n+ 1 ' 2g

√
n. Therefore, the transition energies from |+, n+1〉

to |+, n〉 and from |−, n + 1〉 to |−, n〉 can be considered approximately degenerate. For
T � Ω this results in three peaks in the emission spectrum, the Mollow triplet, where
the side-peaks are separated from the peak in the middle by 2g

√
n and the middle peak is

twice as high as the outer peaks [67] (Fig. 3.6), since it is associated with two equivalent
transitions. The Mollow Triplet can also be observed if the light constitutes a coherent
state (as it is the case for a laser) instead of a photon-number eigenstate. This is because
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Bare states Dressed states(a) (b)

Figure 3.6.: Schematic of the transitions that yield the Mollow triplet and qualitative be-
havior of the RF spectrum. (a) shows the possible transitions between the
dressed states of two neighboring manifolds. Two of the four possible transi-
tions have the same frequency, which for T � Ω causes the emission to be twice
as strong for this frequency as for the other transitions (b). Figure adapted
from [66].

the photon number of a coherent state |α〉 follows a Poisson distribution which in the case
of a laser is rather narrow compared to its average value |α|2 [66].

The above derivation for the Mollow triplet is valid if the temperature is high enough
that both dressed states of a manifold are occupied, which means that T � Ω. In Sec. 5.2
we will examine, how the shape of the RF spectrum changes if the temperature is lowered
below the Kondo temperature, T � TK, so that Kondo correlations emerge between the
upper level and the Fermi reservoir.

3.4.2. Two-level system tunnel-coupled to a Fermi reservoir

This subsection derives the formula which is used to calculate the emission spectrum with
strong optical coupling with NRG in part II. It is a short summary of the detailed expla-
nation of Ref. [68].

If the coupling between the two energy levels of the dot, εe and εh (see Fig. 3.1) is large,
which corresponds to a large laser intensity, it cannot be treated as a perturbation which
connects two different Hamiltonians, but one has to consider a Hamiltonian, where the
optical coupling is explicitely included. Adding the radiative Hamiltonian and the optical
coupling of the two-level system in rotating wave approximation to to HEAM (Eq. (3.1))
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yields in the rotating frame:

H ′ = HEAM + ωLa
†
LaL + g

(
aLe

†
↓h
†
⇑ + h. c.

)

+
∑

qσ

ωqa
†
qσaqσ + g

∑

qσ̄

(
aqσ̄e

†
σh
†
σ̄ + h. c.

)
(3.25)

with g the coupling strength of the photons to the electrons and aqσ̄ (a†qσ̄) the annihilation
(creation) operator of optical mode q with polarization σ̄. The last two terms in the first
line describe the laser photons and their coupling to the electrons, whereas the last two
terms in the second line describe the modes of the radiative reservoir and their coupling
to the electrons, with the last term being responsible for spontaneous emission.

Starting from the optical Bloch equations, the RF spectrum can be derived as (e. g. see
[69]):

S(ω) =
γSE

2π

∫ ∞

−∞
dτ〈σ+(τ)σ−〉sse−iωτ , (3.26)

with γSE being the rate for spontaneous emission and where

〈σ+(τ)σ−〉ss = Tr(eiH
′τσ+e

−iH′τσ−ρss), (3.27)

with σ+ = e†↓h
†
⇑ and σ− = h⇑e↓ creating or annihilating, respectively, an electron-hole pair

and with 〈 〉ss denoting the expectation value with respect to the steady state density
matrix.

By assuming γSE ∝ g2 to be very small compared to the other rates of H ′, we can then
neglect the modes of the radiative reservoir in H ′ whose frequency is different from the laser
frequency, which results in the following Hamiltonian for the time evolution in Eq. (3.27):

H ′′ = HEAM + ωLa
†
LaL + g(aLe

†
↓h
† + he↓a

†
L), (3.28)

so that
〈σ+(τ)σ−〉ss ' Tr(eiH

′′τσ+e
−iH′′τσ−ρss). (3.29)

After the reduction of the radiative modes to those with a single frequency, the Hamil-
tonian can be divided into excitation manifolds and it can be written as a sum of the
Hamiltonians for the different manifolds H ′′ =

∑
nH

′′
n, with:

H ′′n = ωL(n− 1) + H̃. (3.30)

Here, H̃ is Hamiltonian, which describes the two level system with one excitation, which
can be a photon or a hole or a superposition thereof and ωL(n−1) describes the additional
n− 1 excitations of the n-manifold. H̃ is given by:

H̃ =
∑

σ

(εe − Uehnh)neσ + Une↑ne↓ +
∑

kσ

εknkσ + V
∑

kσ

(
e†σckσ + h.c.

)

+ εhnh + ωL(1− nh) + Ω
(
e†↓h
†
⇑ + h⇑e↓

)
, (3.31)
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where the first line describes the SIAM and the second line describes the hole, the photon,
and the optical coupling of the two levels, where Ω = g

√
n is the Rabi frequency for

excitation manifold n, which can be assumed constant for a given laser intensity.
The connection to weak optical coupling (which corresponds to Ω = 0) can be seen by

writing H̃ in the form of Eq. (3.3). For the case of strong optical coupling, the initial and
final Hamiltonians from Eq. (3.3) are connected by the term Ω(e†↓h

†
⇑ + h⇑e↓), so that one

obtains:

H̃ =

(
HSIAM + ωL Ωh⇑e↓

Ωe†↓h
†
⇑ HT

)
, HT = HSIAM −

∑

σ=↑,↓
Uehneσ + εh, (3.32)

where for HT the photon has been absorbed and has created an electron-hole pair, so that
the system is in a trion state (assuming that the QD was singly occupied before photon
absorption).

It can be shown [68] that in Eq. (3.29) H ′′ can be approximated by H̃, so that

〈σ+(τ)σ−〉ss = Tr
(
eiH̃τσ+e

−iH̃τσ−ρss
)
, (3.33)

where the excitation manifold degree of freedom has been eliminated. With this simplifi-
cation, and by normalizing with respect to γSE, Eq. (3.26) becomes

S(ω) =
1

2π

∫ ∞

−∞
dτ〈σ+(τ)σ−〉sse−iωτ . (3.34)

Writing Eq. (3.34) in Lehmann representation and approximating the steady-state den-
sity matrix by the Boltzmann weights ρm, we obtain:

S(ν) =
∑

mn

ρm|〈ψn|σ−|ψm〉|2δ(ν − (Em − En)), (3.35)

with ν = ω − ωL. Interestingly, Eq. (3.35) is mathematically very similar to Eq. (3.5) and
can be seen as an application of Fermi’s Golden Rule, however, the states |ψn〉 and |ψm〉
are dressed states, and they are both eigenstates of the same Hamiltonian, that consists
of Hi, Hf and the coupling term, (see Eq. (3.32)). By convention, Eq. (3.5) differs from
Eq. (3.35) by a factor of 2π. This way, the formulas are in accordance with those of part
II. The eigenstates and -energies can be obtained via NRG, and Eq. (3.35) can then be
used to calculate the RF spectrum, as will be done in Sec. 5.2.
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This chapter explains the basic ideas behind the iterative diagonalization of impurity mod-
els via NRG and the subsequent calculation of spectral functions. Although the Anderson
model is more complex than the Kondo model, in the following sections, the NRG al-
gorithm will be explained for the case of the Anderson model, because first, for most of
the calculations presented in part II, we use Anderson-like models and second, dynamical
quantities for the impurity (c. f. Sec. 4.2) are then more straightforward to obtain than is
the case for the Kondo model [70, 71].

4.1. NRG algorithm

For convenience, we repeat the SIAM-Hamiltonian from Eq. (2.1):

H =
∑

σ

εee
†
σeσ + Un↑n↓ +

∑

kσ

εkσc
†
kσckσ +

∑

kσ

Vk

(
e†σckσ + c†kσeσ

)
. (4.1)

Since the conduction band will be discretized according to energy below, we switch from
the momentum (k) to an energy representation (ε) where the conduction band energies
lie within an interval [−D,D]. In the following we set the half-bandwidth D = 1 and the
Hamiltonian is thus given by:

H = Himp +
∑

σ

∫ 1

−1

dε εa†εσaεσ +
∑

σ

∫ 1

−1

dεVε
(
e†σaεσ + a†εσeσ

)
, (4.2)

where aεσ (a†εσ) are the annihilation (creation) operators of the reservoir electrons with
energy ε and spin σ,

To perform numerical calculations, the energy continuum of the conduction band has to
be discretized (Fig. 4.1a,b). Since the renormalization algorithm, which is explained below,
subsequently includes exponentially decaying energy scales, the continuum is discretized
logarithmically. First one chooses a discretization parameter Λ, which is a dimensionless
number Λ > 1, typically Λ ' 2, and divides the bath into intervals ±[Λ−(n+1),Λn] with
n ∈ N0.

For each interval one can define a complete set of orthonormal functions

ψ±np(ε) =





1√
Λ−n(1− Λ−1)

e±iωnpε for | ± Λ−(n+1)| < | ± ε| < | ± Λ−n|

0 otherwise.

(4.3)
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Figure 4.1.: (a) Impurity, Fermi reservoir and coupling. The Fermi reservoir is discretized
logarithmically, with the resolution increasing towards the Fermi level. (b) An
energy value is assigned to each interval, which corresponds to the mean values
of the energy within the interval. The couplings are given by the length of the
interval. (c) Wilson chain with impurity and sites describing the reservoir. Due
to the logarithmic discretization in (b) the couplings decrease exponentially.
Figure adapted from [9].

ωn is thereby defined as ωn = 2π/[Λ−n(1−Λ−1)] and p runs over all integers between −∞
and +∞. This basis defines the operators

anσ =

∫ 1

−1

dε
[
ψ+
n0(ε)

]∗
aεσ, bnσ =

∫ 1

−1

dε
[
ψ−n0(ε)

]∗
aεσ. (4.4)

This definition corresponds to performing a Fourier transformation on each interval of the
hybridization and keeping only the lowest mode of each transformation.

Then two energies ξn and γn are assigned to each interval, which correspond to the aver-
age energy of the interval and to the coupling of the interval to the impurity, respectively,

ξ±n =

∫ ±,n
dεΓ(ε)ε∫ ±,n
dεΓ(ε)

, γ±2
n =

∫ ±,n
dεΓ(ε), (4.5)

where
∫ ±,n

denotes the integral over the energy interval ±[Λ−(n+1),Λn], and where Γ(ε)
is the hybridization function from Eq. (2.3). (A slightly improved way to perform the
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discretization is described in [72], which minimizes discretization artifacts. For a constant
hybridization, as assumed in part II, however, this is equal to using the more illustrative
discretization scheme described here, and multiplying the hybridization with a Λ-dependent
prefactor.)

The discretized Hamiltonian is then given by:

H =Himp +
∑

nσ

(
ξ+
n a
†
nσanσ + ξ−n b

†
nσbnσ

)

+
1√
π

∑

σ

e†σ
∑

n

(
γ+
n anσ + γ−n bnσ

)
+

1√
π

∑

σ

(∑

n

(
γ+
n a
†
nσ + γ−n b

†
nσ

)
)
eσ. (4.6)

The reservoir is non-interacting, and hence its Hamiltonian is quadratic. Together with
the hybridization to the impurity, it can be described in matrix notation by

Hres+Hhyb =
∑

σ

[(e†σ, a
†
0σ, ..., a

†
Mσ, b

†
0σ, ..., b

†
Mσ)




0 γ+
0 · · · γ+

M γ−0 · · · γ−M
γ+

0 ξ+
0 · · · 0 0 · · · 0

...
...

. . .
...

γ+
M 0 ξ+

M 0
γ−0 0 ξ−0 0
...

...
. . .

...
γ−M 0 · · · 0 0 · · · ξ−M







eσ
a0σ
...

aMσ

b0σ
...

bMσ




],

(4.7)
where we accounted for the fact that in practice it suffices to consider a finite number
of intervals M + 1 above and below the Fermi energy. The matrix in between can be
tridiagonalized using the Lanczos algorithm. Here the impurity level remains untouched,
which implies that the starting vector into the Lanczos algorithm is given by [1, 0, 0, ...].
The tridiagonalization corresponds to a basis transformation of the bath and results in

Hres +Hhyb =
∑

σ

[(e†σ, f
†
0σ, f

†
1σ, ..., f

†
2M+1σ)




0 V 0 · · · 0
V ε0 t0 0

0 t0 ε1
. . . 0

...
. . . . . . t2M

0 0 0 t2M ε2M+1







eσ
f0σ

f1σ
...

f2M+1σ




], (4.8)

where the operators f
(†)
nσ fulfill fermionic commutation relations, {fnσ, f †n′σ′} = δnn′δσσ′ .

For some special cases of the hybridization, the couplings ξn and on-site energies εn can be
calculated analytically. E. g. for a constant hybridization Γ in [−1, 1], one gets [4]:

tn =
(1 + Λ−1)(1− Λ−n−1)

2
√

1− Λ−2n−1
√

1− Λ−2n−3
Λ−n/2, εn = 0. (4.9)

The final Hamiltonian contains the impurity which is coupled to a chain with 2M + 2
sites, with on-site energies εn and couplings tn (Fig. 4.1c). The chain is then truncated to
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size N .M , and since the truncation in the number of sites eventually occurs at the level
of the chain, rather than in the discretization in Eq. (4.7), the couplings tn do not depend
on M . The length N of the chain is chosen such that Λ−N/2 corresponds to the lowest
energy scale one wants to examine. The Hamiltonian then reads:

H = Himp +
∑

σ

V (e†σf0σ + f †0σeσ) +
∑

σ

N∑

n=0

[tn(f †nσfn+1σ + f †n+1σfnσ) + εnf
†
nσfnσ]. (4.10)

Note that for the assumed case of a constant density of states, the εn are zero due to the
particle-hole symmetry of the bath. For the recursive NRG procedure, we define for each
chain of length k ≤ N .M a rescaled Hamiltonian

Hk = Λ(k−1)/2

(
Himp +Hhyb +

∑

σ

k−1∑

n=0

tn(f †nσfn+1σ + f †n+1σfnσ) + εnf
†
nσfnσ

)
, (4.11)

where we introduced the scaling factor Λ(k−1)/2 to make the energy spectra of the different
iterations comparable. Two successive Hamiltonians are therefore related to each other via
the recursion relation

Hk+1 =
√

ΛHk + Λk/2

(∑

σ

tk(f
†
kσfk+1σ + f †k+1σfkσ) + εnf

†
k+1σfk+1σ

)
. (4.12)

The Hamiltonian is now in a form in which it can be diagonalized iteratively. Starting
from the impurity, we successively add a new site to the chain and diagonalize the new
Hamiltonian. However, since the state space increases exponentially with the length of the
chain (i. e. ∝ dk with site dimension d = 4 for the SIAM), after the first few iterations it
has to be reduced after the diagonalization. This is done by keeping only the states with
the lowest energies, with the truncation criterion being either a fixed number of states
or a certain (rescaled) energy value, below which all states are kept. States with higher
energy are discarded and are no more refined at the next iteration. This leads to the
following procedure for the iterative diagonalization of the Hamiltonian (App. A shows the
Hamiltonian of the first iteration written out explicitly):

• Diagonalize Hk to obtain energies Es
k and eigenstates |s〉k. At the first iteration

diagonalize Himp +Hhyb.

• Shift the energy spectrum by the ground state energy E0
k such that the lowest energy

of Es
k lies at zero.

• Truncate the state space according to energy or number of kept states. For k = N
at the end of the chain, truncate all states and stop the iterative procedure.

• Add the next site according to Eq. (4.12) and express the Hamiltonian Hk+1 in the
product basis |s〉k ⊗ |σ〉 of the eigenstates |s〉k of Hamiltonian Hk and of local basis
|σ〉 of the new site. Set k → k + 1 and repeat from point one above.
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For the application of this procedure, it is crucial, that both, coupling elements and on-site
energies of the Wilson chain decay exponentially. With an appropriate criterion for trunca-
tion, discarding states introduces only tiny errors, since due to the energy scale separation
of the problem, the influence of high-energy states on low-energy states is essentially neg-
ligible. To be sure that the number of kept states is high enough, a quantitative measure
of the truncation-error can be obtained by calculating the ’discarded weight’ according to
[73].
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Figure 4.2.: (a) Energy spectra for several NRG iterations. The states above a certain
number of kept states or above a certain rescaled energy are discarded. Panel
(a) adapted from [43]. (b) Example of an energy flow diagram for the SIAM
in the symmetric case. The different fixed point regimes (free orbital (FO),
local moment (LM) and strong coupling (SC)) can be identified clearly from
the flow-diagrams alone, their borders are indicated by thick yellow bars. Due
to even-odd oscillations, it is necessary to examine the energy flow for even
and odd iterations separately.

Flow diagrams

Significant physical information can be obtained directly from the energy spectrum. To
make the energy spectra of different iterations comparable to each other, one uses the
spectra of the rescaled Hamiltonians Eq. (4.11), shifted by their respective ground state
energies. By plotting the energy spectra vs. iteration, one obtains the so called energy flow
diagrams (Fig. 4.2), which show how the energy spectra develop (flow) with increasing iter-
ation. Flow diagrams always have to be considered for even and odd iterations separately,
due to the even-odd oscillations which occur at the iterative diagonalization of the Wilson
chain. The origin of these oscillations is that the free electron Hamiltonian (chain without
impurity) in its diagonalized form has either only free particle levels with negative energy
(occupied) and free particle levels with positive energy (unoccupied), which results in a
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non-degenerate ground state and which is the case for an even number of sites; or it has
an additional free particle level with zero energy, which results in a four-fold degenerate
ground state and which is the case for an odd number of sites. For a detailed discussion
see [7], chapter III.

By looking at the energy flow diagrams, the various stable or unstable fixed points of the
model become visible, at which the model is governed by diffent physics. For the symmetric
SIAM, going from high to low energies, these are [7] (i) the free orbital (FO) fixed point,
for which the energy level of the impurity behaves as a free orbital, where electrons can hop
onto and off the impurity, (ii) the local moment (LM) fixed point, for which the impurity
level is occupied by a single electron with a magnetic moment (iii) the strong coupling (SC)
fixed point for which there are Kondo correlations and where the localized impurity spin is
screened by the electrons from the surrounding reservoir. The name of the strong coupling
fixed point originates from the fact that in this energy regime, the effective coupling of the
impurity to the reservoir is divergent.

Moreover, one can determine from the energy spectra thermodynamic quantities like
the specific heat or the magnetic susceptibility. It is even possible to obtain certain
non-thermodynamic quantities (like scattering phase shifts) from the spectrum alone [60].
However, although more difficult to obtain, one is often interested in dynamical quantities
which contain information about scattering processes and the time-evolution of the system.
Sec. 4.2 will show how dynamical quantities can be calculated from the eigenenergies and
eigenstates.

4.2. Spectral functions

4.2.1. Definition

Calculating dynamic quantities like spectral functions requires more work than calculating
static quantities directly from the energy spectra, since spectral functions involve not just
the plain energies, but also transition matrix elements for combinations of eigenstates. In
general, the spectral function for two operators B and C [74] is given by:

ABC(ω) =

∫
dt

2π
eiωt〈B(t)C〉T . (4.13)

Using the explicit expression for the time dependence B(t) = eiHtBe−iHt and writing the
spectral function in Lehmann representation, this reads:

ABC(ω) =

∫
dt

2π
eiωt

∑

ij

e−βEi

Z
〈i|eiHtBe−iHt|j〉〈j|C|i〉. (4.14)

Performing the Fourier transformation results in:

ABC(ω) =
∑

ij

e−βEi

Z
〈i|B|j〉〈j|C|i〉δ(ω − (Ej − Ei)). (4.15)
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4.2.2. Impurity spectral function

A spectral function which is of special interest at impurity problems, is the ’impurity
spectral function’, i. e. the local density of states of the impurity, which for the SIAM is
given by

Aσ(ω) =
∑

ij

e−βEi + e−βEj

Z
|〈j|e†σ|i〉|2δ(ω − (Ei − Ej)). (4.16)

This spectral function consists of two spectral functions of the type of Eq. (4.15): Aσ(ω) =
A>σ (ω) +A<σ (ω), with A>σ (ω) = Ae†σeσ(−ω) and A<σ (ω) = Aeσe†σ(ω). The impurity spectral
function is related to the retarded Green’s function via

Aσ(ω) = − 1

π
Im[GRσ (ω)], (4.17)

with the Green’s function defined by GRσ (t) = −iθ(t)〈{eσ(t), e†σ}〉T .

4.2.3. Smoothing of discrete data

Eq. (4.15) yields discrete raw data Adisc, which, in practice, are stored in binned form with
typically 256 bins per decade (which renders further numerical processing more efficient).
These data are then smoothed [74] according to A(ω) =

∫
dω′K(ω, ω′)Adisc(ω

′). For the
broadening kernel K(ω, ω′) we use

K(ω, ω′) = L(ω, ω′)h(ω′) +G(ω, ω′)[1− h(ω′)], (4.18)

with

L(ω, ω′) =
θ(ωω′)√
πα|ω|e

−
(

log |ω/ω′|
α

−γ
)2

(4.19)

=
θ(ωω′)√
πα|ω′|e

−
(

log |ω′/ω|
α

+γ−α/2
)2
e−α(γ−α/4), (4.20)

G(ω, ω′) =
1√
πω0

e−(ω−ω′)2/ω2
0 , (4.21)

h(ω′) =





1, |ω′| ≥ ω0

e
−
(

log |ω′/ω0|
α

)2

, |ω′| < ω0.

(4.22)

L(ω, ω′) and G(ω, ω′) describe log-gaussian and gaussian functions with width α. The
parameter γ = α/4 ensures that the log-gaussians conserve peak height, e. g. such that
a constant function would be mapped onto itself [74]. For ω > ω0 we strictly use a log-
gaussian because it is naturally adapted to the logarithmic spread of the raw data, which
results from the NRG-inherent logarithmic discretization. However, since a log-gaussian
vanishes for ω → 0, one uses a normal (linear) gaussian for ω � ω0, to avoid an artificial gap
at ω = 0. The function h(ω′) smoothly interpolates between L(ω, ω′) and G(ω, ω′) and is
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chosen also of log-gaussian type. For functions which still change strongly for |ω| . ω = 0,
an appropriately adapted h(ω′) and G(ω, ω′) may be required to reduce possible emerging
artifacts. ω0 is typically chosen to be T/2 for temperatures T > Λ−N/2, with N being the
chain length, and Λ−N/2/2 otherwise, when the length of the chain determines the effective
temperature T ≈ Λ−N/2.

Typical values of the broadening parameter are α ' 0.86 · logΛ, i. e. α ∈ [0.5; 1.2] for
Λ ∈ [1.8; 4]. Smaller values for α can be achieved with z-averaging [75] or by calculating
the spectral function with the use of the correct self-energy [76].

4.2.4. Matrix product states

The eigenstates as generated by the iterative NRG diagonalization, have the form of matrix
product states [77]. This means they are stored as a sequence of rank-3 tensors A

[n]
KX with

elements [A
[σn]
KX ]ss′ which describe how the product basis |σ〉n ⊗ |s〉Kn−1 of site n and the

chain up to site n− 1 transforms into the eigenbasis |s′〉Xn of the chain with n sites:

|s′〉Xn =
K∑

σns

[A
[σn]
KX ]ss′|σ〉n ⊗ |s〉Kn−1. (4.23)

The tensors A
[n]
KX are divided into two parts, A

[n]
KK and A

[n]
KD, depending on whether the

state |s′〉Xn belongs to the kept (X = K) or to the discarded (X = D) states of iteration

n. The tensors A
[n]
KX can also be considered as a set of d matrices A

[σn]
KX and are therefore

often simply being referred to as A-matrices.
By inserting the definition of a Matrix Product State (MPS) repeatedly in Eq. (4.23)

for |s〉Kn−1, we obtain:

|s′〉Xn =
∑

σn...σ1σimp

[A
[σ0]
KK ...A

[σn−1]
KK A

[σn]
KX ]σimps′|σn〉 ⊗ |σn−1〉 ⊗ ...⊗ |σ0〉 ⊗ |σimp〉. (4.24)

Here, the origin of the term MPS becomes visible, since the coefficients of the eigenstates
when expressed in the product basis, are given by a product of A-matrices. It is interesting
to note that for the states |s′〉Xn , Eq. (4.24) yields dn coefficients, which, however, are not
all independent, given that they are encoded as MPS.

4.2.5. FDM-NRG

For the calculation of spectral functions, there exist different approaches, which differ in
the way how they combine states from different iterations. For the first calculations of
dynamical quantities [78], the spectral data in Eq. (4.15) was computed on a by-shell
basis, where the weights of the states were given by plain Boltzmann factors. This data
was then patched together to the full spectral function. This approach faces two problems:
(i) since the kept states of high energy shells are further refined at the NRG procedure at
later iterations, the contribution of some states is counted more than once: at the iteration
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they are eventually discarded, and at the kept states of the previous iterations, (ii) for
shells with energy E � T , the correct density matrix is given by the reduced density
matrix where higher iterations have been traced out, instead of the Boltzmann factors.

The first problem had been addressed by using a special patching scheme that reduces
the double counting errors [79]. The second problem was solved by Hofstetter with density
matrix NRG (DM-NRG) [80], where the reduced density matrix is used for each iteration.
It was shown by Weichselbaum and von Delft [74] and Peters, Pruschke, Anders and
Schiller [81, 82, 83], that it is possible to completely avoid double countings (and use the
reduced density matrix) by using a basis which consists solely of the discarded states of all
iterations. This method, the full density matrix NRG (FDM-NRG) will be explained in
the remainder of this section. There exist different notations to handle the various indices
that occur with FDM-NRG. We use the description from [74, 84] which is very clearly
arranged.

Complete basis

To compute spectral functions, all states must be defined within the same Hilbert space.
Since the Wilson chain is extended by one site at a time, a common Hilbert space can be
obtained by extending all states to the Hilbert space that corresponds to the Hamiltonian
HN of the full chain. This is achieved by complementing the states |s〉Xn of iteration n by
the environmental states |en〉 (Fig. 4.3):

|se〉Xn = |en〉 ⊗ |s〉Xn (4.25)

with
|en〉 ≡ |σN〉 ⊗ |σN−1〉 ⊗ · · · ⊗ |σn+1〉 (4.26)

simply the Fock space for the remainder of the chain.
The eigenenergies En

s of the Hamiltonian Hn can then be seen as approximate eigenen-
ergies of the Hamiltonian of the full chain:

HN |se〉Xn ' En
s |se〉Xn . (4.27)

With these definitions, the discarded states by Anders and Schiller [81] form an approxi-
mate but complete and orthogonal basis of the full Hamiltonian,

1 =
N∑

n>n0

∑

se

|se〉Dn D
n 〈se|, (4.28)

D
n 〈se|s′e′〉Dm = δnmδss′δene′n , (4.29)

where n0 is the last iteration where no truncation occured. A kept state can therefore
be fully expressed as a linear combination of discarded states, and the overlap between a
discarded and a kept state is given by

D
n 〈se|s′e′〉Km =

{
[A

[σm+1]
KK ...A

[σn]
KD]ss′δene′n n > m

0 n ≤ m.
(4.30)
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Figure 4.3.: Eigenenergies obtained from the NRG algorithm. The discarded states (red)
constitute a complete and orthonormal basis. The environmental states |σn〉
indicate that the discarded states are no longer refined but that they are consid-
ered to be appropriately degenerate instead, which is reflected in their weight-
ing factors at the calculation of the spectral function (c. f. Eq. (4.31)). Figure
adapted from [43].

Density matrix

The density matrix ρ of the Wilson chain Hamiltonian can be expressed as a sum of density
matrices, the states of which correspond to different iterations:

ρ(T ) =
N∑

n>n0

∑

se

e−βE
n
s

Z
|se〉Dn D

n 〈se| =
N∑

n>n0

wnρ
[n]
DD (4.31)

with

ρ
[n]
DD =

1

Zn

∑

s

e−βE
n
s |s〉Dn D

n 〈s|, (4.32)

wn =
Znd

N−n

Z
, (4.33)

Zn =
D∑

s

e−βE
n
s . (4.34)

wn are the weighting factors which are determined by temperature and the degeneracy due
to the environmental states of iteration n. The wn’s are peaked at a certain iteration nT
(the energy of which corresponds to temperature) and are essentially zero for iterations
n� nT or n� nT . At early iterations the reason for this is that the Boltzmann weights are
vanishingly small. At later iterations, the occupation is essentially 1, but the degeneracy
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dN−n of these states is exponentially smaller than the degeneracy of the states at earlier
iterations, so that these states effectively also have no contribution.

Spectral functions with FDM-NRG

At FDM-NRG the general expression for the spectral function is (sum over s, s′ and local
site indices σ implied for this section)

ABC(ω) =
N∑

n>n0

wnABCn (ω) =
N∑

n>n0

wn

n∑

m>n0

6=KK∑

XX′

[C[m]
X′Xρ

[mn]
XX ]s′s[B[m]

XX′ ]ss′δ(ω − Em
s′s) (4.35)

with

[ρ
[m=n]
DD ]ss′ = δss′

e−βE
n
s

Zn
, (4.36)

[ρ
[m<n]
KK ]ss′ = [A

[σm+1]
KK ...A

[σn]
KDρ

[nn]
DDA

[σn]†
DK ...A

σ[m+1]†
KK ]ss′ , (4.37)

[B[m]
KD]ss′ = [A

[σm]
KD ...A

[σn0+1]

KK B[n0]
KKA

[σn0+1]

KK ...A
[σm]
KK ]ss′ , (4.38)

[B[m]
DK ]ss′ = [A

[σm]
KK ...A

[σn0+1]

KK B[n0]
KKA

[σn0+1]

KK ...A
[σm]
DK ]ss′ , (4.39)

[B[m]
DD]ss′ = [A

[σm]
KD ...A

[σn0+1]

KK B[n0]
KKA

[σn0+1]

KK ...A
[σm]
DK ]ss′ , (4.40)

where we assumed, that the operators B and C only act on the impurity or within the
beginning of the chain and can therefore be expressed in the basis of iteration n0. The
left hand side of Eqs. (4.36)-(4.40) are the matrix elements for the density matrix and the
operator B, expressed in the basis of iteration m. They are obtained by using MPS to
transform them into the basis of iteration m, as described on the right hand side. The
definition of the matrix elements of C is analogous to the definition of B.

In Eq. (4.35), the terms ABCn (ω) are the contributions to the spectral function of all states
of a single shell, where the matrix elements of two kept states are successively refined and
expressed in terms of the discarded states of all later iterations. However, instead of
transforming the kept states into the space of all discarded states, it is more convenient
to start from the end of the chain and to iteratively generate the density matrices while
going backwards. This yields the reduced density matrix for each iteration, where the
later iterations have been traced out. This way the refinement of the kept states is taken
into account by the reduced density matrix and it is sufficient to calculate only the matrix
elements where both states s and s′ belong to the same shell. This corresponds to changing
the order of summation for n and m compared to Eq. (4.35):

ABC =
N∑

m>n0

N∑

n≥m
wn

6=KK∑

XX′

[C[m]
X′Xρ

[mn]
XX ]s′s[B[m]

XX′ ]ss′δ(ω − Em
s′s). (4.41)
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With the (non-normalized) reduced density matrix for shell m,

ρ
[m],red
XX =

N∑

n≥m
wnρ

[mn]
XX , (4.42)

this becomes

ABC =
N∑

m>n0

6=KK∑

XX′

[C[m]
X′Xρ

[m],red
XX ]s′s[B[m]

XX′ ]ss′δ(ω − Em
s′s). (4.43)

In practice, the reduced density matrices ρ
[m],red
XX are first calculated in a “backward run“

by going from the end of the chain to the beginning. The calculation of the transition
matrix elements [B[m]

XX′ ]ss′ and [C[m]
X′X ]s′s and the actual evaluation of Eq. (4.43) is then

performed in a “forward run“ by going from the beginning of the chain to the end (Fig. 4.4).
Calculating the spectral function this way has the additional benefit that one naturally
obtains the reduced density matrices, which are interesting quantities themselves [73].

4.3. Fermionic signs

4.3.1. Fermionic signs for the NRG diagonalization

During the NRG diagonalization, states are determined by the subsequent application of
raising and lowering operators. Since the sign of a state depends on the order in which
these fermionic operators act, it is necessary to define an order for these operators, both,
for different sites and for the states on a certain site. We therefore define the fully occupied
state and thus the fermionic order as:

f †N↑f
†
N↓f

†
N−1↑f

†
N−1↓...f

†
0↑f
†
0↓e
†
↑e
†
↓|vac〉, (4.44)

with |vac〉 being the vacuum state.
This convention, together with the commuation relations of the operators determines

the fermionic signs of the states. We thereby call the sign that arises due to the spin
order of a certain site the “intra-site” fermionic sign and the sign that arises due to the
order of different sites the “inter-site” fermionic sign. Since the intra-site fermionic sign is
determined solely by the operators that act on this single site and because the creation and
annihilation operators are always either given in the local basis directly or are transformed
from the local basis to another basis via the MPS contraction, it is possible to incorporate
the intra-site fermionic sign into the definitions of the operators fnσ in the local basis:

fn↑,loc =




|0〉 | ↑〉 | ↓〉 | ↑↓〉
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


, fn↓,loc =




|0〉 | ↑〉 | ↓〉 | ↑↓〉
0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0


. (4.45)
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Figure 4.4.: Beginning of the backward run to calculate the reduced density matrices (red)
and end of the following forward run for calculating the spectral function as
described by Eq. (4.43) (blue). At the iteration of the backward run which

corresponds to shell m, the reduced density matrix ρ
[m],red
XX is calculated from

the Boltzmann weights of shell m and from the reduced density matrix of shell
m+1 by back transforming the latter with A

[m+1]
KK and A

[m+1]
KD , respectively. The

three contributions of the spectral function which are calculated at iteration m
of the forward run correspond to different XX ′ in the summation of Eq. (4.43)

and are denoted by B[m]
DK , B[m]

KD and B[m]
DD (C[m]

X′X is calculated analogously and
is therefore not indicated here for better readability). The origin of the blue
arrows indicates whether the reduced density matrix corresponds to the kept
or to the discarded states of iteration m. Since the summation over XX ′ does
not include KK, there is no B[m]

KK indicated here. The part of the spectral

function that would correspond to B[m]
KK is already taken into account by the

entirety of B[m′]
DK , B[m′]

KD and B[m′]
DD with m′ ≥ m+ 1, ..., N .
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With these definitions the intra-site fermionic sign has been fully taken care of and does
not need to be regarded anymore.

During the NRG diagonalization the inter-site fermionic sign comes in through the four
tunneling terms at Eq. (4.12) which occur when a new site is added at the iteration pro-
cedure: f †n+1σfnσ and f †nσfn+1σ, each for both spin directions σ, respectively. By looking
at the tunneling terms and at Eq. (4.44), we see that due to the commutation relations

of the f
(†)
nσ -operators, the state acquires an additional minus sign for each electron that

occupies site n + 1, when acting on the state with f
(†)
nσ . The inter-site fermionic sign can

therefore be taken care of by replacing fn+1σ → Zfn+1σ, so that the hopping terms become
(Zfn+1σ)†fnσ and f †nσ(Zfn+1σ), where the operator Z = (−1)nn+1 determines the sign due
to the occupation nn+1 of site n+ 1.

4.3.2. Fermionic signs for spectral functions

When calculating spectral functions, the situation with fermionic signs is different. The
operator e†σ which acts on a state like in Eq. (4.16), does not act on the end, but on the
beginning of the chain, i. e. the impurity. To respect the fermonic order in Eq. (4.44),
the operator therefore is not only moved past the electrons of the last site, but past the
electrons of every chain site (apart from the impurity). However, it is not necessary to
evaluate the occupation for every site of the chain, but it is rather sufficient to determine
the occupancy of the impurity instead, as will be shown in the following.

Let |s〉 and |s̃〉 be two eigentstates of the chain, {|d〉} a basis of the impurity state space
and {|r〉} a basis of the chain without the impurity. The state |s〉 can therefore be written
as:

|s〉 =
∑

rd

srd|r〉|d〉. (4.46)

When calculating spectral functions, one calculates matrix elements of the following type:

〈s|eσ|s̃〉〈s̃|e†σ|s〉 =
∑

rr′r̃r̃′dd′d̃d̃′

s∗r′d′sr̃′d̃′s
∗
r̃d̃
srd〈d′|〈r′|eσ|r̃′〉|d̃′〉〈d̃|〈r̃|e†σ|r〉|d〉. (4.47)

When the operator e†σ acts on the state |r〉|d〉 (similar when eσ acts on 〈d′|〈r′| from the
right), one obtains a minus sign for each electron of |r〉. Therefore, the operator e†σ can
be replaced by an operator e†σ,loc which is given in the local basis of the impurity, together
with an operator (−1)nr = (−1)ns−nd = (−1)ns+nd , which determines the sign due to the
electrons of |r〉, with ns, nd and nr the number operators of the full chain, the impurity
and the chain without the impurity, respectively. The last equality is true, because it
only matters whether the exponent is even or odd, and this in turn depends only on the
occupancy of the impurity nd but not on whether nd is added or subtracted to ns. One
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obtains

〈s|eσ|s̃〉〈s̃|e†σ|s〉 =
∑

rr′r̃r̃′dd′d̃d̃′

s∗r′d′sr̃′d̃′s
∗
r̃d̃
srd〈d′|〈r′|(−1)ns(−1)ndeσ,loc|r̃′〉|d̃′〉〈d̃|〈r̃|e†σ,loc(−1)ns(−1)nd|r〉|d〉.

(4.48)

Because |s〉 is an eigenstate of ns, the occurrences of the term (−1)ns can be factorized out
and cancel, so that and Z†imp ≡ Zimp ≡ (−1)nd remains:

〈s|eσ|s̃〉〈s̃|e†σ|s〉 = 〈s|Zimpeσ,loc|s̃〉〈s̃|(Zimpeσ,loc)
†|s〉. (4.49)

For other operators than e†σ or for composite operators which act on several sites, the
considerations above can easily be generalized.

4.4. Abelian symmetries and the NRG

In all fields of physics, calculations can be simplified by making use of the symmetries of
the system under consideration. The following two sections will give an overview of how
abelian and non-abelian symmetries are exploited within NRG calculations.

For each abelian symmetry of the Hamiltonian, there exists a corresponding physical
quantity which is conserved, and for each eigenstate the conserved quantity has a well
defined value that can be assigned to the state in form of a quantum number. Since the
Hamiltonian only connects states with equal quantum numbers, it can be made block-
diagonal where each block is associated with a certain quantum number. Operators that
do not conserve quantum numbers can also be divided into symmetry blocks, since all
operators that occur in practice have clearly defined selection rules which describe how the
quantum number changes at a transition. The difference to quantum number preserving
operators like the Hamiltonian, is that the blocks are not on the diagonal.

For numerical calculations one makes use of the fact, that apart from the blocks which
describe allowed transitions, all other parts of the matrix are zero and one thus deals with
sparse matrices. Hence, it is sufficient to reduce numerical operations to the non-zero parts
of the tensor, and therefore there is not a single index running over all states, but instead
there is the quantum number Q which identifies the different non-zero blocks, and an index
n, which specifies a state within a block. A matrix product state, as from Eq. (4.23), is
therefore written as:

|Q̃ñ〉 =
∑

Qn

∑

ql

(A
[q]

QQ̃
)
[l]
nñ|Qn〉|ql〉, (4.50)

where Q, n and q, l are the quantum numbers and state indices of the states that are
combined to the state with quantum number Q̃ and index ñ. For better clarity we omitted
the indices which refer to iteration and to the kept or discarded part of the state space,
which will also be the case in Sec. 4.5.
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Although there is some small numerical overhead due to the bookkeeping of the non-
zero blocks, the use of abelian symmetries results in a great computational speed-up, since
computations with several smaller matrices require much less numerical resources than
computations with a single large one.

4.5. Non-abelian symmetries and the NRG

This section briefly describes the main aspects of how non-abelian symmetries enter the
NRG. For a detailed introduction to the usage of non-abelian symmetries, see Ref. [85].
The non-abelian symmetry used most often in calculations is the SU(2) symmetry. This
symmetry is well known from the quantum theory of angular momentum and it has been
used in NRG calculations from the very beginning [7, 86]. The implementation of other
symmetries, however, is more involved, with the SU(3) symmetry, for example, being
treated only recently [87, 88]. Note that the subsections about symmetries at the NRG
concern the symmetries of the model. However, in the context of symmetries and the
Kondo effect, it is important to distinguish between the symmetry of the Kondo effect
and the symmetry of the model. A generalization of the Kondo effect which may involve
impurity states not only with different spins, but also with different orbitals, can have
SU(n) symmetry [89], which means that the low-energy effective Hamiltonian features an
exchange coupling that is described by generalized SU(n) spin matrices. But on the other
hand, the multi-channel Kondo model from Eq. (2.14), for example, always has an SU(2)
(spin-)Kondo effect, while the Hamiltonian has SU(2) particle-hole, SU(2) spin and SU(n)
channel symmetry.

Computational effort can be reduced even more at the presence of non-abelian symme-
tries, even though the relations between the group elements are more complicated than for
the abelian case. The reason for this is that every non-abelian symmetry group contains
an abelian subgroup and the non-abelian commutation relations do therefore not exist
instead, but in addition to the abelian commutation relations of this subgroup.

4.5.1. MPS and operators

Matrix product states

When exploiting non-abelian symmetries, first, there are the same benefits as when making
use of abelian symmetries: MPS can be split into blocks that can be associated with
quantum numbers, and it is sufficient to consider only the non-vanishing blocks of the
MPS. In addition, however, the elements of a block are dependent on each other. The
states of a block with certain quantum numbers can therefore be gathered to multiplets,
where the index n from Eq. (4.50) now labels the multiplets (within a block) and an
additional quantum number Qz labels the states within a multiplet (the quantum numbers
Q and Qz which label blocks and the states within a multiplet, respectively, will also be
referred to as q- and z-labels below). The states within a multiplet are then related to each
other via the (generalized) Clebsch-Gordan coefficients (CGC) of the respective symmetry.
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The CGCs can be factorized out and it is therefore sufficient to store only one number (the
reduced matrix element) for each multiplet together with the CGCs necessary to construct
the states of the multiplet. A matrix product state, as from Eq. (4.23) can therefore be
written as

|Q̃ñ; Q̃z〉 =
∑

Qn;Qz

∑

ql;qz

(A
[q]

QQ̃
)
[l]
nñ · C [qz ]

QzQ̃z
|Qn;Qz〉|ql; qz〉, (4.51)

with C
[qz ]

QzQ̃z
≡ 〈QQz; qqz|Q̃Q̃z〉 the Clebsch-Gordan coefficients. When comparing Eq. (4.51)

to Eq. (4.23), it becomes visible that from a numeric point of view, an abelian symmetry
can be treated in exactly the same way as a non-abelian symmetry, yet with multiplet
dimension 1.

Operators

In the presence of non-abelian symmetries, one has to distinguish between scalar operators
and tensor operators. A tensor operator transforms like a higher order tensor and is
therefore related to nontrivial CGC spaces. Tensor operators can be characterized in a
similar way as MPS: they have three q-labels and corresponding CGC spaces, which can
be factorized out. According to the Wigner-Eckhart theorem [90], the matrix element of a
tensor operator is given by:

〈Q′n′;Q′z|F q
qz |Qn;Qz〉 = 〈Q′n′;Q′z|

(
F q
qz |Qn;Qz〉

)
= 〈Q′n′‖F q‖Qn〉 · C [qz ]

QzQ′z
, (4.52)

where C
[qz ]
QzQ′z

are again the Clebsch Gordan coefficients and 〈Q′n′‖F q‖Qn〉 are the reduced
matrix elements, which do not depend on any z-labels. In practice, the reduced matrix
element can be determined by calculating 〈Q′n′;Q′z|F q

qz |Qn;Qz〉 and the corresponding
Clebsch Gordan coefficient for one combination of z-labels.

An example of a tensor operator F q
qz is the creation operator of an electron with SU(2)

spin symmetry. If it acts on |Qn;Qz〉, i. e. if an additional electron with spin quantum
number q = 1/2 is added to the state |Qn;Qz〉, the Clebsch-Gordan coefficients determine
how the spins with quantum numbers Q, Qz and q,qz couple to the new spin with Q′, Q′z.

A scalar operator, such as the Hamiltonian, on the other hand, transforms like a scalar
under symmetry tranformations. It has only two indices and the CGC spaces therefore
simply are identity matrices.

Multiplicity

When combining two quantum numbers Q and q to a quantum number Q̃, in the case of
the SU(2) symmetry group, for each combination of the q- and z-labels, the corresponding

CGC, C
[qz ]

QzQ̃z
, is a single number. For the general case of an arbitrary non-abelian symmetry,

however, this is no longer the case, i. e. it is possible to have inner and outer multiplicity.
Inner multiplicity means that for a given quantum number q, several states with the same
z-label can exist, i. e. for a single q-value there are at least two states with one or more
identical z-labels. To treat inner multiplicity in a simple manner, one may introduce an
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additional index αz where αz = 1, ...,mq
z specifies which state within the multiplet one

refers to, so that the z-label becomes an extended index: qz → (qz, αz). Inner multiplicity
therefore leaves the multiplets untouched.

Outer multiplicity means that when combining states with quantum numbers Q and
q, the resulting quantum number Q̃ can show up several times, but with different CGC
spaces. In contrast to inner multiplicity, outer multiplicity also affects the tensors on the
multiplet level. So to treat outer multiplicity in a simple manner, one may introduce an
additional index α to label different multiplets with the same q-label: q → (q, α). Inner
and outer multiplicity are not present for every non-abelian symmetry. For example, they
do not occur for SU(2) as mentioned above, however they are present e. g. for SU(n ≥ 3).

4.5.2. Operations on MPS

Combining state spaces

When combining the effective state space of a chain with the state space of a new site, as
is done repeatedly during the NRG procedure, the new states are given by the product
space of the states of the new site and the states of the chain without it. During the
following determination of the eigenstates, on the multiplet level the new Hamiltonian is
diagonalized, whereas on the CGC-level, the new CGCs are solely determined by the q-
and qz-labels of the states which are combined.

The CGC spaces which emerge when the state-spaces of the chain and the new site are
combined, can be determined deterministically by repeatedly applying lowering operators
on a seed state, which usually is the state with the highest qz within a multiplet. For a
detailed description of the calculation procedure of the CGCs, see [85], Appendix B. A
closed analytic formula for the CGCs is only known for special symmetries, e. g. the SU(2)
symmetry, and a formula for SU(n) for arbitrary n > 2 does not exist. In the case of inner
and outer multiplicity, special care has to be taken that the CGCs are treated consistently.

During the NRG algorithm, the truncation which follows the diagonalization happens
only on the multiplet level, since truncation within the degenerate CGC space would in-
troduce an artificial symmetry breaking.

Contractions

When using non-abelian symmetries, a contraction of two tensors involves a contraction
both on the multiplet and on the CGC level. The CGC spaces are thereby contracted in
exactly the same way as the tensors on the multiplet level. If one of the two tensors to be
contracted is a scalar operator, performing only the contraction on the multiplet level is
sufficient, since the CGC spaces of a scalar operator are identities and will therefore leave
the CGC spaces of the other tensor unaffected.
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5. Optics for impurity models

5.1. Quantum quench of Kondo correlations in optical
absorption

The observation of Kondo correlations has been predicted in the context of optical exper-
iments with self-assembled, tunable QDs [91, 92, 93, 64]. In this section the absorption
spectra of self-assembled QDs are examined both numerically and experimentally. We first
use the gate voltage dependence of the spectras’ threshold frequency to determine the val-
ues of the model-parameters and then compare the lineshapes calculated with these values
to the experimental spectra. We compare the absorption spectra for different gate voltages
and also for finite magnetic field and observe very good agreement between experiment
and theory. Although the temperature is not sufficiently far below the Kondo temperature
to clearly observe the power-law behavior described in section 3.3, the results show that
Kondo correlations are present and are observed with optical methods for the first time.
Compared to section 3.3, here, the initial state shows Kondo correlations instead of the
final state, however, the absorption spectrum can in both cases be calculated according to
Eq. (3.5) and we checked that the line shapes for both cases are similar.
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The interaction between a single confined spin and the spins of an
electron reservoir leads to one of the most remarkable phenomena of
many-body physics—the Kondo effect1,2. Electronic transport mea-
surements on single artificial atoms, or quantum dots, have made it
possible to study the effect in great detail3–5. Here we report optical
measurements on a single semiconductor quantum dot tunnel-
coupled to a degenerate electron gas which show that absorption
of a single photon leads to an abrupt change in the system
Hamiltonian and a quantum quench of Kondo correlations. By
inferring the characteristic power-law exponents from the experi-
mental absorption line shapes, we find a unique signature of the
quench in the form of an Anderson orthogonality catastrophe6,7,
induced by a vanishing overlap between the initial and final many-
body wavefunctions. We show that the power-law exponent that
determines the degree of orthogonality can be tuned using an
external magnetic field8, which unequivocally demonstrates that
the observed absorption line shape originates from Kondo correla-
tions. Our experiments demonstrate that optical measurements on
single artificial atoms offer new perspectives on many-body phe-
nomena previously studied using transport spectroscopy only.

Optical spectroscopy of single quantum dots has demonstrated its
potential for applications in quantum information processing, particu-
larly in the realization of single- and entangled-photon sources9,10,
coherent spin qubits11,12 and a spin–photon interface13,14. Although
recent experiments have established this system as a new model for
solid-state quantum optics, all of the striking experimental observa-
tions made so far can be understood within the framework of single- or
few-particle physics enriched by perturbative coupling to reservoirs
involving phonons, a degenerate electron gas15–17 or nuclear spins18,19.

We present differential transmission experiments20 on single,
charge-tunable quantum dots that reveal optical signatures of the
Kondo effect. By contrast with prior experiments17,21, the tunnel coup-
ling between the quantum dot and a nearby degenerate electron gas,
which we refer to as the fermionic reservoir, is engineered to be so
strong that the resulting exchange interactions cannot be treated using
a perturbative system–reservoir theory: in the initial state, the ‘system’—
quantum dot spin—is maximally entangled with the fermionic reservoir,
forming a singlet. Various settings have been proposed for finding
optical signatures of Kondo physics8,22–25; our work is most closely
related to the theoretical investigation of refs 8, 25.

The feature that differentiates our results from all prior transport-
based investigations of the Kondo effect3–5 is the realization of a
quantum quench of the local Hamiltonian; in our experiments, photon
absorption abruptly turns off the exchange interaction between the
quantum dot electron and the fermionic reservoir, leading to the
destruction of the correlated dot–reservoir singlet that otherwise acts
as a local scattering potential for all reservoir electrons. The overlap
between N-electron fermionic reservoir states with and without a local
scattering potential scales as N2a, with a . 0 (refs 6, 7). This reduced
overlap, called an Anderson orthogonality catastrophe (AOC), leads to

a power-law tail in absorption if the scattering potential is turned on or
off by photon absorption. Here we determine the AOC-induced
power-law exponents in the absorption line shape that uniquely char-
acterize the quench of Kondo correlations. Moreover, by tuning the
applied laser frequency, we observe both the perturbative and the non-
perturbative regimes of the Kondo effect in one absorption line shape,
without having to change the fermionic reservoir (electron) temper-
ature, TFR. The AOC after a Kondo quench can, in principle, also be
probed by core-level X-ray absorption spectroscopy of suitable bulk
materials26, but optical studies of quantum dots offer higher resolution
and a tunable local Hamiltonian.

The quantum dot sample we study is shown schematically in Fig. 1a: a
gate voltage, Vg, applied between a top Schottky gate and the degenerate
electron gas, allows us to tune the charging state of the quantum dot27.
Figure 1b shows the photoluminescence spectrum of a particular
quantum dot (dot 1), as a function of Vg, where different discrete ‘char-
ging plateaux’ are clearly observable. The dependence of the photo-
luminescence energy on the quantum dot charging state originates from
a Coulomb renormalization of the optical transition energy. In addition
to photoluminescence lines (for example X0) associated with a fixed
charging state (for example neutral) of the quantum dot, we also observe
spatially indirect transitions with a strong dependence on Vg (refs 8, 17;
see Fig. 1b, red arrow).

1Institute of Quantum Electronics, ETH-Zürich, CH-8093 Zürich, Switzerland. 2Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, D-80333 München, Germany.
3Sloane Physics Laboratory, Yale University, New Haven, Connecticut 06520, USA. 4Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA.
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Figure 1 | Single quantum dot strongly coupled to a fermionic reservoir.
a, Band structure of the device. The quantum dots are separated by a 15-nm
tunnel barrier from an n11-doped GaAs layer (fermionic reservoir). A voltage,
Vg, applied between the electron gas and a semi-transparent NiCr gate on the
sample surface controls the relative value of the quantum dot single-particle
energy levels with respect to the Fermi energy, EF. b, Low-temperature (4 K)
photoluminescence spectrum of a single quantum dot (dot 1) as a function of Vg;
ni denotes the initial state electron occupancy of the quantum dot. The
interaction of the quantum dot electron with the Fermi sea leads to a broadening
of the photoluminescence lines at the plateau edges (yellow arrows) and indirect
recombinations of a quantum dot hole and a Fermi sea electron (red arrow).
Indirect transitions are identified by the stronger Vg dependence of the transition
energy, compared with that for direct transitions. A detailed discussion of the
origin of various photoluminescence lines can be found in ref. 17.

3 0 J U N E 2 0 1 1 | V O L 4 7 4 | N A T U R E | 6 2 7

Macmillan Publishers Limited. All rights reserved©2011

52 5. Optics for impurity models



In this Letter, we focus on the X2 plateau, for which the quantum
dot carries the charge of a single electron and the influence of the
fermionic reservoir on the quantum dot photoluminescence disper-
sion and linewidth is strongest. The X2 optical transition couples the
initial configuration, containing on average one electron in the
quantum dot, to a final configuration, containing on average two
electrons and a valence-band hole (a negatively charged trion). This
transition can be described within the framework of an excitonic
Anderson model8,25 (EAM), depicted schematically in Fig. 2c (and
described explicitly in Supplementary Information). It is parameterized
by the energy, e, of the quantum dot electron level with respect to the
Fermi level; the on-site Coulomb repulsion, Uee; the tunnelling rate, C,
between quantum dot and fermionic reservoir; the half-bandwidth, D,
of the fermionic reservoir; and the electron–hole Coulomb attraction,
Ueh. The last is relevant only in the final configuration, where it effec-
tively lowers the electron level energy to e 2 Ueh, thus ensuring the
double occupancy of the electron level. An estimate from the photo-
luminescence data in Fig. 1b yields Ueh < Uee 1 4 meV.

The inset of Fig. 2a shows high-resolution laser absorption spec-
troscopy on dot 1 across the X2 single-electron charging plateau

(Supplementary Information). Here we parameterize Vg in terms of e,
normalized and shifted such that e 5 2Uee/2 for the gate voltage at which
the absorption contrast is maximal. Instead of the usual linear d.c. Stark
shift of the absorption peak that is characteristic of charge-tunable
quantum dots, we find a strongly nonlinear, e-dependent shift of the
X2 transition energy15,17, which measures the energy difference between
the final and initial ground states. As shown in Fig. 2c, this energy shift
arises from a renormalization of the initial state energy28 due to virtual
tunnelling between the singly occupied quantum dot and the fermionic
reservoir (analogous to the Lamb shift of atomic ground states). The final
trion state energy, on the other hand, is hardly affected by virtual tunnel-
ling processes, owing to Ueh 2 Uee being large. This renormalization-
induced redshift of the initial state is strongest at the plateau edges and
leads to an e-dependent blueshift of the optical resonance frequency. The
latter can be used to determine the EAM parameters for dot 1:
Uee 5 7.5 meV, C 5 0.7 meV and D 5 3.5 meV. Numerical renormaliza-
tion group (NRG) calculations for the transition energy (Fig. 2a, blue line)
give excellent agreement with the experimental data (blue symbols).

We now consider the detailed form of the absorption line shape,
A(n), as function of the detuning, n, between the applied laser fre-
quency and the transition threshold. Figure 3a shows, on a log–log
scale, the blue (n . 0) tail of A(n) for dot 1, for the four values of gate
voltage indicated by arrows in the inset of Fig. 2a. The inset of Fig. 3a
compares the full, un-normalized absorption line shapes for the same
gate voltages on a linear scale; the red (n , 0) absorption tail allows us
to determine the temperature of the fermionic reservoir to be
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Figure 2 | Gate voltage dependence of the peak absorption strength.
a, Experimental data (symbols) for the e dependence of the shift in the resonance
energy,DEtransition (blue, left axis), and the absorption contrast (red, right axis) are
well reproduced by NRG calculations (solid lines) for the following parameters:
Uee 5 7.5 meV, C 5 0.7 meV, D 5 3.5 meV, Ueh 5 11 meV, TFR 5 180 mK. Inset,
absorption on the negatively charged exciton X2 transition of dot 1 as a function
of the gate voltage, measured at TFR 5 180 mK. b, NRG results for the respective
occupancies, ni and nf, of the quantum dot electron level in the initial and final
ground states. c, Energy renormalization process: the initial configuration (left)
features a single electron in the quantum dot, whose energy is lowered by virtual
tunnelling between the dot and the fermionic reservoir. Because virtual
excitations with energy DE contribute a shift proportional to 2C/DE, the total
shift (involving a sum over all possible values ofDE), is strongest near the edges of
the X2 plateau. Towards the right-hand edge (e near zero), the dominant
contribution comes from virtual tunnelling of the quantum dot electron into the
fermionic reservoir (as depicted); towards the left-hand edge (e near 2Uee), it
comes from virtual tunnelling of a fermionic reservoir electron into the quantum
dot (not depicted). In the final configuration (right), the quantum dot contains
two electrons and a hole. The electron–hole Coulomb attraction, Ueh, effectively
lowers the quantum dot electron level energy to e 2 Ueh. This raises the energy
cost, DE, for virtual excitations by Ueh 2 Uee (which is ?C), such that the final-
state energy renormalization is negligible. The renormalization of the transition
energy, probed by a weak laser, is thus mainly due to initial-state energy
renormalization. d, Anderson orthogonality: the Kondo cloud (left-hand
diagram) and local singlet (right-hand diagram) of the initial and final
configurations produce strong or weak scattering phase shifts, respectively.
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Figure 3 | The absorption line shape A(n). a, Blue tail of A(n)/A(nmax) for dot 1,
plotted versus the laser detuning, n, on a log–log scale. Here nmax is the threshold
frequency for which the absorption strength is maximal. The experimental data
were measured at an electron temperature of TFR 5 180 mK for the four values of
gate voltage, e, indicated by arrows in Fig. 2a; the corresponding Kondo
temperatures, TK(e), are indicated by vertical lines in matching colours. The
yellow line indicates TFR. NRG results (solid lines), obtained using the parameters
from the fit in Fig. 2a, are in remarkable agreement with experiment. Inset, the
measured full (un-normalized) absorption line shape for the same e values,
plotted on a linear scale. b, NRG results for T 5 TFR (solid lines) and TFR 5 0
(dashed lines); the latter show the n20.5 behaviour expected in the strong-
coupling regime, TFR= n=TK. c, The rescaled line shape, A(n)/A(TK), versus
n/TK shows a universal scaling collapse characteristic of Kondo physics.
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TFR 5 180 mK, equivalent to 15.6meV (Supplementary Information).
The strong variation of the peak absorption strength and width shown
in the inset of Fig. 3a is a consequence of the exponential dependence
of the Kondo temperature on the gate voltage e:

TK(e)~
ffiffiffiffiffiffiffi
CD
p

exp { 1{
2e

Uee
z1

� �2
 !

pUee

8C

" #
ð1Þ

For dot 1, TK varies between 24 and 118meV; we emphasize that even
though TK 5 464meV for the black curve (Fig. 3a, inset), the dot–reservoir
systemisnolongerinthelocalmomentregimeforthisgatevoltage.All line
shapes carry the signatures of an optical interference effect induced by the
sample structure (causing some line shapes to become negative for small
red detunings), and of independently measured fluctuations in gate volt-
age; both effects have been taken into account in the calculated line shapes
(Supplementary Information). Calculating the line shapes using NRG
(solid lines) without any further fit parameters, we find remarkable agree-
ment with experiment for all four line shapes shown in Fig. 3a, demon-
strating the validity of the EAM8 for the coupled dot–reservoir system.

For blue detunings satisfying n . max(TFR, TK), a perturbative
description for A(n) is possible. The frequency scale for which the
perturbative ,n21 dependence in Fig. 3a sets in and the peak absorp-
tion contrast itself both strongly depend on gate voltage. Remarkably,
for gate voltages such that the initial ground state is a Kondo singlet,
this dependence is such that it permits a scaling collapse: Fig. 3c shows
the normalized absorption line shape, A(n)/A(TK(e)), as a function of
n/TK for the red, green and blue curves of Fig. 3a (but omitting the black
curve, which is in the mixed valence regime). We find that all three
curves collapse to a universal scaling function of n/TK, as expected8 for
the regime TFR= n=Uee. Thus, the e dependence of the crossover
scale is captured by equation (1) for TK; this observation is unequivocal
proof that the Kondo effect is indeed present in our system.

In the limit TFR , n , TK, a perturbative description of the line shape
is no longer valid. In the initial configuration, the exchange interaction
between the quantum dot and the fermionic reservoir induces a ‘Kondo
screening cloud’ that forms a singlet with the quantum dot spin. This
acts as a scattering potential that induces strong phase shifts for those
low-energy fermionic excitations whose energies differ from the Fermi
level by TK or less. In the final configuration after photon absorption,
the quantum dot has two electrons in a local singlet state. Therefore, the
Kondo screening cloud, and the scattering potential that it constitutes
for reservoir electrons, disappears in the long-time limit: the corres-
ponding ground-state wavefunction is a tensor product of the local
singlet and free electronic states, with only weak phase shifts. Because
the initial and final fermionic reservoir phase shifts differ (as depicted
schematically in Fig. 2d), the fermionic reservoir does not remain a
spectator during the X2 transition; instead, the transition matrix ele-
ment between the ground states of the initial and final configurations is
vanishingly small. This leads to an AOC that manifests itself by trans-
forming a delta-function resonance (of an uncoupled quantum dot)
into a power-law singularity6 of the form n2g, where the exponent g
characterizes the extent of the AOC. For TFR= n=TK, the absorption
line shape of the X2 transition is expected to show an analogous power-
law singularity. The exponent g is predicted8,25 to range between 0 and
0.5 (assuming no magnetic field), with g < 0.5 being characteristic for a
Kondo-correlated initial state and an uncorrelated final state. This line
shape modification is a consequence of a redistribution of the optical
oscillator strength, associated with the fact that the fermionic reservoir
wavefunction in the Kondo-correlated initial state has finite overlap
with a range of final states consisting of electron–hole pair excitations
out of a non-interacting fermionic reservoir.

If TFR=TK and the optical detuning is reduced below TK, the line
shape is predicted to cross over smoothly from the perturbative 1/n tail
to the strong-coupling 1/n0.5 power law just discussed. This crossover is
illustrated in Fig. 3b (dashed lines) by NRG calculations, performed at
TFR 5 0 for the three e values of Fig. 3c: Remarkably, despite drastic

differences in the n . TK tails due to different values of TK(e), all three
line shapes show similar power-law exponents, of around g < 0.5, for
n=TK. For non-zero temperature, however, the 1/n0.5 power law is cut
off and saturates once n decreases past TFR (Fig. 3b, solid lines), because
of thermal averaging over initial states with excitation energies #TFR.

A direct extraction of the 1/n0.5 power law from the measured data is
difficult owing to the small accessible experimental window,
TFR , n , TK. Nevertheless, we are able to determine the power-law
exponent accurately for a more strongly coupled quantum dot (dot 2)
by using the fact that the detailed form of the line shape sensitively
depends on the exponent g, which can be tuned using an external mag-
netic field8. This tunability arises because the magnetic field, Bext, changes
the initial dot occupancies, favouring spin up over spin down, and hence
affects the overlap between the initial and final states of the transition
(Supplementary Information). Figure 4a shows the Bext 5 0 absorption
line shape for dot 2 with parameters Uee 5 7.5 meV, C 5 1 meV,
D 5 6.5 meV and Ueh 5 (3/2)Uee, measured at e/Uee 5 20.43 (where
TK 5 140meV) and TFR 5 15.6meV. An attempt to obtain a fit to the
experimental absorption line shape using a perturbative formula8

A(n)!
n=TFR

1{e{n=TFR

c

n2zc2=4

where c # TFR denotes a phenomenological relaxation rate, fails markedly
for dot 2 (Fig. 4a, red curve). By striking contrast, Fig. 4b shows that an
excellent fit is obtained for a weakly coupled dot (dot 3; Supplementary
Information).

101

100

10–1

10–2

10–3

10–3 10–2 10–1 100 101

Exp.          η

0.66

    0.5

    0.31

A
(ν

)/
A

(T
K
)

ν/TK

–100 0 100 200

–0.5

0.0

0.5

1.0

1 T (blue)

 0 T

 1 T (red)

A
(ν

) 
(×

1
0

–
4
)

ν (μeV)

Exp.    NRG

0 1 2 3

101

100

10–1

B (T)

c

Dot 2 Dot 2

–500 –250 0 250 500

0

1

A
(ν

)/
A

(ν
m

a
x
)

A
(ν

)/
A

(ν
m

a
x
)

ν (μeV) ν (μeV)
–50 0 50

0

1

Dot 2

B = 0 T
Dot 3

B = 0 T

a b

γ = TFR γ = TFR/3.8

TK = 140 μeV

d

Figure 4 | Magnetic field dependence of the absorption. a, The absorption
line shape of dot 2 for B 5 0 (symbols) cannot be fit by the perturbative formula
(red line) given in the text. b, By contrast, for dot 3 such a fit works well.
c, Absorption line shapes for dot 2, at Bext 5 0 and 1 T, for the blue–red trion
transition. The magnetic field changes the strength of the AOC and the line
shape. The small peak that appears at n < 80meV in the red trion absorption is
due to incomplete suppression of the laser polarization that couples to the blue
trion transition. Inset, the peak absorption contrast shows good agreement with
the NRG calculations for Bext # 1.5 T. d, Normalized absorption line shape for
dot 2 in a log–log plot. These measurements pin the value of g(Bext 5 0) to ,0.5,
which is a direct signature of a Kondo singlet in the absorption line shape. In
addition, they demonstrate the tunability of an orthogonality exponent.
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Figure 4c shows the magnetic field dependence of the line shape of dot
2, measured in Faraday geometry, where quantum dot optical selection
rules13 ensure that by choosing right- or left-handed circular polarization
of the laser field, it is possible to probe selectively the blue or, respectively,
red trion transition that couples exclusively to the spin-up or, respectively,
spin-down initial state. In comparison with the Bext 5 0 (Fig. 4c, black
squares) results, the absorption line shapes for the blue (Fig. 4c; blue dots)
and red (Fig. 4c; red triangles) trion transitions at Bext 5 1 T exhibit two
striking features: the peak contrast increases (blue) or decreases (red) by a
factor of ,2, and the area under the absorption curve increases (blue) or
decreases (red) by less than 20%. These observations indicate that the
change in the Bext # 1.5 T line shapes is predominantly due to a line
narrowing associated with an increase in the AOC power-law exponent,
g, of the blue trion transition and a line broadening associated with a
decrease in g for the red trion transition. To quantify the field-induced
change in g, we plot in Fig. 4d the corresponding normalized line shapes,
A(n)/A(TK), as functions of n/TK in a log–log plot, together with the
corresponding NRG results (solid lines): the latter yield g 5 0.5 at
Bext 5 0 and g 5 0.31 (red trion) and g 5 0.66 (blue trion) at Bext 5 1 T,
proving the remarkable sensitivity of the measured line shapes to the
AOC-determined power-law exponents. By contrast with Fig. 3c, the line
shapes in Fig. 4d do not show a scaling collapse. We emphasize that
qualitatively similar features are observed for all field values
Bext # 1.5 T; for Bext . 1.5 T, the blue trion absorption contrast has oscil-
lations (Fig. 4c, inset), most probably stemming from the modification of
the fermionic reservoir density of states at high fields in Faraday geometry.

The area under the (un-normalized) absorption line shape is pro-
portional to the initial occupancy, n" or n#, of the spin-up or, respect-
ively, spin-down state. The small (#20%) field-induced change in the
measured areas in Fig. 4c implies a small magnetization, m 5 (n"2

n#)/2 < 0.16 (Supplementary Information). By contrast, the corres-
ponding magnetization for a free spin would have been m 5 0.40. This
measurement confirms that the static spin susceptibility of the initial
configuration is substantially reduced relative to that of a free spin,
providing yet another optical signature of the Kondo screening.

The remarkable agreement between our experimental data depicted
in Figs 2–4 and the NRG calculations demonstrates Kondo correla-
tions between a quantum dot electron and the electrons in a fermionic
reservoir. The optical probe of these correlations unequivocally shows
the signatures of Anderson orthogonality physics associated with the
quantum quench of Kondo correlations, with field-tunable power-law
exponents. Our experiments establish the potential of single, optically
active quantum dots in investigating many-body physics. In addition,
they pave the way for a new class of quantum optics experiments in
which the influence of the simultaneous presence of non-perturbative
cavity or laser coupling and Kondo correlations on electric field and
photon correlations could be investigated.

METHODS SUMMARY
The InGaAs quantum dots studied in this work were grown by molecular beam
epitaxy; the quantum dot layer was separated by a nominally 15-nm-thick GaAs
tunnel barrier from a back gate consisting of a 40-nm-thick n11-doped GaAs layer.
This back gate serves as an electron reservoir. The distance from the quantum dot
layer to the sample surface was 90 nm. A voltage applied between a 5-nm-thick
NiCr top gate and the n11 GaAs back gate allows for discrete charging of the
quantum dots. The sample was placed inside a fibre-based confocal microscope
embedded in a dilution refrigerator with a base temperature of 20 mK in the mixing
chamber. The objective was mounted on a stack of low-temperature x–y–z posi-
tioners. The cryostat was equipped with a 7-T magnet. The absorption experiments
were performed by focusing on a single quantum dot a power- and frequency-
stabilized, single-mode tunable laser with an intensity of 15 nW. The objective had a
numerical aperture of 0.6, yielding a diffraction-limited spot size. The change in
transmission through the sample was recorded using a silicon photodiode. To
increase the signal-to-noise ratio, a lock-in technique was used whereby the gate
voltage was modulated at 187.195 Hz with a modulation amplitude of 50 mV.

The calculations were carried out using the NRG. The continuous energy spec-
trum of the Fermi reservoir was logarithmically discretized and mapped onto a
semi-infinite chain with exponentially decaying hopping amplitudes. In each

iteration, a new site was added to the chain, which corresponds to including ever
lower energy scales of the system. By combining NRG data from all iterations, it
was possible to construct a complete set of approximate many-body eigenstates of
the full Hamiltonian, which could be used to calculate the physical quantities using
the full-density-matrix NRG (Supplementary Information).
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14. Claassen, M., Türeci, H. & Imamoglu, A. Solid-state spin-photon quantum interface
without spin-orbit coupling. Phys. Rev. Lett. 104, 177403 (2010).

15. Dalgarno, P. A. et al. Optically induced hybridization of a quantum dot state with a
filled continuum. Phys. Rev. Lett. 100, 176801 (2008).

16. Hilario, L. M. L. & Aligia, A. A. Photoluminescence of a quantum dot hybridized with
a continuum of extended states. Phys. Rev. Lett. 103, 156802 (2009).

17. Kleemans, N. A. J. M. et al. Many-body exciton states in self-assembled quantum
dots coupled to a Fermi sea. Nature Phys. 6, 534–538 (2010).

18. Latta, C. et al. Confluence of resonant laser excitation and bidirectional quantum-
dot nuclear-spin polarization. Nature Phys. 5, 758–763 (2009).

19. Xu, X. et al. Optically controlled locking of the nuclear field via coherent dark-state
spectroscopy. Nature 459, 1105–1109 (2009).
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The following supplementary material is divided into ten sections. Each section provides

background information related to specific topics of the main text. The sections are not built

upon each other and can be read independently. Section S1 provides details on how the elec-

tron temperature is obtained. The influence of the optical interference and the gate voltage

fluctuations are analyzed in Sections S2 and S3, respectively. In Section S4, we analyze the

influence of experimental parameters on the line shape. Theoretical background for the under-

lying excitonic Anderson model and the numerical renormalization group technique is given in

Sections S5 and S6, respectively. In Section S7 we detail how we determine the parameters of

the Anderson model. A discussion of the quantum dot optical spectra is presented in Section S8.

1

Section S9 outlines the effect of an applied magnetic field on the line shapes, and, in particular,

on the QD magnetization in the initial configuration. Finally, Section S10 shows the limitation

of a fully perturbative description of the observed line shapes.

S1 Electron temperature

All experiments were carried out in a dilution refrigerator with a base temperature of 20 mK

in the mixing chamber. From fits to experimental data, we find, that the (relevant) electron

temperature is around 180 mK. The optical transitions were probed by focussing a weak single-

mode (intensity and frequency stabilized) laser on a single quantum dot (QD). We recorded the

intensity transmitted through the sample with a silicon photo diode. In order to increase the

signal-to-noise ratio, a lock-in technique was used where the gate voltage was modulated[1].

For red detunings, such that ν < −T , the number of electron-hole pairs that could provide

the energy necessary for FR-assisted laser absorption scales exponentially with ν due to Fermi

statistics: as a consequence, the absorption line shape shows an exponential tail (see Eq. (7) of

[2]), whose slope gives us the electron temperature T . For very large red detunings, the domi-

nant line broadening is due to spontaneous emission and we recover the associated Lorentzian

tail. To determine T , we actually fit the NRG line shape for red detunings, taking into account

optical interference (as described in Section S2 below).

S2 Influence of optical interference on measured line shapes

All the measured line shapes carry the signatures of an optical interference effect induced by

the sample structure[1]. The experimental situation is depicted in Fig. S2a. The laser field is

incident onto the QD through the top gate, and the light transmitted at the other side of the

structure is detected. The response of the QD to the laser field is EQD = χ(ν)EL, where

EL is the laser field at the position of the quantum dot, while χ(ν) = χ′(ν) + iχ′′(ν) is the

2
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Figure S1: For ν < −T , the red side (arrow) of the absorption resonance has a strong depen-
dence on the temperature T . Dots: experimental data. Line: NRG prediction, obtained via
Eq. (S2) as described in Sec. S2, using the temperature T as fit parameter.

susceptibility of the QD with an absorptive part χ′′(ν) < 0 and a dispersive part χ′(ν). The

total field at the detector position has three components:

Etot = ELe
iπ/2 + EQD,f + EQD,b . (S1a)

The first term is the laser field at the detector position, which features a Gouy phase (an addi-

tional phase shift occurring in the propagation of focused Gaussian beams) of π/2 relative to

the QD field as it propagates from the QD position to the detector position. EQD,f = χ(ν)EL

is the field of photons scattered from the QD into the forward direction. EQD,b = reiφEQD,f

is the field of photons scattered from the QD into the backward direction, which are then re-

flected from the sample surface (combination of top gate and dielectric interface) and thereby

are redirected into the forward direction. Here r is the reflectivity at the sample surface, and

the additional phase factor for EQD,b has the form φ = 2πn
λ

2L, where L is the QD-surface dis-

tance, n the refractive index of the sample (GaAs) and λ the laser wavelength. Etotcan then we

3
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Figure S2: a, Schematic of the origin of the interference effect. b Effect of the interference on a
Lorentzian line shape. NRG results for the T = 0 line shapes of Fig. 3b shown with interference
effect as in the main text (dashed lines), and without (solid lines).

expressed as

Etot = iEL

[
1 − iχ(ν)(1 + reiφ)

]
. (S1b)

The transmitted intensity reaching the detector is ∝ |Etot|2. Since the laser intensity is con-

stant in time, it contributes only a (large) offset I = E2
L to the measured signal. The measured

“absorption rate” A(ν) (experimental data in Figures 3 and 4) is the differential transmission

signal relative to this offset, A(ν) = ∆I/I = 1 − |Etot|2/E2
L. Hence A(ν) is given by the

interference of the field ELe
iπ/2 from the laser photons and the field EQD(1 + reiφ) from the

scattered QD photons:

A(ν) � Re
[
iχ(ν)(1 + reiφ)

]
, (S2)

where we neglect the vanishingly small contribution from the QD resonance fluorescence. The

reflection at the sample surface causes a mixing of the absorptive and the dispersive part of

χ(ν).

For our sample structure, L = 90 nm, λ = 904 nm and r = 0.67 and n = 3.5, so that

φ = 1.4π. If the absorptive part −χ′′(ν) were purely Lorentzian, the interference effect would

modify the line shape in the way depicted in Fig. S2b and S2c: the mixing of the absorptive and

4
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dispersive part of χ(ν) leads to a shift of the absorption peak to blue laser detunings and causes

the signal to become negative for small red detunings. Moreover, tails that decay faster than

1/ν are changed by the interference effect to decay as 1/ν, as discussed in more detail below.

In order to compare the results of numerical calculations with experimental data, we cal-

culated interference-modified versions of the former, by proceeding as follows: state-of-the-art

full density matrix (FDM) numerical renormalization group (NRG) techniques for calculat-

ing (nonequilibrium) spectral functions ANRG(ν) (see section S6 below) give us the absorp-

tive part of the susceptibility, χ′′
NRG(ν) ≡ ANRG(ν). From this we calculate the dispersive

part using the Kramers-Kronig relation, χ′
NRG(ν) = −

∫
P dν̄

π

χ′′
NRG(ν̄)

ν−ν̄
. Inserting χNRG(ν) =

[χ′
NRG(ν) + iχ′′

NRG(ν)] into Eq. (S2) we obtain the interference-corrected prediction for the ab-

sorption line shape, Aint(ν). We note that the numerical absorption line shape plotted in the

main text also takes into account the influence of gate voltage fluctuations as discussed in the

next section.

In order to clarify the role of optical interference on the power-law exponents associated

with the Kondo correlations, we compare the NRG results of Figs. 3b from the main text (dashed

lines), which take into account interference, to their counterparts in the absence of optical in-

terference (solid lines). Fig. S3 shows that in the large detuning (perturbative) limit (ν � TK),

the faster-than-1/ν decay expected due to logarithmic corrections is modified by interference

towards a slower 1/ν decay. Crucially, however, in the strong-coupling regime (ν � TK) the

slower-than-1/ν AOC power law decay (i.e. ν−1/2) is not affected by the optical interference.

S3 Gate voltage fluctuations

In contrast to conventional quantum dot samples, even small fluctuations δε in the effective ap-

plied gate voltage ε, originating from voltage fluctuations at the output of the function generator

and charge fluctuations in the QD environment, have an impact on the absorption line shapes due

5
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Figure S3: NRG results for the T = 0 line shapes of Fig. 3b shown with interference effect as
in the main text (dashed lines), and without (solid lines).

to the strong non-linear dependence of the transition energy on the gate voltage. In the plateau

center, where a small change δε in gate voltage corresponds to a negligible change in transition

energy, fluctuations do not affect the line shape. However, at the plateau edges, even small

fluctuations δε cause measurable energy shifts of the threshold frequency ωth(ε), and hence of

the detuning ν = ω − ωth(ε) of the laser (with frequency ω) from the QD resonance. After

having determined the temperature from the red tail of the line shape in the plateau center, we

find that the line shapes at the plateau edges are modified by gate voltage fluctuations. We take

these fluctuations into account phenomenologically by convoluting the interference-corrected

6
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line shape Aint(ν) with a Gaussian,

Apredicted(ν) =

∫
dxAint(ν + x)p(x, ε) , p(x, ε) =

e−(x/σ(ε))2/2

√
2πσ(ε)

, (S3)

with a gate-voltage dependent width σ(ε). Here σ(ε) = 〈[ωth(ε + δε) − ωth(ε)]
2〉1/2 repre-

sents the standard deviation of the fluctuations around the mean threshold frequency ωth(ε),

under fluctuations δε arising from fluctuations in the gate voltage, δε ∼ δVg. The fluctuations

δVg are assumed to Gaussian distributed, with a standard deviation of 10µV. These fluctuations

predominantly alter the red tail of the absorption resonance away from the plateau center. We

emphasize that our approach accounts only for fluctuations in the threshold frequency; it ne-

glects the changes in the actual line shape induced by the fluctuations in ε.) Apredicted is the

quantity plotted in the main text when comparing “NRG results for line shape A(ν)” to data.

S4 Dependence of the line shape on experimental parameters

We have carried out experiments to confirm that the measured absorption line shapes do not

depend on the gate voltage modulation amplitude, the lock-in modulation frequency and the

laser intensity. The measurements described below were carried out on “dot 4” which exhibited

strong coupling to the FR, similar to dot 1 and dot 2. The modulation frequency f = 497.197 Hz

and the intensity I = 10 nW used to obtain the absorption line shape for dot 1 and dot 2 were

identical.

• Modulation Amplitude: For a better signal-to-noise ratio during data acquisition, we

use a lock-in amplifier and modulate the gate voltage [1]. Let us assume that a X−

resonance in the absence of modulation would appear at an energy EX− and a voltage

VX− . In the measurements using a lock-in amplifier with a voltage modulation ∆V which

is added to Vgate, the very same resonance would appear at the same energy but at two

different gate voltages VX−,1 = VX− − ∆V/2 and VX−,2 = VX− + ∆V/2. In principle,

7
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Figure S4: Dependence of the line shape on measurement parameters: Left: intensity depen-
dence of the line shape; the intensity I is depicted in terms of the current it produces in the
photodiode; an incident intensity of 10 nW produces a current of 4 nA. Middle: modulation
voltage dependence. The gate voltage is modulated with a square-wave between 0.311 V and
the values depicted in the figure. Right: lock-in modulation frequency dependence of the ab-
sorption line shape.

both signals are identical. However, a large modulation amplitude could be a potential

source of degenerate electron gas heating. In order to rule out a change in line shape

due to heating or other unknown effects, we measured the dependence of the line shape

(proportional to the differential transmission signal ∆I/I) on the modulation amplitude

∆V . Experimentally, we could not find any dependence for −50mV ≥ ∆V ≤ 50mV,

as shown in Fig. S4 (middle panel). The measurements were obtained for a center gate

voltage of Vgate = 311mV. While the actual gate voltages used for different dots were

different,the modulation amplitude for the experiments depicted in Fig. 2-4 of the main

text were −50 mV.

• Modulation Frequency: As stated earlier, we used a modulation frequency of f =

497.197 Hz for the measurements depicted in the main text. When we repeated the mea-

surements for f = 187.183 Hz and f = 567.533 Hz, we did not observe an appreciable

change in the line shape, as is shown in Fig. S4 (right panel).
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• Laser intensity: Since the experimental measurements are compared to theoretical pre-

dictions that assume a perturbative laser field, we made sure that the QD is not saturated

for the applied laser intensity (see Fig. S5 below). To demonstrate the insensitivity of

the absorption line shape on small variations of the laser intensity, we have plotted the

complete line shape at two different laser intensities for dot 4: we observed that, despite

∼ 40% reduction in contrast due to partial saturation, the line shape remained unchanged

(see Fig. S4, left panel).
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Figure S5: The peak contrast and linewidth of dot 1 as a function of the laser intensity.

While we do not have high signal-to-noise data (that would allow for a comparison with

FDM-NRG calculations) for various laser intensities for dot 1 and 2, we did carry out saturation

measurements on all dots before we took slow scans to determine the absorption line-shape.

Figure S5 shows the peak absorption contrast and the full-width half maximum linewidth of the

absorption for dot 1; the dashed red line indicates the intensity used to carry out the measure-

ments depicted in Figs. 2-3 of the main text.
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S5 Excitonic Anderson Model (EAM)

The coupled QD-FR system is described by an extension of the Single Impurity Anderson

Model, which we call Excitonic Anderson Model (EAM) [2]: The Hamiltonian is given by

H = Heh + Hc + Ht, where

Heh =
∑

σ

(εeσneσ + εhσnhσ) + Ueene↑ne↓ −
∑

σσ′

Uehneσnhσ′ (S4)

describes the dot, with electron number neσ = e†σeσ and hole number nhσ = h†
σhσ. The

Coulomb repulsion Uee, excitonic attraction Ueh and hole energy εhσ are taken to be positive.

The energies εeσ and εhσ both shift linearly with gate voltage Vg, with a slope of opposite sign,

but same magnitude,

∆εeσ = −|e|
αg

∆Vg , ∆εhσ̄ =
|e|
αg

∆Vg , (S5)

where |e| is the unit of charge and αg the lever arm. For dot 1, whose gate-voltage dependence

we studied in detail, the lever arm is given by αg = 7.

Hc =
∑

kσ εkσc
†
kσckσ represents the FR, which consists of non-interacting electrons with

energies −D < εkσ < +D, with reservoir bandwidth 2D = 1/ρ and constant density of states

per spin ρ. Ht =
√

Γ/πρ
∑

σ(e
†
σcσ + h.c.) describes the tunnel-coupling between local level

and reservoir, determined by the level-width Γ.

When an incident photon is absorbed by the semiconductor quantum dot, it creates a particle-

hole pair. The interaction between photon and dot is given by HL ∝ (e†σh
†
σ̄e

−iωLt +h.c.), where

e†σ and h†
σ̄ create a QD electron and a hole, with well defined spins σ and σ̄ = −σ. For the

experimental situation of present interest, the average valence band hole occupations of the ini-

tial configuration are given by n̄i
hσ = n̄i

hσ̄ = 0, and for the final configuration by n̄f
hσ = 0 and

n̄f
hσ̄ = 1. It is therefore convenient to define two different Hamiltonians, H i/f = H

i/f
e +Hc+Ht,
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describing the system before and after absorption, where

Ha
e =

∑

σ

εaeσneσ + Ueene↑ne↓ + δafεhσ̄ (a = i, f). (S6)

These Hamiltonians differ (i) in the position of their e-levels (εieσ and εfeσ = εieσ − Ueh), where

the e-level of the final Hamiltonian is pulled down by the excitonic Coulomb attraction and (ii)

in the term δafεhσ̄ which accounts for the energy of the hole.

The absorption spectrum for the X− transition can then be calculated according to Fermi’s

golden rule

Aσ(ν) = 2π
∑

mm′

ρi
m|f〈m′|e†σ̄|m〉i|2δ(ωL − Ef

m′ + Ei
m) (S7)

where |m〉a and Ea
m are the eigenstates and -energies of Ha. The detuning ν = ωL − ωth is

defined relative to the threshold frequency ωth ≡ Ef
G − Ei

G below which at T = 0 no photons

can be absorbed, which is given by the difference of the ground state energies Ea
G of Ha. The

positive hole is taken as a static spectator, interacting with the dot through Coulomb interaction

Ueh only. We remark that the definition of Aσ(ν) in Eq. (S7) contains a creation operator e†eσ̄ of

opposite spin (in contrast to the convention used in Ref. [2] for the X0 transition, which con-

tains e†eσ). The convention used here ensures that Aσ(ν) describes the transition with highest

weight for an initial configuration containing a spin-σ electron (ni
eσ � 1), which requires the

added electron from the exciton to have opposite spin, σ̄.

S6 Numerical Renormalization Group approach for spectral
functions

The quantities |m〉a and Ea
m occuring in Eq. S7 can be calculated using the numerical renor-

malization group [3] (NRG). This is an iterative method for numerically diagonalizing quantum

11

66 5. Optics for impurity models



SUPPLEMENTARY INFORMATION

1 2  |  W W W. N A T U R E . C O M / N A T U R E

RESEARCH

impurity models, which also applies to the EAM Hamiltonians Ha (a = i, f) specified around

Eq. (S6).

The spectrum of states of the Fermi reservoir is coarse-grained using a logarithmic dis-

cretization scheme governed by a parameter Λ > 1 (we typically use Λ = 1.8), followed by an

exact mapping of the discretized model onto a semi-infinite chain, the so-called Wilson chain,

whose hopping amplitudes decay exponentially along the chain, as tk ∼ Λ−k/2. This produces

a separation of energy scales and makes it possible to diagonalize the Hamiltonian iteratively:

knowing the eigenstates of a chain of length k − 1, one adds site k and calculates the “shell” of

eigenenergies of the Hamiltonian for the chain of length k. The high-lying eigenstates of that

shell are “discarded”, while the low-lying states are “kept” and used for the next iteration. The

spectrum of eigenenergies so obtained typically flows past one or more non-stable fixed-points

and finally converges towards a stable fixed point, whereupon the iterative procedure can be

stopped. In practice one thus deals with a finite Wilson chain, whose length is set by the small-

est energy scale in the system (e.g. the Kondo temperature, temperature, or magnetic field). By

combining NRG data from all iterations, it is possible to construct a complete set [4] of approxi-

mate many-body eigenstates of the full Hamiltonian. These can be used to evaluate equilibrium

spectral functions via their Lehmann-representations; at finite temperatures, this can be done

using the full density matrix (FDM)-NRG [5].

Since Eq. (S7) expresses the Fermi golden rule absorption rate via a Lehmann representa-

tion, it, too, can be evaluated using NRG [6], systematically so at finite temperatures by using

complete basis sets using a FDM-NRG approach [2]. However, it contains matrix elements be-

tween initial and final states that are eigenstates of different Hamiltonians, H i and H f . Hence,

two separate NRG runs are required to calculate these (similar in spirit to what is done for

time-dependent NRG [4]). The strategy is then as follows:

• NRG run #1 generates a complete set of approximate eigenstates |m〉i and eigenenergies
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Ei
m for the initial Hamiltonian H i (without exciton).

• NRG run #2 generates a complete set of approximate eigenstates |n〉f and eigenenergies

Ef
m for the final Hamiltonian H f (with exciton).

• The double sum in Eq. (S7), over all initial and final eigenstates, is performed in two steps.

First we perform a backward run, with site index k running from the end to the beginning

of the Wilson chain[4], and calculate for each shell k the contribution ρi
k towards the

initial density matrix from that shell (obtained using data from NRG run #1). This is

followed by the usual forward run, in which the matrix elements
∣∣
f〈n|e†σ|m〉i

∣∣2 between

shell-k eigenstates from NRG runs #2 and NRG #1 are calculated, combined with ρi
k, and

binned (see below) according to the corresponding frequency difference Ef
n − Ei

m.

• The T = 0 threshold frequency for the onset of absorption is given by the difference of

ground state energies of NRG runs #2 and #1, ωth ≡ Ef
G −Ei

G. The absorption spectrum

is expected to have divergences at the threshold ωth, hence all frequency data are shifted

by the overall threshold energy ωth prior to binning. (For finite temperature, the sharp

onset is broadened and divergences are cut off.)

• The discrete eigenenergies of shell k are spread over an energy range comparable to the

characteristic energy Λ−k/2 scale of that iteration, which decreases exponentially with k.

Thus, the bins used for collecting the discrete data are likewise chosen to have widths de-

creasing exponentially with decreasing energy. The discrete, binned data are subsequently

broadened using a log-Gaussian broadening scheme, characterized by a broadening pa-

rameter α as described in Ref. [5], here taken as α = 0.4.
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S7 Fitting model parameters

To determine the values of Γ, Uee and D, we fit the numerical predictions for the gate-voltage

dependence of the transition energy ∆Etransition to the experimental data (Fig. 2A, blue sym-

bols, which give the frequency where the absorption spectrum reaches its maximum).

Within our model the transition energy Etransition = ωth + EStark is given by the sum of the

threshold frequency ωth = Ef
G − Ei

G and a linear Stark shift, EStark ∝ ε.

The threshold frequency ωth is obtained numerically by simply calculating the ground state

energies Ei
G and Ef

G of the two Anderson Hamiltonians H i and H f specified around Eq. (S6),

taking care to incorporate the gate-voltage dependence of the electron and hole levels, accord-

ing to Eq. (S5). When comparing experimental data with NRG-results, EStark is treated as fit

parameter, together with Γ, D and Uee. Since only relative changes in gate voltage have physi-

cal relevance, the horizontal offset of the experimental data is chosen such that the value of Vg

for which the absorption contrast is strongest corresponds to the specific level-position ε ≡ εi
eσ

given by ε = −U/2. Since the band gap, which contributes to εhσ̄ and hence to Ef
G, is not

precisely known, the experimental and theoretical data are both shifted along the values of there

minima are ∆Etransition = 0.

S8 Fitting experimental lineshapes to perturbative formula

It is instructive to gauge the effect of Kondo correlations in the measured line shapes by com-

paring them to cases for which the Kondo effect is absent, so that the absorption line shape

lends itself to a perturbative description (based on the Anderson model). To show how the line

shapes differ in the absence of Kondo correlations, we here present a comparison of the X−

line of dot 2 (used to obtain the line shapes depicted in Fig. 4 of the main text), and another dot

(referred to as dot 3) from the same sample. Dot 3 has a trion emission emission wavelength
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of 955 nm (as opposed to ∼ 900 nm for dots 1 and 2); we observe that the dots emitting at this

wavelength have much sharper lines, indicating weak coupling to the FR; this is a consequence

of lower conduction band electron energy, which in turn increases the effective tunnel barrier to

the FR.
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Figure S6: Perturbative fits to absorption line shapes measured for (a) dot 2 at B = 0 Tesla, (b)
dot 2 at B = 2 Tesla, (c) dot 3 at B = 0 Tesla.

Figure S6c shows that the line shape of this weakly coupled dot 3 can be perfectly fit using

a perturbative absorption line shape:

A(ν) ∝ ν/T

1 − e−ν/T

γ

ν2 + γ2/4
, (S8)

where γ < T is a phenomenological relaxation rate. This line shape is a simplified version of

the one derived in Ref. [23], where γ was given by the scale-dependent Korringa relaxation rate

γKor(ν, T ) = 2πT/ ln2[max(|ν|, T )/TK]. As was argued in [2], this line shape is strictly valid

only in the limit max[|ν|, T ] � TK. Instead of the scale-dependent Korringa relaxation rate,

we choose to use a constant γ in our fits. We do however, take into account that the relaxation

is stemming from the Anderson model, which restricts γ < T (for B = 0) and introduces the

ν/T

1−e−ν/T factor, that accounts for the asymmetry between the FR electron-hole pair generation

and annihilation processes.
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In contrast to dot 3, an attempt to use Eq. (S8) with γ ≤ T to fit the line shape of the strongly

coupled dot 2 at Bext = 0 fails dramatically, as show in Fig. S6a.

Interestingly, the situation is different for Bext = 2 Tesla, where the absorption line shape

of dot 2 can be fitted reasonably well with Eq. (S8), as shown in Fig. S6b. The reason for this

striking change is related to the onset of the oscillations in peak contrast observed for the blue

transition in the inset of Fig. 4c: as mentioned in the main text, a magnetic field exceeding

1 Tesla causes oscillations in the FR density of states, ρFR. The Kondo temperature, which

depends exponentially on ρFR, will thus experience strong oscillations as well, which explains

the observed strong oscillations in the peak contrast. Thus, the maximum in peak contrast

observed at Bext = 2 Tesla corresponds to a minimum for TK, i.e. at Bext = 2 Tesla we have, in

effect, a weakly coupled dot, explaining why its line shape can we fit reasonably well with the

perturbative Eq. (S8).

In summary, the striking difference seen in Figs. S6a and S6b between the Bext = 0 and

2 Tesla line shapes of dot 2 confirms our interpretation that for Bext = 0, Kondo correlations

are at the heart of the observed line shapes.

S9 Quantum dot optical transitions

In the main text we focus exclusively on the X− transition; in this section, we comment on

some of its similarities and differences with respect to the neighboring X0 transition.

Figs. S7a and S7c show the PL spectra as a function of gate voltage for the QDs that

are discussed in the main text, dot 1 and dot 2, respectively. Both are strongly coupled to

the FR, as is evident from the rather strong curvature of their respective X− and X0 plateaus,

which is superimposed on the expected linear DC Stark shift. The reason for this curvature

has been discussed in the main text: when the QD’s localized conduction-band level, εeσ, is

singly-occupied, its energy is renormalized (lowered) due to charge fluctuations (virtual tun-
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neling processes described by the Anderson model), and this renormalization is strongest near

the edges of a plateau, where charge fluctuations are strong. The sign of the curvature of the

threshold frequency, ωth = Ef
G −Ei

G, is positive for X−, where the singly-occupied e-level oc-

curs in the initial configuration, and negative for X0, where it occurs in the final configuration

(as illustrated schematically in Figs. 2c of the main text and Fig. S7b, respectively). Since the

dominant transitions on the left of X0 in Figs. S7a and S7c also have negative curvature, they

presumably also involve a singly-occupied electron state in their final configurations. We have

not attempted to identify the nature of these transitions in detail, however; a detailed discussion

of a very similar spectrum may be found in Ref. [7].

For strongly coupled dots, the exchange interaction between the singly-occupied electron

state and the FR in the initial configuration gives rise to Kondo correlations. In the main text,

we showed that this affects the line shape of the X− transition, due to Kondo correlations in

the initial configuration. Similarly, one may expect that the line shape of the X0 transition

should be affected as well, due to Kondo correlations in the final configuration of X0. However,

the latter also contains a hole (in contrast to the initial configuration of X−, compare Fig. 2c

of the main text and Fig. S7c), which leads to a complication: the QD electron and hole will

experience an exchange interaction, which will tend to counteract the formation of a Kondo

singlet between the QD electron and Fermi sea. Due to large confinement- and strain-induced

spin splitting of the hole states, we expect the dominant electron-hole exchange interaction to

be of the form Hexch = −JehS
z
eS

z
h, involving only the z-components of the e-level spin operator

and local heavy-hole pseudo-spin operator, respectively.

Figure S8a shows the absorption of the X0 resonance of another strongly coupled QD, dot 4.

When we take a line cut through this plot at the gate voltage indicated by the vertical yellow line,

we note that the line shape is broad yet qualitatively different from that of X−. We also note that

unlike X−, the peak of the absorption line shape can be modified by changing the polarization of
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Figure S7: (a) Photoluminescence as a function of Vg for dot 1: this is the same plot as in
Fig. 1b of the main text. (b) Schematic of the X0 transition. The X0 plateau has a curvature
with a different sign as compared to X−, since the renormalization of the electron level energy
εeσ by hybridization with the FR is relevant only in the final state. (c) Photoluminescence as a
function of Vg for dot 2.

the incident light (Fig.S8b), suggesting a large anisotropic electron-hole exchange interaction.

We note however, that the splitting inferred from the polarization dependent absorption is large

compared to the typical values of bright exciton (anisotropic electron-hole exchange) splitting

and small compared to the bright-dark (isotropic electron-hole exchange) splitting. Remarkably,

our attempts to fit the observed line shape with a perturbative formula (discussed in Section

S8) failed drastically (Fig.S8 c), indicating the importance of Kondo correlations despite the

presence of electron-hole exchange interaction. A detailed analysis of this line shape would
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Figure S8: (a) Absorption of the neutral exciton (X0) as a function of Vg for dot 4. (b) The
absorption line shape of the Vg = 0.1825V for two different incident laser polarizations. (c)
Attempted fits to the absorption line shape in (b) using one or two (modified) Lorentzians,
given in Eq. (S8), assuming γ = T .

require an accurate identification of the isotropic as well as anistropic electron-hole exchange

interaction strengths, and is beyond the scope of this work.

S10 Magnetization and line shapes at finite magnetic field

One of the most striking ways to identify the presence of Kondo correlations is to study how they

are reduced by applying an external magnetic field. In this section, we outline what is expected

to happen in some detail, based on NRG calculations and analytical arguments. We also show

data that nicely illustrates the difference between dots with or without Kondo correlations.
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In the presence of an external magnetic field Bext applied along the growth axis of the

heterostructure (Faraday configuration), the electron and hole level energies will be Zeeman-

shifted according to (a = i, f):

εaeσ = εae +
1

2
σgeµBBext = εae − 1

2
σB , (S9)

εhσ = εh +
1

2
σghµBBext = εh +

1

2

gh

|ge|
σB , (S10)

where ge � −0.6 and gh � 1.1 for our dots, µB = 58µeV/Tesla, and we have defined B =

|ge|µBBext.

Creation of a trion, described by HL ∝ (e†σ̄h
†
σe

−iωLt + h.c.), can be induced in a spin-

selective way [8]: by choosing right (left) circularly polarized laser field, one can exclusively

couple to the state with initial electron spin-up σ = + ( spin-down σ = −). For B > 0 (assumed

henceforth), the spin-up (spin-down) electron has lower (higher) energy and the corresponding

optical transitions are conventionally refereed to as blue (red) trion, with line shapes A+(ν)

(A−(ν)), since the B-induced shift in threshold frequency ωσ
th(B) = Ef

G − Ei
G is positive

(negative), as elaborated below.

We will discuss the effect of B �= 0 on (i) the initial e-level magnetization mi
e(B, T ) =

1
2
(ni

e+ − nf
e−), (ii) the absorption line shape Aσ(ν), and (iii) the threshold frequency ωσ

th(B),

all for the X− transition. Our discussion is very similar to that of Ref. [2], which analyzes

analogous questions for the X0 transition.

(i) Magnetization: The magnetization m(B, T ) of a free, localized spin, at finite tem-

perature T , evolves in a magnetic field with Zeeman energy HZeeman = −BSz according to

mfree = 1
2
tanh(B/2T ). Thus, m(B, T ) crosses over from 0 to 1

2
on the scale B � T . In

contrast, if the spin is exchanged-coupled to a FR, and the temperature is low enough that

Kondo-screening occurs (T � TK), the crossover scale increases to |B| � TK. Thus, the mag-

netization for a Kondo-screened spin evolves much slower with applied field than it does for a
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free spin, as illustrated in Fig. S9a. The reason is that Kondo screening of the local spin by the

FR causes a strong reduction in the static spin susceptibility.

0

0

B/T

m
ei

TK/TK
exp

TK lowered by lowering

0

0.0 0.5 1.0 1.5 2.0

0.0

0.1

0.2

0.3

0.4

0.5  No Kondo
 exp
 NRG (limited)
 NRG (full)

 m
i e

magnetic field (T)

Figure S9: a, The calculated magnetization m(B, T ) of a localized spin coupled to a FR, with
Zeeman energy HZeeman = −BextSz, plotted as a function of B/T for several values of TK.
We assumed nh = 0, Γ = 1 meV, D = 6.5 meV, Uee = 7.5 meV, ε = −0.43Uee (such
that ni

e � 1 and T exp
K = 140µeV), and T = TFR = 15.6µeV. Thus, the black curve with

TK = T exp
K corresponds to the experimental situation of dot 2. For the other curves, we (only)

changed Γ, to obtain smaller TK. b The experimental magnetization of dot 2 at Bext = 0, 0.5, 1
and 2 Tesla, determined by directly integrating the area under the measured blue and red trion
absorption line shapes. For comparison, the predictions of NRG for the ”full area” as well as
”limited area” (i.e. integration of the area up to νmax = 3TK, as was done for the experimental
points) cases are shown, along with a case where TK is vanishingly small (red curve). The data
points at Bext = 0.5 and 1 Tesla lie far below the red curve, indicating a reduced magnetization
consistent with Kondo screening. In contrast, the magnetization at Bext = 2 Tesla lies close to
the red curve: we argue that this increase in magnetization is related to the oscillations in peak
contrast visible in the inset of Fig. 4c of the main text.

Since the area under the absorption curve Aσ(ν),

Wσ =

∫ ∞

−∞
dνAσ(ν) , (S11)

is proportional to (1 − ni
eσ̄) [by Eq. (S7)], the initial magnetization can be extracted from the

normalized difference in areas under the blue and red shapes:

mi
e(B) =

1

2
(ni

e+ − ni
e−) =

W+(B) − W−(B)

2(W+(0) + W−(0))
. (S12)
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The second equality assumes that the total initial occupancy is one, ni
e+ + ni

e− = 1, which, to

very good approximation, is the case for dot 2 of Fig. 4 (main text). We have confirmed numer-

ically that W+(B) + W−(B) = W+(0) + W−(0), even in the presence of optical interference

induced modification of the absorption line shape.

In practice, the determination of mi
e from experimental line shapes using Eq. (S12) is com-

plicated by (a) the difficulty in ensuring perfect circular polarization of the incident laser field,

(b) the low signal-to-noise ratio for the red trion transition due to its enhanced broadening

(arising from a magnetic-field induced reduction in its power-law exponent), (c) the low signal-

to-noise ratio in the tails of the absorption line-shape which have a sizeable contribution to the

area, and (d) the modification of the FR density of states for B > 1 Tesla. Despite these com-

plications, the results shown in Fig. S9b demonstrate unambiguously that the crossover scale

for the initial magnetization to change significantly from 0 is not B � T but B � TK, imply-

ing that the initial state of dot 2 is a screened Kondo singlet. To determine the magnetization

from the area of the experimental line shapes, we have integrated the line shapes in the interval

−3TK ≤ ν ≤ 3TK. The dominant contribution to the error bars comes from the fact that with

the limited integral, we find that sum of the area under the blue and red trion transitions is not

equal to the area under the B = 0 line shape. In addition, the additional peak visible at high

frequency tail of the red trion transition depicted in Fig. 4c suggests that the suppression of the

orthogonal polarization is incomplete: these two factors give rise to the error bars indicated in

Fig. S9b.

(ii) Absorption line shape: Fig. S10 illustrates the influence of Kondo correlations in the

initial configuration of the X− transition on the absorption line shape. The line shapes in the

top (bottom) panels were calculated for T � TK (TK � T ), so that Kondo correlations are

strong (weak). Evidently, Kondo correlations cause the peaks to be much broader and less high,

in effect redistributing oscillator strength over a larger frequency range.
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Figure S10: NRG calculations for the line shapes A±(ν), where ν is the detuning w.r.t. to
the absorption threshold at zero field, ωσ

th(B = 0). For the upper panels, all parameters were
chosen as for the black curve of Fig. S9a. Lower panels differ from upper ones only in a 90
times smaller choice of TK, namely TK = 0.1TFR = 1.56µeV instead of TK = T exp

K = 140µeV.
Thus upper and lower panels correspond to the black or pink curves of Fig. S9a, featuring strong
or no Kondo correlations, respectively. The data in panel b correspond to the NRG lines shown
in Fig. 4c of the main text.

In both upper and lower panels, a magnetic field splits the peak into two separate ones,

whose areas W± reflect the spin-dependent occupations 1 − n̄i
e∓ � n̄i

e± of the Zeeman-split

initial e-levels. The difference in areas between the blue and red transitions, W+ − W−, which

is a measure of the initial magnetization mi
e [see Eq. (S12)], changes much more slowly with in-

creasing field for the upper than the lower panels, in accord with the behavior shown in Fig. S9a.

We emphasize that the splitting of the trion transitions with the applied magnetic field is pri-

marily due to the hole-Zeeman effect as we discuss below.

(iii) Spin-dependent threshold frequency: The shift of the (zero temperature) absorption
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threshold frequency ωσ
th(B) = Ef

G − Ei
G with magnetic field can be written as

ωσ
th(B) − ωth(0) =

1

2

gh

|ge|
σB + δωe

th(B) . (S13)

The first term reflects the Zeeman energy of the photo-excited hole, the second the B-dependence

of the ground-state energy of the electron system. In our situation, n̄i
e � 1 and n̄f

e � 2. The

asymptotic behavior of the initial magnetization is mi
e = χ0B for small fields, where the linear

static susceptibility χ0 is of order 1/TK, and |mi
e| = 1

2
for large fields. This implies

δωe
th =

{ 1
2
χ0B

2 (|B| � TK) ,
1
2
|B| (TK � |B| � |εi

e|) .
(S14)

In our experiment for dot 2, |B| � TK, hence the dominant contribution to the threshold shift

will be the 1
2

gh
|ge|σB term from the hole. This shift is evident in the calculated NRG absorption

spectra shown in Fig. S9. For the B-dependent spectra displayed in Fig. 4 of the main text and

in Fig. S3 of Section S2, the B-dependent shift in the position ωσ
th(B) of the peak maximum is

subtracted out, i.e. the detuning refers to the ν = ω − ωσ
th(B).

(iv) Modification of Anderson orthogonality exponents with magnetic field: To under-

stand the dependence of the power-law exponents on the magnetic field, we first recall that in

the strong-coupling regime, the absorption line shape exhibits a power-law divergence of the

form [2],

Aσ(ν) ∼ ν−ησ , (T � ν � TK) . (S15)

The value of the exponent ησ is governed by Anderson orthogonality between the initial state

e†σ̄|Gi〉, obtained by adding a photo-excited spin-σ̄ electron to the initial ground state, and the

final ground state |Gf〉. This exponent depends on gate voltage and magnetic field in a way that

has been worked out in Ref. [2], for the case of the X0 transition. Adapting the arguments given

there to the X− transition of present interest, the exponent can be expressed as

ησ = 1 −
∑

σ′

(δσ̄σ′ + n̄i
eσ′ − n̄f

eσ′)2 , (σ̄ = −σ) (S16)
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where n̄i
eσ′ and n̄f

eσ′ are the initial and final occupancies of the QD e-level for spin σ′. This is

a generalization [2] of Hopfield’s rule [9]. It has an instructive physical interpretation [9, 2].

The “1” represents a ν−1 power law divergence: it may be thought of as arising from a detuned,

virtual transition into a narrow e-level situated at ν = 0 (giving a Lorentzian detuning factor

1/ν2), followed by the creation of particle-hole pairs (with phase space ν) to carry off the excess

energy ν, resulting in a lineshape scaling as ν/ν2 = ν−1. The second term of Eq. (S16) reflects

Anderson orthogonality.

According to Eq. (S16), ησ can be tuned experimentally by varying either gate voltage or

magnetic field, since both modify the initial and final occupancies n̄i
eσ′ and n̄f

eσ′ (see Fig. 2b of

main text). This tunability can be exploited to study universal aspects of Anderson orthogonality

physics that had hitherto been inaccessible. Let us focus on the case (relevant for dot 2 of Fig. 4)

that the QD is tuned to the center of a charging plateau, where n̄i
e = 1 (initial Kondo singlet)

and n̄f
e = 2 (final local doublet). Then Eq. (S16) can be expressed as

ησ =
1

2
+ 2mi

eσ − 2(mi
e)

2 , (S17)

where mi
e = 1

2
(n̄i

e+ − n̄i
e−) is the initial local moment of the QD. The latter is a universal

function of B/TK, which changes from 0 to 1
2

as the field increases from 0 to B � TK. Thus,

the exponents ησ are are universal functions of B/TK, too, with simple limits for small and large

fields

ησ →
{

1
2

(B � TK) ,

σ (B � TK) .
(S18)

The reason why η+ increases while η− decreases with increasing field can be understood quali-

tatively by considering the limit of large fields: for B � TK, the QD initially contains a single

spin-up electron in the lower of the Zeeman-split levels (ni
e+ = 1, n̄i

e− = 0), whereas the final

local doublet contains both a spin-up and spin-down electron (n̄f
eσ′ = 1). For σ = +, corre-

sponding to the photo-excitation of a spin-down electron into the upper of the Zeeman-split QD
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levels, Anderson orthogonality is completely absent (the second term in Eq. (S16) vanishes,

thus η+ = 1), since the state e†−|Gi〉 describes a doubly occupied QD, just as the final ground

state |Gf〉. In contrast, for σ = −, corresponding to the photo-excitation of a spin-up electron

into the lower of the Zeeman-split levels, Anderson orthogonality is maximal (the second term

in Eq. (S16) equals 2, thus η− = −1); the reason is that for the initial ground state the QD

already contains a spin-up electron, hence this transition is possible only if accompanied by at

least one virtual spin-flip exchange transition, causing e†+|Gi〉 to be orthogonal to |Gf〉.

Fig. 4d of the main text shows the onset of the B-dependent changes in ησ discussed above.

Since at Bext = 1 T the ratio B/TK = 0.25 is still small, the field is too weak to modify the

(σ = −) lineshape in the perturbative regime (ν > TK). However, it is large enough to already

affect the Anderson orthogonality exponents in the strong-coupling regime (ν � TK), and the

trend η−(B) < ησ(0) < η+(B) is clearly observed.
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Comment: After publication we found the following errors in the supplementary infor-
mation: (i) The reflectivity of the top surface should be r = 0.35 rather than r = 0.67.
This value is quoted in Fig. S3. (ii) In Fig. S6 middle panel, the best fitting Korringa
relaxation rate should be γkorr = kT/1.4, rather than γkorr = kT/7. The conclusions on
pages 6 and 15 of the supplementary information remain unchanged. The corrected errors
are not relevant for the main text of the letter.
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5.2. Rabi-Kondo Correlated State in a Laser-Driven
Quantum Dot

In the following section, we theoretically examine a QD which is subject to strong optical
coupling. Contrary to the previous section, we will look at the emission instead of the
absorption spectrum, since strong optical coupling requires a laser, and a second laser would
be needed for measuring absorption, which would render the experiment rather difficult.
We observe the emergence of a new energy scale which depends on the Rabi frequency of
the system and which can be understood as a Kondo temperature for a secondary Kondo
effect which occurs at the system. There, spin up and down, the two degrees of freedom
which are usually required for Kondo correlations, are replaced by two many-body states:
a (spin-) Kondo state and a trion state.
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J. von Delft,3 and A. İmamoğlu1
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Spin exchange between a single-electron charged quantum dot and itinerant electrons leads to an

emergence of Kondo correlations. When the quantum dot is driven resonantly by weak laser light, the

resulting emission spectrum allows for a direct probe of these correlations. In the opposite limit of

vanishing exchange interaction and strong laser drive, the quantum dot exhibits coherent oscillations

between the single-spin and optically excited states. Here, we show that the interplay between strong

exchange and nonperturbative laser coupling leads to the formation of a new nonequilibrium quantum-

correlated state, characterized by the emergence of a laser-induced secondary spin screening cloud, and

examine the implications for the emission spectrum.

DOI: 10.1103/PhysRevLett.111.157402 PACS numbers: 78.60.Lc, 72.10.Fk, 78.40.Fy, 78.67.Hc

Introduction.—Exchange interactions between a singly
occupied quantum dot (QD) and a fermionic bath (FB) of
itinerant electrons in the bulk lead to the formation of a
Kondo state jKi [1–3]. When this many-body ground state
is coupled by a laser field of vanishingly small Rabi
frequency � to an optically excited trion state jTi with
an additional QD electron-hole pair [see Fig. 1(a)], the
resulting emission spectrum at low FB temperatures T is
highly asymmetric [4,5]. Within the energy range defined
by Kondo temperature TK � T, the spectral line shape is
characterized by a power-law singularity. Anderson
orthogonality (AO) determines the corresponding nonin-
teger exponent and precludes any coherent light scattering
in this limit. In the opposite limit of large� and vanishing
exchange interaction (TK ! 0), the emission spectrum
consists of a Mollow triplet and an additional �-function
peak [6–8]. While the latter stems from coherent Rayleigh
scattering, the Mollow triplet originates from incoherent
transitions between dressed states which are superpositions
of the original excited trion and the singly charged ground
states.

In this Letter, we analyze the interplay between strong
exchange and nonperturbative laser couplings. By using a
combination of numerical and analytical techniques, we
find that the emission line shape for T � � � TK differs
drastically from both the above limits. We demonstrate the
emergence of a new quantum-correlated many-body state,
which is a laser-induced, coherent superposition of the
Kondo singlet state jKi and the trionic state jTi [see
Fig. 1(a)]. The Kondo state involves a spin 1=2 on the
dot, screened by a spin cloud in the FB which is formed
within distance / 1=TK from the dot, while the FB is trivial
in the bare trion state. The new quantum-correlated state is

FIG. 1 (color online). (a) Competition between tunnel and laser
coupling on the QD. While tunnel coupling favors a Kondo
singlet state correlated with the FB, laser coupling favors dressed
QD states. The characteristic energy scales are the Kondo tem-
perature TK and Rabi frequency �, respectively. (b) Schematic
plots of emission spectra Sð�Þ from the Rabi-Kondo model
Eq. (1) for �E ¼ 0 and three characteristic choices for �=TK.
For� ¼ 0, Sð�Þ shows a power-law divergence (left-hand panel).
With increasing laser intensity (� � 0, other two panels) it
transforms to a � peak at � ¼ 0 (thick arrows) and a broad
maximum at the (renormalized) Rabi frequency. (c),(d) NRG
results with power-law asymptotes denoted as dashed lines:
Log-log plot of the broad emission peak [Sð� < 0Þ] (c), its
position j�maxj (dots) and the �-peak weight (circles) vs �=TK

(d). We have confirmed similar results for the nonsymmetric case
"e � �U=2 and U � Ue-h as long as ne" þ ne# � nh ’ 1.
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associated with the formation of an additional ‘‘second-
ary’’ screening cloud at larger distances that compensates
for the differences in local occupancies between jKi and
jTi. The secondary screening process is also of the Kondo
type, and sets in below a secondary Kondo temperature, the

renormalized Rabi frequency�� / �4=3. This new energy
scale manifests itself in the location of a broad peak in the
emission spectrum. The peak’s red and blue tails follow
power-law functions corresponding to the primary and
secondary Kondo correlations, respectively. The emer-
gence of the secondary screening cloud coincides with
the recovery of the �-function peak in the emission spec-

trum, with weight scaling as�2=3. Measuring these effects
should be possible in a setting similar to the one recently
employed in Ref. [5]. There the effects of Kondo correla-
tions on the absorption spectrum of self-assembled QDs
were measured in the limit �< T, and the ability to
resolve spectral features at T < TK was demonstrated.
Starting from this system one would need to increase the
laser power to reach �> T while measuring the resulting
resonance fluorescence spectrum, or, alternatively, employ
a continuous-wave laser pump-probe setup.

Model.—We consider a self-assembled QD in a semi-
conductor heterostructure, tunnel coupled to a FB. We
assume laser light propagating along the heterostructure
growth direction with right-handed circular polarization
�L ¼ þ1 and a frequency !L close to the QD trion (X�)
resonance. We model the system by an excitonic Anderson
model [4,9] augmented by a nonperturbative laser-QD
interaction in the rotating wave approximation. We set @ ¼
kB ¼ 1 and assume zero magnetic field. Optical selection
rules imply that only the spin-down valence electron state
will be optically excited, leading to the generation of a
trion state involving a spin-up hole [Fig. 1(a)]. The sponta-
neous emission rate �SE is assumed to be negligibly small
compared to all other energy scales. In the rotating frame,
the Hamiltonian, to be called the ‘‘Rabi-Kondo model,’’
thus reads

H ¼ X
�

ð"e �Ue-hn̂hÞn̂e� þUn̂e"n̂e# þ ð"h �!LÞn̂h

þX
k�

"k�c
y
k�ck� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ð��Þ

q X
k�

ðey�ck� þ H:c:Þ

þ�ey# h
y
* þ H:c: (1)

The first line defines the QD Hamiltonian, where n̂e� ¼
ey�e�, n̂h ¼ hy*h*, while e

y
� and hy* are, respectively, crea-

tion operators for QD spin-� electrons (� ¼" , # or �1)
and spin-up holes, "e and "h being the corresponding
energies. We account for intradot Coulomb interaction by
Ue-h > 0 and U > 0. To ensure a separated low-energy
subspace formed by the states in Fig. 1(a), the laser detun-
ing from the bare QD transition, �L ¼ !L � "e �U�
"h þ 2Ue-h, has to be small in the sense defined below.

The second line of Eq. (1) models a noninteracting con-
duction band (the FB) of energies "k� 2 ½�D0; D0�, with
"F ¼ 0 and constant density of states � � 1=ð2D0Þ per
spin, tunnel coupled to the QD’s e level, giving it a width
�. We assume T � � � U ’ Ue-h � D0 � "h;!L and
investigate a situation where the QD carries one negative
charge on average, ne" þ ne# � nh ’ 1 [10]. The QD-laser

coupling of strength � [last term of Eq. (1)] connects the
trion and Kondo subspaces, with projectors PT ¼ n̂h or
PK ¼ 1� n̂h. When � ¼ 0, these subspaces have hole
and e-level occupancies nTh ¼ 1 and nTe� ’ 1 or nKh ¼ 0
and nKe� ’ 1=2, respectively, and ground states jTi and jKi
with energy difference �E ¼ E0;T � E0;K.

Emission spectrum.—The emission spectrum at detun-
ing � from the laser frequency !L is proportional to the
spectral function

Sð�Þ ¼ X
n;m

%mjhnjh*e#jmij2�ðEn � Em þ �Þ; (2)

where jmi and Em are eigenstates and eigenenergies of the
Rabi-Kondo model. We assume that spontaneous emission
has a negligible effect on the system’s steady state, which
is taken to be a thermal state in the rotating frame at the

temperature T of the solid state environment, %m ¼
Z�1e�Em=T [9], and concentrate on T ¼ 0. To simplify
the discussion we will address mostly the �E ¼ 0 case
below (achieved by properly tuning the laser frequency!L

to resonance), where the secondary screening effect is most
pronounced, and defer the treatment of finite �E to the
Supplemental Material [9]. Figure 1(b) schematically sum-
marizes the main features of typical numerical renormal-
ization group (NRG) [11–13] results for the emission
spectrum in Figs. 1(c) and 1(d).
For � � TK, no signatures of Kondo physics are

expected. The emission spectrum can be completely under-
stood in terms of a dressed state ladder with the assumption
�SE ¼ 0 and an intramanifold, FB-induced decay process
[14,15]. The spectrum has two peaks: a broad peak at
j�maxj ¼ 2� and a � peak at � ¼ 0, both with equal weight
0.25 [see Fig. 1(b), blue line].
The situation is much more interesting for the Kondo-

dominated regime, � � TK, which we consider hence-
forth. Here one might attempt to treat the QD-laser
coupling [last term in Eq. (1)] as a perturbation. This would
yield a spectrum that is essentially the same as the � ¼ 0
spectrum calculated in Ref. [4]. However, we will show
momentarily that this is correct only if the frequency j�j is
larger than a new energy scale �� � TK.
Effective model.—In order to understand this restriction

on the perturbative treatment of the QD-laser coupling, as
well as to derive the low-frequency behavior, we introduce
an effective Hamiltonian H0, which captures the essential
physics of H in the entire regime j�j< TK. It can be
thought of as the result of integrating out the degrees of
freedom in the Rabi-Kondo model H with energies larger
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than TK. We can concentrate on just two states of the QD
together with the surrounding FB degrees of freedom: the
Kondo singlet state restricted (subscript r) to a FB region
of screening cloud size & 1=TK, jKir, and the trion state
jTir, with no screening cloud. We thus replace the QD and
the nearby degrees of freedom of the FB by a two level
system (TLS) whose �0

z ¼ �1 (�0
i being the Pauli matri-

ces) eigenstates correspond to the jTir and jKir, respec-
tively. These are coupled by the laser and are split in
energy. Furthermore, the outer electrons with energies
&TK experience different scattering phase shifts depend-
ing on the state of the TLS. Taking jKir as reference state
relative to which phase shifts are measured, we have
�K
� ¼ 0 and, by the Friedel sum rule [16], �T

� ¼ ���,
where �� ¼ ðnTe� � ��#Þ � nKe� ¼ �=2 is the total dot

charge difference per spin between jTir and jKir. All this
is captured by the following Hamiltonian:

H0 ¼X
k�

"0k�c
0y
k�c

0
k� þ�0�0

x þ�E0

2
�0

z þP0
T

X
�;k;k0

U0
�c

0y
k�c

0
k0�:

(3)

The first term describes the FB degrees of freedom
whose distance from the QD is larger than �1=TK, corre-
sponding to a reduced half-bandwidth D0

0 � TK. The

second term describes optical excitations, with �0 ¼
�rhKjh*e#jTir / �. The third term is the detuning,�E0 ¼
�E [17]. Finally, the last term accounts for the scattering of
the FB electrons by the TLS, where P0

T ¼ ð1þ �0
zÞ=2 is a

projector onto the trion sector. To reproduce the phase
shifts mentioned above, we choose U0

� equal to �� times
a large positive numerical value (�D0

0) which satisfies

��0U0
� ¼ � tanð���Þ. NRG energy flow diagrams con-

firm that H0 is a good description of the system below TK

[9]. For j�j< TK, the emission spectrum Sð�Þ for the Rabi-
Kondo model is reproduced qualitatively by S0ð�Þ com-
puted as in Eq. (2), with H0 and �0� replacing H and h*e#,
respectively, [9].

Intermediate-frequency behavior and emergence of a
new energy scale.—To lowest order in �0, the behavior
of S0ð�Þ is governed by the AO between the TLS states jKir
and jTir, caused by the difference in phase shifts the FB
electrons experience in the two states. The spectrum thus

behaves as a power law, S0ð�Þ � j�j2�0
x�1, with AO

exponent 2�0
x ¼ ½�K

" ��T
" �2=�2 þ ½�K

# ��T
# �2=�2 ¼ 1=2

[13,18], in agreement with the � ¼ 0 results of Ref. [4].
This implies that the hybridization operator �0

x has a scal-
ing dimension �0

x ¼ 1=4< 1 and is thus a relevant pertur-
bation near the fixed point �0 ¼ 0. Thus the leading-order
renormalization group flow equation for �0 as one
decreases the cutoff D0 from its bare value D0

0 is [19]

D0 d

dD0

�
�0

D0

�
¼ ð�0

x � 1Þ�
0

D0 : (4)

The dimensionless coupling �0=D0 therefore grows and
becomes of order 1 when the cutoff reaches the scale

�� ¼ D0
0

�
�0

D0
0

�
1=ð1��0

xÞ � TK

�
�

TK

�
4=3 � TK: (5)

Hence, one may treat the term �0�0
x [corresponding to the

last term in Eq. (1)] as a perturbation only if j�j � ��. The
power law Sð�Þ � j�j�1=2 thus applies at intermediate
frequencies, �� � j�j � TK. The power-law divergence
of the spectrum is cut off around j�j ��� [13], resulting in
a maximum in the spectrum at this scale, as confirmed by
the NRG data shown in Fig. 1. The emergence of this new
energy scale is one of our central results. At low frequen-
cies, j�j � ��, the physics is governed by a new fixed
point, which we now discuss.
Secondary Kondo screening.—To understand this new

fixed point we formally argue below thatH0 can be mapped
onto the anisotropic Kondo model. This ‘‘secondary’’
Kondo model should not be confused with the original
‘‘primary’’ isotropic Kondo model for the QD spin. The
role of the secondary Kondo temperature is played by ��;
at energies below��, the original system flows to a strong-
coupling fixed point featuring strong hybridization of
Kondo and trion sectors, as confirmed by NRG level-flow
data [9]. The low-energy behavior is universal when
energies are measured in units of ��.
One of the predictions of this secondary Kondo picture is

that the ground state of H for � � TK and �E ¼ 0 is an
equal-amplitude superposition of the Kondo and trion
states, with some secondary screening cloud, whose dis-
tance from the QD is larger than the primary Kondo length
/ 1=TK. To understand this nested screening cloud struc-
ture, consider jKi (ground state for � ¼ 0, �E> 0) as a
reference state where the QD valence levels are filled and
its conduction levels carry half an electron of each spin.
Since the total spin is zero, the correlation function
between the QD spin and the total FB spin is hSzQDSzFBi ¼
hSzQDðSzFB þ SzQDÞi � hðSzQDÞ2i ¼ �hðSzQDÞ2i ¼ �1=4. This

implies that when projecting into the subspace with spin-up
(spin-down) in the QD, the FB has a net additional single
spin-down (spin-up) electron [20] within a screening cloud
up to a distance / 1=TK from the QD [indicated by ellipses
in Fig. 2(a)]. If, on the other hand, � ¼ 0 but �E< 0, the
system is in the trion state jTiwith two QD electrons and a
spin-up hole, and no screening cloud [Fig. 2(b)]. The
absorbed �L ¼ þ1 photon induces a change in QD charge
per spin of ��, thus causing the phase shifts �T

� ¼ ��=2
with respect to the reference state, as mentioned above.
Turning on the laser source �, when �E ¼ 0, the ground
state is an equal-amplitudes superposition of the Kondo and
trion states (hPTi ¼ hPKi ¼ 1=2), as depicted in Fig. 2(c).
In analogy with the screening of a QD spin in a Kondo
singlet, the FB screens the spin configurations of the jTir
and jKir states, which, respectively, have spin �=4 or
��=4 with respect to their mutual average of �=4, by
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creating FB spin configurations with an opposite spin of
��=4 or �=4 (i.e., half an electron spin) within distance
�1=�� of the QD, respectively, [21]. This nested screen-
ing cloud indeed appears in the NRG results in Fig. 2,
further confirming our effective low-energy description.

Low-frequency behavior and � peak.—To derive the
low-frequency behavior of the spectrum, as well as the
appearance of the elastic � peak mentioned in the introduc-
tion, wemake the notion of ‘‘secondary Kondo effect’’ more
precise. This can be done formally by transformingH0 into a
secondary Kondo model in two stages: (i) Upon bosoniza-
tion of the FB [22] H0 becomes the spin-boson model with
Ohmic dissipation [23,24], the basic idea behind this map-
ping being that the low-lying particle-hole excitations of the
FB are bosonic in nature, with a linear (Ohmic) density of
states, and (ii) the spin-bosonmodel can bemapped onto the
anisotropic Kondo model [1,2]:

H0
K ¼ �ivF

X
�¼";#

Z
dxc y

�ðxÞ@xc �ðxÞ þ Jz
2
S0zs0zð0Þ

þ Jxy
2

S0�s0þð0Þ þ H:c:��EzS
0
z; (6)

where vF ¼ 1=ð��0Þ is the Fermi velocity, S0i are the com-

ponents of the secondary Kondo impurity spin, and s0ið0Þ ¼P
�;�0c �ð0Þy���0

i c �0 ð0Þ=2 (�i being the Pauli matrices)

are the FB spin density components in the vicinity of
the impurity. Under this mapping �0

z ¼ 2S0z (hence,
�Ez / �E0), but �0þ ! S0þs0�ð0Þ.
One can now use known results on H0

K to find the low-

frequency (j�j � ��) behavior of the emission spectrum
of H0. By the above mapping S0ð�Þ is proportional to the
spectral function of the retarded correlator of S0þs0�ð0Þwith
its conjugate in H0

K. Since the anisotropic antiferromag-

netic Kondo problem flows to the same strong-coupling
fixed point as the isotropic version, the calculation of low-
frequency power-law exponents can be done in the iso-
tropic case Jz ¼ Jxy, where the S

0þs0�ð0Þ correlator can be

replaced by the S0zs0zð0Þ correlator. At low energies, after
the impurity spin is screened by the FB, S0zs0zð0Þ can be
replaced by the square of the local density of the z compo-
nent of the electronic spin, which is a four-fermion opera-
tor. Thus, if the effective magnetic field vanishes,
�Ez ¼ 0, its correlation function scales at long times
(t > 1=��) as t�4, leading to a �j�j3 low-frequency
behavior of the corresponding spectral function. The

same then applies to Sð0Þð�Þ in the regime j�j � ��. This
is indeed the behavior of the NRG results, cf. Fig. 1(c) and
Ref. [9].
The above picture leads to another implication for the

spectrum: Since the relevant perturbation �0�0
x strongly

hybridizes, and thus cuts off the AO between the jKi and
jTi states at energy scales smaller than �� [13], a Dirac �
peak is now allowed to appear in the spectrum at � ¼ 0. By
the definition of S0ð�Þ, its weight is �weight ¼ jh�0

xij2. Since
�� is the only low-energy scale, we expect that �0h�0

xi /
�� / �04=3. Hence, h�0

xi / �01=3 / �1=3, leading to

�weight / �2=3, which is in excellent agreement with the

NRG results, Fig. 1(d) [25,26].
Conclusions.—Laser excitation of a QD in the Kondo

regime leads to a new correlated state featuring a nested
spin screening cloud in the FB (Fig. 2) and gives rise to a
specific double-peaked emission line shape (Fig. 1): (i) a
broad peak centered at a renormalized Rabi frequency ��

[Eq. (5)], with a �j�j�1=2 red tail, resulting from the AO
between ground and postemission states resembling jTi
and jKi at length scales� 1=��. A Fermi-liquid-type blue
tail stems from the cutoff of the AO by the relevant Rabi
coupling, as ground and postemission states share a ‘‘com-
mon’’ FB configuration at length scales� 1=�� due to the
secondary screening cloud. (ii) This common FB region

leads to a � peak at � ¼ 0 with weight / �2=3. The �
dependence of the coherent Rayleigh scattering strength in
the presence of a finite spontaneous emission rate �SE

remains an open question.
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Supplemental Material: “Proposed Rabi-Kondo Correlated State in a Laser-Driven
Semiconductor Quantum Dot”

Discussion of the Hamiltonian H and Born-Markov approximation

Here we discuss the form of the Rabi-Kondo model HamiltonianH, Eq. (1) in the main text, in more detail.
The QD part reads HQD = ∑

σ (εe − Uehnh)neσ + Une↑ne↓ + εhnh. The eigenenergies are conveniently
displayed vs. the gate voltage which controls εe and εh, in Fig. S1(a). The lowest energy QD state in the
subspace with hole number nh = 0 or 1 is denoted by a purple or blue solid line, respectively. We focus
on a gate voltage regime around V0, as marked in Fig. S1(a). In this regime the lowest energy QD states
carry one negative charge. Applying a monochromatic laser with photon energy ωL ' εh leads to the
rotating frame Hamiltonian HQD,L = ∑

σ (εe − Uehnh)neσ + Une↑ne↓ + (εh − ωL)nh, effectively shifting
the purple line to the vicinity of the blue line. If the detuning δL to the bare QD transition is small, then
there exists a low energy description of HQD,L involving only the states |↑〉 , |↓〉 and the trion |↑↓⇑〉 shown
in Fig. 1(a) of the main text.

We now add to HQD,L the QD-laser coupling in rotating wave approximation, HQD−L = Ωe†↓h†+ h.c.,
(we assume a circularly polarized laser and apply optical selection rules to simplify the problem, see main
text) and a radiative reservoir Hrad (leading to a spontaneous emission rate γSE on the order of 1µeV ).
For Ω� γSE a three-peak Mollow triplet, similar to the red curve in Fig. S1(b), can be detected in the RF
spectrum. The central peak appears at the laser frequency, ω = ωL and the two side peaks at detuning
ν = ω − ωL = ±2Ω.

If we now include the fermionic bath (FB), HFB = ∑
kσ εkσc

†
kσckσ, and the QD-FB hybridization

HQD−FB, the Hamiltonian reads H + Hrad with H as in Eq. (1) of the main text. For a weak QD-FB
coupling and temperatures T > TK we make a Born-Markov approximation for the QD-FB coupling [1, 2],
the corresponding transition rates in the dressed-QD Master equation crucially rely on the ratio between
laser Rabi frequency Ω and sample temperature T . While Ω � T leads to a broadening of the ordinary
Mollow RF-spectrum by symmetric thermal rates γT in each dressed-state manifold, a dominant laser
Ω � T results in asymmetric intra-manifold rates γΩ and an asymmetric doublet in the RF spectrum,
see Fig. S1(b), along with the dressed-state schematics. In this case, the FB cannot provide the energy
difference for an upward transition between the dressed states. In experiment, the formation of an
asymmetric doublet would have to be carefully distinguished from the effect of a finite laser detuning
[which we have set to zero in Fig. S1(b)].

To access Kondo physics, T < TK is required and the Born-Markov treatment of the dressed QD-FB
interaction is no longer valid. With the spectral function defined as

S (ν) = 1
2π

ˆ ∞

−∞
dτ
〈

(he↓)† (τ) (he↓)
〉

ss
e−iντ . (S1)

the RF-spectrum is given by γSE · S (ν) [3]. Here, the occurrence of γSE shows that Hrad has explicitly
been used in the derivation. If the coupling to the radiative reservoir is weak (i.e. γSE smaller than
all other energy scales), we neglect Hrad to higher order in Eq. (S1), i.e. we approximate (he↓)† (τ) '
eiτH(he↓)†e−iτH . Further, a similar approximation is done for the steady state density matrix ρss used in

1
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Eq. (S1) (〈...〉ss denotes a trace over ρss): We assume that thermalization of the system due to the solid
state environment at temperature T takes place on timescales much faster than spontaneous emission.
Then, we neglect Hrad for ρss and assert that

ρss = ρeq = e−H/T /Tr
(
e−H/T

)
(S2)

serves as a good approximation of the steady state. This leads to a RF spectrum that has support for
ν . T only. We will further discuss effects related to the neglect of Hrad in the last section of this
Supplemental Material.

With these two important simplifications, the numerical study is facilitated considerably, Eq. (S1) can
be written in Lehmann form and we arrive at Eq. (2) of the main text where the eigenstates and -energies
of H (as computed approximately by NRG) are used.
To conclude, the main text investigates how the asymmetric two peak structure (blue line in Fig. S1(b)
for Ω� T > TK) changes when we increase the QD-FB coupling beyond perturbatively weak values, i.e.
increase TK above T . We investigate the more interesting regime TK � Ω in detail and comment briefly
on the case TK � Ω.

S(ν) 

ν=ω−ωL

Ω<<Τ

γΤ

Ω>>Τ

|+,M+1>
|-,M+1>

|+,M>
|-,M>

2Ω
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|  ,M+1>

|  ,M>

γΩ

(a) (b)

E
ne

rg
y

Gate voltage

|↑↓⇑〉|e,⇑〉
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|e〉 =
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|↑↓〉

parameter region of interest
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m
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εe=Ueh 2(εe-Ueh)= -U
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Figure S1: (a) Energy level diagram for HQD vs. gate voltage. We assume that the gate voltage is tuned to
the vicinity of V0 where the ground state of HQD|nh=0 and HQD|nh=1 carries one negative charge, ωL is the laser
frequency and δL the detuning from the bare QD-transition. (b) Application of a resonant laser (δL = 0) and weak
coupling to a FB at temperature T � TK leads to formation of QD dressed states |±〉 = (|↑↓⇑〉 ± |↑〉) /

√
2 where |↑〉

and |↓〉 denote QD states carrying one electron of spin up or down, respectively, while |↑↓⇑〉 denotes a negatively
charged exciton including a hole. The index M or M − 1 counts the number of excitations (i.e. laser photons +
holes), see [3], Ch. VI. Intra-manifold rates induced by the FB are denoted by solid arrows, steady state population
by filled circles and spontaneous emission transitions by dashed arrows. The RF spectrum calculated using a
Markovian master equation (neglecting Kondo correlations) shows a broadened Mollow triplet for TK � Ω � T
(red) and an asymmetric doublet for Ω� T � TK (blue).

NRG energy flow diagrams for the Rabi-Kondo model H

The numerical renormalization group (NRG) is a method to approximately diagonalize quantum impurity
Hamiltonians where a few-level system, described byHimp (the impurity - or, in modern literature, the QD)
is coupled to a (fermionic) bath, H = Himp +Himp−FB +HFB [4]. The strategy is to approximate HFB by
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a tight-binding (Wilson-)chain where the coupling between two successive sites is exponentially decreasing
as Λ−n/2 for site index n, where Λ > 1 is a non-physical NRG discretization parameter. The QD is included
as a site with index zero, only coupled to the first FB Wilson site (QD plus first FB Wilson site will be
called “odd” Wilson chain). Each Wilson site can be identified with an exponentially decreasing energy
scale Λ−n/2, or, by looking at the associated fermionic wavefunction, with an exponentially increasing
spatial separation Λn/2 from the QD position.

Due to the separation of energy scales along the Wilson chain, the chain Hamiltonian HN , restricted to
the first N sites, can be diagonalized iteratively. After multiplying HN by ΛN/2, the lowest eigenenergies
can be plotted vs. N in an NRG energy flow diagram, thus showing high to low energy scales of H from
left to right. Moreover, as a Wilson site can also be identified with a length scale in the impurity problem,
the NRG flow accesses physics at increasing spatial separation from the impurity site with increasing
N . Regions in which the rescaled eigenenergies form parallel horizontal lines are called fixed points -
they can be described by fixed point Hamiltonians which are invariant under the renormalization group
transformation.

Compared to computations of the quench spectral function in Ref. [5] for Ω = 0, there are consid-
erable conceptual changes for the computation in the Ω > 0 case, described by the Rabi-Kondo model
Hamiltonian, written as

H =
(

HT Ωe†↓h
†
⇑

Ωh⇑e↓ HK

)
. (S3)

Most important is the loss of a quench setup between initial and final Hamiltonian, meaning that the hole
is to be treated as a dynamic quantity. The NRG calculation in [5] relied on two separate NRG runs,
separately diagonalizing the initial and final Hamiltonian given by HK ≡ PKHPK and HT ≡ PTHPT ,
respectively. Then the corresponding two sets of eigenstates and -energies entered the analogue of Eq. (2).
For Ω > 0, however, we have to use only one NRG run for the full Hamiltonian H. Since this technical
change comes with a number of important consequences, we first discuss these issues in the simple Ω = 0
case.

For Ω = 0, we define the ground state energy difference between HT and HK as

∆E ≡ E0,T − E0,K (S4)

which has two contributions: On the one hand, the laser detuning δL from the bare QD transition affects
∆E trivially, on the other hand, a hybridization Γ > 0 causes Kondo correlations in the HK Kondo singlet
ground state |K〉 that additionally lower its energy. The energy level diagram is shown in Fig. S2(a)
for ∆E > 0 (laser tuned to bare QD transition, δL = 0) and ∆E = 0 (b). Note that with a single
logarithmic discretization, only low-lying eigenstates close to the overall ground state energy are resolved
with increasing accuracy (orange rungs in Fig. S2 are NRG energy eigenvalues). This means if we use
for example δL = 0 (∆E > 0), as shown in (a), the state |K〉 is well resolved while the |T〉 state is
not well described in NRG and does not have a reasonable steady state population since ρss ∝ e−H/T .
Numerically feasible is the case shown in (b). Using a laser blue-detuned with respect to the bare QD
transition (δL > 0), one can counteract the correlation energy and push the |K〉 up (relative to |T〉) to
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adjust ∆E = 0. This leads to good resolution and finite population for both ladders, as the steady state
expectation values 〈PK〉 ' 0.5 ' 〈PT〉 show.
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Figure S2: Effect of ∆E for one NRG diagonalization in the Ω = 0 case: (a) ∆E > 0 features a good resolution for
the highly-correlated low-energy states above |K〉, but not for the trionic states above |T〉 and there is only a very
small steady state hole population. (b) For ∆E = 0, a good resolution for both families of states is achieved along
with approximately equal steady state population in both ladders. (c) to (f): Flow diagrams for various parameter
combinations ∆E and Ω, with the red box showing the intermediate fixed point H|Ω=0. The NRG parameters are:
Discretization Λ = 2.7, number of kept states Nkeep = 1800 and chain length Nmax = 60. The model parameters
are the same as in Fig. 2 in the main text and the numbers attached to the final fixed point levels denote the
degeneracies of the respective eigenenergies.

To find the right laser energy to compensate the ground state energy difference and ensure ∆E = 0,
NRG flow diagrams are employed: Both Hamiltonians HT and HK have distinct and well understood low
energy fixed points: The HK fixed point [obtained by setting ∆E > 0 and Ω = 0, see Fig. S2 (d)] describes
the primary Kondo singlet state and its excitations. The degeneracies for odd Wilson site indices n (’odd
spectrum’) are 4, 16,... . The HT fixed point, describing the trion state and its excitations [∆E < 0 and
Ω = 0, see Fig. S2 (e)] features the degeneracies 1, 2, 2, 1, 4, 1,... . Consequently, since we still consider
the uncoupled Ω = 0 case, the H flow diagram for ∆E = 0 [Fig. S2 (f)] consists of a combination of the
flow diagrams of the two decoupled Hamiltonians HT and HK. This can be seen in detail by comparing
state degeneracies (1, 4, 2, 2, 1, 4, 1, 16,...) which are a combination of the aforementioned degeneracies
of HK and HT. We used this fact as a technical trick guiding us how δL should be fine-tuned to reach
∆E = 0.

We now turn to the case where the trion and photon subspaces are coupled by stimulated absorption

4

5.2 Rabi-Kondo Correlated State in a Laser-Driven Quantum Dot 93



and emission events for Ω > 0. The parameter ∆E is still defined with respect to the Ω = 0 case. Due
to the discretization issues mentioned above, results for |∆E| � Ω should be regarded with care. We
diagonalize the full Rabi-Kondo model, Eq. (S3). The flow diagram for Ω = 10−4TK and ∆E = 0 is shown
in Fig. S2(c). We observe the emergence of a new fixed point below an energy scale

ν∗ ' max (|∆E|,Ω∗) (S5)

which generalizes Ω∗ from Eq. (5) for finite ∆E.
Between the scales TK and ν∗, the fixed point spectrum for Ω > 0 in Fig. S2 (c) has the same structure

as the fixed point found for Ω = 0 in Fig. S2 (f), as can be seen by comparison of the red boxes. Hence,
the intermediate fixed point for Ω > 0 in Fig. S2 (c) can be understood as a combination of HK and HT.
This further implies that the QD-perturbation Ω, though local, only affects the system far away from the
QD.

Eq. (S5) can be understood by noting that for finite ∆E(′) the RG flow, Eq. (4), is augmented by a
similar equation for ∆E′ which, like the displaced charges, scales with ∆E′/D′ and Ω′/D′ in second order.
Since ∆E′/D′ and Ω′/D′ are small initially compared to unity, ∆E′ and U ′σ do not flow appreciably under
RG. Consequently, in the RG flow, the normalized TLS parameters Ω′/D′ and ∆E′/D′ increase. As soon
as the larger one reaches unity, the scaling equations lose validity. For |∆E′| � Ω∗, the renormalized
Rabi frequency Ω′ will increase to the renormalized bandwidth D′ before D′ reaches ∆E′ and we enter
the strong-Ω fixed point below Ω∗, as discussed in the main text. If however |∆E′| � Ω∗, the TLS energy
splitting ∆E′ determines the scale of the uncoupled fixed point, as expressed in Eq. (S5), for the unprimed
parameters of the original model H.

The effect of Eq. (S5) on the broad peak position |νmax| of the emission spectrum is shown in Fig. S3(a).
Analogously, the expression for the weight of the δ-peak is also modified with a cutoff at |∆E| = Ω∗

(Fig. S3(b)). For |∆E| � Ω∗ the ground state contains either the trion or the Kondo state, so that
δweight = |〈h⇑e↓〉|2 vanishes due to AO between ground and post-quench state.
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Figure S3: NRG results for the Rabi-Kondo model, Eq. (1), for finite ∆E: The position of broad peak |νmax| in (a)
and the weight of δ−peak in (b) both deviate from the ∆E = 0 case at Ω∗ ' ∆E where the nature of the low energy
fixed point changes according to Eq. (S5). (c) Log-log plot of the normalized broad emission peak (S̃ (ν < 0), for
details on the normalization see below) for various parameters Ω and ∆E. Thick solid lines denote spectra with
∆E = 0, dashed and dash-dotted lines represent ∆E = ±10−3TK, respectively. The straight dashed lines represent
power-law functions.
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Quantum Quenches and Beyond: Anderson Orthogonality, Hopfield Rule and their appli-
cation for S(ν)

In this section, we provide some background information on the concept of Anderson Orthogonality (AO),
the Hopfield Rule and their application in the discussion of the emission spectrum S(ν). The basic idea
is that for Ω = 0 spontaneous emission can be thought of as a transition corresponding to a quantum
quench, showing AO, while for Ω 6= 0, the signatures of AO are cut off at sufficiently low frequencies.

Anderson Orthogonality (AO) and Hopfield Rule (see also Ref. [6] for an extensive discussion): When-
ever a quantum quench changes the local scattering potential for a FB, the overlap between the initial and
final FB ground states, |Gi〉 and |Gf〉, vanishes with increasing electron number N as |〈Gi|Gf〉| ∝ N−

1
2 ∆2

AO

where ∆AO is called the AO exponent. In the thermodynamic limit N →∞, the initial and final ground
states are thus orthogonal for ∆AO 6= 0. There are two important remarks: (i) Anderson [7] showed that
the exponent ∆AO equals the displaced electronic charge (in units of e) in the quench, i.e.

∆AO = 〈Gf |ntot|Gf〉 − 〈Gi|ntot|Gi〉 , (S6)

where ntot counts the (spinless) electrons in a large volume Vlarge including the scattering site (QD).
For spinful fermions, if the spin-channels are decoupled such that the FB ground states factorize, the
correspondence is generalized to

∆2
AO = ∆2

AO,↓ + ∆2
AO,↑. (S7)

Note that by Friedel’s sum rule, the displaced charge is connected to the scattering phase shift δσ for
electrons with spin σ = ± by ∆AO,σ = δσ/π. (ii) AO has important consequences for the low frequency
behavior of generic quench spectral functions A similar to S (ν) in Eq. (2). AO causes the spectral function
to behave as A (ν) ∝ ν−1+∆2

AO , where ν is measured with respect to a threshold frequency.
Application of AO to emission spectrum S(ν): We start our discussion with the quench Hamiltonian

H|Ω=0 = HQD,L +HQD−FB +HFB = HK +HT which we represent schematically in Fig. S4(a). The dashed
line between the QD (circle) and the FB (box, in Wilson chain approximation) represents a tunnel cou-
pling, the horizontal axis denotes decreasing energy or increasing length scales as in a NRG flow diagram
(see above). If we assume ∆E = 0, the degenerate ground state |G〉 |Ω=0 is a superposition of the trionic
state |T〉, ground state of HT shown in (b), and the Kondo singlet state |K〉 = (|↑〉 |FB↓〉 − |↓〉 |FB↑〉) /

√
2,

ground state of HK, depicted in (c). While |K〉 features strong correlations between QD and FB, the trion
state can be well approximated as a simple QD-FB product state |T〉 = |↑↓⇑〉 |FB0〉 where |FB0〉 is the
unperturbed Fermi sea, i.e. all Wilson sites are half occupied. Let us take the state |K〉 as reference,
where the QD valence levels are filled (no holes present) and its conduction levels harbor half an electron
of each spin. The region where the FB parts of the |K〉 state, |FBσ〉, support an additional spin σ (the
screening cloud) is encircled by a yellow ellipse. Relative to |K〉, the state |T〉 features displaced charges
∆T,σ = σ/2, respectively (the ⇑-hole counts like a missing ↓-electron). Before discussing emission, let us
consider an absorption event. Acting on |G〉 |Ω=0 with the operator e†↓h

†
⇑, we first project on the compo-

nent |K〉 and then create a hole and a spin down electron in the conduction level. The resulting state can
“lower its energy” [8] by adjusting its spin configuration to the |T〉 state (b).

A priori, it is not obvious how an absorption process described by the operator e†↓h
†
⇑ for Hamiltonian
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H can be treated in the framework of AO. First, we recall a non-trivial feature of the Anderson impurity
model underlying HK, namely that the low-energy fixed point below TK can be described by potential
scattering off the complicated Kondo screening cloud structure [5]. This observation implies that AO
plays a role only for |ν| < TK, as documented by an −1/2 power-law tail [5] which is explained as
follows: Comparing the final state |T〉, to the initial state |K〉, the displaced charges (Eq. (S6)) read
∆σ ≡ ∆T,σ −∆K,σ = σ/2. Consequently, for the quench connecting these two ground states in the long
time limit, we find from Eq. (S7)

∆2
AO = ∆2

AO,↓ + ∆2
AO,↑ = (∆T,↑ −∆K,↑)2 + (∆T,↓ −∆K,↓)2 = 0.5. (S8)

Since only the magnitude of the displaced charges, (∆T,σ − ∆K,σ)2, enters this equation, ∆2
AO and the

−1/2 power-law tail is the same for the emission process.
The second issue is the presence of the coherent laser drive, HQD−L ∝ Ω in H leading to stimulated

absorption and emission processes. Thus spontaneous emission or absorption does not introduce a quan-
tum quench, since the subspaces PT and PK are not dynamically decoupled [9]. However, if Ω is small,
we can expect that the post-emission dynamics is not affected by the existence of Ω up to some time
τ = 1/Ω∗ (i.e. eiτH(h⇑e↓)†e−iτH ' eiτH|Ω=0(h⇑e↓)†e−iτH|Ω=0 in Eq. (S1) for τ < 1/Ω∗) and that the
spectral function therefore shows AO behavior as in a proper quench situation for |ν| > Ω∗. The relation
between Ω∗, Ω and the displaced charges can be found by a renormalization group analysis as sketched
in the main text.

(a)

Wilson site m: spatial separation from QD or decreasing energy scale

mTK

(b)

(c)

TLS(d)

-

FB

effects

:

:

:

:

QD

potential scatterer

Figure S4: Cartoon of some Hamiltonians and states mentioned in the main text. (a) The quench Hamiltonian
H|Ω=0 is of quantum impurity type, featuring a local QD and laser part tunnel coupled to the extended FB. The
trionic state (b) can lower its energy after a spontaneous emission process mediated by h⇑e↓ by the formation
of correlations (c) between QD and surplus FB spins where the latter are contained in a region of extent 1/TK
around the QD (yellow ellipse). The Kondo singlet and trion configuration both act as potential scatterers for the
surrounding FB electrons. The effective Hamiltonian H ′, which explicitly contains a potential scattering term ∝ U ′σ
in the trion sector, reproduces the respective scattering phase shifts of (b) and (c). In any case, effects due to Ω > 0
are relevant above length scales 1/ν∗.

7

96 5. Optics for impurity models



Effective model H ′

Considering the NRG energy flow diagrams of the Rabi-Kondo model H in Fig. S2 we noticed that the
intermediate fixed point spectrum above ν∗ is composed simply of a combination of the spectra of HK

and HT. This shows that in this intermediate energy range, the spectrum of the full Hamiltonian space
can be decomposed into a direct sum of two subspectra, one describing the primary Kondo singlet state
and its excitations, the other the trion and its excitations. These get coupled only at energy scales below
ν∗. This fact is the main motivation for constructing the effective Hamiltonian H ′.

Before comparing H and H ′ NRG energy flow diagrams, we augment the heuristic derivation of the
effective model H ′ given in the main text in Eq. (3) by an intuitive graphical explanation in Fig. S4. The
effective model H ′ denoted schematically in Fig. S4(d) is designed to describe the effect of the transition
between |T〉 and |K〉 [from (b) to (c)] on FB electrons beyond a separation 1/TK from the QD. The
two-level-system (TLS), representing the QD plus the FB up to distance 1/TK, controls the scattering
potential U ′σ [wavy line in (d)] for the surrounding FB electrons. If the TLS changes its state, so does
the scattering potential – not only after a time scale 1/TK but (within the approximation of replacing H
by H ′) instantaneously like in a X-ray absorption process. For Ω′ = 0, σ′z is conserved and the displaced
electronic charge in a transition from |K〉r to |T〉r (TLS raising operators) is ∆′σ = −1/π · arctan (πρ′U ′σ)
(in units of e, e.g. [6]). To reproduce the displaced charge ∆σ = σ/2 as found above, we require ρ′U ′σ
being equal to −σ times a numerical value large compared to unity (we take ρ′U ′σ = −50× σ).

Now we can also consider the coherent QD-laser coupling. It is not a priori clear that H ′ as given
in Eq. (3), and the reasoning laid out above, would still be applicable for Ω(′) > 0. However, our NRG
calculations show (in accordance with a renormalization analysis and the discussion below Eq. (S5))
that the H|Ω>0 flow diagram does not differ from the Ω = 0 case for energies higher than ν∗ (compare
Figs. S2(c) and (f)), implying that it is indeed valid to consider the development of potential scattering
and the effects of Ω separately as long as ν∗ � TK.

NRG energy flow comparison for H and H ′: One of the implicit assumptions in replacing H by the
effective Hamiltonian H ′ with the scattering phase shifts as given above is that ne↑ + ne↓ − nh exactly
equals one. With the physical parameters as in Fig. 2 in the main text, this is only approximately true
due to Ueh <∞. Although this small deviation has no observable consequences in the emission spectrum,
turning to NRG energy flow diagrams resolving minute details of eigenstates and -energies, this issue will
matter. Therefore, as an intermediate step for a flow diagram bases comparison of H and H ′, in Fig. S5
(a)-(c) we show the (odd) flow diagrams for H|Ueh=100D0 where, as compared to the original H spectra
in Fig. S2, certain degeneracies in the trionic sector are restored. These flow diagrams then indeed agree
with those for the effective model H ′ [panels (d)-(f)].

Discussion of emission spectra for H(′) in the case ∆E(′) 6= 0

In Fig. S3(c), the Rabi-Kondo model emission spectrum, shown in Fig. 2(b,c) of the main text, is repeated
for finite ∆E. Since the total spectral weight is given by 〈nhne↓〉 ' O (〈nh〉), it is strongly dependent
on ∆E. To enable mutual comparison between results for different values of ∆E we normalize all NRG
spectra in this Supplemental Material as S̃ (ν) ≡ S (ν) / 〈nh〉. Fig. S6(a) schematically summarizes the
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Figure S5: Comparison of NRG energy flow diagrams for H|Ueh=100D0 [panels (a)-(c)] and H ′ [panels (d)-(f)] for
∆E(′) ≶ 0 and Ω(′) > 0. With the QD/TLS defined as Wilson site zero, the H|Ueh=100D0 flow diagrams show odd
NRG iterations and the H ′ diagrams even iterations such that an odd number of Wilson sites has been integrated
out in going from H to H ′. The H ′ flow diagrams mimic those of portions [boxed] of the H|Ueh=100D0 flow diagrams
that show the crossover from the intermediate to the strong-coupling fixed point.

generic features of the line shape. Coming from large detunings |ν|, the characteristic power-law tails
with exponents −2 (in the free orbital (FO) regime), −1 (in the local moment (LM) regime) and −1/2
(in the strong coupling (SC) regime), found and discussed by Türeci et al. in Ref. [5], are present also
for ν∗ < TK. Curly brackets indicate the range of validity of several Hamiltonians mentioned in the main
text. While treating Ω perturbatively using the quench Hamiltonian H|Ω=0 is a valid approximation
for |ν| > ν∗, the effective Hamiltonian in Eq. (3) provides the appropriate approximate description for
|ν| < TK and can explain the emergence of the low energy fixed point below ν∗. The RF spectrum for
the effective Hamiltonian H ′, calculated using Eq. (2) but with H ′ and σ′− taking the place of H and
h⇑e↓, respectively, is shown in Fig. S7. It indeed correctly reproduces all features of the H spectrum for
|ν| < TK, which we now discuss.

The fixed point at energy ν∗ causes a cut-off of the emission line shape; the nature of the line shape
below the cut-off energy depends on ∆E and Ω. Fig. S6(b) explains this regime 0 < |ν| < ν∗ in detail,
where we find a combination of +3 and +1 power-law tails as indicated schematically. We consider the
two cases Ω∗ ≶ |∆E| separately.
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(i) For Ω∗ > |∆E|, the transition between the +3/+1 power-law tails occurs at a scale

∆Eeff = ∆E + δ (Ω) > ∆E, (S9)

where δ(Ω) denotes an Ω-dependent effective detuning with 0 < δ (Ω)� Ω that captures the small driving
dependence which is attributed to second-order effects in the RG equations for ∆E′ discussed above. The
+3/+1 crossover is either sharp for ∆Eeff > 0 or gradual in the case ∆Eeff < 0. The analysis for the +1
exponent parallels the discussion for the +3 exponent in terms of the secondary Kondo model H ′K given
in the main text: The presence of an effective magnetic field (∆Ez 6= 0) in Eq. (6), corresponding to a
finite ∆E(′) in models H and H ′, causes the density of the z-component of the spin in H ′K to acquire a
nonzero average. Hence, the correlation function S′zs′z(0) will have components containing the correlator
of just two Fermi operators with their conjugates, which decays as t−2, leading to a ∼ |ν|+1 behavior of
the spectral function.
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Figure S6: Phenomenological discussion of S̃ (ν), revealing characteristic power-law tails. The same discussion
applies to S̃′ (ν) (for the effective Hamiltonian H ′) for |ν| < TK.

The effect described in Eq. (S9) can be clearly seen in the H spectrum for ∆E = 0 (Fig. S3(c),
Ω = 10−1TK, green solid line) which shows a transition to a +1 tail at ∆Eeff = ∆E + δ (Ω) = δ (Ω).
Further, the Ω = 10−1TK spectra for ∆E = ±10−3TK (green dashed and dash-dotted lines) do not differ
significantly since we have δ (Ω)� ∆E and thus, according to Eq. (S9), ∆Eeff is virtually equal in both
cases.

(ii) Turning to Ω∗ < |∆E|, (dash and dashed-dotted red lines in Fig. S3(c)) the +3 tail is absent; in
the case ∆E > 0 a smooth transition to the +1 tail occurs while for ∆E < 0 this transition is realized in a
steep drop beyond NRG’s smoothing resolution limit. This steep drop can be understood in the limiting
case Ω→ 0 as a horizontally displaced Ω = ∆E = 0 curve which has a threshold at |ν| = −∆E.

Implications for an experimental study and outlook

The NRG results shed light on the results of the competition between Kondo physics and the laser
coupling. As expected, the ratio of TK and Ω determines the predominant form of the emission line
shape, an asymmetric power-law-divergent peak in the Kondo-dominated regime Ω � TK, and a double
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Figure S7: S̃′ (ν < 0) for H ′ (without δ−peak). (a) ∆E′ = 0, (b) ∆E′ > 0 and (c) ∆E′ < 0. For reference, the
Ω′ = ∆E′ = 0 spectrum is repeated in all plots (solid black line).

peak structure in the limit Ω � TK. However, the role of the seemingly weaker effect is interesting:
A dominant driving laser leaves no trace of Kondo physics while dominant Kondo physics renormalizes
Ω to a smaller value but preserves its characteristic non-trivial double peak feature in the spectrum.
This explains our focus on the regime Ω < TK, which is highly attractive for further experimental study.
We remark that the main results should be also valid in a two laser setup (creating dressed states with
one laser, probing absorption with another), which might be experimentally more feasible than standard
resonance fluorescence.

For a strongly coupled device and temperatures T � TK, Kondo signatures in the absorption line
shape of a weak laser have already been detected in experiment [10]. An order of magnitude separation
between T (which flattens out all spectra for |ν| . T ) and TK as well as a spontaneous emission rate below
T has been achieved. For obtaining the predicted double peak structure in the resonance fluorescence
experiment with Ω < TK, the crucial condition T � ν∗ � TK has to be fulfilled. We expect that a non-zero
spontaneous emission rate will lead to partial broadening of the δ-peak at zero detuning, separating into
an elastic and inelastic component. For the proper inclusion of spontaneous emission in the theoretical
treatment, we propose an extension of the current study using the framework of Lindblad-NRG, currently
under development [11].

The total area of the peak at the laser frequency and the peak-to-peak separation to the red emission
peak are predicted to scale with Ω to the power 2/3 and 4/3, respectively. This is valid if ∆E (controlled
by the laser detuning) is smaller than the renormalized Rabi frequency Ω∗. Compared to the measurement
of power-law tails as signatures of Kondo physics, which require experimental data with sufficiently low
noise level, peak areas and peak-to-peak separations can be measured with relative ease. Further, the
scaling collapse of the broad emission peak with respect to ν∗, which is theoretically valid only for S(ν)
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with |∆Eeff | < |ν| < TK, should be a robust experimental feature since the regions where scaling fails (i.e.
|ν| > TK, |ν| < |∆Eeff |) are expected to support only a small spectral signal, effectively well below the
noise level.

It is interesting to compare the effect of a laser drive Ω with the consequences of a nonzero magnetic
field B (which we have set to zero throughout this work). While a circularly polarized laser coupling
in a QD removes the degeneracy of the spin up and down state just like a magnetic field B does, their
signatures in the emission spectrum in presence of Kondo physics are strikingly different. While a magnetic
field |B| < TK results in a smooth modification of the B = Ω = 0 fixed point (and consequently changes
the −1/2 power-law exponent in the RF line shape [5, 10]) a Rabi frequency Ω < TK induces a new low
energy fixed point while keeping the power-law exponent at −1/2. For nonzero B and Ω (both < TK) we
conclude that a modification of the Ω-scaling dimension ηx (in the original Rabi-Kondo model) due to B
would modify the 4/3 and 2/3 exponents for the Ω∗ and δweight-scaling with Ω. Thus, application of a
magnetic field could enhance the visibility of scaling effects on the emission spectrum in experiment.
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5.3. Fermi edge singularity at the absorption spectrum of
a quantum dot

One of the first many-body phenomena observed with optical methods is the Fermi edge
singularity. There an electron is lifted from a deep-lying energy level up above the Fermi
energy. The hole which is created at this process induces a phase shift of the reservoir elec-
trons close to the Fermi level, and the resulting divergence in the absorption spectrum can
be related to phase shift differences and explained with the phenomenon of Anderson or-
thogonality. Since in the following experiment, the Fermi edge cannot be observed directly,
but only via interference of the transition between the dot levels and the transition between
dot and reservoir, we will carefully examine the interference effects on the line shape. The
following paper describes the first observation of the Fermi edge at quantum dots, that
is shown to be in quantitative agreement with numerical calculations. It thus contributes
to the understanding and experimental and numerical control of optical experiments at
strongly hybridized QDs.
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We investigate the effect of many-body interactions on the optical absorption spectrum of a charge-tunable
quantum dot coupled to a degenerate electron gas. A constructive Fano interference between an indirect path,
associated with an intradot exciton generation followed by tunneling, and a direct path, associated with the
ionization of a valence-band quantum dot electron, ensures the visibility of the ensuing Fermi-edge singularity
despite weak absorption strength. We find good agreement between experiment and renormalization group theory,
but only when we generalize the Anderson impurity model to include a static hole and a dynamic dot-electron
scattering potential. The latter highlights the fact that an optically active dot acts as a tunable quantum impurity,
enabling the investigation of a new dynamic regime of Fermi-edge physics.
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When a fermionic reservoir (FR) experiences a dynamically
changing local perturbation, all its eigenstates are modified in
response; the resulting Anderson’s orthogonality catastrophe1

plays a central role in the physics of quantum impurity systems.
Along with the Kondo effect,2–6 the most extensively studied
quantum impurity problem is the Fermi-edge singularity
(FES):7–10 an optical absorption event induces a local quantum
quench, causing dynamical changes in reservoir states that
lead to power-law tails in the absorption line shape. This has
been observed, for example, in the context of x-ray absorption
in metals,11–13 where a large ensemble of deep-level states
were ionized upon absorption and the resulting collective
modification of the absorption line shape was measured.
A related many-body effect has also been investigated in
semiconductor structures incorporating a degenerate electron
gas:14–16 In these studies, the modification of the absorption
line shape is due to a rearrangement of the conduction-band
electrons after the creation of an electrostatic potential by
photoexcited quasimobile valence-band holes.

In this Rapid Communication, we report the observation of
a FES due to a single localized hole in a charge-tunable quan-
tum dot (QD) and a tunnel-coupled FR. In our experiments,
the ionization of a QD valence-band electron takes place via
two competing paths: (1) excitation of a QD neutral exciton
followed by ionization due to tunneling of the conduction-band
electron into the FR, and (2) a direct transition from a QD
valence band to an electronic state above the Fermi level of
the FR. While in the classic x-ray absorption experiments
only the latter process is relevant, in our experiments both
contribute to single-photon absorption. Since both paths lead
to final states of identical structure, involving a single-hole
charged QD and a FR whose eigenstates are modified by the
QD scattering potential, we observe a Fano interference.17

Thanks to the constructive nature of this interference we can
observe the signature of the FES despite the small transition
probability associated with path (2). The presence of path
(1) is also responsible for the dynamical local screening of
the hole potential. Tuning the energy of the QD electron
level with respect to the Fermi energy allows us to change
the residual electron charge on the QD continuously, thereby

varying the strength of the effective hole scattering potential.
While in earlier optical experiments18–23 a FES was observed
by creating an undefined number of positive hole charges in
the FR, we generate the electrostatic scattering potential by a
single localized hole on a QD, defining a spatially well-isolated
impurity.10,24–26 From resonant absorption measurements we
can determine the dynamics of the potential scattering as well
as the Fano parameters of the correlated many-body state.

Setup. The quantum impurity system under study,27 consists
of a single shallow self-assembled InAs QD with the neutral
exciton resonance at λ ≈ 891.25 nm, tunnel coupled to a
40-nm n++ back gate and an In0.08Ga0.92As 7 nm quantum
well that is 9 nm below the QDs. The system is embedded
in a Schottky diode structure, in order to allow continuous
tuning between different charging regimes.28,29 Resonant laser
spectroscopy measurements are carried out with a fiber-based
confocal microscope setup (numerical aperture NA = 0.55)
that is embedded in a dilution refrigerator. Figure 1(a) shows
low-temperature differential transmission measurements of
the energy plateaus of the neutral QD exciton (X0) and
single-negatively charged QD exciton (X−) as a function of
applied gate voltage. At the edges of the charging plateaus
we observe an energy renormalization towards lower (higher)
energies for the neutral (charged) QD transition, which is a
hallmark of a strong tunnel coupling to a nearby FR.5,30

Measured absorption spectra. To probe the role of many-
body interactions, we carried out high-resolution laser scans
for various representative gate voltages in the X0 plateau
[Fig. 1(b)]. Tuning the gate voltage to lower values allows us to
increase the energy of the QD electron levels with respect to the
Fermi energy. The absorption line shapes [A(�E)] obtained
for various gate voltages thus show the gradual evolution of
the system from a regime where the final state is an excited
QD state [Fig. 1(d)] to the one in which it can be described by
an optically excited electron in the FR and a hole trapped in
the QD [Fig. 1(i)]. We emphasize that for our sample the latter
state has a dipole moment that is approximately a factor of 2
larger than the dipole moment of the X0.

When the QD X0 state approaches the Fermi en-
ergy, the absorption line shape consists of two peaks: the

161304-11098-0121/2013/88(16)/161304(5) ©2013 American Physical Society
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FIG. 1. (Color online) (a) Differential transmission measurements of the X0 and the X− (inset) QD charging states, after subtracting
the dc Stark shift (Ref. 27). �E = E − E0 incorporates the peak absorption energy E0 = 1.3913 eV at Vg = 0.52 V. (b) High-resolution
laser absorption scans (color scale) at selected gate voltages. Solid lines show fits of the calculated lowest-energy peak position, �Epeak,
either without the scattering potential (Ha

S = 0, solid gray), or including it (Ha
S �= 0, solid black). Dashed lines show the ground state energy

difference, h̄ωth, between the initial and final states of the absorption process, calculated for Ha
S = 0 (dashed gray) or Ha

S �= 0 (dashed black).
The difference �Epeak − h̄ωth is on the order of the dark-bright splitting �E in the plateau center. (c) Comparison of the measured (dots) and
calculated (curve) maximum absorption amplitudes (the latter scaled vertically by an overall fixed oscillator strength), shown as a function of
gate voltage. (d)–(i) Measured absorption line shapes of the transition from a neutral exciton to a correlated many-body state (normalized by
the experimental peak height Amax) at gate voltages indicated by corresponding color-coded arrows in (b). The green curves display calculated
results, scaled vertically and shifted horizontally to minimize the χ2 value of each fit (Ref. 27). The absorption components of the direct
(red dashed), indirect (blue dotted), and interference (orange dash-dotted) terms are exemplarily depicted in (i). Since the tail of the X0 state
spectrally overlaps with the X+ state, we can excite the latter, which shows up as a dip in the absorption line shapes for red detunings.
(j) Schematic of the renormalized transition energies of the bright εF − �b and dark εF − �b − �E electron levels with respect to the Fermi
energy εF directly after the single-photon absorption event. �b indicates the energy difference between the Fermi energy and the bright state,
corresponding to the line shape shown in (d) (top), in (f) (middle), and in (i) (bottom).

higher-energy peak corresponding to the X0 transition that is
tunnel broadened, and a second, lower-energy peak associated
with the onset of absorption from the QD valence band directly
into the FR [Fig. 1(i)]. As we argue below, this second peak
carries the signatures of a many-body resonance and reveals
its nonequilibrium dynamics that is the focus of our work.

Model. In order to understand the various features of
the absorption line shapes depicted in Figs. 1(d)–1(i), we
generalize the excitonic Anderson model (EAM), previously
used to describe the optical signatures of the Kondo effect,5,6

by including a dynamic scattering potential:

Ha
A = Ha

QD + HFR + Ha
S , (1)

Ha
QD =

∑
σ

εa
σ (Vg) n̂σ + Uee n̂↑n̂↓ + δa,f εh(Vg), (2)

HFR =
∑
kσ

[εkσ ĉ
†
kσ ĉkσ +

√
	/(π ρ) (ê†

σ ĉkσ + H.c.)], (3)

Ha
S =

[
Gee

(∑
σ

n̂σ

)
− Geh δa,f

]∑
σ ′

(
�̂

†
σ ′�̂σ ′ − 1

2

)
. (4)

Here, a = i,f differentiates between the initial (i) Hamiltonian
before absorption [Fig. 2(a)], and the final (f) Hamiltonian
[Fig. 2(d)] after creation of an exciton. In the QD

Hamiltonian Ha
QD the electron occupancy is denoted as

n̂σ=↑,↓ = ê†
σ êσ . We assume a static hole spin and denote

the bright state by |↑⇓〉 and the dark state by |↓⇓〉.31

The bare energy of the electronic level, measured with
respect to the Fermi energy (εF = 0), is given by εa

σ (Vg) =
ε0(Vg) − δa,f (Ueh + δσ,↓�E), where δa,f is the Kronecker
delta and �E is the dark-bright splitting. Both the conduction-
band electron [ε0(Vg) = ε0 − |e|Vgl] and valence-band hole
[εh(Vg) = −εh,0 + |e|Vgl] state energies shift linearly with the
gate voltage, l being the voltage-to-energy conversion factor
(lever arm). The energy of the optically excited QD states
is lowered by the Coulomb attraction Ueh and lifted by the
on-site Coulomb repulsion Uee. HFR describes the FR as a
noninteracting conduction band with bandwidth W , symmetric
around εF, and constant density of states ρ = 1/W per spin,
tunnel coupled to the QD, where �̂σ = ∑

k ĉkσ annihilates a
FR electron at the QD position and 	 is the tunneling rate.
Finally, the dynamic scattering potential Ha

S , which becomes
important in the crossover between the local moment and free
orbital regimes (εf

σ � 0),25 describes the contact Coulomb
attraction, Geh, and repulsion, Gee, between FR electrons and
the QD hole or QD electrons, respectively, as depicted in
Fig. 2(d). Note that the effective scattering strength depends on
the QD occupation and thus on the screened QD hole charge.

161304-2
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FIG. 2. (Color online) Scheme of the quantum impurity system
consisting of a single QD and a nearby FR. (a) Initial quantum state
where the QD with energy ε0 above the Fermi energy εF is empty
and the FR is unperturbed. The absorption of a single photon leads
either (b) to a bound exciton on the QD or (c) to an indirect exciton.
(d) The final state as t → ∞ involves many-body correlations (red)
between the FR and the QD. The black dashed and dotted lines depict
the scattering potential between QD and FR, or the intradot Coulomb
attraction, respectively.

Fano interference. Starting from a neutral QD [Fig. 2(a)],
a photon absorption event can either create a QD exciton,
involving ê

†
↑ [Fig. 2(b)], or an indirect exciton, involving �̂

†
↑

[Fig. 2(c)]. Both of these intermediate states evolve into a com-
mon final state [Fig. 2(d)], where the QD hole scattering po-
tential modifies the eigenstates of the FR due to the partial ion-
ization of the QD and scattering of the FR electrons by the un-
screened charge. The resulting absorption spectrum is given by

A(ν) = α2AQD(ν) + (1 − α)2AFR(ν)

+ 2 α(1 − α) cos(φ)AI(ν), (5)

with α being the branching ratio between the two optical
paths and a Fano phase φ = 0 or φ = π .27 ν = ω − ωth

describes the detuning between the laser frequency ω and
the ground state energy difference, ωth = (Ef

G − Ei
G)/h̄,

of the initial and final Hamiltonian. Using Fermi’s golden
rule, the direct absorption is calculated as AQD(ν) =
2 Re

∫ ∞
0 dt eiνt 〈ê↑(t)ê†

↑〉 and the indirect Mahan absorption

as AFR(ν) = 2 Re
∫ ∞

0 dt eiνt 〈�̂↑(t)�̂†
↑〉.14 Here, we used the

notation 〈b̂2(t)b̂†
1〉 = Tr(eiH̄ i t b̂2e

−iH̄ f t b̂
†
1�), where b̂ stands

for either ê↑ or �̂↑, H̄ a = Ha − Ea
G, and � is the Boltzmann

weight at a FR temperature T .6 The absorption line shape
features a Fano interference, described by the term AI(ν) =
2 Re

∫ ∞
0 dt eiνt 〈�̂↑(t)ê†

↑〉. The correspondence between the
experimental [A(�E)] and theoretical [A(ν)] spectra follow
from �E = h̄ν + h̄ωth − Ẽ0; here, Ẽ0 is a fit parameter.27

Parameters. The recorded absorption maxima in Fig. 1(b)
are fitted with the calculated absorption maxima (black curves)
that we obtained from a numerical renormalization group
simulation32 using Eq. (5). A simultaneous fit of the charging
plateaus and the X0 line shapes allows us to extract all exper-
imental parameters.27 The intradot electron repulsion Uee =
6.8 meV is determined by the X− plateau length. From the
X0 − X− energy separation, we extract Ueh − Uee = 6.6 meV,
neglecting correlation effects. In the center of the X0 plateau

[Fig. 1(d)], the linewidth is determined by the FR-assisted re-
laxation into the dark exciton state, which in turn is determined
by the gate voltage, the tunneling rate 	 = 400 μeV,5 and the
dark-bright splitting �E = 175 μeV. The FR is characterized
by its bandwidth W = 2 meV and its temperature T =
120 mK. The best agreement between theory and experiment is
obtained for Geh = 3 meV and Gee = 0.7Geh. For comparison,
we also plot the best fit of the X0 plateau, if Coulomb
scattering is ignored, i.e., Ha

S ≡ 0 [Fig. 1(b), gray line]. As
a result of the scattering potentials the lengths of the charging
plateaus of X− and X0 show different extents in gate voltage
[Fig. 1(b)]: This is in stark contrast to earlier experiments,
which could be explained by assuming exclusively capacitive
charging.27 The renormalized energy of the final bright level
with respect to the Fermi energy can be parametrized as
ε̃

f

↑ (Vg) = ε0(Vg) − Ueh + δε0(Vg), where δε0(Vg) accounts
for a tunneling- and scattering-induced shift of the final
bright level. Fitting model predictions to experimental data
yields a lever arm of l = 0.058, ε0(0.52 V) = 9.205 meV and
ε̃

f

↑ (0.52 V) = −4.675 meV at Vg = 0.52 V.
Line shapes. The green curves in Figs. 1(d)–1(i) represent

calculated absorption line shapes for the Hamiltonian [Eq. (1)]
including the optical interference effect induced by the sample
structure.27 We highlight that we can only reproduce the
experimental data using a Fano phase of φ = π , corresponding
to a constructive Fano interference between the direct and
indirect transitions. α is determined by the square root of
the ratio of the oscillator strengths of the direct and indirect
transitions and is assumed to be independent of the exciton
transition energy. In the present experiment we obtain the best
agreement between experiment and theory for α = 0.85.27

Figure 1(c) compares the measured maximum absorption
amplitudes (dots) versus the calculated absorption amplitudes
without adjusting any parameters. The agreement, up to a
sample specific proportionality constant and fluctuations of
peak contrast of the order of 10% due to alignment, underlines
that our model reliably predicts the gate-voltage dependence
of the peak absorption. The individual absorption line shapes
of the direct (dashed curve), indirect (dotted curve), and
interference (dash-dotted curve) terms are exemplarily shown
in Fig. 1(i). If the final neutral exciton levels are well below the
Fermi energy [Fig. 1(d)], the final state of the optical transition
is the dark exciton state, which leads to a homogeneous
broadening of the absorption line shape. In the tunneling
regime, however, the final state is a correlated many-body
state, which is a superposition of the FR states and the QD
bright and dark exciton states. Close to the Fermi energy
[Fig. 1(i)], the final state has vanishing probability amplitude
for finding the electron in the QD. In this regime the QD
electron tunnels out into the FR lowering QD hole screening
and thereby increasing the effective scattering potential. As
a consequence, a screening cloud is formed in the FR that
leads to a FES singularity. We emphasize that the absorption
strength of the indirect element featuring the FES is very
small (1 − α = 0.15) and can only be detected due to a
significant enhancement by the Fano interference. Due to the
spectral overlap of AFR(ν) and AQD(ν), we cannot determine
experimentally the power-law tail of the FES. However, the
good agreement between our experimental data and theory
indirectly demonstrates the presence of a FES.
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FIG. 3. (Color online) Comparison of the experimental absorp-
tion line shape at Vg = 0.482 V with theory assuming different
scattering scenarios. For the scales, the same conventions were
used as for Figs. 1(d)–1(i). The red dashed line shows the best
fit for the EAM model (Ha

S = 0). Neglecting the electron-electron
repulsion (Ha

S �= 0 with Gee = 0) the best fit yields the blue dotted
curve, while the mean-field approach (Ha

〈S〉) is shown by the orange
dash-dotted curve. The green solid line depicts a dynamic scattering
potential.

Dynamical screening. In order to verify the role of the
dynamical screening potential, we compare in Fig. 3 our
experimental data with theory, for four different screen-
ing potentials. (i) The EAM model (dashed line, Ha

S = 0)
resembles the experimental data for ν  	, indicating the
absence of a scattering potential for very short time scales.
As the indirect absorption spectrum AFR(ν) only probes
the constant density of states in the FR, the EAM model
fails to reproduce the double-peak structure dominating the
low-energy part of the spectrum. (ii) Inclusion of a scattering
potential leads to the pronounced low-energy peak associated
with the FES. Usually, the FES singularity is described by
the Mahan–Nozieres–De Dominicis Hamiltonian,7–9 which
considers a scattering potential Geh while neglecting any

Coulomb repulsion between QD and FR electrons, i.e., Gee =
0 (dotted curve). (iii) A possible way to include the latter
interaction in our description while still using, for simplicity, a
time-independent scattering potential would be to use a mean
QD electron occupation, Ha

〈S〉 = (Gee
∑

σ 〈n̂σ (t → ∞)〉 −
Gehδx,f )

∑
σ ′(�̂

†
σ ′�̂σ ′ − 1

2 ) (dash-dotted line). The models
(ii) and (iii) both feature a second peak in the absorption
spectrum in the long-time limit (ν � 	), but the absorption
line shapes strongly deviate from the experimental data for
short-time scales (ν  	). (iv) Using the dynamical screening
model of Eq. (4), we allow the QD electron occupation and
thereby the screening of the QD hole potential to evolve in
time. As depicted by the solid line, this dynamical screening
model yields good agreement with experiment for all energy
scales, showing that a scattering potential, and consequently
an electron screening cloud in the FR, forms on time scales on
the order of reciprocal 	.

In contrast to prior nonresonant excitation experiments,26

we directly observe a correlated many-body state formed by
the direct and indirect exciton transitions and develop a model
to quantify the potential scattering strength. We note that
our model assumes a perfect screening potential.15 A partial
screening of the scattering potential due to imperfections in the
FR would lead to a stronger power-law decay of the FES,20,33,34

which could explain the residual difference between experi-
ment and theory. In conclusion, we demonstrated a dynamic
regime of Fermi-edge physics that highlights the importance of
optically active quantum dots in the investigation of quantum
impurity physics.
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The supplementary should provide background information to the studied effect. It is structured in two main
sections. The first section deals with experimental methods and sample properties, e.g. the experimental setup and
QD properties. The second section addresses the excitonic Anderson model with dynamic scattering potential in
detail and states the parameterizations of the model.

S-1. EXPERIMENTAL METHODS AND SAMPLE PROPERTIES

S-1.1. Experimental setup

The experimental setup, used to conduct the experiments presented in the main text, is schematically shown in
Fig. S1(a). In order to achieve cold temperatures, the sample is mounted inside a fiber-based confocal microscope
embedded in a dilution refrigerator with a base temperature of T = 20 mK in the mixing chamber. X-Y-Z positioners
on the microscope allow us to select individual QDs. The microscope objective has a numerical aperture of N.A.= 0.55
featuring a diffraction-limited spot size. To conduct photoluminescence measurements (PL) we use a λ = 780 nm laser
diode. The emitted PL signal is collected by the confocal microscope and spectrally analyzed with a spectrometer.
As a second spectroscopy method, we perform differential transmission measurements by tuning a resonant single
mode laser across the QD resonances, while the laser frequency and laser intensity (P = 0.87 nW) is stabilized against
long-term drifts. To record the differential transmission signal, we modulate the resonance of the QD transition
energies by varying the gate voltage between back gate and top gate with a frequency of f = 187Hz and a modulation
amplitude of 150 mV. For each laser frequency we detect the absorption difference signal with a Si photo diode that
is mounted underneath the sample. The signal is afterwards analyzed with a lock-in amplifier.
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n++ quantum

well (QW)
InGaAs 

quantum
dot (QD)
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AlGaAs

Au/Ti
gate
(TG)

tunnel
barrier(TB)
GaAs 
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(a)

FIG. S1. (a) Scheme of the experimental setup. The He3/He4 dilution refrigerator (blue shaded) has a fiber-based, confocal
and movable objective. A λ = 780 nm laser diode, the 90:10 beam splitter (BS), and the spectrometer are utilized for PL
measurements. In differential transmission, we use a tunable laser. The sample is mounted on the cold finger of the cryostat
and the resonantly scattered light of the QDs is detected by a photo diode (PD) mounted underneath the sample. (b) Schematic
of the sample structure in the valence and conduction band picture (top) and growth structure (bottom). The sample consists
of a n++ back gate (BG), quantum well (QW), tunnel barrier(TB), QDs, blocking barrier (BB) and a Ti/Au top gate (TG).
GaAs spacer layers are shown in grey.
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http://www.quantumphotonics.ethz.ch
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S-1.2. Sample structure

The sample structure consists of self-assembled InGaAs quantum dots (QDs) embedded in a Schottky diode struc-
ture, cf. Fig. S1(b). The QDs are grown by molecular beam epitaxy. The sample design features a large tunnel coupling
between the QDs and a nearby Fermi reservoir (FR). To this end, we used a modulation doped QW that defines a
sharp boundary for the electron gas, consisting of a 40-nm-thick n++-doped GaAs layer and a In0.08Ga0.92As quan-
tum well (QW), both coupled via a 2 nm GaAs barrier. The excitonic emission wavelength of the QW is λ = 840 nm.
Due to segregation of dopants and the modulation doping, the QW/doped-layer system form the back contact (BC)
of the Schottky diode. From transport measurements we obtain an electron density of n = 1.2 × 1012 cm−2. The
tunnel barrier (TB) between QD and QW is designed to be 9 nm, which is in agreement with an estimate of the
lever-arm, after fitting the experimental absorption line shapes, that suggests a TB of 8.5 nm. In order to prevent a
current flow from the back gate to the semi-transparent 8 nm thick Ti-Au top gate, a blocking barrier (BB) of 38.5 nm
Al0.42Ga0.58As is grown 15 nm above the QDs, cf. the valence band and conduction band diagram in Fig. S1(b).
Furthermore, the blocking barrier close to the QD serves to stabilize photo-excited holes in the QD [1]. Photolumi-
nescence measurements of the QD emission as a function of gate voltage allows us to identify the different charging
regimes [Fig. S2(a)]. In resonant QD spectroscopy, it is crucial to identify the saturation of an optical transition in
order to prevent any power broadening [2]. In the presented experiments, we ensure that the laser power is 2.5 times
smaller than the saturation power of ∼ 2 nW, cf. Fig. S2(b).
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FIG. S2. (a) Photoluminescence spectrum of the QD transition energies as a function of gate voltages, allowing us to identify
the different charging plateaus. (b) Saturation behavior of the X0 transition in the plateau center (Vg = 0.52V). The full
width at half maximum (FWHM, black squares) and the differential transmission contrast (red squares) are measured versus
laser power. The solid lines are fits according to the experimental data [2]. The green solid line depicts the laser power used
in the present experiments, while the dashed line shows the saturation laser power. (c) Spectral splitting of the X0 transition
at a gate voltage of Vg = 0.52V. The X0 is split at zero magnetic field in two bright states obeying different optical selection
rules. The transition that we studied throughout the paper is depicted by filled black dots, whereas the energetically higher
transition (red squares) is suppressed by adjusting the laser polarization.

S-1.3. Fine structure splitting

The neutral exciton X0 is generated by a bound electron-hole pair having as eigenstates two bright states (denoted

as | ↑⇓⟩ ± | ↓⇑⟩) and two dark states (| ↓⇓⟩ ± | ⇑↑⟩), that are split by exchange splitting (H = − ∑
i=x,y,z(aiĴh,iŜe,i +

biĴ
3
h,iŜe,i)) [3] at zero magnetic field. The bright and dark manifolds are split due to electron-hole exchange coupling

(∆E ≫ T , see Sec. S-2.1), whereas the bright states are split by anisotropic exchange (δx). After excitation of the
bright exciton states, the QD electron can tunnel into the Fermi reservoir or decay into the dark state via co-tunneling
events. As tunneling broadening (∼ Γ) is much larger than the anisotropic exchange splitting ∼ δ ≪ Γ, the latter does
not affect the absorption line shapes, when the bright states are close to or above εF and is therefore negligible. In the
center of the X0 plateau, where tunneling is suppressed, we observe a polarization-dependent splitting of the bright
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excitons (δx = 15 µeV), which is smaller than the line width, cf. Fig. S2 (c) [4, 5]. This introduces a small uncertainty
in the calculated NRG center frequency with respect to the experimental data for line shapes in the plateau center.
As the hole spin-flip time is much longer than any other time scale of the system, we can fix the hole spin to be
| ⇓⟩ (or | ⇑⟩ with equal probability). These assumptions allow us to treat the system by NRG using only the states
| ↑⇓⟩/| ↓⇓⟩ (or | ↓⇑⟩/| ↑⇑⟩).

S-1.4. Measurement of DC-Stark shift and dipole moment

The DC Stark shift in the present QD sample originating from the applied electric field can be approximated by
two parameters, the permanent dipole moment p and the polarizability β:

∆Eth = Eoff − pF + βF 2 withF = −δVg/D, (S1)

where δVg is the change of gate voltage with respect to the reference gate voltage Vg = 0.52 V. D is the distance
between the ohmic back contact and the metallic top-gate. The permanent dipole moment, p, is a measure of the
spatial electron-hole separation in the exciton, r = p

e . In order to extract the relevant data we proceed as follows:

• We approximate each charging plateau separately with a linear DC-Stark shift (Ẽth = Eoff − pF ) and obtain
in the center of the X0 (X−) plateau an effective dipole moment rX0 at Vg = 0.52 V (rX− at Vg = 0.71V), cf.
Fig. S3 (a).

• Then we extract the quadratic overall DC-Stark shift. Here, the previously determined individual linear DC-
Stark shifts at Vg = 0.52 V (Vg = 0.71V) serve as tangents with respect to the threshold value Eoff = 1.3913meV
at Vg = 0.52V. Using the charging energy ∆E of the X− with respect to the X0 transition as another fit
parameter in Eq. S1, we obtain the best fit with the highest confidence for ∆E = 5.27meV, cf. Fig S3(a).
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FIG. S3. (a) Quantum confined Stark shift of excitons in the QD. The experimental data (red bullets) show the maximum peak
absorption positions of the X0 and (shifted) X− charging plateaus that are fitted by a second order approximation of the Stark
shift (dashed line). The linear approximations of the individual DC stark shifts for both charging states are shown as blue
solid lines. The black arrow indicates the charging energy ∆E of the X− with respect to the X0 transition. (b) Peak positions
of the direct (red triangles) and indirect (green triangles) absorption peak maxima, plotted without subtracting the DC-Stark
shift. The dipole moment of the indirect (green) transition is larger than that of the direct (red) transition by roughly a factor
of 2.

The experimental data of the X0 and (shifted) X− charging plateaus show a permanent dipole of r = 3.9 nm and
a polarizability of β = 7.2µeV/(kV/cm)2 [6]. These values are larger than for QDs with a low tunnel coupling,
possibly because the wave function of the QD charges extends into the FR. The observed two-peak structure shows a
gate-voltage dependent splitting, implying different dipole momenta for the direct and indirect excitons [Fig. S3(b)].

Note, that the ”bare” charging energy of the X− in the limit of low tunnel coupling (Γ = 0) and no scattering
potential HS = 0 is given by Ueh − Uee = 6.6 meV provided that we ignore the correlation effects. As the QD levels
hybridize with the FR due to tunneling events and the scattering potential, this leads to a energy renormalization
towards lower (higher) energies for the neutral (charged) QD transition (∆E < Ueh − Uee). The energy renormal-
ization difference is in the present experiment found to be Er = ∆E − (Ueh − Uee) ∼ −1.33meV. For details on the
determination of Ueh and Er see Sec. S-2.1.
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S-1.5. Signatures of FES in other quantum dots

We have studied the absorption line shapes of different self-assembled QDs. For QDs with a large tunnel-coupling
we find a shortening of the X0 charging plateau as well as a double peak structure. In Fig. S4(a), the plateau lengths
of the X0 and X− charging plateaus extracted from the PL measurements show a clear wavelength dependence.
Generally, the charging regimes of QDs can be described using a capacitive charging model. If the trapping potential
can be approximated by a parabolic potential, each charging plateau should have the same extent in gate voltage
(∝ Uee). However, we find that QDs at lower wavelengths have a significant shortening of the X0 plateau length,
L(X0), as compared to the X− plateau length, L(X−), suggesting that the dynamic scattering potentials (see main
text) increase in strength for QDs with lower wavelengths.

As a further hallmark of the scattering potentials, a double peak like absorption line shape arises at the X0 plateau
edge which we observed for several different QDs. Figure S4(b) shows a second QD with the X0 at E = 1.3757 eV
and a lower tunnel coupling Γ, which still shows the double peak structure.
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FIG. S4. (a) Gate voltage extents (lengths) of the X− and the X0 plateaus of all studied QDs extracted from photoluminescence
measurements. The black lines are a guide to the eye. (b) An example of the double peak structure in a different dot that has
smaller tunnel coupling. Inset: 2D differential transmission scan of the X0 plateau together with the indicated positions of the
measured absorption line shapes.

S-2. PARAMETERIZATIONS AND DISCUSSION OF THE MODEL

S-2.1. Parameterizations of the theoretical model

The extended Anderson model including a dynamic scattering potential, as discussed in the main text, can be
parameterized with a single set of parameters by consecutive fitting of the X0/X− plateaus and line shapes.

Γ = 400 µeV, ∆E = 175 µeV: The charging plateaus experience a characteristic energy renormalization due to the
tunnel-coupling Γ, as the QD electronic level hybridizes with the FR states and lowers the energy of the
excited (ground) state of the X0 (X−). This results into a bending of the plateau edges towards lower (higher)
energy. The line shape in the center of the X0 plateau (Vg = 0.52 V) is determined by co-tunneling processes
providing an irreversible decay into the dark state due to the dark-bright splitting (T ≪ ∆E), which leads
to homogeneous broadening. By fitting the data in the plateau center with theory, we estimate a dark-bright
splitting of ∆E = 175 µeV, which is in agreement with prior experiments, that measured a dark-bright splitting
of 200 − 500µeV [7]. To minimize the number of variables, we have chosen Γ = 400µeV from the center of the
X0. It is plausible that Γ for the X− is larger. Better fits could be obtained for letting Γ vary as a function of
gate voltage Vg.
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Uee = 6.8meV: The QD electron-electron repulsion Uee is determined by the plateau length of the X−.

Gee = 2.1meV, Geh = 3.0meV: As shown in the main text, the difference of the X0 and X− plateau length can
be explained by a dynamic scattering potential. As Gee ≤ Geh, the X0 charging plateau is fitted best using
Geh = Gee/0.7 = 3 meV. The accuracy in the fits of the absorption line shapes could be improved by varying
Geh and Gee throughout the charging plateau, which was not done here.

W = 2.0meV: The bandwidth of the Fermi reservoir was fitted from the line width of the absorption line shapes in
tunnel-regime.

Ueh = 13.35meV: The QD electron-hole attraction Ueh is extracted as follows: the charging energy ∆E = 5.27meV
between the centers of X− and X0 plateaus has the form ∆E = Ueh −Uee +Er, where Er is the shift accounting
for the effects of level hybridization and the scattering potential HS, cf. Fig. S3(a). Using the above-mentioned
value for Geh, Gee, Γ and W , our NRG calculations yield a shift of Er = −1.33meV (its value is dominated
by scattering, since the tunneling contribution at the plateau centers is rather small). As a result, we deduce
Ueh = ∆E + Uee − Er = 13.35meV. Note, we neglected any effect due to correlations, which could lead to
correction of the exact value of Ueh and Uee.

l = 0.058: The lever arm is l = D̃/(D + D̃), where D̃ = 8.5 nm is the QD/FR distance and D = 138.5 nm is the
QD/top gate distance indicated by both NRG calculation and the PL emission. This parameters can differ by

a few Å from the predicted growth parameter (D̃ = 9 nm,D = 138.5 nm) due to finite accuracy in the growth
of the sample.

T = 120mK: The temperature T of the FR electrons is extracted by the red tail of X− line shapes (see Sec. S-2.2).

α = 0.85, ϕ = π: The branching ratio and Fano phase can be fitted for the cases in the tunnel regime (see Sec. S-2.3).

S-2.2. Optical interference and sample temperature

In the following we discuss an optical interference effect caused by the sample structure [8] using absorption mea-
surements of the single electron charged exciton X−. The incident laser field on the sample EL is Rayleigh scattered
at the QD at which the scattered light can be forward and backward scattered. The backward scattered (reflected)
light travels in GaAs (refractive index n = 3.55) a distance D = 138.5 nm to the top gate and will be again partly
reflected at the top-gate (reflectivity r = 0.75, fitted). In first approximation the field at the transmission detector
[see Fig. S1(b)] is a superposition of the transmitted light and all scattered components. Here, the back-scattered
light accumulates a phase due to a different path length of φ = 2πn

λ 2D:

Etot = ELeiπ/2 + χ(λ)EL + reiφχ(λ)EL = iEL

[
1 − iχ(λ)(1 + reiφ)

]
, (S2)

with χ being the susceptibility of the QD with absorption ℑ(χ) and dispersive part ℜ(χ). Due to employing a
Gaussian shape on our beam, the laser field EL acquires a Guoy phase eiπ/2 in the far field regime. Furthermore, in
a differential transmission lock-in-method, the QD response function is modulated at a certain frequency such that
the measured absorption is at this frequency:

A(λ) = ∆I/I ∼ ℜ
[
iχ(λ)(1 + reiφ)

]
, (S3)

where I = E2
tot is the intensity detected by the photo detector and we neglected terms ∼ (χ(λ))2 as 1 ≫ χ(λ). The

back-scattered light mixes the dispersive part with the absorption part of the forward-scattered light, which leads to an
optical interference. The numerical renormalization group (NRG) theory used in this paper for the calculation of the
absorption line shapes ANRG considers ℑ(χNRG(λ)) = −ANRG(λ). In order to calculate the dispersive response and
thereby incorporate the optical interference we convolute the calculated absorption spectra using the Kramers-Kronig

relation ℜ(χNRG(λ)) = − 1
π P

∫
dλ′ ℑ(χNRG(λ′))

λ−λ′ .

The electron occupation of the fermionic reservoir (FR) is governed by a Fermi-Dirac distribution. Shake-up
processes due to finite temperature modify the available states in the Fermi reservoir. For the negative charged
exciton X− of a highly tunnel-coupled QD, the absorption tails for red detunings (ν < −T ) are governed by the
levels below the Fermi energy in the FR. The line shape thus shows an exponential tail that depends on temperature

∼ e
− ν

kBT [9]. For ν ≪ Γ, the line shape is governed by the spontaneous emission and resembles a Lorentzian tail. From
fits of the red tails of X− line shapes with NRG calculations including the optical interference effect at Vg = 0.67V
and Vg = 0.70V [Fig. S5(a)], we extract a FR electron temperature of T = 120 mK. For comparison we show in
Fig. S5(a) fits for different temperatures. In Fig. S5(b), we demonstrate that without the optical interference we
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FIG. S5. (a) Fits of X− line shapes at Vg = 0.70 V (inset at Vg = 0.67V) for different temperatures, i.e., T = 80mK (green),
T = 120mK (red) and T = 200 mK (blue) including the optical interference (without scattering potential HS = 0). (b) Fits of
the X− absorption line shape (Vg = 0.70 V) without accounting for the optical interference. The dotted line focusses on fitting
the blue tail of the experimental data, whereas the solid lines fits the red tail. The inset shows the role of optical interference for
a X0 absorption line shape at Vg = 0.52 V by incorporating (red curve) and neglecting (green curve) the optical interference.

cannot reproduce the full absorption line shape. Either we can fit the high energy or the low energy tail of the line
shape. As the X0 red tail is distorted by the dark-bright splitting, we determined the parameters for the optical
interference and the FR temperature from the X− line shapes to calculate the X0 line shapes, which are in good
agreement with the experiment, c.f. the inset of Fig. S5(b) (green curve shows the bare NRG calculations; red curve
includes the optical interference).

S-2.3. Branching ratio α between the direct and indirect transition

The branching ratio between the direct and the indirect transition can be determined by fitting the experimental
data [Fig. S6 (a)] with NRG calculations [Fig. S6 (b)]. It is defined by the wave function overlap of the QD electron
and QD hole versus the FR electrons and the QD hole. This ratio is specific for every QD. Since at zero magnetic
field the Hamiltonian can be chosen to be real, the Fano phase has to be ϕ = 0 or ϕ = π.
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FIG. S6. Comparison of measured line shapes (a) and NRG simulations (b) in the gate voltage range of Vg = 0.48V to 0.55V
(not normalized, cf. Fig. 1(c)) (c) Calculated cumulative χ2 of all measured line shapes from Vg = 0.481V to 0.55V for
destructive interference (ϕ = 0, red) and constructive interference (ϕ = π, blue) as a function of branching ratio α.
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Due to variations in the peak absorption contrast stemming from the fact that the experiments were carried out
on different days with uncontrolled changes in the alignment (on the order of 10%), we determined the values of the
branching ratio α and the relative phase ϕ applying the following fitting procedure. This allows us to quantify and
minimize the disagreement between theory and experiment as a function of α and ϕ for about 2700 data points in
total:

Using the system parameters of the Hamiltonian extracted as described in Sec. S-2.1 we generate a set of initial
and final eigenstates by diagonalizing the initial and final Hamiltonians using NRG. With Fermi’s Golden rule we
calculate the absorption spectra terms: AQD, AFR, and AI. The theoretical line shape is then given by ANRG(ω) =
α2AQD(ω) + (1 − α)2AFR(ω) + 2(1 − α)αAI(ω) cos(ϕ), where ω = ν + ωth, with ν being the detuning between the
laser frequency, ω, and the absorption threshold energy, ωth = (Ef

G − Ei
G)/~, that is given by the ground state

energy difference between the final and initial Hamiltonian. To compare the calculated and the measured line shapes
for a given gate voltage, we fit the theoretical curve aANRG(ν + ωth − Ẽ0) to the normalized experimental data

Aexp(E − E0)/Amax, where E0 = 1.3913 eV is the peak absorption energy at Vg = 0.52V. Ẽ0 and a are curve-specific
fit parameters, relating to the peak height and peak position. The fitting proceeds by first fixing {α, ϕ} and then

varying {a, Ẽ0} for each gate voltage to minimize the χ2. Changes in the electromagnetic environment upon optical
excitation lead to random charging events of the nearby defects and/or charge accumulation at the AlGaAs/GaAs
interface, which in turn modify the electric-field seen by the quantum dot at a given gate voltage. This results
in variations of the experimental peak position of σ(Ẽ0) = 30 µeV with respect to the theoretical predictions, c.f.
Fig. 1(b). a is constant for each absorption line shape and accounts for the day-to-day variations in the sample
alignment which in turn leads to a modified absorption contrast (i.e. the area under the absorption line shape). For
completeness, we show in Fig. 1(c) of the main text the measured experimental peak contrast together with the pure
peak absorption predicted by the NRG calculation (without compensating for alignment issues). From the deviations
between experiment and theory we estimate the unavoidable variations in oscillator strength to be on the order of
10%. As an objective measure of the quality of the fit we calculate the χ2 value for each line shape as a function
of the branching ratio α (for constructive, ϕ = π, and destructive interference, ϕ = 0, separately). Afterwards we
estimate the cumulative χ2 of all measured (in total 18) line shapes as a function of α. The best overall fit in the
range of Vg = 0.481 V −0.55V is obtained for α = 0.85 and ϕ = π [Fig. S6 (c)]. The case of destructive interference
(ϕ = 0) shows an optimal branching ratio of α = 1 for all line shapes, but the corresponding χ2 is larger than the
lowest χ2 obtained for ϕ = π.

In Fig. S7 (a), we compare the theoretical predictions for constructive and destructive interference at Vg = 0.481V,
0.482V and 0.483V. We emphasize that only the theoretical curve using a constructive interference can reproduce
the low-energy peak associated with the Fermi edge singularity [Fig. S7]. Oliveira et al. [10] predicted an Anti-Fano
resonance if the branching ratio α is equal to zero, which corresponds to an exclusively indirect exciton absorption.
This scenario cannot be achieved in the present experiments since the QD states (direct transitions) always have
a non-vanishing oscillator strength. However, in the NRG calculations, where we can decompose the individual
contributions to the absorption line shape, we observe the Anti-Fano resonance (AFR) in the indirect transition [see
blue curve in Fig. S7(b)].

0 250 500 750
0.0

0.5

1.0

0 500 1000
-0.5

0.0

0.5

1.0

0 250 500 750 -200 0 200 400 600 800
 [ eV] [ eV]

V
g
=0.482 V

 exp.
 
 

 [ eV]

A
(

)/A
m

ax

 [ eV]

V
g
=0.481 V

 

(b)

AFR

 

dir. indir.(a)

V
g
=0.483 V

FIG. S7. (a) Comparison of line shapes for Vg = 0.481V, Vg = 0.482V and Vg = 0.483V for the best fitting values of
branching ratio α for constructive (ϕ = π, red) and destructive (ϕ = 0, green) Fano interference. (b) Calculation of the
decomposed normalized direct (green), indirect (blue) and interference (orange) absorption spectra for Vg = 0.482V. In the
indirect transition an Anti-Fano resonance (AFR) can be observed.
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S-2.4. Comparison of the charging plateaus with theory and estimation of electron occupations

In the following we discuss the fits of the experimentally measured charging plateaus as well as the electron occu-
pations in the QD and the Fermi reservoir using a Numerical Renormalization Group (NRG) approach. The results
are displayed in Fig. S8. While at QDs without a scattering potential the X0 and X− charging plateaus have equal
lengths, we find a different result (experimentally and theoretically) as the scattering potential Geh ̸= Gee is turned
on [Fig. S4(a)]. The X0 plateau length is strongly modified by the scattering, whereas the X− plateau length is
unaffected, c.f. Fig. S8(a) black versus grey curve. The attractive Coulomb interaction between the QD hole and the
Fermi reservoir electrons forms an indirect exciton at the QD position, lowering the ground state difference between
the initial and final state of the Fermi reservoir by ∼ Geh. Equivalently, the QD electron tunnels into the Fermi reser-

voir for transition energies |εf
↑(Vg) − (εF − Geh)| < Γ, where the calculated Fermi energy εF = 0 is at V0 = 0.448V .

Here, the tunnel-regime is defined for gate voltages 0.48 < Vg < 0.495, which is confirmed by the simulations, cf. Fig.
S8(c). We find furthermore that a finite scattering potential modifies the energy renormalization of the X− plateau on
its right side (of higher Vg-values, approaching the X2− regime). For large detunings from the point of electron-hole
symmetry (plateau center) towards the X−2 charging state, the model breaks down most likely because the p-shell
states of the QD are not considered in the present model.
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FIG. S8. (a) Fits of the measured charging plateaus using NRG calculations together with a zoom-in of the X0 (inset upper
right) and X− (inset lower left) using the extracted parameter stated in the paper for the Ha

S = 0 (grey) and Ha
S ̸= 0 (black).

The solid lines depict the maximum absorption strength and the dashed lines are the ground state energy differences of the
initial and final states of the system. (b) Occupation (⟨nx⟩ = ⟨n↑,x⟩ + ⟨n↓,x⟩, red) and population inversion of the | ↑⟩ and | ↓⟩
state (⟨mx⟩ = ⟨n↑,x⟩−⟨n↓,x⟩, blue) of the QD (x = QD) and of the FR at the position of the QD (x = Ψ) for the initial (dotted
lines) and the final state (solid lines) including the dynamic scattering potential. (c) Zoom-in of the tunnel-regime of (b).

NRG simulations allow us to calculate the QD electron occupation and the electron occupation of the FR at the
QD position. Note, that the hole (| ⇓⟩) is traced out in the final Hamiltonian. The electron occupation of the QD
(⟨n̂QD⟩ =

∑
σ⟨n̂σ⟩) shows nicely the charging regimes of the X0 and X− while the population inversion of the | ↑⟩ and

| ↓⟩ state of the QD (⟨mQD⟩ = ⟨n̂↑⟩ − ⟨n̂↓⟩) displays the decay of the bright exciton into the dark exciton in the final
state and is a measure for the dark state population, provided the hole spin state (| ⇓⟩) remains preserved. Therefore
we have a negative population inversion in the X0, whereas in the X− both spin states are degenerate and we have
an equal occupation in the final state (zero population inversion). The occupation and the population inversion of the
| ↑⟩ and | ↓⟩ state of the FR at the position of the QD is depicted by ⟨nΨ⟩ =

∑
σ⟨nΨ,σ⟩ and ⟨mΨ⟩ = ⟨nΨ,↑⟩ − ⟨nΨ,↓⟩,

respectively. The FR is in the initial state (no scattering potential) half filled for each spin, resulting in an expectation
value of ⟨nΨ⟩ = 1. If the scattering potential is switched on, the scattering potential Gee depletes at the X− charging
state the FR at QD-position in the initial state. After absorption, the hole and the electrons in the QD lead to an
attractive (repulsive) potential in the X0 (X−) which induces a charge surplus (deficit) of the FR at the position of
the QD in contrast to the initial state. In Fig. S8(c) we highlight the tunneling regime, where a Fermi edge singularity
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arises. For the line shapes with Vg = 0.481-0.483V, the occupation decreased already significantly to a QD occupation
of ⟨n̂QD⟩=0.20-0.5. The population inversion also decreases, as the dark state becomes close to the Fermi edge; it is
in this regime that the final state of the absorption process is the correlated many-body state.
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6. Transport for impurity models

6.1. Kondo effect in an InAs nanowire quantum dot

Since its discovery, the Kondo effect has been realized in a range of systems: magnetic
impurities in bulk metals, single molecules coupled to Fermionic reservoirs, and different
kinds of quantum dots. The following section shows a detailed study of the Kondo effect for
a QD made of an InAs nanowire. Whenever possible, theory is compared to experiment
and it shows good agreement, apart from a stronger sensitivity of the conductance on
magnetic field in the experiment. The following paper can be seen as a reference for the
future study of properties related to the Kondo effect at InAs nanowire QDs.
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We report on a comprehensive study of spin- 1
2 Kondo effect in a strongly coupled quantum dot realized in a

high-quality InAs nanowire. The nanowire quantum dot is relatively symmetrically coupled to its two leads, so the
Kondo effect reaches the unitary limit. The measured Kondo conductance demonstrates scaling with temperature,
Zeeman magnetic field, and out-of-equilibrium bias. The suppression of the Kondo conductance with magnetic
field is much stronger than would be expected based on a g-factor extracted from Zeeman splitting of the Kondo
peak. This may be related to strong spin-orbit coupling in InAs.
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I. INTRODUCTION

The Kondo effect1 is one of the most vivid manifestations
of many-body physics in condensed matter. First observed
in 1930s in bulk metals through an anomalous increase in
resistivity at low temperatures, it was later associated with
the presence of a small amount of magnetic impurities.2 The
modern theoretical understanding is that the single unpaired
spin of the magnetic impurity forms a many-body state with
conduction electrons of the host metal. This many-body state
is characterized by a binding energy expressed as a Kondo
temperature (TK). When the temperature is decreased below
TK, the conduction electrons screen the magnetic impurity’s
unpaired spin, and the screening cloud increases the scattering
cross-section of the impurity. More recently, advances in
microfabrication opened a new class of experimental objects—
semiconductor quantum dots—in which a few electrons are
localized between two closely spaced tunneling barriers.3 At
the same time, it had been theoretically predicted that an
electron with unpaired spin localized in a quantum dot could be
seen as an artificial magnetic impurity and, in combination with
the electrons of the leads, would display the Kondo effect.4,5

The first observation of Kondo effect in quantum dots was
made in GaAs-based two-dimensional structures.6–10 Initially
thought to be very difficult to observe in such experiments, the
Kondo effect has now been seen in quantum dots based on a
wide variety of nanomaterials such as carbon nanotubes,11,12

C60 molecules,13,14 organic molecules,15–18 and semiconductor
nanowires,19–22 and has also been invoked to explain behavior
of quantum point contacts.23

In this paper, we present a comprehensive study of the
Kondo effect in a nanosystem of emerging interest, namely,
InAs nanowires grown by the vapor-liquid-solid (VLS)
method.24 Building on initial reports of Kondo effect in InAs
nanowires,19,20 we report Kondo valleys with conductance
near 2e2/h in multiple devices and cooldowns. This high
conductance, combined with temperature far below the Kondo
temperature, allows quantitative measurements of conductance
scaling as a function of temperature, bias, and magnetic field,

which we compare to theoretical predictions independent of
materials system. The high g-factor and small device area,
characteristic of InAs nanowires, allows measurement of the
splitting of the zero-bias anomaly over a broad range of
magnetic field, and we find that splitting is pronounced at
lower magnetic field than predicted theoretically.

II. EXPERIMENT

The quantum dot from which data are presented in this
paper is based on a 50-nm-diameter InAs nanowire suspended
over a predefined groove in a p+-Si/SiO2 substrate and held in
place by two Ni/Au (5nm/100nm) leads deposited on top of the
nanowire. The leads’ 450-nm separation defines the length of
the quantum dot. The p+-Si substrate works as a backgate. The
InAs nanowire was extracted from a forest of nanowires grown
by molecular beam epitaxy on a (011) InAs substrate using Au-
catalyst droplets. Wires from this ensemble were found to have
a pure wurtzite structure, with at most one stacking fault per
wire, generally located within 1 μm from the tip. We therefore
formed devices from sections of nanowire farther from the
wires’ end, with a reasonable presumption that the active area
of each device is free of stacking faults. Schottky barriers,
and screening of the electric field from the gate electrode
by the source and drain electrodes, together create potential
barriers next to the metal contacts. Thus electrons must tunnel
to the central part of the nanowire (the quantum dot) and
the contacts, giving rise to Coulomb blockade (CB). An SEM
image of a typical device is shown in Fig. 1(a). More details on
growth, fabrication, and charging effects have been published
previously.22

Transport experiments were carried out in a dilution
refrigerator with a base temperature Tbase ∼ 10 mK. All ex-
perimental wiring was heavily filtered and thermally anchored
to achieve electron temperature close to cryostat base temper-
ature, as verified in shot noise measurements.25 Conductance
measurements used standard lock-in techniques with a home-
built ultra-low-noise transimpedance preamplifier operated at
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FIG. 1. (Color online) (a) SEM image of a typical suspended
nanowire-based quantum dot device used in the experiment. The
scale bar corresponds to 1 μm. (b) Schematic representation of
the nanowire-based quantum dot device and its experimental setup.
(c) The temperature dependence of the nanowire-based quantum dot
conductance measured over a wide range of the backgate voltage Vg .
Five Kondo valleys are labeled I through V here. This identification
of valleys will be used throughout the paper. Discontinuities in the
temperature dependence in valley II are caused by device instability at
this particular range of Vg . (d) The gray-scale conductance plot in the
Vg-Vsd plane measured in the same range of Vg as in (c) at temperature
Tbase = 10 mK. Panels (a) and (b) are adapted with permission from
A. V. Kretinin et al., Nano Lett. 10, 3439 (2010). Copyright c© 2011
American Chemical Society.

frequencies of ∼2 kHz. Depending on the temperature T , the
ac excitation bias was set in the range of 1–10 μVrms to
keep it equal to or smaller than kBT (kB is the Boltzmann
constant). The magnetic field was applied perpendicular to
both the substrate and the axis of the nanowire. A schematic
representation of the nanowire-based device together with the
experimental setup is shown in Fig. 1(b).

III. RESULTS AND DISCUSSION

First, we would like to outline the main features associated
with the Kondo effect, which were studied in our experiment.
The conductance of a quantum dot weakly coupled to leads
is dominated by CB, seen as nearly periodic peaks in the
conductance as a function of gate voltage, with the conduc-
tance strongly suppressed between peaks. Each peak signals
a change in the dot occupancy by one electron. In contrast,
a dot strongly coupled to the leads can show the Kondo
effect, with the following signatures:6,8,26 (1) the Kondo effect
enhances conductance between alternate pairs of Coulomb
blockade peaks (that is, for odd dot occupancy). These ranges
of enhanced conductance are conventionally termed “Kondo
valleys.” (2) Conductance in Kondo valleys is suppressed by
increasing temperature. (3) Conductance in Kondo valleys is
suppressed by applied source-drain bias (Vsd), giving rise to
a zero-bias anomaly (ZBA). The full width at half maximum

(FWHM) of the zero-bias peak is of the order of 4kBTK/e (e
is the elementary charge). (4) In contrast to the conductance in
the CB regime whose upper limit is e2/h,27 the Kondo valley
conductance can reach 2e2/h, equivalent to the conductance
of a spin-degenerate 1D wire.28 In this limit, “valley” is a
misnomer, as the valley is higher than the surrounding peaks!
(5) The Kondo ZBA splits in magnetic field (B) with the
distance between the peaks in bias being twice the Zeeman
energy. (6) The dependence of the Kondo conductance on an
external parameter A such as temperature, bias, or magnetic
field can be calculated in the low- and high-energy limits.29

In the low-energy limit, kBTK � A = {kBT ,eVsd,|g|μBB},
the conductance has a characteristic quadratic Fermi-liquid
behavior:14,30–32

G(A) = G0

[
1 − cA

(
A

kBTK

)2
]

, (1)

where G0 ≡ G(A = 0) and cA is a coefficient of order unity.
Its numerical value is different for each parameter A, and
depends on the definition of TK. In the present paper, we use a
convention7 used in many experimental papers and define TK

by the relation

G(T = TK) = 0.5G0. (2)

In the opposite limit of high energy, when kBTK � A, the
conductance shows a logarithmic dependence. For example,
as a function of temperature:1,5

G(T ) ∝ G0/ ln2

(
T

TK

)
. (3)

There is no analytical expression for the intermediate regime,
where the parameter A ≈ kBTK, but numerical renormaliza-
tion group (NRG) calculations33 show that the connection
between one limit and the other is smooth and monotonic,
without any sharp feature at A = kBTK.

Before detailed consideration and discussion of the results,
we give a broad overview of the experimental data used in this
study. It will be followed by three subsections focusing on the
observed unitary limit of the Kondo effect (Sec. III A), conduc-
tance scaling with different external parameters (Sec. III B),
and some peculiarities observed in the Zeeman splitting (Sec.
III C).

Figure 1(c) presents the linear conductance G as a function
of the backgate voltage Vg . Different color corresponds to
different temperature, ranging from 10 to 693 mK. The Kondo
effect modifies the CB peaks so strongly that the separate
peaks are no longer recognizable and the simplest way to
identify Kondo valleys is to look at the the gray-scale plot
of differential conductance as a function of both Vg and Vsd

(“diamond plot”), Fig. 1(d). Every Kondo valley is marked
by a ZBA seen as a short horizontal line at Vsd = 0. Different
widths of ZBAs on the gray-scale plot reflect differences in the
Kondo temperature. In these same Kondo valleys, conductance
decreases with increasing temperature [see Fig. 1(c)]. Note
that Kondo valleys alternate with valleys having opposite tem-
perature dependence or almost no temperature dependence,
corresponding to even occupancy of the quantum dot. A small
unnumbered peak at about Vg = −2.95 V departs from the
general pattern of conductance observed in the experiment.
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Most likely, this feature, which occurs for even occupancy,
is associated with transition to a triplet ground state, and
thus emergence of spin-1 and singlet-triplet Kondo effect.34–36

However, it is difficult to conclusively identify the nature of
this anomaly since its temperature and bias dependencies are
weak.

All conductance peaks shown in Fig. 1(c) exceed e2/h,
reflecting Kondo-enhanced conductance and relatively sym-
metric coupling to the two leads. In particular, conductance
around Vg = −3.1 V in valley III reaches the unitary limit of
2e2/h, to within our experimental accuracy.

A. Kondo effect in the unitary limit

To realize maximum conductance in resonant tunneling, the
quantum dot should be symmetrically coupled to the leads. In
the conventional case of CB, electrostatic charging allows only
one spin at a time to tunnel, limiting the maximum conductance
through the dot to e2/h.27 The Kondo effect dramatically
changes the situation by forming a spin-degenerate many-body
singlet state, enabling both spins to participate in transport in
parallel so that Kondo conductance can reach its unitary limit
at 2e2/h.4,5 Experimentally, the unitary limit, first observed by
van der Wiel et al.28 in a GaAs-based gate-defined quantum
dot, remains the exception rather than the rule, because it
requires being far below the Kondo temperature, having
symmetric tunnel coupling to the two leads, and having
precisely integer dot occupancy.

Figure 2 presents a zoomed-in view of valley III from
Fig. 1(c), showing the Kondo effect in the unitary limit.
Note how the conductance maximum gradually approaches
2e2/h with decreasing temperature. Here, the limit is reached
only at some particular Vg , showing a peak instead of an
extended plateau as reported by van der Wiel et al.28 Since
tunneling is so strong that level widths are almost as large as
the Coulomb interaction on the dot, the dot occupancy nd is
not well quantized but rather changes monotonically, passing

FIG. 2. (Color online) The Kondo effect in its unitary limit.
The main plot shows the linear conductance G in valley III, as a
function of backgate voltage Vg at different temperatures. The dark
blue curve corresponds to the lowest temperature of 10 mK. Inset:
the red triangles correspond to the temperature dependence of the
conductance at a fixed Vg = −3.107 V (marked by the red triangle in
the main graph). The blue curve represents the result of approximation
with Eq. (4) where G0 = 1.98e2/h and TK = 1.65 K.

through nd = 1 (n↑ = n↓ = 1/2) at Vg ≈ −3.1V, where the
unitary limit is observed. In accordance with the Friedel sum
rule, the conductance of the dot is predicted to depend on the
dot occupancy n↑,↓ as G(↑ , ↓) = (e2/h) sin2(πn↑,↓). So the
sum of the conductances is 2e2/h when nd = 1. Note that
the Kondo conductance shown in Fig. 1(c) always exceeds
1.3 e2/h for different dot occupancies, showing that the
wave-function overlap with the two leads is rather equal:
the two couplings are within a factor of four of each other
over this whole range, suggesting that disorder along the
nanowire and especially at the tunnel barriers is quite weak.
To extract the Kondo temperature, we apply a widely used
phenomenological expression6 for the conductance G as a
function of temperature:

G(T ) = G0[1 + (T/T ′
K )2]−s , (4)

where G0 is the zero-temperature conductance, T ′
K =

TK/(21/s − 1)1/2, and the parameter s = 0.22 was found to
give the best approximation to NRG calculations for a spin-1/2
Kondo system.33 Here, the definition of TK is such that
G(TK) = G0/2. The inset of Fig. 2 shows the conductance
for different temperatures at Vg = −3.107 V (marked by the
red triangle in the main figure). The blue curve in the inset rep-
resents the result of the data approximation using Eq. (4) where
the fitting parameters G0 and TK are (1.98 ± 0.02)e2/h and
1.65 ± 0.03 K,37 respectively, showing that the system is in the
“zero-temperature” limit at base temperature, TK/Tbase ≈ 165.

B. Conductance scaling with temperature,
magnetic field, and bias

As noted above, the Kondo conductance as a function of
temperature, bias or magnetic field should be describable by
three universal functions common for any system exhibiting
the Kondo effect. Before discussing expectations for universal
scaling we describe in detail how temperature, magnetic field,
and bias affect the Kondo conductance in our experimental
system.

1. Kondo conductance and Kondo temperature
at zero magnetic field

For a more detailed look at the spin-1/2 Kondo effect
at B = 0, we select the two Kondo valleys IV and V [see
Fig. 1(c)]. The zoomed-in plot of these two valleys is shown
in Figs. 3(a) and 3(b). The coupling to the leads, and hence
the Kondo temperature, is much larger in valley V than in
valley IV. Valley IV shows a typical example of how two wide
Coulomb blockade peaks merge into one Kondo valley as the
temperature decreases below TK.7,8,28 Valley V, in contrast,
does not evolve into separate CB peaks even at our highest
measurement temperature of 620 mK. Also, as seen from
Fig. 3(b), the width of the ZBA, which is proportional to
TK, is larger for valley V. To illustrate this, in Figs. 4(a) and
4(b), we plot the conductance as a function of Vsd at different
temperatures for two values of Vg [marked by red triangles
in Fig. 3(a)] corresponding to the two valleys. In addition to
the ZBA of valley IV being significantly narrower than that of
valley V, at the highest temperatures, the ZBA of valley IV is
completely absent, while the ZBA of valley V is still visible,
pointing to a significant difference in TK. To quantify this
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FIG. 3. (Color online) (a) The detailed measurement of the
conductance temperature dependence shown in Fig. 1(c), valleys
IV and V. The red triangles mark two values of Vg = −2.835 and
−2.680 V for which the conductance as a function of Vsd is plotted in
Figs. 4(a) and 4(b), respectively. (b) The gray-scale conductance plot
in the Vg-Vsd plane was measured in the same range of Vg as in (a),
at temperature T = 10 mK.

observation, we found TK as a function of Vg for both valleys by
fitting the temperature-dependent conductance using Eq. (4).
The result of this fit is presented in Figs. 4(c) and 4(d). TK

shows a parabolic evolution across each valley, with TK ranging
from 0.3 to 1 K for valley IV and from 1.3 to 3 K for valley V.
This significant difference in TK correlates with the difference
in the ZBA width shown in Figs. 4(a) and 4(b). However, the
relation between the FWHM of the ZBA peak and TK is more
ambiguous due to out-of-equilibrium physics.38

To understand the dependence of TK on Vg and to extract
some relevant parameters of the system, we use an analytic
prediction for the dependence of the Kondo temperature based
on the microscopic parameters in the Kondo regime of the
single-impurity Anderson model:39

TK = ηNRG

√
�U

2
exp

[
πε0(ε0 + U )

�U

]
. (5)

Here, � is the width of the resonant tunneling peak, U =
e2/Ctot is the charging energy (Ctot is the total capacitance of
the dot), and ε0 is the energy of the resonant level relative to the
Fermi level. As TK is derived from the conductance [c.f. text
following Eq. (4)], the prefactor ηNRG in Eq. (5) of order unity
was calibrated using the NRG. To this end, we calculated the
conductance G(T ) for the single-impurity Anderson model
at ε0 = −U/2, for fixed U/� � 4.5. The requirement that
G(T = TK)/G(0) = G0/2 fixes the prefactor in TK to ηNRG �
1.10, which we took constant throughout. ηNRG does vary as
a function of U/� within a few tens of percent, due to the
exponential sensitivity of Eq. (5), however, since U and �

are already pretty well constrained in our case, this results in
negligible variations in our fitted U , ε0, or �.

FIG. 4. (Color online) Nonlinear conductance as a function of
Vsd around zero bias for different temperatures at Vg = −2.835 V (a)
and Vg = −2.680 V (b), near the centers of Kondo valleys IV and V.
The color scale is as in Fig. 3(a). (c) and (d) The Kondo temperature
TK, plotted on a semi-log scale, as a function of Vg for these same
valleys. Panel (c) corresponds to valley IV and panel (d) to valley V.
Blue curves in both panels show fits of Eq. (5) to data, with �IV ≈ 176
μeV for valley IV and �V ≈ 435 μeV for valley V.

To determine the parameters U , ε0, and �, we proceed as
follows. The value of U ≈ 400 μeV was found from Fig. 3(b)
for valley IV (we assume the value is equal for valley V, though
it may be slightly lower, given the stronger tunnel coupling
there). To relate ε0 and Vg , we used a simple linear relation
Vg − Vg0 = αε0 with the lever arm α = Ctot/Cg , where Vg0

is the position of the Coulomb peak and Cg is the gate
capacitance. Here, Ctot = e2/U and Cg = e/�Vg where �Vg

is the CB period. � was determined by fitting the curvature
of ln TK with respect to gate voltage in Figs. 4(c) and 4(d),
yielding �IV ≈ 176 μeV and �V ≈ 435 μeV for valleys IV
and V, respectively.

As noted above, the predicted dependence of TK in Eq. (5)
is based on the Anderson model in the Kondo regime (ε0/� <

−1/2).39 The fitting of the data with Eq. (5), however, gave
ε0/�IV ∼ −1.1 and ε0/�V ∼ −0.5 in the centers of valleys
IV and V, respectively. So the Kondo regime {|ε0|,|ε0 + U |} >

�/2 is reached only near the center of valley IV and only at
the very center of valley V. The rest of the gate voltage range
in these valleys is the mixed valence regime, where charge
fluctuations are important and Kondo scaling should not be
quantitatively accurate.40 Note that our NRG calculations show
that the deviations from universal scaling up to ε0 ∼ −�/2
should be small for T < TK . In any case, we have not attempted
to take into account multiple levels in our calculations, which
could quantitatively but not qualitatively modify the predicted
behaviors.

2. Kondo conductance at nonzero magnetic field

The Kondo effect in quantum dots at nonzero magnetic
field is predicted and observed to exhibit a Zeeman splitting
of the ZBA by an energy � = 2|g|μBB6,8 (g is the g-factor
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FIG. 5. (Color online) The Zeeman splitting of the Kondo ZBA
measured at T = 10 mK. (a) The gray-scale conductance plot of
Kondo valley IV [see Fig. 3(a)] measured at B = 0. (b) The same
as in (a) but at B = 100 mT. (c) Gray-scale conductance plot in
the Vsd-B plane measured at fixed Vg = −2.835 V denoted by the
cross in panel (a). The red dashed lines represent the result of the
fitting with expression Vsd = ±|g|μBB/e, where |g| = 7.5 ± 0.2.
Vertical blue dashed line marks magnetic field value 0.5kBTK/|g|μB

as a reference for the onset of Zeeman splitting (here TK = 300 mK).
While |g| = 7.5 gives the best match to linear Zeeman splitting, |g| =
18 (green dotted lines) could account for the fact that Zeeman splitting
is resolved at very low field. (d) Conductance at Vsd = 0 as a function
of T (blue squares) and as a function of the effective temperature
TB ≡ |g|μBB/kB (red triangles). The solid blue curve shows G(T )
from NRG, the solid red curve G(B) from NRG, and the dashed black
curve G(B) from exact Bethe ansatz (BA) calculations for the Kondo
model.44,45 These assume |g| = 7.5. For NRG and BA calculations
of magnetic field dependence, additional curves (solid green and
dashed brown) are plotted for |g| = 18, showing better match to
linear conductance data—though not to the differential conductance
in (c) above.

and μB is the Bohr magneton), which is a direct consequence
of the (now broken) spin-degeneracy of the many-body Kondo
singlet.41,42

To analyze the Zeeman splitting in our nanowire-based
quantum dot, we focus on Kondo valley IV. The Kondo ZBA
at zero field, seen in a zoom-in in Fig. 5(a), is suppressed
at B = 100 mT, but recovers once a bias of ∼40 μV is
applied [Fig. 5(b)]. Contrary to earlier observations in InAs
nanowires,20 we find that the g-factor at a given field is
independent of Vg as illustrated by the parallel slitlike shape of
the Zeeman splitting [see Fig. 5(b)]. (The g-factor measured for
valley III at Vg = −3.12 V is |g| = 7.5 ± 0.2. Unfortunately,
it was problematic to extract the g-factor reliably for valley
V due to large �V and it was hence assumed to be the
same as for valley IV. The g-factor for valley I measured
at Vg = −3.5 V [see Fig. 1(c)] turns out to be somewhat
larger |g| = 8.7 ± 0.2.) The gray-scale conductance plot in
Fig. 5(c) presents the evolution of the Zeeman splitting with

magnetic field at fixed Vg = −2.835 V, marked by the cross in
Fig. 5(a) [for the associated ZBA measured at B = 0 refer to
Fig. 4(a)]. The plot shows the splitting in bias �/e to be almost
linear in magnetic field, which allows us to deduce the value
of the g-factor by fitting the data with a linear dependence
Vsd = ±|g|μBB/e for 30 mT< B < 100 mT. Two red lines in
Fig. 5(c) show the result of fitting with |g| = 7.5 ± 0.2 (the
meaning of the dotted green lines will be discussed below).
This number is smaller by a factor of two than the InAs bulk
value of |g| = 15, possibly due to the reduced dimensionality
of the nanowire device,43 and it is consistent with previous
measurements.19

We now compare the dependence of the Kondo conductance
on the temperature and magnetic field, respectively. In order
to do so, we plot on the same graph G(T ,B = 0) and
G(T = Tbase,B) both taken in equilibrium at Vg = −2.835 V
[see Fig. 5(d)]. In order to quantitatively compare the effect
of magnetic field to that of temperature, we associate each
magnetic field value with an effective temperature TB(B) ≡
|g|μBB/kB, where |g| = 7.5 is extracted from the linear
Zeeman splitting of peaks in differential conductance. The
comparison of the linear conductance data is presented in
Fig. 5(d), where G(T ) is shown by the blue squares, G(B)
by the red triangles. In this same plot, theoretical predictions
are shown as curves: blue for G(T ) and red for G(B). Note
that for |g| = 7.5 (this value extracted from the splitting
of the differential conductance peaks), the blue and red
curves differ substantially for essentially all nonzero values
of their arguments, with magnetic field having a much weaker
predicted effect than temperature. Surprisingly, in light of this
theoretical prediction, the two sets of experimental data lie
almost on top of one another up to about 200 mK ≈ TK.
The NRG results for G(T = 0,B)42,44 have been checked
against exact Bethe ansatz calculations42,45 for G(T = 0,B)
[dashed black curve in Fig. 5(d)] and are seen to be in
excellent agreement, so the disagreement between theory
and experiment is not related to a particular calculational
framework. Were we to assume |g| = 18, we could explain the
experimental magnetic field dependence of linear conductance
G(T = 0,B), as shown by alternative curves (solid green and
dashed brown) plotted in Fig. 5(d). This value of g is within
the realm of possibility for InAs nanowires.20 However, we
are inclined to rely on the g value of 7.5 extracted from the
splitting of the peaks in the differential conductance. With
|g| = 18 we would have the puzzling result that the splitting
of peaks in differential conductance would be less than half the
expected 2|g|μBB [see dotted green lines in Fig. 5(c)], which
would be hard to explain. Regardless, the mismatch between
the strength of magnetic field effects on linear and differential
conductance is a conundrum. We hope this work will stimulate
further theory and experiment to address this issue.

3. Universal conductance scaling

In testing universal conductance scaling, we concentrate
first on the scaling of the linear conductance with T and
B. In the case of temperature dependence, the universal
scaling function has the form of Eq. (4). This expression
has been applied to a wide variety of experimental Kondo
systems7,11,14,19 and after expansion in the low-energy limit
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(T/TK � 1) it becomes Eq. (1) describing the quadratic
dependence on temperature:32

G ≈ G0[1 − cT (T/TK)2], (6)

where cT = cA = s(21/s − 1) = 4.92 and s = 0.22 is taken
from Eq. (4). Note that this coefficient cT is about 10% smaller
than the more reliable value cT = 5.3830,33,46,47 found from
the NRG calculations on which the phenomenological form
of Eq. (4) is based. (This slight disagreement stems from the
fact that the phenomenological expression given by Eq. (4)
was designed for the intermediate range of temperatures and
does not necessarily describe the dependence accurately at
asymptotically low T � TK or asymptotically high T � TK

temperatures. Hereafter, for the low-temperature analysis, we
use the theoretically predicted value cT = 5.38, see Table I)
Since Eq. (4) is independent of the particular system, it can
be used as the universal scaling function G/G0 = f (T/TK).
Figures 6(a) and 6(b) show the equilibrium Kondo conductance
(1 − G/G0) of valleys IV and V [see Fig. 3(a)] plotted as
a function of T/TK, taken at different Vg . Here, the values
of G0 and TK are found by fitting the data with Eq. (4) for
T � 200 mK (for higher temperatures the conductance starts
to deviate from the expected dependence due to additional
high-temperature transport mechanisms). As seen in Figs. 6(a)
and 6(b), all the data collapse onto the same theoretical curve
(dashed) regardless of the values of Vg or TK. In the low-
energy limit T/TK < 0.1, the conductance follows a quadratic
dependence set by Eq. (1) with coefficient cA = cT = 5.38 as
shown by the dotted line. As noted above, in the low-energy
limit, the phenomenological expression Eq. (4) is less accurate
and shows a quadratic dependence with cT = 4.92. This
explains why the dashed and dotted curves in Figs. 6(a) and
6(b) do not coincide at T/TK < 0.1.

It should also be possible to scale G(B) as a function of a
single parameter TB/TK. As an example, we present in Fig. 6(a)
scaled G(B) data from Fig. 5(d). At low fields, the measured
conductance is found to depend on B according to Eq. (1),
with the coefficient cA = cB ≈ cT . This equality has also been
independently checked by fitting the G(B) and G(T ) data for
T/TK,TB/TK < 0.1 with Eq. (1). The ratio between the two
fit coefficients, cB/cT , is approximately 1 (cB/cT = 0.95 ±
0.2), strongly counter to the theoretical expectations where
cB = 0.55 and cB/cT = 0.101, see Table I. To illustrate this
discrepancy, we plot Eq. (1) with cA = cB = 0.55 in Fig. 6(a)
(dash-dot line). The reason for such a dramatic difference in
G(B) dependence between theory and experiment for both
low- and intermediate-field range is unclear. We speculate
that the spin-orbit interaction, previously observed in InAs
nanowire-based quantum dots,48 may play a role.

It is important to note that in order for the universal scaling
G(B) to be valid, the coefficient G0 in Eqs. (1) and (3) should
be independent of B. In the case of GaAs quantum dots7,8,26,49

with |gGaAs| = 0.44, the magnetic field required to resolve
the Zeeman splitting is high and the orbital effects of that
field contribute significantly, resulting in a B-dependent G0,
even for a field parallel to the plane of the heterostructure.
In contrast, in our InAs nanowire-based quantum dot, with
large g-factor and small dot area S = 50 nm × 450 nm, Kondo
resonances are suppressed (split to finite bias) at fields smaller

FIG. 6. (Color online) (a) and (b) The equilibrium conductance
of Kondo valleys IV (a) and V (b) at different Vg , scaled as a
function of a single argument T/TK (blue squares) and TB/TK (red
triangles), where TB ≡ |g|μBB/kB. The dashed curve shows the
universal function described by Eq. (4). The dotted line represents
the low-energy limit of Eq. (1) with cA = cT = 5.38. The dash-dotted
line shows the theoretically predicted low-field scaling of G(B) with
cB = 0.55. The values of G0 and TK were found by fitting the data
with Eq. (4), see Sec. III B 1. For values of Vg refer to Figs. 4(c),
4(d), and 5(d). (c) and (d) The scaled conductance �G/α̃ = [1 −
G(T ,Vsd)/G(T ,0)]/α̃, where α̃ = cT α/[1 + cT (γ /α − 1)](T/TK)2,
versus (eVsd/kBTK)2 taken at several Vg along Kondo valleys IV (c)
and V (d). For valley IV, the backgate voltage was chosen from the
range Vg = −2.82 to −2.85 V with 5 mV step and for valley V from
the range Vg = −2.68 to −2.72 V with 20 mV step. Different colors
of the data points represent different temperatures (9.5, 12.9, 22.4,
32.6, 46.1, and 54.2 mK). The dashed line shows the corresponding
scaling function given by Eq. (7) with α = 0.18 and γ = 1.65.

than that required to thread one magnetic flux quantum B <

(h/e)/S ≈ 180 mT, thus making the orbital effects negligible
and G0 magnetic field independent.

Now that the scaling of the linear conductance has been
established, including the stronger-than-expected effect of
magnetic field, we examine how the out-of-equilibrium con-
ductance scales as a function of bias and temperature G/G0 =
f (T/TK,eVsd/kBTK). The function used to test the universal
scaling in a GaAs quantum dot,32 and in a single-molecule
device,14 originates from the low-bias expansion of the Kondo
local density of states50 and has the following form:

G(T ,Vsd)

= G(T ,0)

⎡
⎢⎣1 − cT α

1 + cT

(
γ

α
− 1

) (
T
TK

)2

(
eVsd

kBTK

)2

⎤
⎥⎦ . (7)

The coefficients α and γ relate to the zero-temperature
width and the temperature-broadening of the Kondo ZBA,
respectively. The zero-bias conductance G(T ,0) is defined
by Eq. (6). The coefficients α and γ are independent of the
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definition of the Kondo temperature and in the low-energy
limit Eq. (7) reduces to the theoretically predicted expression
for nonequilibrium Kondo conductance:31

G(T ,Vsd) − G(T ,0)

cT G0

≈ α

(
eVsd

kBTK

)2

− cT γ

(
T

TK

)2 (
eVsd

kBTK

)2

. (8)

The independence of α and γ on the definition of Kondo
temperature is important; though we have chosen an explicit
definition for TK, consistent with the choice used for most
quantum dot experiments and NRG calculations, other defini-
tions may differ by a constant multiplicative factor.

Figures 6(c) and 6(d) show the scaled finite-bias con-
ductance [1 − G(T ,Vsd)/G(T ,0)]/α̃, where α̃ = cT α/[1 +
cT (γ /α − 1)](T/TK)2, versus (eVsd/kBTK)2, measured at dif-
ferent temperatures and a few values of Vg . The conductance
data are fit with Eq. (7) using a procedure described by
M. Grobis et al.32 with two fitting parameters α and γ . The
range of temperatures and biases used for the fitting procedure
was chosen to be close to the low-energy limit, namely,
T/TK < 0.2 and eVsd/kBTK � 0.2, which is comparable to
the ranges used in Ref. 32. Averaging over different points
in Vg gives α = 0.18 ± 0.015 and γ = 1.65 ± 0.2 for valley
IV. Despite valley V being in the mixed-valence regime, the
parameters α and γ are close to those found for valley IV.
The scaled conductance in both cases collapses onto the same
curve, shown by the dashed line, for ±(eVsd/kBTK)2 � 0.1,
though the data from valley V deviate more from the predicted
scaling. This is not surprising because the valley V data are
in the mixed-valence regime, beside that the bias can cause
additional conduction mechanisms due to proximity of the
Coulomb blockade peaks.

Overall, the value of α obtained in our experiment is
larger than previously observed in a GaAs dot32,51 (α = 0.1)
and single molecule14 (α = 0.05). The exact reason for this
discrepancy is unknown, but the smaller ratio Tbase/TK may
play a role.

There is a large number of theoretical works devoted
to the universal behavior of finite-bias Kondo conductance
based on both the Anderson33,47,52–59 and Kondo29,31,60–63

models. Early predictions based on an exactly solvable point
of the anisotropic nonequilibrium Kondo model31,60,61 yielded
a value α = cV /cT = 3/π2 ≈ 0.304. This turned out to be
in disagreement with experiment, which is not surprising,
since this coefficient is not universal and hence will not
be the same for the isotropic Kondo models. A number of
subsequent papers that used a Fermi-liquid approach to treat
the strong-coupling fixed point of the Kondo model29,64,65

or studied the U → ∞ limit of the symmetric Anderson
model,52–57 all found α = 3/(2π2) ≈ 0.152. Our measured
value of α = 0.18 is in a good agreement with this prediction.
A Bethe-Ansatz treatment of the nonequilibrium Anderson
model47 yielded a different result, α = 4/π2, but this was
obtained using some approximations and was not claimed to
be exact. Some of the more recent theoretical papers have
studied the αV coefficients for the nonequilibrium Anderson
model under less restrictive conditions, i.e., allow for a
left-right asymmetry and a noninfinite U , in an attempt to

explain the experimental results of Refs. 14,32. J. Rincón and
coauthors53–55 found that by setting U to be finite the expected
value of α is decreased from 0.152 to 0.1, but γ remains ≈0.5.
Later, P. Roura-Bas56 came to a similar conclusion considering
the Anderson model in the strong-coupling limit in both the
Kondo and the mixed-valence regimes. It was shown56 that
α reduces from 0.16 to 0.11 if some charge fluctuation is
allowed by shifting from the Kondo to the mixed-valence
regime, and the parameter γ is not necessarily temperature
independent. In an attempt to explain the small α observed in
molecular devices14 Sela and Malecki57 evaluated a model for
the Anderson impurity asymmetrically coupled to the leads.
They concluded that deep in the Kondo regime α takes the
value of 3/(2π2) ≈ 0.152 independent of coupling asymmetry.
However, if U is made finite or, in other words, some charge
fluctuations are included, the parameter can vary within the
range 3/(4π2) � α � 3/π2 (0.075 � α � 0.3) depending on
the asymmetry of the tunneling barriers. Despite the fact that
our system is far from the strong coupling limit (U ∼ �,
instead of U � �, see Sec. III B 1), the observed value of
α = 0.18 is a good match to the strong-coupling prediction.

From temperature, magnetic field, and bias scaling of the
measured conductance, we are able to define a complete set
of coefficients cA to be used in Eq. (1) in order to describe the
Kondo effect in the low-energy limit:

G(T ) = G0[1 − cT (T/TK)2],

G(B) = G0[1 − cB(|g|μBB/kBTK)2],

G(Vsd) = G0[1 − cV (eVsd/kBTK)2],

where G0 is the conductance at zero temperature, magnetic
field, and bias, cT ≈ 5.6 ± 1.2, cB ≈ 5.1 ± 1.1, and cV =
cT α ≈ 1.01 ± 0.27. The substantial uncertainties originate
from the small number of experimental points satisfying the
requirement of low temperature, field, and bias used during
fitting with Eq. (1). Table I summarizes the experimental value
of these three parameters and compares to their theoretical
predictions. (The parameter α discussed above is denoted by
αV in the table.)

C. Zeeman splitting

At nonzero magnetic field, the spin degeneracy of the
Kondo singlet is lifted and the linear conductance through
the dot is suppressed.41 To recover strong transport through
the dot, a bias of ± 1

2�/e = ±|g|μBB/e should be applied
in order to compensate for the spin-flip energy. As a result,
in experiments, the ZBA is split into two peaks separated by
e� = 2|g|μBB/e,6,8 providing information on the effective
g-factor. This is why the splitting of the Kondo conductance
feature has become a popular tool for evaluating the value
and behavior of the g-factor in quantum dots made of
different materials.12,16,17,19,20,26,72 In this section, we discuss
two unexpected features related to the Zeeman splitting. First,
the minimal value of field needed to resolve the Zeeman
splitting is lower than expected. Second, the splitting is weakly
sublinear with magnetic field at larger fields.

Some attention has been previously paid to the value of
the critical field Bc at which the splitting of the Kondo
ZBA occurs. The theory developed by one of the present
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TABLE I. Summary of theoretically predicted parameters cT , cV , cB , and Bc and their experimental values. The second column lists the
values of the parameters c′

A appearing in G(A) = G0[1 − c′
A(A/kBT0)2], using a definition for the Kondo scale that is widespread in theoretical

papers, namely, T0 = 1/(4χ0), where χ0 is the static impurity spin susceptibility at T = 0. This definition of the Kondo temperature differs
from the TK used in this paper, i.e., G(TK) = G(0)/2, by the factor TK/T0 = 0.94.66 Thus the coefficients cA defined in our Eq. (1) and listed
in the fourth column are related to those in the second by cA/c′

A = (TK/T0)2. We cite only references that are relevant for the symmetric
Anderson model in the large-U limit, where the local occupancy is one; generalizations for the asymmetric Anderson model may be found in
Refs. 53–55,57,58,63. The last row lists values for the critical magnetic field Bc beyond which the Kondo ZBA splits and it is expressed in
units of TK defined by Eq. (2) (Theory: column 2; Experiment: column 5).

Parameter Predicted c′
A αA = c′

A/c′
T cA = c′

A(TK/T0)2 Experimental value

cT π 4/16 ≈ 6.088a 1 5.38 5.6 ± 1.2b

cV 3π 2/32 ≈ 0.925c 3/(2π 2) ≈ 0.152 0.82 1.01 ± 0.27,b 0.670,d 0.304e

cB π 2/16 ≈ 0.617f 1/π 2 ≈ 0.101 0.55 5.1 ± 1.1b

|g|μBBc/kBTK 1.06,g 1.04,h 1.1i <0.5,b 0.5,j 1,k 1.5l

aReferences 29,30,33,46,47,64,65,67–69.
bPresent experiment.
cReferences 29,52–57,63–65.
dReferences 32,51.
eReference 14.
fReferences 29,47,64,65.
gReference 42.
hReference 70.
iReference 71.
jReference 72.
kReference 49.
lReference 12.

authors42 predicts the value of the critical field at T/TK <

0.25 to be Bc = 1.06kBTK/|g|μB, with similar values being
found by other authors.70,71,73 Treating nonequilibrium more
realistically gives a slightly larger value.71 Recent work by the
authors, using density matrix approaches,74,75 suggests that
a precise determination of the critical field is a numerically
difficult task, which will require further work in order to
establish this beyond any doubt. There are also somewhat
conflicting experimental data on this issue. The value of Bc

predicted by Costi42 and Hewson et al.70 seems to agree with
the experimental findings for GaAs dots,49 however, in gold
break junctions72 the onset of the splitting was measured at
0.5kBTK/|g|μB and in the case of carbon nanotubes12 at about
1.5kBTK/|g|μB. In our case, TK = 300 mK [see Fig. 4(c)],
thus the predicted Bc

42,70,71,73 is expected to be ∼60 mT
(for |g| = 7.5), more than twice as large as that observed
experimentally: as seen in Figs. 7(a) and 5(c), the splitting
is already well resolved at B = 30 mT, which corresponds
to ∼0.5kBTK/|g|μB, the same as the result for gold break
junctions.72 Such a wide deviation of Bc found for various
Kondo systems (see Table I) may be associated with a different
width of ZBA (relative to TK ) in the various experiments.
Since the conductance peak discussed here [see Fig. 4(a)] is
rather narrow, most likely due to the relatively low temperature
T/TK ≈ 1/30, it is possible to resolve the splitting onset
at lower magnetic field. The analysis of the nonequilibrium
scaling parameters, described in Sec. III B 3, confirms the
above assumption.

Finally, we discuss the evolution of the splitting � with
magnetic field. Theory predicts that the peaks in the spectral
function for spin-up and spin-down electrons should cling
closer to zero energy at relatively low magnetic fields than

might naively be expected, so that � should be suppressed by
up to ≈1/3 in the low-field limit.46,76–80 One recent experi-
mental report corroborates this predicted trend of suppressed
splitting at low field.12 But the variety of deviations from
linear splitting in experiments—especially near the onset of
splitting—is large.12,49 To make small variations in � more
visible, we plotted the normalized value δ(B) ≡ �/(2|g|μBB)
in Fig. 7(b). The value of � was deduced from a simple peak
maximum search (blue squares) and by fitting the data with the
sum of two asymmetric peak shapes and some background (red
triangles). To fit G as a function of Vsd we used a combination
of two Fano-shape asymmetric peaks on a cubic background:

G(Vsd) = A1

( − Vsd+V1
�1

+ q1
)2

1 + ( − Vsd+V1
�1

)2 + A2

(
Vsd+V2

�2
+ q2

)2

1 +
(

Vsd+V2
�2

)2

+B|Vsd|3 + C. (9)

Here, A1 and A2 are the amplitudes, �1 and �2 are the
widths, q1 and q2 are the asymmetry parameters of the two
Fano resonances positioned at dc bias V1 and V2, respectively.
Parameters B and C characterize the cubic conductance back-
ground. Without the cubic background, the positions of the
conductance peaks, which correspond to Fano resonances at
V1 and V2 would be Vp1 = V1 + �1/q1 and Vp2 = V2 + �2/q2.
The peak separation is deduced from the fit according to the
equation �/e = Vp2 − Vp1. The quality of this fit is shown in
Fig. 7(a) by red solid curves. It is clear that at B > 100 mT,
the splitting is sublinear in magnetic field. Coincidence of the
splitting data extracted by two different methods [blue triangles
and red squares in Fig. 7(b)] makes us believe that this effect
is genuine and not an artifact due to weakly bias-dependent
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FIG. 7. (Color online) (a) The nonequilibrium Kondo conduc-
tance as a function of Vsd for several values of B (open blue squares).
The solid red curves represent the approximation of the data made
with the sum of two Fano-shaped peaks and a cubic background.
(b) The normalized Zeeman splitting �/[2|g|μBB] as a function
of B data acquired from the peak maximum search (blue squares)
and after fitting with two asymmetric peak shapes (red triangles).
The vertical blue and green dashed lines denote magnetic field of
0.5kBTK/|g|μB and kBTK/|g|μB correspondingly (here |g| = 7.5 and
TK = 300 mK).

background conductance. In contrast, splitting extracted from
our data at low fields B < kBTK/|g|μB is dependent on the
extraction method used, so we do not wish to make quantitative
claims for the magnitude of splitting in that field range. Our
results differ from previous observations mainly in that a
sublinear field splitting occurs also at higher fields and not
only at the onset of the splitting.12,49 We are unaware of any
theoretical predictions which would explain such sublinear
splitting or effective reduction in the g-factor at higher fields.

Previous theoretical works on the Kondo model predicted
a suppressed splitting δ(B) = �/2|g|μBB increasing mono-
tonically toward one for gμBB � kBTK with logarithmic
corrections.76,80,81 For the Anderson model, similar results
have been found with δ(B) rising monotonically with increas-
ing B.77,82,83 However, in some works71,77,82 δ(B � kBTK)
is found to exceed one, whereas in other works,46,83 δ(B �
kBTK) remains below one. This discrepancy between different
approaches is likely due to different approximations and the
extent to which universal aspects as opposed to nonuniversal
aspects are being addressed and remains to be clarified. For
example, it is known that extracting peak positions in equi-
librium spectral functions within NRG is problematic.71,83,84

Extracting a Zeeman splitting from experimental dI/dVsd at
finite bias and large magnetic fields is also complicated by the
increasing importance of higher levels and nonequilibrium
charge fluctuations.85 Nevertheless, our results for δ(B �
kBTK) in Fig. 7(b) exhibit a monotonically decreasing δ(B)
in the high-field limit for B > 1.5kBTK/|g|μB. This contrasts
to current theoretical predictions. As we cannot exclude the

contribution of orbital effects at higher B, the magnetic fields
used to determine the g-factor were chosen to be smaller than
100 mT (flux through dot �0.6�0).

IV. CONCLUSION

In conclusion, we have performed a comprehensive study of
the spin-1/2 Kondo effect in an InAs nanowire-based quantum
dot. This experimental realization of a quantum dot allowed
us to observe and thoroughly examine the main features of the
Kondo effect including the unitary limit of conductance and
dependence of the Kondo temperature on the parameters of
the quantum dot. Also the Kondo temperature’s quantitative
relation to the Kondo ZBA shape, Zeeman splitting of the ZBA,
and scaling rules for equilibrium and nonequilibrium Kondo
transport were studied. A previously undetected dependence of
the g-factor on magnetic field was observed. The nonequilib-
rium conductance matches the previously introduced universal
function of two parameters with expansion coefficients, α =
0.18 and γ = 1.65, in quantitative agreement with predictions
for the infinite-U Anderson model, and consistent with the
allowed range for the finite-U asymmetric Anderson model.
We conclude that InAs nanowires are promising new objects to
be used in future mesoscopic transport experiments, including
highly quantitative studies.

There is one experimental observation, however, that is
strikingly at odds with theoretical expectations: the con-
ductance G(B) at low temperatures shows a much stronger
magnetic field dependence than expected from theoretical
calculations for the single-impurity Anderson model [see
Fig. 5(d)]. As possible cause for this unexpected behavior,
we suggest spin-orbit interactions, which are known to be
strong in InAs nanowires.48 The occurrence of a Kondo effect
is compatible with the presence of spin-orbit interactions,
since they do not break time-reversal symmetry. However,
they will, in general, modify the nature of the spin states that
participate in the Kondo effect.86–89 In the present geometry,
where spin-orbit interactions are present in the nanowire (but
not in the leads), there will be a preferred quantization direction
(say �nso) for the doublet of local states. In general, �nso is not
collinear with the direction of the applied magnetic field, �B.
The local doublet will be degenerate for �B = 0, allowing a
full-fledged Kondo effect to develop as usual in the absence
of an applied magnetic field. However, the energy splitting
of this doublet with increasing field will, in general, be a
nonlinear function of | �B|, whose precise form depends on the
relative directions of �B and �nso. According to this scenario,
the magnetoconductance curves measured in the present work
would not be universal, but would change if the direction of
the applied field were varied. A detailed experimental and
theoretical investigation of such effects is beyond the scope
of the present paper, but would be a fruitful subject for future
studies.
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6.2. Transport at gold and silver with iron impurities

The Kondo effect, while not known at that time, was first observed in noble metals like
gold and silver [12, 94], contaminated with iron impurities. In the following section, we will
compare experimental measurements of the resistivity for both finite magnetic field and
finite temperature to numerical calculations for different models which represent possible
candidates for the correct microscopic description of the experimental systems. We thus
extend a previous study [95] by showing improved numerical data, explaining the details
of the numerical calculations, and showing also numerical data for the magnetoresistivity,
which was not possible before. Part of the calculations, especially those with three channels
and finite magnetic field are numerically very expensive and are feasible only by making
heavy use of the symmetries of the system, both abelian and non-abelian. In contrast to
calculations of previous studies [96, 97] for the single-channel Kondo model, which could
only fit different quantities by using different Kondo temperatures, for one of the models
under consideration, we find excellent agreement between theory and experiment for all
quantities, using a single Kondo scale.
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We consider iron impurities in the noble metals gold and silver and compare experimental data for the resistivity
and decoherence rate to numerical renormalization group results. By exploiting non-Abelian symmetries, we
show improved numerical data for both quantities as compared to previous calculations [Costi et al., Phys. Rev.
Lett. 102, 056802 (2009).], using the discarded weight as criterion to reliably judge the quality of convergence
of the numerical data. In addition, we also carry out finite-temperature calculations for the magnetoresistivity of
fully screened Kondo models with S = 1

2 , 1, and 3
2 , and compare the results with available measurements for iron

in silver, finding excellent agreement between theory and experiment for the spin- 3
2 three-channel Kondo model.

This lends additional support to the conclusion of Costi et al. that the latter model provides a good effective
description of the Kondo physics of iron impurities in gold and silver.
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I. INTRODUCTION

The magnetic alloys for which the Kondo effect was first
observed, in the 1930s, were iron impurities in gold and
silver.1,2 They showed an anomalous rise in the resistivity with
decreasing temperature, which Kondo explained in 1964 as
being due to an antiferromagnetic exchange coupling between
the localized magnetic impurity spins and the spins of the
delocalized conduction electrons.3 For his work, Kondo used
a spin- 1

2 , one-band model, which undoubtedly captures the
essential physics correctly in a qualitative way.

However, detailed comparisons between theory and ex-
periment have since shown that this model does not yield
a quantitatively correct description of the Kondo physics of
dilute Fe impurities in Au or Ag. Such a description must meet
the challenge of quantitatively reproducing, using the Kondo
temperature TK as only fitting parameter, several independent
sets of experimental measurements: the contributions by mag-
netic impurities (indicated by a subscript m) to the temperature
and field dependencies of the resistivity, ρm(T ,B), and to the
temperature dependence of the decoherence rate, γm(T ), ex-
tracted from weak (anti)localization measurements. The spin-
1
2 , 1-band Kondo model does not meet this challenge: when
comparing its predictions, obtained by the numerical renormal-
ization group (NRG),4–6 to transport measurements on dilute
Fe impurities in Ag wires, different Kondo scales were required
for fitting the resistivity and decoherence rates.7,8

In a recent publication (Ref. 9, involving most of the present
authors, henceforth referred to as paper I), it was argued that
the proper effective low-energy Kondo model for Fe in Au or
Ag is, in fact, a fully screened, spin- 3

2 three-channel Kondo
model. Paper I arrived at this conclusion by the following chain
of arguments. Previous transport experiments7,8 had indicated
that these systems are described by a fully screened Kondo
model,10–14 i.e., a Kondo model in which the local spin S is
related to the number of conduction bands n by S = n/2. As
mentioned above, the choice n = 1 had already been ruled

out in earlier work.7,8 Density-functional theory calculations
for Fe in Au and Ag, presented in paper I, showed that in
these host metals Fe preferentially acts as a substitutional
defect with cubic symmetry, leading to a substantial crystal
field splitting (�0.15 eV) between a higher-lying eg doublet
and a lower-lying t2g triplet. Moreover, the local spin moment
was predicted to be 3 Bohr magnetons, with an almost fully
quenched orbital angular momentum. This suggested a fully
screened Kondo model with n = 3 as the most likely candidate,
while leaving some scope for the possibility of n = 2 (but
none for n = 4 or 5). To discriminate between the options
n = 2 and 3, ρm(T ,0) and γm(T ) were then calculated using
NRG, for n = 1 (as reference), 2 and 3. Next, for both material
systems (Fe in Au and Ag), the ρm(T ,0) curves were fitted to
experimental data to obtain a Kondo temperature, T

(n)
K , for

each of the three models. Finally, using these T
(n)

K values, the
γm(T ) curves, which constituted parameter-free predictions
of the decoherence rate, were compared to corresponding
measurements, with the conclusion that the choice n = 3
worked distinctly better than n = 2.

The goal of the present paper is twofold. First, we describe
technical details of the numerical calculations performed
in paper I that could not be presented there for lack of
space. Second and more important, we extend the analysis
of paper I to the case of finite magnetic fields. Indeed, though
experimental data for ρm(T ,B �= 0) had been available for Fe
in Ag even at the time of writing of paper I, it had not been
possible then to compare them to theoretical predictions for
n = 3. The reason is that multichannel calculations present an
enormous challenge for the NRG, as the numerical complexity
grows exponentially with the number of channels. In paper I,
only Abelian symmetries (charge conservation in each channel
and total spin Sz) were exploited. For the purposes of paper I,
this turned out to be sufficient, but for the aforementioned
three-channel Kondo model, the calculations were numerically
extremely costly, and even at B = 0 just barely within the
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limits of feasibility. When the present authors attempted, in
subsequent work (unpublished), to treat the more general case
of a finite magnetic field using the same approach, the latter
turned out to be inadequate, plagued by numerical convergence
issues. Therefore further progress required enhancing the
numerical efficiency by exploiting non-Abelian symmetries.

Now, the effective fully screened symmetric three-channel
Kondo model mentioned above has several non-Abelian sym-
metries, including, in particular, an SU(3) channel symmetry.
This implies that the eigenspectrum of the Hamiltonian can
be organized into degenerate symmetry multiplets, and great
gains in numerical efficiency can be made by exploiting this
multiplet structure at every step of the NRG procedure. We
took this observation as incentive to implement non-Abelian
symmetries in our code on a completely generic footing for
tensor networks such as the NRG.15 Although the exploitation
of symmetries, Abelian as well as non-Abelian, together with
their respective strong gain in numerical efficiency is well
known in the literature, the treatment of non-Abelian symme-
tries in NRG has been largely restricted to the symmetry of
SU(2).4,5,16,17 The non-Abelian symmetry SU(2), however, is
simpler than the general case, since for n � 3 the SU(n) repre-
sentation theory involves complications due to the presence of
inner and outer multiplicities. A generic numerical framework
for treating arbitrary non-Abelian symmetries thus had been
missing, and became available only very recently.15,18,19

More specifically, the model Hamiltonians studied here pos-
sess SU(2) particle-hole symmetry, SU(n) channel symmetry,
and SU(2) spin symmetry for B = 0 or Abelian Sz symmetry
for B �= 0. By exploiting the non-Abelian symmetries, we
were able to drastically reduce the computational effort and
generate fully converged numerical data, even for the highly
challenging case of three channels. With a significantly more
powerful NRG at our hands then, the following analysis
serves two purposes. First, we present a thorough reanalysis
of paper I with improved NRG data. In particular, we give
a detailed discussion of NRG truncation and convergence
issues, which are under much better control with the new non-
Abelian scheme. The new numerical results show discernible
quantitative differences w.r.t. paper I, leading to changes in
the deduced Kondo temperatures that are quite substantial for
n = 3 (the relative change in TK is 31% for Fe in Au and
53% for Fe in Ag). Second, we present a detailed analysis
of the new numerical magnetoresistivity data and compare
these to experimental results for Fe in Ag. The results of
both analyses fully confirm the main conclusion of paper I:
the effective microscopic model for dilute iron impurities
in the noble metals gold and silver is given by a fully screened
three-channel Kondo model.

The remainder of this paper is organized as follows: Sec. II
describes the model, Sec. III describes NRG-related details,
and Sec. IV provides a comparison of experimental and
numerical magnetoresistance data, followed by a summary
in Sec. V.

II. MODEL

In paper I, we found it numerically convenient for our NRG
calculations to start not from a pure Kondo model but from
an effective Anderson-type model, because it is then possible

to obtain an improved spectral function by using the so-called
“self-energy trick,”20 which involves calculating the impurity-
level self-energy. It has recently been shown21 that a similar
strategy can be used for Kondo-type models, but this fact was
brought to our attention only after completion of the present
study.22 We here adhere to the strategy of paper I and adopt
the following Anderson-type model,

Ĥ =
n∑

α=1

∑
kσ

[t(d̂†
ασ ĉkασ + H.c.) + εkĉ

†
kασ ĉkασ ]

−J
(n)
H

�̂S2
imp + gμBBŜz

imp , (1)

which reduces to a Kondo-type model at low energies.23,24

The index α labels n degenerate local levels as well as n

independent channels of conduction electrons, each forming
a flat band of half-bandwidth D = 1 with constant density of
states ν0 = 1/2D per spin and channel. (In the remainder of
the paper, all energies are specified in units of half-bandwidth,
unless indicated otherwise.) d̂ασ is the annihilation operator
of an impurity electron with spin σ in level α, whereas ĉkασ

annihilates a reservoir electron in channel α with wave number
k and energy εk . Levels and channels are tunnel-coupled
diagonally in spin and channel indices, resulting in a width
� = πν0t

2 for each level, t being the hopping matrix element
between impurity and reservoir. The third term in Ĥ describes a
Hund-type exchange interaction with J

(n)
H > 0, added to favor

a local spin of S = n/2, where �̂Simp = ∑n
α=1

�̂Sα is the total

impurity spin operator, �̂Sα = 1
2

∑
σσ ′ d̂

†
ασ ′ �τσ ′σ d̂ασ is the spin

operator for an electron in level α, and �τ = (τx,τy,τz) are
Pauli spin matrices. The last term in Ĥ describes the effect
of an applied local magnetic field, with g = 2. To ensure
particle-hole symmetry (which renders the numerics more
efficient), we take εασ = 0 for the local level positions and
do not include any further charging energy.

The energies of the free orbital (FO) states are given by
roughly J

(n)
H S(S + 1) and the energy difference between two

FO states that differ by spin 1
2 is therefore given by �E(n) ≈

J
(n)
H [S(S + 1) − (S − 1

2 )(S + 1
2 )] = J

(n)
H (S + 1

4 ). To focus on
the local moment regime of the Anderson model, we choose
J

(n)
H such that �E(n) is significantly larger than � and gμBB,

ensuring a well-defined local spin of S = n/2, and an average
total occupancy of the local level of

∑
ασ 〈d̂†

ασ d̂ασ 〉 = n.
Moreover, the ratios J

(n)
H /� are chosen such that the resulting

Kondo temperatures have comparable magnitudes. In paper I,
we had implemented this strategy using the same �E(n) for all
three n values, with � = 0.01 and J

(1)
H = 0.053, J (2)

H = 0.032,
J

(3)
H = 0.023. We have since realized that much better NRG

convergence properties can be obtained by choosing much
larger values of J

(n)
H , to ensure that the energy differences of the

FO states truly lie well above the bandwidth (�E(n) � 100).
This is the numerical counterpart to the Schrieffer-Wolff
transformation:15,25 it shifts the numerically most expensive,
yet irrelevant, FO regime to an energy range that lies outside
the range whose energies are finely resolved during the NRG
diagonalization, thus reducing the numerical costs needed for
treating the Anderson model to a level comparable to that of
the Kondo model. For the numerical calculations presented
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here, we set the level width to � = 25 and choose J
(n)
H such

that the resulting spectral functions have the same half-width
at half maximum (=2 × 10−4) for all three cases, n ∈ {1,2,3},
thus ensuring that the Kondo temperatures are equal. This is
achieved by choosing the Hund couplings as J

(1)
H = 358.9,

J
(2)
H = 112.8, and J

(3)
H = 57.14.

For the model in Eq. (1), the resistivity and decoherence rate
due to magnetic impurities (relevant for weak localization) can
be calculated as follows:26,27

ρNRG
m (T ,B) = ρ0

m

2n

∫
dωf ′(ω)

∑
ασ

Im
(
�GR

ασ (ω)
)
, (2)

γ NRG
m (T ) =

[ ∫
dω( − f ′(ω))

√
γm(ω,T )

]2

, (3)

γm(ω,T ) = −γ 0
m

2n

∑
ασ

[
Im

(
�GR

ασ (ω)
) + ∣∣�GR

ασ (ω)
∣∣2]

. (4)

Here, GR
ασ (ω) is the fully interacting retarded impurity Green’s

function, f ′(ω) is the derivative of the Fermi function, ρm(0) =
ρ0

m = 2τ ρ̄/πh̄ν0 and γ 0
m = 2/πh̄ν0, where ρ̄ is the resistivity

due to static disorder and τ the corresponding elastic scattering
time. For real materials with complex Fermi surfaces, both
prefactors ρ0

m and γ 0
m contain material-dependent (hence

unknown) factors arising from integrals involving the true band
structure of the conduction electrons.

III. NRG DETAILS

A. Wilson chain and spectral function

Within the NRG, the noninteracting bath in Eq. (1) is coarse
grained using the dimensionless discretization parameter  >

1, followed by the mapping onto the so-called Wilson chain in
terms of the fermionic Wilson sites4–6 f̂i ′ασ with i ′ ∈ {0,1, . . .}.
Therefore Ĥ ∼= limN→∞ ĤN , where

ĤN
∼= Ĥloc +

N−1∑
i ′=0

ti ′

n∑
α=1

∑
σ

(f̂ †
i ′,ασ f̂i ′+1,ασ + H.c.) (5a)

Ĥloc ≡ ĤJ +
n∑

α=1

∑
σ

√
2�
π

(d̂†
ασ f̂0ασ + H.c.), (5b)

where

ĤJ = −JH
(n) �̂S2

imp + gμBBŜz
imp. (5c)

The impurity spin is coupled to a semi-infinite tight-binding
chain with the exponentially decaying couplings ti ′ ∝ −i ′/2.
For large enough  � 2, this ensures energy scale separation,
and thus justifies the iterative diagonalization of the Hamilto-
nian in the representation of the Wilson chain.4–6 In particular,
the energies of the Hamiltonian Ĥi at intermediate iterations
that include all terms i ′ < i, are rescaled in units of ωi , where

ωi ≡ a−i/2. (6)

Here, the constant a is chosen such that limi→∞ ti/ωi = 1. An
analytic expression for a in the presence of z shifts is given in
Ref. 28.

To obtain the Green’s function GR
ασ (ω), which determines

ρNRG
m (T ,B) and γ NRG

m (T ), we calculate the spectral function

Aασ (ω) = − 1
π

Im(GR
ασ (ω)) using its Lehmann representation:

Aασ (ω) =
∑
a,b

e−βEa + e−βEb

Z
|〈a|d̂ασ |b〉|2δ(ω − Eab), (7)

where Eab = Eb − Ea , with Ea , Eb and |a〉, |b〉 being
the eigenenergies and many-body eigenstates obtained by
NRG in the full density matrix (FDM) approach.29–32 Note
that due to the SU(n) symmetry of the Hamiltonian, the
spectral function Aασ (ω) does not depend on the index α.
Thus when exploiting non-Abelian symmetries, in practice,
one calculates the channel-independent symmetrized spectral
function Aσ (ω) ≡ 1

n

∑n
α=1 Aασ (ω), which corresponds to the

normalized scalar contraction d̂†
σ · d̂σ ≡ ∑

α d̂†
ασ · d̂ασ of the

spinors d̂σ .15

For the calculation of γm(T ), the knowledge of both the
real and the imaginary part of GR

ασ (ω) ≡ GR
σ (ω) is necessary.

The real part can be determined via the Kramers-Kronig
relations from Aσ (ω) after smoothing the discrete data.
ρNRG

m (T ,B), on the other hand, requires only the imaginary
part of the Green’s function. This makes the application of
the Kramers-Kronig relations and with it the broadening of
the discrete data unnecessary and ρNRG

m (T ,B) can therefore
be directly calculated from the discrete data,29 thus avoiding
possible broadening errors. Furthermore, due to particle-hole
symmetry, it is sufficient to calculate Aσ (ω) only for one spin
σ , since the spectral functions for opposite spins σ and σ̄ are
symmetric with respect to each other: Aσ (ω) = Aσ̄ (−ω).

B. Convergence criteria and discarded weight

As mentioned in the introduction, when using Abelian
symmetries the calculations described above are standard for
n = 1 and n = 2, but a real challenge for n = 3. The reason
is that the number of degenerate eigenstates in a typical
symmetry multiplet increases strongly with the rank of the
symmetry group. For example, for the present model with
n = 3, the typical degeneracy quickly becomes of order 102 to
103 even for low-lying energy multiplets (this is illustrated by
the presence of long “plateaux” in the excitation spectra shown
in Fig. 1). This implies that the number of kept states needs
to increase dramatically, too. Moreover a crucial prerequisite
for well-converged results is that the multiplet structure should
be respected during NRG truncation. No multiplet should be
kept only partially, i.e., cut in two; instead, each multiplet
should be kept or discarded as a whole. In the present paper,
cutting multiplets is avoided by implementing non-Abelian
symmetries explicitly and keeping all multiplets below a
specified truncation energy, as described further below. In
paper I, which implemented only Abelian symmetries, we
had used the more conventional NRG truncation scheme of
specifying the total maximum number of states to typically
be kept. However, we had adjusted this number as needed
to ensure that the lowest-lying discarded states were not
degenerate with the highest-lying kept states. Moreover, the
energy of the highest kept multiplet turned out to lie just
below a wide gap in the energy spectrum [see Fig. 1(a)].
In our subsequent work, we have found that the presence of
this wide gap considerably stabilizes the results; when we
keep some more multiplets such that the highest ones lie just
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FIG. 1. (Color online) Eigenenergies of the n = 3 calculations
from (a) paper I and (b) this work, for the lowest eigenstates (blue
circles) and truncation energy (dashed red line) of NRG iteration
i = 1. This iteration includes the impurity and the first two Wilson
sites f̂0 and f̂1, which by Eq. (5a) corresponds to Ĥ1; it is the first
iteration where truncation occurred. All energies Es are given in units
of ω1 [cf. Eq. (6)]. In (a), each dark blue dot marks an eigenstate;
in (b), each dark blue dot marks a multiplet, whose degeneracy is
indicated by the length of the adjacent light blue lines. Dashed red
lines indicate the truncation energy Etrunc. In paper I, the number of
kept states at iteration i = 1 was 4840 which was 216 states short of
truncating into the wider energy gap starting at Es = 5056. For the
present paper, we chose the truncation energy to lie well within a wide
spectral gap and kept 16 384 out of 262 144 states [only a small subset
of which are shown in the main panel of (b)]. This large number was
achievable by grouping the kept states into 2688 symmetry multiplets
with internal degeneracy. The insets of (a) and (b) show, respectively,
the full spectrum of states or multiplets at iteration i = 1. (The fine
structure seen in the main panel in (b) is not resolved in the inset,
since the latter uses a much coarser energy resolution on the vertical
axis.) The spectra in (a) and (b) have different fine structure, because
the model parameters were chosen differently in paper I and the
present work, respectively: the former used J

(3)
H = 0.0229, � = 0.01,

the latter J
(3)
H = 57.14, � = 25. As a result, the energy separation

between degenerate multiplets at the truncation energy is different,
namely O(t1/ω1) in (a) versus O(J (n)

H /ω1) in (b), where t1 is the
hopping matrix element between the first two sites of the Wilson
chain [cf. Eq. (5a)]. The different values of JH and t1 used in (a) and
(b) are indicated by black lines in the plots.

above the wide gap, the results deteriorate considerably, as
judged by the criterion discussed next. The criterion used in
paper I to judge the quality of convergence was based on

the Friedel sum rule,33 which for the present model implies
that the Kondo peak of the zero-temperature spectral function
should satisfy π� · Aασ (ω = 0) = 1. For paper I, this check
was satisfied to within 2% for spectral functions calculated
using the self-energy trick, which we had taken as indication
that the data could be trusted. When calculated without the
self-energy trick, though, the Kondo peak height was off by
1%, 16%, and 32% for n = 1, 2, and 3, respectively, which,
in retrospect, indicates lack of full convergence for the latter
two cases. Indeed, this became apparent a posteriori in the
course of the present study when we reanalyzed the NRG
data of paper I using a more reliable tool for checking NRG
convergence that had been developed in 2011,28 based on
monitoring the discarded weight. In essence, the discarded
weight measures the relevance of the highest-lying kept states
for obtaining an accurate description of the ground state space a
few iterations later. More concretely, it is calculated as follows:
construct a reduced density matrix for a chain of length i from
the mixed density matrix of the ground state space of a chain
of length i + i0 by tracing out the last i0 sites (typically i0 � 4
to ensure that all eigenvalues of the reduced density matrix are
nonzero); find the eigenvalues and eigenstates of this reduced
density matrix, say ρ[i;i0]

r and |ri;i0〉, and sort them according
to their energy expectation values, E[i;i0]

r = 〈ri;i0 |Ĥi |ri;i0〉. The
weight εD

5%,i
∼= ∑top 5%

r ρ[i;i0]
r contributed by the highest-lying

5% of states in this energy-sorted list then provides an estimate
for the discarded weight at iteration i. It provides a quantitative
measure for the importance of the discarded states had they
been included in the description of the ground state space of
iteration i + i0 by keeping a larger number of states. Repeating
this analysis for different sites i, the largest εD

5%,i value is taken
to define the “discarded weight” of the entire Wilson chain,
εD

5% = maxi(ε
D
5%,i). The entire analysis concerns the kept space

only, hence it is fast relative to the actual NRG calculation
itself. Well-converged physical quantities are obtained when
the discarded weight satisfies εD

5% � 10−10. For the NRG data
used in paper I, the discarded weight calculated a posteriori
turned out to be 2.8 × 10−13, 2.9 × 10−9, and 8.3 × 10−7 for
n = 1, 2, and 3, respectively. This indicates lack of proper
convergence for n = 2, and especially for n = 3.

C. Truncation scheme for non-Abelian symmetries

For the calculations presented here, we therefore use an im-
proved code, which also exploits non-Abelian symmetries.15

Here, the idea is to make use of the fact that degenerate
states can be gathered into symmetry multiplets. By the
Wigner-Eckart theorem, matrix elements including states from
the same multiplet are then related via Clebsch Gordan coef-
ficients. Thus it is sufficient to keep track not of all individual
states inside each multiplet, but only of entire multiplets, and
to store only one reduced matrix element for each multiplet.
This drastically reduces the size of the matrix that has to
be diagonalized at an NRG iteration, with corresponding
reductions in calculation times and memory requirements.

Our model possesses the following non-Abelian symme-
tries: SU(2) particle-hole, SU(2) spin (in the absence of
magnetic field), and SU(n) channel symmetry. For many of
our calculations, we need B �= 0, in which case the SU(2)
spin symmetry is reduced to an Abelian symmetry using
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Sz. Moreover, particle-hole and channel symmetries do not
commute in general, yet their combination generates the larger
symplectic symmetry Sp(2n) (see Ref. 15). This symmetry,
which encompasses both particle-hole and channel symmetry,
fully exhausts the model’s symmetry; consequently, no degen-
eracies remain between different Sp(2n) multiplets (a typical
multiplet contains several hundreds up to several thousands
of states). For the calculations presented in this work, using
SU(n) [rather than Sp(2n)] turned out to be sufficient. Here,
we use SU(n) channel symmetry together with total charge
for n ∈ {2,3} and particle-hole symmetry for n = 1. The gain
in numerical efficiency due to these symmetries is huge. For
example, for n = 3, the largest SU(n) multiplets kept in our
NRG calculations already reach dimensions of above 100.
By exploiting these symmetries, calculation times as well as
memory requirements are reduced by more than two orders of
magnitude compared to those of paper I. As a consequence, the
calculations presented here can be simply performed within a
few hours on standard workstations.

We used an NRG discretization parameter of  = 4, and
perform z averaging34 with Nz = 2 (and z ∈ {0,0.5}) to mini-
mize discretization artifacts.35 For n = 3, the computationally
most challenging case, we used the following truncation
scheme. For the diagonalization of H0 ≡ Ĥloc, all states were
kept. For iteration i = 1, we used a truncation energy [given
in rescaled units of ωi=1, cf. Eq. (6)] of Etrunc = 2JH/D > 7.
Figure 1(b) shows a subset of the corresponding kept eigenen-
ergies and multiplet degeneracies, while Fig. 1(a) shows
corresponding information for the calculations from paper I.
The inset of Fig. 1(b) shows that all Kondo-like states of
the Anderson model have been retained. For iterations i � 2,
we used Etrunc = 7, except for z = 0.5 at iteration i = 2,
where we used Etrunc = 6 to reduce computational costs due
to the extraordinary large density of states at that iteration;
this choice of parameters corresponds to keeping �10 000
multiplets (�77 000 states). Using this scheme, a single NRG
run for n = 3 required about 40 GB of RAM and took on the
order of 10 hours of calculation time on an 8-core processor.
The subsequent calculation of the spectral function required a
similar amount of time and 55 GB memory. The large number
of kept multiplets then resulted in high numerical accuracy. In
particular, the spectral functions calculated with and without
using the improved self-energy, already agreed very well
with each other, which clearly demonstrates fully converged
numerical data. Having established this for a few representative
cases, we proceeded to calculate the data presented below
without using the self-energy trick.

D. Resistivity obtained by non-Abelian NRG

To compare the results obtained with our new approach with
those of paper I, Fig. 2(a) shows the temperature dependence
of the zero-field resistivity for n = 1, 2, and 3, computed using
both Abelian NRG with self-energy trick as in paper I (dashed
lines) and using our new non-Abelian NRG approach (solid
lines), which produced truly well-converged results. We define
the Kondo temperature T

(n)
K associated with a given numerical

resistivity curve ρNRG
m (T ,0) by the condition

ρNRG
m

(
T

(n)
K ,0

) = 1
2ρNRG

m (0,0) . (8)
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FIG. 2. (Color online) (a) Temperature dependence of the zero-
field resistivity for n = 1, 2, and 3, computed using both Abelian
NRG with self-energy trick as in paper I (dashed lines) and our
new non-Abelian NRG approach (solid lines). For clarity, successive
curves have been vertically shifted by 0.1. (b) The magnetic-field
dependence of the zero-temperature resistivity for n = 1, 2, and 3,
calculated using non-Abelian NRG.

Then ρNRG
m (T ,0)/ρNRG

m (0,0) versus T/TK should be a univer-
sal curve for given n. For n = 1 and 2, the solid and dashed
lines in Fig. 2(a) agree well (except at large temperatures
for n = 1, where the dashed curve is affected by free-orbital
states, implying that in paper I, T

(1)
K had not been chosen

sufficiently small with respect to the FO excitation energy).
For n = 3, however, the shapes of the dashed and solid curves
actually differ quite noticeably. The reason for the difference
is the lack of full convergence of the Abelian NRG data.
This becomes clearly evident by comparing the discarded
weights, listed in the legend of Fig. 2(a), of the non-Abelian
and Abelian calculations: for n = 3, the respective discarded
weights of 3.4 × 10−11 and 8.3 × 10−7 indicate that the former
calculations, but not the latter, are well converged. This
comparison thus highlights both the benefits of exploiting non-
Abelian symmetries in order to reduce convergence problems,
and the importance of checking the latter in a reliable fashion
by monitoring the discarded weight.

The fact that the resistivity curve for n = 3 shows a more
gradual decrease with increasing temperature for the new non-
Abelian results than for the old Abelian ones, implies that fits
to experiment will yield a larger Kondo temperature for the
former, as we indeed find below.
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TABLE I. Values of parameters determined from fitting the exper-
imental measurement. The values for T

(n)
K and δ(n) are extracted using

the fitting procedure whose results are shown in Fig. 3. �ρexp(0,0) is
the measured value for the resistivity at zero magnetic field and the
lowest temperature avalaible. For the sake of completeness, we also
show ρuni,(n)

m (0,0) = �ρexp(0,0) − δ(n), which, according to Eq. (10),
corresponds to the unitary Kondo resistivity.

n AuFe3 AgFe2 AgFe3

T
(n)

K 1 0.6 ± 0.1 2.5 ± 0.2 2.8 ± 0.2
(K) 2 1.0 ± 0.1 4.3 ± 0.3 4.7 ± 0.3

3 1.7 ± 0.1 7.4 ± 0.5 8.2 ± 0.5

δ(n) 1 −0.002 0.003 0.001
(n�cm/ppm) 2 −0.045 −0.005 −0.007

3 −0.090 −0.013 −0.016

�ρexp(0,0) 0.211 0.041 0.041
(n�cm/ppm)

ρuni,(n)
m (0,0) 1 0.213 0.038 0.040

(n�cm/ppm) 2 0.256 0.046 0.048
3 0.301 0.054 0.057

Figure 2(b) shows the zero-temperature magnetoresistivity
curves for n = 1, 2, and 3, calculated by non-Abelian NRG.
The curves are scaled by the same T

(n)
K as derived from the

temperature-dependent data where the latter, by construction,
cross at T = T

(n)
K [cf. Eq. (8)]. Interestingly, the magnetic-field

dependent curves here also approximately cross a common
point at a magnetic field of about gμBB ∼ 1.8 kBT

(n)
K having

ρm(T = 0,B)/ρm(0,0) � 0.4. The general trend of the curves
in Fig. 2(b) is similar to that seen in Fig. 2(a): the larger n

the more gradual the decrease in resistivity with increasing
temperature or field. This indicates that the larger the local
spin S = n/2, the larger the energy range (in units of T

(n)
K )

within which its spin-flip-scattering effects are felt strongly by
conduction electrons. In absolute energy units, this tendency
is even stronger, since the fits to experiment performed below
yield T

(1)
K < T

(2)
K < T

(3)
K (cf. Table I). Interestingly, the n-

dependent differences in curve shapes are more pronounced for
the field dependence than for the temperature dependence;36

in Fig. 2(b), the decrease of the resistivity for a given n sets
in at a higher energy and then is steeper than in Fig. 2(a).
Thus the comparison between experiment and theory for the
magnetoresistivity performed below constitutes a stringent test
of which choice of n is most appropriate, independent of and
complementary to the tests performed in paper I.

IV. COMPARISON WITH EXPERIMENT

To identify the microscopic model that describes the
system of iron impurities in gold and silver correctly, we
compare NRG calculations for the resistivity ρNRG

m (T ,B)
and the decoherence rate γ NRG

m (T ) to experimental data,
ρ

exp
m (T ,B) and γ

exp
m . [In the following, when referring to

both NRG and experiment, we omit the upper index and
write ρm(T ,B) and γm(T ).] The data to be analyzed stem
from a detailed experimental study7 performed in 2006 on
quasi-one-dimensional wires. One AuFe sample and two AgFe
samples were studied, to be denoted by AuFe3, AgFe2, and
AgFe3, with impurity concentrations of 7 ± 0.7, 27 ± 3, and

67.5 ± 7 ppm, respectively. These concentrations are so small
that multi-impurity effects can be ignored. Low-field mea-
surements of the temperature-dependence of the resistivity,
performed at B = 0.1 T to suppress weak localization, are
available for all three samples. We will denote this data
by ρ

exp
m (T ,0) [rather than ρ

exp
m (T ,0.1T)], and compare it to

numerical results for ρNRG
m (T ,0) computed at B = 0, since

1 − ρNRG
m (T ,0.1T)/ρNRG

m (T ,0) < 0.5% for all three cases n ∈
{1,2,3}. Moreover, experimental data are available for γ

exp
m (T )

from AgFe2 and AuFe3, and for ρ
exp
m (T ,B) from AgFe2.

The comparison between experiment and theory proceeds
in three steps. (i) First, we compare measured data and NRG
predictions for the resistivity at zero magnetic field ρm(T ,B =
0) to determine two fit parameters, T (n)

K and δ(n), for each of the
samples and each of the three models n ∈ {1,2,3}. After the
fit parameters have been determined, we use T

(n)
K and δ(n) to

make parameter-free predictions for (ii) the decoherence rate
γm(T ) and (iii) the temperature-dependent magnetoresistivity
ρm(T ,B), and compare these to experiment for those samples
for which corresponding data is available. Here, (i) and
(ii) represent a thorough reanalysis of the experimental data
of paper I using our new, improved numerical data, while
(iii) involves experimental data not published previously, and
new numerical data.

A. Determination of fit parameters

The experimental resistivity data to be discussed below
(shown in Fig. 3) have several contributions of different
physical origin:

�ρexp(T ,B) = ρexp
m (T ,B) + ρph(T ) + δ . (9)
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FIG. 3. (Color online) Similar figure as Fig. 3 of paper I, but using
substantially improved numerical data. The figure shows low-field
experimental data for the temperature dependence of the resistivity,
denoted by �ρexp(T ,0) but taken in a small field of 0.1 T to suppress
weak localization (see text), and NRG calculations for n ∈ {1,2,3},
performed at B = 0. The NRG curves were fitted to the experimental
data, using T

(n)
K and δ(n) as fitting parameters [see Eq. (10)] with the

fitting range being indicated by arrows. For temperatures below the
fitting range, the data are less reliable due to a long equilibration
time, whereas for temperatures above the fitting range the phonon
contribution to �ρexp(T ,B = 0) becomes relevant. For clarity, the
curves for AgFe2 and AuFe3 have been shifted vertically by 0.25 and
0.75, respectively.
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FIG. 4. (Color online) Similar figure as Fig. 4 of paper I, but using
clearly improved numerical data. Panels (a), (b), and (c) show the
normalized decoherence rate γm(T )/γ max

m vs. T/T
(n)

K for n ∈ {1,2,3},
respectively. The Kondo temperatures are determined from the fits
of ρNRG

m (T ,B = 0) to the experimental data according to Eq. (10).
The χ 2 values indicated in the legends were obtained as the sum
of the least squares between the experimental data and the linearly
interpolated NRG curves.

Here, ρ
exp
m (T ,B) is the resistivity due to magnetic impurities,

ρph(T ) is the resistivity due to phonon scattering, and δ is
an unknown offset which does not depend on temperature
or magnetic field. There are two further contributions to
the resistivity: a classical contribution,8 which scales as B2,
and a contribution due to electron-electron interactions,37,38

which scales as 1/
√

T . These have already been subtracted
from the measured resistivity data shown in Figs. 3 and 5
using procedures described in Refs. 39,40, and hence are not
displayed in Eq. (9).

For the fitting process at B = 0, the normalized NRG data
ρNRG

m (T ,0)/ρNRG
m (0,0) are approximated by a fitting function

gn(T/T
(n)

K ) constructed from higher-order polynomials, where
gn(0) = 1 and T

(n)
K is fixed by scaling the temperature axis such

that gn(1) = 1
2 [cf. Eq. (8)]. We then fit the experimental data

to the form

�ρexp(T ,0) ≈ δ(n) + (�ρexp(0,0) − δ(n))gn

(
T/T

(n)
K

)
, (10)

using a χ2 minimization with T
(n)

K and δ(n) as fit parameters.
While a similar analysis was performed in paper I, the
numerical data in the present paper are of improved quality, in
that we can report fully converged data also for the numerically
extremely challenging case of n = 3. The newly extracted
values of T

(n)
K for the three samples are given in Table I. For

n ∈ {1,2}, they are slightly different from the ones of paper I,
yet within the given error bars (14 % and 0 % for AuFe3,
9 % and 5 % for AgFe, respectively) due to the fact that
we used different fitting ranges to minimize the error arising
from the phonon-contribution for larger T and because we
use higher-order polynomials to approximate the NRG data,
which may be considered more accurate than the analytical
expression used in paper I. The difference in TK is more
substantial for n = 3 (31 % for AuFe3 and 53 % for AgFe)
reflecting larger differences between the previous and our new,
improved NRG results for n = 3. Experimental and fitted NRG
data are shown in Fig. 3.

B. Decoherence rate and magnetoresistivity

With the T
(n)

K for AgFe2 and AuFe3 determined above we
are now in a position to make a parameter-free theoretical
prediction of the decoherence rate. As shown in Fig. 4 for
AgFe2 and AuFe3, the agreement is clearly best for n = 3
and becomes worse with decreasing n, both for low and high
temperatures. A quantitative measure for the agreement is
given by the χ2 values for n ∈ {1,2,3}, which are displayed in
each of the panels in Fig. 4. This conclusion is in accordance
with paper I, where the n = 3 case also agreed best with the
experimental data, although TK and γm(T ) for n = 3 were
significantly less accurate then.

Next we turn to the magnetoresistivity. The above-
mentioned implementation of non-Abelian symmetries in our
NRG code,15 which drastically reduces computation time and
memory requirements, allows us to extend the analysis of
ρm(T ) of paper I to the whole two-dimensional parameter
space of T and B. Since the fitting procedure of ρm(T ,B =
0) described above leaves no further free parameters, this
comparison is an additional strong check of the validity of
the n = 3 model. The experimental data of ρm(T ,B) for the
sample AgFe2 are shown together with the numerical data for
n ∈ {1,2,3} in Fig. 5. [The values of ρm(T ,B = 0) differ
for n ∈ {1,2,3}, due to the different δ(n) values determined
from Eq. (10).] Again, the three-channel model reproduces
the measured results best. Even though there are still slight
deviations between theory and experiment at high magnetic
field for the n = 3 curves at 0.1 and 0.85 K, which might
originate from very small temperature drifts, the overall
agreement, combined with that for γm(T ) (see Fig. 4) and
ρm(T ,0) (see Fig. 3), is rather impressive. Thus we conclude
that the n = 3 model consistently reproduces all the transport
data discussed above.
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FIG. 5. (Color online) Experimental and theoretical results for ρm(T ,B), shown using solid or dashed curves, respectively. Left column: (a),
(b), and (c) compare the experimental data for AgFe2 to NRG-calculations for n ∈ {1,2,3}, respectively. Right column: (d), (e), and (f) show
the same data as in the left column, except that for clarity the curves for successive temperatures are shifted vertically by 0.15 to avoid them
from overlapping, thus enabling a better comparison between experiment and theory for each temperature. T

(n)
K and δ(n) are already determined

by the fitting procedure of Eq. (10), which allows a parameter-free theoretical prediction for ρm(T ,B). The χ 2 values indicated in (d)–(f) were
calculated using a set of 1000 uniformly spaced field values in the range B ∈ [0.07349,3.05000] T. The experimental data clearly show best
agreement with theory for n = 3, which supports the conclusion from the examination of γm. For T = 0.030 and 0.10 K, the signal to noise
ratio is much lower than for the other curves since the measurement current had to be reduced to stay in thermal equilibrium; therefore in the
left panels, the experimental data for these two temperatures have been smoothed for better visibility. For the largest temperature, T = 10 K,
the phonon contribution has been subtracted from the experimental data for comparison to theory. For the purpose of this subtraction, the
phonon contribution was assumed to be B-independent and taken to correspond to the difference of �ρ(T = 10K,B = 0)/�ρ(0,0) between
experiment and theory (see Fig. 3).

C. Channel anisotropy

To conclude this section, let us briefly discuss the possibility
that the true effective Kondo model for Fe in Au and Ag
could include some channel anisotropy. Channel anisotropy,
if present at all, will be weak for the present system due to
a symmetry argument. As mentioned in Introduction, Fe acts

as substitutional defect in Au or Ag; it hence finds itself in
an environment with cubic symmetry. This cubic symmetry
protects the equivalence of the three local t2g levels and of
the three bands involved in the effective low-energy Kondo
model. In particular, this cubic symmetry offers a rather strong
protection against any splitting of the t2g levels. A significant
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FIG. 6. (Color online) Temperature dependence of the resistivity
for a channel-anisotropic Kondo model with S = 1, n = 2, for several
different choices of �2/�1.

spin-orbit coupling, which could result in a spliting of the t2g

levels, was ruled out by density functional theory calculations
in paper I.

With this in mind, let us nevertheless briefly discuss the
possible effects of channel anisotropy, that could arise if
some perturbation breaks the cubic symmetry. In general, such
a perturbation could result in a small splitting in the n impurity
d levels that yield the spin n/2, or in slightly different band
widths or density of states for the n conduction-band channels,
or in slightly different coupling strengths between local and
band states in each channel. All of these will will have similar
effects on the low-energy Kondo physics.

For concreteness, we consider here only the latter case,
implemented in our model by setting t → tα in Eq. (1), leading
to channel-dependent level widths �α = πν0tα . For a spin n/2,
n-channel Kondo model, the presence of channel anisotropy
quickly leads to a multistage Kondo effect,10,14 characterized
by n different Kondo temperatures TKα in which channels of
decreasing �α successively screen the bare spin n/2 first to
spin (n − 1)/2, then to (n − 2)/2, etc., down to 0. Since the
corresponding Kondo temperatures TKα depend exponentially
on �α , even a small amount of channel anisotropy changes
the shape of the resistivity curve ρm(T ,B = 0) drastically. In
particular, it spoils the purely logarithmic temperature depen-
dence of the resistivity for T � TK, which is characteristic
of the channel-isotropic Kondo effect: though each screening

stage separately produces a logarithmic contribution to the
resistivity, the sum of these contributions no longer behaves
purely logarithmically, as illustrated in Fig. 6 for n = 2. Our
experimental data, however, do not show signatures of such
multistage Kondo physics. This implies that any channel
anisotropy, if present, is weak. Therefore the differences
between the various TKα-values associated with the successive
stages of screening are, first, too small to be discernible in the
data, and second, not at all required for the interpretation of
the experimental data. We conclude that a fully channel-
symmetric model suffices.

V. CONCLUSION

We have considered iron impurities in gold and silver
and compared experimental data for the resistivity and
decoherence rate to NRG results for a fully screened n

channel, spin- n
2 Kondo model. Compared to previous work

on this subject,9 we showed improved numerical data for both
quantities at finite temperature. In particular, we offered a
detailed discussion of NRG convergence and truncation issues,
using the discarded weight as a criterion for reliably judging
the quality of convergence. Our most important new result is
the analysis of the resistivity at finite magnetic field, where we
compare the numerical calculations with as yet unpublished
experimental data. In contrast to previous attempts to explain
the experimental results with models with less channels which
were inconsistent or yielded several different values for the
Kondo temperature, depending on which set of measurements
was used to extract TK,8 we showed that all examined quantities
can be described consistently with a single value of TK. The
excellent agreement between experiment and theory for n = 3
shows that both systems are well described by a spin-3/2
three-channel Kondo model.

ACKNOWLEDGMENTS

We thank Norman Birge for helpful comments on the
manuscript. We gratefully acknowledge financial support from
ANR PNANO “QuSPIN” for L.S. and C.B., from the John
von Neumann Institute for Computing (Jülich) for T.C., from
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6.3. Local susceptibility and Kondo scaling with finite
bandwidth

Since in the universal Kondo regime, the Kondo temperature TK is the only relevant en-
ergy scale of the system, energy-dependent quantities can be scaled on top of each other
for different model parameters, if energies are rescaled with TK. With the definition of the
Kondo temperature via the inverse local susceptibility, as is common in numerical calcula-
tions, scaling is only provided in the limit of infinite bandwidth. We propose two altered
definitions of TK via two different susceptibilities χFS and χsc, depending on whether one
considers the ground state of the system with perturbations that change the Hamiltonian
or if one considers perturbative excitations of a Hamiltonian that is left unchanged, as
it is the case for finite temperature or for dynamical quantities. The following paper is
also a necessary prerequisite for section 6.4, where the correct determination of TK in the
presence of finite bandwidth is crucial for consistency with theory.
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The Kondo scale TK for impurity systems is expected to guarantee universal scaling of physical quantities.
However, in practice, not every definition of TK necessarily supports this notion away from the strict scaling limit.
Specifically, this paper addresses the role of finite bandwidth D in the strongly correlated Kondo regime. For this,
various theoretical definitions of TK are analyzed based on the inverse magnetic impurity susceptibility at zero
temperature. While conventional definitions in that respect quickly fail to ensure universal Kondo scaling for a
large range of D, this paper proposes an altered definition of T sc

K that allows universal scaling of dynamical or
thermal quantities for a given fixed Hamiltonian. If the scaling is performed with respect to an external parameter
that directly enters the Hamiltonian, such as magnetic field, the corresponding T

sc,B
K for universal scaling differs,

yet becomes equivalent to T sc
K in the scaling limit. The only requirement for universal scaling in the full Kondo

parameter regime with a residual error of less than 1% is a well-defined isolated Kondo feature with TK � 0.01 D

irrespective of specific other impurity parameter settings. By varying D over a wide range relative to the bare
energies of the impurity, for example, this allows a smooth transition from the Anderson to the Kondo model.

DOI: 10.1103/PhysRevB.89.075130 PACS number(s): 02.70.−c, 05.10.Cc, 75.20.Hr, 72.15.Qm

I. INTRODUCTION

The Kondo scale represents a dynamically generated low-
energy scale, which arises when an unpaired spin, to be referred
to as the impurity, is screened by a metallic host. Prototypical
examples include actual dilute magnetic impurities in met-
als [1–4], but also highly controllable quantum dot settings
which are characterized through transport measurements [5,6].
The precise definition of the Kondo scale, however, is usually
subject to conventions. Nevertheless, whatever the definition of
the Kondo scale TK, clean isolated Kondo features are expected
to be universal: that is after proper scaling with respect to TK,
the resulting data is expected to fully collapse onto a single
universal curve. Therefore whatever the specific definition of
the Kondo scale, e.g., up to an irrelevant definition-dependent
prefactor of order one, this represents an important stringent
requirement: TK must allow for accurate scaling of Kondo
related features. A prototypical application that requires such
scaling, for example, is the analysis of the prefactors in
Fermi-liquid scaling of interacting impurity models [7–10],
which strongly depends on the precise definition of TK. As
a matter of fact, the present work emerged and thus was
motivated from preliminary work in exactly this direction for
multiband models [4,11], with the results on the related Fermi
liquid coefficients to be published elsewhere.

With TK typically described by an exponential expres-
sion [12], the terms in the exponent usually do not depend on
the full bandwidth D of a given model. The prefactor in the def-
inition of TK, however, may depend on D with the consequence
that certain definitions of TK can spoil universal Kondo scaling
even if TK � D. Consider, for example, the standard single
impurity Anderson model (SIAM, see model Hamiltonian
further below) with the impurity onsite interaction U . For
U � D, the full bandwidth D becomes irrelevant for the
impurity related physics. This turns out to be the safe regime for
impurity related quantities . For the case U � D, however, the
bandwidth D becomes relevant for Kondo related quantities.
Importantly, this regime is (i) experimentally relevant, in that

the experiment is never truly in the Kondo scaling limit.
Moreover, through Schrieffer-Wolff transformation in the limit
U → ∞ of the particle-hole symmetric SIAM, (ii) this leads to
the Kondo model, a widely used model itself. With its Kondo
temperature given by TK � D

√
2νJ e−1/(2νJ ) [1,12,13], with

J the Kondo coupling and ν the density of states at the Fermi
edge, this model is intrinsically and strongly affected by finite
bandwidth. Therefore, in particular, the present discussion is
of clear relevance also for the Kondo model.

Proper Kondo scaling is already built-in by construction
in the experiment-like approach of using (full-width-) half-
maximum type measures of TK [5,6], which strictly focuses on
the low-energy features of the measured quantities, typically
assuming TK � D. However, this requires to measure or
calculate an entire curve while possibly subtracting a broader
background still [4]. In contrast, for the theoretical analysis it
appears more desirable to have a single measurable quantity,
instead, which uniquely defines TK up to a convention-
dependent constant prefactor of order one. To be specific, this
requires a definition of TK at zero temperature in the absence of
magnetic field in a static context, i.e., T = B = ω = 0 (using
kB = gμB = � = 1 throughout, for convenience). This TK is
measured through a weak perturbation of the system, and
hence can be computed within linear response. Considering
that the Kondo state is sensitive to an external magnetic field,
the quantity of interest discussed in this paper is the magnetic
susceptibility of the impurity. The following discussion,
however, can be generalized to other local susceptibilities.

A standard definition for the Kondo temperature for the
one-channel Kondo model is given by [12,14]

TK ≡ 1

4χ0
, (1)

with χ0 ≡ limT →0 χ (T ) the static magnetic susceptibility of
the impurity in the limit of zero temperature. The constant
prefactor of 1/4 is part of the definition, which may be chosen
differently, for example, for multichannel models [12]. The
immanent question, however, that arises with Eq. (1) is how
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does one precisely define the impurity contribution χ0 to the
magnetic susceptibility? The predominant conventions to be
found in the literature are [12,14–16]

χ (d)(T ) ≡ 〈
Ŝd

z

∥∥Ŝd
z

〉
T
, (2a)

χ tot(T ) ≡ 〈
Ŝ tot

z

∥∥Ŝ tot
z

〉
T

− 〈
Ŝ tot

z

∥∥Ŝ tot
z

〉(0)
T

, (2b)

where 〈Ŝα‖Ŝβ〉 ≡ d
dB

〈Ŝβ〉|B=0 describes the static linear spin
susceptibility of 〈Ŝβ〉 in response to the perturbation Ĥ ′ =
−BŜα with B an external magnetic field (the minus sign in Ĥ ′
ensures χ � 0 if Ŝα = Ŝβ). Here Ŝd

z (Ŝ tot
z ) stands for the total

spin of the impurity (the entire system), respectively. Since, in
general, the spin of the impurity Ŝd

z is not conserved and hence
does not commute with the Hamiltonian, Eq. (2a) is equivalent
to the evaluation of a dynamical correlation function [14]. It
is a somewhat abstract quantity since from an experimental
point of view it is difficult to just apply a magnetic field
at the impurity itself. The second definition of the impurity
susceptibility in Eq. (2b), on the other hand, is typically
considered closer to an experimental realization, in that the
impurity contribution to the total susceptibility is evaluated by
taking the difference of the total susceptibility with [〈·〉T ] and
without [〈·〉(0)

T ] the impurity, where the latter acts as a reference
system. Equation (2b) includes the total spin Ŝ tot

z of the
system, which is assumed to be conserved and hence is simply
proportional to the overall spin fluctuations, 〈Ŝ tot

z ‖Ŝ tot
z 〉T =

β[〈(Ŝ tot
z )2〉 − 〈Ŝ tot

z 〉2] where β = 1/T . Hence, in principle, it
is easier to evaluate. However, from a computational point of
view, it has the disadvantage that one essentially needs two
calculations, one with and one without the impurity, followed
by the subtraction of two extensive macroscopic and thus large
values in order to obtain an intrinsic impurity-related finite
quantity. While one may expect that both definitions in Eq. (2)
give comparable results, they are not strictly equivalent. In
particular, neither definition in Eq. (2) necessarily guarantees
proper scaling of Kondo related features at finite bandwidth.

Scaling onto a universal curve requires an appropriate and
consistent set of parameters. For the Kondo physics analyzed in
this paper, these are simply a particle-hole symmetric setting
(or a similarly consistent asymmetric setting, e.g., U/εd =
const for the SIAM below), together with the bare requirement
of a well-defined isolated low-energy feature with TK �
0.01 D, e.g., the Kondo peak in the spectral function, which
allows to observe Kondo physics to start with. Here universal
scaling is understood in the usual way. Given a set of individual
curves y(x; {p}), when plotted versus x, these depend on a set
{p} of external model parameters. Here, x represents an energy,
e.g., x ∈ {ω,T ,B, . . .}. Therefore universal scaling of x by
an appropriately chosen Kondo scale T

sc,x
K , i.e., x̃ ≡ x/T

sc,x
K ,

implies that the curves y(T sc,x
K x̃; {p})/y0 =: ỹ(x̃) collapse onto

a single universal curve ỹ(x̃) independent of {p}. Note that
away from the Kondo scaling limit, this Kondo scale T

sc,x
K can

depend on the specific x ∈ {ω,T ,B, . . .} chosen. Moreover,
the vertical normalization y0 of the curves is not necessarily
related to T

sc,x
K . Rather, it depends on the measured quantity,

which may not even have units of energy. Typically, the specific
choice for y0 emerges out of context in a straightforward way,
and as such is specified with each application below.

The main result of this paper is the proposition of the altered
definition of the impurity susceptibility,

χ sc(T ) ≡ 〈
Ŝ tot

z

∥∥Ŝ tot
z

〉
T

− 〈
Ŝbath

z

∥∥Ŝbath
z

〉
T

(3a)

= 2
〈
Ŝd

z

∥∥Ŝ tot
z

〉
T

− 〈
Ŝd

z

∥∥Ŝd
z

〉
T

, (3b)

used for the scaling of dynamical or thermal quantities, i.e.,
x ∈ {ω,T }. Here, Ŝbath

z ≡ Ŝ tot
z − Ŝd

z and 〈Ŝα‖Ŝβ〉 as defined
with Eq. (2). As will be demonstrated numerically, the
definition of the susceptibility in Eq. (3) provides a sensitive
Kondo scale through Eq. (1), i.e., T sc

K ≡ limT →0[1/4χ sc(T )] ≡
1/(4χ sc

0 ), which allows for proper scaling (sc) of frequency or
temperature dependent curves onto a single universal curve in
a wide range of impurity parameters with bare energies from
much smaller to much larger than the bandwidth D, provided
that one has a well-defined Kondo regime, i.e., TK � D. For
notational simplicity, x will not be specified with TK here,
i.e., T sc

K ≡ T sc
K

,ω ≡ T sc
K

,T . A motivation of Eq. (3) in terms
of the noninteracting system is given in the Appendix A.
More generally, as pointed out with Appendix A2, the above
scale-preserving susceptibility may be understood in terms of
the scaling of frequency by the quasiparticle weight z [17].

In contrast, the earlier definitions in Eq. (2) can be reliably
used for scaling in certain parameter regimes only (e.g. the
scaling limit when the bandwidth is the largest energy scale
by far). The major differences of the impurity susceptibility in
Eq. (3) to the definitions in Eq. (2) are apparent. As compared
to Eq. (2b), the last term in Eq. (3a) is calculated in the
presence of the impurity. This comes with the benefit that,
similar to Eq. (2a), Eq. (3b) can be computed entirely through
the nonextensive quantities since the extensive leading term
in Eq. (3a) cancels. Therefore, in contrast to Eq. (2b), the
impurity susceptibility in Eq. (3) can be computed for a
given system without having to resort to a reference system
without the impurity. Compared to Eq. (2a), on the other
hand, Eq. (3) acquires the relevant correction 〈Ŝd

z ‖Ŝd
z 〉T →

〈Ŝd
z ‖Ŝd

z 〉T − 2[〈Ŝd
z ‖Ŝd

z 〉T − 〈Ŝd
z ‖Ŝ tot

z 〉T ].
For the T sc

K derived from Eq. (3), the emphasis is on a given
fixed Hamiltonian with infinitesimal perturbations whose
(many-body) excitations are explored either dynamically or
thermally. For this, the Kondo scale derived from χ sc

0 mimics
the scaling limit, even if the parameters that enter the Hamil-
tonian do not strictly adhere to the scaling limit. In contrast,
as will be shown below, if the Hamiltonian itself is altered
through an external parameter x ∈ {B, . . .} via Ĥ ′ = −xX̂,
universal scaling vs. a finite range in x analyzed at zero
temperature is generally governed by a slightly different
Kondo scale, T

sc,x
K , based on a variant of the impurity

susceptibility (henceforth, the notation T
sc,x

K will be reserved
for this context only).

In the scaling limit where bandwidth is the largest energy
scale by far, it is found that 〈Ŝd

z ‖Ŝ tot
z 〉T � 〈Ŝd

z ‖Ŝd
z 〉T (for a proof

of this in the noninteracting case, see Appendix A2). Only in
this regime, the static magnetic susceptibility can be computed
equivalently in various ways including Eq. (2), i.e., χ sc(T ) �
χd(T ) � χFS(T ). Here, in particular, the more conventional
magnetic susceptibility χd(T ) may be replaced by χFS(T ),
which is much simpler and cheaper to evaluate.

The definitions for proper scale-preserving Kondo tem-
peratures at finite bandwidth as proposed in this paper are
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TABLE I. Proposed corrections to the Kondo temperature based on the commonly used zero-temperature impurity susceptibility χd
0 away

from the strict scaling limit of infinite bandwidth, yet in the Kondo regime having TK � 10−2D. In the scaling limit, all corrections vanish, i.e.,
χFS

0 = χ d
0 .

dependence on universal Kondo scale TK = 1
4χ0

correction to χ d
0 see also

ω or T T sc
K where χ sc

0 = 2χFS
0 − χ d

0 2 × (
χFS

0 − χ d
0

)
Eq. (3)

B T
sc,B

K where χ
sc,B
0 = χFS

0 1 × (
χFS

0 − χ d
0

)
Eq. (4)

summarized in Table I. This includes the Kondo temperature
T sc

K for fixed Hamiltonian for scaling of dynamical or thermal
quantities, as well as the Kondo temperature T

sc,B
K for scaling

versus an external parameter that alter the Hamiltonian at
T = ω = 0, here for the specific case of magnetic field B.
The derivation of the latter (see Sec. II C) may also serve
as a general guide for scaling versus other external physical
parameters that directly enter the Hamiltonian.

The remainder of the paper then is organized as follows.
The rest of the introduction discusses the role of the new
susceptibility 〈Ŝd

z ‖Ŝ tot
z 〉T introduced with Eq. (3) in terms of the

Friedel sum rule (Sec. I A). Furthermore, Sec. I still provides
general computational aspects on the static linear susceptibility
(Sec. I B), followed by model conventions and methods
(Sec. I C). Section II presents the results and discussion on
the scaling of dynamical impurity spin susceptibility (versus
frequency), as well as the scaling of the linear conductance
(versus temperature and magnetic field). Following sum-
mary and outlook, the appendices provide detailed technical
discussions. It includes (Appendix A) a motivation for the
scale-preserving susceptibility, which is mainly based on the
noninteracting system, (Appendix B) a technical discussion
of finite-size effects of the dynamical impurity susceptibility,
and (Appendix C) technicalities on the evaluation of the mixed
susceptibility χFS(T ) within the fdm-NRG framework. The
latter also contains a short discussion on the evaluation of the
impurity specific heat which, in a wider sense, also resembles
the structure of an impurity susceptibility. Finally, Appendix D
comments on the conventional extraction of phase shifts from
the many-body fixed-point spectra of the NRG, while also
providing a detailed analysis of discretization, i.e., finite size,
effects.

A. Magnetic susceptibility and Friedel sum rule

The definition of the impurity susceptibility in Eq. (3)
introduces the additional impurity susceptibility,

χFS(T ) ≡ 〈
Ŝd

z

∥∥Ŝ tot
z

〉
T

= β
〈
Ŝ tot

z Ŝd
z

〉
T

, (4)

where β ≡ 1/T , and “FS” stands for Friedel sum rule
as motivated shortly. It will also be referred to as mixed
susceptibility, as it combines the impurity spin with the
total spin. Assuming B = 0, the last equality in Eq. (4)
used 〈Ŝ tot

z 〉T = 〈Ŝd
z 〉T = 0. Given that Ŝ tot

z commutes with the
Hamiltonian, this reduces to the simple thermal expectation
value as indicated, which can be evaluated efficiently (see
Appendix C for details). Consequently, for T = 0+, this
corresponds to a strict low-energy quantity that does not
explore the dynamics at intermediated frequency ω � TK

[which is the case, for example, for the definition of the
impurity susceptibility in Eq. (2a)].

The susceptibility in Eq. (4) can be interpreted twofold:
(i) as the local contribution to the total magnetization due to
a global external field, or equivalently (ii) as the response in
the total magnetization of the system due to a local magnetic
field at the impurity only. The first can be seen as (yet
another) intuitive and qualitative description of the local spin
susceptibility. The latter interpretation, on the other hand,
allows a direct link to the Friedel-sum rule (FS) [hence the
label in Eq. (4)]: given an (infinitesimal) local change of
the Hamiltonian, FS relates the low-energy phase shifts ϕσ

of the entire system to the total change in local charge that
flows to or from infinity (note that this change in local charge
includes the displaced charge of both, the impurity itself as
well as the close vicinity of the impurity, which in total may
simply be interpreted as displaced “local” charge [18]).

The dependence of the low-energy phase shifts ϕσ of the
bath electrons on an external magnetic field at the impurity
can be used to define a Kondo scale T

ϕ

K [7],

lim
B→0

d

dB
ϕσ ≡ σ

π

4T
ϕ

K

, (5)

evaluated at T = 0, where σ ∈ {↑,↓} ≡ ±1. As a direct
consequence of the Friedel-sum rule then, it follows

T
ϕ

K = T FS
K (T = 0), (6)

since 〈Ŝ tot
z 〉 = 1

2 (�N↑ − �N↓)
FS= 1

2π
(ϕ↑ − ϕ↓), with �Nσ the

change in total number of particles with spin σ relative
to B = 0. Consequently, χFS ≡ d

dBimp
〈Ŝ tot

z 〉 = 1/(4T
ϕ

K ), which

coincides with the definition of T FS
K , and hence proves Eq. (6).

The identity in Eq. (6) has also been verified numerically to
within 1% accuracy (using NRG with � = 2 as defined below;
for a more detailed discussion on the explicit extraction of
phase shifts within the NRG, see Appendix D).

While, intuitively, one may have expected that the depen-
dence of the low-energy phase shifts on the magnetic field
yields a universal Kondo scale, this is true only in the specific
case that data is scaled versus magnetic field at T = ω = 0,
i.e., having x = B (see Sec. II C further below). However, this
alters the Hamiltonian. For dynamical or thermal quantities
for a given fixed Hamiltonian, having Eq. (3b), T FS

K does not
guarantee universal scaling. The reason for this may be seen
as follows: while, in fact, the phase shifts themselves are not
necessarily affected by finite bandwidth at B = 0+, i.e., at
the low-energy fixed point (cf. the discussion of χFS

0 for the
noninteracting case in Appendix A2), when investigating an
entire universal curve with respect to frequency or temperature,
this necessarily also explores states at intermediate energies.
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By exploring a range of energies, however, this becomes
susceptible to finite bandwidth. Hence T

ϕ

K fails to provide
proper scaling onto a universal curve for dynamical or thermal
data.

B. Static linear susceptibility

Consider the general static linear susceptibility for obtain-
ing a response in the measured operator 〈Ŷ 〉 by applying the
infinitesimal external perturbation Ĥ ′(λ) = −λX̂ to a given
Hamiltonian,

〈X̂‖Ŷ 〉T ≡ lim
λ→0

d

dλ
〈Ŷ 〉T ,λ =

∫ β

0
dτ · 〈δX̂(τ ) · δŶ 〉T , (7)

with β ≡ 1/T , δX̂ ≡ X̂ − 〈X̂〉T , similarly for δŶ , and X̂(τ ) ≡
eτĤ X̂e−τĤ evaluated at λ = 0. By definition, the operators X̂

and Ŷ are assumed Hermitian. The last equality in Eq. (7),
i.e., the imaginary-time Matsubara susceptibility, represents an
exact mathematical relation [27], which satisfies the properties
of a scalar product for Hermitian operators, i.e., 〈X̂‖Ŷ 〉T ≡
〈Ŷ‖X̂〉∗

T with 〈X̂‖X̂〉T � 0 (cf. Bogoliubov-Kubo-Mori scalar
product [27]). If X̂ and Ŷ do not commute with the Hamiltonian
and 〈X̂〉T = 〈Ŷ 〉T = 0, then Eq. (7) is equivalent to the Kubo
formula for linear response in the thermodynamic limit,

〈X̂‖Ŷ 〉T � 〈X̂‖Ŷ 〉(R)
T ≡ − lim

ω→0
χR

XY
(ω) (8)

with χR
XY

(ω) the Fourier transformed dynamical retarded (R)
correlation function χR

XY
(t) ≡ −iϑ(t)〈[X̂(t),Ŷ ]〉T [the sign

with the last term in Eq. (8) originates in the sign of the
definition of Ĥ ′ with Eq. (7), which ensures a positive
susceptibility for X̂ = Ŷ ]. The Kubo formula, as in Eq. (8),
however, assumes that the system has no long-time memory
of the applied operators X̂ or Ŷ . Importantly, for exactly
this reason, for discretized, i.e., effectively finite-size systems,
only Eq. (7) represents a reliable working definition, whereas
corrections can apply to Eq. (8) (e.g., see Appendix B). Most
notably, if the Hamiltonian preserves total spin (which will be
assumed throughout this paper), then with X̂ = Ŷ = Ŝ tot

z , the
resulting dynamical correlation function Im χ (ω) ∝ 0 · δ(ω)
is pathological. In contrast, Eq. (7) yields the correct re-
sult 〈Ŝ tot

z ‖Ŝ tot
z 〉T = β〈(Ŝ tot

z )2〉T − 〈Ŝ tot
z 〉2

T ≡ β · �2S tot
z , i.e., the

thermal fluctuations in the total spin of the system, using the
grand-canonical ensemble in the evaluation of the thermal
average 〈·〉T .

C. Models and method

A prototypical quantum impurity model is the single
impurity Anderson model (SIAM) [19,20]. It consists of the
local Hamiltonian, Ĥ SIAM

0 ≡ Ĥimp + Ĥcpl, with

Ĥimp =
∑

σ

εdσ n̂dσ + Un̂d↑n̂d↓, (9a)

Ĥcpl =
∑
kσ

(Vkσ d̂†
σ ĉkσ + H.c.) ≡

√
2D�

π

∑
σ

(d̂†
σ f̂0σ + H.c.).

(9b)

It describes a single interacting fermionic (d) level, i.e., the
impurity (imp), with level-position εdσ and onsite interaction
U , which is coupled (cpl) through hybridization to a non-
interacting macroscopic Fermi sea Ĥbath ≡ ∑

kσ εkσ n̂kσ with
εkσ ∈ [−D,D] of half bandwidth D := 1 (all energies taken
in units of D, unless specified otherwise). Here, d̂†

σ (ĉ†
kσ )

creates an electron with spin σ ∈ {↑,↓} at the d level (in
the bath at momentum k), respectively, with n̂dσ ≡ d̂†

σ d̂σ , and
n̂kσ ≡ ĉ

†
kσ ĉkσ . If a magnetic field is applied at the impurity (in

the bath), then εdσ = εd − σ
2 B (εkσ = εk − σ

2 B), respectively.
The sign has been chosen such that for B > 0, a positive
magnetization 〈Ŝz〉 arises. With ν the density of states, �σ (ε) ≡
πνV 2

σ (ε) = � θ (D − |ω|) is the hybridization strength. It is
taken constant and the same for each spin σ , for simplicity.

In the limit of large U , the SIAM reduces to the Kondo
model with a singly occupied impurity (a fluctuating spin),
which couples to the electrons in the bath through the spin-spin
interaction [1,12]

Ĥ Kondo
0 = 2J Ŝd · Ŝ0 (10)

with J > 0 the antiferromagnetic Heisenberg coupling
(using constant density of states ν = 1/2D of the bath, for
simplicity) [12], Ŝd the spin operator of the impurity and
Ŝx

0 ≡ 1
2

∑
σσ ′ f̂

†
0σ τ x

σ,σ ′ f̂0σ ′ the normalized spin operator of the
bath site f̂0σ at the location of the impurity with τ x the Pauli
spin matrices (x → {x,y,z}).

The generic interacting impurity setting above involves the
solution of a strongly correlated quantum many-body system,
which can be simulated efficiently using the quasi-exact
numerical renormalization group (NRG) [14,21]. In order to
deal with arbitrary temperatures in an accurate manner, the
fdm-NRG is employed [22–24], which is based on complete
basis sets [25]. While not explained in detail here (for this
see Refs. [14,21,24]), the essential NRG related computa-
tional parameters indicated with the figures below are the
dimensionless logarithmic discretization parameter � � 2, the
truncation energy Etr in rescaled units (as defined in Ref. [24]),
the number Nz of z-shifts for z-averaging [26], and the log-
Gaussian broadening parameter σ for smooth spectral data.

II. RESULTS AND DISCUSSION

A. Scaling of dynamical susceptibility

The dynamical magnetic susceptibility of the impurity is
analyzed in Fig. 1 for both the SIAM (upper panels) as
well as the Kondo model (lower panels) for a wide range
of parameters, resulting in a dense set of curves. For the
left panels, the horizontal frequency axis is scaled by T d

K ≡
1/(4χd

0 ), which clearly fails to reproduce a single universal
curve. The universal scaling is provided only by the scaling
of frequency using the altered T sc

K (right panels). The residual
tiny deviations stem from the data with largest TK, i.e. with
TK � 10−3D.

By analyzing the universal scaling at an accuracy of �1%,
this required at the very minimum a parameter setting in
the strongly correlated Kondo regime. Hence the Kondo
temperature was kept clearly smaller than the bandwidth, i.e.,
TK < 10−2. For the SIAM, this allowed a wide range for the
interaction strength from significantly smaller to significantly
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FIG. 1. (Color online) Scaling of the frequency of the dynamical
spin susceptibility χ d(ω)/χ d

0 by the conventional impurity suscepti-
bility T d

K ≡ 1/(4χ d
0 ) (left) vs. the scale-preserving definition of Kondo

temperature T sc
K ≡ 1/(4χ sc

0 ) (right): all the densely lying curves of
the left panels collapse onto a single universal curve in the right
panels, respectively. (a) and (b) analyze the SIAM. The inset to
(a) demonstrates the dependence of T d

K/T sc
K vs. the onsite interaction

U , while keeping the ratios U/� = 15 and εd = −U/2 fixed. The
color bar at the bottom of the inset relates the color of the lines
in the main panel to the specific values of U ranging from U � 1
to U � 1 (with D ≡ 1 the bandwidth). The limit limU→0[T d

K/T sc
K ]

has been fitted, resulting in the value of 1, with excellent accuracy
(actual value indicated together with the horizontal dotted line). The
inset to (b) shows the dependence of T sc

K vs. U , which stretches over
several orders of magnitude. In complete analogy, (c) and (d) analyze
the Kondo model. In particular, the fitted limit limJ→0 T d

K/T sc
K � 1

in the inset of (c) is the same as for the SIAM [cf. (a)] within the
numerical error of significantly less than 1% [for comparison, the
same calculation yet with the cheaper and less accurate setting of
� = 2 and Etr = 12 (not shown) already resulted in T d

K/T sc
K � 0.98,

while � = 4 and Etr = 20 (not shown) already agreed well with the
above results. In this sense, the above results for � = 4 and Etr = 40
are considered fully converged].

larger than the bandwidth [28], nevertheless, while keeping
�/U = 1

15 and εd/U = − 1
2 constant [cf. Fig. 1(a); similarly,

the scaling was also tested away from the particle-hole
symmetric point at εd/U = − 1

3 , resulting in equally excellent
scaling of the data (not shown). The scaling also was tested
for the noninteracting case (U = εd = 0 yet finite �; not
shown), where � takes the role of TK. As a consequence,
in complete analogy to above, for � < 10−2 this allowed
for similar excellent scaling of the data, yet, of course, to a
different universal curve].

The different definitions of the Kondo temperature, T d
K

versus T sc
K , are analyzed in the insets of the left panels,

showing clear deviations of T sc
K from T d

K of up to 20%,

with T d
K consistently smaller than T sc

K . The deviations are
more pronounced for the Kondo model, remembering that this
essentially reflects the large-U limit of the Anderson model,
which implies U � D (even for Kondo temperatures as small
as TK � 10−10, the difference between T d

K and T sc
K is still about

6% (see inset in lower panels). In the limit TK → 0, both,
the SIAM (U → 0 with appropriately adjusted � and εd ) as
well as the Kondo model (J → 0) result in the same ratio
T d

K/T sc
K = 1 within the accuracy of the fitted extrapolations in

the insets (using third-order polynomials with the fitting range
indicated with the fit in red on top of the data; see caption on
the convergence of T d

K/T sc
K with varying NRG parameters).

B. Scaling of static susceptibility and linear conductance
versus temperature (B = 0)

The scaling of the static magnetic susceptibility and the
linear conductance of the SIAM and Kondo model vs.
temperature is analyzed in Fig. 2. The left panels analyze the
SIAM in a wide range of the onsite interaction U . The center
panels analyze the SIAM still, yet in the large-U limit while
varying �, thus transitioning to the Kondo model. The right
panels, finally, analyze the Kondo model itself. In all cases, the
parameters were chosen such that TK � 10−2 with TK plotted
in the insets with the lower panels (the TK for the largest � in
the center panels exceeded 10−2 hence was excluded from the
scaling analysis as indicated by the gray cross in the insets for
the center panels).

The quantity T · χ (T ) as plotted in the upper panels of
Fig. 2 for the spin susceptibility, reflects spin fluctuations at
the impurity. The high-temperature limit for the Anderson
(Kondo) impurity is given by 1/8 (1/4), respectively, indicated
by the horizontal dashed lines. Clearly, once T exceeds U for
the SIAM (or D for the Kondo model), the large temperature
limit is rapidly and accurately approached for either definition
of the impurity susceptibility. For the SIAM, for U � D,
an intermediate regime D < T < U emerges that represents
a free spin, consistent with T · χ (T ) → 1

4 [see Figs. 2(a)
and 2(b)]. For the Kondo model [Fig. 2(c)], this regime is
represented by T > D.

In the regime U � D for the SIAM, the effective bandwidth
relevant for the impurity is given by U , such that the actual
full bandwidth D of the Fermi sea becomes irrelevant in
the description of the impurity [see U = 10−2 data (dark
blue) in Fig. 2(a)]. As a consequence, here the impurity
susceptibility is rather insensitive to its precise definition,
i.e., χd(T ) � χFS(T ) � χ sc(T ) [see U = 10−2 data in inset
of Fig. 2(a)], which thus is considered a safe regime for local
susceptibility calculations and subsequent Kondo scaling. The
differences between the three definitions of the impurity
susceptibility, however, become strongly visible as U increases
and surpasses the bandwidth [e.g., see U = 102 data (red
curves) in Fig. 2(a)]. This behavior is precisely also reflected
in the zero-temperature ratios T d

K/T sc
K as shown in the inset to

Fig. 2(a), which strongly deviate from ≈1 as U increases.
For fixed large U � D, TK can be strongly varied by

tuning the hybridization �. The resulting data for the magnetic
susceptibility is shown in Fig. 2(b). By plotting temperature
in units of T sc

K , the data for χ sc(T ) nicely collapse onto
a universal curve for T < D, a feat which, in particular,
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FIG. 2. (Color online) Temperature dependent scaling of the static spin susceptibility χ (T ) (top) and the linear conductance g(T ) (in units
of 2e2/h; bottom) for the SIAM (left and middle), as well as for the Kondo model (right). The color of the lines in the main panels matches
the colors of the symbols in the inset, hence this indicates the respective parameter setting. The upper panels compare various definitions of
the static spin susceptibility (χ d, χFS, χ sc in faint, dashed and solid, respectively). In the upper main panels, for clarity, the actual value of the
relevant parameters [{D,�,U} for (a) and (b) and D for (c)] are indicated in units of T sc

K for the largest and smallest TK only. Similar to Fig. 1,
the insets to the upper panels analyze the relation between T d

K and T sc
K as function of the parameters. Their ratio is fitted towards TK → 0,

resulting in a comparable value of 1 to very good accuracy as indicated for all three cases (a)–(c). The actual exponential range of T sc
K is shown

in the insets to the lower panels. The lower panels show the static linear conductance g(T ) vs. T/T d
K (nonuniversal; dashed faint lines, but color

match with symbols of inset otherwise) and vs. T/T sc
K (solid lines), which show proper scaling behavior, in that all lines collapse onto a single

universal curve. With T1/2 the temperature where g(T ) passes through 1/2, in units of T d
K, this ranges from T d

1/2 ≡ T1/2/T d
K = 1.25 down to

1.03 [indicated by the vertical dotted lines with the range of T d
1/2 specified with each panel (gray text at center right in each panel)]. In units of

T sc
K , this range collapses to the fixed value of T sc

1/2 ≡ T1/2/T sc
K � 1.03 to within residual relative variations of clearly less than 1% for all three

cases [panels d-f; indicated by vertical solid light lines with their range specified by T sc
1/2 (black text)]. Using � = 4 and Etr = 40 as indicated,

the value of T sc
1/2 � 1.03 above is considered well converged [for comparison, for � = 2 and Etr = 8 a similar calculation (not shown) resulted

in T sc
1/2 � 0.99, while � = 2 and Etr = 12 resulted in T sc

1/2 � 1.01; while good overall scaling can already be observed for Etr � 10, the minor
variations for smaller Etr can be mostly eliminated by normalizing g(T ) by the numerical value g(0) ≈ 1, which was not included here].

cannot be achieved for χd(T ) in a similarly accurate manner.
Furthermore, having U � D, the data in Fig. 2(b) for T < U

clearly resembles the Kondo model, as can be seen by
direct comparison to the data of the actual Kondo model
in Fig. 2(c).

The lower panels of Fig. 2 analyze the scaling of
the linear conductance as measured in transport through
a quantum dot, which represents a prototypical quantum
impurity setting [5,6]. It is computed by folding the im-
purity spectral function Aσ (ω; T ) ≡ ∫

dt
2π

〈{d̂σ (t),d̂†
σ }〉T with

the derivative of the Fermi distribution function, i.e., g(T ) =
π�
2

∑
σ

∫
dω Aσ (ω; T )(− df

dω
) in units of 2e2/h. When scaling

the temperature by T d
K, the resulting data is plotted in light

dashed lines, which show a clear nonuniversal spread akin to
the earlier analysis in Fig. 1(a). In particular, the temperature
T d

1/2 where g(T ) passes through 1/2 changes from 1.25 down
to 1.03 in units of T d

K, with the large-U regime for the SIAM

[Fig. 2(e)] and in particular also the Kondo model itself
[Fig. 2(f)] most strongly affected. In contrast, when scaling the
temperature by T sc

K , again an excellent scaling collapse is ob-
served (solid lines in lower panels of Fig. 2). Note, furthermore,
that the resulting T sc

1/2 ≡ T1/2/T sc
K = 1.032 ± 0.005 nicely

agrees across all panels from the SIAM [Figs. 2(a) and 2(b)]
to the Kondo model [Fig. 2(c)], despite the broad parameter
range analyzed. Given � = 4 together with Etr = 40, these
results are considered well converged (see figure caption on
the convergence of T1/2/T sc

K with NRG parameters). Finally,
note that the value for T1/2/T sc

K above also agrees well with
the one cited by Merker et al. [10], which in the wide-band
limit suggests T1/2/T sc

K � 1.04. Overall, with T1/2/T sc
K being

constant, this is fully consistent with the fact that T1/2 itself
may serve and is frequently used as a universal definition of
TK, with a minor constant proportionality factor of 1.03 to the
T sc

K used here.
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FIG. 3. (Color online) Linear conductance vs. magnetic field at T = 0 for the SIAM (left and center panel), as well as for the Kondo
model (right panel). Again the insets indicate the respective parameter setting of the lines in the main panels. Analogous to the analysis in
Figs. 2(d)–2(f), here, the main panels show the static linear conductance g(B) vs. B/T d

K (nonuniversal; dashed faint lines, but color match
with symbols of inset otherwise) and vs. B/T

sc,B
K (solid lines), which demonstrate universal scaling. With B1/2 the magnetic field where g(B)

passes through 1/2, in units of T d
K, changes from Bd

1/2 ≡ B1/2/T d
K = 1.84 down to 1.55 for given data [indicated by the vertical dotted lines

with their individual range specified with each panel (gray text at center right in each panel)]. In units of T
sc,B

K , this range collapses to the value
Bsc

1/2 ≡ B1/2/T sc
K = 1.55 to within relative uncertainties of clearly less than 1% for all three cases [panels d–f; indicated by vertical solid light

lines with the range T sc
1/2 specified by the black text]. Using � = 4 and Etr = 40 as indicated, the data is considered fully converged (regarding

minor variations for significantly lower Etr � 10 and thus much faster calculations, see caption to Fig. 2).

The above results have direct implications on the Fermi
liquid coefficients derived from the conductance g(T ). For
example, with the Fermi liquid coefficient cT defined by
g(T ) � 1 − cT (T/TK)2 for T � TK [7–10], this strongly
depends on the precise definition of TK. Note that even
though TK is apparently well defined through the magnetic
susceptibility, depending on the precise definition of the latter,
nevertheless, variations of up to 10% are seen in the ratio
T d

K/T sc
K within a well-defined Kondo regime [cf. insets to upper

panels of Fig. 2]. Therefore, when using T d
K, this systematically

underestimates cT by up to 20%. It follows from the present
analysis that the correct choice for TK in the definition of cT

is T sc
K , as it reflects the scaling limit, despite using parameters

that do not strictly represent the scaling limit itself. Note,
however, that the strict scaling limit is given by the regime
T d

K/T sc
K � 1, which for the Kondo model through the inset to

Fig. 2(c) implies J � 0.01, resulting in the extremely small
and rather impractical TK � 10−45.

C. Scaling of linear conductance
versus magnetic field (T = 0)

The linear conductance at finite magnetic field yet zero
temperature is a strict low-energy quantity, in that g(B) =
π�
2

∑
σ Aσ (ω = 0; B,T = 0) requires the spectral function

evaluated at ω = 0 only. As a consequence, its sensitivity on
finite bandwidth is minimal (cf. Appendix A). This already
suggests that in a given case where the Hamiltonian is
altered by a finite external parameter, universal scaling is
not governed by the same T sc

K as introduced in Eq. (3).
Instead, through the Landauer formula, which in a given
case implies π� · Aσ (ω = 0; B,T = 0) = sin2 (ϕσ (B)), the
conductance can be directly linked to the spin-dependent
low-energy phase shifts ϕσ of the entire system. For a given
particle-hole symmetric case, these can be written as ϕσ (B) =
π
2 + δσ (B), where for |B| � T FS

K , δσ (B) ≡ σπB/(4T FS
K )

[cf. Eq. (5)] with σ ∈ {↑,↓} ≡ ±1. This directly identifies
T FS

K as defined in Eq. (4) as the relevant Kondo temperature
for universal scaling. Specifically, one obtains

g(B) = 1

2

∑
σ

sin2(ϕσ ) � 1

2

∑
σ

(
1 − 1

2
δ2
σ

)2

� 1 −
(

πB

4T FS
K

)2

≡ 1 − cT

(
B

πT FS
K

)2

(11)

with cT ≡ π4

16 the well-known Fermi-liquid coefficient with
respect to temperature for Kondo impurities [7–10].

The scaling of the linear conductance g(B) with T FS
K is

demonstrated in Fig. 3 for values of B that stretch well beyond
the quadratic regime in Eq. (11). The analysis in Fig. 3 is
completely analogous to Figs. 2(d)–2(f), except that here
the dependence is on magnetic field B. Consistent with the
earlier analysis, the data for the SIAM with smallest U = 0.01
in Fig. 3(a) already closely resembles the scaling limit. In
contrast, the curves for the Kondo model in Fig. 3(c) even for
the smallest coupling J with its extremely small TK still do
not strictly represent the scaling limit.

The above scaling analysis for g(B) has major conse-
quences for the extraction of the Fermi-liquid coefficient
cB , defined by g(B) � 1 − cB(B/TK)2 for B � TK at T = 0
[7–10]. The above analysis suggests that the Kondo scale,
which needs to be considered for an accurate evaluation of
cB in a practical setting, is T FS

K . This then again resembles
the scaling limit while, nevertheless, it allows to use finite or
narrow bandwidth in ones analysis provided that TK � 10−2

(in units of D as always).

III. SUMMARY AND OUTLOOK

In summary, an adapted scheme for the calculation of
the local susceptibility has been introduced that at zero
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temperature, allows to define a proper universal Kondo scale
T sc

K . The latter fully respects scaling of measured low-energy
properties such as Kondo related features. A distinction needs
to be made between dynamical or temperature dependent
quantities that are described by the same fixed Hamiltonian
(T sc

K ), as compared to dependence on external parameters that
directly enter the Hamiltonian, such as magnetic field (T sc,B

K ).
The corrections to the commonly used TK based on the local
susceptibility χd

0 have been summarized in Table I. For the
parameter sets analyzed in this paper, these corrections range
from about 0% to 10% (which become about twice as large
still for Fermi liquid coefficients), yet vanish in the scaling
limit.

The effect of finite bandwidth on the Kondo scale was
discussed while assuming a featureless hybridization other-
wise. Proper scaling was demonstrated for the SIAM in a
broad parameter regime, with the interaction U ranging from
much smaller to much larger than the bandwidth D. The latter
large-U limit then also was shown to smoothly connect the
SIAM to the Kondo model. Essentially, this is the numerical
equivalent of the Schrieffer-Wolff transformation without
actually making any approximation [23]. By construction, the
effects of finite bandwidth are clearly most prominent in the
large-U limit (U � D), and as a consequence also affect most
strongly the Kondo model itself. The discussion of a universal
low-energy scale for specific model parameters away from the
abstract true Kondo scaling limit with the bandwidth by far
the largest energy is important in the experimental context,
but also in the numerical context by choosing a parameter
regime where simulations can be performed more efficiently
(e.g., Kondo model versus SIAM). The explicit analysis and
discussion of the universal Kondo scale applied to Fermi-liquid
coefficients is beyond the scope of this paper, and will be
published elsewhere.

Finally, it is pointed out that the impurity contribution to
the specific heat, cV (T ), essentially also has the structure
of a susceptibility, namely, the response in energy at the
impurity due to an increase in the external parameter T , i.e.,
the temperature. The analogies remain vague, since tempera-
ture is special as compared to other external parameters such
as the magnetic field as it enters in the Boltzmann distribution
for thermal statistics. Moreover, it is also unclear a priori
whether and to what extent to associate the coupling term Ĥcpl

with the impurity or the bath. Nevertheless, an approximate
expression for the impurity contribution to the specific heat can
be evaluated by computing cV (T ) � d

dT
〈Ĥimp + 1

2 Ĥcpl〉T [29].
In contrast to Ref. [29], however, which computes cV (T ) by the
explicit numerical derivative with respect to temperature, the
latter can be fully circumvented along the lines of the mixed
susceptibility χFS discussed above by directly computing
the plain thermal expectation value β〈Ĥimp + 1

2 Ĥcpl‖Ĥtot〉T =
β2〈(Ĥimp + 1

2 Ĥcpl)Ĥtot〉T within the fdm-NRG framework (see
Appendix C2 for details).
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APPENDIX A: MOTIVATION FOR SCALE PRESERVING
SUSCEPTIBILITY AT T = 0

The definition of the magnetic susceptibility χd(T ) in
Eq. (1) is typically computed through its spectral function
χ ′′(ω) ≡ − 1

π
ImχR(ω), having χ (ω) ≡ χ ′(ω) − iπχ ′′(ω) [for

simplicity, the following discussion only refers to the static lo-
cal impurity susceptibility χd(T ), hence the superscript d will
be skipped for readability]. This spectral function is given by

χ ′′(ω) =
∫

dt

2π
eiωtχ (t)

=
∑
a,b

(ρa − ρb)
∣∣Ŝd

z

∣∣2
ab

δ(ω − Eab), (A1)

with χ (t) ≡ 〈[Ŝz(t),Ŝz]〉T ≡ χ>(t) − χ<(t), corresponding to
the two terms of the commutator, respectively. The last line in
Eq. (A1) provides the Lehmann representation of χ ′′(ω), with
a and b complete many-body eigenbasis sets, having ρa =
1
Z
e−βEa and Eab ≡ Eb − Ea . Hence with χ (ω) = χ ′(ω) −

iπχ ′′(ω), the static spin susceptibility χ (T ) is obtained
through Kramers-Kronig relations (Hilbert transform),

χ (T ) = lim
ω→0

P
∫

χ ′′(ω′)
ω − ω′ dω′ = −P

∫
χ ′′(ω′)

ω′ dω′, (A2)

with P indicating principal value integral [for finite discrete
systems, this skips all energetically degenerate terms in
Eq. (A1) with Ea = Eb; the implications of the terms Ea = Eb

for finite-size systems or for preserved operators are discussed
in Appendix B]. Note that even though χ0 ≡ limT →0 χ (T )
describes a low-energy property, through Eq. (A2), it requires
dynamical information from all frequencies. In contrast, the
mixed impurity susceptibility in Eq. (4) results in the plain
expectation value χFS(T ) = β〈Ŝ tot

z Ŝd
z 〉T . At T = 0, this cor-

responds to a ground-state expectation value. Consequently,
this quantity is static and does not explore the dynamics of the
system, and hence strictly focuses on the low-energy sector.
For this reason, as pointed out in the main text, this quantity
exactly reflects, for example, the phase-shifts experienced by
the electrons of the bath in the low-energy fixed point spectrum.

Nevertheless, this mixed impurity susceptibility is still
insufficient for the evaluation of a proper scale-preserving
susceptibility. In order to proceed, while still insufficient,
it is instructive to consider the effects of spectral moments
(next section). This will be followed by the actual motivation
of the scale-preserving susceptibility based on the plain
noninteracting resonant level model.

1. Effects of spectral moments

The Kramers-Kronig or Hilbert transform in Eq. (A2), in
a sense, corresponds to the spectral moment with n = −1
[by using the spectral weight (ω′)n within the integral].
This clearly weights small frequencies more strongly. Hence
this emphasizes the low-energy sector while, nevertheless, it
weakly reaches out towards large energies. This becomes more
pronounced still for n = 0, which simply corresponds to the
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spectral sum rule,

I ≡
∫

χ>(ω′) dω′ =
∫

(1 − f (ω′))χ ′′(ω′) dω′

= 〈(
Ŝd

z

)2〉
T

� 1

4
, (A3)

with f (ω) the Fermi function. For T = 0, this exactly describes
the area underneath the spin-spin correlation function χ ′′(ω)
for positive or, up to a sign, for negative frequencies [cf. Fig. 1;
the integral over the entire χd(ω) for all frequencies yields zero
by the antisymmetry of χd(ω)].

For the SIAM in the local-moment (Kondo) regime, the
value of the integral in Eq. (A3) at T = 0 is close to its
upper bound, I SIAM

0 � 0.25, with minor variations of � 10%
depending on the specific model parameters. For the Kondo
model (which represents the large-U limit of the SIAM, i.e.,
U � D), by construction, the sum-rule in Eq. (A3) exactly
yields the upper bound IKondo

0 = 1/4.
At T = 0, the scaling of the spectral data χ ′′(ω) by

χ0 = limT →0 χ (T ) ensures that the height of χ ′′(ω) is properly
normalized [e.g., see Fig. 1, all panels]. Since the area
underneath χ ′′(ω) is (roughly) conserved, scaling of the
frequency ω by χ−1

0 leads to approximate scaling (left panels
of Fig. 1). Specifically, since for the Kondo model the area
is exactly preserved (see above), the remaining horizontal
variations in Fig. 1(c) must be due to finite bandwidth. In
conclusion, the sum-rule in Eq. (A3) is not particularly useful
for a proper scale-preserving local susceptibility. This is not
surprising, considering that it represents the spectral moment
n = 0, and hence is strongly susceptible to effects of finite
bandwidth (for the Kondo model this means that, while the
area in Eq. (A3) is preserved, there can be a shift of spectral
weight from the band edge to low-energy Kondo regime and
vice versa, hence spoiling the scaling of the low-energy Kondo
features). Higher spectral moments will make things even
worse. Hence this route appears ill-suited for the search of
a scale-preserving local susceptibility at T = 0.

2. Motivation through the noninteracting SIAM

The scale-preserving susceptibility proposed in the main
text was also tested successfully for the asymmetric SIAM,
as well as in the limit U → 0 at finite �, i.e., the plain
noninteracting resonant level model. Even there, the proposed
χ sc

0 still nicely allowed for the scaling of low-energy features,
such as the impurity spectral function A(ω) ≡ − 1

π
ImGd (ω),

as long as the low-energy scale (here �) is clearly smaller
than the bandwidth, i.e., � � 10−2. The reason for this will
be explained in what follows. Considering that the general
impurity Green’s function for an interacting system can be
written as Gd (ω) = [ω − εd − �(ω) − �(ω)]−1, with �(ω)
the impurity self-energy, the discussion of the effects of finite
bandwidth on the hybridization function �(ω) below may
serve as a more general motivation, indeed, for the definition
of a scale preserving susceptibility. In particular, as it is
demonstrated in the main paper, the result can also be nicely
applied to interacting systems.

For the noninteracting case, with σ ∈ {↑,↓} ≡ {±1},
the spin susceptibility reduces to the impurity charge-
susceptibility for the spinless model. With 〈Ŝd

z 〉T = 0,

one has

χd(T ) = 1

4

∑
σ,σ ′

σσ ′ 〈n̂σ‖n̂σ ′ 〉0︸ ︷︷ ︸
∝δσσ ′

= 1

2
〈n̂(σ )‖n̂(σ )〉0

≡ −1

2
lim
ω→0

χ c(ω), (A4a)

[regarding the sign in the last line, see Eq. (A2)], with the
charge susceptibility given by

χ c(ω) ≡ FT{−iϑ(t)〈[n̂(t),n̂]〉T }, (A4b)

with n̂ ≡ d̂†d̂, and FT( ) indicating Fourier transform. In the
noninteracting case, this results in the impurity susceptibility

χd(T ) = − ∂

∂εd

〈n̂〉T = Im
∫

dω

2π
[Gd (ω)]2f (ω), (A5)

with Gd (ω) the impurity Green’s function and f (ω) the
Fermi function. This results in the correct large temper-
ature limit, limT →∞ T χ0(T ) = 1

8 for arbitrary Gd (ω). The
low-temperature limit is model dependent. Considering the
noninteracting case, the impurity Green’s function is given

by Gd (ω) = [ω − εd − �(ω)]−1, with �(ω+) ≡ ∑
k

V 2
k

ω+−εk
≡

E(ω) − i�(ω) the hybridization function. In the wide-band
limit for constant �(ω) = θ (D − |ω|)�, it follows that
E(ω) → 0. The effects of finite bandwidth D manifest
themselves at small frequencies ω through

εd → εd + E(ω) � ε̃d − aω, (A6a)

with ε̃d ≡ εd + E(0) and a ≡ − d
dω

E(ω)|ω=0 ∼ �/D � 1
some dimensionless small constant (note that for the particle-
hole symmetric resonant level model with constant �, one has
a � 0). This leads to the scaling

ω → ω̃ ≡ (1 − a)ω (A6b)

of the frequency in Gd (ω) in Eq. (A5) (interestingly, this
may be interpreted more generally in an interacting context
as the scaling of frequency by the quasiparticle weight z [17]).
Therefore far away from the bandwidth, |ω| � D, the impurity
spectral function appears slightly stretched along the frequency
axis while preserving its height. Overall, however, the line
shape for small frequencies remains unaltered up to proper
scaling factors.

With respect to frequency, Eq. (A6b) suggests the increased
energy scale T sc

K = T ∞
K /(1 − a) relative to T ∞

K which, to
lowest order in a, represents the energy scale in the wide-band
limit. Remembering that χ0 ∝ T −1

K represents an inverse
energy scale, one obtains

χ sc
0 (D) = (1 − a)χ∞

0 , (A6c)

with χ sc
0 (D) the scale-preserving local susceptibility at given

finite bandwidth, and χ∞
0 ≡ 1/(4T ∞

K ).
On the other hand, at T = 0, the Fermi function in Eq. (A5)

is unaffected by the scaling ω → ω̃, such that the overall
integral in Eq. (A5) may be rewritten in terms of ω̃, resulting
in

χd
0 (D) � 1

1 − a
χ∞

0
(A6c)=

(
1

1 − a

)2

χ sc
0 (D). (A7)

With a > 0, this shows that χd
0 (D) overestimates the scale-

preserving susceptibility χ sc(D) for given finite bandwidth D.
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The mixed susceptibility now allows to determine and
subsequently eliminate the scale factors (1 − a). With

χFS(T ) =
∫ β

0
dτ

〈
Ŝd

z (τ )Ŝ tot
z

〉 = β
〈
Ŝd

z Ŝ
tot
z

〉

= β

2
(〈n̂N̂〉 − 〈n̂〉〈N̂〉), (A8a)

the last line again already refers to a spinless model, with
n̂ ≡ d̂†d̂ the number of particles at the impurity and N̂ the
total number of particles in the system. In the noninteracting
case with A(ω) ≡ − 1

π
ImGd (ω) the impurity spectral function,

this becomes

χFS(T ) = 1

2

∫
dωA(ω)[−f ′(ω)]. (A8b)

In the limit T → 0, this yields χFS
0 = A(0)/2. While A(ω)

depends on the rescaled frequency ω → (1 − a)ω, as dis-
cussed above, this is irrelevant here since A(ω) is evaluated
at ω = 0. In the wide-band limit of a featureless bath,
i.e., constant hybridization �, Eq. (A5) exactly agrees with
Eq. (A8b). Together with the fact that χFS

0 does not explic-
itly depend neither on the bandwidth nor dynamically on
finite frequency, this allows to identify χFS

0 = χ∞
0 even at

finite D.
Using Eq. (A7), the effects of finite bandwidth on χ sc

0 (D)
to lowest-order in a are thus summarized by

χ sc
0 (D) = (1 − a)2χd

0 (D) � (1 − 2a)χd
0 (D). (A9)

The first reduction of χd
0 (D) by the factor (1 − a) leads

to χFS
0 . Another reduction by the same factor leads to the

desired χ sc
0 (D). With a � 1, this implies that the difference

between χd
0 (D) and χFS

0 , as well as the difference between
χFS

0 and χ sc
0 (D) are the same to lowest order in a, and are

given by the first equality in Eq. (A7), aχd
0 (D) � χd

0 (D) −
χFS

0 . Together with the last term in Eq. (A9) then, one
obtains the final expression for the scale-preserving local
susceptibility,

χ sc
0 (D) = 2χFS

0 − χd
0 (D), (A10)

in agreement with Eq. (3b) in the main text.

APPENDIX B: IMPURITY SUSCEPTIBILITY
AND FINITE SIZE EFFECTS

Consider the Lehmann representation of the generic impu-
rity susceptibility given by the last term in Eq. (7):

〈X̂‖Ŷ 〉T =
∑
a,b

e−βEa

Z
(δX)ab(δY )ba

1 − e−βE+
ab

E+
ab

(B1a)

=
∑
a �=b

e−βEa − e−βEb

Z

XabYba

E+
ab︸ ︷︷ ︸

=〈X̂‖Ŷ 〉(R)
T

+β
∑

a

e−βEa

Z
(δX)aa(δY )aa

︸ ︷︷ ︸
≡〈X̂‖Ŷ 〉(δ)

T

.

(B1b)

Here, a and b represent complete many-body eigenba-
sis sets, i.e., Ĥ |a〉 = Ea|a〉 with Eab ≡ Eb − Ea , and the
Boltzmann distribution ρa = e−βEa /Z [note that (δX)aa =
Xaa − 〈X̂〉T �= 0 in general]. In the first line, the positive

infinitesimal, E+
ab ≡ Eab + i0+, was added for convenience

to correctly deal with the case Ea = Eb (the sign of the
infinitesimal imaginary part is initially actually irrelevant
here). By splitting off the terms a = b of the sum in Eq. (B1a)
into the correction 〈X̂‖Ŷ 〉(δ)

T , the first term in Eq. (B1b) then
translates into the Kubo formula for linear response 〈X̂‖Ŷ 〉(R)

T

based on the retarded response function. By the way the spe-
cific infinitesimals are chosen, actually, all degenerate terms
Ea = Eb drop out of the first term (principal value integral
in the continuum’s limit), which therefore ignores accidental
degeneracies, i.e., degeneracies beyond strict internal multiplet
degeneracies due to symmetries that are included with the
second term. As a consequence, the sum in the first term can
be relaxed back to all a,b including a = b. Furthermore, the
correction 〈X̂‖Ŷ 〉(δ)

T in Eq. (B1b) is relevant only if the spin
states of the states a are sufficiently long-lived. In the extreme
case X̂ = Ŷ = Ŝ tot

z , the first term 〈X̂‖Ŷ 〉(R)
T in Eq. (B1) is

strictly zero, and therefore the entire susceptibility is carried by
the second term. In contrast, for the case that the Hamiltonian
does not commute with, say, X̂, in the thermodynamic limit
one expects that Xaa → 0 and the second term in Eq. (B1)
vanishes. In this case, linear response using either Kubo
formula or the imaginary-time Matsubara susceptibility is safe.
However, in the presence of discretized finite-size systems,
Xaa �= 0 can become a significant contribution neverthe-
less! In this case, both contributions in Eq. (B1) must be
included.

1. Limit of large temperature for finite system

For a finite system in the limit β|Eab| � 1, Eq. (B1a)
becomes

lim
T →∞

〈X̂‖Ŷ 〉T �
∑
a,b

e−βEa

Z
(δX)ab(δY )ba

1 − (1 − βE+
ab)

E+
ab︸ ︷︷ ︸

=β

= β lim
T →∞

〈δX̂ · δŶ 〉T
= β lim

T →∞
[〈X̂Ŷ 〉T − 〈X̂〉T 〈Ŷ 〉T ], (B2)

which is equivalent to the situation where either operator X̂ or
Ŷ actually commutes with the Hamiltonian! This again serves
to emphasize the importance of both terms in the evaluation of
the impurity susceptibility in Eq. (B1) in any numerical setting
for a finite system, even if both, X̂ and Ŷ , do not commute
with the Hamiltonian. While in the case of small T the
last term in Eq. (B1b) may be negligible, it gains relative
importance with increasing temperature, to the extent that
for a finite system with T → ∞, comparable weight is
carried by both terms in Eq. (B1b) [note that for large T ,
〈X̂‖Ŷ 〉(R)

T ∝ 1/T , while the 1/T behavior of the correction
〈X̂‖Ŷ 〉(δ)

T is caused by the leading β; cf. explicit NRG analysis
in Fig. 4].

2. Impurity susceptibility at large temperatures

In the limit T → ∞, the thermal density matrix is fully
mixed and hence independent of the eigenbasis of the actual
Hamiltonian. The thermal average therefore can be reduced to
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FIG. 4. (Color online) Contributions to the impurity susceptibility χd as in Eq. (B1) for the data in Fig. 2 in the main text [(a)–(c) have
exactly the same parameter setting as Figs. 2(a)–2(c)]. The lower panels replicate the same data as in the upper panel, yet switch to a logarithmic
scale also on the vertical axis. The thick light solid line corresponds to a plain power-law fit, suggesting that the correction T χδ decays like
1/T 2, hence becomes irrelevant in the limit T → 0. The insets in the lower panels have been replicated from Fig. 2 to indicate the parameter
setting.

the thermal average within the impurity space alone. Therefore
with Ŝ tot

z ≡ ∑
n Ŝ(n)

z summed over all (Wilson) sites n including
the impurity, having 〈Ŝd

z 〉T = 0, Eqs. (2)–(4) reduce to the same
asymptotic form

(T χ )∞ ≡ lim
T →∞

T χ sc(T ) � lim
T →∞

〈
Ŝd

z

∥∥Ŝd
z

〉
T

= 1

di

∑
σi

(
Sd

z,σi

)2
, (B3)

where the impurity is described by the state space σi of
dimension di that also diagonalizes Ŝd

z . For a Kondo impurity,
or also for an Anderson impurity in the case TK � D �
T � U , this implies χ∞ = 1

4T
[this also may be taken as a

motivation for the definition of the Kondo temperature TK =
1

4χ0
in Eq. (1) in the opposite limit of T → 0; more generally

still, for an impurity of spin S one obtains (T χ )∞ = S(S+1)
3 ].

On the other hand, for an Anderson impurity with T � U ,
one obtains χ∞ = 1

8T
due to the enlarged accessible local state

space [30] [see also Figs. 2(a)–2(b)].

3. Implications for the NRG

The above considerations are clearly relevant for numerical
simulations such as the NRG. There the effective length
of the Wilson chain becomes ever shorter for calculations
with increasing temperature (automatically so in case of
fdm-NRG) [22,24]. In case of NRG, the interplay between
finite-size effects and large temperatures can therefore be
considered enhanced.

The two contributions to the static susceptibility in Eq. (B1)
are analyzed in detail in Fig. 4 for the data in Fig. 2 of the main
text. From the log-log plots in the lower panels, it is clearly
seen that the correction χδ behaves like T · χδ ∝ 1/T 2 for
T � TK [in contrast to T · χR ∝ 1/T ], and hence becomes
negligible in the limit T → 0. Nevertheless, once T increases
and becomes comparable to TK, the correction T · χR(T )
becomes sizable. While the two contributions to the static
susceptibility in Eq. (B1b) show rather irregular behavior
individually, as seen in Fig. 4, their sum yields a smooth
physically meaningful curve.

In practice, when computing the first term in Eq. (B1b) as
standard susceptibility within linear response (Kubo formula),
the second term shows up in a disguised manner as δ(0) contri-
bution with opposite sign for ω = 0±. This may be collected in
the smallest frequency bin for positive and negative frequen-
cies, respectively, when collecting the discrete data. While
these δ(0) contributions drop out of the principal value sum-
mation in the Kramers-Kronig transformation, nevertheless,
they represent and thus can be simply used to subsequently
evaluate the correction given by the last term in Eq. (B1b).

APPENDIX C: CALCULATION OF THE MIXED
SUSCEPTIBILITY χFS(T ) WITHIN FDM-NRG

Given that the total spin operator Ŝ tot
z commutes with the

Hamiltonian, the mixed susceptibility χFS(T ) ≡ 〈Ŝd
z ‖Ŝ tot

z 〉T in
Eq. (4) can be evaluated in a simple and cheap manner, as
it reduces to the plain set of expectation values, T χFS(T ) =
〈Ŝ tot

z Ŝd
z 〉T − 〈Ŝ tot

z 〉T 〈Ŝd
z 〉T . This includes one local operator Ŝd

z
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and one global operator, the total spin operator Ŝ tot
z ≡ ∑

n Ŝ(n)
z

which is given by the sum of local spins Ŝ(n)
z associated with

site n along the Wilson chain including the impurity, say, at
n = −1. Being interested in the magnetic susceptibility at zero
magnetic field, it follows 〈Ŝ tot

z 〉T = 〈Ŝd
z 〉T = 0. The remaining

quantity,

T · χFS(T ) = 〈
Ŝ tot

z Ŝd
z

〉
T

= tr
[
ρ̂(T ) · Ŝ tot

z Ŝd
z

]
, (C1)

then is a simple intrinsic quantity linked to the impurity. In
given case, only a single sum over a complete many-body
eigenbasis a suffices, with the Lehmann representation of
Eq. (C1) given by

T · χFS(T ) =
∑

a

e−βEa

Z
S tot

z,a

(
Ŝd

z

)
aa

, (C2)

where Ĥ |a〉 ≡ Ea|a〉. By construction, the full thermal density
matrix as well as the total spin operator S tot

z are strictly
diagonal, with the matrix elements given by [S tot

z ]aa′ = δaa′S tot
z,a

and [ρ̂(T )]aa′ = δaa′e−βEa /Z, respectively, with Z(T ) ≡∑
a e−βEa the grand-canonical partition function.
In what follows, the complete basis set a is given by the

iteratively discarded state spaces generated by the NRG [25],
i.e., |a〉 → |se〉Dn ≡ |s〉Dn ⊗ |e〉n with sn ∈ D a discarded state
at iteration n and en the environment with respect to iteration
n, i.e., the full state space for the remainder of the Wilson
chain n < n′ � N with N the final length of the Wilson chain
considered. The resulting full thermal density matrix (fdm) is
given by [22,24]

ρ̂(T ) =
∑

n

wn(T )ρ̂D
n (T ), (C3)

where wn(T ) is a well-defined temperature-dependent weight
distribution along the Wilson chain that is peaked near the
energy scale of temperature. The operators ρ̂D

n are normalized
thermal density matrices within the discarded state space of
iteration n (the sum over the environment of the remaining
iterations, resulting in the degeneracy factor dN−n with d the
dimension of the local state space of a single Wilson site,
has been already properly included in the weight distribution
wn) [22,24]. With the full thermal density matrix a scalar
operator, all entries in Eq. (C3) are block-diagonal. In
particular, being initialized within the discarded (eigen-) state
space at iteration n itself, all ρ̂D

n are strictly diagonal.
Now, assuming that also Ŝ tot

z commutes with the Hamil-
tonian, it is also block diagonal. Using the complete basis
set |se〉Dn ≡ |s〉Dn ⊗ |e〉n, in the expectation value in Eq. (C2)
for the mixed susceptibility, the environment is traced over.
Specifically with

Ŝ tot
z ≡

∑
n

Ŝ(n)
z =

∑
n′�n

Ŝ(n′)
z

︸ ︷︷ ︸
≡Ŝ

n,tot
z

+
N∑

n′>n

Ŝ(n′)
z

︸ ︷︷ ︸
≡Ŝ

e,tot
z

,

the total spin of the entire Wilson chain splits into two parts
with respect to a given iteration n, the total spin up to and
including site n, and the total spin for the remainder of the
chain. The corresponding matrix elements are given by (note
that the degeneracy factor dN−n has been already included

with the weight distribution wn and is thus compensated in the
following expression)

1

dN−n

∑
en

〈se|Ŝ tot
z |s ′e〉n

= δss ′Sn,tot
z,s + δss ′

∑
n′>n

1

d

∑
σn′

〈σn′ |Ŝ(n′)
z |σn′ 〉

︸ ︷︷ ︸
=〈Ŝ(n′ )

z 〉∞=0

,

where σn′ spans the d-dimensional local Hilbert space of
Wilson site n′. The last term represents the fully mixed average
of the local spin for a given site n′, i.e., corresponding to an
effective T = ∞, and thus vanishes identically by symmetry.
Overall, this implies that at iteration n, only the total spin
Ŝn,tot

z up to and including iteration n needs to be considered.
Therefore the mixed susceptibility in Eq. (C1) can be evaluated
in the NRG context as follows:

T · χFS(T ) =
∑

n

wn(T )tr
[
ρD

n (T )Sn,tot
z Sd

z

]
︸ ︷︷ ︸
= ∑

s∈Dn

ρn,s (T )Sn,tot
z,s (Sd

z )ss

, (C4)

where the trace runs over the discarded state space of iteration
n as indicated. Here, the notation of the operators without
hats indicates that they already correspond to the matrix
representations in the basis s ∈ Dn, i.e., the discarded states
at iteration n. The computationally most expensive part for
the result Eq. (C4) is the evaluation of the matrix elements
of Ŝd

z in the discarded state space of iteration n. From these,
however, only the diagonals are required. Once computed, the
calculation of χFS(T ) becomes extremely fast for an arbitrary
set of temperatures. It is important, though, that for the
physically correct impurity susceptibility thermal averaging at
T = 0+ is required. Hence the Wilson chain has to be chosen
long enough such that the weight distribution wn(T ) clearly
fits within the Wilson chain, i.e., T � ωN , with N the length
of the Wilson chain considered (in practice, wN (T ) � 10−2;
in contrast, if T � ωN , then T χFS(T ) → 〈0|Ŝ tot

z Ŝd
z |0〉 = 0).

1. Evaluation in the presence of non-Abelian symmetries

In the above discussion, the external magnetic field was ap-
plied in the z direction. However, if the magnetic susceptibility
at B = 0 is computed, the Hamiltonian typically possesses
SU(2) spin symmetry. This can be taken advantage of when
evaluating the mixed susceptibility above as follows. Clearly,
the evaluation of the mixed susceptibility Eq. (C1) can be
symmetrized with respect to x, y, and z components [23],

T χFS(T ) = 〈
Ŝ tot

z Ŝd
z

〉
T

= 1
3

〈
Ŝ tot · Ŝd

z

〉
T

,

where Ŝ ≡ [ −1√
2
Ŝ+,Ŝz,

+1√
2
Ŝ− ]T ≡ {Ŝμ} with μ ∈ {+1,0, − 1}

represents the irreducible three-dimensional spinor for the spin
operator which transforms according to a spin J = 1 multiplet.
Now every component in the spinor Ŝ tot commutes with the
Hamiltonian such that Ŝ tot

± only raises or lowers the state index
within the same multiplet, but never leaves a given multiplet.
As a consequence, Ŝ tot is still a strictly diagonal operator in
multiplet space, while the nondiagonal matrix elements within
the same multiplet factorize as Clebsch-Gordan coefficients
(cf. Wigner Eckart theorem). To be specific, in the presence
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of symmetries, the state space at each iteration n is organized
using the composite index labels [23] |s〉n → |J s; M〉n where
s(J ) now labels a specific multiplet within symmetry sector J ,
and M(J ) represents the Sz labels, i.e. sequences the internal
state space of multiplet J . With this, the matrix elements of
the total spin operators are given by

〈J ′n′; M ′|Ŝn,tot
μ |Jn; M〉

= δJJ ′δnn′
√

J (J + 1)︸ ︷︷ ︸
≡‖Sn,tot

J ‖nn′

· (JM ′|1μ; JM),

with (·|·; ·) indicating the Clebsch-Gordan coefficients. The
prefactor represents the reduced matrix elements ‖Sn,tot

J ‖ for
symmetry sector J . It guarantees that one obtains the familiar
Casimir operator,

〈Jn; M ′|(Ŝn,tot)† · Ŝn,tot|Jn; M〉 = J (J + 1)δMM ′ . (C5)

Consequently, in the presence of SU(2) spin symmetry, within
the NRG the mixed susceptibility in Eq. (C4) can be rewritten
as follows:

T χFS(T ) = 1

3

∑
n

wn tr
[
ρD

n

(
Sd · Sn,tot

)]
. (C6)

The apparent overhead in terms of the extra summation over
the μ components of the spinors in Sd · Sn,tot is completely
negligible when compared to the gain by the reduced dimen-
sionality on the reduced matrix element, i.e., the multiplet
level. First of all, it only affects Clebsch-Gordan coefficient
spaces. Moreover, by inspecting the block-diagonal structure
of Eq. (C6), for the specific contribution of any symmetry
sector within the trace exactly the same Clebsch-Gordan
coefficient space appears twice, in both Sn,tot

μ as well as
Sd

μ. Hence, by performing the trace for the Clebsch Gordan
coefficient space similar to Eq. (C5), this only adds a factor
(2J + 1), i.e., the 3j -symbol, which is simply equal to the
dimensionality of multiplet J . Hence the explicit contraction
of the Clebsch-Gordan coefficients can be fully circumvented.
In summary, the effect of non-Abelian symmetries on the
evaluation of the mixed susceptibility in Eq. (C6) is that
(i) Sd can be reduced to its block-diagonal components due
to the block-diagonal structure of all the remaining partici-
pants. (ii) The traced-over Clebsch-Gordan spaces together
with the definition of Sn,tot results in the combined factor
1
3

√
J (J + 1)(2J + 1) for symmetry sector J that can be

directly multiplied onto the reduced matrix elements of Sd.
Finally, with the Clebsch-Gordan coefficients taken care of,
(iii) the remaining trace is carried out over the reduced
multiplet space only.

2. Evaluation of the approximate impurity specific heat
〈(Ĥimp + 1

2 Ĥcpl)Ĥtot〉T within fdm-NRG

The impurity specific heat has a similar mathematical struc-
ture when compared to the general discussion of susceptibility
above. However, since it would be a susceptibility that refers to
the temperature itself as the variable physical parameter, in the
presence of thermal averages, these similarities necessarily
remain vague and the impurity specific heat is special.
Nevertheless, as it turns out [29], the impurity specific heat can

also be computed through the following local approximation:

cV (T ) � ∂

∂T(tot)
〈Ĥipc〉T = ∂

∂Tipc
〈Ĥtot〉T , (C7)

where Ĥipc ≡ Ĥimp + 1
2 Ĥcpl, with Ĥimp and Ĥcpl the impurity

Hamiltonian and its coupling to the bath, respectively [e.g., see
Eq. (9); here ipc stands for impurity plus part of the coupling
to the bath]. The first expression, ∂

∂T(tot)
〈Ĥipc〉, has the intuitive

physical interpretation that it represents the change in energy
at the impurity due to a change in the overall total temperature,
where the contribution of the hybridization is shared in equal
parts with the bath [29]. Mathematically, this is equivalent to
the second expression in Eq. (C7), ∂

∂Tipc
〈Ĥtot〉, which represents

the change in total energy due to a change in local temperature,
i.e., with β ≡ 1/T(tot) and Ĥ(tot) ≡ Ĥipc + Ĥbpc (where bpc
stands for bath plus remaining contribution from the coupling
to the impurity),

e−βĤ ≡ exp

[
− 1

T(tot)
(Ĥipc + Ĥbpc)

]

→ exp

(
− 1

Tipc
Ĥipc − 1

Tbpc
Ĥbpc

)
, (C8)

evaluated at Tipc = Tbpc = T(tot) after taking the derivative for
cV (T ), as indicated by the trailing subscript T in the last term
of Eq. (C7).

While in Ref. [29] the derivative in Eq. (C7) was computed
numerically by first computing the expectation values 〈Ĥipc〉T ,
the derivative in Eq. (C7) can be easily expressed analytically,

cV (T ) = β2(〈ĤipcĤtot〉T − 〈Ĥipc〉T 〈Ĥtot〉T ), (C9)

which still can be directly evaluated numerically within
the NRG using complete basis sets [22,24,25]. The term
〈Ĥipc〉T corresponds to a simple thermal average of a local
quantity [24]. The total energy, on the other hand, is given by

〈Ĥtot〉T =
∑

n,s∈D

∑
e

e−βEn
s

Z︸ ︷︷ ︸
=wn(T ) e−βEn

s

Zn
≡wnρn

s

(
ωnẼ

n
s + δn

)
(C10a)

with the eigenenergies En
s ≡ ωnẼ

n
s + δn as is customary, the

NRG eigenenergies Ẽn
s are given in rescaled units, with ωn

the energy scale at iteration n and δn here the cumulative
subtracted energy offset with respect to the ground state at
iteration n. While a global energy reference drops out of
the entire definition of the impurity specific heat Eq. (C9),
of course, the individual energy references δn for Wilson
shell n do not cancel and hence must be properly included.
Therefore En

s ≡ ωnẼ
n
s + δn represent the eigenenergies in

nonrescaled physical units with respect to a single common
energy reference, e.g., the ground-state energy of the entire
Wilson chain. In this case, the offsets δn, when computed
starting from the low-energy side (i.e., large n) scale like
δn ∝ ωn. In Eq. (C10a), finally, again a single sum over
the complete discarded (D) basis set (s,e,n)D suffices, since,
obviously, Ĥtot commutes with itself, i.e., with the Hamiltonian
used in the evaluation of the overall thermodynamic average.
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With the remaining term in Eq. (C9) given by

〈ĤipcĤtot〉T =
∑

n,s∈D

wnρ
n
s

(
ωnẼ

n
s + δn

)〈sn|Ĥipc|sn〉, (C10b)

the resulting impurity specific heat can be expressed as follows:

cV (T ) = β2
∑

n,s∈D

wnωnρ
n
s Ẽn

s (〈sn|Ĥipc|sn〉 − 〈Ĥipc〉T )

+β2
∑

n,s∈D

wnδnρ
n
s (〈sn|Ĥipc|sn〉 − 〈Ĥipc〉T )

≡
∑

n

wn

[
1

ωn

c̃
(D,n)
V (T ) + δn

T 2
(〈Ĥipc〉D

n − 〈Ĥipc〉T )

]
,

(C11)

where c̃
(D,n)
V (T ) stands for the specific heat computed within

the discarded states space of Wilson shell n in rescaled units,
i.e., using Ẽn

s and T → T̃n ≡ T/ωn. While c̃
(D,n)
V (T ) is clearly

independent of the energy references δn for each individual
Wilson shell n, these δn do lead to a finite contribution through
the very last term in Eq. (C11). The reason is that, in general,
the thermal expectation value 〈Ĥipc〉D

n in the discarded state
space of iteration n is unequal to the full thermal average
〈Ĥipc〉T for the entire system. Only for very late Wilson
shells in the low-energy fixed point, i.e., T → 0, it follows
〈sn|Ĥipc|s ′

n〉 � 〈Ĥipc〉0 · δss ′ . This leads to cancellation of the
last term, which is required for limT →0 cV (T ) = 0.

APPENDIX D: ON THE EXTRACTION OF
PHASE SHIFTS WITHIN THE NRG

The Kondo scale T FS
K derived from the mixed susceptibility

[see Eq. (4)] is identical to the Kondo scale T
ϕ

K obtained from
the phase shifts [see Eq. (5)], i.e., T FS

K = T
ϕ

K , as discussed
with Eq. (6) in the main text. For a Fermi liquid in the
thermodynamic limit, the one-particle level spacing can be
considered equally spaced around the Fermi energy yet
different for each electronic flavor such as spin σ ,

ε̃kσ = ε1σ + k ε2σ , (D1)

with k ∈ {. . . ,−2,−1,0,1,2, . . .} and ε1σ ∈ [0,ε2σ [, given that
ε1σ is essentially defined up to modulo ε2σ . Here the tilde
on ε̃kσ indicates that the original decoupled fixed bath modes
may already have been (phase-) shifted by the presence of a
coupled impurity. If the baths are identical for each flavor σ

including their discretization, ε2σ is independent of σ . This is
typically the case for NRG where ε2σ ∝ ωN ∝ �−N/2, with
ωN the energy scale at large but finite length N of the Wilson
chain. Hence ε1σ /ωN and ε2σ /ωN are both of order 1. For the
ground state, all levels with ε̃kσ < 0 are occupied. If ε1σ = 0,
the many-body ground state is degenerate. For a Fermi liquid,
the phase shift ϕσ can be extracted independently for each σ .
In the thermodynamic limit, it is given by the ratio

ϕσ

π
= ε1σ

ε2σ

(D2)

[this can be simply motivated by using the connection of phase
shifts to the change in (local) occupation through the Friedel
sum rule, while taking a proper continuum limit starting from
a finite yet large system, i.e., a discrete model].

Within the NRG, the one-particle level position in energy
can be determined from the many-body eigenspectrum of the
energy flow diagram, i.e., the finite-size fixed-point spectra
at T = 0+. This allows to extract ϕσ through Eq. (D2). Note,
however, that due to the intrinsic even-odd alternations with the
actual shell of the Wilson chain, the resulting phases ϕσ differ
by the constant offset of π/2 between even and odd shells;
nevertheless, since only differences in the phases due to the
presence of the impurity, i.e., phase shifts, are considered, for
an arbitrary but fixed energy shell this offset is irrelevant. The
problem with Eq. (D2), however, is that it is based on an equally
spaced one-particle level spectrum around the Fermi energy,
which is not quite the case within NRG at all! Even though
NRG does allow to directly access the thermodynamic limit
in the numerical simulation due to the underlying logarithmic
discretization in � [21,31], for a given length N of the Wilson
chain and a necessarily rather coarse discretization with � �
2, the approximately uniform level spacing around the Fermi
energy quickly transforms into exponentially separated energy
levels further away from the Fermi energy [32], as shown in
Fig. 5.
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FIG. 5. (Color online) Dependence of single-particle energy
level spectra ε̃kσ (εd ) on local occupation 〈n̂loc,σ (εd )〉 and level index
k for the SIAM [NRG (green dot-dashed)] as well as the RLM
[quadratic solution (blue) and NRG (red dashed)] using a long
even Wilson chain of length N as specified. The local occupation
〈n̂loc,σ (εd )〉 and thus the phase shift is changed by varying the position
of the impurity energy level εd(,σ ). While this level is swept from +∞
to −∞, 〈n̂loc,σ (εd )〉 changes smoothly from 0 to 1. Combining all
energies in units of the energy scale ωn vs. x ≡ k − 〈n̂loc,σ (εd )〉, this
results in a single continuous antisymmetric curve ε(x) that is linear
for small |x|, yet is quickly dominated by exponential behavior for
larger |x| � 2 (see inset and text). The discrete levels ε̃kσ (εd ) < 0 (i.e.,
within the range x < 0) correspond to single-particle levels below
the Fermi energy and are thus occupied in the ground state. The data
for the blue curve were obtained by numerical diagonalization of
the quadratic Hamiltonian (RLM), hence all single-particle energies
are easily obtained. In particular, their energies are not restricted to
the energy range below the truncation energy, as is the case for the
NRG-method (dashed and dot-dashed lines).

075130-14

154 6. Transport for impurity models



LOCAL SUSCEPTIBILITY AND KONDO SCALING IN THE . . . PHYSICAL REVIEW B 89, 075130 (2014)

Figure 5 analyzes the single-particle level spectra for the
interacting as well as the noninteracting SIAM [the latter also
referred to as the resonant level model (RLM)] as defined in
Eq. (9) for an arbitrary late but fixed even Wilson shell N [i.e.,
H0 such as in Eq. (9) plus some larger even number of further
Wilson sites; for an odd length of the Wilson chain, all curves in
Fig. 5 would be trivially offset horizontally by 1/2, which can
be ignored]. With εd ≡ {εdσ } the (magnetic field dependent)
level positions of the impurity, ε̃kσ (εd ) is the one-particle
level spectrum of the entire system. The shift of the discrete
single-particle spectrum due to an arbitrary but fixed εd is
directly related to phase shifts via Friedel sum rule. Thus when
plotted versus the continuous variable x ≡ k − 〈n̂loc,σ (εd )〉
having εd(,σ ) ∈ [−∞,∞] and hence 〈n̂loc,σ (εd )〉 ∈ [0,1] with
〈n̂loc,σ (εd )〉 the change in local charge at and close to the impu-
rity [18] depending on the impurity setting, this allows to col-
lect all one-particle level spectra ε̃kσ (εd ) after rescaling by the
approximate one-particle level spacing ωN into a single contin-
uous curve ε(x), as demonstrated in Fig. 5. In a sense, with the
Wilson chain in mind, the presence of the impurity allows to al-
ter the boundary condition for the bath electrons, thus resulting
in an impurity-dependent phase shift, which sets the horizontal
offset 〈n̂loc,σ (εd )〉 of the discrete energy levels in Fig. 5.

The resulting curve ε(x), which describes the macroscopic
bath, is universal in the sense that it only depends on
the bath discretization (i.e., �), but is independent of the
specifics of the microscopic impurity as long as the low-energy
behavior represents an effective Fermi liquid. For example, as
demonstrated in Fig. 5, the resulting curve ε(x) is exactly
the same independent of whether the impurity is interacting
(SIAM) or not (RLM, with or without NRG). Using the same
bath discretization for all flavors σ , as is customary within
the NRG, this curve ε(x) is also independent of σ , as already
indicated by its notation.

As a consequence, for a given bath discretization, the curve
ε(x) can simply be computed for the noninteracting case
(spinless RLM) by repeated diagonalization of the underlying

quadratic Hamiltonian while sweeping εd ∈ [−∞,∞] (e.g.,
see solid line in Fig. 5). With the NRG bath discretization
being particle-hole symmetric, the resulting curve ε(x) is
antisymmetric in x, i.e., ε(−x) = −ε(x). Then given the
reference curve ε(x) together with the requirement of its
antisymmetry, the single-particle spectrum for any other
impurity setting can be fitted (provided Fermi liquid behavior),
which allows to extract the horizontal offset 〈n̂loc,σ (εd )〉 and
hence the phase shift ϕσ independently for each flavor σ , even
if the single-particle spectrum is not exactly uniformly spaced
around the Fermi energy.

The range of linearity of ε(x) around x = 0 indicates the
regime of equally spaced single-particle levels closest to the
Fermi energy, given an exponentially large but finite system
size, as represented by the length N of the Wilson chain. For
� = 2, linearity is given to a good approximation (within about
0.8%) for x ∈ [−0.5, 0.5], i.e., for the lowest single-particle
and single-hole excitation in the particle-hole symmetric case,
and hence justifies using Eq. (D2) [this method was used for
extracting T

ϕ

K and verifying Eq. (6) to within 1% accuracy in
the main text]. In contrast, for � = 4, the linearity of ε(x) even
within this minimal regime is already clearly compromised
(about 3%). Here usage of Eq. (D2) already leads to clear
systematic errors due to the strongly increased coarseness of
the underlying logarithmic discretization, leading to about a
7% error in Eq. (6). Therefore the extraction of phase shifts
for larger � from the single-particle spectra requires a more
careful analysis such as the aforementioned fitting to the
curve ε(x). Given a logarithmic discretization, it follows that
εk ∼ sgn(k) ωN �|k| for larger |k| for a fixed length N of the
Wilson chain. From the semilog-y representation in the inset of
Fig. 5 it can be seen, that for |x| � 2, ε(x) is already described
by a plain exponential behavior to within 0.1%. Thus rather
than fitting the data for |x| � 1, alternatively, one may simply
concentrate on the exponential behavior for larger |x|, which,
however, requires to extract the single-particle spectrum at
least up to the third single-particle level.
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[7] P. Noziéres, J. Low Temp. Phys. 17, 31 (1974).

[8] M. Grobis, I. G. Rau, R. M. Potok, H. Shtrikman, and
D. Goldhaber-Gordon, Phys. Rev. Lett. 100, 246601 (2008).

[9] M. Pletyukhov and H. Schoeller, Phys. Rev. Lett. 108, 260601
(2012).

[10] L. Merker, S. Kirchner, E. Muñoz, and T. A. Costi, Phys. Rev.
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6.4. Equilibrium Fermi Liquid coefficients for fully
screened Kondo models

For an analytical treatment, it is a great simplification if a system can be described with
Fermi liquid theory since it is an effective single particle theory. In the Fermi liquid regime,
which is valid for low energies, the impurity density of states and related quantities typically
show quadratic behavior with respect to parameters like temperature or magnetic field, and
can be characterized by the so called Fermi liquid coefficients. In the following paper we
calculate the Fermi liquid coefficients of the resistivity with respect to magnetic field and
temperature, ρ(B) and ρ(T ), and of the impurity spectral function A(ω) (to be denoted
A(ε) in this section), for a fully screened Kondo model with different numbers of channels.
We use both analytics and NRG for the calculations, where the numerical results agree
with the analytical values within a relative error of . 5%.
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We analytically and numerically compute three equilibrium Fermi-liquid coefficients of the fully screened
N -channel Kondo model, namely cB , cT , and cε , characterizing the magnetic field and temperature dependence of
the resisitivity, and the curvature of the equilibrium Kondo resonance, respectively. We present a compact, unified
derivation of the N dependence of these coefficients, combining elements from various previous treatments of this
model. We numerically compute these coefficients using the numerical renormalization group, with non-Abelian
symmetries implemented explicitly, finding agreement with Fermi-liquid predictions on the order of 5% or better.
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I. INTRODUCTION

The Kondo effect was first observed, in the 1930s, for iron
impurities in gold and silver [1,2], as an anomalous rise in
the resistivity with decreasing temperature. Kondo [3] showed
that this effect is caused by an antiferromagnetic exchange
coupling between the localized magnetic impurity spins and
the spins of the delocalized conduction electrons [3], and
based his arguments on a spin- 1

2 , one-band model. While this
model undoubtedly captures the essential physics correctly
in a qualitative way, it has recently been shown [4,5] that
a quantitatively correct description of the Kondo physics of
dilute Fe impurities in Au or Ag requires a fully screened
Kondo model involving three channels and a spin- 3

2 impurity.
This conclusion was based on a comparison of temperature
and magnetic field dependent transport measurements [4–6]
to theoretical predictions for fully screened Kondo models
with channel number N and local spin S related by N = 2S,
with N = 3 yielding much better agreement than N = 1 or 2.

The theoretical results in Ref. [5] were obtained using
the numerical renormalization group (NRG) [7–10], and
for N = 3 various non-Abelian symmetries [5,11], such as
SU(2)×U(1)×SU(N ), had to be exploited to achieve reliable
results at finite magnetic field. The technology for imple-
menting non-Abelian symmetries with N > 2 in NRG cal-
culations has been developed only recently [11,12]. Given the
complexity of such calculations, it is desirable to benchmark
their quality by comparing their predictions to exact results.
The motivation for the present paper was to perform such a
comparison for the low-energy Fermi-liquid behavior of fully
screened Kondo models, as elaborated upon below.

All fully screened Kondo models feature a ground state
in which the impurity spin is screened by the conduction
electrons into a spin singlet. The low-energy behavior of
these models can be described by a phenomenological Fermi-
liquid theory (FLT) formulated in terms of the phase shift
experienced by conduction electrons that scatter elastically
off the screened singlet. Such a description was first devised
for the simplest case of N = 1 by Nozières [13,14] in 1974,
and generalized to the case of arbitrary N by Nozières and
Blandin (NB) [15] in 1980. Their results were confirmed
and elaborated by various authors and methods, including
NRG [7,8,16–20], field-theoretic calculations [21,22], the

Bethe ansatz [23,24], conformal field theory (CFT) [25,26],
renormalized perturbation theory [27], and reformulations
[28–30] and generalizations [31–33] of Nozières’ approach
in the context of Kondo quantum dots.

In the present paper, we focus on three particular Fermi-
liquid coefficients, cB , cT , and cε, characterizing the leading
dependence of the resistivity on magnetic field (B) and
temperature (T ), and the curvature of the equilibrium Kondo
resonance as a function of excitation energy (ε), respectively.
Explicit formulas for all three of these coefficients are available
in the literature for N = 1, but for general N only for the case
of cT . Given the wealth of previous studies of fully screened
Kondo models, the lack of corresponding formulas for cB and
cε was somewhat unexpected. Thus, we offer here a unified
derivation of all three Fermi-liquid coefficients, cT , cB , and
cε. We follow the strategy which Affleck and Ludwig (AL)
[26] have used to reproduce Nozières’ results [13] for N = 1,
namely doing perturbation theory in the leading irrelevant
operator, and generalize it to the case of arbitrary N . Our
formulation of this strategy follows that used by Pustilnik and
Glazman (PG) [29] for their discussion of Kondo quantum
dots. While all pertinent ideas used here can be found in the
literature, we hope that our rather compact way of combining
them will be found useful.

For our numerical work, we faced two challenges: First,
the complexity of the numerical calculations increases rapidly
with increasing N ; this was dealt with by exploiting non-
Abelian symmetries. Second, numerical calculations do not
achieve the scaling limit that is implicitly presumed in analyti-
cal calculations; its absence was compensated by using suitable
definitions of the Kondo temperature, following Ref. [34].

The paper is organized as follows. In Sec. II we define
the model and summarize our key results for the Fermi-liquid
coefficients cB , cT , and cε. Section III compactly summarizes
relevant elements of FLT and uses them to calculate these
coefficients. Section IV describes our numerical work and
results. Section V summarizes our conclusions.

II. MODEL AND MAIN RESULTS

The fully-screened Kondo model for N conduction bands
coupled to a single magnetic impurity at the origin is defined
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by the Hamiltonian H = H0 + Hloc, with

H0 =
∑
kmσ

ξkc
†
kmσ ckmσ , (1a)

Hloc = JK

∑
kk′mσσ ′

c
†
kmσ

�τσσ ′

2
ck′mσ ′ �S − BSz. (1b)

Here H0 describes N channels of free conduction electrons,
with spin index σ = (+,−) = (↑,↓) and channel index m =
1, . . . ,N . We take the dispersion ξk = εk − εF to be linear and
symmetric around the Fermi energy, ξk = k�vF. Each channel
has exchange coupling JK to a local SU(2) spin of size S =
N/2 with spin operators �S, and B describes a local Zeeman
field in the z direction (we use units gμB = 1). The overall
symmetry of the model [19] is SU(2)×Sp(2N ) for B = 0, and
U(1)×Sp(2N ) for B �= 0 (see Sec. IV A for details). The model
is characterized by a low-energy scale, the Kondo temperature,
TK ∼ D̃ exp [−1/(νJK)], where ν is the density of states per
channel and spin species and D̃ is of the order of the conduction
electron bandwidth.

For a disordered metal containing a dilute concentration of
magnetic impurities, the magnetic-impurity contribution to the
resistivity has the form [5,35]

ρ(T ,B) ∝
∫

dε[−∂εf (ε,T )]
∑
mσ

Amσ (ε,T ,B). (2)

Here f (ε,T ) is the Fermi function, and the impurity spectral
function Amσ (ε) = − 1

π
ImTmσ (ε) is the imaginary part of the

T matrix Tmσ (ε) describing scattering off a magnetic impurity.
The latter is defined through [37,38]

Gc
mσ,k,k′ (ε) = G0

mσ,k(ε)δ(k − k′) + G0
mσ,k(ε)Tmσ (ε)G0

mσ,k′ (ε),

(3)

with Gc
mσ,k,k′ and G0

mσ,k the full and bare conduction electron
Green’s functions, respectively. [For a Kondo quantum dot
tuned such that the low-energy physics is described by Eq. (1),
the conductance G through the dot has a form similar to Eq. (2),
with ρ replaced by G [29]].

As mentioned in the Introduction, the ground state of the
fully screened Kondo model is a spin singlet, and the regime of
low-energy excitations below TK shows Fermi-liquid behavior
[13,15]. One characteristic Fermi-liquid property is that the
leading dependence of the T matrix on its arguments, when
they are small relative to TK, is quadratic,

Amσ (ε,T ,B)

Amσ (0,0,0)
= 1 − cεε

2 + c′
T T 2 + cBB2

T 2
K

. (4)

(Particle-hole and spin symmetries forbid terms linear in ε or
B.) This implies the same for the resistivity,

ρ(T ,B)

ρ(0,0)
= 1 − cT T 2 + cBB2

T 2
K

, (5)

with cT = (π2/3)cε + c′
T . The so-called Fermi-liquid coeffi-

cients cε, cT , and cB are universal, N -dependent numbers,
characteristic of the fully screened Fermi-liquid fixed point.
For N = 1, the coefficients cT and cB have recently been
measured experimentally in transport studies through quantum

dots and compared to theoretical predictions [39]. The coef-
ficient cε is, in principle, also measurable via the nonlinear
conductance of a Kondo dot coupled strongly to one lead and
very weakly to another [29]. (The latter condition corresponds
to the limit of a weak tunneling probe; it ensures that the
nonlinear conductance probes the equilibrium shape of the
Kondo resonance, and hence the equilibrium Fermi-liquid
coefficient cε.)

The goal of this paper is twofold: first, to analytically
establish the N dependence of cε, cT , and cB using Fermi-
liquid theory similar to NB; and second, to numerically
calculate them using an NRG code that exploits non-Abelian
symmetries, in order to establish a benchmark for the quality
of the latter. Our main results are as follows: First, if the Kondo
temperature is defined by

TK = N (N + 2)

3πχ imp
= 4S(S + 1)

3πχ imp
, (6)

where χ imp is the static impurity susceptibility at zero
temperature, the Fermi-liquid coefficients are given by

cB = (N + 2)2

9
, cT = π2 4N + 5

9
, cε = 2N + 7

6
. (7)

For general N , the formula for cT has first been found by
Yoshimori [21], while those for cB and cε are new (though not
difficult to obtain). Second, our numerical results for N = 1, 2,
and 3 are found to agree with the predictions of Eq. (7) to
within 5%.

III. FERMI-LIQUID THEORY

In this section, we analytically calculate the Fermi-liquid
coefficients cB , cT , and cε for general N . With the benefit
of hindsight, we selectively combine various elements of the
work on FLT of Nozières [13], NB [15], AL [26], and PG
[29]. Detailed justifications for the underlying assumptions
are given by these authors in their original publications and
hence will not be repeated here. Instead, our goal is to assemble
their ideas in such a way that the route to the desired results is
short and sweet.

We begin by summarizing Nozières’ ideas for expressing
the T matrix in terms of scattering phase shifts and ex-
panding the latter in terms of phenomenological Fermi-liquid
parameters. Next, we recount AL’s insight that this expansion
can be reproduced systematically by doing perturbation
theory in the leading irrelevant operator of the model’s
zero-temperature fixed point. Then we adopt PG’s strategy
of performing the expansion in a quasiparticle basis in which
the constant part of the phase shift has already been taken into
account, which considerably simplifies the calculation. Our
own calculation is presented using notation analogous to that
of PG, while taking care to highlight the extra terms that arise
for N > 1. It turns out that their extra contributions can be
found with very little extra effort.

A. Phase shift and T matrix

Since the ground state of the fully screened Kondo model
is a spin singlet, a low-energy quasiparticle scattering off the
impurity experiences strong elastic scattering as if the impurity
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were nonmagnetic. Moreover, it also experiences a weak local
interaction if some energy (	TK) is available to weakly excite
the singlet, causing some inelastic scattering. Since the singlet
binding energy is TK, the strength of this local interaction is
proportional to 1/TK.

Nozières [13] realized that this combination of strong
elastic scattering and a weak local interaction can naturally
be treated in terms of scattering phase shifts. The phase shift
of a quasiparticle with quantum numbers mσ and excitation
energy ε relative to the Fermi energy can be written as

δmσ (ε) = δ0
mσ + δ̃mσ (ε), δ0

mσ = π/2. (8)

Here δ0
mσ is the phase shift for ε = B = T = 0; it has the

maximum possible value for scattering off a nonmagnetic
impurity, namely π/2. Finite-energy corrections arising from
weak excitations of the singlet are described by δ̃mσ (ε), which
is proportional to 1/TK.

If inelastic scattering is weak, unitarity of the S matrix can
be exploited [13] to write the T matrix in the following form
(we use the notation PG [29]; for a detailed analysis, see AL’s
discussion [26] of the terms arising from their Figs. 6 and 7):

1 − 2πνiTmσ (ε) = e2iδmσ (ε)
[
1 − 2πνiT̃ in

mσ (ε)
]
. (9)

Here T̃ in accounts for weak inelastic two-body scattering
processes, and is proportional to 1/T 2

K. It is to be calculated
in a basis of quasiparticle states in which the phase shift δ0

mσ

has already been accounted for. (Here and below, tildes will
be used on quantities defined with respect to the new basis if
they differ from corresponding ones in the original basis.)

Expanding Eq. (9) in the small (real) number δ̃mσ (ε) and
recalling that e2iδ0

mσ = −1, one finds that the imaginary part of
the T matrix, which determines the spectral function, can be
expressed as

−πνImTmσ (ε) = 1 − [
δ̃2
mσ (ε) − πνImT̃ in

mσ (ε)
]
, (10)

to order 1/T 2
K. Comparing this to Eq. (4), we conclude that

knowing δ̃ to order 1/TK and T̃ in to order 1/T 2
K suffices to

fully determine the Fermi-liquid coefficients cB , cT , and cε.
Now, a systematic calculation of δ̃ and T̃ in requires a

detailed theory for the strong-coupling fixed point, which
became available only with the work of AL in the early
1990s. Nevertheless, Nozières succeeded in treating the case
N = 1 already in 1974 [13], using a phenomenological
expansion of δ̃mσ (ε) in powers of (ε − εZ

σ )/TK [εZ
σ represents

the Zeeman energy of quasiparticles in a magnetic field; see
Eq. (14) below] and δn̄m′σ ′ = nm′σ ′ − n0

m′σ ′ , the deviation of
the total quasiparticle number nm′σ ′ from its ground-state
value. The prefactors in this expansion have the status of
phenomenological Fermi-liquid parameters. Using various
ingenious heuristic arguments, he was able to show that all
these parameters, and also T̃ in, are related to each other and
can be expressed in terms of a single energy scale, namely the
Kondo temperature. Moreover, by choosing the prefactor of ε

in this expansion to be 1/TK, he suggested a definition of the
Kondo temperature that also fixes its numerical prefactor. (Our
paper adopts this definition, too.) In 1980, NB generalized
this strategy [15] to general N , finding an expansion of

the form

δ̃mσ (ε) = α
(
ε − εZ

σ

) − 3ψδn̄m,−σ

+ ψ
∑
m′ �=m

(δn̄m′σ − δn̄m′,−σ ), (11)

where α and ψ are phenomenological Fermi-liquid parameters
related by α = 3ψν = 1/TK. [NB’s initial version of Eq. (11),
their Eq. (34), does not contain the Zeeman contribution εZ

σ ,
but the latter is implicit in their subsequent treatment of the
Zeeman field before their Eq. (37).]

In the following subsections, we show how NB’s expansion
for δ̃ can be derived systematically. AL [26] and PG [29] have
shown how to do this for N = 1; we will generalize their
discussion to arbirtrary N .

B. Leading irrelevant operator

AL showed [26] that NB’s heuristic results can be derived
in a systematic fashion by doing perturbation theory in the
leading irrelevant operator of the model’s zero-temperature
fixed point. As perturbation, they took the operator with the
lowest scaling dimension satisfying the requirements of being
(i) local, (ii) independent of the impurity spin operator �S, since
the latter is fully screened, (iii) SU(2)-spin invariant, (iv) and
independent of the local charge density, just as the Kondo
interaction. The operator satisfying these criteria has the
form [25]

Hλ = −λ : �J (0) · �J (0) : , (12)

where �J (0) is the quasiparticle spin density at the impurity site,
and : . . . : denotes the point-splitting regularization procedure
(see Appendix). In Appendix D of Ref. [26], AL showed in
great detail how NB’s phase shifts can be computed using
Eq. (12), for the single-channel case of N = 1. They did not
devote as much attention to the case of general N , though
the needed generalizations are clearly implied in their work.
We here present the corresponding calculation in some detail,
following the notational conventions of PG, which differ
from those of AL in some regards (see Appendix). The main
difference is that PG formulate the perturbation expansion in a
new basis of quasiparticle states, in which the phase shift δ0

mσ

has already been accounted for, which somewhat simplifies the
discussion. (We remark that PG chose δ0

mσ = σπ/2 rather than
π/2 as used by NB and us, but the extra σ has no consequences
for the ensuing arguments.)

The quasiparticle Hamiltonian describing the vicinity of the
strong-coupling fixed point (fp) has the form

Hfp = Hfp,0 + Hλ, (13)

where

Hfp,0 =
∑
mσk

(
ξk + εZ

σ

)
:ψ†

kmσψkmσ : , εZ
σ = −σB

2
(14)

describes free quasiparticles in a magnetic field B, with
Zeeman energy εZ

σ . Note that although the Zeeman term in
the bare Hamiltonian (1) is local, it is global in Eq. (14),
because the effective quasiparticle Hamiltonian Hfp contains
no local spin. Using standard point-splitting techniques, which
we review in pedagogical detail in the Appendix, the leading

195131-3

160 6. Transport for impurity models



M. HANL, A. WEICHSELBAUM, J. VON DELFT, AND M. KISELEV PHYSICAL REVIEW B 89, 195131 (2014)
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↓m
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σmm
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↓m σ

mσ

FIG. 1. (Color online) (a)–(c) Vertices associated with H1, H2,
and H3, respectively. (d)–(f) Nonzero second-order contributions
to the quasiparticle self-energy, �̃R

mσ , involving H 2
1 , H 2

2 , and H 2
3 ,

respectively. The contributions involving H1H2, H1H3, and H2H3 all
vanish, the former two due to the odd power of energy in the two-leg
vertex.

irrelevant operator (12) can be written as Hλ = H1 + H2 +
H3, with

H1 = − 1

2πνTK

∑
mσkk′

(ξk + ξk′) :ψ†
kmσψk′mσ : , (15a)

H2 = 1

πν2TK

∑
m

:ρm↑ρm↓ : , (15b)

H3 = − 2

3πν2TK

∑
m�=m′

: �jm · �jm′ : , (15c)

where

ρmσ =
∑
kk′σ

ψ
†
kmσψk′mσ , (16a)

�jm = 1

2

∑
kk′σσ ′

ψ
†
kmσ �τσσ ′ψk′mσ ′ . (16b)

Here we have expressed the coupling constant λ in terms of
the inverse Kondo temperature using [cf. Eq. (A11)]

λ = 8π (�vF)2

3TK
, (17)

with the numerical proportionality factor chosen such that
TK agrees with the definition of the Kondo temperature
used by NB and PG, as discussed below. Importantly, the
point-splitting procedure fixes the relative prefactors arising
in H1, H2, and H3 (whereas NB’s approach requires heuristic
arguments to fix them). Our notation for H1 and H2 coincides
with that used by PG. H3 contains all new contributions that
enter additionally for N > 1. Figure 1 gives a diagrammatic
depiction of all three terms.

C. First-order terms

Our first goal is to recover NB’s expansion of the phase shift
δ̃ to leading order in ε − εZ

σ and δn̄. Following PG, this can be
done by calculating δ̃ perturbatively to first order in 1/TK, in
the new basis of quasiparticle states that already incorporate
the phase shift δ0. To order 1/TK, no inelastic scattering occurs,

and δ̃ is related to the elastic T matrix by

e2iδ̃mσ (ε) = 1 − 2πνiT̃ el
mσ (ε). (18)

The elastic T matrix, in turn, equals the real part of the
quasiparticle self-energy, T̃ el

mσ (ε) = Re�̃R
mσ (ε). (Actually, to

order 1/TK, the self-energy is purely real.) By expanding
Eq. (18) for small δ̃, the phase shift is thus seen to be given by
the real part of the self-energy:

δ̃mσ (ε) 
 −πνRe�̃R
mσ (ε). (19)

Now, as pointed out already by Nozières in 1974 [13],
a first-order perturbation calculation of the self-energy is
equivalent to treating interaction terms in the mean-field (MF)
approximation. They then take the form

H MF
2 = 1

πν2TK

∑
mσ

:ρmσ : δn̄m,−σ , (20a)

H MF
3 = − 1

3πν2TK

∑
σ

∑
m�=m′

:ρmσ : (δn̄m′σ − δn̄m′,−σ ), (20b)

where δn̄mσ = 〈:ρmσ :〉, the quasiparticle number relative to
the B = 0 ground state, is given by

δn̄mσ = −νεZ
σ = σνB/2. (21)

The mean-field version of the leading irrelevant operator thus
has the form

H MF
λ =

∑
mσkk′

hmσ (ξk,ξk′) :ψ†
kmσψk′mσ : , (22)

hmσ (ξk,ξk′) = 1

πνTK

[
−1

2
(ξk + ξk′) + δn̄m,−σ

ν

−
∑
m′ �=m

δn̄m′σ − δn̄m′,−σ

3ν

]
. (23)

For such a single-particle perturbation, the self-energy can be
directly read off from hmσ using

�̃R
mσ (ε) = hmσ

(
ε − εZ

σ ,ε − εZ
σ

)
, (24)

because k sums of the type
∑

k 1/(ε − ξk − εZ
σ + i0+) yield

residues involving ξk = ε − εZ
σ . Using Eq. (24) in Eq. (19) for

the phase shift, we find

δ̃mσ (ε) = 1

TK

[
ε − εZ

σ − δn̄m,−σ

ν
+

∑
m′ �=m

δn̄m′σ − δn̄m′,−σ

3ν

]
.

(25)

This fully agrees with the expansion (11) of NB if we make the
identification 1/TK = α = 3ψν, thus confirming the validity
of NB’s heuristic arguments. Note that the coefficient of
ε − εZ

σ in Eq. (25) comes out as 1/TK, in agreement with
the conventions of NB and PG, as intended by our choice of
numerical prefactor in Eq. (17).

As consistency check, let us review how NB used Eq. (25) to
calculate the Wilson ratio. First, Eq. (25) implies an impurity-
induced change in the density of states per spin and channel of
ν

imp
mσ (ε) = 1

π
∂εδmσ (ε). This yields a corresponding impurity-

induced change in the specific heat, C imp. At zero field (where
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εZ
σ and δn̄mσ vanish), the change relative to the bulk is given

by

C imp

C
= 2Nν

imp
mσ (0)

2Nν
= 1

πνTK
. (26)

Second, the Friedel sum rule for the impurity-induced change
in local charge in channel m for spin σ at T = 0 gives

N imp
mσ = 1

π
δmσ (0) = 1

2
+ 1

π
δ̃mσ (0), (27)

and Eq. (25), together with Eq. (21) for δn̄mσ , leads to

δ̃mσ (0) = σB

TK

[
1

2
+ 1

2
+ N − 1

3

]
= σB(N + 2)

3TK
. (28)

The linear response of the impurity-induced magnetization,
M imp = 1

2

∑
m(N imp

m↑ − N
imp
m↓ ), then gives the impurity contri-

bution to the spin susceptibility as

χ imp = M imp

B
= N (N + 2)

3πTK
= 4S(S + 1)

3πTK
. (29)

(For all expressions involving χ imp here and below, the limit
B → 0 is implied.) The corresponding bulk contribution is
χ = νN/2. Thus, the Wilson ratio is found to be

R = χ imp/χ

C imp/C
= 2(N + 2)

3
= 4(S + 1)

3
, (30)

in agreement with more elaborate calculations by Yoshimori
[21] and by Mihály and Zawadowski [22].

Note that Eq. (29) relates Nozières’ definition of the Kondo
temperature to an observable quantity, χ imp, that can be
calculated numerically. We used this as a precise way of
defining TK in our numerical work. (Subtleties involved in
calculating χ imp are discussed in Sec. IV B.) Note that up to
a prefactor, Eq. (29) for χ imp has the form χ free(TK), where
χ free(T ) = S(S + 1)/(3T ) is the static susceptibility of a free
spin S at temperature T .

We are now in a position to extract our first Fermi-liquid
coefficient, cB . For this, it suffices to know the spectral
function A in Eq. (4) to quadratic order in B, at ε = T = 0,
where T̃ in = 0. Inserting the corresponding expression (28)
for δ̃mσ (0) into Eq. (10) for ImT , we find

Amσ (0,0,B) = 1

νπ2

[
1 − (N + 2)2

9

B2

T 2
K

]
. (31)

Comparing this to Eq. (4), we read off cB = (N + 2)2/9.
Note that if the definition (29) of TK in terms of χ imp is taken

as given, cB can actually be derived on the back of an envelope:
for a fully screened Kondo model, the impurity-induced spin
susceptibility gets equal contributions from all N channels,
χ imp = Nχ

imp
m , and the Friedel sum rule relates the contri-

bution from each channel to phase shifts, χ
imp
m = M

imp
m /B =

[δ̃m↑(0) − δ̃m↓(0)]/(2πB), implying δ̃mσ (0) = σ (πχ imp/N )B.
Using this in Eq. (10) yields

Amσ (0,0,B) = 1

νπ2
[1 − (πχ imp/N)2B2], (32)

which is equivalent to Eq. (31) if Eq. (29) holds.

D. Second-order terms

We next discuss inelastic scattering for B = 0, but at finite
temperature. To order 1/T 2

K, inelastic scattering is described
by the imaginary part of the quasiparticle self-energy arising
from the second-order contributions of H1, H2, and H3, shown
in diagrams (d)–(f) of Fig. 1, respectively. These diagrams give

Im�̃R,1
mσ (ε) = − ε2

πνT 2
K

, (33a)

Im�̃R,2
mσ (ε) = −ε2 + π2T 2

2πνT 2
K

, (33b)

Im�̃R,3
mσ (ε) = 2

3
(N − 1) Im�̃R,2

mσ (ε). (33c)

The first two can also be found in the discussion of PG, whose
strategy we follow here. (They also appear, in slightly different
guise, in the discussion of AL [26].) The third is proportional to
the second, and the factor 2/3 originates from (2/3)22s(s + 1)
with s = 1/2, since the relative prefactor between H3 and H2

brings in two powers of 2/3, and the algebra of Pauli matrices
yields a factor 2s(s + 1).

Now, the term called T̃ in in Eq. (9) by definition describes
the contribution of the two-body terms H2 and H3 to inelastic
scattering:

ImT̃ in
mσ (ε) = Im

[
�̃R,2

mσ (ε) + �̃R,3
mσ (ε)

]
. (34)

The contribution Im�̃R,1 from H1 is not included in ImT̃ in

here, since it actually equals −δ̃2/πν, and hence is already
contained in the factor e2iδ̃ in Eq. (9). Indeed, in Eq. (10) for
the imaginary part of the T matrix in the original basis, the δ̃2

term equals −πνIm�̃R,1. Collecting all ingredients, Eq. (10)
gives

Amσ (ε,T ,0) = 1

νπ2

[
1 − ε2

T 2
K

− ε2 + π2T 2

2T 2
K

(
1 + 2

3
(N − 1)

)]

= 1

νπ2

[
1 − (2N + 7)ε2 + (2N + 1)π2T 2

6T 2
K

]
.

(35)

For N = 1, the second term reduces to the familiar form
−(3ε2 + π2T 2)/(2T 2

K) found by AL [26] and GP [29]. Com-
paring Eqs. (35) and (4) and (5) we read off cε = (2N + 7)/6
and c′

T = π2(2N + 1)/6, implying cT = π2(4N + 5)/9.

IV. NRG RESULTS

In this section, we describe our NRG work. We had
set ourselves the goal of achieving an accuracy of better
than 5% for the Fermi-liquid coefficients. To achieve this,
two ingredients were essential: first, exploiting non-Abelian
symmetries; and second, defining the Kondo temperature with
due care. The latter is a matter of some subtlety [34] because
the wide-band limit assumed in analytical work does not apply
in numerical calculations.

We begin below by giving the Lehmann representation for
the desired spectral function. We then discuss the non-Abelian
symmetries used in our NRG calculations and explain how
the Kondo temperature was extracted numerically. Finally, we
present our numerical results.
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A. NRG details

To numerically calculate the T matrix of Eq. (3), we use
equations of motion [37,38] to express it as

Tmσ (ε) = JK〈Sz〉 + 〈〈Omσ ; O†
mσ 〉〉, (36a)

Omσ ≡ [�mσ (0),Hloc] = JK

∑
σ ′

�S · �τσσ ′

2
�mσ ′(0). (36b)

Here 〈〈 · ; · 〉〉 denotes a retarded correlation function, and
�mσ (0) = 1√

Ndisc

∑
k ckmσ , where Ndisc is the number of

discrete levels in the band (and hence proportional to the
system size). The spectral function is then calculated in its
Lehmann-representation,

Amσ (ε,T ,B) =
∑
a,b

e−βEa + e−βEb

Z
|〈a|Omσ |b〉|2δ(ε − Eab),

(37)

with Eab = Eb − Ea , using the full density matrix (FDM)
approach of NRG [9,40–42].

For our numerical work, we take the conduction-band
energies to lie within the interval ξk ∈ [−D,D], with Fermi
energy at 0 and half bandwidth D = 1, and take the density
of states per spin, channel, and unit length to be constant,
as 1/2D. (It is related to the extensive density of states
used in Sec. III by ν = Ndisc/2D.) For the calculations used
to determine the Fermi-liquid parameters, we use exchange
coupling νJK = 0.1, so that the Kondo temperature TK/D ∝
exp[−1/(νJK)] has the same order of magnitude for N = 1, 2,
and 3, namely �10−4. Following standard NRG protocol
[7,8,10], the conduction band is discretized logarithmically
with discretization parameter �, mapped onto a Wilson chain,
and diagonalized iteratively. NRG truncation at each iteration
step is controlled by either specifying the number of kept states
per shell, NK, or the truncation energy Etr (in rescaled units,
as defined in Ref. [43]), corresponding to the highest kept
energy per shell. Spectral data are averaged over Nz different,
interleaving logarithmic discretization meshes [44]. The values
for NRG-specific parameters used here are given in legends in
the figures below.

For the fully screened N -channel Kondo model, the dimen-
sion of the local Hilbert space of each supersite of the Wilson
chain is 4N . Since this increases exponentially with the number
of channels, it is essential, specifically so for N = 3, to reduce
computational costs by exploiting non-Abelian symmetries
[11] to combine degenerate states into multiplets. Several
large symmetries are available [19]: For B = 0, the model has
SU(2)×U(1)×SU(N ) spin-charge-channel symmetry. If the
bands described by H0 are particle-hole symmetric, as assumed
here, the model also has a SU(2)×[SU(2)]N spin(charge)N

symmetry, involving SU(2) mixing of particles and holes in
each of the N channels. The U(1)×SU(N ) and [SU(2)]N

symmetries are not mutually compatible (their generators do
not all commute), however, implying that both are subgroups
of a larger symmetry group, the symplectic Sp(2N ). Thus the
full symmetry of the model for B = 0 is SU(2)×Sp(2N ). For
B �= 0 it is U(1)×Sp(2N ), since a finite magnetic field breaks
the SU(2) spin symmetry to the Abelian U(1) Sz symmetry.
When the model’s full symmetry is exploited, the multiplet

spaces encountered in NRG calculations exhibit no more
degeneracies in energy at all.

Using only Abelian symmetries turned out to be clearly
insufficient to obtain well converged numerical data for
N = 3, despite having a relatively large �. This, however,
is required for accurate Fermi-liquid coefficients with er-
rors below a few percent. For numerically converged data,
therefore, it was essential to use non-Abelian symmetries.
For our B = 0 calculations, it turned out to be sufficient to
use SU(2)×U(1)×SU(N ) symmetry for calculating cT , but
the full SU(2)×Sp(2N ) symmetry was needed for calculating
cε. Likewise, for our B �= 0 calculations of cB , we needed
to use the full U(1)×Sp(2N ) symmetry. Doing so led to an
enormous reduction in memory requirements, the more so the
larger the rank of the symmetry group [Sp(2N ) has rank N ,
and SU(N ) has rank N − 1]. For N = 3, for example, we
kept �13 500 multiplets for SU(2)×U(1)×SU(3) or �3 357
multiplets for SU(2)×Sp(6) during NRG truncation, which, in
effect, amounts to keeping �980 000 individual states [11].

B. Definition of TK

The Fermi-liquid theory of Sec. III implicitly assumes
that the model is considered in the so-called scaling limit,
in which the ratio of Kondo temperature to bandwidth
vanishes, TK/D → 0. In this limit, physical quantities such as
ρ(T ,B)/ρ(0,0) are universal scaling functions, which depend
on their arguments only in the combinations B/TK and T/TK.
Since the shape of such a scaling function, say ρ(0,B)/ρ(0,0)
plotted versus B/TK, is universal, i.e., independent of the
bare parameters (coupling JK and bandwidth D) used to
calculate it, curves generated by different combinations of
bare parameters can all be made to collapse onto each other
by suitably adjusting the parameter TK for each. In the same
sense the Fermi-liquid parameters cB , cT , and cε, being Taylor
coefficients of universal curves, are universal, too.

One common way to achieve a scaling collapse, popular
particularly in experimental studies, is to identify the Kondo
temperature with the field B1/2 or temperature T1/2 at which the
impurity contribution to the resistivity has decreased to half
its unitary value,

ρ(0,B1/2) = ρ(0,0)/2, ρ(T1/2,0) = ρ(0,0)/2. (38)

However, this approach is not suitable for the purpose of
extracting Fermi-liquid coefficients, for which TK has to
be defined in terms of (analytically accessible) low-energy
properties characteristic of the strong-coupling fixed point. In
Sec. III we have therefore adopted Nozières’ definition of TK

in terms of the leading energy dependence of the phase shift
δ̃0
mσ [Eq. (25)], implying that it can be expressed in terms of

χ imp, of the local static spin susceptibility at zero temperature
[Eq. (29)]. In the scaling limit, this definition of TK matches B1/2

or T1/2 up to prefactors, i.e., B1/2/TK and T1/2/TK are universal,
N -dependent numerical constants, independent of the model’s
bare parameters.

In numerical work, however, the scaling limit is never
fully realized, since the bandwidth is always finite. It may
thus happen that a scaling collapse expected analytically
is not found when the corresponding curves are calculated
numerically. For example, if the Kondo temperature is defined,

195131-6

6.4 Equilibrium Fermi Liquid coefficients for fully screened Kondo models 163



EQUILIBRIUM FERMI-LIQUID COEFFICIENTS FOR THE . . . PHYSICAL REVIEW B 89, 195131 (2014)

as seems natural, in terms of a purely local susceptibility, χ loc,
involving only the response of the local spin to a local field,

4S(S + 1)

3πT loc
K

≡ χ loc ≡ d

dB
〈Sz〉|B=0, (39)

then curves expected to show a scaling collapse actually do not
collapse onto each other, as pointed out recently in Ref. [34]
[see Figs. 2(d)–2(f) there]. That paper also showed how to
remedy this problem: the static spin susceptibility used to
calculate TK has to be defined more carefully, and two slightly
different definitions have to be used, depending on the context.
The first option is needed when studying zero-temperature
(i.e., ground state) properties as a function of some external
parameter, such as the field dependence of the resistivity
(needed for cB). In this case, a corresponding susceptibility
defined in terms of the response of the system’s total spin to a
local field should be used:

4S(S + 1)

3πT FS
K

≡ χFS ≡ d

dB

〈
S tot

z

〉∣∣
B=0. (40)

The superscript FS stands for “Friedel sum rule,” to highlight
the fact that using this rule to calculate the linear response of
〈S tot

z 〉 to a local field directly leads to relation (29) between
χ imp and TK. The second option is needed when studying
dynamical or thermal quantities that depend on the system’s
many-body excitations for given fixed external parameters
(e.g., fixed B = 0), such as the temperature dependence of
the resistivity (needed for cT ), or the curvature of the Kondo
resonance (needed for cε). In this case, one should use

4S(S + 1)

3πT sc
K

≡ χ sc ≡ 2χFS − χ loc. (41)

The superscript sc stands for “scaling,” to indicate that
this definition of the Kondo temperature ensures [34] a
scaling collapse of dynamical or thermal properties. Figure 2
demonstrates that a scaling collapse is indeed found when
the field- or temperature-dependent resistivity, plotted versus
B/T FS

K or T/T sc
K , respectively, is calculated for two different

values of JK (solid and dashed lines, respectively). Note that
this works equally well for N = 1, 2, and 3. (For N = 1, such
scaling collapses had already been shown in Ref. [34].)

We remark that the three Kondo temperatures defined in
Eqs. (39)–(41) differ quite significantly from each other for
the Kondo Hamiltonian of Eq. (1), with differences as large
as 12%, 31%, and 55% for N = 1, 2, and 3, respectively, for
the parameters used in Fig. 2. This indicates that although
we have chosen bare parameters for which TK/D is smaller
than 10−4, we have still not reached the scaling limit [in
which the definitions Eqs. (39)–(41) of the Kondo temperature
should all coincide numerically [34]]. We have checked that
the differences between T loc

K , T FS
K , and T sc

K decrease when
νJK is reduced in an attempt to get closer to the scaling
limit, but estimate that truly reaching that limit would require
νJK < 0.01 for the Kondo model, implying TK/D < 10−45.
Thus, reaching the scaling limit by brute force is numerically
unfeasible. Therefore, using T FS

K and T sc
K rather than T loc

K
is absolutely essential for obtaining scaling collapses. It
is similarly essential for an accurate determination of the
Fermi-liquid parameters. Correspondingly, for the results
discussed below, we have used T FS

K as definition of the Kondo
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FIG. 2. (Color online) Scaling collapse of (a) the resistivity at
zero temperature as a function of field, and (b) at zero field as a
function of temperature, calculated for two different values of the
bare coupling, νJK (dashed or solid), and for N = 1, 2, and 3. For
each N , the dashed and solid curves overlap so well that they are
almost indistinguishable. The insets compare the energy scales B1/2

and T1/2 at which the resistivity has decreased to half its unitary value
[cf. Eq. (38)], to the scales T FS

K and T sc
K [cf. Eqs. (40) and (41)],

respectively. The shown ratios are universal numbers of order unity,
but not necessarily very close to 1, with a significant dependence
on N : B1/2/T FS

K = 1.22,1.31,1.60 and T1/2/T sc
K = 0.82,1.02,1.36 for

N = 1, 2, and 3, respectively. The legend in the lower left of panel (b)
specifies the NRG parameters used for both panels.

temperature when extracting cB , and T sc
K when extracting cT

and cε.

C. Using unbroadened discrete data only

When one is interested in spectral properties, one typically
has to broaden the discrete data. For the determination of
the Fermi-liquid coefficients, however, where high numerical
accuracy is required, it is desirable to avoid standard broad-
ening. For the calculation of cT and cB this can be achieved
[9] by directly inserting the Lehmann sum over δ functions for
the spectral function Amσ (ε,T ,B) [Eq. (37)] into the energy
integral for ρ(T ,B) [Eq. (2)], resulting in a sum over discrete
data points that produces a smooth curve. The curve is smooth
because Eq. (2) in effect thermally broadens the δ peaks in the
Lehmann representation. This is true even in the limit T → 0,
because in NRG calculations it is realized by taking T nonzero,
but much smaller than all other energy scales.

For the determination of cε, in contrast, one faces the
problem that Amσ (ε,0,0) is represented not as an integral of
a sum over discrete δ functions, but directly in terms of the
latter. To avoid having to broaden these by hand, it is desirable
to find a way to extract cε from an expression involving an
integral over the discrete spectral data, as for cB and cT . This
can be achieved as follows. First, note that cε is, by definition,
a coefficient in the general Taylor expansion of the normalized
spectral function Anorm(ε) ≡ Amσ (ε,0,0)/Amσ (0,0,0) for small
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frequencies,

Anorm(ε) =
∞∑

n=0

an(ε/TK)n, cε = a2. (42)

Due to particle-hole symmetry, an = 0 for all n odd, and
by definition a0 = 1. To determine a2 from an integral over
discrete data, we consider a weighted average of Anorm(ε)
over ε,

Ā(τ ) ≡
∫

dεAnorm(ε)Pτ (ε), (43)

where Pτ (ε) is a symmetric weighting function of width τ and
weight 1, and moments defined by∫

dε(ε/τ )nPτ (ε) ≡ pn (44)

for integer n � 0 (with p0 = 1). Here we use

Pτ (ε) = 1

4τ

1

cosh2 (ε/2τ )
= −∂f (ε,τ )

∂ε
, (45)

but other choices are possible, too (e.g., a Gaussian peak).
Clearly, the leading τ dependence of Ā(τ ) for small τ reflects
the leading ε dependence of Anorm(ε) and allows for an
accurate determination of a2. Indeed, using Eqs. (42)–(45), we
obtain a power-series expansion for Ā(τ ) of the form Ā(τ ) =∑

n anpn(τ/TK)n. Thus, by fitting Āfit(τ ) = ∑
n fnτ

n to the
NRG data for Ā(τ ), one can determine the desired coefficients
in (42) using an = T n

Kfn/pn. In particular, the Fermi-liquid
coefficient of present interest is given by cε = a2 = T 2

Kf2/p2.

D. Extraction of Fermi-liquid coefficients

Figures 3(a)–3(c) show our NRG data (heavy solid lines)
for the resistivity plotted versus B/T FS

K at zero temperature or
plotted versus T/T sc

K at zero field, and for the weighted spectral
function plotted versus τ/T sc

K , respectively. We determined
the Fermi-liquid coefficients cB , cT , and cε from the quadratic
terms of fourth-order polynomial fits to these curves. Including

TABLE I. Numerically extracted values of cB , cT , and cε , given
here relative to the corresponding predictions from FLT of Eq. (7).
The deviations between NRG and FLT values are �5% in all cases.
To numerically determine these coefficients, we used the quadratic
coefficient of a fourth-order polynomial fit to the corresponding NRG
data. Error bars were estimated by comparing the quartic fits to
polynomial fits of different higher orders.

N cNRG
B /cFLT

B cNRG
T /cFLT

T cNRG
ε /cFLT

ε

1 1.00 ± 0.01 1.00 ± 0.01 1.01 ± 0.03
2 1.02 ± 0.03 0.98 ± 0.03 0.99 ± 0.03
3 1.05 ± 0.05 1.01 ± 0.03 1.02 ± 0.07

the fourth-order term allows the fitting range to be extended to-
wards somewhat larger values of the argument, thus increasing
the accuracy of the fit. For each solid curve, the quadratic term
from the fit is shown by heavy dashed lines; these are found
to agree well with the corresponding predictions from FLT,
shown by light lines of matching colors. The level of agreement
is quite remarkable, given the rather limited range in which the
behavior is purely quadratic: with increasing argument, quartic
contributions become increasingly important, as reflected by
the growing deviations between dashed and solid lines; and
at very small values of the argument (�0.02), the NRG data
become unreliable due to known NRG artefacts.

Numerical values for the extracted Fermi-liquid coefficients
are given in Table I; they agree with those predicted ana-
lytically to within �5%. This can be considered excellent
agreement, especially for the numerically very challenging
case of N = 3.

V. CONCLUSIONS

Our two main results can be summarized as follows. First,
we have presented a compact derivation of three Fermi-liquid
coefficients for the fully screened N -channel Kondo model,
by generalizing well-established calculations for N = 1 to

0 0.02 0.04 0.06 0.08
T/T

K
sc

ρ(T,B=0)/ρ(0)

0 0.05 0.1 0.15 0.2 0.25
0.95

0.96

0.97

0.98

0.99

1

B/T
K
FS

ρ(T=0,B)/ρ(0)

0 0.02 0.04 0.06 0.08 0.1 0.12
τ/T

K
sc

A(τ)

N

Λ
E

tr
N

z

1
3

40
4

2
4

12
4

3
4

10
2

N

Λ
E

tr
N

z

1
3

40
4

2
3.5

25
4

3
4

12
2

NRGN
1

2

3

fit FLT(a) (c)(b)

FIG. 3. (Color online) (a) Resistivity as function of magnetic field at T = 0, (b) resistivity as function of temperature at B = 0, and (c) the
weighted spectral function Ā(τ ) [cf. Eq. (43)] at T = B = 0, all shown for N = 1,2,3. Each panel contains NRG data (heavy solid lines), the
quadratic term from a fourth-order polynomial fit (heavy dashed lines) and the corresponding predictions from FLT of Eq. (7) for the quadratic
term (light solid lines). Left and right vertical dotted lines in matching colors indicate the lower and upper borders of the fitting range used for
each N . The boxed legends specify the NRG parameters used here.

195131-8

6.4 Equilibrium Fermi Liquid coefficients for fully screened Kondo models 165



EQUILIBRIUM FERMI-LIQUID COEFFICIENTS FOR THE . . . PHYSICAL REVIEW B 89, 195131 (2014)

general N . The corresponding calculations, building on ideas
of Nozières, Affleck and Ludwig, and Pustilnik and Glazman,
are elementary. We hope that our way of presenting them
emphasizes this fact, and perhaps paves the way for similar
calculations in less trivial quantum impurity problems that
also show Fermi-liquid behavior, such as the asymmetric
single-impurity Anderson Hamiltonian, or the 0.7 anomaly
in quantum point contacts [45].

Second, we have established a benchmark for the quality of
NRG results for the fully screened N -channel Kondo model, by
showing that it is possible to numerically calculate equilibrium
Fermi-liquid coefficients with an accuracy of better than 5%
for N = 1, 2, and 3. To achieve numerical results of this
quality, two technical ingredients were essential, both of which
became available only recently: first, exploiting larger-rank
non-Abelian symmetries in the numerics [11,12]; and second,
carefully defining the Kondo temperature [34] in such a way
that numerically calculated universal scaling curves are indeed
universal, in the sense of showing a proper scaling collapse,
despite the fact that the scaling limit TK/D → 0 is typically
not achieved in numerical work.
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APPENDIX

This Appendix offers a pedagogical derivation of the
Hamiltonian Hλ given in Eq. (15) of the main text using
the point-splitting regularization strategy, following AL (Ap-
pendix D of [26]). Its main purpose is to show how the relation
α = 3ψν = 1/TK between Fermi-liquid parameters that NB
had found by intuitive arguments [15] follows simply and

naturally from point splitting. For a detailed discussion of the
point-splitting strategy, see Refs. [47–49].

According to AL, the leading irrelevant operator for the
fully screened N -channel Kondo model has the form

Hλ = −λ : �J (0) · �J (0) : . (A1)

Here �J (x) = ∑N
m=1 : �Jm(x) : is the total (point-split) spin

density from all channels at position x (the impurity or dot
sits at x = 0), and

�Jm(x) = 1

2

∑
σσ ′

�†
mσ (x)�τσσ ′�mσ ′(x) (A2)

is the corresponding (non-point-split) spin density for chan-
nel m. Here : . . . : denotes point splitting,

:A(x)B(x) :≡ lim
η→0

[A(x + η)B(x) − A(x + η)B(x)], (A3)

a field-theoretic scheme for regularizing products of operators
at the same point by subtracting their ground-state expectation
value, AB = 〈AB〉. (In most cases, point splitting is equivalent
to normal ordering.) For present purposes, we follow AL [26]
and take

�mσ (x) = 1√
L

∑
k

e−ikxψkmσ (A4)

to be free fermion fields with linear dispersion (ξk = k�vF)
in a box of length L → ∞ (with k ∈ 2πn/L, n ∈ Z), with
normalization {ψkmσ ,ψ

†
k′m′σ ′ } = δkk′δmm′δσσ ′ and free ground-

state correlators

〈�†
mσ (x)�m′σ ′(0)〉 = 〈�mσ (x)�†

m′σ ′(0)〉 = δmm′δσσ ′

2πix
. (A5)

Note that we follow PG in our choice of field normalization,
which differs from that used by AL [26] by �here = ψAL/

√
2π .

Consequently, our coupling constant is related to theirs by
λhere = (2π )2λAL.

In the definition of Hλ, point splitting is needed because the
product of two spin densities, �J (x + η) · �J (x), diverges with
decreasing separation η between their arguments. To make this
explicit, we use Wick’s theorem,

:AB ::CD : = :ABCD :+ :ABCD :+ :ABCD :+ :ABCD : ,

to rewrite the product of spin densities as follows:

�J (x + η) · �J (x) = 1

4

∑
mσσ ′

∑
m′σ̄ σ̄ ′

:�†
mσ (x + η)�τσσ ′�mσ ′(x + η) : :�†

m′σ̄ (x)�τσ̄ σ̄ ′�m′σ̄ ′(x) : (A6a)

= 1

4

∑
mσσ ′

∑
m′σ̄ σ̄ ′

�τσσ ′ · �τσ̄ σ̄ ′

[
:�†

mσ (x + η)�mσ ′(x + η)�†
m′σ̄ (x)�m′σ̄ ′(x) :

+ δmm′

2πiη
(δσ ′σ̄ :�†

mσ (x + η)�mσ̄ ′(x) : + δσ σ̄ ′ :�mσ ′(x + η)�†
mσ̄ (x) :) + δσ σ̄ ′δσ ′σ̄ δmm′

(2πiη)2

]
. (A6b)

The point-splitting prescription in Eq. (A1) subtracts off the 1/η2 divergence of the last term of Eq. (A6b). The contributions of
the second and first terms to Hλ can be organized as Hλ = H1 + Hint, describing single-particle elastic scattering and two-particle
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interactions, respectively. Taking x = 0 and η → 0, we find

H1 = − λ

8πi
lim
η→0

∑
mσσ ′

:
1

η

[
�†

mσ (η)�τ 2
σσ ′�mσ ′(0) −�

†
mσ ′ (0)�τ 2

σ ′σ�mσ (η)
]

: (A7a)

= − 3λ

8πi
lim
η→0

∑
mσ

:

[
1

η
(�†

mσ (η) − �†
mσ (0))�mσ (0) − �†

mσ (0)
1

η
(�mσ (η) − �mσ (0))

]
: (A7b)

= − 3λ

8πi

∑
mσ

: [(∂x�
†
mσ )(0)�mσ (0) − �†

mσ (0)(∂x�mσ )(0)] : , (A7c)

Hint = −λ
∑
mm′

: �Jm(0) · �Jm′ (0) : . (A8)

To obtain Eq. (A7b), we used �τ 2
σσ ′ = 3δσσ ′ and subtracted

and added :�†
mσ (0)�mσ (0): inside the square brackets. Now

pass to the momentum representation, using Eq. (A4) and the
shorthand notations (following PG [29])

ρmσ (0) = 1

L
ρmσ , ρmσ =

∑
kk′

ψ
†
kmσψk′mσ , (A9a)

�Jm(0) = 1

L
�jm, �jm = 1

2

∑
kk′σσ ′

ψ
†
kmσ �τσσ ′ψk′mσ ′ , (A9b)

for the conduction electron channel-m charge and spin densi-
ties at the impurity. This gives

H1 = − α1

2πν

∑
mσkk′

(ξk + ξk′) :ψ†
kmσψk′mσ : , (A10a)

Hint = − 2φ1

3πν2

∑
mm′

: �jm · �jm′ : . (A10b)

Here ν = L/(2π�vF) is the extensive 1D density of states per
spin and channel, and the prefactors were expressed in terms

of the constants

α1 = φ1 = 3λ

8π (�vF)2
= 1

TK
. (A11)

(This notation is consistent with that of Ref. [46], where
Hλ served as a starting point for calculating Fermi-liquid
corrections, too.) Checking dimensions, with [Hλ] = E and
[�mσ ]=1/

√
L (E stands for energy, L for length), we see

that [λ] = EL2. Since [ν] = 1/E , [�vF] = EL, we have [α1] =
[φ1] = 1/E , thus, α1 and φ1 have dimensions of inverse energy.
In the main text, they are identified with 1/TK; in fact, the
numerical prefactor in Eq. (A11) is purposefully chosen such
that the leading term in the expansion (25) of the phase shift
δ̃mσ (ε) turns out to take the form ε/TK.

To elucidate how the case N > 1 differs from N = 1, we
write Hint = H2 + H3 in the main text, with H2 and H3 given
in Eqs. (15b) and (15c), respectively, where H3 occurs only
for N > 1.
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7. Conclusions

This thesis contributed to the understanding of optical and transport related phenomena in
quantum impurity systems. By comparing numerical calculations to experimental data, we
showed that the Kondo effect has been observed with optical methods for the first time and
that the system can be correctly described with numerical methods on a quantitative level.
Going further into this direction, we theoretically examined how the line shape changes
for strong optical coupling and discovered a new many body state, a hybridization of a
Kondo state and a state with Rabi oscillations, which has a Kondo-like character on its
own. It was also demonstrated that related experiments at self-assembled QDs concerning
the phenomenon of the Fermi edge singularity can be understood on a quantitative level,
too.

Regarding the field of transport, we presented a comprehensive study of the Kondo
effect in an InAs-nanowire QD. We further identified the right model to describe iron
impurities in gold and silver by comparing the magnetoresistivity and the dephasing rate
from NRG-calculations for different models to experimental data, and we showed how to
determine the Kondo temperature such that correct scaling is preserved in the presence of
finite bandwidth. In the last project presented in this thesis, we calculated several Fermi
liquid coefficients for fully screened Kondo models with different numbers of channels, both
analytically and numerically.

The work presented in this thesis can also be seen as motivation and starting point for
future experiments and calculations. One interesting experiment would be the observation
of the predicted Rabi-Kondo state. This could be combined with the calculation of the
non-equilibrium steady state density matrix, which would lead to an improved prediction
of the emission line shape. Optical experiments with QDs also allow for time-resolved non-
equilibrium measurements, like the build-up of the Kondo cloud after a quantum quench,
or studying the effects of Anderson orthogonality in a tunable environment. Regarding
transport, gold and silver with iron impurities could be taken as an exemplary experimental
system to examine three-channel Kondo models. The strategy to identify the correct type
of Kondo model, which was used here, could also be applied to other bulk materials with
magnetic impurities to identify their underlying models. Such analyses could be combined
with the measurement of the FL-coefficients, which constitutes a complementary method
to identify the right type of Kondo model for an experimental system.





Part III.

Appendix





A. NRG Hamiltonian of impurity and
hybridization in matrix form

It is very illustrative to see the NRG Hamiltonian of the impurity and the hybridization
to the bath (i. e. the impurity and the 0th chain site) written out in matrix form. Since
the impurity part of the SIAM (2.2a) is already diagonal, the corresponding Hamiltonian
is simply given by:

Himp =




0 0 0 0
0 εe 0 0
0 0 εe 0
0 0 0 2εe + U


 . (A.1)

After adding the 0th chain site, according to Eq. (4.10) one obtains:

H = Himp + V
∑

σ

(
e†σf0σ + h. c.

)
. (A.2)

When the state space of the new site is added, the operators f
(†)
0σ that act on the added

site, are given in the local basis of a site. The Hamiltonian in Eq. (A.2) can therefore
be expressed in terms of tensor products of operators in the basis of the impurity, and of
operators in the local basis of the added site:

H = Himp ⊗ 1 + V
∑

σ

(
e†σ ⊗ (Zf0σ) + h. c.

)
, (A.3)

with Z = (−1)n, as defined in Sec. (4.3.1), where n is the number operator in the local
basis of a site. Eq. (A.4) below shows the Hamiltonian written out in matrix form. It
shows how the state space increases when a chain site is added and it also illustrates the
sparsity of the matrix, which indicates the potential benefit of using symmetries (Secs. 4.4
and 4.5).
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B. Publication for absorption in the
presence of Kondo correlations

The following publication emerged from the work of my Diploma thesis. It describes
the theory of absorption spectra with weak optical coupling in the presence of Kondo
correlations. Its content is briefly discussed in adapted form in section 3.3, and has been
added here in the appendix for completeness.
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We study a quantum quench for a semiconductor quantum dot coupled to a Fermionic reservoir,

induced by the sudden creation of an exciton via optical absorption. The subsequent emergence of

correlations between spin degrees of freedom of dot and reservoir, culminating in the Kondo effect, can be

read off from the absorption line shape and understood in terms of the three fixed points of the single-

impurity Anderson model. At low temperatures the line shape is dominated by a power-law singularity,

with an exponent that depends on gate voltage and, in a universal, asymmetric fashion, on magnetic field,

indicative of a tunable Anderson orthogonality catastrophe.

DOI: 10.1103/PhysRevLett.106.107402 PACS numbers: 78.67.Hc, 78.40.Fy, 78.60.Fi

When a quantum dot (QD) is tunnel coupled to a
Fermionic reservoir (FR) and tuned such that its topmost
occupied level harbors a single electron, it exhibits at low
temperatures the Kondo effect, in which QD and FR are
bound into a spin singlet. It is interesting to ask how Kondo
correlations set in after a quantum quench, i.e., a sudden
change of the QD Hamiltonian, and corresponding predic-
tions have been made in the context of transport experi-
ments [1–4]. Optical transitions in quantum dots [5–7]
offer an alternative arena for probing Kondo quenches:
the creation of a bound electron-hole pair—an exciton—
via photon absorption implies a sudden change in the local
charge configuration. This induces a sudden switch-on of
both a strong electron-hole attraction [6–8] and an ex-
change interaction between the bound electron and the
FR. The subsequent dynamics is governed by energy scales
that become ever lower with increasing time, leaving tell-
tale signatures in the absorption and emission line shapes.
For example, at low temperatures and small detunings
relative to the threshold, the line shape has been predicted
to show a gate-tunable power-law singularity [8]. Though
optical signatures of Kondo correlations have not yet been
experimentally observed, prospects for achieving this
goal improved recently due to two key experimental ad-
vances [9,10].

Here we propose a realistic scenario for an optically
induced quantum quench into a regime of strong Kondo
correlations. A quantum dot tunnel coupled to a FR is
prepared in an uncorrelated initial state [Fig. 1(a)].
Optical absorption of a photon creates an exciton, thereby
inducing a quantum quench to a state conducive to Kondo
correlations [Fig. 1(b)]. The subsequent emergence of spin

correlations between the QD-electron and the FR, leading
to a screened spin singlet, is imprinted on the optical abso-
rption line shape [Fig. 1(c)]: its high-, intermediate-, and
low-detuning behaviors are governed by the three fixed
points of the single-impurity Anderson model (AM)
[Fig. 1(d)]. We present detailed numerical and analytical
results for the line shape as a function of temperature and
magnetic field. At zero temperature we predict a tunable
Anderson orthogonality catastrophe, since the difference in
initial and final ground state phase shifts of FR electrons

FIG. 1 (color online). A localized QD e level, tunnel coupled
to a FR and (a) assumed empty at t ¼ 0, (b) is filled at t ¼ 0þ
when photon absorption produces a neutral exciton, leading to
Kondo correlations between QD and FR for t ! 1. (c) Starting
from an empty QD state jGii (for T ¼ 0), the absorption rate at
frequency !L ¼ !th þ ! (with detuning ! from the threshold

!th ¼ Ef
G # Ei

G) probes the spectrum of Hf at excitation
energy !. (d) Cartoons illustrating the nature of the free orbital
(FO), local moment (LM) and strong-coupling (SC) fixed points
of the Anderson impurity model, which are dominated by charge
fluctuations, spin fluctuations (indicated by dashed arrows) and a
screened spin singlet, respectively.
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[indicated by wavy lines in Fig. 1(d)] can be tuned by
magnetic field and gate voltage via their effects on the
level occupancy.

Model.—We consider a QD, tunnel coupled to a FR,
whose charge state is controllable via an external gate
voltage Vg applied between a top Schottky gate and the
FR [see Fig. 1(a) and 1(b)]. In a gate voltage regime for
which the QD is initially uncharged, a circularly polarized
light beam (polarization ") at a suitably chosen frequency
!L propagating along the z axis of the heterostructure
will create a so-called neutral exciton [11] (X0), a bound
electron-hole pair with well-defined spins " and !" ¼ #"
(2 fþ;#g) in the lowest available localized s orbitals
of the QD’s conduction- and valence bands (to be called
e and h levels, with creation operators ey" and hy!", re-
spectively). The QD-light interaction is described by
HL / ðey"hy!"e#i!Lt þ H:c:Þ. We model the system before
and after absorption by the initial and final Hamiltonian

Hi=f ¼ Hi=f
e þHc þHt, where

Ha
e ¼ X

"

"ae"ne" þUne"ne# þ #af"h !" ða ¼ i; fÞ (1)

describes the QD, with Coulomb cost U for double
occupancy of the e level, ne" ¼ ey"e", and hole energy
"h !" (> 0, on the order of the band gap). The e level’s initial
and final energies before and after absorption,
"ae" (a ¼ i, f), differ by the Coulomb attraction Uehð>0Þ
between the newly created electron-hole pair, which
pulls the final e level downward, "ae" ¼ "e" # #afUeh

[Fig. 1(b)]. This stabilizes the excited electron against

decay into the FR, provided that "fe" lies below the FR’s
Fermi energy "F ¼ 0. Since Hf ! Hi, absorption imple-
ments a quantum quench, which, as elaborated below,
can be tuned by electric and magnetic fields. The term
Hc ¼

P
k""k"c

y
k"ck" represents a noninteracting condu-

ction band (the FR) with half-width D ¼ 1=ð2$Þ and

constant density of states $ per spin, while Ht ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
"=%$

p P
"ðey"c" þ H:c:Þ, with c" ¼ P

kck", describes its
tunnel coupling to the e level, giving it a width ". A
magnetic field B along the growth-direction of the hete-
rostructure (Faraday configuration) causes a Zeeman
splitting, "e" ¼ "e þ 1

2"geB, "h" ¼ "h þ 3
2"ghB (the

Zeeman splitting of FR states can be neglected for our
purposes [12]). The electron-hole pair created by photon
absorption will additionally experience a weak but highly
anisotropic intradot exchange interaction [12]. Its effects
can be fully compensated by applying a magnetic field
fine-tuned to a value, say B"

eh, that restores degeneracy of
the e level’s two spin configurations [12]. Hence-
forth, B is understood to be measured relative to B"

eh.
We set &B ¼ @ ¼ kB ¼ 1, give energies in units of
D ¼ 1 throughout, and assume T, B & " & U, Ueh &
D & "h !". The electron-hole recombination rate is as-
sumed to be negligibly small compared to all other
energy scales. We focus on the case, illustrated in

Figs. 1(a) and 1(b), where the e level is essentially empty
in the initial state and singly occupied in the ground state of

the final Hamiltonian, !nie ’ 0 and !nfe ’ 1. (Here !nae ¼P
" !n

a
e", and !nae" ¼ hne"ia is the thermal average of ne"

with respect to Ha.) This requires "ie" ' ", and #Uþ
" & "fe" & #". The Kondo temperature accociated with

Hf is TK ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
"U=2

p
e#%j"fe ð"feþUÞj=ð2U"Þ. If "fe" ¼ #U=2,

so that !nfe ¼ 1, then Hf represents the symmetric
excitonic Anderson model, to be denoted by writing
Hf ¼ SEAM.
Absorption line shape.—Absorption sets in once !L

exceeds a threshold frequency, !th. The line shape at
temperature T and detuning ! ¼ !L #!th is, by the
golden rule, proportional to the spectral function (see [13])

A"ð!Þ ¼ 2%
X

mm0
$i
mjfhm0jey"jmiij2#ð!L # Ef

m0 þ Ei
mÞ: (2)

Here jmia and Ea
m are exact eigenstates and energies ofHa,

depicted schematically in Fig. 1(c), and $i
m ¼ e#Ei

m=T=Zi

the initial Boltzmann weights. The threshold frequency

evidently is!th ¼ Ef
G # Ei

G (Ea
G is the ground state energy

of Ha), which is on the order of "fe" þ "h !" (up to correc-
tions due to tunneling and correlations).
We calculated A"ð!Þ using the Numerical

Renormalization Group (NRG) [14], generalizing the ap-
proach of Refs. [8,15] to T ! 0 by following Ref. [16]. The
inset of Fig. 2 shows a typical result: As temperature is
gradually reduced, an initially rather symmetric line shape
becomes highly asymmetric, dramatically increasing in
peak height as T ! 0. At T ¼ 0, the line shape displays
a threshold, vanishing for !< 0 and diverging as ! tends to
0 from above. Figure 2 analyzes this divergence on a log-
log plot, for the case that T, which cuts off the divergence,
is smaller than all other relevant energy scales. Three
distinct functional forms emerge in the regimes of ‘‘large’’,
‘‘intermediate’’ or ‘‘small’’ detuning, labeled (for reasons
discussed below) FO, LM and SC, respectively, (given here
for Hf ¼ SEAM):

j"fe"j & ! & D: AFO
" ð!Þ ¼ 4"

!2 'ð!# j"fe"jÞ; (3a)

TK & ! & j"fe"j: ALM
" ð!Þ ¼ 3%

4!
ln#2ð!=TKÞ; (3b)

T & ! & TK: ASC
" ð!Þ / T#1

K ð!=TKÞ#(" : (3c)

The remarkable series of crossovers found above are
symptomatic of three different regimes of charge and
spin dynamics. They can be understood analytically using
fixed-point perturbation theory (FPPT). To this end, note
that at T ¼ 0 the absorption line shape can be written as

A"ð!Þ ¼ 2Re
Z 1

0
dteit!þ

ihGjei
!Hite"e

#i !Hftey"jGii; (4)

where !Ha ¼ Ha # Ea
G and !þ ¼ !þ i0þ. Thus it directly

probes the postquench dynamics, with initial state ey"jGii,
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of a photogenerated e-electron coupled to a FR. Evidently,
large, intermediate or small detuning, corresponding to
ever longer time scales after absorption, probes excitations
at successively smaller energy scales [see Fig. 1(c)], for
which !Hf can be represented by expansions H(

r þH0
r

around the three well-known fixed points [14] of the AM:
the free orbital, local moment and strong-coupling fixed
points (r ¼ FO, LM, SC), characterized by charge fluctua-
tions, spin fluctuations and a screened spin singlet, respec-
tively, as illustrated in Fig. 1(d).

Large and intermediate detuning—perturbative re-
gime.—For large detuning, probing the time interval

t & 1=j"fe"j immediately after absorption, the e level ap-
pears as a free, filled orbital perturbed by charge fluctua-
tions, described by [14] the fixed-point Hamiltonian

H(
FO ¼ Hc þHf

e þ const and the relevant perturbation
H0

FO ¼ Ht. Intermediate detuning probes the times

1=j"fe"j & t & 1=TK for which real charge fluctuations
have frozen out, resulting in a stable local moment; how-
ever, virtual charge fluctuations still cause the local mo-
ment to undergo spin fluctuations, which are not yet
screened. This is described by [14] H(

LM ¼ Hc þ const

and the RG-relevant perturbation H0
LM ¼ Jð!Þ

$
~se ) ~sc. Here

~sj ¼ 1
2

P
""0jy" ~)""0j"0 (for j ¼ e, c) are spin operators for

the e level and conduction band, respectively, ( ~) are Pauli
matrices), and Jð!Þ ¼ ln#1ð!=TKÞ is an effective, scale-
dependent dimensionless exchange constant.

For r ¼ FO and LM, A"ð!Þ can be calculated using
perturbation theory in H0

r. For T ¼ 0, note that

A"ð!Þ ¼ #2 ImihGje"
1

!þ # !Hf e
y
"jGii; (5)

set !Hf ! H(
r þH0

r and expand the resolvent in powers of
H0

r. One readily finds (see [13])

Ar
"ð!Þ ’ # 2

!2 ImihGje"H0
r

1

!þ #H(
r
H0

re
y
"jGii; (6)

which reveals the relevant physics: Large detuning
(r ¼ FO) is described by the spectral function of the
operator Hte

y
"; the absorption process can thus be under-

stood as a two-step process consisting of a virtual excita-
tion of the QD resonance, followed by a tunneling event to
a final free-electron state above the Fermi level. In contrast,
intermediate detuning (r ¼ LM) is described by the
spectral function of ~sc ) ~seey", i.e., it probes spin flu-
ctuations. Evaluating these spectral functions is ele-
mentary since H(

FO and H(
LM involve only free fermions.

For B ¼ 0 and j"fe"j ¼ 1
2U, we readily recover Eqs. (3a)

and (3b) (see [13]), which quantitatively agree with the
NRG results of Fig. 2.—Though the latter was calculated
for Hf ¼ SEAM, Eq. (3b) holds more generally as long as

Hf remains in the LM regime, with !nfe ’ 1; then ALM
" ð!Þ

depends on "fe", U and " only through their influence on
TK, and hence is a universal function of ! and TK.
The FPPT strategy for calculating FO and LM line

shapes can readily be generalized to finite temperatures
[12], using the methods of Ref. [17] (Section III.A) for
finding the finite-T dynamic magnetic susceptibility [13].

For j!j & j"fe"j and max½j!j; T+ ' TK, we obtain

ALM
" ð!Þ ¼ 3%

4

!=T

1# e#!=T

*Korð!; TÞ=%
!2 þ *2

Korð!; TÞ
; (7)

where *Korð!; TÞ ¼ %T=ln2½maxðj!j; TÞ=TK+ is the scale-
dependent Korringa relaxation rate [17]. It is smaller than
T by a large logarithmic factor, implying a narrower and
higher absorption peak than for thermal broadening.
Small detuning and Kondo-edge singularity—strong-

coupling regime.—As ! is lowered through the bottom of
the LM regime, Jð!Þ increases through unity into the
strong-coupling regime, and A"ð!Þ monotonically crosses
over to the SC regime. It was first studied for the present
model (for B ¼ 0Þ in Ref. [8], which found a power-law
line shape of the form (3c), characteristic of a Fermi edge
singularity, with an exponent ( that followed Hopfield’s
rule [18]. The power-law behavior reflects Anderson
orthogonality [19,20]: it arises because the final ground
state jGfi that is reached in the long-time limit is charac-
terized by a screened singlet. The singlet ground state
induces different phase shifts [as indicated in Fig. 1(d) by
wavy lines] for FR electrons than the unscreened initial
state just after photon absorption, ey"jGii, and hence is
orthogonal to the latter. It is straightforward to generalize
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FIG. 2 (color online). Log-log plot of the absorption line shape
A"ð!Þ for T & TK, B ¼ 0 and Hf ¼ SEAM (for which
(" ¼ 1

2 ), showing three distinct functional forms for high,
intermediate and small detuning, labeled FO, LM, and SC,
respectively, according to the corresponding fixed points of the
Anderson model. Arrows indicate the crossover scales T, TK and

j"fe"j. Fixed-point perturbation theory [FPPT, red dashed lines,
from Eq. (3)] and NRG (thick blue line for "i ! 0; thin blue line
for "i ¼ 0) agree well. Inset: A"ð!Þ for five temperatures in
semilog scale, obtained from FPPT for "i ¼ 0 [dashed lines,
from Eq. (7)] and NRG (solid lines).
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the arguments of Refs. [8,18] to the case of B ! 0
(see [13]). One readily finds the generalized Hopfield rule

(" ¼ 1#X

"0
ð#n0e"0Þ2; #n0e"0 ¼ #""0 # #ne"0 ; (8)

#n0e"0 is the displaced charge of electrons with spin "0, in
units of e, that flows from the scattering site to infinity

when ey"jGii is changed to jGfi, and #ne"0 ¼ !nfe"0 # !nie"0

is the local occupation difference between jGfi and jGii.
According to Eq. (8), (" can be tuned not only via gate

voltage but also via magnetic field, since both modify "ae"
and hence #n0e"0 . This tunability can be exploited to study
universal aspects of Anderson orthogonality physics. In
particular, if the system is tuned such that !nie ¼ 0 and

!nfe ¼ 1 at B ¼ 0, Eq. (8) can be expressed as (" ¼ 1
2 þ

2mf
e"# 2ðmf

eÞ2, where the final magnetization mf
e ¼ 1

2 ,
ð !nfeþ # !nfe#) is a universal function of geB=TK. The ex-
ponents (" then are universal functions of geB=TK, with
simple limits for small and large fields [see Fig. 3(b)]:
(" ! 1

2 for jgeBj & TK, while (lower=upper ! -1 for
jgeBj ' TK. Here the subscript ‘‘lower’’ or ‘‘upper’’ dis-
tinguishes whether the spin-" electron is photoexcited into
the lower or upper of the Zeeman-split pair ("geB < 0
or >0, respectively). The sign difference -1 for (" arises
since these cases yield fully asymmetric changes in local

charge: #ne;lower ! 1 while #ne;upper ! 0. As a result,
Anderson orthogonality [19] is completely absent
(#n0e"0 ¼ 0) for photo-excitation into the lower level, since
subsequently the e-level spin need not adjust at all. In
contrast, it is maximal (#n0e"0 ¼ 1) for photo-excitation
into the upper level, since subsequently the e-level spin has
to create a spin-flip electron-hole pair excitation in the FR
to reach its longtime value. It follows, remarkably, that a
magnetic field tunes the strength of Anderson orthogonal-
ity, implying a dramatic asymmetry for the evolution of the
line shape A"ð!Þ / !#(" with increasing jBj [Fig. 3(a)].
Conclusions.—We have shown that optical absorption in

a single quantum dot can implement a quantum quench in
an experimentally accessible solid-state system that allows
the emergence of Kondo correlations and Anderson or-
thogonality to be studied in a tunable setting.
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FIG. 3 (color online). Asymmetric magnetic-field dependence
of the line shape for Hf ¼ SEAM and T ¼ 0. (a) Depending on
whether the electron is photoexcited into the lower or upper of
the Zeeman-split e levels ("geB < 0 or >0, solid or dashed
lines, respectively), increasing jBj causes the near-threshold
divergence, A"ð!Þ / !#(" , to be either strengthened, or sup-
pressed via the appearance of a peak at ! ’ "geB, respectively.
(The peak’s position is shown by the red line in the "geB-!
plane.) (b) Universal dependence on geB=TK of the local mo-

ment mf
e (dash-dotted line), and the corresponding prediction of

Hopfield’s rule, Eq. (8), for the infrared exponents (lower (solid
line) and (upper (dashed line) for " ¼ þ. Symbols: (þ values

extracted from the near-threshold !#(þ divergence of Aþð!Þ.
Symbols and lines agree to within 1%.
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We provide below some intermediate steps for the derivation of the main equations of the
main text. For clarity, information contained in the main text is typeset in blue.

Spectral function

The origin of Eq. (2) for the absorption rate can be understood as follows [1]. We begin
with a Hamiltonian slightly more general than those of the main text, in that it includes the
hole degree of freedom: H = Heh + Hc + Ht, where Hc and Ht are given in the main text,
and

Heh =
X

�

("e�ne� + "h�nh�) + Une"ne# �
X

��0

Uehne�nh�0 (S1)

describes the QD, with e-level charging energy U(> 0), e-h Coulomb attraction Ueh(> 0),
ne� = e†

�e�, nh� = h†
�h�. The hole energy "h�̄ (> 0) is on the order of the band gap.

The QD-light interaction is described by HL / (e†
�h†

�̄e�i!Lt+h.c.). Absorption sets in once
!L exceeds a threshold frequency, say !th. According to Fermi’s golden rule, treating HL as
harmonic perturbation, the absorption lineshape at temperature T and detuning ⌫ = !L�!th

is proportional to

A�(⌫) =2⇡
X

mm0

⇢m|hm0|e†
�h†

�̄|mi|2�(!L � Em0 + Em), (S2)

where the ⇢m are Boltzmann weights. Noting that the dynamics of the optically created hole
is trivial, [nh�, H] = 0, we can write all initial states |mi as |mii ⌦ |0ih and all final states
|m0i in the form |m0if ⌦ |�̄ih, thus arriving at Eq. (2) from the main text:

A�(⌫) = 2⇡
X

mm0

⇢i
m|fhm0|e†

�|mii|2�(!L � Ef
m0 + Ei

m). (S3)

Here |mia (a = i,f) are the many-body eigenstates of the e↵ective initial and final Hamil-
tonians, H i = hh0|H|0ih and H f = hh�̄|H|�̄ih, that only include the QD and FR electronic
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degrees of freedom. They are given by H i/f = H
i/f
e + Hc + Ht, with H

i/f
e given by Eq. (1):

Ha
e =

X

�

"a
e�ne� + Une"ne# + �af"h�̄ (a = i, f), with "a

e� = "e� � �afUeh . (S4)

To bring the spectral function into a resolvent form suitable for fixed point perturbation
theory (FPPT), we use Dirac’s identity

�(!L � Ef
m0 + Ei

m) = � 1

⇡
Im


1

!L � Ef
m0 + Ei

m + i0+

�
, (S5)

to rewrite Eq. (S3) as follows:

A�(⌫) = �2 Im

"X

mm0

⇢i
m ihm|e�

1

!L � Ef
m0 + Ei

m + i0+
|m0if fhm0|e†

�|mii
#

. (S6)

= �2 Im

"X

m

⇢i
m ihm|e�

1

!L � H f + Ei
m + i0+

e†
�|mii

#
. (S7)

For the last step, we replaced Ef
m0 by H f and used

P
m0 |m0if fhm0| = 1.

Zero temperature:

At T = 0, the initial density matrix is |Gii ihG|. With the definitions introduced in the
text, H̄a = Ha � Ea

G, ⌫ = !L � Ef
G + Ei

G and ⌫+ = ⌫ + i0+, Eq. (S7) reduces to Eq. (5) of
the main text:

A�(⌫) = �2 Im ihG|e�
1

⌫+ � H̄ f
e†
�|Gii . (S8)

For the parameters considered in the main text, the ground state of H i can be approx-
imated by a free Fermi sea: |Gii '

Q
"k�<"F

c†
k�|Vaci. Next comes the key step of FPPT:

replace H̄ f ! H⇤
r + H 0

r and do a perturbation expansion in H 0
r of the resolvent

1

⌫+ � H̄ f
=

1

⌫+ � H⇤
r

+
1

⌫+ � H⇤
r

bTr
1

⌫+ � H⇤
r

(S9)

with the T-matrix given by

bTr = H 0
r + H 0

r

1

⌫+ � H⇤
r

H 0
r + · · · (S10)

According to the main text, the free orbital (FO) regime is described by

H⇤
FO = Hc + H f

e � EFO =
X

k�

"k�c†
k�ck� +

X

�

"fe�ne� + Une"ne# � EFO , (S11a)

perturbed by

H 0
FO = Ht =

p
�/⇡⇢

X

�

(e†
�c� + h.c.) , (S11b)
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and the local moment (LM) regime by

H⇤
LM = Hc � ELM =

X

k�

"k�c†
k�ck� � ELM , (S12a)

perturbed by

H 0
LM =

J(⌫)

⇢
~se · ~sc , (S12b)

with e-level and conduction band spin operators given by ~sj = 1
2

P
��0 j†

�~⌧��0j�0 (for j = e, c).
The subtracted constants EFO and ELM correspond to the subtraction of Ef

G in the definition
of H̄ f = H f �Ef

G ! H⇤
r + H 0

r (see the main text after Eq. (4)); they ensure that the ground
state of H⇤

r has eigenvalue 0. For both r = FO and LM, this ground state is given by
|�i ⌘ e†

�|Gii.
Now, when inserted into Eq. (S8), the first term in Eq. (S9) gives a �(⌫) not relevant

for the regime ⌫ & TK that we are focusing on. The second term gives �2Imh�|bTr|�i/⌫2 =

Im[T (1)
r + T (2)

r + · · · ]/⌫2. For both r = FO and LM, T (1)
r = h�|H 0

r|�i = 0 (for B = 0). Thus,
to lowest non-zero order, we obtain Eq. (6) of the main text, namely

Ar
�(⌫) = �2 Im[T (2)

r ]/⌫2, T (2)
r = h�|H 0

r

1

⌫+ � H⇤
r

H 0
r|�i. (S13)

T (2)
r can be evaluated straightforwardly using Wick’s theorem, since H 0

r|�i produces a sum
of uncorrelated free-fermion states, all of which are eigenstates of 1

⌫+�H⇤
r
. For the free orbital

regime, we obtain

T (2)
FO =

⇣p
�/⇡⇢

⌘2 X

ks,k0s0

h�|
⇣
c†
kses + h.c.

⌘ 1

⌫+ � H⇤
FO

⇣
c†
k0s0es0 + h.c.

⌘
|�i (S14)

=
�

⇡⇢

X

k


(1 � f("k))

⌫+ � ("k � "fe)
+

f("k)

⌫+ � (�"k + "fe + U)

�
, (S15)

where f(") = ✓(�") stands for the Fermi function at zero temperature. Inserting this into
Eq. (S13) we obtain (for D � |⌫|):

AFO
� (⌫) =

2�

⌫2

h
✓(⌫ � |"fe�|) + ✓(⌫ � ("fe� + U)

i
. (S16)

For the case of H f=SEAM (with "fe = �U/2) considered in the main text, this reduces to
Eq. (3a):

AFO
� (⌫) =

4�

⌫2
✓(⌫ � |"fe�|) . (S17)

The calculation for the local moment regime, TK ⌧ |⌫| ⌧ min[|"fe�|, "fe�+U ], is analogous.
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Writing ~se · ~sc = 1
2 (s�e s�̄c + s�̄e s�c ) + sz

es
z
c , we obtain

T (2)
LM =

✓
J(⌫)

⇢

◆2

h�|~se · ~sc
1

⌫+ � H⇤
LM

~se · ~sc|�i (S18a)

=
1

4

✓
J(⌫)

⇢

◆2 
hGi|sz

c

1

⌫+ � H⇤
LM

sz
c |Gii + hGi|s�̄c

1

⌫+ � H⇤
LM

s�c |Gii
�

(S18b)

=
3

8

✓
J(⌫)

⇢

◆2X

kq

f("k) (1 � f("q))

⌫+ � "q + "k
. (S18c)

Inserting Eq. (S18c) into Eq. (S13), with J(⌫) = ln�1[⌫/TK], we recover Eq. (3b):

ALM
� =

3⇡

4⌫

1

ln2(⌫/TK)
. (S19)

Nonzero temperature

For T 6= 0, the calculations are analogous, with only minor changes: The FPPT expansion
in powers of H 0

r is performed on Eq. (S7) (instead of Eq. (S8)), the Fermi occupation function
is f(") = 1/[e✏/T + 1], and for the local moment regime the exchange coupling now takes
the form J(⌫) = ln�1[max(|⌫|, T )/TK]. We consider only the local moment regime, with
|⌫| ⌧ min[|"fe�|, "fe� + U ] and max[|⌫|, T ] � TK. Assuming (as before) that the initial level
position lies so far above the Fermi surface ("ie� � �) that the initial density matrix contains
no correlations between e-level and Fermi reservoir, we again arrive at Eq. (S18c), which now
yields

ALM
� =

3⇡

4⌫

1

1 � e�⌫/T

1

ln2[max(|⌫|, T )/TK]
. (S20)

For large positive detuning, ⌫ � T , we recover Eq. (S19), while the line-shape at large
negative detuning, ⌫ ⌧ �T , is suppressed by an extra factor e�|⌫|/T .

In the limit of small detuning, |⌫| ⌧ T , Eq. (S20) reduces to

ALM
� (⌫) =

3⇡

4⌫2

T

ln2[T/Tk]
. (S21)

The apparent ⌫�2 divergence indicates that in this limit, the expansion (S10) of TLM can not
be truncated at second order, as done above, but must be summed to all orders. Instead of
doing this explicitly, one may use methods which were applied to treat the dynamic magnetic
susceptibility at finite temperature in Ref. [2]. These yield

ALM
� (⌫) =

3⇡

4

⌫/T

1 � e�⌫/T

�Kor(⌫, T )/⇡

⌫2 + �2
Kor(⌫, T )

, (S22)

(Eq. (7) of the main text), which contains a Lorentzian factor involving a frequency-dependent
Korringa relaxation time,

�Kor(⌫, T ) =
⇡T

ln2[max(|⌫|, T )/TK]
. (S23)
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For |⌫| � �Kor(⌫, T ), Eq. (S22) reproduces Eq. (S20). For |⌫| ⌧ T (but T � TK), Eq. (S22)
reduces to a pure Lorentzian

ALM
� (⌫) =

3⇡

4

�Kor/⇡

⌫2 + �2
Kor

, (|⌫| ⌧ T ) (S24)

of width �Kor ' ⇡T/ ln2[T/TK] (which is ⌧ T ). This represents the properly regularized
version of Eq. (S21), to which it reduces for �Kor ⌧ |⌫| ⌧ T .

Generalized Hopfield rule

The generalized Hopfield rule that holds when ⌫ ⌧ TK and arbitrary B is stated in Eq. (8)
of the main text can be found as follows, using arguments similar to those in Refs. [1, 3]:
First, write the T = 0 spectral function of Eq. (4) as

A�(⌫) = 2Re

Z 1

0

dt eit⌫+h 0| ti , (S25)

where | 0i = e†
�|Gii is the state just after photon absorption (at t = 0+) and | ti =

e�iH̄f t| 0i its time-evolved version. In the t ! 1 limit (relevant for ⌫ ! 0), the dy-
namics is governed by the final ground state, |Gfi, characterized by a screened spin singlet.
Once the latter begins to dominate (for t & 1/TK), the FR experiences the QD as a site of
pure potential scattering (no spin-flips), just as at t = 0+, but with changed strength. The
adjustment of the FR to this changed potential (via changes in the scattering phase shifts of
its single-particle wave-functions) causes an increasing Anderson orthogonality [4] between

| ti and | 0i: their overlap decays as h 0| ti ⇠ t�
P

�0 (�n0
e�0 )

2

[5], where, by Friedel’s sum
rule [7, 6], �n0

e�0 = ���0 ��ne�0 is the displaced charge (of spin �0), in units of e, that flows
from the scattering site to infinity as e†

�|Gii evolves to |Gfi, with �ne�0 = n̄f
e�0 � n̄i

e�0 the
local occupation di↵erence between |Gfi and |Gii. Fourier-transforming h 0| ti according to
Eq. (S25) yields the powerlaw-decay of Eq. (3c), with exponent

⌘� = 1 �
X

�0

(�n0
e�0)2 . (S26)

This is the generalized Hopfield rule, Eq. (8).
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[2] M. Garst, P. Wölfle, L. Borda, J. von Delft, L. Glazman, Phys. Rev. B 72, 205125
(2005).

[3] J. J. Hopfield, Comments Solid State Phys. 2, 40 (1969).

[4] P. W. Anderson, Phys. Rev. Lett. 18, 1049 (1967).

[5] P. Nozières and C. T. De Dominicis, Phys. Rev. 178, 1097-1107 (1969).

[6] D.C. Langreth, Phys. Rev. 150, 516 (1966).

[7] J. Friedel, Can. J. Phys., 1190, 34 (1956).

5

184 B. Publication for absorption in the presence of Kondo correlations



Part IV.

Miscellaneous





List of Figures

2.1. Conductance of quantum dots, dependence on source-drain-voltage, gate-
voltage and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1. Schematic picture of an absorption process at the excitonic Anderson model 18
3.2. Schematic picture of the absorption process leading to the Fermi edge sin-

gularity (FES). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3. Schematic picture of an absorption process at the excitonic Anderson model

with Kondo correlations in the final state . . . . . . . . . . . . . . . . . . . 23
3.4. Absorption line shape for weak optical coupling for zero temperature with a

double logarithmic scale, and for different temperatures with a logarithmic
y-scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5. Absorption line shapes for weak optical coupling for different magnetic fields,
and B-field dependence of the local magnetization and of the low-frequency
exponent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6. Schematic picture of the transitions that yield the Mollow triplet and qual-
itative behavior of the resonance fluorescence spectrum . . . . . . . . . . . 28

4.1. Discretized Anderson model and Wilson chain . . . . . . . . . . . . . . . . 32
4.2. Schematic energy spectra for several NRG iterations and flow diagram . . . 35
4.3. Schematic energy spectra and corresponding degeneracies obtained from the

NRG algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4. Beginning of the backward run to calculate the reduced density matrices

and end of the following forward run for calculating the spectral function . 43





Bibliography

[1] A. Altland and B. Simons, Condensed Matter Field Theory, Cambridge University
Press, New York (2006)

[2] P. W. Anderson, More is different, Science 4, 393 (1972)

[3] K. G. Wilson and J. Kogut, The renormalization group and the ε expansion,
Phys. Rep. 12, 75 (1974)

[4] K. G. Wilson, The renormalization group: Critical phenomena and the Kondo problem,
Rev. Mod. Phys. 47, 773 (1975)

[5] K. G. Wilson, Renormalization group methods, Adv. Math. 16, 170 (1975)

[6] K. G. Wilson, The renormalization group and critical phenomena, Rev. Mod. Phys. 55,
583 (1983)

[7] H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson, Renormalization-group ap-
proach to the Anderson model of dilute magnetic alloys. I. Static properties for the
symmetric case, Phys. Rev. B 21, 1003 (1980);

[8] H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson, Renormalization-group ap-
proach to the Anderson model of dilute magnetic alloys. II. Static properties for the
asymmetric case, Phys. Rev. B 21, 1044 (1980)

[9] R. Bulla, T. A. Costi, and T. Pruschke, Numerical renormalization group method for
quantum impurity systems, Rev. Mod. Phys. 90, 395 (2008)

[10] L. Kouwenhoven and L. Glazman, Revival of the Kondo effect, Phys. World 14, 33
(2001)

[11] A. C. Hewson, The Kondo problem to heavy Fermions, Cambridge University Press,
Cambridge (1993)

[12] W. J. de Haas, J. de Boer, and G. J. van dën Berg, The electrical resistance of gold,
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Halimeh, Katharina Eissing, Kevin Jägering, Dimitri Pimenov and Lukas Weidinger.

Special thanks to Cheng, Olga, Dennis, Ari, Arne, Alex and Philipp also for discussions
about life and the universe, Max and Oli for funny stories from everyday life, Theresa
for giving me an introduction to NRG, Katharina for explaining her work to me, Wei for
discussions about soccer and Florian, Jan, Benedikt, Niels and Frauke for being up to date
with the latest news.

Thanks also go the members of Prof. Schollwöck’s chair, especially to those with whom I
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