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Abstract

Circuit QED systems are macroscopic, man-made quantum systems in which superconducting
artificial atoms, also called Josephson qubits, interact with a quantized electromagnetic field.
These systems have been devised to mimic the physics of elementary quantum optical systems
with real atoms in a scalable and more flexible framework. This opens up a variety of possi-
ble applications of circuit QED systems. For instance, they provide a promising platform for
processing quantum information. Recent years have seen rapid experimental progress on these
systems, and experiments with multi-component circuit QED architectures are currently starting
to come within reach.

In this thesis, circuit QED systems with multiple Josephson qubits are studied theoretically.
We focus on simple and experimentally realistic extensions of the currently operated circuit QED
setups and pursue investigations in two main directions.

First, we consider the equilibrium behavior of circuit QED systems containing a large number
of mutually noninteracting Josephson charge qubits. The currently accepted standard description
of circuit QED predicts the possibility of superradiant phase transitions in such systems. How-
ever, a full microscopic treatment shows that a no-go theorem for superradiant phase transitions
known from atomic physics applies to circuit QED systems as well. This reveals previously
unknown limitations of the applicability of the standard theory of circuit QED to multi-qubit
systems.

Second, we explore the potential of circuit QED for quantum simulations of interacting quan-
tum many-body systems. We propose and analyze a circuit QED architecture that implements
the quantum Ising chain in a time-dependent transverse magnetic field. Our setup can be used to
study quench dynamics, the propagation of localized excitations, and other non-equilibrium fea-
tures in this paradigmatic model in the theory of non-equilibrium thermodynamics and quantum-
critical phenomena. The setup is based on a design that could easily be extended to break the
integrability of the Ising chain. We substantiate our proposal by suggesting concrete experi-
mental protocols and calculating the physics to be expected. In addition to this, we provide a
systematic study of the influence of disorder on the (non-equilibrium) behavior of our quantum
simulator. Finally, we report on first results towards the experimental realization of our proposal
and compare them with theory.

The thesis also contains a brief historical overview of and an extended introduction to the
field of circuit QED. A detailed summary of the new research presented in this thesis is given at
the end of this introduction, in Section 2.4.1.





Deutschsprachige Zusammenfassung

Der Gegenstand dieser Dissertation sind Circuit-QED-Systeme mit vielen künstlichen Atomen.
Diese artifiziellen makroskopischen Quantensysteme beruhen auf der Nichtlinearität von Joseph-
son-Kontakten und der makroskopischen Quantenkohärenz und geringen Dissipation in supralei-
tenden Bauelementen. Sie wurden als skalierbares Äquivalent zu elementaren quantenoptischen
Systemen mit natürlichen Atomen konzipiert. Die künstlichen Atome wechselwirken dement-
sprechend mit einem quantisierten elektromagnetischen Feld. Die Bezeichnung “Circuit-QED”
(Schaltkreis-Quantenelektrodynamik) geht darauf zurück.

Die möglichen Anwendungen dieser Systeme sind vielfältig. Beispielsweise können schon
heute einfache Protokolle zur Verarbeitung von Quanteninformation mit Circuit-QED-Systemen
implementiert werden. Damit stellen diese Systeme gegenwärtig einen der vielversprechendsten
Ansätze für skalierbares Quantencomputing dar. Quantenbits, die kleinsten Einheiten an Quan-
teninformation, werden dabei in den Eigenzuständen der künstlichen Atome kodiert. Aus diesem
Grund bezeichnet man häufig die künstlichen Atome selbst als “Josephson-Qubits” (Josephson-
Quantenbits). Angesichts des rasanten experimentellen Fortschrittes in diesem Bereich der Phy-
sik darf man annehmen, dass komplexere Circuit-QED-Systeme, die eine größere Zahl an unter-
schiedlichen Bauelementen einbegreifen, in naher Zukunft experimentell zugänglich sein wer-
den.

In dieser Arbeit werden die Eigenschaften und möglichen Anwendungen von Circuit-QED-
Systemen mit vielen Josephson-Qubits theoretisch untersucht. Wir konzentrieren uns dabei
auf einfach realisierbare Erweiterungen der aktuellen Circuit-QED-Architekturen und verfolgen
zwei verschiedene Stoßrichtungen.

Erstens betrachten wir das Gleichgewichtsverhalten eines Circuit-QED-Systems mit einer
großen Zahl supraleitender Josephson-Qubits, die über ihren Ladungsfreiheitsgrad an Felder
koppeln können, aber nicht direkt miteinander wechselwirken. Die gegenwärtig allgemein akzep-
tierte Standardbeschreibung von Circuit-QED sagt die Möglichkeit eines superradianten Phasen-
übergangs in solch einem System voraus. Eine fundamentale, mikroskopische Untersuchung
zeigt jedoch, dass ein Unmöglichkeitsbeweis für superradiante Phasenübergänge aus der Atom-
physik auch für Circuit-QED-Systeme greift. Dieses Ergebnis offenbart bislang unbekannte
Einschränkungen der Gültigkeit der Standardbeschreibung für Circuit-QED-Systeme mit vielen
Josephson-Qubits.

Zweitens erforschen wir das Potential von Circuit-QED-Systemen für Quantensimulatio-
nen von wechselwirkenden Vielteilchenquantensystemen. Wir entwerfen und analysieren eine
Circuit-QED-Architektur, die eine Quanten-Ising-Kette in einem zeitabhängigen transversalen
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Magnetfeld simuliert. Unser System kann benutzt werden, um die Dynamik der Ising-Kette nach
einer nichtadiabatischen Änderung eines Systemparameters, die Propagation lokalisierter Anre-
gungen und andere Nichtgleichgewichtsphänomene zu studieren. Es ist zu erwähnen, dass die
Quanten-Ising-Kette häufig als Beispielsystem in theoretischen Untersuchungen zur Nichtgleich-
gewichtsthermodynamik und zu quantenkritischem Verhalten dient. Das von uns vorgeschlagene
Circuit-QED-System sollte leicht erweitert werden können, um die Integrabilität der Ising-Kette
zu brechen. Wir untermauern die vorausgesagten Eigenschaften des Systems mit detaillierten
Rechnungen. Weiterhin stellen wir eine systematische Untersuchung des Einflusses von Un-
ordnung auf das Nichtgleichgewichtsverhalten unseres Quantensimulators an. Schliesslich wird
über die ersten experimentellen Ergebnisse zu seiner Realisierung Bericht erstattet und diese
werden mit unseren theoretischen Analysen verglichen.

Diese Dissertation umfasst auch einen knappen Abriss der Entwicklungen in der Physik,
die unmittelbar relevant für das Forschungsfeld Circuit-QED waren oder sind, sowie eine aus-
führliche Einführung in das Feld. Unsere Forschungsergebnisse in diesem Zusammenhang, die
bereits in Fachzeitschriften veröffentlicht wurden, sind als Nachdrucke der entsprechenden Ar-
tikel enthalten (in den Kapiteln 3.4, 4.5 und 4.6).
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Chapter 1

What set the stage for circuit QED

Circuit quantum electrodynamics (QED) systems are engineered, macroscopic quantum systems
in which superconducting artificial atoms interact with quanta of the electromagnetic field. Con-
ceived less than 10 years ago by Blais et al. (2004) and Wallraff et al. (2004), circuit QED
has already proved to be a versatile testbed for fundamental quantum physics and a promising
platform for processing quantum information. The tremendous progress of the experimental
technology has lead to circuit QED architectures with multiple components and steadily increas-
ing coherence times, and new types of larger-scale circuit QED systems are now on the verge
of becoming experimentally realizable. In this thesis, the prospects of exploring novel, many-
body quantum phenomena in such circuit QED systems are studied theoretically. We pursue two
main lines of research. We investigate whether the strong collective light-matter coupling in cir-
cuit QED systems with a large number of artificial atoms can drive an equilibrium superradiant
phase transition (Chapter 3). And we contribute to the idea of quantum simulations with circuit
QED systems by proposing and analyzing a circuit QED quantum simulator of non-equilibrium
spin-chain dynamics (Chapter 4).

To prepare and to motivate this endeavour, we start out by putting the field of circuit QED into
a larger context and briefly review the most important achievements that circuit QED is based
on or driven by (in the present chapter). This will help us to explain the theoretical foundations
of circuit QED and to appreciate the work done in this field so far (Chapter 2). Against this
background, the goals of the research presented in this thesis (Chapters 3 and 4) can then be
easily further clarified, and the results obtained be outlined (Section 2.4.1).

Even though quantum mechanics had been tested in experiments with ensembles of quantum
systems (such as spectroscopy of atomic gases) over decades, it was not before the 1970s that iso-
lation and measurements of individual quantum systems started to become possible. Landmarks
in this development are the trapping of a single electron by Wineland et al. (1973), the demon-
stration of Doppler laser cooling of trapped ions by Wineland et al. (1978) and Neuhauser et al.
(1978), or the fluorescence imaging of a single laser-cooled ion by Neuhauser et al. (1980). These
achievements enabled fundamental tests of quantum mechanics at the level of a single quantum
object, for example, the observation of quantum jumps (Nagourney et al., 1986; Bergquist et al.,
1986; Sauter et al., 1986) or high-precision g-factor measurements (Van Dyck et al., 1987). What
is more, they also laid the foundations for the seminal demonstrations of quantum-state manipu-
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lations on trapped ions in the 1990s. To name just two of them, Meekhof et al. (1996) prepared
a trapped ion in a non-classical motional state, and Monroe et al. (1996) entangled the inter-
nal state of an ion with its spatial position. This ability to control and to manipulate individual
quantum systems is at the heart of all quantum technologies such as circuit QED.

At about the same time, researchers started to explore effects that rely explicitly on the in-
teraction of atoms with a quantized electromagnetic field. To produce the necessary ratio of
atom-photon coupling and loss rates, the atoms were excited to Rydberg states, which have large
electric dipole elements with other Rydberg states and long spontaneous decay times, and were
sent through a high-finesse microwave cavity. These ideas had a massive influence on the field
of circuit QED, as we will see later. They facilitated the observation of the enhancement (Goy
et al., 1983) and suppression (Hulet et al., 1985) of the atomic decay due to the presence of the
(off-)resonant cavity (termed Purcell effect, (Purcell, 1946)), the demonstration of a one-atom
maser (Meschede et al., 1985), or the measurement of collapse and revival of the Rabi nuta-
tion of the atoms (Rempe et al., 1987), the latter already strongly indicating the quantization of
the electromagnetic field inside the cavity. Further development of the experimental technology
lead to a series of breakthrough ‘cavity QED’ experiments in the 1990s, including the observa-
tion of quantum Rabi oscillations in the time-domain (Brune et al., 1996b), the preparation of
Schrödinger cat states and the time-resolved measurement of their decoherence (Brune et al.,
1996a), or the demonstration of cavity-mediated entanglement between atoms (Hagley et al.,
1997). Many of these experiments have been repeated or have inspired similar experiments in
the circuit QED setting.

In the mid-1990s, much research on trapped ions, in cavity QED, and in other fields became
stirred by the results of quantum information theory, which had been hitherto considered purely
academic. This discipline has its origins in the pioneering work of Wootters and Zurek (1982)
on the no-cloning theorem, of Wiesner (1983) on quantum money, of Bennett and Brassard
(1984) on quantum cryptography, of Bennett and Wiesner (1992) on superdense coding, or of
Bennett et al. (1993) on quantum teleportation: All information is encoded in a physical system
and, thus, ultimately governed by the laws of quantum mechanics. These papers showed that
taking into account quantum mechanics can profoundly affect our possibilities of processing
the information and even allows one to perform certain tasks in some sense ‘better’ than on
the basis of classical physics. Further theoretical research on quantum information processing
finally lead to the invention of quantum algorithms that solve certain problems genuinely faster
than (known to be) classically possible (Deutsch and Jozsa, 1992; Grover, 1996), culminating in
Shor’s algorithm for integer factorization (Shor, 1994).

A vital attempt to bridge the gap between the theory of such quantum computations and
their experimental implementations was made by Cirac and Zoller (1995). They showed how a
universal set of quantum gates (Barenco et al., 1995), i.e., a set of operations on quantum bits
sufficient for all quantum computations, can be implemented with trapped ions. A minimal ver-
sion of this proposal was experimentally realized by Monroe et al. (1995). This first step towards
building a quantum computer did not only fuel the experimental progress with trapped ions. It
also opened the quest for other physical systems which come closer to fulfilling DiVincenzo’s
criteria for a workable quantum computer (DiVincenzo, 2000) than systems of trapped ions (Loss
and DiVincenzo, 1998; Kane, 1998; Knill et al., 2001). Circuit QED systems have a high po-
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tential in this regard, as will be discussed at length later. As an aside, we mention a few key
results in the context of quantum information processing which have been accomplished with
quantum technologies not touched upon in this thesis: the factorization of the number 15 us-
ing Shor’s algorithm and liquid-state nuclear magnetic resonance (Vandersypen et al., 2001), the
demonstration of quantum teleportation using entangled photons (Bouwmeester et al., 1997), the
coherent manipulation and spin-echo protection of a two-electron spin qubit in a double quantum
dot (Petta et al., 2005), the nonlinear strong coupling of a single self-assembled quantum dot and
a photonic crystal cavity (Yoshie et al., 2004; Hennessy et al., 2007), and the coherent control of
nuclear and electronic spin qubits formed by a nitrogen-vacancy centre in diamond (Dutt et al.,
2007) or a phosphorus impurity in silicon (Pla et al., 2013).

A final important development preceding circuit QED was the interest in ‘macroscopic quan-
tum physics’, which arose in the 1980s. The question was whether a collective state variable
of a macroscopic system, such as the position of a mechanical resonator, can exhibit quantum
behavior (Leggett, 1980). The variable studied then was the phase difference of the supercon-
ducting order parameter across a Josephson junction. This phase difference is proportional to
the time integral of the voltage across the junction and therefore usually a well-defined classi-
cal variable of a macroscopic system. So-called macroscopic quantum tunneling of the phase
difference through classically forbidden regions was first investigated experimentally by Voss
and Webb (1981) and convincingly demonstrated by Devoret et al. (1985). The quantization of
the anharmonic excitations of the corresponding phase particle was measured by Martinis et al.
(1985). The (squared) modulus of the superconducting order parameter, describing the density
of superconducting electrons, is usually also a nonfluctuating, classical quantity. Observing its
quantum behavior requires low-capacitance junctions and was first achieved by Nakamura et al.
(1997) and Bouchiat et al. (1998).

Besides being interesting for its own sake, these macroscopic quantum phenomena were soon
realized to be beneficial for quantum computing applications. They allow one to build solid-
state based superconducting quantum devices for this purpose, with adjustable properties and
not suffering as severely from scalability problems as other quantum technologies. The essential
elements in these devices are superconducting Josephson qubits1 (also called artificial atoms),
which exist in a variety of flavors, but which all make use of the quantization of the collective
superconducting degrees of freedom one way or the other. As integral part of circuit QED sys-
tems, the most important types of superconducting qubits will be reviewed in the next chapter.
We remark that Josephson-junction devices have been the first systems to explore macroscopic
quantum phenomena since they have very little internal dissipation and large enough energy
scales so that thermal fluctuations can be easily frozen out. Today, due to the enormous progress
in fabrication and cooling techniques, also collective motional degrees of freedom (center of
mass) of nanomechanical devices are about to be placed into the quantum regime (O’Connell
et al., 2010; Teufel et al., 2011; Chan et al., 2011).

Circuit QED merges together the concepts of macroscopic quantum systems and cavity QED,
borrows ideas form trapped-ion physics, and is driven to a large degree by the innovations of

1. We follow here the common overloading of the notion ‘qubit’ and refer to the carriers of bits of quantum infor-
mation as qubits themselves.
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quantum information theory. Having gathered the most important developments preceding and
influencing the field of circuit QED, we now move on and discuss explicitly the physics of circuit
QED systems (Sections 2.1 and 2.2) and their state of the art (Section 2.3). This will show us
that it is timely and of high interest to investigate circuit QED systems with multiple qubits, both
for quantum information processing applications and the study of atom-field interactions. Here,
the new work presented in this thesis ties in, as outlined in Section 2.4.1.



Chapter 2

Introduction to circuit QED

2.1 Superconducting qubits

Superconducting qubits are nonlinear quantum circuits made out of superconducting material and
the key elements of circuit QED systems. The necessary nonlinearity to act as artificial atoms
in cavity QED type experiments or for quantum information purposes is inherited from one or a
few Josephson junctions embedded in these circuits. Electrical circuits, in general, offer a great
design flexibility and can be integrated on a chip, for which elaborate microfabrication techniques
are available. They do not need to be trapped or laser-cooled, and, with regard to fabrication,
moving to large-scale circuit systems is easy. This makes electrical circuits appealing for building
qubits. The challenge, however, is to isolate them well enough from the environment so that they
exhibit quantum coherence over the time-scale of an experiment. It is the unique properties of
superconductivity and Josephson junctions that make it possible to obtain the desired nonlinear
quantum behavior. We will briefly review these concepts before we discuss the different types
of superconducting qubits and how they can be coupled to form circuit QED systems. More
details on superconducting qubits can be found in the review articles by Makhlin et al. (2001),
Devoret et al. (2004), Schoelkopf and Girvin (2008), Clarke and Wilhelm (2008), and Devoret
and Schoelkopf (2013).

Superconductivity

If the temperature falls below a critical value, some materials suddenly lose all electrical resistiv-
ity (Kamerlingh Onnes, 1911) and expel magnetic fields from (parts of) their interior (Meissner
and Ochsenfeld, 1933). This phenomenon is known as the superconducting phase transition, and
the new properties mentioned are referred to as superconductivity. A century of intense research
on superconductivity has produced an extensive textbook literature on the subject (e.g., Schrieffer
(1983); Tinkham (1996); Ketterson and Song (1999)), but has still left open many fundamental
questions about this fascinating physics.

The Bardeen-Cooper-Schrieffer (BCS) theory (Bardeen et al., 1957) provides a microscopic
explanation for the superconductivity found in many metals, metallic alloys, and heavily doped
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nonmetallic materials (so-called conventional superconductors). It tells us that an attractive in-
teraction between the conduction electrons causes them to form boson-like pairs, termed Cooper
pairs. In the ground state of the system, these are condensed in momentum space. The elemen-
tary excitations are (fermionic) Bogoliubov quasiparticles and are separated from the ground
state at least by a nonzero energy gap ∆. In conventional superconductors, the electron-pairing
relies on an indirect electron-electron interaction mediated by phonons. BCS theory comprises
former phenomenological theories of superconductivity. Gor’kov (1959) constructed from BCS
theory a macroscopic wave function Ψ(r) (extended over the whole superconductor and depend-
ing, like a single-particle wave function, just on one spatial coordinate r) which describes the
condensate of Cooper pairs. He showed that Ψ is equal to the order parameter (or the wave func-
tion) of the Ginzburg-Landau theory of superconductivity (Ginzburg and Landau, 1950) under
conditions where the latter is expected to be valid. BCS theory can therefore also be used to
derive the London equations (London, 1950).

The properties of superconductors we have discussed so far are promising for building quan-
tum coherent circuits. Superconductors are practically free of dissipation (which would de-
stroy quantum coherence), and quasiparticle excitations can be frozen out using modern cryo-
genics. However, the condition kBT � ∆ only guarantees that a superconductor is fully de-
scribed by a single, macroscopic wave function. To observe coherent quantum behavior of
this collective degree of freedom, the superconducting circuit must be engineered in a way that
there are excitations ~Ω j of the collective degree of freedom that fulfil ~Ω j � ∆. Moreover,
these excitations have to be sufficiently isolated from thermal (and other) noise, which requires
kBT � ~Ω j (Devoret et al., 2004). For building superconducting qubits, one engineers circuits
with Ω j/2π∼ 10GHz, corresponding to ∼ 0.5K. The base temperature of a dilution refrigerator
is∼ 20mK. At this temperature, the energy gap, e.g., of the frequently used BCS-superconductor
aluminum corresponds to ∼ 4K, so that the energy scales are well separated. The residual AC-
resistivity of standard BCS-superconductors is negligible for these temperatures and frequencies
Ω j, as can be estimated by means of the Mattis-Bardeen formula (Mattis and Bardeen, 1958).

Josephson junctions I – lossless nonlinear inductors
Interesting quantum physics arises if the superconducting quantum circuit contains a nonlinear-
ity. This allows one to single out a certain, non-degenerate transition frequency of the circuit and
to use the corresponding states as artificial two-level system, e.g., for encoding a qubit. Josephson
junctions are the only known nonlinear non-dissipative circuit elements. A Josephson junction
consists of two pieces of superconductor separated by a so-called weak link. The weak link
can be a narrow constriction of the superconducting material, a layer of normal metal, or, most
commonly in circuit QED, a thin insulating layer. We will assume this last case unless stated
otherwise. Josephson showed that Cooper pairs can tunnel coherently through such a weak link,
carrying a lossless supercurrent (Josephson, 1962)

I = Ic sinφ. (2.1)

The critical current Ic is the maximum supercurrent the Josephson junction can sustain before
Cooper pairs break up. It can be related to geometric and material properties of the Josephson
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junction by means of the formula of Ambegaokar and Baratoff (1963), which is important for
designing Josephson junctions in practice. In particular, Ic is proportional to the area of the
junction. Furthermore, φ = φ2− φ1, where the φ j are the phases of the superconducting wave
functions in the neighbourhood of the Josephson junction1. The time evolution of φ is governed
by (Josephson, 1962)

φ̇ = 2eV/~. (2.2)

This equation relates the phase difference and the voltage V across the Josephson junction (e is
the elementary charge, and ~ is Planck’s constant h divided by 2π). The Josephson equations
(2.1) and (2.2) are essential for the dynamics of Josephson junctions (but not exhaustive, see
below) and give rise to the famous AC and DC Josephson effects, which were first observed by
Anderson and Rowell (1963) and by Shapiro (1963) and Giaever (1965), respectively. Note that
the dynamical variables appearing in the Josephson equations are taken to be classical. However,
as was indicated in Chapter 1, they can display quantum behavior under certain circumstances.
We will see that superconducting qubits rely on exactly that.

It is instructive to combine the Josephson equations into a single one by introducing the
branch flux (Devoret, 1997)

Φ(t) =
∫ t

−∞

V (t ′)dt ′ (2.3)

across the Josephson junction. One obtains

I = Ic sin(2πΦ/Φ0). (2.4)

Here, Φ0 = h/2e is the magnetic flux quantum. Equation (2.4) relates the current and the flux
through the Josephson junction, similar to the constitutive equation I = Φ/L of a linear inductor
with inductance L. Thus, the Josephson junction can be viewed as a nonlinear inductor, with
Equation (2.4) its constitutive equation. We remark that branch fluxes can be defined for all two-
port circuit elements, for instance, for a capacitor, where V is then the voltage across its plates.
For linear inductors as above, the branch flux is simply the magnetic flux threading the inductor.
Branch fluxes will be essential for deriving a quantum theory of circuits. For later purposes, we
calculate the energy stored in a Josephson inductor as a function of Φ,

E(t) =
∫ t

−∞

I(t ′)V (t ′)dt ′ =−EJ cos(2πΦ(t)/Φ0), (2.5)

where we have introduced the Josephson (tunneling) energy EJ = Φ0Ic/2π.

Josephson junctions II – the RCSJ model
Physical implementations of Josephson junctions are not fully described by the Josephson equa-
tions. To begin with, the superconductors on both sides of the Josephson junction form an in-
trinsic capacitor. This capacitive part of the Josephson junction can be accurately modeled by

1. Rigorously, φ = φ2 − φ1 + (2e/~)
∫ 2

1 Adx, where the vector potential A is integrated along a line across the
junction. However, the line integral can be gauged away in the absence of a magnetic field (Tinkham, 1996).
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Figure 2.1: RCSJ model of a Josephson junction. (a) Circuit diagram of the RCSJ model. The
Josephson element, denoted by a cross and characterized by its critical current Ic, is shunted by a
capacitance C and a resistance R. (b) Frequently used electronic symbol of a capacitively shunted
Josephson element. (c) Tilted washboard potential of the RCSJ model for I/Ic = 0,0.4,1 (blue,
green, red). The (metastable) bound quantum states of the phase particle are indicated as dashed
lines. They are not uniformly spaced due to the anharmonicity of the potential wells.

a capacitance C in parallel with the Josephson element, the purely inductive part of the Joseph-
son junction (Figure 2.1(a)). Moreover, in addition to the supercurrent, there can be dissipative
quasiparticle tunneling through a Josephson junction. Such dissipative currents cause a nonzero
voltage drop across the junction. This effect can be incorporated by a shunt resistance R in the
circuit model of a Josephson junction since this circuit element dissipates energy only in the
presence of a voltage and leaves the lossless zero-voltage state unaffected (Figure 2.1(a)). We
remark that the shunt resistance can be highly temperature and voltage dependent. For instance,
the quasiparticle current in the subgap regime eV < 2∆ is very small for a Josephson junction
with insulating interlayer at low enough temperatures and mainly due to junction defects. At
eV > 2∆, Cooper pairs can be broken, resulting in a sudden increase of the dissipative current.
Nevertheless, for simplicity R is frequently taken to be a linear resistance (Tinkham, 1996).

We can review here only the most essential features of this intensely studied model of a re-
sistively and capacitively shunted Josephson junction (RCSJ) (Stewart, 1968; McCumber, 1968)
However, our discussion will illustrate parts of our previous considerations and prepare some of
the following because the RCSJ model is also the theoretical backbone of macroscopic quan-
tum tunneling and of one specific type of superconducting qubits (phase qubits). For a fuller
treatment of the RCSJ model, see, e.g., Tinkham (1996).

Let us consider the equation of motion of the RCSJ circuit shown in Figure 2.1(a). By
invoking Kirchoff’s laws,

I = Ic sin(2πΦ/Φ0)+CΦ̈+ Φ̇/R, (2.6)
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where the Josephson junction may be biased by a current I. After rearranging terms,

CΦ̈+ Φ̇/R =− ∂

∂Φ

[
− IΦ−EJ cos(2πΦ/Φ0)

]
, (2.7)

one finds that the equation of motion of the RCSJ model is that of a damped classical particle
with mass C and coordinate Φ in a tilted washboard potential U =−IΦ−EJ cos(2πΦ/Φ0) (Fig-
ure 2.1(c)). Equations (2.6) and (2.7) allow static solutions (Φ̇ = 0) for the motion of the phase
particle2 if I/Ic≤ 1. This is equivalent with the existence of local minima in the tilted washboard
potential. The phase particle being at rest in a local minimum corresponds to the situation where
the Josephson junction is operated in its dissipation-free, zero-voltage state. If the bias current
exceeds the critical current of the junction, I/Ic > 1, static solutions of the equation of motion are
not possible, and there has to be a nonzero voltage across the junction. Thus, upon increase of
the bias current, a Josephson junction initially in the zero-voltage state will at some point jump
to a nonzero voltage state, yielding its well-known gapped I−V characteristic. Depending on
the mass C and the damping parameter R, this can happen already happen for I/Ic < 1 due to
thermal agitation. On the other hand, unbound solutions of the equation of motion (〈Φ̇〉> 0) for
I > Ic can remain unbound when I is reduced below Ic. This is the reason for hysteresis effects
in the I−V characteristics of weakly damped Josephson junctions.

So far the dynamics of the Josephson junction (the phase particle) have been described classi-
cally. Before approaching the quantum theory of Josephson junctions and other circuits formally
in the next paragraph, let us discuss qualitatively the effects of quantum mechanics on the RCSJ
model.

Quantum mechanics predicts the bound states of the phase particle in the tilted washboard po-
tential to be quantized in energy. Crucially, the allowed energy levels in the anharmonic potential
wells have nonuniform level spacing, as indicated in Figure 2.1(c). We emphasize again that this
is a consequence only of the Josephson nonlinear inductance and a precondition for addressing
a specific pair of states as two-level system. Unlike its classical counterpart, a quantum phase
particle shows zero point fluctuations in the ground state of a potential well. And, even at zero
temperature, it has a nonzero rate of escape from a well due to quantum tunneling. Thus, quan-
tum mechanics renders the zero-voltage state of a current biased Josephson junction metastable.
Since the phase particle represents the state of a macroscopic system, its quantum tunnelling
has been named macroscopic quantum tunneling. Finally, dissipation shifts and broadens the
energy levels in the potential wells and strongly suppresses the probability of quantum tunneling
(exponentially for T = 0 (Caldeira and Leggett, 1981, 1983)).

2. At this point, a few remarks on the terminology might be appropriate. The branch flux Φ across a Josephson
junction and the phase difference φ, often simply called phase, are interchangeable via φ = 2πΦ/Φ0, and both
are used as dynamical variables in the literature. Branch fluxes can be defined also for circuit elements other
than Josephson junctions, and they are the starting point for a general theory of (quantum) circuits, which will be
discussed in the next section. For this reason, we will usually use a branch flux Φ also for describing a Josephson
junction. However, sometimes it is more convenient to use the phase φ in this context, either to save notation or
to differentiate the dynamical variable of the Josephson junction, e.g., from the magnetic flux threading a linear
inductor. This has influenced device names such as ‘phase qubit’ and ‘flux qubit’, and also explains why the
pseudo particle in the RCSJ model is usually dubbed ‘phase particle’.
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Nevertheless, these deliberations have been confirmed by numerous experiments, out of
which we have already mentioned the demonstration of macroscopic quantum tunneling by De-
voret et al. (1985), following early experiments by Voss and Webb (1981) on the same subject.
Here, we highlight the measurement of the energy level quantization in the wells of the tilted
washboard potential by Martinis et al. (1985), which constitutes the first experimental demon-
stration of quantized energy levels of a macroscopic system at all. Martinis and colleagues irradi-
ated a current-biased Josephson junction in the zero voltage state with microwaves and measured
the escape rates of the junction into the nonzero voltage state. Only when the microwave fre-
quency matched with one of the discrete level spacings, they could detect an increase of the
escape rate, indicating that the junction was able to absorb energy3.

Quantum circuit theory

The experiments on macroscopic quantum physics with Josephson junctions prove that collective
state variables of superconducting circuits can display quantum behavior. For the mathematical
description of these effects, one needs a quantum theory of circuits in which the state variables of
a circuit are represented by appropriate operators and their dynamics are governed by a quantum
Hamiltonian.

The standard way of systematically deriving and quantizing the Hamiltonian of an arbitrary
circuit network of capacitors, inductors, and Josephson junctions was formulated by Devoret
(1997), building on the pioneering work of Yurke and Denker (1984). In the following, we sum-
marize the key elements of this procedure. It is based on the branch fluxes Φ j (Equation (2.3))
across the circuit elements j.4 Working with branch fluxes has the advantage that Kirchhoff’s
laws yield usual second-order equations of motion also for circuits with Josephson junctions.
This allows one to find a generating Lagrangian, which is then transformed into a Hamiltonian
and quantized. To find a Lagrangian for the circuit network, one first has to express the set of all
branch fluxes, which may depend on each other due to the constraints imposed by Kirchhoff’s
laws, by a number of independent ones. For the elementary circuits we will encounter in the fol-
lowing, this is not difficult. A prescription how it can be done for arbitrarily complex networks
in terms of node fluxes is detailed in Devoret (1997). The Lagrangian of the system is then the
energy of the capacitive circuit elements minus the energy of the inductive circuit elements, ex-
pressed by the independent fluxes and their time derivatives. For instance, in the case of a simple
LC oscillator (Figure2.2(a)), ΦL =−ΦC ≡Φ and the Lagrangian L reads

LLC =
1
2

CΦ̇
2− 1

2L
Φ

2. (2.8)

Note that this is the Lagrangian of a mechanical harmonic oscillator with coordinate Φ, mass C,
and spring constant 1/L. Thus, the capacitive energies in a circuit can be viewed as the kinetic
energy of one or several phase particles, and the inductive energies as their potential energies.

3. To be precise, the microwave frequency was kept fixed and the level spacing was tuned via the bias current in
this experiment. The measured escape rates were then compared with those without microwave irradiation.

4. The circuit elements sit on the ‘branches’ of the ‘circuit tree’, thus the name branch flux.
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Figure 2.2: (a) LC circuit. The branch flux ΦL (ΦC) through the inductor (capacitor) is indicated
by an arrow. (b) The same circuit as in (a) but with the linear inductor replaced by a Josephson
element (a nonlinear inductor). This circuit can be seen as a minimal model for a Josephson
junction.

Another example for this correspondence is the equation of motion of the RCSJ model (Equa-
tion (2.7)), where C is the inertia of the phase particle, and the potential is determined by the
inductive energy of the Josephson element (Equation (2.5)) and the bias current, which can be
thought of as stemming from a large, flux-loaded inductor (see Devoret (1997) for the treatment
of voltage and current sources within the present formalism). The canonically conjugated mo-
menta Q j = ∂L/∂Φ̇ j are charges and can be shown to exist in any meaningful circuit (the Φ j
are now assumed to be independent). The Hamiltonian H (Q j,Φ j) of the system results from a
Legendre transformation. In case of the LC oscillator,

HLC =
Q2

2C
+

Φ2

2L
. (2.9)

We remark that the effects of linear dissipative elements can be modeled within the Hamiltonian
formalism (Caldeira and Leggett, 1981, 1983; Esteve et al., 1986). Such elements build in dissi-
pation phenomenologically. Depending on the problem at hand, it can be more appropriate to do
this not on the level of circuit theory, but on the basis of effective models derived from it, using,
e.g., Lindblad master equations.

We are now in the position to quantize the circuit theory by promoting the canonical coordi-
nates to operators that obey the canonical commutation relation

[Φ̂ j, Q̂ j] = i~. (2.10)

From here on, one applies the rules and tools of quantum mechanics to calculate any quantity
of interest. For instance, we can diagonalize the quantum Hamiltonian of the LC circuit by
introducing the usual bosonic annihilation and creation operators a and a† so that

Φ̂ = ΦZPF(a† +a), (2.11)

Q̂ = iQZPF(a†−a), (2.12)

ĤLC = ~Ω(a†a+1/2). (2.13)
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Here, Ω = 1/
√

LC is the classical resonance frequency of the circuit. The zero-point fluctuations
of the flux and the charge are given by ΦZPF =

√
~Z/2 and QZPF =

√
~/2Z, where Z =

√
L/C

is the impedance magnitude of both the capacitor and the inductor on resonance. Notice that if
ΦZPF is of the order of the flux quantum Φ0, QZPF is of the order of the electron charge e (and Z
is of the order of the resistance quantum h/e2 (Girvin, 2013)).

We conclude this section by adding a few remarks on the quantum LC circuit, the macro-
scopic quantum mechanics of a Josephson junction, and the microscopic justification of our
quantum circuit theory. The quantum LC circuit is an elementary toy system which helps to gain
insight into some important concepts of circuit QED systems and superconducting qubits. Note,
for instance, that the zero-point fluctuations of Φ̂ and Q̂ imposed by Heisenberg’s uncertainty
relation are determined by the ratio of L and C, but not by fundamental natural constants such as
the electron mass. Thus, one can engineer circuits so that one or the other variable shows less
quantum fluctuations by increasing either the contribution of the capacitive or of the inductive
energy to the total energy. This is essential in the design of superconducting qubits. Note further
that with current microfabrication techniques, one can easily produce structures with C ∼ 1 pF
and L∼ 0.1 nH, yielding Ω/2π∼ 16 GHz (Makhlin et al., 2001; Devoret et al., 2004). Thus, by
considering the LC circuit, we estimate that the condition kBT � ~Ω� ∆ should be satisfiable
by superconducting qubits.

Let us now derive the quantum Hamiltonian ĤJ of a minimal model for an isolated Josephson
junction. It consists of a Josephson element in parallel with a capacitance C (Figure 2.2(b)).
Following the procedure described above and using Equation (2.5), one gets

ĤJ =
Q̂2

2C
−EJ cos(2πΦ̂/Φ0). (2.14)

So far we have treated the Josephson element phenomenologically as a nonlinear inductor with
constitutive equation (2.4), without having cared about the microscopic origin of this induc-
tance. We have argued that there is experimental evidence that the flux through the inductor
behaves quantum mechanically and thus have introduced a quantum theory of circuits based on
this macroscopic flux. Now we point out that this theory is consistent with a microscopic de-
scription of a Josephson junction (Devoret, 1997). We assume that charge tunnels through the
junction in units of the Cooper pair charge −2e. Excess Cooper pairs one side of the junction
charge the capacitor and are counted by a number operator n̂ = ∑

∞
n=−∞ n|n〉〈n|. Thus, the micro-

scopic Hamiltonian of the circuit of Figure 2.2(b) reads

ĤJ,mic = 4ECn̂2− EJ

2

∞

∑
n=−∞

[
|n〉〈n+1|+ |n+1〉〈n|

]
. (2.15)

Here, EC = e2/2C is the single-electron charging energy of the capacitor. The second term
describes the tunneling of Cooper pairs with a tunneling energy EJ, which we take here for
simplicity as a phenomenological parameter. It can now be shown that this Hamiltonian can be
reformulated as

ĤJ,mic = 4ECn̂2−EJ cos φ̂, (2.16)
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with a microscopically defined (using number states |n〉) operator φ̂ which obeys [n̂, φ̂] = i (some
care has to be taken here, see Devoret (1997)). Equation (2.16) allows one to derive the Josephson
equations (2.1) and (2.2) as operator equations.5 Thus, we can identify φ̂ as the phase-difference
operator, and we can give a microscopic meaning to the macroscopic quantum variables via
Q̂ = −2en̂ and Φ̂ = Φ0/2π× φ̂. Notice that the granularity of the charge, which is obvious
in Equations (2.15) and (2.16), is also present in Equation (2.14). The Hamiltonian ĤJ and
the physical state of the system are invariant under Φ→ Φ+Φ0. Thus, we demand the same
symmetry for the wave functions in the Φ basis. It follows that the eigenvalues of Q̂ =−i~∂/∂Φ

are −2en for n ∈ Z0. However, if the junction was shunted by a linear inductor with energy
Φ̂2/2L, the system would not have this invariance. Hence, Q̂ would have continuous eigenvalues.
This is because charge could move continuously onto the capacitor via the shunting inductor
(Koch et al., 2007).

Finally, we remark that realizing low-capacitance junctions with EC� EJ, so that the capac-
itive character of the junction dominates the Josephson behavior, requires advanced techniques.
For comparison, the first single-electron transistor was demonstrated only in 1987 (Fulton and
Dolan, 1987). In the early experiments with larger Josephson junctions, the phase / branch flux
was essentially well defined (also in the experiments on macroscopic quantum tunneling), which
is why these experiments usually revealed the classical Josephson dynamics of Equations (2.1)
and (2.2).

Qubit types – an overview
Even though macroscopic quantum tunneling and the energy quantization in the wells of the
RCSJ potential unequivocally demonstrated macroscopic quantum physics in Josephson devices,
the age of superconducting qubits had not dawned before it became possible to create coherent
superpositions of macroscopic quantum states. In devices with well-defined phase, this was
hindered for a long time by the difficulty to precisely control the required bias circuitry (see
below) and its detrimental effects on the system’s coherence. The first experiments that demon-
strated such coherent superposition were performed by Nakamura et al. (1997) and Bouchiat
et al. (1998), making use of low-capacitance junctions (EC � EJ) and superposing different
number states |n〉. This triggered a huge development in the research on superconducting qubits,
motivated mainly by the goal to find a scalable architecture for quantum computing. Today, there
is a whole zoo of superconducting qubits. It includes the

- Cooper-pair box (Nakamura et al., 1997)
- flux qubit (Friedman et al., 2000)
- quantronium (Vion et al., 2002)
- phase qubit (Martinis et al., 2002)

- transmon (Schuster et al., 2007)
- fluxonium (Manucharyan et al., 2009)
- hybrid qubit (Steffen et al., 2010)
- Xmon (Barends et al., 2013),

where we have listed the qubits in the order of historical appearance without paying attention to

5. These are simply the equations of motion of n̂ and φ̂ with current and voltage operators defined by Î = −2e×
dn̂/dt and V̂ =−2en̂/C, respectively.
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Figure 2.3: (a) Moore’s law type exponential increase of the lifetime of superconducting charge
qubits, measured by the energy relaxation time T1 and the dephasing time T2 (panel adapted from
Devoret and Schoelkopf (2013)). Other types of qubits have improved in a similar fashion. The
time required for a qubit operation (right vertical axis) was assumed to be 50 ns. This is realistic
for multi-qubit entangling gates (Reed et al., 2012). Single-qubit operations can be considerably
faster. The time for a specific operation is limited by the qubit’s anharmonicity and various
coupling parameters and thus has not significantly decreased during the last years. Plotted are
the qubit lifetimes obtained with the first generation of each lifetime-improving new qubit design.
Devices and techniques not mentioned before are: charge echo (Nakamura et al., 2002), the 3D
transmon (Paik et al., 2011), and the improved 3D transmon (Sears et al., 2012; Rigetti et al.,
2012). (b) Schematic circuit diagram of a superconducting qubit. Its characteristic energies are
the single electron charging energy EC, the Josephson energy EJ, and the energy of the shunt
inductor at one flux quantum, EL. Possible bias circuitry is not shown. The box around the shunt
inductor is meant to indicate that its inductance can be nonlinear. The ratio of the characteristic
energies and the bias of the circuit essentially define the different qubit types.

possible super-categories (see below). All these qubit types are based on the Josephson nonlin-
earity. All different designs seek to reduce in different ways the qubit decoherence due to the
manifold ubiquitous noise sources, while retaining enough nonlinearity and optimizing desired
features such as manipulability or accessibility to measurement. Up to now, the performance of
the superconducting qubits continues to increase rapidly – if measured by the crucial qubit en-
ergy relaxation and dephasing times T1 and T2, even exponentially (Figure 2.3(a)). Other figures
of merit, like the bits of information that can be measured from a qubit during its lifetime (this
number combines signal-to-noise ratio and measurement speed), have shown a similar evolution
(Devoret and Schoelkopf, 2013).

Superconducting qubits are formed by simple circuits that can be described schematically
by the circuit diagram in Figure 2.3(b) (Girvin, 2013; Devoret and Schoelkopf, 2013). The
central element is a Josephson nonlinear inductor with Josephson energy EJ. It is shunted by a
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capacitor with single-electron charging energy EC and by a (possibly nonlinear) inductor, which
is characterized by EL, the energy needed to thread it with one flux quantum. The different qubit
types differ by the ratio of these characteristic energies, by the way the elements are implemented,
and by the way the circuit is biased (not shown): Phase qubits have one large Josephson junction
and no additional shunt capacitor (EJ� EC), and are current-biased via a linear inductor. Also
flux qubits do not have an additional shunt capacitor, but they are flux-biased and the shunt
inductor usually consists of two Josephson junctions. Most charge qubits, namely Cooper-pair
boxes, quantroniums, transmons, and transmon variants such as Xmons, do not have a shunt
inductor (EL = 0), but possibly a shunt capacitor in addition to the capacitance of the junction.
We remark that names such as ‘charge qubits’ refer to the quantum variable to which one couples
in order to manipulate or read out the qubit state (i.e., this variable is off-diagonal in the qubit
eigenbasis). Fluxoniums and hybrid qubits can also be controlled via their charge degree of
freedom, but have a drastically different, flux-qubit-like topology. For instance, the fluxonium
has a shunt inductance formed by ∼ 50 Josephson junctions.

Not all qubit types can be discussed here in detail. We will briefly sketch the basic principles
of phase qubits and flux qubits. Many important experiments have been done with them, and
they will reappear when we review these experiments in later sections. Our focus in the survey of
superconducting qubits will be on Cooper-pair boxes and transmons, since the former have been
conceptionally very important and the latter are currently probably the most successful qubits.
Moreover, parts of the new research presented in this thesis are explicitly referring to Cooper-pair
boxes and transmons. For a comprehensive discussion of the different types of superconducting
qubits, we refer to the review articles mentioned at the beginning of this section.

Phase qubits

The prototype of a phase qubit (Martinis et al., 2002) consists of but a single, large (∼ 10 µm2),
current-biased Josephson tunnel junction, just as the devices used to study macroscopic quan-
tum tunneling (Figure 2.1(a)). Fabrication of such junctions is relatively easy and can be done
with conventional optical lithography, whereas all other Josephson qubits necessitate electron
beam lithography. Since the charging energy is low (typically EJ/EC ∼ 104) and Q̂ fluctuates
strongly, the junction is not susceptible to the omnipresent charge noise, which is a major issue
for all superconducting qubits. However, much effort must be put into sufficiently protecting the
junction against noise from and dissipation into the leads, which requires the use of impedance
transformers to feed in bias and control currents.

For operating this phase qubit, the junction is biased by a current I close to its critical current
Ic, but is still in the zero-voltage state. The potential of the junction as a function of the phase
forms a tilted washboard, similar to the green curve in Figure 2.1(c). The bias current is typi-
cally chosen such that there are 3− 4 metastable bound states in a well of the tilted washboard
potential, which is approximately cubic in this regime. The two lowest-lying energy levels in
such a well, separated by an energy ~Ω, are used as qubit levels. Restricted to this subspace, the
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Figure 2.4: Phase qubit. (a) Circuit diagram of the phase qubit and its surrounding circuitry. The
qubit consists of a Josephson junction embedded in a superconducting loop with parameters as
defined in Figures 2.1(a) and 2.3(b). Operation of the qubit requires a flux bias Φext, which is
inductively coupled into the loop. The qubit state can be manipulated by applying microwave
pulses and is read out using a SQUID magnetometer. (b) Flux potential and qubit levels of the
phase qubit. The parameters in this plot are EL/EJ = 4 and Φext/Φ0 = 0.8.

Hamiltonian of the junction reads

Ĥ =
~Ω

2
σz +

√
~

2ΩC
δI(σx +χσz), (2.17)

where σx/z is a Pauli matrix, δI = Ic− I, and χ is of magnitude ∼ 1/4 (Devoret et al., 2004).
Thus, one can drive qubit rotations by appropriately choosing δI(t) (which couples to the phase
difference across the junction, represented here by σx – thus the name ‘phase qubit’). The tran-
sition frequency Ω of the qubit can be tuned to some extend by varying the DC component of
the bias current I. One advantage of phase qubits compared to others used to be the availability
of fast high-fidelity single-shot read-out. For this purpose, the potential population in the excited
qubit state is swapped to the second or third excited state in the well by applying a suitable drive.
This drive will not affect the population of the ground state due to the level anharmonicity. The
higher excited states have a drastically increased probability of tunneling out of the well into
the continuum. If the qubit was initially excited, this tunneling will cause a finite voltage drop
across the junction after the read-out pulse. However, today there are equally efficient (even
non-destructive) read-out techniques for other qubit types.

In currently operated designs of the phase qubit, the junction is embedded in a superconduct-
ing loop. The loop is coupled capacitively to a microwave source for state manipulations and, via
mutual inductances, to an external flux bias Φext and a DC SQUID magnetometer (Simmonds
et al. (2004); see Figure 2.4(a)). The flux potential of the loop is of the form

U = EL[(Φ−Φext)/Φ0]
2−EJ cos(2πΦ/Φ0), (2.18)
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where EL =Φ2
0/2L and L is the linear inductance of the loop (Figure 2.4(b)). Let us assume EL <

2π2EJ, which is readily achieved using a large Josephson junction. Then, by increasing Φext,
metastable levels can be created in the vicinity of the global minimum of the potential. Using
such levels as qubit states has the advantage that the junction remains in a zero-voltage state after
the read-out, which avoids the generation of quasiparticles and self-heating. Upon tunneling of
the phase particle, the flux through the loop changes by ∼Φ0, which can be measured by means
of the SQUID magnetometer (Clarke and Braginski, 2006). More recent read-out schemes than
the one described above usually simply lower the potential barrier adiabatically so that the excited
qubit tunnels out of the well directly.

Phase qubits have been coupled capacitively to other qubits and microwave resonators, as
will be discussed later. They can be easily integrated into larger circuits and are therefore one
of the most promising qubits for quantum information processing. Their coherence times suffer
from junction imperfections, whose number increases with the junction area, and are not as high
as for some other qubits (several 100 ns).

Flux qubits
Flux qubits, also known as persistent current qubits, share some similarities with the loop version
of the phase qubit. Both qubits have the same circuit topology, both are biased by an external flux.
Flux qubits exist in a broad range of designs. However, their underlying physics is essentially
the same. It will be explained on the example of the archetype flux qubit, the radio frequency
(RF) SQUID. Based on this, we sketch a frequently used design variant, the flux qubit with three
junctions.

The RF SQUID consists of a relatively large Josephson junction (∼ 0.1−1 µm2, EJ/EC∼ 50),
shunted by an inductive loop with inductance L (Figure 2.5(a)). The loop is biased by an external
flux Φext. Thus, the flux potential U has the same form as for the phase qubit (Equation (2.18)).
However, unlike phase qubits, flux qubits are biased in the vicinity of Φext = (n+ 1/2)Φ0, n ∈
Z0. For these values of Φext, the flux potential has a degenerate global minimum as long as
EL = Φ2

0/2L < 2π2EJ (see Figure 2.5(b)). Moreover, flux qubits use the ground and the first
excited state of the system as qubit levels, and not metastable states (this is not strictly true for
all flux qubits, see later). Under the stated conditions, the two global minima of the flux potential
form a double well and are separated by one local maximum at Φ = Φext. In this situation, it is
energetically favorable for the system to increase or to decrease the total flux through the loop
relative to the flux bias in order to minimize the potential energy. This requires the flow of a
clockwise or a counterclockwise persistent supercurrent in the loop.

One can now obtain a strong anharmonicity of the low-lying quantum states of the system
by chosing the potential barrier low enough so that there is a tunnel coupling Ω/2 between the
wells (Friedman et al., 2000). Let us denote the states with lowest energy and well-defined
current direction by |�〉 and |	〉, and the magnitude of this current by Iq. If the minima of the
potential wells are exactly degenerate, the ground and the first excited state of the system are
given approximately by the symmetric and the antisymmetric superpositions of |�〉 and |	〉.
These states are separated by an energy ~Ω, and we refer to them by | ↓〉 and | ↑〉. If the flux
bias slightly differs from the sweet spots Φext = (n+ 1/2)Φ0, there is an energy difference of
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Figure 2.5: Flux qubits. (a) Circuit diagram of the RF SQUID. (b) Flux potential U of the
RF SQUID vs. flux Φ. The solid lines show U with the bias flux Φext chosen at the sweet
spot Φext = Φ0/2 for different values EL/EJ = 8,4 (black, gray). The barrier height EB de-
creases as this ratio increases. If the flux is trapped in one of the wells, this corresponds to
a (counter-)clockwise circulating current in the ring. The dashed lines are for the flux bias
Φext/Φ0 = 0.55,0.8 (gray, green) being away from the sweet spot (and EL/EJ = 4). This de-
tuning causes an energy difference ε between the local minima. The relation of flux and phase
qubits is illustrated by the green curve, which is identical to the potential of the phase qubit in
Figure 2.4(b). (c) Circuit diagram of a common variant of the flux qubit, consisting of a super-
conducting loop interrupted by three Josephson junctions, one of which is smaller by a factor α

than the other two. (d) Flux potential U of the circuit in (c) with α = 0.85 and Φext = Φ0/2 as
a function of the independent branch fluxes Φ1 and Φ2 (see text). The color scale ranges from
blue (low) to red (high). Each well has one neighbouring well into which the system can tunnel
easily if initially trapped in this well (indicated by a solid arrow), and two further neighbouring
wells that are separated from it by higher barriers. Tunneling into one of these wells (indicated
by dashed arrows) is therefore suppressed.

magnitude |ε| = 2Iq|Φ0/2−Φext| between the states |	〉 and |�〉 (assuming n = 0 (Clarke and
Wilhelm, 2008)), which modifies their weights in the eigenstates of the system. The best qubit is
formed by ground and first excited state if the system is biased to a sweet spot. There the level
spacing

√
(~Ω)2 + ε2 is first-order insensitive to fluctuations of Φext, which cause decoherence.
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In the eigenbasis of these states (|↓〉 and |↑〉),

Ĥ =
~Ω

2
σz +

ε

2
σx. (2.19)

Thus, by driving the flux bias Φext, one can generate qubit rotations. The qubit splitting Ω de-
creases exponentially with

√
EB/EC, where we have introduced the barrier height EB = 3EJ/2×

[EL/(2π2EJ)−1]2. This relation, the dielectric losses in the junction (which increase with junc-
tion area), and the effects of charge noise (which decrease with junction area) impose upper
and lower bounds on the ratio EJ/EC. To tune the qubit frequency Ω, the Josephson junction
is often split into two smaller junctions with Josephson energies EJ/2, and the resulting loop is
individually biased with a second flux Φq. The two junctions then behave as one with effec-
tive Josephson energy EJ(Φq) = EJ cos(πΦq/Φ0) (Makhlin et al. (2001); see also Figure 2.6(b)).
This construction is commonly called a split junction.

The state of the qubit is read out by a DC SQUID, which is often directly integrated in
the circuit of the flux qubit. Notice that the SQUID measures the magnetic flux produced by
the circulating current and therefore σx. However, σz can be measured, e.g., by adiabatically
transferring the population in the states |↓〉 and |↑〉 to the states |	〉 and |�〉, respectively.

The RF SQUID needs to be operated in a regime where the degenerate potential wells are
separated by a small barrier. This corresponds to the condition EL . 2π2EJ. It turns out that for
otherwise suitable values of EJ, the self-inductance L and, hence, the area of the loop have to be
quite large in order to yield the smallness of EL required by the above condition. This makes the
RF SQUID susceptible for flux noise. The problem can be circumvented by replacing the linear
inductance of the loop by two further Josephson junctions, larger by a factor 1/α than the first
junction, see Figure 2.5(c) (Mooij et al., 1999; van der Wal et al., 2000). There are now three
branch fluxes Φ j describing the circuit. One of them can be eliminated by virtue of Kirchhoff’s
laws, say, Φ3, the branch flux of the small junction. In terms of the other two branch fluxes, the
flux potential reads

U =−EJ
[

cos(2πΦ1/Φ0)+ cos(2πΦ2/Φ0)+αcos(2π(Φext +Φ2−Φ1)/Φ0)
]
, (2.20)

where Φext ≈ (n+ 1/2)Φ0 is a flux bias as before. This potential is plotted in Figure 2.5(d). It
froms a periodic hexagonal pattern of potential wells. At the sweet spot Φext = Φ0/2, the depths
of all potential wells agrees. However, there is an asymmetry of the potential barriers between
neighboring wells: each wells has one neighboring well separated from it by a low barrier and
two further neighbors separated from it by higher barriers. This is a consequence of the different
junction sizes. Typical values for the junction-asymmetry are α ∼ 0.8. The states in the wells
correspond to circulating currents in the loop. Just as for the RF SQUID, a qubit is formed
due to tunneling between ‘low-barrier’ neighboring wells. Tunneling to other wells is strongly
suppressed due to the higher saddle in between. The relative depths of neighboring wells can be
modified by slightly varying Φext, which is a further analogy to the RF SQUID, and the system
can be driven this way. Also the readout is identical that of the RF SQUID.

Flux qubits can be coupled to magnetic fields, e.g., of microwave resonators, or to the mag-
netic moments produced by the circulating currents of other flux qubits. They have excellent
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coherence times & 1 µs, but these become impaired by increasing complexity of the devices.
With respect to implementing quantum gates, other technologies are therefore currently more
advanced. We also remark that flux qubits are presently the only commercially available super-
conducting quantum bits, used for approaches to adiabatic quantum computing (Johnson et al.,
2011).

Charge qubits I – the Cooper-pair box
Conventional charge qubits are topologically different from phase and flux qubits. They do not
possess an additional DC conducting connection between the leads of the Josephson junction
besides the junction itself. That is, the Josephson junction separates islands of superconducting
material, and charge transport between them can take place only in discrete portions of size−2e,
the Cooper-pair charge. In the simplified picture of Figure 2.3(b), this corresponds to the case
of an infinite shunt inductance (EL = 0). In this section, we discuss the most elementary charge
qubit, the Cooper-pair box.

It has been already mentioned that quantum superpositions of the states of macroscopic sys-
tems were first demonstrated by Nakamura et al. (1997) and Bouchiat et al. (1998), using low-
capacitance Josephson devices. These devices had been considered by Büttiker (1987) before,
although not as potential solid-state qubits, and are now known as Cooper-pair boxes. The quan-
tum time evolution of a Cooper-pair box was observed the first time in a highly influential exper-
iment by Nakamura et al. (1999), which demonstrated spectacularly the potential of Josephson
devices for quantum information processing.

The circuit diagram of a Cooper-pair box is shown in Figure 2.6(a). It consists of a small
Josephson junction (∼ 0.01 µm2), separating a small piece of superconductor (the island or the
‘box’) from a bias circuit which allows one to apply a bias voltage Vg to the island via a gate
capacitance Cg. The intrinsic capacitance of the Josephson junction is usually denoted by CJ in
this context. The characteristic energies EJ and EC = e2/2CΣ are designed to satisfy EJ . EC
(and kBT � EJ,EC� ∆ as usual), where CΣ =CJ+Cg is the total capacitance of the island. This
requires the junction and the island to be small. The Hamiltonian of the circuit is usually written
in the form (see, e.g., Devoret et al. (2004))

Ĥ = 4EC(n̂−ng)
2−EJ cos φ̂, (2.21)

where n̂ and φ̂ are the number and the phase operator (cf. Equations (2.14) – (2.16)). Using n̂
and φ̂ instead of Q̂ and Φ̂ is convenient here since, as discussed earlier, the physical invariance
of the system under φ̂→ φ̂+ 2π implies that n̂ has integer eigenvalues. The gate charge ng =
Qr/2e+CgVg/2e is continuous and models the effect of the bias voltage Vg and of static noise
fields represented by a (scalar) residual offset charge Qr. These noise fields are caused, for
instance, by defects in the substrate and can substantially contribute to the charging energy of
low-capacitance circuits. Decoherence arises if Qr has a time-dependent component. In reality,
this charge noise is typically found to have a 1/ f power spectral density (Devoret et al., 2004)
and is one of the main sources of decoherence in low-capacitance circuits.

We emphasize that the usual derivation of Equation (2.21) (Büttiker, 1987) on the basis of
the circuit network of Figure 2.6(a) presumes Cg/CJ� 1 (and Qr = 0; the residual offset charge
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Figure 2.6: The Cooper-pair box. (a) Schematics of the Cooper-pair box and its sourrounding cir-
cuitry. The actual circuit diagram of the island is shown in the inset. (b) Circuit design modifica-
tion to obtain a tunable effective Josephson inductance. Two Josephson junctions with Josephson
energies EJ/2 intersecting a superconducting loop behave as one with effective Josephson energy
EJ(Φq) = EJ cos(πΦq/Φ0), tunable by a bias flux Φq. (c) Eigenenergies Em of the Cooper-pair
box Hamiltonian vs. gate charge ng for EJ/EC = 0 (dashed) and EJ/EC = 0.7 (solid). The colors
blue, red, green of the solid curves represent the cases m = 0,1,2, respectively.

is just phenomenologically added and has no direct representation in the circuit network). This
is often forgotten, even in such prominent applications of Equation (2.21) as the standard theory
of circuit QED (Blais et al., 2004). Nevertheless, Equation (2.21) and theories based on it often
provide at least a qualitatively correct description of (systems with) Cooper-pair boxes and re-
lated qubits. However, it is one of main conclusions of this theses that this is not always the case.
As we show on the explicit example of the possibility of superradiant phase transitions in circuit
QED, even the well-established standard theory of circuit QED can lead to qualitatively incorrect
predictions. This might be a consequence of the simplifications made by using Equation (2.21)
as qubit Hamiltonian.

Let us continue discussing the Cooper-pair box on the basis of Equation (2.21). Under the
condition EJ . EC, the number of Cooper-pairs on the island essentially is a good quantum
number because the Cooper-pair charging energy 4EC is much larger that EJ. Typical values are
EJ/4EC ∼ 0.1. This implies that the branch flux across the junction fluctuates wildly. Or, in the
picture we have employed before, that the phase particle is highly delocalized over the cosine-
shaped flux potential. The well-defined charge makes the system susceptible for the omnipresent
charge noise. However, similar to what we have discussed for the flux qubit, there is a sweet spot
of the bias voltage where the system becomes first-order insensitive to charge noise. Operated at
this point, the Cooper-pair box can form a decent qubit. To understand the origin of this sweet
spot, we plot the eigenenergies Em of the Hamiltonian (2.21) as a function of the gate charge ng in
Figure 2.6(c). The function Em(ng), also known as the charge dispersion of Em, is given in terms
of Mathieu’s functions (Cottet, 2002) and can be calculated numerically for arbitrary parameters



32 2. Introduction to circuit QED

EC and EJ with arbitrary precision. Alternatively, since we are interested only in the low-energy
sector of Ĥ , we can expand Equation (2.21) like in Equation (2.15) and drop all number states
except the two with n closest to ng (n = bngc and n = dnge) from the Hamiltonian. This is a
good approximation for EJ/4EC� 1 because all others number states are far off in energy. The
analytical formulas provided below have been calculated in this way.

One observes that for EJ/EC = 0 the eigenenergies form parabolas around all integers n
(dashed lines). These correspond to the charging energy when there are n excess Cooper-pairs
on the island. Note that the parabolas cross at half-integer values of ng. Switching on a small
coupling EJ/EC > 0 (solid lines) introduces avoided crossings of width ≈ EJ at these points. In
the vicinity of the avoided crossings, the level splitting becomes independent of the gate charge.
Thus, by biasing the Cooper-pair box to one of these avoided crossings, one can create a qubit
from its ground and first excited state with a strong anharmonicity and greatly reduced dephasing
due to charge noise. Using the approximation described above, one finds that the ground and the
excited qubit states are the symmetric and the antisymmetric superpositions of |n〉 and |n+1〉 if
ng = n+ 1/2. In the basis formed by these eigenstates, the Hamiltonian of the system near the
sweet spot ng = n+1/2 is, as for the flux qubit, approximately given by

Ĥ =
~Ω

2
σz +

ε

2
σx, (2.22)

where ~Ω = EJ and ε = 4EC(1−2ng). Hence, near the sweet spot, one can induce qubit rotations
via the gate charge ng, and the level splitting E1−E0 =

√
(~Ω)2 + ε2 is indeed independent of

terms linear in this parameter.
We add some remarks on the measurement and experimental issues with the Cooper-pair

box. The charge state of the Cooper-pair box can be read out, for instance, by coupling the island
capacitively to an appropriately biased single-electron transistor. In this way, the charge state can
be mapped on the properties of charge transport through the transistor. In order to distinguish the
qubit states at the sweet spot, one has to transfer adiabatically the population of these states to
charge eigenstates, analogously to the measurement of the flux qubit. However, with the advent
of circuit QED, more powerful techniques to measure charge qubits became available, which
will be discussed later. Again in analogy to the flux qubit, using a split junction enables in situ
flux tuning of the resulting effective Josephson energy EJ(Φq) = EJ cos(πΦq/Φ0), which in turn
allows one to vary the qubit level splitting ~Ω at the sweet spot (Figure 2.6(b)). Biased to this
point, the dephasing time T2 of the Cooper-pair box can reach T2 ∼ 0.5 µs. Moreover, Cooper-
pair box energy relaxation times T1 ∼ 7 µs can be achieved if the circuit is engineered in a way
that reduces the density of the electromagetic modes at the qubit transition frequency6 (Wallraff
et al., 2005). However, even if operated at the sweet spot, low-frequency noise from electrons
moving between defects can lead to sudden jumps of the gate charge ng and force a readjustment
of the bias voltage (Clarke and Wilhelm, 2008). This makes working with Cooper-pair boxes
tedious and was the main reason why experimentalists started to search for alternative charge
qubits. We will see in the next section how this problem can be cured by a slight change of the
qubit design.

6. This Purcell protection, which we already encountered in Chapter 1 in the context of cavity QED, is one of the
feats of circuit QED.
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Figure 2.7: (a) Circuit diagram of a transmon. The Josephson junction is shunted by a capaci-
tance CB, otherwise the circuit is identical to that of a Cooper-pair box (Figure 2.6). (b) Micro-
graph of a transmon embedded in a circuit QED system (left) and zoom-in on the split Josephson
junction of the transmon (right). The effective Josephson energy EJ of the split junction can be
tuned by applying a bias flux Φq. The pictures in this panel are copied from Schuster et al. (2007)
by courtesy of R. Schoelkopf.

Charge qubits II – the transmon

Transmon qubits have essentially the same circuit topology as Cooper-pair boxes and can be de-
scribed by the very same Hamiltonian Ĥ = 4EC(n̂−ng)

2−EJ cos φ̂ (Equation (2.21)). However,
unlike Cooper-pair boxes, transmons are characterized by EJ/EC� 1. To achieve this parameter
ratio, the Josephson junction is shunted by a large capacitor CB (Figure 2.7(a)). This reduces the
charging energy EC of the island drastically, but does not affect the circuit Hamiltonian otherwise
(Koch et al., 2007). In order to minimize dielectric losses, the junction size and therefore EJ are
not significantly increased compared to the Cooper-pair box. The transmon makes use of the fact
that the charge dispersion of the eigenvalues Em(ng) of the Hamiltonian (2.21) vanishes exponen-
tially with the ratio EJ/EC, whereas the anharmonicity of the eigenenergies vanishes only with a
slow power law of EJ/EC. As we will see below, one can find a broad optimal parameter range
in which the charge dispersion has virtually disappeared, but in which the anharmonicity of the
qubit is still large enough for the fastest qubit manipulations achievable with standard techniques
(∼ 1−10 ns). In this regime, the detrimental effects of charge noise are completely suppressed
without the need of applying a gate voltage at all. Typical ratios realized in experiments are
EJ/EC ∼ 50, which also optimize other features of the transmon such as its transition frequency
or the strength it couples to other systems. Figure 2.7(b) shows an electron micrograph of a
transmon qubit with flux-tunable split junction. The split junction connects two superconducting
islands which form the shunt capacitance of the transmon. The interdigitated fingers of the is-
land serve to increase the shunt capacitance. There is no DC conducting electrical connection of
the transmon to any other electrode. Other parts of the experimental (circuit QED) setup visible
in the figure will become clear in the next chapter. The transmon was thoroughly theoretically
studied by Koch et al. (2007). Much of our discussion in this section can be found in greater
detail in their article.
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Figure 2.8: (a) Charge dispersion of the eigenvalues Em of the Cooper-pair box/transmon Hamil-
tonian for different ratios of EJ/EC (solid lines). The curves for m = 0,1,2,3 are colored blue,
red, green, yellow, respectively. The minimum of E0(ng) is set to zero, and the energy is mea-
sured in units of the level spacing E10 = E1−E0 at the sweet spot ng = 1/2. The amplitude
Λm of the charge dispersion, indicated in one of the plots, decreases exponentially with EJ/EC
(see main text). The dotted lines represent the perturbative results for Em (only shown for plots
in the perturbative regime EJ/EC� 1). To illustrate the remaining anharmonicity for a typical
transmon (EJ/EC ∼ 50), the energy of twice the qubit transition 2E10 is shown in the correspond-
ing plot (dashed black line). (b) Relative and absolute (inset) anharmonicity of the Cooper-pair
box/transmon qubit levels vs. EJ/EC. The solid curves follow from exact calculations, the red
dashed curves represent the perturbative result. The minimum relative anharmonicity for ns qubit
operations, |αr|> 1/20π, is indicated by a dashed cyan line.

A measure for the charge dispersion of the eigenenergies Em of Ĥ is the difference Λm be-
tween the extrema of Em(ng), Λm = Em(ng = 1/2)−Em(ng = 0). This quantity can be calculated
in the limit EJ/EC� 1 by semiclassical means from the exact Mathieu solutions for the eigen-
values of Ĥ . One obtains (Koch et al., 2007)

Λm ≈ (−1)mEC
24m+5

m!

√
2
π

(
EJ

2EC

)m
2 +

3
4

e−8
√

EJ/EC , (2.23)

which decreases exponentially with
√

EJ/EC. An approximate expression for the eigenenergies
Em can be gained by noticing that for EJ/EC � 1 the phase φ undergoes only small quantum
fluctuations around φ = 0. Upon expanding the cosine term to fourth order in φ, the transmon
Hamiltonian becomes a harmonic oscillator with Duffing-type perturbation, which is smaller
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than the harmonic terms by factor
√

EC/EJ. To first order in this parameter,

Em ≈
√

8ECEJ
(
m+

1
2
)
− EC

12
(6m2 +6m+3)−EJ. (2.24)

It is interesting to note that the effects of the gate charge ng are completely suppressed in such
an approach. This is because the φ-periodicity of the Hamiltonian is lost and, consequently,
the cyclic boundary condition on the wave functions has to be dropped. However, as soon as
there are no boundary conditions on the wave functions, the canonical variable transformation
{n̂, φ̂}→ { ˆ̃n = n̂−ng, φ̂} does not have any effect at all. Figure 2.8(a) illustrates the exponential
decrease of the charge dispersion with EJ/EC and the simultaneously increasing accuracy of
the above approximation (2.24) for the eigenvalues Em. The plots interpolate between a typical
Cooper-pair box parameter ratio EJ/EC = 0.7 (as in Figure 2.6(c)) and a typical transmon ratio
EJ/EC = 50. One can see that the charge dispersion is suppressed more strongly for lower-lying
states. Already for EJ/EC = 10, the dispersion of the qubit states E0 and E1 is rather weak.
For EJ/EC = 20 (not plotted), the energy dispersion Λ1/(E1(ng)− E0(ng)) ∼ 10−3 becomes
negligible compared to the qubit transition frequency. For the usual parameter ratio EJ/EC ∼ 50,
there is essentially no charge dispersion also in higher-excited levels (which can be relevant for
certain protocols), and the system is very well approximated by describing it as Duffing oscillator.

In order to benefit from the reduced sensitivity of the qubit to charge noise, we must ensure
that the system is still anharmonic enough to be considered as qubit. Figure 2.8(b) shows the
absolute anharmonicity α = E21−E10 (inset) and the relative anharmonicity αr = α/E10 of the
qubit as function of EJ/EC. We have used the abbreviation Ei j = Ei−E j, and evaluated the
eigenenergies at the sweet spot ng = 1/2. The absolute anharmonicity first decreases, cuts the
axis at EJ/EC ≈ 9, and then converges to the ng-independent, perturbative result α→−EC. To
judge this result, we have to compare it to the (desired) experimental time scale. For instance,
in order to carry out qubit operations within a time τ ∼ 1 ns, we estimate that the absolute an-
harmonicity has to satisfy |α| > ~/τ. Using α = αrE10 and assuming further E10/h = Ω/2π ∼
10 GHz, we estimate |αr|> (20π)−1. This restricts the optimal parameter range of sufficient an-
harmonicity and negligible charge dispersion to values 20. EJ/EC . 500, which is not difficult
to engineer. Note that we have picked τ� T1 ∼ 1 µs. This implies that in the optimal regime of
EJ/EC also the qubit line width is much smaller than its anharmonicity (the fundamental condi-
tion for qubit operation). Concretely, the line width is ∼ 1 MHz, and the anharmonicity can be
estimated as EC/h∼ 500 MHz by virtue of Equation (2.24) and EJ/EC ∼ 50. We remark that the
trade-off between anharmonicity and robustness with respect to noise seems to be general and is
not only found for charge qubits (Devoret et al., 2004).

Transmon-type qubits have currently the best coherence times among all superconducting
qubits (T1,T2 ∼ 100 µs). Due to their sheer size (compared to Cooper-pair boxes), transmons
possess large transition dipole moments and couple strongly to the electromagnetic field. Since
the charge is not a good quantum number in the transmon regime, the state of a transmon cannot
be read out by measuring the charge on its islands. However, there are powerful, non-destructive
measurement schemes if the transmon is coupled to an harmonic oscillator such as an on-chip
superconducting microwave cavity. For these reasons, superconducting qubits of the transmon
type are at the heart of many present-day circuit QED experiments.
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2.2 Basics of circuit cavity QED
The field of circuit QED was born with the idea to combine superconducting qubits with some
of the seminal concepts of cavity QED (Marquardt and Bruder, 2001; You and Nori, 2003; Yang
et al., 2003; Blais et al., 2004). As we have explained in Chapter 1, the main objective of the early
cavity QED experiments was to achieve strong coupling of individual atoms and photons. Strong
coupling means that the coupling effects are not rendered indiscernible by energy relaxation.
One successful approach to this goal is to send long-lived Rydberg atoms through a high-finesse
microwave cavity. This setup combines low loss rates with large coupling, the latter resulting
from the large transition dipole moment of the Rydberg atoms.7

In the early days of superconducting qubits, the prospects for observing their strong coupling
with individual photons must have seemed not very encouraging since their lifetimes used to be,
and still are, many orders of magnitude shorter than those of Rydberg atoms (∼ 30 ms). Blais
et al. (2004) realized that this problem can be circumvented by fabricating a Cooper-pair box
inside a quasi one-dimensional (1D) transmission line resonator functioning as cavity. The trick
in this approach is that the light-matter-coupling scales not only in proportion to the transition
dipole of the matter, but also inversely proportional to the mode volume of the electromagnetic
field. Using 1D resonators reduces this mode volume to a degree that, in combination with the
relatively large dipole moment of the Cooper-pair box, pushes the circuit cavity QED system
into the regime of strong coupling. The experimental demonstration of this proposal by Wallraff
et al. (2004) arguably initiated large parts of the intense research on circuit QED of recent years.

However, besides the interesting possibility of doing cavity QED experiments with super-
conducting qubits, the circuit cavity QED architecture brings about several new features that
lift systems with superconducting qubits to a new level as quantum information processing tools.
Most importantly, the cavity provides a clean electromagnetic environment for the superconduct-
ing qubit. It suppresses vacuum fluctuations of the electromagnetic field at frequencies different
from its resonance ωc (for simplicity, we assume only one such resonance unless noted other-
wise). Thus, if the qubit transition frequency Ω is sufficiently detuned from ωc, the radiative
decay of the qubit can be strongly suppressed (even though not fully since the qubit wave func-
tion always acquires a small photonic part, see below). Nevertheless, manipulations of the qubit
are possible in this off-resonant, so-called dispersive regime, by appropriately driving the res-
onator. The cavity can be fabricated on-chip, in the same process as the superconducting qubits.
Made out of superconducting material, it can reach high finesse. Moreover, the cavity can act as
quantum bus, that is, it can facilitate entangling interactions between distant qubits or even be-
tween superconducting qubits and other carriers of quantum information (such as quantum dots
or nitrogen-vacancy centers). Finally, as already indicated, one can use the cavity for nondestruc-
tive simultaneous read-out of the qubits coupled to it. These features provide good reasons to
envision circuit cavity QED systems as scalable architecture for quantum information processing.

In this chapter, we collect the most important aspects of the theoretical background of circuit

7. We remark that strong coupling of atoms and photons was also demonstrated in the optical domain, that is, using
non-Rydberg atoms and visible light (Thompson et al., 1992), which has not been mentioned in Chapter 1.



2.2 Basics of circuit cavity QED 37

cavity QED. Our discussion will be based mostly on the celebrated Jaynes-Cummings model for
two-level atoms interacting with a single bosonic mode. This model suffices to explain the differ-
ent regimes of (circuit) cavity QED, state manipulations, measurements, and most experiments
performed with these systems so far. For circuit QED systems with very weak anharmonic-
ity and/or multiple cavity modes, in particular for the novel high-coherence 3D circuit cavity
QED systems, the Jaynes-Cummings model has to be slightly extended. These extensions will
also be discussed briefly. Finally, we remark that we use the term ‘circuit cavity QED’ to refer
to systems of superconducting qubits interacting with one or more discrete, (nearly) harmonic
modes. Today, there are also systems in which superconducting qubits interact with a continuum
of propagating electromagnetic waves. These are also embraced by the slightly more general
notion ‘circuit QED’.

The circuit cavity QED setup

The layout of an archetype circuit cavity QED system as proposed by Blais et al. (2004) is shown
schematically in Figure 2.9(a). It is comprised of a full-wavelength section of a superconducting
coplanar waveguide transmission line and of a Cooper-pair box fabricated between the center
trace and a ground plane of the coplanar waveguide. One may think of the coplanar waveguide
as a flat version of a usual coaxial cable. The capacitive gaps in the center trace act as mirrors
for the electromagnetic field, and the length of the coplanar waveguide in between (∼ 1 cm) sets
the resonance frequency of the so-formed cavity. The capacitance of the gaps determines the
coupling strength of the cavity to the external wiring (usual 50 Ω transmission lines), which are
also used for driving and read-out of the system. If the qubit is made with a split junction, it can
be brought into and out of resonance with the cavity in situ. Charge qubits such as Cooper-pair
boxes couple capacitively to the center trace. Thus, the qubit should be placed at an antinode of
the voltage standing wave for maximizing the coupling strength. The qubit can be voltage-biased
by applying a DC voltage between the center trace of the transmission line outside the cavity and
the ground plane. A part of this voltage will then drop across the qubit.

Figure 2.9(b) shows an electron micrograph of one of the first circuit cavity QED systems
implemented (Wallraff et al., 2004)8. The device is patterned as a thin layer of superconducting
material (niobium in this case, beige) on an oxidized silicon chip (green). The size of the compo-
nents is indicated in the plots. A false-color micrograph of the Cooper-pair box (blue) is shown in
the blue-framed inset. The thin blue line parallel to the center trace is the low-capacitance island
of the Cooper-pair box. It is connected via two Josephson junctions, located at the intersections
of the island with the perpendicular fingers, to a big reservoir with negligible charging energy.
The reservoir overlaps the ground plane in this sample. More recent versions of this 1D circuit
QED architecture usually contain (several) transmons instead of the Cooper-pair box, and may
be equipped with additional lines in the ground planes for individually flux-biasing or driving the
qubits.

8. Together with these authors, Chiorescu et al. (2004) reported on an experiment where a flux qubit was coupled
to a lumped-element cavity (that is, a LC circuit).
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Figure 2.9: The circuit cavity QED setup. (a) Schematic layout. The voltage standing wave
is indicated in red. Superconducting charge qubits are placed at its antinodes. (b) Micrograph
of an early circuit cavity QED setup (reproduced from Wallraff et al. (2004) by courtesy of
A. Wallraff). The device is described in the main text.

The Jaynes-Cummings Hamiltonian and beyond
The Jaynes-Cummings Hamiltonian (Jaynes and Cummings, 1963) is a minimal model for an
anharmonic (artificial) atom interacting with a bosonic mode of frequency ωc. Despite its sim-
plicity, the Jaynes-Cummings Hamiltonian captures the essential physics, for instance, of optical
and microwave cavity QED systems with real atoms (Raimond et al., 2001), of trapped ions
(Meekhof et al., 1996), of quantum dots in photonic crystal cavities (Faraon et al., 2008), and of
(most) circuit cavity QED systems (Blais et al., 2004). It is assumed that the bosonic mode is
near-resonant with only one specific internal transition of the atom9 with frequency Ω and that
the atom is prepared in the corresponding subspace. Spatial degrees of freedom are neglected.
The model reads

ĤJC = ~ωca†a+
~Ω

2
σz +~g(aσ++a†

σ−), (2.25)

where a is a bosonic operator and σz/+/− a spin-1/2 matrix as before. The Hamiltonian ĤJC pro-
vides a good description of the kept degrees of freedom if ωc and Ω have a comparable magni-
tude and if the coupling energy ~g satisfies ~g� ~ωc,~Ω. If this is not the case, counter-rotating
terms ~g(a†σ++aσ−) have to be included, which prohibits a simple analytical diagonalization
of the Hamiltonian (Braak, 2011). The generalization of ĤJC to many atoms is known as Tavis-
Cummings model (Tavis and Cummings, 1968). Important quantities needed to describe cavity
QED systems in addition to the Jaynes-Cummings Hamiltonian are the atomic decay rate γ and
the cavity decay rate κ. These rates capture possible interactions of atom and cavity mode with
degrees of freedom not represented in ĤJC, which are assumed to be irreversible. Atomic decay

9. Even when not talking about cavity QED with real atoms, we often simply use the term ‘atom’ to refer to the
anharmonic part of the system.
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can be caused, for instance, by transitions out of the considered subspace for Rydberg atoms or
by dielectric losses for superconducting qubits. Cavity decay happens when photons leak out
of the cavity. A further important irreversible process, which we do not take into account until
Section 4.7, is the pure dephasing of the atom due to random fluctuations in the atomic level
spacing Ω. We mention, however, that the atomic decay and pure dephasing rates γ and γϕ are
related to the energy relaxation and dephasing times via T−1

1 = γ and T−1
2 = γ/2+ γϕ.

Before discussing the features of the Jaynes-Cummings model, we make some remarks on
its derivation both for the paradigmatic cavity QED system – the one with real atoms – and for
a circuit cavity QED system. A detailed analysis of these derivations is part of the new results
presented in Chapter 3 of this thesis. After that, at the end of this section, a brief introduction will
be given to the theories used for describing circuit QED systems for which the Jaynes-Cummings
Hamiltonian is oversimplified.

To describe an atom traversing a cavity, it suffices to consider the low-energy limit of the full
relativistic theory of QED (Walls and Milburn, 1994). It is obtained by quantizing the vector
potential A in the minimal coupling Hamiltonian of atom and field,

H =
n

∑
j=1

[p j−q jA(r j, t)]2

2m j
+Vint(r1, . . . ,rn)+H rad, (2.26)

where Vint is the potential energy of the n charged particles constituting the atom, r j and p j their
position and momentum operators, q j their charge, and m j their mass. Here and (mostly) in the
following, hats to distinguish operators from numbers are omitted. In the Coulomb gauge, the
classical vector potential A satisfies the wave equation (c−2×∂2/∂t2−∇2)A = 0, where c is the
speed of light. Assuming a rectangular volume V ,

A(r, t) = ∑
n,λ

√
~

2ε0ωnV
en,λ

(
an,λei(knr−ωnt)+a†

n,λe−i(knr−ωnt)
)
, (2.27)

with the vacuum permittivity ε0 and the two orthonormal polarization vectors en,λ (λ = 1,2),
which satisfy kn · en,λ = 0. The dispersion relation is ωn = c|kn|, where the kn depend on the
boundary conditions. The field is quantized by elevating the an,λ to bosonic operators. The
Hamiltonian of the free field then reads H rad =∑n,λ~ωn,λa†

n,λan,λ. Starting from Equations (2.26)
and (2.27), one arrives at the Jaynes-Cummings Hamiltonian by (i) neglecting the center-of-mass
motion of the atom, (ii) making the dipole approximation eikr ≈ 1 (since the atom is assumed to
be much smaller than the wavelength of the radiaton), (iii) dropping all but one field mode and
all but two atomic eigenstates, and (iv) dropping the A2 terms. Then, in a convenient choice
of basis, the Hamiltonian takes on the form of Equation (2.25), however including the counter-
rotating terms. Since these only mix states distant in energy, they can be safely neglected for
small g. For cavity QED experiments with Rydberg atoms, representative parameter values are
ωc/2π,Ω/2π∼ 50 GHz, and g/2π∼ 50 kHz.

In the standard description of circuit QED (Blais et al., 2004), the coplanar waveguide cavity
is modeled as a series of inductors in which each node is capacitively coupled to ground. After
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taking the continuum limit, the classical Lagrangian of the system reads

L =
∫ Lc/2

−Lc/2
dx
(

l
2

j2− 1
2c

q2
)

(2.28)

=
∫ Lc/2

−Lc/2
dx
(

l
2

θ̇
2− 1

2c
(∇θ)2

)
, (2.29)

where it was assumed that the cavity has a length Lc. Further, c and l are its capacitance and
inductance per unit length, respectively, and θ(x, t) =

∫ x
−Lc/2 dx′q(x, t). Thus, the equation of

motion for θ is a wave equation. Due to charge neutrality, it has to be solved under the boundary
condition θ(−Lc/2, t) = θ(Lc/2, t) = 0. It follows that θ(x, t) is a superposition of standing
waves with wave vectors k = mπ/Lc (m ∈ N+) and frequencies ωk = k/

√
lc. In terms of the

time-dependent expansion coefficients ϕk(t) of θ,

L = ∑
k

l
2

ϕ̇
2
k−

1
2c

(
kπ

Lc

)2

ϕ
2
k . (2.30)

Upon quantizing the ϕk and expressing them as usual by means of bosonic ak, one arrives at both
a quantum description of the cavity, H rad = ∑k ~ωk(a

†
kak+1/2), and at a quantum expression for θ

in terms of the ak. With that, we also obtain a quantum expression for the voltage in the resonator,
V (x, t) = 1/c×∂θ/∂x. Note that V (x, t) has contributions from all k modes. In the usual theory of
circuit QED, this quantum voltage, evaluated at the position of the qubit, is added to the classical
gate voltage Vg. That is, the gate charge ng in Equation (2.21) acquires contributions ∝ (a†

k +ak).
This establishes a coupling of the qubit with a quantized field. As in the case of atomic cavity
QED, a number of simplifications lead to the Jaynes-Cummings Hamiltonian: Among the modes
in V (x, t) with antinodes at the position at the qubit, only the one energetically closest to the
qubit transition is kept (typically engineered to be the k = 2 mode, which has two nodes and
three antinodes, like in Figure 2.9(a)). Then, like in the case of atomic cavity QED, upon making
the two-level approximation for the superconducting qubit and dropping a term ∝ (a† +a)2 and
the counter-rotating terms, one eventually arrives at the Jaynes-Cummings Hamiltonian (2.25).
This procedure of deriving a circuit QED theory essentially holds for Cooper-pair boxes (Blais
et al., 2004) and transmons (Koch et al., 2007) alike. However, it should be remarked that, for
Cooper-pair boxes, one obtains additional terms if the classical gate charge ng is not biased to
a sweet spot. Typical parameter values in circuit cavity QED are ωc/2π,Ω/2π ∼ 10 GHz, and
g/2π∼ 10(100) MHz for Cooper-pair boxes (transmons).

The two-level approximation is not always justified in circuit QED. Transmons are only
weakly anharmonic so that higher excited levels should be generally taken into account. A gen-
eralization of the Jaynes-Cummings Hamiltonian appropriate for 1D circuit cavity QED systems
with transmons, but valid also for Cooper-pair boxes, reads (Koch et al., 2007)

H = ~ωca†a+∑
m

Em|m〉〈m|+~ ∑
m,m′

gm,m′|m〉〈m′|(a† +a). (2.31)
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Here, Em and |m〉 are the eigenenergies and eigenstates of the Cooper-pair box/transmon Hamil-
tonian (Equation (2.21)), and gm,m′ ∝ VZPF〈m|n̂|m′〉, where n̂ is the number operator and VZPF =√

~ωc/Lcc are the zero-point fluctuations of the quantum voltage. The multi-level transmon
QED model of Equation (2.31) and its generalization to multiple qubits capture some interesting
features of systems with transmons the Jaynes-Cummings Hamiltonian cannot account for. For
instance, two-qubit quantum gates with transmons often explicitly make use of higher excited
levels (see later). Moreover, since a transmon is almost a harmonic oscillator, there is a selection
rule for these qubits, gm,m′ ≈ δm′,m±1gm,m′ . After all, however, the physics of the model (2.31)
is not fundamentally different from the usual Jaynes-Cummings model. Operations like state
manipulations or read-out are implemented identically for Cooper-pair boxes and transmons and
can be understood on the basis of the simpler model.

For describing the novel 3D circuit QED systems invented by Paik et al. (2011), also the
generalized Jaynes-Cummings Hamiltonian of Equation (2.31) is generally not suited. These
circuit QED systems consist of a large, 3D transmon qubit embedded in a 3D cavity and are
currently subject to much research because of their improved coherence times. We will later
discuss some experiments done with these systems. Here we make a few remarks on their the-
oretical description. Due to the very weak anharmonicity, the strong coupling, and the large
size of the 3D transmons, it is not adequate to assume that the cavity mode is not distorted by
the presence of the qubit, and, thus, to independently quantize qubit and field and then to treat
their coupling perturbatively. A more appropriate approach, developed by Nigg et al. (2012) and
known as black-box quantization, is to divide the classical circuit into a purely linear part (in-
cluding the linear part of the Josephson inductance), and a purely nonlinear element with energy
−(EJ/4!)φ4, corresponding to the transmon’s Duffing term. Higher terms O(φ6) from the expan-
sion of −EJ cosφ are usually neglected. The (strongly) coupled eigenmodes of the linear circuit,
φ j(t), oscillate with frequencies ω′j and are mixtures of the linearized transmon and the cavity
modes. The φ j form an excellent basis to quantize the system and to treat the nonlinear Joseph-
son term as a small perturbation. The quantum Hamiltonian of the linear part of the system reads
H l = ~∑ j ω′ja

†
ja j. Due to Kirchhoff’s law, the dimensionless flux φ̂ across the nonlinear part of

the Josephson inductance can be expressed as φ̂ = ∑ j φ̂ j = ∑ j φZPF, j(a
†
j + a j). In practice, the

ω′j and φZPF, j are calculated using commercial finite-element solvers. Putting things together,
and neglecting counter-rotating terms, one eventually arrives at the Hamiltonian for a 3D circuit
QED system

H3D = ~∑
j

ω ja
†
ja j +

~
2 ∑

j,k
χ j,ka†

ja ja
†
kak, (2.32)

where ω′j→ ω j indicates that the eigenmodes are slightly renormalized by the nonlinearity, and
the χ j,k are functions of EJ and the φZPF, j. Note that every mode inherits an anharmonicity
from the Josephson junction (self-Kerr effect). Moreover, the presence of an excitation in the
mode j will also shift the frequency of the mode k 6= j (cross-Kerr effect). Since the qubit
and the cavity modes are treated on an equal footing, there is no distinction between qubit and
cavity modes in Equation (2.32). Usually, one simply calls the most anharmonic mode the qubit.
Now, on the basis of Equation (2.32), one can introduce approximations such as the two-level
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approximation for the qubit, if appropriate. The accurateness of the Hamiltonian (2.32) was
recently impressively demonstrated by Kirchmair et al. (2013), whose experiment we will briefly
describe in Section 2.3.

Resonant regime – Vacuum Rabi splitting
Let us return to the simplest model of atom-field interactions, the Jaynes-Cummings Hamiltonian

ĤJC = ~ωca†a+
~Ω

2
σz +~g(aσ++a†

σ−). (2.25)

The Hamiltonian couples only states with an equal number n of excitations, that is | ↓,n〉 and
|↑,n−1〉, and is readily diagonalized in this subspace. One finds

En,± = ~ωcn± ~
2

√
4g2n+∆2 (2.33)

in the manifold with n≥ 1 excitations. The energy of the ground state |↓,0〉 is

E0 =
~∆

2
. (2.34)

We have used the common abbreviation ∆ = ωc−Ω for the detuning of the qubit from cavity,
and we have added the zero point fluctuations of the field, ~ωc/2.

In this section, we discuss the resonant regime, where ∆� g. In the resonant regime, the
effects of the coupling g are strongest and, therefore, the demonstration of coherent light-matter
coupling is easiest. Thus, experimental implementations of the Jaynes-Cummings Hamiltonian
are usually first explored on resonance.

Assuming ∆ = 0, one reads off from Equation (2.33) that the manifold with n excitations
forms a doublet with energy splitting 2~g

√
n (see Figure 2.10(a)). In this situation, the eigen-

states |n,±〉 belonging to En,± are given by the coherent superpositions

|n,±〉= 1√
2
(|↓,n〉± |↑,n−1〉). (2.35)

The simplest way to demonstrate this coherent coupling is to probe the cavity with a weak spec-
troscopy tone of frequency ω and to measure the transmitted intensity (orange boxes in Fig-
ure 2.10). Note that from the ground state only transitions into the n = 1 manifold are dipole-
allowed. In this manifold, since the excitation is carried half by the cavity and half by the atom,
the line width of the resonances is ~(γ+κ)/2. If g� γ,κ, the splitting of the resonances, which
is also known as vacuum Rabi splitting, can be resolved, and the coupling is said to be strong.
Vacuum Rabi splitting was first observed in atomic cavity QED by Thompson et al. (1992) and
in circuit cavity QED by Wallraff et al. (2004) (see Figure 2.10(b)). A few remarks: (i) If there
are N > 1 atoms, the splitting of the n = 1 manifold is given by 2g

√
N. This makes it easier to

reach the regime of strong coupling. Moreover, as we discuss in Chapter 3, this can even lead
to a superradiant phase transition when the splitting becomes comparable to ωc. (ii) ‘Weak’ or
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Figure 2.10: The resonant Jaynes-Cummings model. (a) Energy spectrum of the uncoupled
(g = 0) and the coupled (g 6= 0) resonant Jaynes-Cummings model. The n = 1 doublet is acces-
sible, e.g., by weakly probing the cavity transmission. This is illustrated by the plot in the big
orange box. It shows the steady state of the cavity excitation 〈a†a〉, which is a measure for the
transmission in a spectroscopy experiment, as a function of the probe frequency ω, calculated for
the typical parameters of an early 1D transmon circuit QED system (by numerically solving a
Lindblad master equation). The resonances are separated by many line widths, and the system is
clearly in the regime of strong coupling. The parameters are, in units of ωc, g = 0.02, κ = 10−4,
γ = 10−3, and the amplitude of the spectroscopy drive F/~ = 10−4. (b) First experimental re-
alization of strong (resonant) atom-field coupling in circuit QED (as published in Wallraff et al.
(2004), courtesy of A. Wallraff). The transmission of the cavity is probed while the gate charge
biasing a Cooper-pair box is varied (the device used is shown in Figure 2.9(b)). In the regions of
the orange ovals, the Cooper-pair box comes into resonance with the cavity. Where the distance
between the resonances is minimal, the system is described by the theory of panel (a).

‘linear’ spectroscopy means that the number of photons in the cavity remains� 1. If the spec-
troscopy tone starts to significantly populate the cavity, the line width of resonances will increase
beyond ~(γ+κ)/2 (so-called power broadening). Depending on the coupling strength g, addi-
tional resonances due to multiphoton transitions into manifolds with n > 1 can also show up.
(iii) The observation of the vacuum Rabi splitting does not suffice to demonstrate the nonlinear
coupling of a two-level atom and a bosonic mode. The same splitting separates the eigenmodes
of two coupled (possibly classical) harmonic oscillators on resonance. Thus, to substantiate the
‘quantumness’ of the system, one either has to find a way to measure the splittings of the dou-
blets with n> 1. This was first achieved by Fink et al. (2008) in circuit QED, using pump-probe
techniques, and by Bishop et al. (2009), who carefully analyzed the aforementioned multipho-
ton resonances. Or, one can demonstrate so-called quantum Rabi oscillations, which we discuss
next.



44 2. Introduction to circuit QED

Quantum Rabi oscillations are a hallmark of the resonant Jaynes-Cummings coupling. If the
system is prepared in a product state, say, |↓,n〉, it will undergo a nontrivial time evolution in the
subspace of n excitations, spanned by the eigenstates |n,±〉 (for n≥ 1). One can easily show that
the qubit excitation probability P↑(t) after such an initialization follows

P↑(t) =
1
2
(1− cos(2g

√
nt)). (2.36)

The dependence of the oscillation frequency on
√

n is a consequence of the nonlinear atom-field
coupling. The more excitations are present, the stronger the coupling, and the faster the exchange
of the excitation between atom and field. The first observation of these quantum Rabi oscillations
was made by Brune et al. (1996b), using Rydberg atoms. The special case of n = 1, that is, the
coherent energy exchange between a single atom and the cavity with only a single quantum of
energy present, is known as vacuum Rabi oscillation. These were also observed by Brune et al.
(1996b) and, for the first time in circuit cavity QED, by Johansson et al. (2006).

Off-resonant regime – Measurement and state manipulations
The off-resonant or dispersive regime of the Jaynes-Cummings Hamiltonian is characterized
by g/|∆| � 1, where ∆ = ωc−Ω is the detuning of the qubit from the cavity. In this regime,
quantum fluctuations and external noise of the electromagnetic field at the qubit frequency are
suppressed by the cavity, and the qubit can enjoy protection against spontaneous and stimulated
decay. Nevertheless, it can be measured, manipulated, and, if there is more than one qubit in
the cavity, coupled to other qubits. For quantum information applications, (circuit) cavity QED
systems are therefore mostly operated in the dispersive regime. In this section, we discuss the
theory behind the most important features of the dispersive regime. The pioneering works in this
context, in which much of the following can be found in greater detail, have been authored by
Blais et al. (2004) and Blais et al. (2007).

In the dispersive regime, the states | ↓,n〉 and | ↑,n− 1〉 are not degenerate and will not be
strongly mixed (assuming small n). To first order in g

√
n/∆,

|n,+〉 ≈ |↓,n〉+ g
√

n
∆
|↑,n−1〉, (2.37)

|n,−〉 ≈ −g
√

n
∆
|↓,n〉+ |↑,n−1〉, (2.38)

for ∆> 0. For ∆< 0, the right-hand sides of Equations (2.37) and (2.38) have to be interchanged.
Focussing on n = 1, we can estimate that there is a probability (g/∆)2 that an excitation of the
atom (represented by |1,−〉 for ∆> 0) populates the cavity, and vice versa. This implies that the
decay rates Γ1,± of the eigenstates are given by

Γ1,+ ≈ κ+(g/∆)2
γ (2.39)

Γ1,− ≈ γ+(g/∆)2
κ. (2.40)



2.2 Basics of circuit cavity QED 45

Again, for ∆ < 0 the RHSs have to be interchanged. Hence, the qubit inherits a channel for
radiative decay from the cavity, which however can be eliminated by choosing ∆ large enough.
This dependence of the atomic decay rate on the detuning from the cavity is known as the Purcell
effect (Purcell, 1946; Houck et al., 2008). As long as the qubit’s decay rate changes appreciably
with ∆, the qubit is said to be Purcell limited, and otherwise to be Purcell protected.

For further discussing the dispersive regime, it is instructive to derive an approximation to
the Jaynes-Cummings Hamiltonian valid for g

√
n/|∆| � 1. One way to do this, which can be

conveniently generalized to multiple qubits and atoms with more than two levels, is to apply the
unitary transformation (Blais et al., 2004)

U = exp
( g

∆
(a†

σ−−aσ+)
)

(2.41)

to the Jaynes-Cummings Hamiltonian (2.25) divided by ∆, and to keep terms up to second order
in g/∆. This yields (up to a constant)

UHJCU† ≈ ~
(

ωc−
g2

∆
σz

)
a†a+

~
2

(
Ω− g2

∆

)
σz. (2.42)

The transformation U can be understood as a rotation in Hilbert space. It maps the low-energy
eigenstates of HJC for g/|∆| � 1, which are approximately given in Equations (2.37) and (2.38),
onto | ↑↓,n〉, and makes it easy to read off their energies via Equation (2.42). This reveals a re-
markable feature of the dispersive regime of the Jaynes-Cummings Hamiltonian: Its low-energy
spectrum possesses two harmonic ladders, one of them, belonging to the manifold | ↑, .〉, with
level spacing ωc− g2/∆, the other one, belonging to the manifold | ↓, .〉, with level spacing
ωc+g2/∆ (see Figure 2.11(a); Figure 2.11(b) shows both the resonant and the dispersive regime).
Since the eigenstates | ↑↓,n〉 of UHJCU† differ only slightly from those of HJC (see Equations
(2.37) and (2.38)), we can say that the cavity experiences just a small frequency shift due to the
presence of the off-resonant qubit, which however depends on the state of the qubit. This means
that one can learn about the state of the off-resonant qubit by measuring the direction of the cav-
ity’s frequency shift. Importantly, such a dispersive read-out would even constitute a quantum
nondemolition measurement, which has, in principle, only the effect of projecting the qubit to |↑〉
or |↓〉. What is more, if there are several qubits in the cavity and their detunings ∆ j are appropri-
ately chosen, it should be possible to jointly read out their state since the dispersive shifts of the
resonator frequency caused by each qubit can be shown to simply add up (Blais et al., 2004).

Indeed, dispersive read-out is the standard measurement technique in circuit cavity QED (a
second important method uses the qubit-state dependent response of the cavity population to a
drive of very high power at the bare cavity frequency ωc (Reed et al., 2010)). The frequency shift
of the cavity can be determined experimentally either by weakly driving the cavity at, say, ωc +
g2/∆ and measuring if there is a significant transmission of the signal or not. Or, one can probe
the cavity weakly at its bare frequency ωc, in which case the phase of the reflected signal contains
information on whether the resonance of the cavity is above or below ωc. This last method is
particularly useful if the dispersive shift is weaker than the resonator’s line width, g2/∆ < κ

(the so-called weak dispersive regime, in distinction to the strong dispersive regime with g2/∆>
κ,γ; see below for the relevance of γ). Dispersive qubit read-out in circuit cavity QED was
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Figure 2.11: (a) Dispersive regime of the Jaynes-Cummings Hamiltonian for ∆ = ωc−Ω > 0.
The spectrum consists approximately of two harmonic ladders. Their level spacings ωc± g2/∆

depend on the state of the qubit. The energy offset between the ladders is not exactly Ω (but
Ω− g2/∆) because of the qubit’s Lamb shift. (b) Transition energies En,±−E0 of the Jaynes-
Cummings model vs. qubit frequency Ω for couplings g/ωc = 0.06 (solid) and g = 0 (dashed).
On resonance, the avoided crossings increase ∼ √n. Off resonance, the system becomes ap-
proximately linear. The qubit-state-dependent cavity frequencies from panel (a) are indicated.
Moreover, the Stark- and Lamb-shifted qubit frequencies are indicated (orange). The label Ω( j)

was used to point at the qubit freuqency if j photons are present. To simplify the labeling, it was
set ~= 1 in both panels.

first demonstrated by Schuster et al. (2005). Mainly because of the difficulty of detecting low-
intensity microwave signals, measurement in circuit cavity QED required long averaging of the
noisy measurement signals and used to be one of the weaknesses of this approach to quantum
optics and quantum information processing. However, with the advent of low-noise Josephson
bifurcation and parametric amplifiers, it is now possible to measure the state of a superconducting
qubit in a circuit cavity QED system within a few ns with high fidelity. This facilitated, for
example, the observation of quantum jumps of the state of a transmon (Vijay et al., 2011). The
measurement in circuit QED has even evolved so far that fundamental questions concerning the
measurement process can be experimentally addressed. For instance, Vijay et al. (2012) were
able to feed back the information about the qubit state obtained by a weak measurement into the
system and to stabilize in that way Rabi oscillations (see below) of the qubit indefinitely.

Another insightful perspective on the low-energy sector of the dispersive Jaynes-Cummings
Hamiltonian is obtained by a rearranging the terms on the RHS of Equation (2.42),

UHJCU† ≈ ~ωca†a+
~
2

(
Ω− 2g2

∆

(
a†a+

1
2
))

σz. (2.43)

Expressed in this form, the dispersive effect of the state of the field on the qubit frequency is
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emphasized. The terms in the large parentheses can be interpreted as the qubit transition fre-
quency, modified by the dispersive interaction (see Figure 2.11(b)). Obviously, this frequency
depends on the number of photons in the cavity. This is a manifestation of the AC Stark effect. In
the strong dispersive regime, in particular if g2/∆ > γ, measuring the qubit transition frequency
facilitates a nondestructive interrogation of the photon number in the cavity, as demonstrated and
utilized by Johnson et al. (2010) and Kirchmair et al. (2013). An earlier experiment based on the
AC Stark effect involved spectroscopic measurement of the photon-resolved qubit frequencies.
The intensities of the lines then enabled an estimate of the probability distribution of having n
photons in the cavity (Schuster et al., 2007). We remark that a fluctuating photon number in the
cavity causes fluctuations of the qubit frequency via the AC Stark effect and, thus, causes dephas-
ing. In measurements of the qubit state, the dephasing due to the photon shot noise constitutes
the measurement back-action on the conjugated variable. Moreover, stray cavity photons are
believed to be one of the main sources of dephasing in current cirucit QED devices and require
careful shielding of the cavity against electromagnetic noise (Sears et al., 2012). Remarkably,
also the zero-point fluctuations of the electromagnetic field alter the qubit transition frequency
by an amount 2g2/∆×1/2. This single-mode Lamb shift was observed in circuit cavity QED by
Fragner et al. (2008).

We now investigate the possibilities of controlled qubit state manipulations. Such manipula-
tions are usually achieved in the dispersive regime by externally driving the cavity at a frequency
ω close to the qubit frequency. In this approach, the cavity will be only virtually populated and
the external drive acts essentially classical. Moreover, the reflected signal of a drive far detuned
from the cavity cannot contain relevant phase information and will therefore not measure the
qubit.

A drive with potentially time-dependent amplitude F(t) can be modeled by adding the term
F(a†e−iωt +aeiωt) to the Jaynes-Cummings Hamiltonian (2.25) (we assume that F is real). It is
convenient to simplify the time-dependence by applying the unitary transformation

U ′ = exp
(

i~t(ωa†a+
ω

2
σz)
)

(2.44)

to HJC according to H ′JC =U ′HJC(U ′)† + i(∂U ′/∂t)(U ′)†. Note that this transformation, which
is usually referred to as ‘going to a frame rotating at the drive frequency ω’, just adds a phase to
|↑↓,n〉. One obtains

H ′JC = ~δca†a+
~δq

2
σz +~g(aσ++a†

σ−)+F(a† +a), (2.45)

where δc =ωc−ω and δq =Ω−ω. Now we displace the cavity field via D(α) = exp(αa†−α∗a)
by an amount α = F/~δc. This yields

H ′′JC = ~δca†a+
~δq

2
σz +~g(aσ++a†

σ−)−
~ΩR

2
σx, (2.46)

where the Rabi frequency ΩR = 2gF/~δc was introduced. Since the qubit is operated in the
dipersive regime (δc−δq = ∆� g), we can use again the transformation (2.41) to obtain

H R
JC = ~δca†a+

~
2

(
δq−

2g2

∆

(
a†a+

1
2
))

σz−
~ΩR

2
σx, (2.47)
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where we have kept terms to second order in g/∆ and have dropped a term ∝ ΩR(g/∆)σz(a†+a)
(Blais et al., 2007). Note that δq = Ω−ω depends on the drive frequency ω. Thus, the second
term of H R

JC can be made small by appropriately choosing ω. Concretely, since 〈a†a〉 ≈ 0 in
the dispersive regime, one has to arrange δq ≈ g2/∆ for this purpose. The resulting Hamiltonian
generates coherent rotations with angular frequency ΩR about the x axis in the rotating frame.
In the lab frame, this corresponds to a spiral movement of the qubit state up and down the
Bloch sphere whereby the qubit excitation probability oscillates with angular frequency ΩR. For
instance, in the rotating frame, the pure qubit state | ↓〉 would evolve into | ↑〉 and back. Since
these states are not affected by the transformation (2.44), this happens also in the lab frame.
Thus, by driving a qubit in the dispersive regime near its resonance frequency, one can create a
coherent and cyclic evolution of the qubit excitation probability, known as Rabi oscillations. A
so-called π pulse of duration t = π/ΩR inverts the qubit excitation, and a π/2 pulse rotates the
Bloch vector of the qubit from a pole of the Bloch sphere to the x−y plane and vice versa. Such
pulses can be realized in circuit cavity QED with a fidelity ≥ 99% on a time scale of a few ns.
Note that the Rabi frequency depends on the drive amplitude, ΩR ∝ F . Note also the similarity
of ΩR and the frequency of the quantum Rabi oscillations of Equation (2.36), which depends on
the amplitude of the quantized field ∝

√
n in the resonant cavity.

With tools similar to the ones used above, one can work out a variety of gates for single and
multiple qubits operated in the dispersive regime. For instance, if the system is strongly driven
with a tone off-resonant with the cavity and close to, but still off-resonant with the qubit, the
qubit transition frequency Ω will be AC Stark shifted due to virtual qubit transitions. This will
neither measure nor strongly dephase the qubit since the photon population of the cavity remains
small. One can use this effect for rapid changes of the qubit frequency Ω if the qubit does not
have a split junction or no individual fast flux line (Majer et al., 2007). Note that a temporary
change of Ω also generates an additional phase, that is, an additional rotation about the z axis in
the qubit evolution (termed phase gate). Multi-qubit gates usually do not rely on external driving.
Rather, the excited states (often also higher excited states) of qubits coupled dispersively to the
same cavity are brought into resonance. By means of the transformation (2.41), one can show,
for instance, that if the excited states of two qubits which are coupled to the same cavity with
equal strength g are resonant, the Hamiltonian of the system reads (Blais et al., 2004)

H ≈ ~
(

ωc−
g2

∆
(σ1

z +σ
2
z )

)
a†a+

~
2

(
Ω− g2

∆

)
(σ1

z +σ
2
z )−

~g2

∆
(σ1

+σ
2
−+σ

1
−σ

2
+), (2.48)

where the operators with index 1(2) act on the first (second) qubit. The last term is an entangling
interaction between the qubits, mediated via virtual photons. It is suppressed if the qubits are off-
resonant with each other. Majer et al. (2007) were the first to entangle two qubits in the circuit
cavity QED architecture, making use of most of the above techniques: the authors prepared a
state |↑,↓〉 of two mutually off-resonant qubits in the dispersive regime by applying a π pulse to
one of them. Then, they shifted the qubits into resonance by a Stark pulse. At a certain pulse
duration, the time evolution generated by the Hamiltonian (2.48) amounted exactly to the so-
called

√
iSWAP gate, which yielded the entangled state 1/

√
2(|↑,↓〉+ |↓,↑〉). After switching off

the Stark pulse, the state of both qubits was measured simultaneously, utilizing the four different
dispersive shifts of the cavity frequency caused by the four different qubit product states |↑↓,↑↓〉.
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2.3 State of the art in circuit QED

In the preceding sections, we have outlined the basic principles behind circuit QED and men-
tioned the key experiments which have utilized or demonstrated these principles first. Some
aspects of this discussion have already indicated that circuit QED is proceeding at an unabated
rapid pace. In addition to the main applications of circuit QED anticipated by the pioneers of
the field, namely as a testbed for fundamental non-linear quantum optics and as a toolbox for
processing quantum information, new topics such as the physics of the measurement process or
quantum simulations are currently becoming increasingly important. In this section, we review
some recent achievements in each of the different areas of circuit QED (which cannot always be
clearly separated). Most of the theory relevant to this section is detailed, e.g., in the textbooks on
quantum optics by Scully and Zubairy (1997) and Walls and Milburn (1994), and in the textbook
on quantum information science by Nielsen and Chuang (2000).

Quantum optics with superconducting circuits

With the advances of the experimental technology in circuit QED, it became possible to transfer
many of the iconic quantum optical experiments with real atoms to this platform (and to the
microwave domain), and, in quite a few cases, even to outperform previous approaches.

For instance, Astafiev et al. (2007) demonstrated lasing with a single artificial atom in a
microwave cavity. The population of a Cooper-pair box was inverted by two sequential single-
electron tunneling events, which changed the number of Cooper pairs on the island (the good
quantum number) by one. The lasing action was confirmed by measuring the spectral narrowing
of the emitted microwaves below κ and the amplification of an external microwave signal.

Fink et al. (2009) investigated the Tavis-Cummings model and were able to show the the-
oretically predicted

√
N dependence of the resonant atom-field coupling. Compared to other

implementations of the model, e.g., with dilute atomic beams traversing a cavity, such exper-
iments can be performed in circuit QED without fluctuations in the atom number. Since the
N = 3 superconducting artificial atoms had been equipped with individual flux bias, they could
be brought into resonance with the cavity one by one. If there are N atoms on resonance with
the cavity, only one collective atomic excitation hybridizes with the cavity. The corresponding
states are split by 2g

√
N and the excitation is carried with probabilities 1/2 by the cavity and

1/2N by one specific atom. The other N− 1 atomic states with one excitation do not couple to
the cavity and remain dark in the spectroscopy experiment. All of these features of the resonant
Tavis-Cummings model were observed in the experiment.

A further well-known quantum optical phenomenon re-observed in circuit QED is the split-
ting of a strongly and resonantly driven atomic transition, which becomes manifest in the Mol-
low triplet and the Autler-Townes doublet. The drive and the atomic transition form a resonant
Jaynes-Cummings system (we remark that this does not require a cavity). If the photon num-
ber n in the drive is high, the Jaynes-Cummings doublets have an almost uniform splitting since
2g
√

n≈ 2g
√

n+1. With increasing drive power, this splitting can eventually become larger than
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the line width of the atomic transition. If at the same time (i) the fluorescence from the driven
atom is measured or its spectrum is probed with a weak spectroscopy tone, one can observe the
described splitting as three lines at Ω and Ω± 2g

√
n – the Mollow triplet. Note that 2g

√
n is

the frequency of the Rabi oscillations, see Equation (2.36). If at the same time (ii) the energy
difference between the driven atomic transition and a third atomic level is probed, one will find
two lines split by 2g

√
n – the Autler-Townes doublet. Baur et al. (2009) observed these phe-

nomena in the dispersive regime of circuit cavity QED, using the cavity only for a sophisticated
spectroscopy scheme.

Forn-Díaz et al. (2010) observed the Bloch-Siegert shift of a flux qubit strongly coupled
to a microwave resonator. The Bloch-Siegert shift is the shift of the transition frequency of
a two-level atom coupled to an electromagnetic field exclusively due to the usually neglected
counter-rotating terms. This shift can be made visible by strongly driving the atomic transition
(also the counter-rotating coupling increases in proportion to the drive amplitude ∼ √n), or by
approaching the regime of so-called ultrastrong coupling g/ωc & 0.1, as was done by Forn-
Díaz et al. (2010). We remark that ultrastrong coupling in circuit QED had been seen first by
Niemczyk et al. (2010).

Other typical quantum optical experiments transferred to circuit QED include the following:
The elastic scattering of light from a single flux qubit in an open transmission line was investi-
gated by Astafiev et al. (2010). They found an almost perfect extinction of the transmitted power
(94%) due to destructive interference of the forward-scattered and the incident wave (and a Mol-
low triplet in the inelastically scattered fraction of the power for stronger drive). Abdumalikov
et al. (2010) demonstrated electromagnetically induced transparency in a similar setup. This
phenomenon requires a three-level atom (usually many atoms instead of one) with two dipole-
allowed and one dipole-forbidden transition between the three levels. If one of the allowed
transitions is driven with an appropriate control tone, the second transition can become non-
absorptive for a weak probe tone. Loosely speaking, this is because the excitation pathways of
the atom in response to the two tones interfere destructively (Fleischhauer et al., 2005). Thereby,
the atom resides in a dark state. This state does not necessarily have to be the ground state of
the atom, but can also be formed by a superposition of the two states that are not dipole-coupled
(depending on the amplitude ratio of control and probe tone). The latter phenomenon is known
as coherent population trapping and was observed in a phase qubit by Kelly et al. (2010). By
carefully choosing drives and initial conditions, one can modify the dark state and so swap popu-
lation between the two uncoupled states in a process called stimulated Raman adiabatic passage,
which was predicted to be realizable with quantronium qubits by Siewert et al. (2009).

A slightly different line of research on quantum optics with superconducting circuits puts
a stronger emphasis on the quantum nature of the electromagnetic field in these systems. An
important experiment in this regard was the preparation of single microwave photons on demand
by Houck et al. (2007). The authors used a circuit QED system with a transmon qubit sufficiently
detuned from the cavity that the qubit was in a well-defined state α| ↓〉+ β| ↑〉 that could be
prepared with the means introduced in the last section. However, the qubit was close enough to
the cavity so that its dominant decay process was radiative decay via the cavity (see the RHS
of Equation (2.40)). The authors used an asymmetric cavity with only one port, the output port,
strongly coupled to the external circuitry. The strong coupling was chosen such that κ was
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because the intermediate states are quite complex and measuring
them is time-consuming. Instead we perform careful calibrations of
the experimental system independent of the particular state prepara-
tion (see Supplementary Information).

An initial check of the outcome of the preparation is to determine
if the qubit ends up in the ground state jgæ, as desired. We find that
this holds with a probability typically greater than 80%, the remain-
ing 20% being compatible with decoherence during the preparation
sequence (see Supplementary Information).

With the qubit near its ground state and not entangled with the
resonator, we can use the qubit to measure the resonator state. By
bringing the qubit and resonator into resonance for a variable time t
and subsequently measuring the probability Pe for the qubit excited
state,we candetermine8 then-photonprobabilitiesPn5 jcnj2, correct-
ing for measurement fidelity and initial qubit state probability (see
Supplementary Information). In Fig. 2c we compare Pe(t) for the
experimentally prepared states jyaæ5 j1æ1 j3æ and jybæ5 j1æ1 ij3æ,
showing the expected superposed oscillations corresponding to the j1æ
and j3æ Fock states. This measurement however only yields the
probabilities Pn: the relative phases of the Fock states are lost, so the
states jyaæ and jybæ cannot be distinguished.

To measure the complex amplitudes cn, we need to probe the
interference between the superposed Fock states. This may be done
using Wigner tomography19,21,24, which maps out the Wigner quasi-
probability distributionW(a) as a function of the phase space ampli-
tude a of the resonator (see Supplementary Information). Wigner
tomography is performed by following the functional definition:

W að Þ~ 2

p
yh jD{ {að ÞP D {að Þ yj i ð3Þ

The resonator state jyæ is first displaced by the operator D(2a),
implemented with a microwave drive pulse {a~ 1=2ð Þ

Ð
Vr tð Þdt :

The photon number probabilities Pn are then measured and finally

the parity ÆPæ5
P

n(21)nPn evaluated. The corresponding pulse
sequence is depicted in Fig. 2b.

Calculated and measured Wigner functions are shown in Fig. 3 top
and middle rows, respectively, for the resonator states j0æ1 jNæ, with
N5 1 to 5. The structures of theWigner functions match well, includ-
ing fine details, indicating that the superposed states are created and
measured accurately. The density matrices for each state are also
calculated (Fig. 3 bottom row; see Supplementary Information) and
are as expected. The Wigner function of non-classical states has been
measured previously, either calculated via an inverse Radon trans-
form18,26,27, or measured at enough points to fit the density matrix3,28,
from which theWigner function is reconstructed. The high resolution
direct mapping of the Wigner function used here is an important
verification of our state preparation. The good agreement in shape
shows that very pure superpositions of j0æ and jNæ have been created.
Slight deviations in amplitude canbedue to small errors in the read-out
process, the relative amplitudes of the j0æ and jNæ states, or statistical
mixtures with other Fock states.

The data in Fig. 3 do not demonstrate phase control between Fock
states, as a change in the relative phase of a two-state superposition
only rotates the Wigner function. The phase accuracy may be
robustly demonstrated by preparing states with a superposition of
three Fock states, as changing the phase of one state then changes the
shape of the Wigner function. Figure 4 shows Wigner tomography
for a superposition of the j0æ, j3æ and j6æ Fock states, where the phase
of the j3æ state has been changed in each of the five panels. The shape
of the calculated and measured Wigner functions (Fig. 4 top and
middle rows, respectively) again agree, including small details, indi-
cating that precise phase control has been achieved. The calculated
and measured density matrices (Fig. 4 bottom row) also match well.

In conclusion, we have generated andmeasured arbitrary superposi-
tions of resonator quantum states. State preparation is deterministic
and ‘on-demand’, requiring no projective measurements, and limited
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Figure 3 | Wigner tomography of superpositions of resonator Fock states
|0æ1 |Næ. The top row displays the theoretical form of the Wigner function
W(a) as a function of the complex resonator amplitude a in photon number
units, for statesN5 1 to 5. ThemeasuredWigner functions are shown in the
middle row, with the colour scale bar on the far right. Negative quasi-
probabilities are clearly measured. The experimental Wigner functions have
been rotated to match theory, compensating for a phase delay between the
qubit and resonator microwave lines; the measured area is bounded by a
dotted white line. The bottom row displays the calculated (grey) and
measured (black) values for the resonator density matrix r, projected onto

the number states rmn5 Æm |r |næ. The magnitude and phase of rmn is
represented by the length and direction of an arrow in the complex plane (for
scale, see key on right). The fidelities F~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yh jr yj i

p
between the desired

states |yæ and the measured density matrices r are, from left to right,
F5 0.92, 0.89, 0.88, 0.94 and 0.91. Each of the 51 by 51 pixels (61 by 61 for
N5 5) in theWigner function represents a local measurement. The value of
W(a) is calculated at each pixel from 50 (41 for N5 4 and 5) interaction
times t, each repeated 900 times to give Pe(t). This direct mapping of the
Wigner function takes ,108 measurements or ,5 h.
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Figure 2.12: Results on the synthesis of arbitrary cavity states in circuit QED obtained by
Hofheinz et al. (2009) (courtesy of A. Cleland). Upper row, calculated Wigner densities W (α)
for the cavity states |0〉+ | j〉 for j = 1, . . .5 as a function of the complex resonator amplitude α.
Lower row, measured Wigner densities after a state-preparation protocol for |0〉+ | j〉 has been
performed. The protocol is based on the interaction of the cavity with a superconducting phase
qubit.

sufficiently high for the qubit to decay radiatively, but that this radiative decay was still slower
than the time required to prepare the qubit state. The asymmetry of the cavity ports ensured that
the photons were emitted only at the output port from the cavity. Due to the lack of single-photon
detectors, the authors had to work hard, but succeeded, to demonstrate that their setup was indeed
able to map deterministically qubit states α|↓〉+β|↑〉 onto photonic states α|0〉+β|1〉 which are
then emitted from the cavity. This experiment forms the basis for some impressive experiments
on the preparation of non-classical states of the cavity field and the current experiments with
itinerant microwave photons, which we summarize in the following.

Pushing further the ideas of Houck et al. (2007), Hofheinz et al. (2008) created Fock states
with up to n = 6 photons in a microwave resonator coupled to a phase qubit. To that end, they
applied a π pulse to the off-resonant qubit. Then the qubit was tuned into resonance with the
cavity for the duration of half a Rabi cycle, that is, until the qubit’s excitation was swapped
into the cavity. Bringing the qubit out of resonance afterwards, the procedure was repeated to
increase the photon number in cavity further. Due to the increasing frequency of the quantum
Rabi oscillations in proportion to

√
n (see Equation (2.36)), the interaction time of the qubit and

the cavity had to be reduced with increasing n. The measurement of the photonic Fock states was
achieved essentially by the reverse protocol, similar in spirit to the seminal Rydberg-experiment
by Brune et al. (1996b). The authors brought the qubit again into resonance with the resonator for
a variable time t and measured the time-dependent excitation probability P↑(t) of the qubit. This
excitation probability allows one to analyze the photon-number distribution pn in the cavity since
one can easily show that each |n〉 contributes an independent quantum Rabi oscillation to P↑(t),
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P↑ = ∑n≥1(pn/2)(1−cos(2g
√

nt)), and p0 = 1−∑n≥1 pn. In a subsequent work, Hofheinz et al.
(2009) deterministically created arbitrary states of the form |ψ〉= |↓〉⊗∑n cn|n〉 (with a limited
number of photons). They followed a protocol proposed by Law and Eberly (1996), which
requires only the abilities to rotate the qubit about the x axis by a variable angle and to bring the
qubit into resonance with the cavity for a variable amount of time. Moreover, Hofheinz et al.
(2009) were also able to measure the Wigner density (Walls and Milburn, 1994) of the cavity,
using a protocol based on the displacement of the cavity field and the subsequent measurement
of the photon number distribution like in their previous experiment. They found an astonishing
agreement between measured and expected Wigner densities, as illustrated in Figure 2.12.

Quite some research is currently directed to the study of itinerant microwave photons that
have been generated by a single-microwave sources. There has been remarkable process in sur-
mounting the difficulties of measuring the weak signals stemming from propagating microwaves
due to advances in digital signal processing (Bozyigit et al., 2011) and the increasingly adept
usage of low-noise Josephson parametric amplifiers (Castellanos-Beltran et al., 2008). For in-
stance, Bozyigit et al. (2011) were able to characterize the output of a single microwave photon
source via the measurement of Glauber’s first and second order correlation functions of the emit-
ted electromagnetic field, G(1) and G(2) (actually another standard quantum optical experiment
transferred to the microwave domain; see Walls and Milburn (1994) for a treatment of the field
correlation functions). The lack of the (nonlinear) photon number detectors used for such mea-
surements in the optical domain was overcome by feeding the output of the photon source into a
beam splitter and simultaneously recording the field quadrature amplitudes at the outputs of the
beam splitter with the usual linear detectors used in the microwave domain, which in principle
also allows one to extract all statistical moments of the photon source (da Silva et al., 2010).
Using this technique, Bozyigit et al. (2011) were able to show single photon coherence in G(1)

measurements and photon antibunching in G(2) measurements, the latter being a smoking gun
for the quantum nature of their microwave source. In subsequent works, state tomography of
non-classical itinerant fields was performed (Eichler et al., 2011; Mallet et al., 2011). Eichler
et al. (2012) brought an excited qubit into resonance with a cavity for a quarter of a Rabi cycle.
Using a Josephson parametric amplifier, the itinerant photonic state emitted from the strongly
coupled output port of the cavity could be shown to be entangled with the qubit. Entanglement
between itinerant microwave fields in different transmission lines was prepared by Flurin et al.
(2012) and Menzel et al. (2012). The Hong-Ou-Mandel effect, the interference of two identical
photons simultaneously entering the input ports of a beam splitter, has been demonstrated with
two independent single-microwave sources by Lang et al. (2013).

The last experiment discussed in this section is one of the first major applications of the novel
high-coherence 3D circuit QED design invented by Paik et al. (2011). Using a device based on
this design, Kirchmair et al. (2013) were the first to conduct experiments on the single-photon
Kerr effect. Explicitly, the authors observed the collapse and revival of an initially-prepared
coherent cavity state due to the nonlinear Kerr-interactions between the photons in the cavity.
In the course of the time evolution, highly non-classical superpositions of coherent (i.e. close
to classical) states were formed, which the authors monitored both by measuring the Husimi Q
function and, for some selected points in time, the Wigner function of the cavity (the Q func-
tion is a quasiprobability distribution more well-behaved and easier to measure than the Wigner
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factor of about one million, limited by internal losses, corresponding
to a single-photon decay rate k/2p5 10 kHz. The vertical transmon
consists of a single Josephson junction embedded in a transmission line
structure, which couples the junction to both cavities. The observed
transition frequency of the qubit isvq/2p5 7.8503GHz and its anhar-
monicity is Kq/2p5 (vge2vef)/2p5 73.4MHz using the standard
convention for labelling from lowest to highest energy level in the qubit
as (g,e,f,h,…) (see Supplementary Information). The energy relaxation
time of the qubit isT15 10ms with a Ramsey timeT�

2~8 ms. The qubit
is used to interrogate the state of the storage cavity, which acts as a
Kerrmedium. The other cavity is used to read out the state of the qubit
after the interrogation, similarly to ref. 24.
The analysis of the distributed stripline elements and the cavity

electrodynamics can be performed using finite-element calcula-
tions for the actual geometry. Combined with ‘black-box’ circuit
quantization15, one can derive dressed frequencies, couplings and
anharmonicitieswith good relative accuracy (see Supplementary Infor-
mation). For the purposes of the experiments discussed here, the
coupling of the qubit to the storage resonator, in the strong dispersive
limit of circuit QED, is well described by the Hamiltonian

H
B
~

vq

2
sz{

x

2
a{aszz vc{

x

2

� �
a{a{

K
2
a{a{aa ð1Þ

taking into account only the lowest two energy levels of the qubit. The
operators a{/a are the usual raising/lowering operators for the har-
monic oscillator and sz is the Pauli operator. In this description, we
completely omit the measurement cavity because it is only used for
reading out the state of the qubit andotherwise stays in its ground state.
The energy level diagram described by theHamiltonian given in equa-

tion (1) can be seen in Fig. 1b. The second term on the right-hand side
of equation (1) is the state-dependent shift per photon x/2p5 9.4MHz
of the qubit transition frequency. The last two terms on the right-hand
side of equation (1) describe the cavity as an anharmonic oscillator
with a dressed resonance frequency vc and a nonlinearity K/2p5
325 kHz which is given by K< x2/4Kq (ref. 15). All interaction
strengths in the aboveHamiltonian are at least one order ofmagnitude
bigger than any decoherence rate in the system.
To visualize and understand the evolution of the resonator state, we

measure the HusimiQ functionQ0 in a space spanned by the expecta-
tion value of the dimensionless field quadratures Re(a) and Im(a). Q0

is defined as the modulus squared of the overlap of the resonator state

jYæ with a coherent state jaæ by Q0 að Þ~ 1
p

ahj jYij2. Alternatively, we
can writeQ0 using the displacement operator Da~eaa

{{a�a (note that

D{
a~D{a) as Q0 að Þ~ 1

p
0hj jD{a Yij j2, which describes the actual

measurement procedure used in the experiment. The sequence to
measure Q0 can be seen in Fig. 2a. The initial displacement, Db,
creates a coherent state jYæ5 jbæ in the cavity, whose Q0 is given by

a Gaussian,
1
p
e{ a{bj j2 . After a variable waiting time t, we measure

Q0(a) by displacing the cavity state by2a and determine the overlap
of the resulting wavefunction with the cavity ground state. The popu-
lation of the cavity ground state can bemeasured by applying a photon
number state selective p pulse, Xn~0

p , to the qubit (see Supplementary
Information), similarly to ref. 25. The qubit is excited if and only if
the cavity is in the n5 0 Fock state, n being the photon number, after
the analysis displacement. This scheme allows us to determine Q0(a)
of the resonator up to experimental imperfections (see Supplementary
Information for details). Applying p pulses to the qubit conditioned
on other photon numbers, Xn

p , allows us to measure the overlap of
the displaced state with any Fock state n, which we will call the gene-

ralized Q functions Qn að Þ~ 1
p

nhj jD{a Yij j2. In essence, we can ask

the question ‘are there n photons in the resonator?’, using photon
number state selective pulses24. To test the analysis protocol, we mea-
suredQ0 andQ1 of the cavity in the ground state, Fig. 2b–e, by omitting
the first displacement pulse of the sequence given in Fig. 2a.
Using this method, we can follow the time evolution of a coherent

state in the presence of the Kerr effect. In the experiment, we prepare
a coherent state with an average photon number bj j2~�n~4 using a
microwave pulse21 to displace the cavity state.We thenmeasureQ0 for
different delays between the preparation and analysis pulses. A com-
parison of the theoretical evolution of the coherent state and the mea-
sured evolution can be seen in Fig. 3. The time evolution of the state is
described by considering the action of the KerrHamiltonianHKerr on a
coherent state jbæ in the cavity5,26. In the rotating frame of the har-
monic oscillator, with the qubit in the ground state, we can write:

Y tð Þj i~ei
K
2 a{að Þ2t bj i~e{ bj j2=2

X

n

bnffiffiffiffi
n!

p ei
K
2n

2
nj i ð2Þ

For short times, the nonlinear phase evolution of the Fock states jnæ
is closely approximated by a rotation of the state with an angle
wKerr5Kt(jbj21 1/2) with respect to the frame rotating at vc. The
onset of this rotation can be seen in Fig. 3a, which is taken at the
minimal waiting time of 15 ns between the two displacement pulses.
Because of this waiting time, the state rotates under the influence of the
Kerr effect from b5 2 to beiwKerr~2ei0:13. For longer times we can see
how the state rotates further and spreads out on a circle (Fig. 3b, c).
This spreading can be simply understood in a semi-classical picture, in
which the amplitude components in the coherent state further away
from the origin evolve with a higher angular velocity given by the n2

dependence of the Kerr effect. Complete phase collapse is reached at
a time when the phase dispersion across the width of the photon
number distribution corresponds to ,p, which can be estimated as

Tcol~
p

2
ffiffiffi
�n

p
K

(ref. 2). For our system, the complete phase collapse
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Figure 1 | Device layout and energy level diagram of the two-cavity, one-
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430mm thick. The coupling strength of the qubit is determined by the length of
the stripline coupling antennawhich extends into each cavity. The upper cavity,
with a resonant frequency of vm/2p5 8.2564GHz, is used for qubit readout,
and the lower cavity, with a frequency of vc/2p5 9.2747GHz, is used to store
andmanipulate quantum states. b, Combined energy level diagram of the qubit
coupled to the storage cavity. The qubit states are denoted as |gæ and |eæ,
respectively, while the cavity states are labelled as |næ, with n the number of
photons in the cavity. Each photon in the cavity reduces the qubit transition
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the measured state rm, compared to an ideal n-component cat state
jYidæ, consisting of coherent states with amplitude jbj5 2e2kt/2, is
F25 0.71, F35 0.70, F45 0.71 for the two-, three-, four-component
cat states, respectively. The Wigner functions show clear interference
fringes, which demonstrates that the evolution is indeed coherent and
well described by the wavefunction given in equation (2). The main
reduction in the fidelity is due to the spurious excited state population
of the qubit (see Supplementary Information) and the decay of the
resonator state. The decay of the resonator state is also responsible for

the asymmetry in the interference fringes of the Wigner function—for
example, themaximumof the interference fringes for the two-component
cat states is shifted to the left in both theory and experiment.
We have shown that we can engineer strong photon–photon inter-

actions in a cavity, entering the single-photon Kerr regime where
K?k. We are able to observe the collapse and revival of a coherent
state due to the intensity-dependent dispersion between Fock states in
the cavity. This opens the possibility of using such a Kerr medium for
error correction schemes where a nonlinear cavity is used to realize the
necessary components9. The good agreement between the theory and
the experiment demonstrates the accurate understanding of this sys-
tem. It also confirms our ability to predict higher-order couplings,
which is a necessary ingredient for understanding the behaviour of
large circuit QED systems. Furthermore, we have measured the evolu-
tion of a coherent state in a Kerr medium at the single-photon level,
and shown a new experimental way for creating andmeasuringmulti-
component Schrödinger cat states. This demonstrates the ability to
create, manipulate and visualize coherent states in a larger Hilbert
space, and opens up new directions for continuous variable quantum
computation30.
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non-classical states are produced by the Kerr evolution.
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Figure 2.13: Experiments on the single photon Kerr effect by Kirchmair et al. (2013) (courtesy of
R. Schoelkopf). (a) Experimental setup. The transmon qubit is formed by a Josephson junction
embedded in a transmission line. The qubit is coupled to two 3D superconducting cavities. The
storage cavity is used as nonlinear Kerr medium. The second resonator facilitates the read-out
of the qubit state. (b) Husimi Q function of the storage cavity vs. complex cavity amplitude α as
measured (upper row) and calculated (lower row) for different times after initializing the storage
cavity in a coherent state with an average of four photons. After a complete phase collapse
(panels a-c), structures re-emerge at specific (well-understood) later times. In panels d-f, the
system is in superpositions of coherent states with 4,3,2 components, respectively. A is a scaling
parameter of order ∼ 1.

function, see Walls and Milburn (1994). Their device consisted of two parallel 3D supercon-
ducting cavities and a perpendicular transmon qubit coupled dispersively to both cavities (see
Figure 2.13(a)). One cavity, the storage cavity, was used as Kerr medium. The necessary Kerr
nonlinearity was inherited from its interaction with the qubit (see Equation (2.32)). Because of
the excellent coherence properties of the used device, both the (Kerr) photon-photon interaction
and the dispersive shift of the qubit frequency per photon were at least one order of magnitude
bigger than the decay rates of the system. The regime of strong Kerr interactions on the single-
photon level had not been realized previously. The measurement of both the Q and the Wigner
function of the storage cavity relied on a sequence of displacing this cavity and then measuring
the probability of there being exactly n photons in the cavity. Unlike Hofheinz et al. (2009),
who had used resonant qubit-cavity interactions for a similar purpose, Kirchmair et al. (2013)
measured this probability by measuring if the dispersive shift of the qubit frequency is as large
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as expected in the presence of n photons. This in turn could be determined by applying a photon-
number selective π pulse to the qubit, that is, a pulse with frequency and duration matched to
the qubit frequency in the presence of n photons, and by subsequently measuring whether the
qubit got excited or not. This was done via the second resonator. The described scheme to deter-
mine if there are exactly n photons in the cavity had been demonstrated before by Johnson et al.
(2010). The time-evolution of the Q function obtained by Kirchmair et al. (2013) is shown in
Figure 2.13(b).

Quantum information processing with superconducting circuits
Regarding the processing of quantum information, circuit QED systems have reached a level
where basic algorithms with a few qubits can be run with high fidelity and quantum error cor-
rection starts to come within reach. An outlook on the capabilities and likely near-future de-
velopments of quantum information processing with circuit QED was given by Devoret and
Schoelkopf (2013).

An important step in the development so far was certainly the implementation of an entan-
gling two-qubit interaction mediated by a cavity bus (Majer et al., 2007), which we have already
briefly discussed at the end of the last chapter. Some time later, DiCarlo et al. (2009) demon-
strated the Grover search and the Deutsch-Jozsa algorithm with two transmon qubits in one cav-
ity. The key to this experiment was a new entangling mechanism, based on the cavity-mediated
interaction of the computational state |1,1〉 with the non-computational state |0,2〉. Here, |i, j〉
stands for a state in which the first (second) qubit is in its ith ( jth) excited level. If the state
|0,2〉 is brought adiabatically into resonance with |1,1〉, this will not change the population of
the computational states |i, j〉 with i, j ∈ 0,1. However, since the energy of |1,1〉 is shifted by the
interaction with |0,2〉 by an amount of, say, −ξ, this computational state picks up an additional
dynamical phase δ11 = φ11−φ01−φ10 =−ξτ. Here, the φi, j are the dynamical phases acquired
by the computational levels during the time τ the interaction of |1,1〉 and |0,2〉 is switched on.
Suitably choosing τ, the authors realized a C-Phase (entangling) gate. In combination with sin-
gle qubit rotations, the C-Phase gate allowed them to generate two-qubit Bell states on demand
and to run the aforementioned quantum algorithms. Building on this work, DiCarlo et al. (2010)
demonstrated deterministic generation of three-qubit entanglement. They were able to map the
state 1/

√
2(|0〉+ eiϕ|1〉) of one qubit onto the three-qubit state 1/

√
2(|000〉+ eiϕ|111〉) with

sufficient fidelity to witness three-qubit entanglement of the GHZ type via quantum state tomog-
raphy (for a review on (witnessing) entanglement, see Horodecki et al. (2009)). This mapping
can be seen as the first step of a repetition code and, hence, as a first step toward basic quan-
tum error correction (Shor, 1995). The encoding protocol was based on an improved two-qubit
C-Phase gate, which exploited non-adiabatically the interaction used in their previous work, sup-
plemented by single-qubit rotations. In a related work, Neeley et al. (2010) employed a similar
protocol of one-qubit and two-qubit iSWAP gates to create GHZ states of three phase qubits, and
simultaneous three-qubit interactions to create W states. Also Neeley et al. (2010) were able to
verify the creation of genuine three-qubit entanglement by means of quantum state tomography
and entanglement witnesses. In an earlier work based on similar physics, the same group had
measured the first violation of (the Clauser-Horne-Shimony-Holt version of) a Bell inequality
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Figure 2.14: Experimental setup used by Lucero et al. (2012) to demonstrate Shor’s algorithm
(photo by E. Lucero; courtesy of A. Cleland). The device comprises four superconducting phase
qubits Q j, each coupled to a memory resonator M j. The coupling resonator B facilitates multi-
qubit gates. The lines for control and SQUID read-out of qubit Q1 are indicated.

in a system with superconducting qubits (Ansmann et al., 2009; Clauser et al., 1969). We re-
mark that, like the C-Phase gate, the iSWAP (and the

√
iSWAP) gate is sufficient for universal

quantum computing if supplemented with single-qubit rotations. SWAP-type gates usually result
from partial resonant exchange of excitations, e.g., from a partial vacuum Rabi oscillation (see
also Equation (2.48)). For phase qubits, they are easily implemented by sequentially bringing
the qubits in resonance with a coupling resonator for a specific amount of time, or by coupling
the qubits directly with a coupling capacitor.

Up to now, phase qubits do not have as good coherence times as other types of qubits. On the
other hand, phase qubits have proved to be excellently suited to prepare non-classical states of
a cavity. To work around the relatively short coherence times of phase qubits, researchers came
up with the idea to store quantum information in long-lived (i.e., low κ) microwave cavities and
to extract the quantum information only for processing – just as in a classical von-Neumann ar-
chitecture. As a first step in a series of publications towards that goal, Mariantoni et al. (2011a)
demonstrated that they were able to coherently shuffle complex photonic quantum states in be-
tween three cavities and also to create entanglement between the cavities, using two phase qubits
as connecting elements. They used essentially the same techniques as Hofheinz et al. (2009)
for creating arbitrary photonic states in a resonator by means of manipulating a qubit, just with
the qubits being coupled to two cavities each. In a next step, Mariantoni et al. (2011b) demon-
strated a ‘quantum von-Neumann architecture’, comprised of seven elements: Two phase qubits
connected through a coupling bus resonator formed the ‘quantum central processing unit’. Each
qubit was additionally connected to a ‘quantum random access memory’ resonator and a zeroing
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register, the latter being a spurious two-level system used to reset qubits and memory. The quan-
tum processing unit in their work was demonstrated to be capable of the entangling

√
iSWAP,

iSWAP, and, using the interaction of the computational levels with higher levels similar to Di-
Carlo et al. (2009), C-Phase two-qubit gates. Using the lowest two Fock states |0〉 and |1〉 of the
bus resonator as target bit, also three-qubit gates could be implemented. Finally, the ability to
store, retrieve, and erase quantum information in the quantum memory was shown. In particular,
the lifetime of entanglement deposited in the resonators was significantly enhanced compared to
entanglement carried by the qubits. This line of research culminated so far in the work presented
by Lucero et al. (2012). The authors scaled up the device further to four qubits, each coupled to
a memory resonator. A quantum bus resonator facilitated (multi) qubit gates (see Figure 2.14).
To demonstrate the potential of this architecture, the authors created multi-qubit entanglement
and factorized the number 15 using Shor’s algorithm.

Tools developed for further increasing the performance of quantum computations with su-
perconducting circuits include the demonstration of tunable couplers for superconducting flux
(Niskanen et al., 2007), phase (Bialczak et al., 2011), and charge (Srinivasan et al., 2011) qubits.
Fedorov et al. (2012) showed how the important, but experimentally challenging three-qubit
Toffoli gate can be efficiently implemented with weakly anharmonic superconducting qubits (in
their case, with transmons). The key idea in their approach was to ‘hide’ the population of the
computational level |1,1,1〉 in the non-computational level |2,0,1〉. In this way, the entangling
interaction they had at their disposal, which corresponded to the usual two-qubit C-Phase gate
|.,1,1〉 → −|.,1,1〉, effectively affected only the computational level |0,1,1〉. With additional
Hadamard transformations, one can put together the Toffoli gate. Bylander et al. (2011) used
dynamical decoupling of a superconducting flux qubit to achieve the maximum dephasing time
T2 = 2T1 ≈ 24 µs (with a pure dephasing time Tϕ > 0.1 ms) and to characterize the environmen-
tal noise spectrum influencing the qubit. Two transmon qubits in two different resonators were
directly coupled with a coupling capacitor by Dewes et al. (2012), and a two-qubit

√
iSWAP

gate was demonstrated. The peculiarity in this experiment was that both resonators had been
made nonlinear by embedding a Josephson junction in the center traces. This allowed the ex-
perimenters to operate the resonators as Josephson parametric amplifiers, which enabled hitherto
unrealized simultaneous single-shot read out of more than one transmon. Very recently, almost
deterministic quantum teleportation (that is, with success probability approaching one) of ar-
bitrary input states in a circuit QED architecture has been reported by Steffen et al. (2013).
Teleportation might be relevant for transferring quantum states within larger networks of cou-
pled cavities and qubits. Figure 2.15 shows the device used by Steffen et al. (2013), which relies
on an architecture proposed by Helmer et al. (2009). Since the fidelity of the teleportation pro-
tocol depends not only on the degree of entanglement that can be created between the parties
participating in the protocol, but also on the ability to measure in the two-qubit Bell basis, joint
high-fidelity single-shot read-out of two qubits to had to be achieved also in this work. We re-
mark that the last step of the teleportation protocol, the rotation of the target qubit conditioned on
the outcome of the Bell-basis measurement, was not yet incorporated in the protocol of Steffen
et al. (2013) and had to be compensated by post selection.

An interesting line of research with superconducting qubits with potential applications in
quantum computing is the study of geometric phases. These were first observed by Leek et al.
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cross-overs for the resonator lines which enhances scalability of this planar architecture. Airbridges are also used to suppress
spurious electromagnetic modes by connecting the ground planes across the coplanar wave guides. b) Simplified schematic of
the measurement setup with the same color code as in a), for details see text.

form a joint read-out [36] of the states of Q1 and Q2 by
measuring the transmission amplitude and phase of res-
onator R1. A given Bell state {|Φ−〉, |Ψ−〉, |Φ+〉, |Ψ+〉}
is transformed to the corresponding computational basis
state {|00〉, |01〉, |10〉, |11〉} resulting in an output state
|ψout〉 = {1, σ̂x, σ̂z, iσ̂y} |ψin〉 of Q3. Since the Bell
state measurement has four randomly distributed mea-
surement outcomes, high fidelity single-shot read-out is
required to identify each of these outcomes. In our setup
this is accomplished by using a Josephson parametric
amplifier [14, 42].

A parametric amplifier can be operated in two different
modes. In the phase sensitive mode [14] the amplifier has
the highest gain and in principle adds no noise to one
of the detected quadratures of the signal. In the phase
preserving mode [43] the total gain is lower but both
quadrature amplitudes of the detected electromagnetic
field are amplified. In our parameter regime, these two
modes allow for the possibility to perform a measurement
and either post-select on only one of the four Bell states
or to distinguish all four Bell states simultaneously with
high fidelity.

If the measurement of Q1 and Q2 returns |00〉, qubit
Q3 is instantaneously projected to the desired state |ψin〉

without the necessity for additional rotations. This is
achieved by operating the parametric amplifier connected
to R1 in the phase sensitive mode [14] and optimizing the
read-out contrast between the state |00〉 detected with a
fidelity of (90.8±0.3) % and all other states |01〉, |10〉, |11〉
which are not distinguished with high fidelity from each
other, see appendix.

With a second parametric amplifier a measurement
tone transmitted through resonator R3 is used to read-
out the state of qubit Q3 with a single shot fidelity of
(87.9 ± 0.9) %. State tomography of Q3 conditioned on
a |00〉 measurement of Q1 and Q2 ideally occuring with
a probability of 1/4 reveals the original input state with
an average fidelity of F̄s = (82.4 ± 2.3) %, see Fig. 6. By
characterizing |ψout〉 for four linearly independent input
states |ψin〉, we perform full process tomography of the
state transfer from Q1 to Q3 to reconstruct the process
matrix χ00. The teleportation process is realized with a
fidelity of Fp = (69.6 ± 2.3) % with respect to the ex-
pected identity operation.

We are able to map any of the Bell states to the compu-
tational basis state |00〉 on demand by applying π-pulses
to Q1 and Q2 right before their joint read-out. This
allows us to post-select individually on any of the four

Figure 2.15: Circuit QED setup used for quantum teleportation by Steffen et al. (2013) (courtesy
of A. Wallraff). (a) Rendered image of the setup. The transmon qubits Q j participate in the pro-
tocol (a fourth qubit is unused). Each qubit is equipped with a microwave drive (green) for qubit
rotations and a flux bias line (blue) for ns control of the qubit transition frequency. The qubits
are coupled and dispersively read out via three cavities R j. In the implemented teleportation
protocol, Q2 and Q3 are entangled and Q1 is prepared in the state to be teleported. If Q1 and Q2
are then measured in the Bell basis, Q3 is, up to a rotation which is uniquely determined by the
measurement result, in the same state as Q1 at the beginning. (b) Schematics of the setup. The
one- and two-qubit single-shot read-out is facilitated by amplifying the transmitted measurement
tones through R1 and R3 with low-noise Josephson parametric amplifiers, which are then further
amplified with linear HEMT amplifiers. The dashed boxes indicate the operation temperatures
of the different circuit components.

(2007), using a Cooper-pair box dispersively coupled to a cavity. Adiabatic manipulations of the
qubit Hamiltonian were implemented by means of off-resonant driving of the qubit according to
the rules we have summarized in the last chapter. A echo technique similar to the Hahn echo
was used to differentiate dynamical and geometric phase. As shown by Wilczek and Zee (1984),
if a parameter-dependent Hamiltonian contains a degenerate subspace for all parameter values,
non-Abelian holonomies can be obtained by adiabatic and cyclic changes of the parameters.
This means essentially that the geometric phase picked up by a state is generalized to a mapping
within the degenerate subspace, which in turn can be employed for implementing quantum gates
(Zanardi and Rasetti, 1999). Only recently, non-Abelian holonomic single-qubit gates have been
realized by Abdumalikov et al. (2013) with a 3D circuit QED system and utilizing a subtle non-
adiabatic protocol (Sjöqvist et al., 2012) which accommodates the limited coherence time of the
system.
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Given the high degree of control one has reached in performing different sorts of gate opera-
tions and elementary quantum protocols, the next step towards large-scale fault-tolerant quantum
computing can now be seriously tackled (Devoret and Schoelkopf, 2013). This step consists in
the implementation of error correction codes (Shor, 1995), in which a logical qubit is encoded
in a larger number of physical qubits in a way that the coherence time of the logical qubit is
significantly enhanced (ideally to infinity) compared to the physical qubits. Elementary quantum
error correction codes were already implemented in circuit QED by Reed et al. (2012). These
authors encoded a qubit state in three physical qubits and were able to show that their codes
could correct artificial single-qubit bit-flip and phase-flip errors, respectively (bit-flip and phase-
flip errors are equivalent up to a local change of basis). The codes were based on mapping the
error syndrome to the state of the two ancilla qubits and correcting the error with a Toffoli gate.
To undo arbitrary single-qubit errors, these codes had to be concatenated, e.g., in Shor’s code,
which would require nine qubits. However, even for the elementary three-qubit codes of Reed
et al. (2012), in the physically realistic situation where all qubits can be subject to errors, the
limited gate fidelities prevented an actual enhancement of the robustness of the stored quantum
information with respect to the artificially induced errors. With increasing complexity of the
error-correction procedure, these problems will become even more severe. Thus, to reach the
threshold for gainful error correction, further improvement of coherence times and gate fidelities
is necessary. Finally, we remark that there is a variety of different error-correction schemes. De-
pending on the underlying circuit QED architecture, one or the other might be more promising
to implement (Devoret and Schoelkopf, 2013).

Other applications of circuit QED
In this section, we point out some further achievements with circuit QED systems which do not
straightforwardly fit into the above classification.

For completeness, we mention again that the immense improvement of the read-out in cir-
cuit QED systems owing to the emergence of low-noise Josephson junction based amplifiers
(Siddiqi et al., 2004; Castellanos-Beltran et al., 2008; Mallet et al., 2009; Bergeal et al., 2010)
made possible the study of interesting measurement physics. For instance, if a qubit is measured
only weakly, the ‘collapse’ of its state vector is slowed down and it performs an erratic motion
towards an eigenstate of the measured operator. Remarkably, if the measurement apparatus is
fully efficient, that is, if none of the measurement’s information content is lost, the evolution
of the state vector can be entirely reconstructed from the measurement record. What is more,
if the initial state of the qubit is known, its state after a weak measurement can be precisely
determined. The information gained by continuous weak measurement of a 3D transmon qubit
was used by Vijay et al. (2012) to stabilize Rabi oscillations indefinitely with a quantum feed-
back (which might be relevant for quantum error correction), and Hatridge et al. (2013) studied
the measurement back-action on a (usual) transmon after variable-strength measurements. Weak
measurements had been used before by Palacios-Laloy et al. (2010) to demonstrate the violation
of the Leggett-Garg inequality (Leggett and Garg, 1985). Another important achievement con-
cerning the measurement of superconducting qubits was the observation of quantum jumps of a
transmon by Vijay et al. (2011).
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Much effort is currently devoted to the investigation of hybrid quantum systems, in which
superconducting qubits are coupled to other (potential) carriers of quantum information, usually
via the electromagnetic field of the cavity. For example, Kubo et al. (2011) coupled a transmon
qubit to an ensemble of nitrogen-vacancy centers in diamond and were able to store an initially
prepared qubit state into the collective excitations of the ensemble and to retrieve it back later.
Frey et al. (2012) and Petersson et al. (2012) coupled a double quantum dot to a microwave
resonator in which superconducting qubits could be potentially integrated. Pirkkalainen et al.
(2013) coupled a transmon qubit simultaneously to a microwave cavity and to a micromechanical
resonator. The measurement of the first ground state cooling of a mechanical resonator was
achieved by coupling the resonator to a phase qubit (Neeley et al., 2010).

Finally, we mention the interesting experiments by Wilson et al. (2011), who observed the
dynamical Casimir effect by rapidly changing the effective length of the cavity, by Johnson et al.
(2011), who demonstrated quantum annealing with eight coupled flux qubits, and by Murch
et al. (2012), who engineered the spectrum of the electromagnetic noise seen by a qubit so that
it relaxed autonomously to an arbitrarily specified state.
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2.4 Towards larger systems

In the face of the progress and the present state of circuit QED, it is timely to try and proceed to
larger-scale circuit QED systems. For quantum computing applications of circuit QED, scaling
is the central goal. An essential prerequisite for reaching this goal is the implementation of
efficient quantum error correction. Despite the excellent coherence and controllability of circuit
QED systems, quantum error correction will probably require a considerable increase of their
complexity and, thus, certainly poses a formidable task. However, on the way to building a
fully-fledged quantum computer, there might be interesting physics to discover with larger-scale
multi-qubit, multi-resonator circuit QED setups, which is technically less challenging. This is
where the new work presented in this thesis ties in. Potential applications of such circuit QED
systems range from quantum simulations to, again, quantum optics. In the following, we first
describe other theoretical work in this direction and then summarize the contribution made in
this thesis. A general and more detailed account on quantum simulations will be given later. For
the present purpose, it suffices to associate them with the purposeful implementation of a specific
Hamiltonian in a well-controlled system.

The simplest circuit QED experiment with many qubits one could imagine would be to put
a large number of qubits into a cavity and to probe the resonances of the system, e.g., by spec-
troscopy. Such a scenario was first considered for fluxonium qubits at temperature T = 0 by
Nataf and Ciuti (2010a). They found that, at a certain critical qubit density, one mode of the sys-
tem becomes weak and the system undergoes a zero-temperature superradiant phase transition
(Hepp and Lieb, 1973), which will be discussed in detail in Chapter 3. In a later work, Nataf and
Ciuti (2010b) revisited this situation, replacing the fluxoniums by charge qubits, and found the
same phase transition. The phenomenon superradiant phase transitions are named after, that is,
superradiance, was predicted to be observable in circuit QED by Delanty et al. (2011). Super-
radiance is the enhancement of the peak intensity of the radiation emitted by N initially excited
identical atoms, which can occur if the atoms are located in a region whose extent is of the order
of the wavelength of the emitted radiation. For independently radiating (say, spatially sufficiently
separated) atoms, the intensity of the emitted radiation is maximal immediately after the excita-
tion of the atoms took place and scales in proportion to N. However, in a dense cloud of atoms,
strong correlations between the atoms can build up during the radiation process so that the photon
emission rate becomes drastically increased at some point in time. Its maximum scales in pro-
portion to N2 and gives rise to a peak of the detected radiation intensity ∝ N2 some time after the
excitation of the atoms. One can say that, where the correlations between the atoms are strong,
these radiate coherently like a single dipole with dipole operator ∝ N. Hence, the intensity of the
emitted radiation is ∝ N2. Note that the duration of this superradiant emission has to scale ∝ 1/N
since the overall emitted energy has to be the same for independently and coherently radiating
atoms. Superradiance was predicted by Dicke (1954) and first observed by Skribanowitz et al.
(1973) (for reviews, see, e.g., Gross and Haroche (1982); Brandes (2005)). Because of the excep-
tionally strong atom-field coupling in circuit QED, Delanty et al. (2011) predicted superradiance
to be observable already with a small number of qubits (∼ 5). The relation of superradiance and
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superradiant phase transitions rests in the fact that at a superradiant phase transition, a system of
atoms coupled to the electromagnetic field enters a highly collective phase in which all thermo-
dynamically relevant states have the potential to superradiate (superradiant phase transitions can
also occur if T 6= 0).

Intense theoretical and first experimental research is currently pursued on lattices of coupled
cavities, made nonlinear by coupling each cavity to an (artificial) atom. Such systems are inves-
tigated primarily for quantum simulations of Bose-Hubbard type many-body physics, which was
first suggested by Hartmann et al. (2006), Greentree et al. (2006), and Angelakis et al. (2007).
Due to their exquisite experimental controllability, circuit QED systems are amongst the most
promising candidate systems for implementing these ideas. The already comprehensive literature
on this subject was reviewed by Houck et al. (2012) and Schmidt and Koch (2013). The central
idea is to connect elementary circuit cavity QED systems containing one superconducting qubit
each in a way that permits photon hopping at a rate κ from one cavity j to its nearest neighbors.
Photons occupying the same site would then experience an effective photon-photon interaction
owing to the Jaynes-Cummings nonlinearity. Ideally, such an array of coupled cavities would be
described by the Jaynes-Cummings-Hubbard Hamiltonian

HJCH = ∑
j

HJC, j−κ ∑
〈i, j〉

(a†
i a j +a†

jai), (2.49)

where HJC, j is the Jaynes-Cummings Hamiltonian describing the jth cavity (Equation (2.25)).
The Hamiltonian HJCH has some similarities with the celebrated Bose-Hubbard model (Fisher
et al., 1989). In particular, in the limit of large lattices, it can undergo a quantum phase transition
(Sachdev, 1999), whereby its ground state changes from a polariton superfluid to a polariton Mott
insulator or vice versa.10 Mean-field and other calculations for the phase diagram of HJCH reveal
Mott lobes in close similarity to those obtained for the Bose-Hubbard model (Fisher et al., 1989).
The ratio of photon hopping and photon-photon interactions can be controlled in situ by varying
the detuning of qubits and cavities and, thus, the strength of the Jaynes-Cummings nonlinearity.
However, it must be emphasized that there are some important differences between HJCH and
the Bose-Hubbard model. Most importantly, the ‘particles’ undergoing the superfluid-insulator
transition in the case of HJHC are, in fact, circuit excitations and their chemical potential is
therefore zero. Usually, one is optimistic enough to assume that an effective chemical potential
of the polaritons can be engineered and still works in the grand-canonical ensemble (which is
done in the calculations of the phase diagram mentioned above). Since the time that excitations
injected into the system require to reach a quasi-equilibrium should be much shorter than the
time it takes until the excitations are lost, this might indeed be possible. On the other hand,
it could also be interesting to investigate the non-equilibrium steady state of a weakly driven
cavity array, which should provide access to entirely different physics (Schmidt and Koch, 2013)
than what is usually studied in systems described by the Bose-Hubbard model (such as ultracold
atoms in optical lattices, see Section 4.2). Currently, small systems of a few coupled cavities are
already studied in experiments. Even for small systems, interesting effects were predicted to be

10. In this context, it is convenient to refer to the local excitations of the system, that is, the excited states of the
Jaynes-Cummings Hamiltonian, which have a photonic and an atomic part, as polaritons.
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observable, such as the non-equilibrium transition of an initially imbalanced polariton population
from delocalized to self-trapped (Schmidt et al., 2010).

One-dimensional versions of the Jaynes-Cummings lattice have recently attracted some atten-
tion in the course of the current widespread interest in Majorana fermions. Majorana fermions,
which are characterized by being their own anti-particles, were predicted to exist as pairs of
spatially separated quasi-particles at the ends of certain quantum wires (Lutchyn et al., 2010;
Oreg et al., 2010). Their superpositions correspond to usual fermionic states which, however,
are largely immune to all sorts of local perturbations due to their nonlocal nature. Since these
Majorana fermions are non-Abelian anyons, they are potentially useful for topological quantum
computing (Kitaev, 2001, 2003). Several proposals have recently been put forward how Majo-
rana fermions could be generated in a finite one-dimensional Jaynes-Cummings lattice (Bardyn
and Imamoglu, 2012; Hwang and Choi, 2012; Kumar and Jalal, 2012). These rely essentially on
the assumption that the qubit-cavity coupling can be made so strong that the polaritons become
hard-core particles, which would shrink the local Hilbert spaces down to that of a two-level sys-
tem. In this situation, the Hamiltonian of the lattice can be mapped onto that of a 1D spinless
p-wave superconductor, which supports Majorana fermions (Kitaev, 2001). Different methods
for their detection have also been proposed by Bardyn and Imamoglu (2012), Hwang and Choi
(2012), and Kumar and Jalal (2012). However, it is important to note that the Majorana states in a
Jaynes-Cummings chain would not enjoy topological protection. This is because the mapping of
HJCH to the Hamiltonian of a p-wave superconductor involves a nonlocal (Jordan-Wigner) trans-
formation. The escape of a photon from one site, for example, therefore translates into a nonlocal
perturbation of the p-wave superconductor, to which the Majorana fermions are susceptible.

2.4.1 This thesis
The research presented in this thesis was pursued to push further the idea of circuit QED with
multiple components, both with regard to quantum optics and quantum simulations, while being
experimentally realistic in its proposals. It is concerned with two main topics.

First, we consider the simplest possible multi-qubit circuit QED scenario, the equilibrium
behavior of many superconducting charge qubits coupled to a cavity. We re-examine the possi-
bility of superradiant phase transitions in such a system. Our study is motivated by the following
observation. On the basis of standard theory of circuit QED systems, which was introduced in
the previous sections of this chapter, one is lead to the conclusion that superradiant phase transi-
tions should be in principle observable in circuit cavity QED systems. However, for real atoms
coupling to a bosonic mode, superradiant phase transitions cannot occur. Real atoms are subject
to a no-go theorem discovered by Rzażewski et al. (1975), only shortly after superradiant phase
transitions had been first discussed (Hepp and Lieb, 1973). This would mean that, in this one
aspect, the otherwise well-established similarity of circuit cavity QED systems and atomic cavity
QED systems fails.

In Chapter 3, we resolve this problem by employing a fundamental, microscopic description
of the considered circuit QED system. This enables us to apply the no-go theorem to circuit QED
systems as well and, thus, to reject the possibility of superradiant phase transitions in circuit
QED systems with charge qubits. Although the standard description of circuit QED systems
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has proved to be highly useful in many situations, and is certainly more convenient than our
microscopic description, we may also conclude that the standard description can lead to even
qualitatively incorrect predictions and can no longer be trusted when proceeding to large-scale
circuit QED systems. In addition to that, we scrutinize the no-go theorem and generalize it
to multi-level atoms so as to make it more applicable to realistic systems. Sections 3.1 - 3.3
provide detailed introductions to superradiant phase transitions, the no-go theorem, and previous
discussions of this issue in the context of circuit QED, respectively. Our results on this topic
have been published in a research article, which is reprinted in Section 3.4.

Second, we propose a circuit QED setup that simulates the quantum Ising chain in a time-
dependent transverse magnetic field. In particular, we argue that our setup is suited for observing
the non-equilibrium dynamics of the transverse-field Ising chain. Our proposal is motivated as
follows. Non-equilibrium quantum physics is currently subject to much theoretical research.
However, experimental platforms facilitating its time-resolved observation are rare and so far es-
sentially limited to systems of cold atoms in optical lattices. Our proposal might help to alleviate
this shortage. Moreover, based on a flexible design, its implementation might be an important
benchmark for future circuit QED quantum simulators of non-integrable quantum many-body
spin systems, whose dynamical behavior can no longer be predicted by a classical calculation.
To measure the behavior of such quantum simulators and to obtain in that way the solutions of
computationally intractable problems is the central goal of all quantum simulations. Compared
to the circuit QED quantum simulators we have discussed previously in this section, the pro-
posed system relies on a different and possibly simpler concept – the direct capacitive coupling
of charge qubits – so that first results on its experimental implementation have already been
obtained, as described below.

In Chapter 4, we introduce this setup, derive its Hamiltonian, and calculate its spectrum to fa-
cilitate its initial experimental characterization. Experiments for observing the non-equilibrium
dynamics of the transverse-field Ising chain are suggested. The expected behavior is calculated
for typical circuit QED parameters and interpreted using the tools developed in previous work on
non-equilibrium physics. A systematic study of the influence of disorder on these experiments
is provided. Small amounts of fabrication-induced disorder are shown not to spoil the predicted
experimental results. Engineering the Ising chain with a larger degree of disorder would allow
the study of interesting new effects such as Anderson localization of propagating excitations. We
also describe the experimental implementation of our proposal, which we have pursued in collab-
oration with the group of Professor Irfan Siddiqi at UC Berkeley. We present preliminary results
in this regard and compare them with our theory. Sections 4.1 and 4.2 provide a motivation
of and an introduction to quantum simulations, with an emphasis being placed on the impor-
tance of simulating non-equilibrium systems. Arguments for pursuing quantum simulations in
circuit QED are brought forward in Section 4.3. Some properties of the quantum Ising chain are
summarized in Section 4.4, and its importance is highlighted. Reprints of our previously pub-
lished research articles on the simulation of the non-equilibrium dynamics of the transverse-field
Ising chain in circuit QED and on the influence of disorder on such simulations are contained in
Sections 4.5 and 4.6, respectively. The experimental realization of our proposal is discussed in
Section 4.7.

The thriving field of quantum computing triggered not only much research on potential quan-
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tum technologies for implementing quantum protocols such as circuit QED but also intense fun-
damental investigations on the impact of quantum physics on information theory. The quantifica-
tion and the classification of entanglement are an important part of this endeavour and formed a
side project to the work presented in this thesis. The results obtained in this context are presented
in Viehmann et al. (2011, 2012b).



Chapter 3

Superradiant phase transitions in
circuit QED

3.1 Superradiant phase transitions
If, instead of a single two-level atom, N atoms couple resonantly to the electromagnetic field
in a cavity, the splitting of the two excited states with a single excitation shared between cavity
and atomic ensemble will increase in proportion to

√
N. This follows from the Tavis-Cummings

model. Clearly, if the model remains valid, at some large N one of these excited state will no
longer be separated by an energy gap from the ground state of the system, and a phase transi-
tion occurs.1 This phase transition, which survives up to some nonzero temperature and is not
tied to resonant atom field coupling, was first investigated by Hepp and Lieb (1973) and termed
superradiant phase transition (SPT) because the occupied states in the new phase possess the
potential to superradiate. A mathematically less rigorous but greatly simplified treatment was
provided by Wang and Hioe (1973). The SPT persists if atoms and cavity are off-resonant and
if the counter-rotating terms are included in the Hamiltonian, which cannot be neglected in this
regime of strong coupling (Carmichael et al., 1973). With counter-rotating terms, the Hamilto-
nian considered by these authors reads (from now on, we set ~= 1)

HD,0 = ωa†a+
Ω

2

N

∑
j=1

σ
j
z +

λ√
N

N

∑
j=1

σ
j
x(a

† +a), (3.1)

which is usually called Dicke Hamiltonian in the context of superradiance and superradiant phase
transitions. The notation is the same as for the Jaynes-Cummings Hamiltonian (2.25) except for
g→ λ/

√
N (see below) and ωc→ ω (to avoid confusion with critical quantities) throughout this

chapter. The system is considered in the thermodynamic limit N,V → ∞ with constant particle
density N/V , where V is the quantization volume of the electromagnetic field. Therefore, it is
convenient to pull out a factor of 1/

√
N from the coupling terms so that the coupling parameter λ

(we adopt here the common notation) is a well-behaved function of the particle density N/V .

1. Mathematically, proper thermodynamic limits have to be taken, see below.
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Explicitly, λ ∝ Ω|e ·d|
√

N/V . Here, d = 〈e|∑n
i=1 qiri|g〉 is the dipole matrix element between

the kept two atomic levels {|g〉, |e〉} of the atoms, which are assumed to be identical and to
consist of n particles with charge qi and coordinate ri, and e is the polarization vector of the
vector potential A. The Dicke Hamiltonian can be derived from Equations (2.26) and (2.27)
under the same approximations as the Jaynes-Cummings Hamiltonian, and with the additional
assumption that the N atoms are located in an area that is small compared to the wave length of
the one considered field mode.

By direct evaluation of the system’s partition function, it was shown that for λ > λc,0 =√
ωΩ/2, there is a critical temperature Tc at which a second-order phase transition occurs. This

temperature satisfies

tanh
[

Ω

2kBTc

]
=

ωΩ

4λ2 , (3.2)

where kB is the Boltzmann constant. For λ < λc,0, the system does not become critical. In
the ‘normal phase’, characterized by λ < λc,0 or λ > λc,0 and T > Tc, there is no macroscopic
population of the boson mode, 〈a†a〉/N = 0. In the ‘superradiant phase’ (λ > λc,0 and T < Tc),
the bosonic mode is macroscopically occupied,

〈a†a〉
N

= 4
λ2

ω2 x2− Ω2

16λ2 , (3.3)

where x solves 2x = tanh(4λ2x/(ωkBT ))> 0.
In recent years, there has been much interest in the phase transition of the Dicke model,

largely because Emary and Brandes (2003a,b) found exact results for the eigenvalues and eigen-
states of the low-energy sector of HD,0 in the limit N,V → ∞. This was achieved by deriving
effective Hamiltonians for HD,0 for the cases λ ≶ λc,0 in a self-consistent procedure: For weak
coupling, it is justified to assume that the low-lying states of the Hamiltonian do not exhibit a
macroscopic population of the excited atomic levels, 〈∑ j σ

j
z〉/N = −1. Thus, the atomic en-

semble can be regarded as an effective harmonic oscillator since one can arbitrarily often excite
a randomly chosen atom of the ensemble with one and the same quantum of energy without
ever finding an atom already being in its excited state. Mathematically, this deliberation can be
expressed by applying a Holstein-Primakoff transformation (Holstein and Primakoff, 1940) in
Equation (3.1),

∑
j

σ
+
j√
N

= b†

√
1− b†b

N
, ∑

j

σ
−
j√
N

=

√
1− b†b

N
b, ∑

j

σ
j
z

2
= b†b− N

2
, (3.4)

where b is bosonic, and dropping all terms with N in the denominator (Emary and Brandes,
2003a,b).2 Equivalently, one can apply a Hopfield transformation (Hopfield, 1958), which we

2. We remark that Equations (3.4) presume that the atomic ensemble is in a state with maximum pseudo angular
momentum (Emary and Brandes, 2003a).
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Figure 3.1: Properties of the Dicke Hamiltonian in the thermodynamic limit N,V → ∞. For all
plots, resonant atom-field coupling was assumed, ω=Ω. (a) Excitation energies ε vs. coupling λ.
At λc =

√
ωΩ/2, the second-order superradiant phase transition occurs, indicated by the dashed

line (only in this panel). The branches ε
≶
± are the eigenmodes of the effective Hamiltonians

for the low-energy sectors of the Dicke Hamiltonian in the two phases. The inset shows the
scaled ground state energy Eg/N vs. λ, which is nonanalytic at the phase transition. (b) Scaled
occupation of the bosonic mode, 〈a†a〉/N, vs. coupling λ. Inset, excitation probability P↑ of one
specific atom vs. λ.

will make extensive use of (see later). Diagonalization of the resulting Hamiltonian gives the
scaled ground state energy E<

g /N =−Ω/2 and the eigenmodes ε
<
±,

2(ε<±)
2 = ω

2 +Ω
2±
√

(ω2−Ω2)2 +16λ2ωΩ, (3.5)

which fully describe the low-energy spectrum of the Dicke Hamiltonian in the normal phase
(Figure 3.1(a)). In particular, one realizes that one eigenmode of the system becomes gapless
at λ = λc,0. At this point, the assumption of dilute atomic excitations breaks down. However,
if one assumes instead of dilute atomic excitations that the photon field a and the Holstein-
Primakoff field b are macroscopically displaced, one finds a new effective Hamiltonian for the
low energy sector of HD,0 valid for λ > λc,0. Diagonalization yields the scaled ground state
energy E>

g /N =−λ2/Ω+ωΩ2/(16λ2) and excitation energies

2(ε>±)
2 = ω

2 +Ω
2/µ2±

√
(ω2−Ω2/µ2)2 +4ω2Ω2, (3.6)

where µ = ωΩ/(4λ2) (Figure 3.1(a)). In fact, there are two effective Hamiltonians for λ > λc,
which are identical but result from two different possibilities to displace the fields a and b. This
reflects the broken parity symmetry of HD,0 (which couples only states with an even or odd
number of excitations, respectively) in the superradiant phase. Note also that the all states are
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doubly degenerate for λ > λc,0, a consequence of the broken symmetry. The probability P↑ of
finding an atom in an excited state, P↑ = 〈∑ j σ

j
z〉/(2N)+ 1/2, and the macroscopic occupation

of the photon mode, 〈a†a〉/N, are given by

P↑ =
1
2
− ωΩ

8λ2 ,
〈a†a〉

N
=

λ2

ω2 −
Ω2

16λ2 for λ> λc,0, (3.7)

and both are zero for λ < λc,0 (see Figure 3.1(b)). The RHSs of Equations (3.7) are the squared
displacements of the fields b and a divided by N. We remark that the displacements increase
∝
√

λ−λc,0 close to the phase transition and can be regarded as order parameters. This approach
allowed Emary and Brandes (2003a,b) to study in a very detailed way the zero-temperature phase
transition of the Dicke Hamiltonian, which we will also focus on in the following.

3.2 The no-go theorem
Despite the simplicity of the situation described by the Dicke Hamiltonian, the equilibrium SPT
is yet to be observed in an experiment. Indeed, for an atomic ensemble coupled to a bosonic
mode, the existence of the SPT is questioned by a no-go theorem (Rzażewski et al., 1975). The
rationale behind the no-go theorem is the following. The Dicke Hamiltonian of Equation (3.1) is
derived from minimal coupling of atoms and field (Equations (2.26) and (2.27)) under a number
of approximations. In particular, a term ∝ A2 was dropped from the minimal coupling Hamil-
tonian (2.26). This is a frequent simplification since the A2 term does not couple to the atomic
degrees of freedom and would, in a single-mode approximation, just slightly renormalize the
photon energy and the atom-photon coupling. However, for the energy balance of the SPT, this
term might play a role. If photon energy and atom-photon coupling are modified, it might be
energetically less favorable for the system to build up an electromagnetic field in order to min-
imize the coupling energy. Thus, for studying SPTs, the A2 term should be taken into account.
This was done by Rzażewski et al. (1975). They considered a generalized version of the Dicke
Hamiltonian,

HD = ωa†a+
Ω

2

N

∑
j=1

σ
j
z +

λ√
N

N

∑
j=1

σ
j
x(a

† +a)+κ(a† +a)2, (3.8)

which retains the term

N
n

∑
i=1

q2
i A2

2mi
≈
[

N
n

∑
i=1

q2
i A2

0
2mi

]
(a† +a)2 ≡ κ(a† +a)2 (3.9)

present in the minimal coupling Hamiltonian for N atoms and one field mode. In Equations (3.8)
and (3.9), we have employed the usual notation in this context and denoted the prefactor of (a†+
a)2 by κ, which however must not be confused with the cavity decay κ discussed in Chapter 2.
Note that the approximation of a spatially invariant field in the region of the atoms, A≈ A0e(a†+
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a), was already made in the derivation of HD,0. Applying the method of Wang and Hioe (1973)
to HD, Rzażewski et al. (1975) showed that the system would become critical at

λ
2
c =

ωΩ

4

(
1+

4κ

ω

)
. (3.10)

Crucially, now the required coupling strength for reaching criticality depends on the particle
density N/V via κ ∝ NA2

0 ∝ N/V . Thus, increasing the coupling λ ∝
√

N/V by increasing N/V
does not help in realizing a SPT. Criticality would imply λ2 > κΩ where the particle density
simply drops out. Even more, by inserting the explicit expressions for λ and κ derived from
the full minimal coupling Hamiltonian, Rzażewski et al. (1975) noticed that this last inequality
would violate the Thomas-Reiche-Kuhn sum rule (Thomas, 1925; Reiche and Thomas, 1925;
Kuhn, 1925) (details of the sum rule and its violation will be discussed later). Therefore, a SPT
cannot occur. This is known as the no-go theorem for SPTs.

The no-go theorem applies only to systems of mutually noninteracting atoms which couple
minimally to the electromagnetic field and for which the approximations (i)-(iii) stated below
Equation (2.27) can be made. Other systems, say, of atoms with intrinsic magnetic moment, are
not subject to the no-go theorem. However, in atomic systems, a coupling of the order λ ∼ ω

is very difficult to achieve so that experimental tests of the possibility of SPTs in the relevant
parameter regime are so far not available. We remark that the phase transition of the Dicke model
was recently observed by Baumann et al. (2010) as the spontaneous spatial self-organization of
a Bose-Einstein condensate coupled to a cavity and driven by an external pump laser field. Their
experiment was related to theoretical work by Dimer et al. (2007). It is important note that the
realized phase transition was dynamical and does not allow one to draw conclusions about the
possibility of equilibrium SPTs.

3.3 What happens in circuit QED?
Circuit QED systems with multiple qubits are usually well described by the Dicke Hamiltonian
HD,0. The coupling of the superconducting qubits and the electromagnetic field in circuit QED
is several orders of magnitude stronger than the atom-field coupling in experiments with real
atoms. Thus, multi-qubit circuit QED systems are potential candidates for entering the regime of
SPTs. Assuming a single-qubit coupling strength g/ω∼ 0.05, we can roughly estimate that N ∼
(g/ω)−2 ∼ 400 qubits would need to couple collectively to a bosonic mode for that. Individual
control of the qubits would not be essential for studying SPTs so that this number, while certainly
challenging, does not seem to be entirely unattainable. Moreover, due to its quadratic dependence
on g/ω, the minimum qubit number N would be considerably smaller if a larger ratio g/ω was
achieved.

Indeed, SPTs have recently been predicted to be observable in circuit cavity QED systems
with fluxoniums (Nataf and Ciuti, 2010a) and Cooper-pair boxes (Nataf and Ciuti, 2010b). For
Cooper-pair boxes, this is quite surprising since their interaction with photons is very similar
to the electric dipole coupling of atoms. It is of the form ∝ n̂(a† + a), where n̂ = Q̂/(−2e)
is the number operator (see the discussion around Equation (2.31)). Recalling that the charge



70 3. Superradiant phase transitions in circuit QED

operator Q̂ in quantum circuit theory corresponds to the momentum of a mechanical particle,
one recognizes the analogy of this coupling and the minimal coupling term p ·A. We remark
that p ·A ∝ [r,Hatom] ·A, which yields λ ∝ Ω|e ·d|

√
N/V as cited in the previous section. We

remark further that also transmons couple to the cavity field ∝ n̂(a†+a), which results generally
from capacitive qubit-cavity coupling. The inductive coupling of the fluxoniums and the cavity
considered by Nataf and Ciuti (2010a) takes a different form, reminiscent of a spin coupled to a
magnetic field.

Thus, one might suspect that circuit QED systems with many Cooper-pair boxes (or trans-
mons) are subject to the no-go theorem. This was explicitly investigated by Nataf and Ciuti
(2010b) and claimed not to be the case. Nataf and Ciuti (2010b) started from the standard de-
scription of such circuit QED systems as pioneered by Blais et al. (2004) and introduced in
Section 2.2 of this thesis, and derived a generalized Dicke Hamiltonian HD (Equation (3.8))
from it by keeping also all terms ∝ (a† + a)2. Astonishingly, the standard description suggest
that the critical coupling λc (Equation (3.10)) causing a SPT can be reached in circuit QED. We
will argue below, however, that this is an artefact of the standard description of circuit QED and
due to an underrepresentation of the terms ∝ (a†+a)2 in this theory. Employing a more accurate,
microscopic theory of circuit QED, we will show that the no-go theorem applies to circuit QED
systems with charge qubits as well.

3.4 Publication: Superradiant phase transitions and the stan-
dard description of circuit QED

Our research building on the theory presented in the first parts of this chapter has been previ-
ously published as a Letter in the journal Physical Review Letters and its accompanying online
supplemental material. This section contains a reprint of this publication. We remark that the
generalization of the no-go theorem presented in our Letter implicitly assumes that a potential
SPT would be of second order, which is the kind of transition predicted by Nataf and Ciuti
(2010b). Our reasoning in the spirit of Emary and Brandes (2003a,b) relies on a perturbative
stability analysis of the ground state and is therefore not capable of precluding novel types of
first-order phase transitions that might exist in the system, which has been pointed out by Ciuti
and Nataf (2012) and Baksic et al. (2013) (see also Viehmann et al. (2012a)).
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Recent years have seen rapid progress in fabrication and
experimental control of superconducting circuit QED sys-
tems, in which a steadily increasing number of artificial
atoms interact with microwaves [1–4]. These develop-
ments set the stage to study collective phenomena in circuit
QED. An interesting question in that context is whether a
system with many artificial atoms undergoes an equilib-
rium phase transition as the coupling of artificial atoms and
electromagnetic field is increased (at zero temperature).
Phase transitions of this type have been intensely discussed
for cavity QED systems [5–10] and are known as super-
radiant phase transitions (SPTs) [6]. However, in cavity
QED systems with electric dipole coupling their existence
is doubted due to a no-go theorem [8]. Recently, it has been
claimed that SPTs are possible in the closely related circuit
QED systems with capacitive coupling [10–12]. This
would imply that the no-go theorem of cavity QED does
not apply and challenges the well-established analogy of
circuit and cavity QED.

Here, we show in a full microscopic analysis that circuit
QED systems are also subject to the no-go theorem. We
argue that such an analysis is necessary since the standard
description of circuit QED systems by an effective model
(EM) is deficient in the regime considered here. A toy
model is used to illustrate this failure of an EM. Finally,
we close a possible loophole of the no-go theorem by
generalizing it from two-level to multilevel (artificial)
atoms. Thus, our work restores the analogy of circuit
and cavity QED and rules out SPTs in these systems under
realistic conditions that have not been covered before.

Dicke Hamiltonian in cavity and circuit QED.—Both
circuit QED systems and cavity QED systems with N
(artificial) atoms (Fig. 1) are often described by the
Dicke Hamiltonian [13] (@ ¼ 1)

H D ¼ !ayaþ!

2

XN

k¼1

!k
z þ

"ffiffiffiffi
N

p
XN

k¼1

!k
xðay þ aÞ

þ #ðay þ aÞ2: (1)

The (artificial) atoms are treated as two-level systems with
energy splitting ! between ground state jgik ¼ ð01Þk and
excited state jeik ¼ ð10Þk (!k

x;!
k
z are Pauli matrices). In the

case of circuit QED, we assume Cooper-pair boxes as
artificial atoms, which justifies the two-level approxima-
tion. Our main results, though, hold for any charge-based
artificial atoms (capacitive coupling) [14]. Further, ay

generates a photon of energy !. Matter and field couple
with a strength ". The # term, often neglected in other
contexts, will become crucial below. In cavity QED, H D

derives from minimal coupling of atoms and electromag-
netic field. For an atom (n electrons) at a fixed position,

H 0
cav ¼

Xn

i¼1

½pi ! eAðriÞ'2
2m

þ Vintðr1; . . . ; rnÞ: (2)

The pA and A2 terms in the analog N-atom Hamiltonian
yield the " and # term in H D, respectively. In circuit
QED, H D arises from a widely used EM for a charge-
based artificial atom in a transmission line resonator [15],

H 0
cir ¼ 4EC

X

$

ð$! "$Þ2j$ih$j!EJ

2

X

$

ðj$þ 1ih$jþH:c:Þ:

Here, $ counts the excess Cooper pairs on the island, EJ

and EC ¼ e2=½2ðCG þ CJÞ' are the Josephson energy and

FIG. 1 (color online). Cavity QED system with N atoms (a)
and circuit QED system with N Cooper-pair boxes as artificial
atoms (b).
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the charging energy of the Cooper-pair box, and CG and CJ

are the coupling capacitance and the capacitance of the
Josephson junction. Moreover, "$ ¼ CGðVG þV Þ=2e, VG

is an external gate voltage andV the quantum voltage due
to the electromagnetic field in the resonator. The Cooper-
pair box is assumed to be at its degeneracy point [15]. As it
is described by macroscopic quantities (like EC) and only
1 degree of freedom ($), H cir

0 is an EM for a Cooper-pair
box in a transmission line. Starting either from H 0

cav or
H 0

cir, one obtains H D using the following approxima-
tions: The N (artificial) atoms are identical, noninteracting
two-level systems with ground and excited states jgi
and jei which are strongly localized compared to the
wavelength of the single considered field mode
[i.e., Aðrki Þ ( A ) A0!ðay þ aÞ, where j!j ¼ 1, and
V ðrkÞ ( V ) V0ðay þ aÞ].

Superradiant phase transitions and no-go theorem.—In
the limit N ! 1, H D undergoes a second order phase
transition at a critical coupling strength [6–8]

"2
c ¼

!!

4

"
1þ 4#

!

#
: (3)

This phase transition was discovered for H D with # ¼ 0
and termed SPT [6]; see [9] for recent studies. At "c, the
atoms polarize spontaneously, hPk!

k
zi=N ! !1, and a

macroscopic photon occupation arises, hayai=N ! 0. A
gapless excitation signals the critical point [Fig. 2(a)].

In cavity QED systems, however, "c cannot be reached
if the # term is not neglected [8]. That is because " and #
are not independent of each other. Let us define a parame-
ter % via # ¼ %"2=!. Then Eq. (3) becomes "2

cð1! %Þ ¼
!!=4, and criticality requires %< 1. With A0 ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2&0!V

p
(V is the volume of the cavity) one finds

"cav ¼
!j! * djffiffiffiffiffiffiffiffiffiffiffiffi
2&0!

p
ffiffiffiffi
N

V

s
; #cav ¼

n

2&0!

e2

2m

N

V
; (4)

where d ¼ hgjePn
i¼1 rijei and %cav!j! * dj2 ¼ ne2=2m.

But the Thomas-Reiche-Kuhn sum rule (TRK) ([16],
Sec. A)

X

l

ðEl ! EgÞj! * hgje
Xn

i¼1

rijlij2 ¼ n
e2

2m
(5)

for the Hamiltonian H0 ¼ Pn
i¼1 p

2
i =2mþ Vintðr1; . . . ; rnÞ

of an uncoupled atom with spectrum fEl; jlig implies!j! *
dj2 + ne2=2m, consequently %cav , 1. This is known
as the no-go theorem for SPTs [8,10]. Notice that %cav

determines how strongly !j! * dj2 exhausts the TRK.
We remark that a direct dipole-dipole coupling between
atoms (omitted here) can lead to a ferroelectric phase
transition, which, however, occurs only at very high atomic
densities [17].
Surprisingly, the no-go theorem was recently argued not

to apply in circuit QED [10]. Indeed, the standard EM of
circuit QED yields

"cir ¼
eCG

CG þ CJ

ffiffiffiffiffiffiffiffi
!N

Lc

s
; #cir ¼

C2
G

2ðCG þ CJÞ
!N

Lc
; (6)

where L denotes the length of the transmission line reso-
nator, c its capacitance per unit length, and we have used
V0 ¼ ð!=LcÞ1=2 [15]. Here %cir ¼ EJ=4EC < 1 is easily
possible [1]. According to this argument, a SPT should be
observable in a circuit QED system.
Effective models and superradiant phase transitions.—

The EM has proved to be a very successful description of
circuit QED whose predictions have been confirmed in
numerous experiments. However, the circuit QED setups
operated so far contained only few artificial atoms. It is not
obvious that an EM also provides a good description of
circuit QED systems withN - 1 atoms and, thus, a proper
starting point to study SPTs in circuit QED. We now
present a toy model illustrating how an EM similar to the
one in circuit QED can erroneously predict a SPT.
The toy model consists of N harmonic oscillator poten-

tials with frequency !, each trapping n noninteracting
fermions of mass m and charge e, which all couple to a
bosonic mode with frequency ! [Fig. 2(b)].
This toy model can be viewed as a very simplified

description of (artificial) atoms with n microscopic con-
stituents inside a resonator. It is governed by the
Hamiltonian

H tm ¼ !ayaþ
XN

k¼1

Xn

i¼1

ðpk
i ! eAÞ2
2m

þm!2ðxki Þ2
2

; (7)

where we assume again Aðxki Þ ( A ¼ A0ðay þ aÞ. Since A
couples only to the center of mass coordinate of the kth
oscillator, H tm can be diagonalized ([16], Sec. B):

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0 2.5

FIG. 2 (color online). (a) Excitation energies &þ and &! of the
Dicke Hamiltonian H D versus coupling " (in units of ! ¼ !),
for % ¼ #!="2 ¼ 0; 0:8; 1; 1:2. For % ¼ 0, &! vanishes at
"¼0:5, thus signaling a SPT. Only % , 1 is compatible with

the TRK sum rule. For these %, &! !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! 1=%

p
and remains

finite for all ". The excitations &.ð"Þ of H tm correspond to
% ¼ 1. (b) Toy model of an (artificial) atom. The oval line
indicates the degree of freedom in the simplified effective model.
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H tm ¼ &.

"
ay.a. þ 1

2

#
þ

XnN!1

i¼1

!
"
byi bi þ

1

2

#
;

2&2.ð"Þ ¼ !2 þ 4#!þ!2

.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!2 þ 4#!!!2Þ2 þ 16"2!!

q
: (8)

Here, ay. generate excitations that mix photon field with
collective center of mass motion, the byi excite the remain-

ing degrees of freedom, " ¼ A0!d
ffiffiffiffi
N

p
and # ¼ "2=!. As

d ¼ hnjexjn! 1i ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=2m!

p
, the TRK is exhausted.

Note that &.ð"Þ are also the relevant excitation energies
of H D for N ! 1, as can be shown using methods of
Ref. [9] ([16], Sec. B), and demanding &! ¼ 0 yields
Eq. (3). One sees that &.ð"Þ is real and nonzero for all "
and that the ground state energy is an analytic function of "
[Fig. 2(a)]. Hence, no phase transition is possible.

Let us now consider an EM for the toy model. Similar to
the standard EM of circuit QED, we focus on the fermion
with the highest energy in the kth harmonic oscillator and
treat it as a two-level system with jgki ¼ jn! 1ik
and jeki ¼ jnik [Fig. 2(b)]. Accounting only for one
fermion per ‘‘atom,’’ that is, expanding H EM

tm ¼
!ayaþPN

k¼1ðpk ! eAÞ2=2mþm!2ðxkÞ2=2 in the basis
fjn!1ik;jnikg, yields a Dicke Hamiltonian with "EM ¼ "
and #EM ¼ #=n ¼ Ne2A2

0=2m. Crucially, only "EM de-
pends on n. This allows "EM to be increased at constant
#EM; therefore, %EM ¼ 1=n can be <1 and a SPT is
possible. This failure of the EM can be interpreted as
follows. The relation " ¼ "EM / d / ffiffiffi

n
p

reveals that the
coupling of an ‘‘atom’’ to the bosonic mode is fully cap-
tured by the EM and grows with atom size n. However, in a
proper description of the system, increasing the coupling
by increasing n unavoidably also increases # in proportion
to n: all fermions of all atoms couple to the bosonic mode
and each causes an A2 term. This is lost in the EM with
only 1 degree of freedom per atom. Interestingly, %EM < 1
only if n > 1, i.e., as long as the effective description
actually neglects degrees of freedom.

Microscopic description of circuit QED.—This example
suggests not to rely on the standard description for inves-
tigating SPTs in circuit QED. Although the dipole coupling
of field and qubit states might be fully represented by "cir,
#cir could still underestimate the A2 terms of all charged
particles in the Cooper-pair boxes. Instead, let us describe a
circuit QED system with N artificial atoms by a minimal-
coupling Hamiltonian that accounts for all microscopic
degrees of freedom:

H mic ¼ !ayaþ
XN

k¼1

Xnk

i¼1

ðpk
i ! qkiAÞ2
2mk

i

þ Vintðrk1; . . . ; rknkÞ:

As we allow arbitrary charges qki and masses mk
i and an

arbitrary interaction potential Vint of the nk constituents of
the kth artificial atom, H mic most generally captures the
coupling of N arbitrary (but mutually noninteracting)

objects to the electromagnetic field. We subject it to the
same approximations that led fromH 0

cir, the EM of circuit
QED, to H D. For identical artificial atoms fnk; qki ; mk

i g !
fn; qi; mig. The Hamiltonian of an uncoupled artificial
atom then reads H0

mic ¼
Pn

i¼1 p
2
i =2mi þ Vintðr1; . . . ; rnÞ.

Its qubit states jgi and jei, which in the standard EM
are superpositions of the charge states j$i, are among the
eigenstates fjlig ofH0

mic. ExpandingH mic in the fjgik; jeikg
basis and taking Aðrki Þ ( A gives the Dicke Hamiltonian
H D with parameters generalizing those of cavity QED
[Eq. (4)],

"mic
cir ¼ !j! * djffiffiffiffiffiffiffiffiffiffiffiffi

2&0!
p

ffiffiffiffi
N

V

s
; #mic

cir ¼ 1

2&0!

"Xn

i¼1

q2i
2mi

#
N

V
; (9)

where d ¼ hgjPn
i¼1 qirijei. This microscopic description

of circuit QED facilitates the same line of argument which
in Ref. [8] allowed the conclusion that there is no SPT
in cavity QED: Criticality [Eq. (3)] requires !j! * dj2 >Pn

i¼1 q
2
i =2mi, which is ruled out by TRK for H0

mic,

X

l

ðEl ! EgÞj! * hgj
Xn

i¼1

qirijlij2 ¼
Xn

i¼1

q2i
2mi

: (10)

Hence, the no-go theorem of cavity QED applies to circuit
QED as well. This result confirms the analogy of cavity
and circuit QED also with respect to SPTs. It has been
obtained under the same approximations that led from the
standard description of circuit QED,H 0

cir, toH D with "cir

and #cir. The discrepancy of the predictions of the micro-
scopic and the standard description of circuit QED thus
shows the limitations of the validity of the latter. This
might be important for future circuit QED architectures
with many artificial atoms in general, even for applications
not related to SPTs. We emphasize, though, that our con-
clusion neither forbids SPTs in circuit QED systems with
inductively coupling flux qubits [18] nor is it at odds with
the great success of the standard description for few-atom
systems: there, the deficiency of #cir does not manifest
itself qualitatively as the # term in H D mimics slightly
renormalized system parameters ~! and ~".
Possible loophole in the no-go theorem.—Although the

two-level approximation for the anharmonic spectrum of
(artificial) atoms is well justified in many cases, one might
argue that higher levels should be taken into account in this
context. Indeed, a SPT does not require ! ( !, and
thereby does not single out a particular atomic transition.
For a more profound reason for dropping the two-level

assumption, consider the elementary question of how the
presence of N mutually noninteracting atoms shifts a res-
onator’s frequency!. This situation is described byH mic.
It can be rewritten as H mic ¼ !ayaþPN

k¼1ðHk
mic þ

H k
pA þH k

A2Þ, where H k
pA and H k

A2 are the pA and A2

terms due to the kth atom ([16], Sec. C). Let us perturba-
tively calculate the frequency shift '! ¼ '!pA þ '!A2

caused by
P

H k
pA and

P
H k

A2 ([16], Sec. C). To this end,
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take ! / !k
m for all m; k, where !k

m is the mth excitation
energy of Hk

mic. Remarkably, it turns out ([16], Sec. C) that
'!pA (< 0) and '!A2 (> 0) cancel almost exactly due
to the TRK. The total frequency shift is small, '!0
ð!=!k

mÞ2. As a SPT equates to '! ¼ !!, the significance
of both pA and A2 terms for its existence becomes clear.
The pA terms cause a strong negative shift and favor a
SPT, the A2 terms do the opposite. This means, most
crucially, that one must not unequally truncate pA and
A2 terms for assessing the possibility of a SPT by an
approximate Hamiltonian. Dropping the A2 terms in H D

(# ¼ 0) leads to the prediction of a SPT. In contrast, H D

with # ! 0 fully incorporates the A2 terms of H mic. But,
due to the two-level approximation, it has only one matrix
element of the pA terms per atom, thereby possibly under-
estimating the tendency towards a SPT. To exclude SPTs in
cavity and circuit QED, a generalization of the no-go
theorem to (artificial) atoms with more than two energy
levels is necessary.

Generalized no-go theorem.—Let us consider N ! 1
identical atoms coupled to a field mode with frequency !.
The atomic Hamiltonians Hk

mic may have an arbitrary
spectrum f!l; jlki ¼ jlikg, with !0 ¼ 0 and ( excited
states (Fig. 3).

With dl;l0 ¼ ! * hljPn
i¼1 qirijl0i, the full Hamiltonian of

the system reads

H mic ¼ !ayaþ #ðay þ aÞ2 þ
XN

k¼1

X(

l;l0¼0

ð!l'l;l0 jlkihlkj

þ iA0ð!l0 !!lÞdl;l0ðay þ aÞjlkihl0kjÞ: (11)

We now follow a strategy similar to that of Refs. [9]: We
derive a generalized Dicke Hamiltonian H GD having the
same low-energy spectrum as H mic for a small density of
atoms, N=V ’ 0, using A0 / V!1=2 as small parameter. We
then check whether H GD has a gapless excitation if the
density is increased, which would signal a SPT and mark
the breakdown of the analogy of H GD and H mic.

Expanding the eigenstates and eigenenergies ofH mic as
jEi / P1

s¼0 A
s
0jEsi and E / P

ss0A
sþs0
0 hEsjH micjEs0 i, we

note that contributions from all dl!0;l0!0 terms may be
neglected: they are smaller than those retained by a factor
of at least one power of A0 (for sþ s0 > 1) or )=N / 1
(for sþ s0 + 1), where ) ¼ P

k

P
l>0 jhlkjE0ij2 is the

number of atomic excitations in jE0i, which is / N for

low-lying eigenstates ([16], Sec. D). We thus define H GD

by setting dl!0;l0!0 ! 0 inH mic. Up to a constant, we find
([16], Sec. D)

H GD ¼ ~!ayaþ
X(

l¼1

!lb
y
l bl þ

X(

l¼1

~"lðbyl þ blÞðay þ aÞ;

(12)

by introducing byl ¼ 1ffiffiffi
N

p
PN

k¼1 jlkih0kj as collective excita-
tion, omitting the energy of the ‘‘dark’’ collective
excitations ([16], Sec. D), and removing the # term

by a Bogolyubov transformation yielding ! ! ~! ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ 4#!

p
and "l ! ~"l ¼

ffiffiffi!
~!

p
"l, with "l ¼

A0!ljd0;lj
ffiffiffiffi
N

p
. For dilute excitations, the bl are bosonic,

½bl; byl0 ' ¼ 'l;l0 [19]. The system undergoes a SPT if an
eigenfrequency &i of H GD can be pushed to zero by
increasing the couplings "l. We cannot calculate the &i’s
explicitly, but we will show that the assumption &i ¼ 0
contradicts the TRK. An &i solves the characteristic equa-
tion ([16], Sec. D)

"Y(

l0¼1

ð!2
l0 !&2Þ

#"
ð ~!2!&2Þ!4 ~!

X(

l¼1

!l
~"2
l

!2
l !&2

#
¼0: (13)

If &i were zero, this would imply

!

4NA2
0
¼

X(

l¼1

!ljd0lj2 !
Xn

i¼1

q2i
2mi

(14)

and contradict the TRK for H0
mic [Eq. (10)], which ensures

that the right-hand side is negative even if the entire atomic
spectrum is incorporated. This result is irrespective of the
details of the atomic spectra. Note that for # ¼ 0, the
negative term on the right-hand side of Eq. (14) vanishes,
and one recovers the SPT for critical couplings "lc withP(

l¼1 "
2
lc=!l ¼ !=4. This resembles Eq. (3) with # ¼ 0.

Experimental evidence for our conclusions could be
gained by probing the shifted resonator frequency of a
suitable circuit QED system. Consider a sample containing
N artificial atoms with "=

ffiffiffiffi
N

p
¼ 2*1 120 MHz and

!=2* ¼ !=2* ¼ 3 GHz. If %cir ¼ EJ=4EC ¼ 0:1, as
predicted by the standard theory, there should be signatures
of criticality for N ¼ 174 [according to Eq. (3)], and the
resonator frequency should be close to zero. But even if we
assume % ¼ 1, the minimal value compatible with the
TRK (that corresponds to ideal two-level atoms), we find
the lowest excitation &! to be still at &! ( 2*1 2 GHz.
We have verified that these phenomena are insensitive to
small fluctuations of the atomic parameters ([16], Sec. E;
see also [18]) and hence experimentally observable.
We thank S.M. Girvin, A. Wallraff, J. Fink, A. Blais,

J. Siewert, D. Esteve, J. Keeling, P. Nataf, and C. Ciuti
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FIG. 3 (color online). Situation of the generalized no-go theo-
rem. Many multilevel (artificial) atoms couple to the photon
field. Transitions between excited atomic states are irrelevant for
the low-energy spectrum of the system.
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We provide intermediate steps for the derivation of some important statements and equa-
tions of the main text (Secs. A-D). Furthermore, we discuss the influence of disorder in the
parameters of artificial atoms on a possible experimental verification of our results (Sec. E).
For clarity, formulas contained in the main text are typeset in blue.

A. Thomas-Reiche-Kuhn sum rule. We derive the TRK [1] for the Hamiltonian

H0
mic =

n∑

i=1

p2
i

2mi
+ Vint(r1, . . . , rn), (S1)

yielding Eq. (9) of the main text; Eq. (4) follows as a special case. The derivation of the TRK
is based upon the identities

n∑

i=1

q2
i

2mi
= −i

[
ε ·

n∑

i=1

qiri , ε ·
n∑

i′=1

qi′pi′

2mi′

]
,

n∑

i=1

qipi
mi

= i
[
H0

mic,
n∑

i=1

qiri

]
, (S2)

for a real unit vector ε. We denote the eigenspectrum of H0
mic by {El, |l〉}. It comprises a

ground state |g〉 of energy Eg. The TRK follows by combining the commutators of Eqs. (S2):

n∑

i=1

q2
i

2mi
= 〈g|

[
ε ·

n∑

i=1

qiri ,
ε

2
·
[
H0

mic,

n∑

i′=1

qi′ri′
]]
|g〉 (S3a)

=
∑

l

(El − Eg)|ε · 〈g|
n∑

i=1

qiri|l〉|2. (S3b)
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B. Diagonalization of HD and Htm. It is demonstrated that the diagonalization of
both the Dicke Hamiltonian HD for N → ∞ and the Hamiltonian Htm describing the toy
model can be reduced to the diagonalization of special cases of HgD, which appears in the
context of the generalized no-go theorem. The characteristic equation of HgD, which will be
derived in Sec. D of these supplementary notes, is solvable for the special cases and yields the
diagonal forms of HD and Htm.

Diagonalization of HD. First, we focus on the Dicke Hamiltonian

HD= ωa†a+
Ω

2

N∑

k=1

σkz +
λ√
N

N∑

k=1

σkx(a† + a) + κ(a+ a†)2 (S4a)

= ω̃a†a+
Ω

2

N∑

k=1

σkz +
λ̃√
N

N∑

k=1

σkx(a† + a) + C (S4b)

with ω̃ =
√
ω2 + 4κω, λ̃ =

√
ω/ω̃λ, and C = (ω̃ − ω)/2. The Hamiltonian (S4b) was di-

agonalized by means of a Holstein-Primakoff transformation in Refs. [2]. We employ here a
closely related approach developed in [3], which is more convenient for a generalization beyond
the two-level approximation and was also used in the derivation of HgD. We drop C, set the
energy of the atomic ground states to zero, introduce the operators

a†k = |ek〉〈gk|, b†qj =
1√
N

N∑

k=1

eiqjk|ek〉〈gk|, (S5)

where qj = 2π(j/N) and j ∈ {0, 1, . . . , N − 1}, and obtain for N →∞

H′D = ω̃a†a+ Ω

N∑

k=1

a†kak + λ̃(b†q0 + bq0)(a† + a) (S6a)

= ω̃a†a+ Ω
N−1∑

j=0

b†qj bqj + λ̃(b†q0 + bq0)(a† + a). (S6b)

In the limit of dilute excitations, which is applicable as long as the excitation energies of the
system are finite, the bqj obey bosonic commutation relations. Note that only the j = 0
collective mode couples to the radiation field. The j 6= 0 modes are ‘dark’ and will be omitted
in the following. We write b instead of bq0 and arrive at

H′′D = ω̃a†a+ Ωb†b+ λ̃(b† + b)(a† + a), (S7)

which corresponds to HgD (Eqs. (11) and (S28)) with µ = 1. Later we will derive a character-
istic equation for the eigenfrequencies of HgD (Eqs. (12) and (S32b)). For µ = 1 this equation
has the solutions

2ε2± = ω2 + 4κω + Ω2 ±
√

(ω2 + 4κω − Ω2)2 + 16λ2ωΩ. (S8)
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Diagonalization of Htm. Now we consider Htm (Eq. (6)). The coupling of the electromag-
netic field and a single harmonic oscillator ‘atom’ is described by

H0
tm =

n∑

i=1

(pi − eA)2

2m
+
mΩ2x2

i

2
. (S9)

Note that we drop the index k numbering the atoms in Htm for a moment. As usual, we
assume A(r) ≈ A = A0(a† + a) in the region where the atoms are located. It is convenient to
make the canonical transformation x̃i = −pi/(mΩ) and p̃i = mΩxi. This yields

H0
tm =

n∑

i=1

(
p2
i

2m
+
mΩ2x2

i

2

)
+ eA0Ω(a† + a)

n∑

i=1

xi +
ne2A2

0

2m
(a† + a)2, (S10)

where we have written xi and pi instead of x̃i and p̃i to keep notation simple. Succes-
sively introducing relative and center-of-mass coordinates, {x1, p1, x2, p2} → {x̃1, p̃1, X1, P1},
{X1, P1, x3, p3} → {x̃2, p̃2, X2, P2}, . . ., leads to

H0
tm =

n−1∑

i=1

(
p̃2
i

2µi
+
µiΩ

2x̃2
i

2

)
+
P̃ 2

2M
+
MΩ2X2

2
+ eA0Ω(a† + a)nX +

ne2A2
0

2m
(a† + a)2.

(S11)

Here, X = Xn = 1
n

∑n
j=1 xj and P = Pn =

∑n
j=1 pj are the center-of-mass coordinates of all

particles in the harmonic oscillator atom, and M = nm. The relative coordinates are given
by x̃i = (1/i

∑i
j=1 xj)− xi+1 and p̃i = 1/(i+ 1)(

∑i
j=1 pj − ipj+1), and µi = mi/(i+ 1). Note

that the electromagnetic field couples only to the center of mass. With this preliminary work
done, one can write the full Hamiltonian as

Htm = ω̃a†a+ Ω
N∑

k=1

c†kck + γ̃
N∑

k=1

(c†k + ck)(a† + a) + Ω

N(n−1)∑

i=1

(b†i bi +
1

2
) + C ′. (S12)

The operator c†k excites the center-of-mass degree of freedom of the kth atom, and the creation

operators for the N(n− 1) relative coordinates are denoted by b†i . We have introduced

γ = eA0

√
nΩ

2m
, κ = nN

e2A2
0

2m
, (S13)

and removed the κ-term by means of ω̃ =
√
ω2 + 4κω and γ̃ =

√
ω/ω̃γ as before (C ′ =

(ω̃ − ω + NΩ)/2). The first three terms are again a special case of HgD with Ωl = Ω and

λ̃l = γ̃ for all l, and µ = N . Hence, their eigenvalues follow from the roots of the characteristic
equation for HgD (Eq. (S32b)), simplified by the present conditions. They can be explicitly
calculated and are the frequencies of the normal modes of field and center-of-mass coordi-
nates. We find that N − 1 eigenfrequencies are equal to Ω, and we represent the creation
operators of the corresponding collective excitations also by b†i . Only two eigenfrequencies ε±
are nondegenerate,

2ε2± = ω2 + 4κω + Ω2 ±
√

(ω2 + 4κω − Ω2)2 + 16Nγ2ωΩ (S14a)

= ω2 + 4κω + Ω2 ±
√

(ω2 + 4κω − Ω2)2 + 16λ2ωΩ. (S14b)
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We have defined λ =
√
Nγ. Since the dipole element d of the transition from the ground state

of an atom to its first excited state is given by d = 〈n|ex|n− 1〉 = e
√
n/2mΩ, we can rewrite

λ = A0Ωd
√
N and κ = λ2/Ω. Denoting the operators of the ε±-modes by a±, we arrive at

Htm = ε±(a†±a± +
1

2
) +

nN−1∑

i=1

Ω(b†i bi +
1

2
)− ω

2
. (S15)

C. Shift of the resonator frequency due to the pA- and A2-terms. Consider
a system of N mutually noninteracting objects (e.g. atoms) with Hamiltonians

Hk
mic =

nk∑

i=1

(pki )2

2mk
i

+ Vint(r
k
1 , . . . , r

k
nk

) (S16)

coupled to a field mode of frequency ω. It is described by

Hmic = ωa†a+
N∑

k=1

(
Hk

mic +HkpA +HkA2

)
, (S17)

where Hk
mic =

∑nk

i=1 (pki )2/2mk
i + Vint(r

k
1 , . . . , r

k
nk

), HkpA = −∑nk

i=1 q
k
i Apki /m

k
i , and HkA2 =∑nk

i=1 (qki )2A2/2mk
i . We denote the eigenspectrum of Hk

mic by {Ekmk
, |mk〉k} and the photon

states by |l〉 and calculate the shifts δωpA and δωA2 of the resonator frequency due to
∑HkpA

and
∑HkA2 using the first nonzero terms in a perturbation series for the energy of |0, . . . , 0, l〉.

We take ω � (Ekmk
− Ek0 ) =: Ωkmk

for mk > 0 (otherwise, there would be no well-defined

resonator frequency) and A(rki ) ≈ A. With dkmk,0
= k〈mk|

∑nk

i=1 q
k
i r

k
i |0〉k, we find for the jth

terms ∆EjpA and ∆EjA2 in the perturbation series for the perturbations
∑HkpA and

∑HkA2

∆E1
pA = 0, (S18a)

∆E2
pA = −A2

0

N∑

k=1

∑

mk 6=0

Ωkmk
|ε · dkmk,0

|2

 (l + 1)

1 + ω
Ωk

mk

+
l

1− ω
Ωk

mk


 , (S18b)

≈ −A2
0

N∑

k=1

∑

mk 6=0

Ωkmk
|ε · dkmk,0

|2
(

(2l + 1)−
(

ω

Ωkmk

)
+ (2l + 1)

(
ω

Ωkmk

)2
)
, (S18c)

∆E1
A2 = A2

0(2l + 1)
N∑

k=1

nk∑

i=1

(qki )2

2mk
i

. (S18d)

Therefore,

δωpA =− 2A2
0

N∑

k=1

∑

mk 6=0

Ωkmk
|ε · dkmk,0

|2
(
1 +

ω2

(Ωkmk
)2

)
, (S19a)

δωA2 =2A2
0

N∑

k=1

nk∑

i=1

(qki )2

2mk
i

. (S19b)
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Figure S1: Situation of the generalized no-go theorem. Atomic spectra are drawn in black, eigenener-
gies of the free electromagnetic field in blue. (a) Structure of a low-energy state |E0〉 of the uncoupled
system. For N → ∞, the numbers of excited atoms ξ and of photons χ in |E0〉 are small compared
to N , ξ � N and χ� N . (b) Structure of a component of E1. The coupling has induced one atomic
transition and created or annihilated one photon (shown is an excitation of the second atom and the
creation of a photon). The state |E1〉 is the sum of all such states. Their amplitude in the eigenstate
of the coupled system is smaller than the amplitude of |E0〉 by a factor ∝ A0 ∝ V −1/2. In general,
|Es〉 represents the sum over all states obtained from |E0〉 via s atomic transitions and s creations or
annihilations of a photon. They contribute to the eigenstate of the coupled system by an amplitude
∝ As

0.

The pA-terms cause a negative and the A2-terms a positive frequency shift. Note that δωpA
and δωA2 almost cancel due to the TRK (applied for each k). The resulting total frequency
shift δω = δωpA + δωA2 is suppressed by ∼ (ω/Ωkmk

)2 as compared with δωpA and δωA2 .

D. The generalized Dicke Hamiltonian HgD. In this section, we derive the Hamil-
tonian HgD (Eq. (11)) from Hmic (in the form of Eq. (10)) for N →∞ and show how to obtain
and evaluate its characteristic equation.

According to our strategy formulated in the main text, we start from low atomic densities
and expand the eigenstates |E〉 of Hmic in powers of A0 ∝ V −1/2,

|E〉 ∝
∞∑

s=0

As0|Es〉, (S20)

where |Es〉 stands for a sum over components that each describe s transitions from |E0〉 both in
its atomic and in its photonic part and hence has weight ∝ As0 (Fig. S1). The corresponding

eigenenergies can be written as E ∝ ∑ss′ A
s+s′

0 〈Es|Hmic|Es′〉. We are interested only in the
low-energy spectrum of Hmic. Thus, we assume that the number of atomic excitations ξ =∑
k

∑
l>0 |〈lk|E0〉|2 and the number of photons χ = 〈E0|a†a|E0〉 in the uncoupled eigenstates

|E0〉 are small compared to N , ξ � N and χ � N . We now calculate E by dropping all
s+ s′ ≥ 2 terms and show that for the low-energy spectrum of Hmic all matrix elements that
induce transitions in-between excited atomic states are irrelevant. To that end, we write

Hmic = ω̃a†a+

N∑

k=1

µ∑

l,l′=0

(
Ωlδl,l′ |lk〉〈lk|+ iA0

√
ω̃

ω
(Ωl′ − Ωl)dl,l′(a

† + a)|lk〉〈l′k|
)

+ C, (S21)
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with ω̃ =
√
ω2 + 4κω and C = (ω̃ − ω)/2, and we define

H = ω̃a†a+
N∑

k=1

µ∑

l=1

Ωl|lk〉〈lk| (S22a)

Hcpl = (a† + a)

N∑

k=1

µ∑

l=1

A0

√
ω̃

ω
Ωl
(
id0,l|0k〉〈lk| − idl,0|lk〉〈0k|

)
(S22b)

∆H = (a† + a)
N∑

k=1

µ∑

l>l′≥1

A0

√
ω̃

ω
(Ωl − Ωl′)

(
idl′,l|l′k〉〈lk| − idl,l′ |lk〉〈l′k|

)
. (S22c)

Accordingly,

E ∝ 〈E|Hmic|E〉 (S23a)

∝ 〈E0|H|E0〉+A0

(
〈E0|Hcpl|E1〉+ 〈E1|Hcpl|E0〉+ 〈E0|∆H|E1〉+ 〈E1|∆H|E0〉

)
. (S23b)

Let us now compare the contributions of Hcpl and ∆H to E . The photonic parts of Hcpl and
∆H are equal and do not need to be further considered. We write 〈Hcpl〉 = 〈E0|Hcpl|E1〉 +
〈E1|Hcpl|E0〉 and 〈∆H〉 = 〈E0|∆H|E1〉+ 〈E1|∆H|E0〉, and we find

〈∆H〉
〈Hcpl〉

=

∑µ
l>l′≥1(Ωl − Ωl′)Im

[
dl′,l

∑N
k=1

(
〈E0|l′k〉〈lk|E1〉+ 〈E1|l′k〉〈lk|E0〉

)]
∑µ
l=1 ΩlIm

[
d0,l

∑N
k=1

(
〈E0|0k〉〈lk|E1〉+ 〈E1|0k〉〈lk|E0〉

)] (S24)

Since N → ∞, the number of nonzero terms in the k-sums is decisive. For given l, l′, the
sum over k in the numerator has at most ξ nonzero terms, whereas the sum over k in the
denominator has at least N − ξ nonzero terms. Hence, we drop ∆H, which represents the
matrix elements of Hmic connecting the excited states of an atom, and keep Hcpl as the
relevant coupling part of Hmic. We reintroduce the κ-term and call the resulting Hamiltonian
generalized Dicke Hamiltonian HgD,

HgD = ωa†a+ κ(a† + a)2 +

N∑

k=1

µ∑

l=1

(
Ωl|lk〉〈lk| − ΩlA0(a† + a)

(
idl,0|lk〉〈0k|+ H.c.

))
. (S25)

It has the same low-energy spectrum as Hmic. Paralleling our treatment of HD, we introduce

a†k,l = |lk〉〈0k|, b†qj ,l =
1√
N

N∑

k=1

eiqjk|lk〉〈0k|, (S26)

where qj = 2π(j/N) and j ∈ {0, 1, . . . , N−1} as before. With
∑N
k=1 a

†
k,lak,l =

∑N−1
j=0 b†qj ,lbqj ,l,

Eq. (S25) becomes

HgD = ωa†a+ κ(a† + a)2 +

µ∑

l=1

(
Ωl

N−1∑

j=0

b†qj ,lbqj ,l −A0Ωl
√
N(a† + a)

(
idl,0b

†
q0,l

+ H.c.
))
.

(S27)

The operators bqj ,l are bosonic in the limit of dilute excitations (ξ � N)[3]. The j > 0
collective modes do not couple to the electromagnetic field. Again, we drop the energy of

6
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these ‘dark’ modes, write bl instead of bq0,l, define λ = A0Ωl|d0l|
√
N , and remove the κ-term

by substituting ω → ω̃ =
√
ω2 + 4κω and λl → λ̃l =

√
ω/ω̃λl and adding C = (ω̃ − ω)/2.

This gives

HgD = ω̃a†a+

µ∑

l=1

Ωlb
†
l bl +

µ∑

l=1

λ̃l(b
†
l + bl)(a

† + a) + C. (S28)

In order to find the eigenfrequencies of HgD, we introduce canonical coordinates by means of

x =
1√
2ω̃

(a† + a), px = i

√
ω̃

2
(a† − a), yl =

1√
2Ωl

(b†l + bl), pl = i

√
Ωl
2

(b†l − bl), (S29)

and define XT = (x, y1, . . . , yµ), PT = (px, p1, . . . , pµ), and gl = 2λ̃l
√
ω̃Ωl. This yields

HgD =
PTP

2
+

1

2
XTΩ2X− 1

2

(
ω +

µ∑

l=1

Ωl) (S30)

where

Ω2 =




ω̃2 g1 · · · gµ
g1 Ω2

1
...

. . .

gµ Ω2
µ


 (S31)

The orthogonal matrix G that diagonalizes Ω2 induces a point transformation to the normal
modes X̃ = GX and P̃ = GP. The eigenvalues ε2i of Ω2 are the squared eigenfrequencies of
the system. They solve the characteristic equation

0 =
( µ∏

l′=1

(Ω2
l′ − ε2)

)(
(ω̃2 − ε2)−

µ∑

l=1

g2
l

Ω2
l − ε2

)
(S32a)

=
( µ∏

l′=1

(Ω2
l′ − ε2)

)(
(ω̃2 − ε2)− 4ω̃

µ∑

l=1

Ωlλ̃
2
l

Ω2
l − ε2

)
. (S32b)

None of them can be zero since this would imply

ω

4NA2
0

=

µ∑

l=1

Ωl|d0l|2 −
n∑

i=1

q2
i

2mi
. (S33)

We have used ω̃ =
√
ω2 + 4κω, λ̃l =

√
ω/ω̃λl, λl = A0Ωl|d0l|

√
N , and κ = NA2

0

∑n
i=1 q

2
i /2mi.

However, the left side of Eq. (S33) is positive, whereas its right side is negative according to
the TRK for H0

mic (Eqs. (S3) or Eq. (9) of the main text).
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E. Influence of disorder in the atomic parameters. The unavoidable fluctuations
of the transition frequencies and coupling strengths of the artificial atoms may be expected to
weaken the tendency towards a SPT in a circuit QED system and thus should not jeopardize
the assertion of the no-go theorem. However, the experimental verification of the failure of
the standard description of circuit QED proposed in the main text requires that the coupling-
induced shift of the resonator frequency and the SPT predicted by the standard description are
robust with respect to some disorder in the atomic parameters. Further, for a coupling that is
critical according to the standard description, the minimal excitation energy compatible with
the TRK has to be well-separated form zero also for a disordered system.

In this section, we present numerical results showing that disorder in the atomic parameters
does not have a significant influence on the lowest excitation energy of a circuit QED system
with a large number of artificial atoms, both according to the standard description of circuit
QED and according to a microscopic description that obeys the TRK. The proposed method
for experimentally observing the failure of the standard description is consequently not affected
by a small amount of disorder in the atomic parameters. Finally, we show that in the case
of very strong coupling, the failure of the standard description of circuit QED can become
measurable already for a system with N = 10.

Neither in the standard description nor in the microscopic description it is possible to
numerically calculate the excitation energies for a system containing as many as N ∼ 200
artificial atoms. One can therefore not demonstrate in this way that also for disordered systems
the standard description predicts a SPT, whereas according to the microscopic description all
excitation energies remain nonzero. Hence, we will follow a strategy pursued in a similar
context in Ref. [4] and consider smaller systems with varying number of artificial atoms to
study the effect of disorder under increasing system size. For non-identical artificial atoms,
the Dicke Hamiltonian reads

HD = ωa†a+
N∑

k=1

Ωk
2
σkz +

N∑

k=1

λk√
N
σkx(a† + a) +

N∑

k=1

κk(a† + a)2, (S34)

where κk represents the A2-terms due to a single atom (κ =
∑N
k=1 κk). Note that Ωk, λk, and

κk depend on the properties of the kth atom and may slightly fluctuate in a way that has to
be specified. The effective model for an artificial atom employed in the standard description
leads to (cf. Eqs. (5) of the main text)

λcir,k =
eCkG

CkG + CkJ

√
ωN

Lc
, κcir,k =

(CkG)2

2(CkG + CkJ )

ω

Lc
, (S35)

while the microscopic approach yields (cf. Eqs. (8) of the main text)

λmic
cir,k =

Ωk|ε · dk|√
2ε0ω

√
N

V
, κmic

cir,k =
1

2ε0ωV

nk∑

i=1

(qki )2

2mk
i

, (S36)

and dk = 〈ek|
∑nk

i=1 q
k
i r
k
i |gk〉. We define a parameter αk via Nκk = αkλ

2
k/Ωk and find

αcir,k =
EkJ (CkG + CkJ )

2e2
≡ EkJ

4EkC
, αmic

cir,k =

∑nk

i=1 (qki )2/2mk
i

Ωk|ε · dk|2
, (S37)

where αmic
cir,k ≥ 1 due to the TRK (Eq. (9) of the main text). We assume for the microscopic

description αmic
cir,k = 1, which corresponds to the strongest shift of the lowest excitation energy
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allowed by the TRK (in other words, the atoms are taken to be perfect two-level systems).
Now we implement disorder in the system and write Ωk = Ωτk, where we choose τk to be a
random number following a normal distribution with mean 1 and standard deviation 0.1. To
determine how disorder in the Ωk affects λk and κk both in the standard and in the microscopic
description of the system, it is further assumed that the artificial atoms have approximately
the same shape and chemical composition, that the disorder is only due to imperfections in
the fabrication of the Josephson junctions, and that CG � CkJ . Thus, κcir,k = κcir/N and
κmic

cir,k = κmic
cir /N are taken to be independent of k. Under these conditions, λmic

cir,k = λmic
cir

√
τk,

whereas λcir,k = λcir does not depend on the fluctuations of the atomic transition frequencies.
Note that αcir,k = EJ,k/4EC = Ωk/4EC = (EJ/4EC)τk = αcirτk. By fixing αcir = EJ/4EC =
0.1 as in the calculation for the ordered system, we have expressed Ωk, λk and κk both in the
standard and in the microscopic description of the disordered system by mean values Ω and λ
and a disorder configuration {τk}.

In our numerical analysis, we calculate the lowest excitation energies εN,d− of disordered
circuit QED systems with N = 3, 5, 7 artificial atoms as functions of λ according to the
standard and the microscopic description. It will be necessary to consider couplings of the
same order of magnitude as Ω. Even though with present-day technologies such couplings are
not realistic for N = 3, 5, 7, this gives us the evolution of the lowest excitation energy with
increasing N under strong coupling and allows us to infer the behavior of a system with larger
N , for which λ ∼ Ω is possible (λ ∝

√
N), but which would be numerically intractable. All

calculations are done for ω = Ω, and we have used 100 disorder configurations for each system
size to calculate mean values 〈εN,d− 〉 and standard deviations σN . Numerical experiments show
that restricting the photonic part of the Hilbert space to maximally seven photons provides a
good compromise between accuracy and numerical effort. We have also calculated the lowest
excitation energies εN− of the corresponding ordered systems (τk = 1 for all k), and we compare
our results with ε∞− (for varying α), the exact lowest excitation energy of an infinitely large
ordered system (Eq. (7) and Fig. 2(a) of the main text, there denoted simply by ε−).

Figure S2 is our main numerical result. We plot in black the excitation energies of the
homogeneous systems, εN− , for N = 3, 5, 7. The upper three black curves are calculated
according to the microscopic description of circuit QED, the lower ones according to the
standard description of circuit QED. In both cases, the frequency shift for given λ increases
with N . For comparison, we plot the corresponding analytically found excitation energies
for the infinitely large homogeneous system, ε∞− |α=0.1 (dark red) and ε∞− |α=1 (dark green).
The latter curve already appeared in Fig. 2(a) of the main text. Indeed, as N increases,
εN− approaches ε∞− |α=0.1 (or ε∞− |α=1) if calculated according to the standard (or microscopic)
description of circuit QED.

We plot further the averaged lowest excitation energies 〈εN,d− 〉 (dashed blue, dashed green,
and dashed magenta for N = 3, 5, 7, respectively), again both according to the microscopic
description (upper three curves) and according to the standard description (lower three curves).
The figure clearly demonstrates that the mean excitation energies of the disordered systems
are similar to the excitation energies of the homogeneous systems. The dashed lines for 〈εN,d− 〉
gained from the standard description are hardly visible for λ/Ω & 0.5 as they coincide, in the
resolution of Fig. S2, with the corresponding εN− -lines and are plotted underneath.

The solid colored curves enclosing the color-shaded regions represent 〈εN,d− 〉±σN as calcu-
lated from the microscopic and the standard description of circuit QED. We use again blue,
green, and magenta for N = 3, 5, 7, respectively.

According to the microscopic description, the standard deviation does not appreciably
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Figure S2: Lowest excitation energies of (dis-)ordered circuit QED systems with varying number of
artificial atoms vs. coupling λ. The figure shows the predictions both of the standard description of
circuit QED and of a microscopic description that is compatible with the Thomas-Reiche-Kuhn sum
rule. Scales are in units of ω = Ω. Black lines: lowest excitation energies of ordered circuit QED
systems with N = 3, 5, 7 artificial atoms according to the microscopic description (upper three curves)
and according to the standard description (lower three curves). Blue, green, and magenta lines: re-
sults for ensembles of corresponding disordered systems. Mean excitation energies are represented by
dashed lines, while the solid lines stand for the mean values plus and minus the standard deviation.
Furthermore, analytical results for a homogeneous system with N → ∞ according to the standard
description (dark red) and according to the microscopic description (dark green). The standard de-
scription predicts precursors of the superradiant phase transition for the disordered finite-size systems.
For couplings that produce a quasi-degenerate ground state according to the standard description,
the microscopic description predicts a nonzero energy gap, irrespective of the presence of disorder in
the atomic parameters.

decrease with increasing λ. However, the standard deviation is small compared to the mean
lowest excitation energy 〈εN,d− 〉 and decreases with N , σ3 > σ5 > σ7 for all λ. Disorder, thus,
does not have a significant effect on the lowest excitation energy of a circuit QED system
containing many artificial atoms according to the microscopic description. The lower bound
derived in the main text for the shifted resonator frequency of a homogeneous circuit QED
system that undergoes a SPT according to the standard description will remain basically
unchanged if a small amount of disorder in the atomic parameters is admitted.

According to the standard description, the effect of disorder is strongly suppressed for
large λ. The lowest excitation energies of the disordered systems do not only coincide on
average with the excitation energies of the homogeneous systems, also the standard deviation
from the mean rapidly shrinks with λ andN . For instance, forN = 7 and λ/Ω = 1.5, we find by

means of the standard description ε7−/Ω ≈ 10−5, 〈ε7,d− 〉/Ω ≈ 10−5, and σ7/Ω ≈ 2× 10−6. This
means that the ground states of the systems become quasi-degenerate for strong coupling λ,
irrespective of the presence of disorder. Hence, in the standard description of circuit QED,
precursors of the SPT are visible for finite-size disordered systems and get more pronounced
with increasing N . The effect of disorder is much weaker than the coupling-induced frequency
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shift and vanishes where the corresponding ordered systems become gapless. Consequently,
our estimate on the basis the standard description of how many artificial atoms are required
to see signatures of a SPT in a homogeneous circuit QED system with realistic parameters
(see main text) will not be affected by small fluctuations of the atomic parameters.

Taken together, our numerical results for the microscopic and the standard description
ensure – this is the central conclusion of this section – that the method for experimentally
observing the failure of the standard description of circuit QED systems that we have proposed
in the main text is insensitive to a small amount of disorder in the atomic parameters.
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Figure S3: Lowest excitation energies of (dis-)or-
dered circuit QED systems with varying number of
artificial atoms vs. coupling λ (in units of ω = Ω).
The figure shows the predictions the microscopic
description if the κ-term is neglected (α = 0). The
color code is the same as in Fig. S2. Further-
more, the analytical result for a homogeneous sys-
tem with N →∞ if the κ-term is neglected (red).

We remark that we have done the same
analysis of (dis-)ordered finite-size circuit
QED systems as above on the basis of the
microscopic description, but with α = 0 (Fig.
S3). This shows how the SPT emerges in a
(dis-)ordered circuit or cavity QED system
according to the microscopic picture if the
κ-term is disregarded (recall that the depen-
dence of λj on Ωj differs between standard
and microscopic description). One finds very
similar results as for the standard descrip-
tion of circuit QED: the mean lowest excita-
tion energies (dashed colored lines) converge
to those of the homogeneous systems (black
lines) as λ increases, the standard deviation
(solid colored lines, plotted relative to the
mean values) shrinks even faster than in the
standard description, and the (mean) exci-
tation energies approach ε∞− |α=0 (red line) if
N is increased. The latter curve already ap-
peared in Fig. 2(a) of the main text. These
findings imply that if a SPT occurred in a
homogeneous system (this would happen if
α < 1 according to Eq. (3)), it would be not affected by some disorder in the atomic param-
eters, not only according to the standard description but also according to the microscopic
description of circuit QED.

Finally, we numerically estimate the deviation of the prediction of the standard description
of circuit QED from the actual value for the lowest excitation energy of a circuit QED system
with only 10 artificial atoms but with very strong coupling. Suppose an artificial atom couples
with a strength λ/Ω = 0.1 to the resonator field. This has been already achieved with flux
qubits [5] and is referred to as “ultrastrong coupling”. Since we have seen that disorder plays
only a minor role for the lowest excitation energy of a circuit QED systems with N � 1,
we consider for simplicity a homogeneous system. We assume again ω = Ω, include up to
10 photons in our calculations, and obtain, by taking the

√
N -scaling of the coupling into

account, excitation energies of ε10
− |α=0.1/Ω ≈ 0.63 (corresponding to the standard description

with αcir = EJ/4EC = 0.1, cf. Eqs. (S37)) and ε10
− |α=1/Ω ≈ 0.74 (α = 1 corresponds to

the strongest frequency shift compatible with the TRK, i.e., to the microscopic description
of ideal two-level artificial atoms, cf. Eqs. (S37) and Eq. (9) of the main text). This means
that, if the coupling is ultrastrong, already for systems with ∼ 10 artificial atoms the standard
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description can be measurably inaccurate: in the case considered here, the actually measured
lowest excitation energy will be at least 17% greater than predicted by the standard description.
Measuring the excitation energy of such a system hence could be an alternative viable way to
experimentally verify our conclusions. Ultimately, these deliberations may give an improved
idea of the required system sizes and coupling strengths that render the mistakes made by the
standard description manifest.
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Chapter 4

Quantum simulations of non-equilibrium
spin chains in circuit QED

In this chapter, we propose and analyze a circuit QED design that implements the quantum
transverse-field Ising chain. The setup is argued to provide a new platform for observing the
non-equilibrium dynamics of spin systems. Disorder effects on its (dynamical) behavior are
studied. First results on the realization of our proposal are discussed. Sections 4.1 - 4.4 prepare
and motivate our work, which is then presented in Sections 4.5 - 4.7.

4.1 Quantum simulations and non-equilibrium dynamics

"Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d better make
it quantum mechanical" – It is difficult to resist quoting the closing words of Richard Feynman’s
influential talk on simulating physics with computers (Feynman, 1982). He alludes to the prob-
lem that the computational resources for simulating a quantum mechanical system on a classical
computer generically increase exponentially with the number N of the system’s constituents.
This makes such simulations usually intractable as soon as there are more than, say, a few tens
of them, even today. The need for simulations of quantum many-body systems, however, is om-
nipresent, not only in physics but also in chemistry or biology. For instance, the quest for an
explanation of high-temperature superconductivity would greatly profit if one could simulate the
behavior of candidate models for this phenomenon. Feynman envisioned that the problem stated
above could be bypassed by using a universal quantum simulator, a quantum device consisting
of discrete entities with tunable local interactions such that arbitrary or large classes of quan-
tum systems could be efficiently simulated with it. Feynman’s hypothesis was proved by Lloyd
(1996). He showed that all quantum systems without long-range interactions can be efficiently
simulated (so that the required resources increase polynomially in N) already with a spin one-
half lattice equipped with a universal (Barenco et al., 1995) set of nearest-neighbor interactions
– which is essentially a quantum computer in the sense of DiVincenzo (2000).

To get an idea of the functioning of a quantum computer as universal quantum simulator,
let us briefly sketch Lloyd’s simulation protocol, which is also known as a digital quantum sim-
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ulation. We assume that we want to simulate the time evolution generated by a Hamiltonian
H = ∑

m
j H j with local H j. According to Lloyd’s protocol, this time evolution is decomposed

into many small steps by virtue of the Trotter formula (Trotter, 1959)

e−iH t ≈
(
e−iH1t/n · . . . · e−iHmt/n)n

, (4.1)

for some large n. The action of e−iH jt/n on the corresponding subspace of H is modeled by a
number of quantum gates on an equivalent subspace of the quantum simulator. This is done for
all j, n times in a row. For given t and desired simulation precision (∼ n), the time required
for the simulation increases with N only as fast as m. The protocol can be extended to time-
dependent Hamiltonians or to Liouvillian time evolution. Adiabatic or annealing protocols also
allow one to investigate the ground state of a system of interest. In any case, we can state that
the digital quantum simulation of a quantum many-body system requires the implementation of
many coherent external state manipulations with a high fidelity.

Nevertheless, achieving a practically relevant quantum speed-up with a quantum computer
still appears to be much easier in the simulation of quantum many-body systems than in non-
quantum tasks such as number factorization or database search. The latter can be reasonably
performed also with classical computers. To get a practical use of one of the few known quantum
algorithms for such tasks, one would need to carry out millions of quantum operations without
errors. On the other hand, performing, say, a few tens of Trotter steps on a quantum many-body
system with 50 interacting spins does not seem to be hopelessly beyond the current experimental
capabilities and would probably already outperform classical simulations. What is more, in a
physical context we are often interested in system properties that are relatively robust with re-
spect to perturbations, such as phase transitions. Therefore, one may hope that also the outcome
of a corresponding quantum simulation is irrespective of small errors that might occur during the
simulation, and that some relevant open physical questions can be addressed with quantum sim-
ulators even without the need to perform quantum error correction (Cirac and Zoller, 2012; Blatt
and Roos, 2012). First digital quantum simulations of the dynamics generated by Hamiltonians
describing up to six spins have been implemented by Lanyon et al. (2011).

However, there is a second approach to quantum simulations, which does not rely on the
algorithmic operation of a quantum computer and which might be an easier, but still highly
rewarding short-term goal for quantum technologies (Buluta and Nori, 2009; Cirac and Zoller,
2012) – so-called analog quantum simulations. The key idea of analog quantum simulations is
to engineer the Hamiltonian of interest (which defies an analysis with classical computers) in
an experimentally well-controlled system, and to obtain the solution to the problem at hand by
appropriate measurements of the quantum simulator. Assuming that the desired Hamiltonian
is implemented with a sufficient degree of accuracy, which to verify is a nontrivial task, the
operation of an analog quantum simulator is relatively easy. Since external state manipulations
and time-slicing are not necessary, an analog quantum simulator should be even less prone to
errors than a digital quantum simulator. For these reasons, most efforts in the field of quantum
simulations are currently directed to analog quantum simulations. Our work presented in this
chapter also follows this approach. The main disadvantage of analog quantum simulations is the
lack of universality. For each problem one is interested in, one has to find a suitable quantum
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simulator. This will probably not always be possible. In fact, currently there are only a few
quantum technologies with good enough experimental control to qualify as potential quantum
simulators.

Up to now, answering a relevant open question by means of a quantum simulation has not
yet been accomplished, despite impressive experimental progress in this regard (see later). To
achieve this ultimate goal of quantum simulations, it is reasonable to focus on classes of quan-
tum many-body problems to which none of the elaborate and powerful classical simulation tech-
niques, such as Monte-Carlo simulations (Pollet, 2012) or the density matrix renormalization
group (Schollwöck, 2011), to name just two, can be successfully applied. These typically in-
volve strongly interacting fermions in more than one spatial dimension, frustrated spins, or
non-equilibrium dynamics (Cirac and Zoller, 2012). The quantum simulator we will propose
is intended to simulate the non-equilibrium dynamics of a quantum many-body system.

Generic non-equilibrium scenarios are not only difficult to simulate classically but also phys-
ically highly relevant (for a review on non-equilibrium dynamics, see Polkovnikov et al. (2011)).
A question of fundamental importance is if there are universal features in the non-equilibrium
dynamics of a quantum many-body system. One may ask, for instance, if or under which circum-
stances a quantum many-body system out of equilibrium will thermalize, that is, evolve into a
state that looks locally as if the system was in thermal equilibrium. How do different types of ob-
servables behave under such dynamics? How do (quasi-)particles propagate in non-equilibrium
situations? Can we understand the defect creation and associated processes when tuning the
system through a quantum critical point? These questions have been intensely studied during
the last years (see Polkovnikov et al. (2011) and our discussion below). To approach the gen-
eral aspects of non-equilibrium dynamics, oftentimes concrete example systems are considered.
However, for practical reasons, these have to be either analytically solvable or small enough to
be accessible to numerical simulations. The exciting theory of non-equilibrium physics would
likely profit a lot if it was possible to gain access to the dynamics of generic, non-integrable
systems by means of quantum simulations. The work presented in this chapter might help to get
closer to that. Before we go on and discuss the details of our proposed quantum simulator, we
briefly summarize what has been achieved in the field of quantum simulations so far.

4.2 State of the art in quantum simulations
The conditions a quantum system has to fulfill to qualify as a potential quantum simulator have
been cast into a concise list similar to the DiVincenzo criteria by Cirac and Zoller (2012). To
put it crudely, but even more concisely, one can say that a potential quantum simulator is a quan-
tum system with many precisely known degrees of freedom and a set of externally controllable
parameters for which high-fidelity initialization and read-out is available. Among the most suc-
cessful platforms for quantum simulations are currently systems of trapped ions (Blatt and Roos,
2012) and cold atomic gases (Bloch et al., 2012). It has been argued by others (see Section 2.4),
and will also be suggested in this chapter, that circuit QED could be a promising framework for
quantum simulations as well.

Early experiments on quantum simulations have been conducted with liquid state nuclear
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magnetic resonance (Somaroo et al., 1999; Vandersypen and Chuang, 2005). Also some ex-
periments on Josephson-junction arrays (Fazio and van der Zant, 2001) can be interpreted as
going into this direction since these artificial systems enabled experimental studies of several
interesting and otherwise hardly accessible phenomena. For instance, a Mott phase of strongly
interacting bosons (vortices) was demonstrated by van Oudenaarden and Mooij (1996).

Both experimental and theoretical research on quantum simulations and related topics was
greatly intensified through a series of seminal experiments with ultracold atoms in optical lat-
tices, which demonstrated unprecedented control of a quantum many-body system: Greiner et al.
(2002a) observed the quantum phase transition of the Bose-Hubbard Hamiltonian (Fisher et al.,
1989), realizing a proposal by Jaksch et al. (1998). The externally controllable depth of the
optical lattice controls the ratio of the kinetic energy and the on-site interaction of the atoms
and was used to tune the system from a superfluid to a Mott insulating phase (the same effects
can be obtained by employing Feshbach resonances). In follow-up experiments, Greiner et al.
(2002b) observed the collapse and the revival of the matter wave field of the Bose-Einstein con-
densate (akin to the circuit QED experiment by Kirchmair et al. (2013) discussed in Section
2.3), and Paredes et al. (2004) realized a Tonks-Girardeau gas of strongly repulsive bosons. With
advancing state preparation and measurement techniques, it became possible, for example, to
simulate the phase transition of the antiferromagnetic Ising model in a longitudinal field by iden-
tifying the spin components with lattice site occupation numbers (Simon et al., 2011), to simulate
negative temperatures for the motional degrees of freedom by melting a Mott insulator with in-
verted parameters of the Bose-Hubbard Hamiltonian (Braun et al., 2013), or to simulate gauge
fields interacting with the charge neutral atoms by generating a geometric (effective Aharonov-
Bohm) phase for the moving particles with Raman lasers (Lin et al. (2009); no optical lattice
was used there). Also experiments on non-equilibrium quantum many-body dynamics were con-
ducted with cold bosonic gases, exploiting the excellent isolation of these systems from their
environment. For instance, Kinoshita et al. (2006) observed the absence of thermalization of a
near-integrable Bose gas out of equilibrium. The time evolution towards equilibrium following a
quantum quench of the Bose-Hubbard Hamiltonian was measured by Trotzky et al. (2012). And
the light-cone like spreading of correlations after a quench within the Mott phase of this Hamil-
tonian was seen by Cheneau et al. (2012), indicating the presence of a Lieb-Robinson bound in
the system (Lieb and Robinson, 1972). Finally, we mention that there have been amazing ex-
periments also with ultracold fermions (DeMarco and Jin, 1999), including the crossover from a
Bose-Einstein condensate to a Bardeen-Cooper-Schrieffer superconductor for attractive interac-
tions (Greiner et al., 2003; Regal et al., 2004) or the formation of a fermionic Mott insulator for
repulsive interactions in the presence of an optical lattice (Jördens et al., 2008; Schneider et al.,
2008). However, because of the required extremely low entropies, the regime of quantum mag-
netism in the Fermi-Hubbard model, which would be highly interesting for quantum simulations,
started to come within reach only recently (Greif et al., 2013). In a nutshell, the achievements
listed above underline the distinguished role of cold atomic gases in the context analog quantum
simulations.

Systems of ions in a linear trap are suited both for analog and digital quantum simulations,
in particular, for systems that can be represented by interacting spins. Thereby, the internal
electronics states of the ions are identified with the spins. There are several ways to generate
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controlled interactions between the internal states of the ions. According to the groundbreaking
proposal by Cirac and Zoller (1995), the motional sidebands of an individual ion can be exter-
nally driven to map the internal state of the ion to a collective vibrational state. Conditioned
on the vibrational state, a second ion the trap is excited or not. The entangling part in this ex-
citation consists in adding a sign to only one of the product states of collective motion and the
spin of the second ion. To do so, this one state is selectively cycled through an auxiliary state.
If after the conditional excitation of the second ion the motional state is swapped back to the
first ion, one ends up with a CNOT gate between the two ions, which was first implemented
by Schmidt-Kaler et al. (2003). Simpler techniques to obtain such interactions, ideally suited
for simulating spin Hamiltonians (Porras and Cirac, 2004), involve simultaneous driving of the
ions with two tones (Sørensen and Mølmer, 1999). Based on this, two spins with an (adiabat-
ically) variable Ising coupling in a transverse field were simulated by Friedenauer et al. (2008)
(in the sense of an analog quantum simulation). In a similar experiment with up to nine ions and
long-range Ising coupling, Islam et al. (2011) were able to observe the precursors of a quantum
phase transition from paramagnetic to ferromagnetic. Gerritsma et al. (2010) simulated the one-
dimensional free Dirac equation and were able to observe Zitterbewegung. The two-component
spinor was encoded in two internal levels of an ion and the ion’s motional state. In a subsequent
work, Gerritsma et al. (2011) included various scattering potentials for the Dirac particle in their
quantum simulation, which allowed them to study Klein tunneling. An interacting spin system
of potentially computational relevant scale was recently simulated by Britton et al. (2012). The
authors used a Penning trap to create a two-dimensional Coulomb crystal of about 300 ions.
Again, by coupling the internal states of the ions simultaneously to collective vibrational modes
of the ion crystal, both ferromagnetic and anti-ferromagnetic Ising coupling of tunable range
could be demonstrated. With improvements in the read-out and the implementation of a compet-
ing term in the Hamiltonian, this approach is highly promising for analog quantum simulations.
Digital quantum simulations with trapped ions were impressively demonstrated by Lanyon et al.
(2011). To simulate, for instance, the time evolution of a two-qubit state under the Hamiltonian
H = H1 +H2 = Ω/2(σ1

z +σ2
z )+ Jσ1

xσ2
x , the authors programmed quantum gates implementing

H1 and H2 separately. By propagating a two-qubit state sequentially under H1 and H2, the authors
showed that the measured time evolution converged to the calculated one upon decreasing the
size of the Trotter steps (cf. Equation (4.1)). The authors successfully carried out digital quantum
simulations of this type for more complicated Hamiltonians for up to six spins. Other works in
the same spirit which also included the simulation of dissipative processes were conducted by
Barreiro et al. (2011) and Schindler et al. (2013).

Finally, we remark that also all-optical quantum simulations have yielded promising results
(O’Brien, 2007; Aspuru-Guzik and Walther, 2012). All-optical (i.e., with no other particles than
photons) quantum computations and simulations were initiated by an astonishing observation
by Knill et al. (2001). These authors realized that entangling gates on usually barely interact-
ing photonic qubits (encoded in the polarization states of photons) can be realized just by linear
optical circuits if supplemented with appropriate measurements. Such and related measurement-
induced photon-photon interactions were used to simulate, for instance, frustrated Heisenberg
interactions of four spins in an analog quantum simulation (Ma et al., 2011) or the time evolu-
tion of the eigenstates of the hydrogen molecule in a digital quantum simulation with two qubits,
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which then facilitated the extraction of the energies of the eigenstates via a quantum phase esti-
mation algorithm (Abrams and Lloyd, 1997; Aspuru-Guzik et al., 2005; Lanyon et al., 2010). A
second type of experiments with photons having potential for quantum simulations is the imple-
mentation of quantum walks (Perets et al., 2008; Broome et al., 2010; Peruzzo et al., 2010).

4.3 So why use circuit QED?
Thus, regarding quantum simulations, much has already been done with systems other than cir-
cuit QED. Trapped ions, ultracold atoms, or optical photons are still much better isolated from
their environment and decoherence is much less of an issue, despite the tremendous evolution
of circuit QED systems. What is more, ultracold atoms are naturally in the ‘many-body regime’
and trapped ions are about to reach it (Britton et al., 2012), while circuit QED systems with more
than four qubits are yet to be operated. Certainly, circuit QED is a very promising platform for
quantum computing. If the rapid progress in this regard continues, digital quantum simulations
might become possible with these systems in the long run. However, it is fair to ask what might
be the benefit of attempting analog quantum simulations in circuit QED, which we and others
(see Houck et al. (2012) and Schmidt and Koch (2013)) propose as a short-term goal.

Among the technologies discussed above, each one has it own advantages and weaknesses.
For a certain class of problems to be simulated, one or the other might be suited better (if at all),
and, as long as we do not have a universal quantum simulator at our disposal, there is much room
for other quantum technologies to complement the currently most successful approaches to ana-
log quantum simulations. Circuit QED systems, in particular, possess some features that might
be advantageous for quantum simulations. For instance, they can be equipped with fast, local
control lines for each of their constituents. The read-out is non-destructive. Coupling between
different constituents can be engineered almost arbitrarily (potentially even tunable in situ). All
these features are difficult to obtain, e.g., with cold atoms. Drawbacks of other technologies
that are not present or less severe in circuit QED include the following. In the case of ultracold
atoms, both the parabolic confining potential and the currently attainable minimum temperatures
set some limitations on possible experiments, in particular with regard to spin physics (Esslinger,
2010). Photonic quantum simulators suffer primarily from the lack of controlled single photon
sources, which makes it difficult to proceed to larger systems (O’Brien, 2007; Aspuru-Guzik
and Walther, 2012). Also ions in linear traps will probably face scalability issues at some point.
Whether state-initialization, ion-ion coupling, and read-out in alternative, potentially scalable
trap architectures reach the required level of performance remains to be seen.

Finally, as soon as quantum simulators are able to provide answers to questions that cannot
be tackled by means of classical simulations, one is left with the problem to verify that these
are sufficiently accurate. A good indication for that would be that the quantum simulation yields
correct outcomes for special cases of the problem at hand which can be solved analytically or
on a classical computer. For this reason, we will propose a circuit QED quantum simulator
of an elementary (but nontrivial) many-body quantum system which can be solved exactly. If
the simulation of this system succeeds, as seen by comparison of experiment and theoretical
predictions, it will be easy in the flexible framework of circuit QED to implement integrability-
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breaking interactions. However, a higher degree of reliability of a quantum simulation of a
complex quantum many-body system would be obtained if the simulation was repeated with
a second quantum simulator, based on an entirely different quantum technology. This alone
justifies looking for new platforms for quantum simulations.

In the following sections, we will argue that circuit QED systems are suited for simulating
quantum many-body spin systems and their non-equilibrium dynamics. Our proposal is based
on a different concept than the earlier proposals on circuit QED quantum simulations of Bose-
Hubbard physics, which we have reviewed in Section 2.4. Explicitly, we propose a quantum
simulator of the quantum transverse-field Ising chain (TFIC). Despite the enormous importance
of this system as a model example system (see next section), time-resolved experimental studies
of its free non-equilibrium dynamics seem to be elusive – Lanyon et al. (2011) performed a
digital quantum simulation of the time evolution generated by small Ising spin chains and, very
recently, Fukuhara et al. (2013) made an analog quantum simulation of the non-equilibrium
dynamics of the closely related one-dimensional Heisenberg model with ultracold bosonic atoms
in an optical lattice. The essential properties of the TFIC and the tools for its mathematical
treatment are described in our publications reprinted in Sections 4.5 and 4.6. Nevertheless, we
provide a very brief non-technical account of the TFIC in the next section, primarily to explain
its importance as a theoretical example system.

4.4 The quantum transverse-field Ising chain
The Hamiltonian of the quantum transverse-field Ising chain reads

H I =
Ω

2

N

∑
j=1

σ
j
z− J

N−1

∑
j=1

σ
j
xσ

j+1
x . (4.2)

It describes the elementary situation of N spin-1/2 particles sitting at sites j, coupled to their
nearest neighbors with a strength J and to a transverse magnetic field of strength Ω/2 > 0.
Let us assume ferromagnetic coupling in this section, J > 0. In the limit N → ∞, the TFIC
undergoes a second-order quantum phase transition (T = 0) at critical normalized transverse
field strength ξ ≡ Ω/2J = ξc ≡ 1. In the ferromagnetic phase, ξ < 1, there is long-range order
in σx, which vanishes at the transition to the paramagnetic phase (for details, see below). Far in
the ferromagnetic phase, the spins will point either the +x or the −x direction (the Z2 symmetry
Π jσ

j
z of H I is broken in this phase). Far in the paramagnetic phase, the spins point in the −z

direction. Non-zero temperatures destroy the sharp quantum phase transition. As long as the
temperature is smaller than the energy gap present in both phases, the local system properties are
preserved (characteristic spatial or temporal correlations have an extent exponential in the gap-
temperature ratio). In the vicinity of ξc, the system is described by a universal quantum critical
theory (as long as kBT �Ω,J (Sachdev, 1999)).

The TFIC can be exactly diagonalized by means of a Jordan-Wigner transformation (Jordan
and Wigner, 1928; Lieb et al., 1961; Pfeuty, 1970). This transformation maps H I to a quadratic
fermion Hamiltonian. Pictorially, the transformation associates a flipped spin with the presence
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of a particle which is destroyed by flipping the spin twice and therefore a fermion. The quadratic
Hamiltonian can be brought into the form, H I = ∑k Λkη

†
kηk, where the ηk are fermionic. The

excitation energies Λk can be analytically calculated up to a trigonometric equation, which can
be solved either numerically or approximately for small π/N. However, we remark that the
integrability of the model is lost as soon as one includes, say, next-nearest-neighbor interactions.

Because of the simplicity of the physical scenario, the availability of an exact solution and
its quantum critical point, the TFIC was used as an example system in countless theoretical
considerations, primarily in the fields of quantum phase transitions and non-equilibrium thermo-
dynamics. An implementation of the TFIC in circuit QED might allow one to realize some of
the obtained results in an experiment and is therefore certainly worthwhile beyond the prospect
of benchmarking future quantum simulators of more complex spin systems.

4.5 Publication: Observing the nonequilibrium dynamics of
the transverse-field Ising chain in circuit QED

Our proposal on implementing the quantum transverse-field Ising chain in circuit QED, moti-
vated in the first parts of this chapter, has been previously published as a Letter in the journal
Physical Review Letters and its accompanying online supplemental material. This section con-
tains a reprint of this publication.
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The promising idea of tackling complex quantum many-
body problems by quantum simulations [1,2] has become
even more compelling recently, due to the widespread
current interest in nonequilibrium dynamics. Indeed,
experiments with cold atoms in optical lattices [3–6] and
ions [7–10] have already made impressive progress in this
regard. At the same time, the capabilities of scalable,
flexible solid-state platforms are developing rapidly. In
particular, circuit quantum electrodynamics (cQED) archi-
tectures of superconducting artificial atoms and microwave
resonators [11–19] are now moving toward multiatom,
multiresonator setups with drastically enhanced coherence
times, making them increasingly attractive candidates for
quantum simulations [20]. Here, we propose and analyze a
cQED design that simulates a quantum transverse-field
Ising chain with current technology. Our setup can be
used to study quench dynamics, the propagation of local-
ized excitations, and other nonequilibrium features in a
field theory exhibiting a quantum phase transition (QPT)
[21] and based on a design that could easily be extended to
break the integrability of the system.

The present Letter takes a different path than the pro-
posals for simulating Bose-Hubbard-typemany-body phys-
ics in cavity arrays, which might be also realizable in cQED
[20,22–26]. It is based on a possibly simpler concept—
direct coupling of artificial atoms—that naturally offers
access to quantum magnetism. The transverse-field Ising
chain (TFIC) is a paradigmatic quantum many-body sys-
tem. It is exactly solvable [27,28] and thus serves as a
standard theoretical example in the context of nonequilib-
rium thermodynamics and quantum criticality [21,29–34].
Our proposal to simulate the TFIC and its nonequilibrium
dynamics might help to mitigate the lack of experimental
systems for testing these results. Moreover, the experimen-
tal confirmation of our predictions for various nonequilib-
rium scenarios in this integrable many-body system would

serve as an important benchmark and allow one to proceed
to variations of the design that break integrability or intro-
duce other features.
Implementation of the TFIC.—A charge-based artificial

atom (such as the Cooper-pair box or the transmon) [35] in
a superconducting microwave resonator can be understood
as an electric dipole (with dipole operator !x) that couples
to the quantized electromagnetic field in the resonator [36].
Consider the system of Fig. 1, at first, without resonator
B. Only the first artificial atom couples to resonator A.
However, all atoms couple directly (not mediated by a
quantized field) to their neighbors via dipole-dipole cou-
pling / !i

x!
j
x (for details, see Ref. [37]). Coupling of this

type has already been demonstrated with two Cooper-pair
boxes [38] and two transmons [19]. Since this interaction is
short ranged, we model our system by

H ¼ !0ðayaþ 1=2Þ þ gðay þ aÞ!1
x þH I; (1)

where H I is the Hamiltonian of the TFIC,

H I ¼
!

2

XN

j¼1

!j
z % J

XN%1

j¼1

!j
x!

jþ1
x : (2)

FIG. 1 (color online). Circuit QED implementation of the Ising
model with a transverse magnetic field. The dipole moments of
the artificial atoms tend to align. Resonator A (B) facilitates
initialization and readout of the first (Nth) artificial atom by
standard circuit QED techniques.
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Here, ay generates a photon with frequency!0, and!
j
x=z is

a Pauli matrix. That is, we consider the artificial atoms as
two-level systems (qubits). This is justified even for
weakly anharmonic transmons since the experiments pro-
posed below involve only low atomic excitation probabil-
ities or well controllable excitation techniques (" pulses).
Qubit 1 and the resonator couple with strength g. The qubit
level spacing !> 0 is tunable rapidly (& 1 ns) via the
magnetic flux through the qubits’ SQUID loops [11–14]. It
corresponds to the transverse magnetic field in the usual
TFIC. In our geometry, the qubit-qubit coupling strength J
is positive (ferromagnetic; the antiferromagnetic coupling
J < 0 arises by rotating each qubit in Fig. 1 by 90' and is
discussed in Ref. [37]). Estimates based on the typical
dimensions of a cQED system yield J=2"& 100 MHz.
Interdigitated capacitors between the qubits might signifi-
cantly increase J. In general, tuning! will also affect J in
a way that depends on the tuning mechanism and on the
fundamental qubit parameters [37]. Using standard tech-
nology, upon variation of the magnetic flux, J / ! for
transmons, whereas, for Cooper-pair boxes, J is indepen-
dent of !. Resonator A facilitates the initialization and
readout of qubit 1 (with standard techniques [11]).
Resonator B would allow one to measure end-to-end cor-
relators. However, for simplicity, we consider a system
with one resonator unless otherwise noted. We mention
that the proposed setup should also be implementable
using the novel, high-coherence 3d cQED devices [39].
Superconducting flux and phase qubits [35] can also be
coupled to implement H I and related Hamiltonians
[15,17]. For different proposals on the implementation of
and mean-field-type experiments with the TFIC in cQED,
see Refs. [40,41], respectively.

In our calculations [37], we frequently use the spin-free-
fermion mapping for H I from Refs. [27,28]. It yields
H I ¼

P
k"kð#y

k#k % 1=2Þ, where #y
k generates a fermion

of energy "k ¼ 2J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ $2 % 2$ cosk

p
and $ ¼ !=2J is

the normalized transverse field. The allowed values of k
satisfy sinkN ¼ $ sinkðN þ 1Þ. For N ! 1, H I under-
goes the second order QPT at $ ¼ 1 from a ferromagnetic
phase ($< 1) with long-range order in !x to a disordered,
paramagnetic phase (for details, see Refs. [21,27,28,37]).

Spectrum of the system.—An initial experiment would
likely characterize the setup by measuring the transmission
spectrum S of the resonator as a function of probe fre-
quency! and qubit frequency!. For definiteness, we now
assume that J is fixed and that the transverse field
$ ¼ !=2J is tunable via !, as is the case for Cooper-
pair boxes. A system with standard transmons can be
shown to be confined to the paramagnetic phase (with fixed
$> 1), but its spectrum as a function of ! and J / !
otherwise displays the same features [37]. To calculate S,
we first focus on the spectrum of the bare TFIC, ~%ð!Þ ¼R
dtei!th!1

xðtÞ!1
xð0Þi. It shows at which frequencies a field

coupled to !1
x can excite the chain. Assuming g=!0 ( 1,

we then approximate the chain as a linear bath, coupled to
the resonator: We replace it by a set of harmonic oscillators
with the spectrum ~%ð!Þ of the TFIC. This allows us to
compute S. Our calculations are for zero temperature.
Except near the QPT, where H I becomes gapless, this is
experimentally well justified.
For finiteN, the calculated spectrum ~%ð!Þwould consist

of discrete peaks. In an experiment, they would be broad-
ened by decay and, for large N, the measured spectrum
would be continuous. This can be modeled by taking
N ! 1 in our calculations. In that case,

~%ð!Þ ¼ 2"&ð!Þ#ð1%$Þð1%$2Þþ 4$

!
Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1% cos2kð!Þ

q

(3)

for ! ) 0, and ~%ð!< 0Þ ¼ 0. Here,#ðxÞ is the Heaviside
step function, and coskð!Þ ¼ ½1þ $2 % ð!2JÞ2+=2$. The
delta function for $< 1 is due to the nonzero mean value
of Reh!1

xðtÞ!1
xð0Þi in this phase. We plot ~%ð!Þ for several $

in Fig. 2(a). For $> 1 ($< 1), ~% has a width of 4J (4J$),
the bandwidth of the "k. This might be helpful to measure
J. At $ ¼ 1, ~% becomes gapless and, thus, carries a clear
signature of the QPT. The loss of normalization for
$ ¼ 0:5 is compensated by the delta function in (3). This
is required by a sum rule for ~% and can be understood: In
the ordered phase, the ground state j0i of the TFIC
becomes similar to a !x eigenstate. Thus, driving via !1

x

is less efficient in causing excitations out of j0i, but a static
force on !1

x will change the energy of j0i. We note that, for
all $, ~%ð!Þ has its maximum where the band "k has zero
curvature (and maximum slope). Thus, most #k excitations

FIG. 2 (color online). Spectrum of the system. (a) Spectrum
~%ð!Þ ¼ R

dtei!th!1
xðtÞ!1

xð0Þi of an isolated transverse-field
Ising chain for N ! 1 and normalized transverse fields $ ¼
!=2J ¼ 4, 1.2, 1, 0.5. (b) Spectrum S of a resonator coupled to a
TFIC (as in Fig. 1), plotted vs $ and ! (for N ! 1). The
parameters used are g ¼ 0:12, J ¼ 0:1, and ' ¼ 10%4 (in units
of !0). For better visibility of the features, values >3:8 are
plotted in white. The dashed lines represent the excitation
energies of H for N ¼ 1. (c) S vs ! for $ ¼ 3:9, 4.85, 6.1
(blue, red, and green lines, respectively). These lines correspond
to cuts along the arrows in (b).

PRL 110, 030601 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

18 JANUARY 2013

030601-2

98 4. Quantum simulations of non-equilibrium spin chains in circuit QED



of the TFIC have a nearly uniform velocity v0 ¼
max½d"k=dk+ (v0 ¼ 2J$ for $< 1 and v0 ¼ 2J for
$> 1), which will be important below.

We obtain resonator spectrum Sð!Þ in terms of ~%ð!Þ,

Sð!Þ ¼ 4#ð!Þ½'þ g2 ~%ð!Þ+
½!2=!0 %!0 % 4g2(ð!2Þ+2 þ ½'þ g2 ~%ð!Þ+2 :

(4)

Here, (ð!2Þ denotes the principal value integral (ð!2Þ ¼
1=ð2"ÞR d!~%ð!Þ!=ð!2 %!2Þ and ' is the full linewidth
at half maximum of the Lorentzian spectrum of the
uncoupled (g ¼ 0) resonator. Our calculation uses tools
that are explained, e.g., in Ref. [42]. It actually also applies
when the resonator couples to a different system, with
another spectrum ~%ð!Þ. We plot S as function of ! and $
in Fig. 2(b). For comparison, we also plot the resonances of
the Jaynes-Cummings model, as they have been observed
in numerous cQED experiments (dashed lines; case N ¼ 1
inH ). As long as the spectrum ~%ð!Þ of the chain does not
overlap the resonator frequency !0, there is a dispersive
shift analogous to the off-resonant single-qubit case. Here,
the chain causes only a small but broad side maximum and
hardly modifies the dominant Lorentzian [green and blue
lines in Fig. 2(c)]. If the chain comes into resonance, this
changes dramatically, and Sð!Þ takes on large values over a
region of width &4J. For our choice of parameters, Sð!Þ
develops a slightly asymmetric double-peak structure [red
line in Fig. 2(c)]. This is again reminiscent of the Jaynes-
Cummings doublet, but now the peaks are split by 4J rather
than 2g. We emphasize that the shape of the spectrum
on resonance depends significantly on the ratio g=J. The
larger g=J > 1, the closer the system resembles the single-
qubit case (corresponds to J ¼ 0). If g=J < 1, the double
peak vanishes and one observes a Lorentzian around !0

with width 2g2=J (for g2=J , '). This is because the
resonator irreversibly decays into the chain, whose inverse
bandwidth / 1=J sets the density of states at ! - !0 and
so determines the decay rate (for plots on both limiting
cases and for finite N, see Ref. [37]).

Propagation of a localized excitation.—Off resonance,
chain and resonator are essentially decoupled. In this
situation, our setup allows one to study nonequilibrium
dynamics in the TFIC. The resonator can be used to dis-
persively read out the first qubit. For measurements, this
qubit must be detuned (faster than 2"=J) from the chain so
that it dominates the dispersive shift of the resonator [11]
and decouples from the chain’s dynamics.

First, we focus on the nonequilibrium dynamics of the
chain after a local excitation has been created. As the
resonator couples only to one qubit, the initialization of
the system is easy. We assume that the chain is far in the
paramagnetic phase ($ , 1). Hence, h!j

zi - %1 in its
ground state. By applying a fast (& 1 ns) " pulse, the first
spin of the chain can be flipped without affecting the state
of the other qubits (if J=2" ( 1 GHz=2" or if the first

qubit is detuned from the others for initialization). We
model the state of the system immediately after the" pulse
by !1

xj0i, where j0i is the ground state of the TFIC. The
time evolution of the qubit excitations h!j

zi,

h!j
ziðtÞ ¼ h0j!1

xe
iH I t!j

ze%iH It!1
xj0i; (5)

is plotted in Fig. 3 for a chain with N ¼ 20 and $ ¼ 8
(right panel). The experimentally measurable trace of
h!1

ziðtÞ is singled out on the left-hand side. Due to the
qubit-qubit coupling, the excitation propagates through
the chain, is reflected at its end, and leads to a distinct
revival of h!1

zi at JtR - N. Assuming J=2" ¼ 50 MHz,
we find tR - 64 ns for N ¼ 20, which is safely below
transmon coherence times. Note that the excitation
propagates with velocity v0 ¼ 2J. This is because it con-
sists of many excitations in k space, and most of them have
velocity v0.
Quench dynamics.—An appealing application of our

system would be to observe its nonequilibrium dynamics
after a sudden change of the transverse field $ ¼ !=2J. By
using fast flux lines, changes of ! have been achieved
practically instantaneously on the dynamical time scale of
a cQED system (without changing the wave function)
[12–14]. In our setup, such a change amounts to a (global)
quantum quench of $ if J 6/ !. This condition can be
fulfilled by using qubits whose Josephson and charging
energies [35] have a ratio EJ=EC & 10 [37], that is,
Cooper-pair boxes or transmons slightly out of their opti-
mal parameter ratio [43]. In this regime, the tuning of J
with ! is weak (vanishes for Cooper-pair boxes). Since it
would only lead to a rescaling of time by a factor &1, we
assume in the following that J is independent of ! and
consider quantum quenches of $ in our system. Quantum
quenches in the TFIC have been studied theoretically, e.g.,
in Refs. [30–33]. One usually assumes that for t < 0 the
system is in the ground state j0ia of the HamiltonianH I;a

FIG. 3 (color online). Propagation of a localized excitation.
Right: nonequilibrium time evolution of h!j

zi for all qubits j of a
transverse Ising chain of length N ¼ 20 in a normalized trans-
verse field $ ¼ !=2J ¼ 8 (paramagnetic phase) after the first
spin has been flipped. Values >% 0:5 are plotted in white. Left:
separate plot of h!1

z i on the same time scale. This quantity can be
measured in the setup of Fig. 1.
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at some initial value $a ¼ !a=2J. At t ¼ 0, $ is changed
to $b ¼ !b=2J, and the time evolution under the action of
H I;b is investigated.

In the following, we focus on the dynamics of the
experimentally easily accessible observable h!1

zi after
quenches within the paramagnetic phase. This corresponds
to our estimates for realistic values of J. The main differ-
ence of quenches involving the ferromagnetic phase would
be a modified dynamical time scale due to the different
value of v0. Figure 4 shows the magnetization h!j

ziðtÞ after
quenching $ (center). In region I (see schematic plot,
right), the magnetization first increases and then oscillates
with decreasing amplitude. Here, it is virtually identical
with the overall magnetization of a cyclic TFIC with
N ! 1 calculated in Ref. [30] and would, for N ! 1,
approach a constant value. This is in line with predictions
from conformal field theory [32]. However, at t ¼ j=v0

and t ¼ ðN % jÞ=v0 (dashed red lines in the schematic
plot), where v0 ¼ 2J as before, the magnetization has
dips. They are followed (in regions II and III) by a relaxa-
tion similar as in region I to the same asymptotic value (see
Ref. [37] for a zoomed-in plot). Near the system bounda-
ries, the magnetization reaches and stays at this value for a
considerable time before undergoing a revival. A sharp
oscillation across the entire chain at T ¼ N=v0 subse-
quently decays. Revivals reoccur (quasi-)periodically
with period T (region IV), but this behavior is smeared
out for large times (not plotted). These phenomena are
reflected in the measurable observable h!1

ziðtÞ (left panel)
and take place on a time scale of &0:1 )s for N ¼ 30 and
J=2" ¼ 50 MHz.

Our results can be qualitatively understood in a simpli-
fying quasiparticle (QP) picture that has already been used
to calculate or interpret the (quench) dynamics of different
quantities in the TFIC [31–34]. In the paramagnetic phase,
the QPs correspond to spins pointing in the þz direction.
They are created in pairs by the quench and ballistically
move with velocities .v0 with reflections at the

boundaries. Further, only contiguously generated QPs are
correlated. After an initial transient, any given site will be
visited only by uncorrelated QPs, originating from distant
places. This leads to the relaxation of the magnetization to
a steady-state value in region I that would be characterized
by a certain static density of uncorrelated QPs. However,
once correlated QPs meet again due to reflections at the
boundaries, coherences are recreated and show up in oscil-
lation revivals. This happens, first, at multiples of T (black
solid lines in the schematic plot) when all QP trajectories
cross their momentum-inverted counterparts (the solid red
lines show an example) and, second, along the trajectories
of QP pairs generated at the boundaries. Such QPs travel
together as one partner is reflected at t - 0 (dashed red
lines, not plotted in region IV for clarity). The periodicity
of the trajectories should lead to periodic revivals for
t > T. This is indeed observed approximately, although
finally the velocity dispersion of the QPs renders the time
evolution quasiperiodic. Finally, QP trajectories cannot
intersect at j ¼ 1, N. The density of (incoherent) QPs is
thus lower here than for bulk sites, yielding an appreciably
lower quasistationary value.
Discussion and outlook.—The setup and the experiments

we have proposed might help to establish the simulation
of interacting quantum many-body systems as a new para-
digm in circuit QED and to bring parts of the theoretical
discourse in nonequilibrium physics closer to observation.
The phenomena discussed here are based on realizable
system parameters and should occur within the system’s
coherence time. Given the readout capabilities in cQED
(e.g., Ref. [16]), their measurement should be feasible, for
instance, because single-shot readout is not required. Once
an actual implementation sets some boundary conditions,
the choice of system parameters can be further optimized.
We have numerically verified that all presented results are
robust against disorder up to a few percent in! and J [44].
Detuning individual qubits, however, would allow one to
create arbitrary potentials for the excitations, study the
interplay of Anderson localization and many-body physics,
or change the effective chain length. Using a second reso-
nator, the dynamics of the end-to-end correlator h!1

x!
N
x i

(indicating long-range order) could be measured (see
Ref. [37]). Many other experiments are conceivable with
our setup, such as suddenly coupling two isolated chains
(and other local quenches) or even parameter ramps through
the QPT, with Kibble-Zurek defect creation. We note also
that hitherto unexplored measurement physics could be
studied when the first qubit is not detuned from the chain,
like resolving many-body eigenstates or the quantum Zeno
effect in a many-body system. Once the setup is properly
understood, it will be easy to break the integrability of our
model in a controlled way (e.g., via longer-range cou-
plings). This would push our cQED quantum simulator
into a regime beyond classical computational capabilities,
where further open questions about nonequilibrium

FIG. 4 (color online). Behavior after a quench: time evolution
of the magnetization h!j

zi in a TFIC of length N ¼ 30 after a
quench of the normalized transverse field $ ¼ 8 ! 1:2 (center)
with a schematic plot (right) and the measurable observable h!1

zi
singled out (left) on the same time scale. Values <% 0:9
(>%0:6) are plotted in black (white).
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dynamics can be addressed, such as thermalization and
diffusive transport. Furthermore, going to 2d or 3d introdu-
ces new design options, for instance, frustrated lattices.
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I. THE QUBIT-QUBIT COUPLING
HAMILTONIAN

In this section, our goal is to derive the Hamiltonian
of a chain of capacitively coupled charge-based artificial
atoms as in Fig. 1 of the main text from circuit the-
ory. Both for Cooper-pair boxes (CPBs) and for trans-
mons (for reviews on superconducting artificial atoms,
see [1, 2]), this Hamiltonian takes on the form of HI [Eq.
(2) of the main text]. Our derivation of the Hamilto-
nian on the basis of circuit theory enables us to analyze
the dependence of Ω and J (and thus of ξ = Ω/2J) on
the fundamental, engineerable parameters of the artifi-
cial atoms and on an externally applied, in-situ tunable
magnetic flux.

We model the chain of artificial atoms in Fig. 1 of the
main text by the circuit diagram of Fig. S1. The SQUID-
like loop of the jth artificial atom can be threaded by a
(classical) external magnetic flux bias Φj . Its identical
Josephson junctions are characterized each by a Joseph-
son energy �J,j . For simplicity, we absorb the capaci-
tances of the Josephson junctions into the capacitance Cj

between the islands of the artificial atom (which shunts
the SQUID loop). Moreover, we take into account only
coupling capacitances Cj between the right island of the
jth artificial atom and the left island of the j +1st artifi-
cial atom. The mediated capacitive coupling between the
artificial atoms corresponds to the electrostatic coupling
of the electric dipole operators of charge distributions in
atomic QED [3], which we have employed in the main
text to motivate the Hamiltonian HI . In order to be

able to compare our results with previous ones [4, 5], we
do not assume that the artificial atoms are identical for
the moment.

We begin by considering the conceptionally important
case N = 2. This case has been already studied for CPBs
[4] and transmons [5] in similar setups. Using the stan-
dard approach to circuit quantization [6, 7], one obtains
H(2) =

�2
j=1(q

2
j /2C̃j − EΦ

J,j cos 2eφj) + q1q2/C̃. Here,
� = 1, φj and qj are the conjugate quantum flux and
charge variables, [φj , qj ] = i, and e is the elementary
charge. We have defined C̃j = C2

∗/(Cj + C), C̃ = C2
∗/C,

and C2
∗ = C1C2 + C1C + C2C (for N = 2, we drop the

index 1 from C1 and related quantities like C̃1). Further-
more, EΦ

J,j = EJ,j(Φj) = 2�J,j cos(πΦj/Φ0), where Φ0

is the superconducting flux quantum. As usual, we in-
troduce charging energies EC,j = e2/2C̃j , number and
phase operators n̂j = −qj/2e and ϕj = −2eφj (see, e.g.,
[7]), and a coupling energy EC = e2/2C̃. The effects of
possible gate voltages that might bias the superconduct-
ing islands of an artificial atom are taken into account
by introducing offset charges nb,j ∈ R (in units of 2e)
and substituting n̂j → n̂b,j ≡ n̂j −nb,j (possible gate ca-
pacitances are assumed to be absorbed in EC,j and EC).
With these substitutions,

H(2) = h1 + h2 + 8ECn̂b,1n̂b,2. (S.1)

The hj = 4EC,j n̂
2
b,j −EΦ

J,j cosϕj describe the energies of
two isolated artificial atoms. The eigenfunctions (in the
ϕj-basis) and eigenvalues of hj are Mathieu’s functions
and characteristic values [8–10]. Their numerical values
can be determined with arbitrary precision for all pa-
rameters EC,j , EΦ

J,j , and nb,j (and all ϕj) and are imple-
mented in standard math programs. Taking the ground
state |gj� and the first excited state |ej� of hj to be eigen-
states of σj

z and restricting the Hilbert space to these

FIG. S1. Circuit diagram of a chain of capacitively coupled
charge-based artificial atoms as in Fig. 1 of the main text.

102 4. Quantum simulations of non-equilibrium spin chains in circuit QED



2

qubit bases, the Hamiltonian of the system becomes (up
to a constant)

H(2) =

2�

j=1

Ωj

2
σj

z + 8EC

2�

j=1

�

mj ,nj

(n̂b,j)m,n|mj��nj |.

(S.2)

Here, Ωj is the difference between the qubit eigenener-
gies, (n̂b,j)m,n = �mj |n̂b,j |nj�, and mj , nj ∈ {gj , ej}.
Using the explicit forms of �ϕj |mj� from [8–10] and
n̂j = −i∂/∂ϕj , the (n̂b,j)m,n are found to be real and
can be numerically calculated. In general, the n̂b,j have
diagonal elements in our choice of basis. However, for
the most common types of charge-based artificial atoms,
CPBs and transmons, H(2) takes on the form of HI for
N = 2, which is insightful to consider before returning
to the general case.

CPBs are characterized by 4EC,j � EΦ
J,j . Since we

are interested only in the low-energy sector of the Hilbert
space of (S.1), this condition allows us, in good approxi-
mation, to restrict the Hilbert space to the number states
{|nj�, |(n + 1)j�}. Here, nj = �nb,j� [1]. Without loss of
generality, one can choose nb,j ∈ [0, 1[. This restriction
leads from Eq. (S.1) to

H
(2)
CPB =

2�

j=1

�
4EC,j(n

2
b,j |0j��0j | + (1 − nb,j)

2|1j��1j |)

−
EΦ

J,j

2
(|0j��1j | + H.c.)

�

+ 8EC

2�

j=1

1�

nj=0

(nj − nb,j)|nj��nj |, (S.3)

in close similarity to the Hamiltonian derived in [4]. If
the CPBs are operated as usual at the charge degeneracy
points nb,j = 1/2 (to decrease charge noise), |gj� (|ej�) is
an (anti-)symmetric superposition of |0j� and |1j�. We
drop constants, identify |0j��1j | = σj

−, and rotate the
coordinate system by π/2 around the y-axis (clockwise).
This brings H

(2)
CPB into the form of Eq. (S.2),

H
(2)
CPB =

2�

j=1

EΦ
J,j

2
σj

z + 2ECσ
1
xσ

2
x. (S.4)

This Hamiltonian also has the form of HI for N = 2
(since n̂b,j transforms into σj

x/2 under the present as-
sumptions). That is, in the case of CPBs, the transition
frequencies Ωj are simply given by EΦ

J,j and flux-tunable.
The qubit-qubit coupling J = 2EC depends only on the
capacitances of the system and is independent of Φj and
the qubit transition frequencies (dJ/dΩj = 0). Thus,
the normalized transverse field ξ = Ω/2J (for Ω1 = Ω2)
is strictly linear in Ω.

For transmons-qubits [10], which are characterized by
4EC,j � EΦ

J,j , (i) expanding the cosφj terms in hj

of Eq. (S.1) and (ii) dropping the boundary condition

ψj,m(ϕj) = ψj,m(ϕj + 2π) on the eigenfunctions of hj

provides a good approximation [10]. Note that due to
(ii), the effect of the offset charges nb,j is completely sup-
pressed since the n̂j and the biased number operators n̂b,j

are equivalent canonical variables, [ϕj , n̂b,j ] = [ϕj , n̂j ] =
i. This is justified as the dependence of the qubit proper-
ties on the offset charges is exponentially suppressed with
increasing ratio EΦ

J,j/EC,j [10] (in reality, gate voltages
do not have to be applied to transmons). Thus, we now
aim to derive the parameters Ωj and (n̂b,j)m,n occuring
in Eq. (S.2) from Eq. (S.1) with

h ≈ 4EC n̂2
b − EΦ

J (1 − ϕ2/2! + ϕ4/4!)

= Ω0(a
†a + 1/2) − αΩ0(a

† + a)4/4! + const., (S.5)

in a perturbation expansion in α = (EC/2EΦ
J )1/2 � 1.

Here and in the following, we drop the index j where not
essential. Note that α is proportional to an approximate
expression for a transmon’s ‘relative anharmonicity’ [10].
We have defined Ω0 = (8EΦ

J EC)1/2, ϕ =
√

2α(a† + a),
n̂b = i/

√
8α(a† − a), and [φ, n̂b] = i requires a to be

bosonic. This approach has been used in [10] to study
a single transmon and its coupling to a microwave res-
onator. To first order in α, |gα� = |0� + α/4!(3

√
2|2� +�

3/2|4�) and |eα� = |1� + α/4!(5
√

6|3� +
�

15/2|5�),
where |m� is now an eigenstate of a†a. We substitute
Eq. (S.5) and the above expression for n̂b into Eq. (S.1)
and expand the resulting transmon-approximation H

(2)
t

of H(2) in the qubit basis spanned by |gα� and |eα�. Drop-
ping constants and all terms ∝ αx with x > 1, and ro-
tating the coordinate system counter-clockwise by π/2
around the z-axis leads to

H
(2)
t =

2�

j=1

Ω0,j(1 − αj/2)

2
σj

z + EC

2�

j=1

(1 − αj/4)
√
αj

σj
x.

This transmon approximation of Eq. (S.2) also has the
form of HI for N = 2. We remark that in 0th order
perturbation theory, where the transmons are harmonic
oscillators, the terms in parentheses in H

(2)
t are equal

to 1. However, the term 1/
√
α1α2, stemming from the

product of the n̂b,j operators, is present. The 0th or-
der result corresponds to the Hamiltonian derived in [5]
for their system of coupled transmons. To first order
in α, the transmon transition frequencies are given by
Ωj = Ω0,j(1 − αj/2) = (8EΦ

J,jEC,j)
1/2 − EC [10]. They

are flux-tunable via (EΦ
J,j)

1/2 (rather than Ωj ∝ EΦ
J,j as

for CPBs). For transmons, the qubit-qubit coupling is
given by J = EC

�
(1 − αj/4)/

√
αj . Importantly, this

J depends also on external fluxes via αj ∝ (EΦ
J,j)

−1/2

(and on the transition frequencies via αj = 2EC,j/Ω0,j).
Since the physical properties of a uniform TFIC are es-
sentially determined by the normalized transverse field
ξ = Ω/2J (the absolute values of Ω and J only set the
dynamical time scales), we use our perturbative results
to study the tunability of ξ for identical transmons. We
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insert our first-order results for Ω and J into ξ and ex-
pand ξ ≈ (Ω0/2EC)[α − α3/16 + O(α4)], where we have
set EC(J),1 = EC(J),2. The overall factor α comes from
the nominator of J and is not due to the nonlinear per-
turbation of the system as argued above. Factoring out
α = 2EC/Ω0 yields

ξ ≈ EC

EC
(1 − α2/16 + O(α3)) ≈ EC

EC
. (S.6)

That is, the first order corrections to Ω and J in α exactly
cancel. For transmons, flux-tunability of ξ is a second-
order effect, via α2 = EC/2EΦ

J . To roughly estimate the
strength of this effect, we consider the contribution of the
first-order approximations of Ω and J to it. Note that
the second-order approximations of Ω and J actually also
contribute to the leading flux-dependent term (∝ α2) of
ξ. If one requires the transmons to remain in their opti-
mal working regime 20 � EΦ

J /EC [10], this contribution
leads to a tunability ∆ξ/ξ ≈ α2/(16−α2) < 0.2%. Thus,
one may expect that strongly tuning ξ by changing the
flux bias will require to leave the optimal transmon work-
ing regime, and possibly even to go beyond the validity
regime of Eq. (S.5). Therefore, we now come back to the
general case of Eq. (S.1). Before doing so, we remark
that ξ ≈ EC/EC = (C + C)/C > 1. This indicates that
the ferromagnetic phase (ξ < 1) cannot be reached with
transmons.

It turns out that at the charge degeneracy point nb =
1/2, the biased charge operator n̂b = n̂ − nb has only
off-diagonal elements in the basis chosen in Eq. (S.2).
Consequently, H(2) has the form of HI (at N = 2) for
all ratios EΦ

J,j/EC,j . This enables us to interpolate be-
tween the charge-degenerate CPB case and the transmon
case (where the nb,j become irrelevant): Assuming iden-
tical qubits, we vary the ratio EΦ

J /EC at nb = 1/2. We
numerically calculate J = 8EC [(n̂b)g,e]

2 and Ω as func-
tions of EΦ

J /EC . Then we plot J vs. Ω [Fig. S2(a)]
and ξ vs. Ω [Fig. S2(b)]. Additionally, we plot the ap-
proximate results that we have gained analytically for
CPBs and transmons. To obtain J as a function of Ω
from our analytical results for transmons, we employ our
approximation for J to first order in α. In this approx-
imation, we replace α ≈ 2EC/(Ω + EC), making use of
the first order approximation for Ω. The plots show that
for EΦ

J /EC � 10, the qubit-qubit coupling J becomes
proportional to Ω, and the normalized transverse field ξ
ceases to be flux-tunable. For quenching ξ by changing
the flux bias one therefore has to engineer EΦ

J /EC � 10.
In this regime, the artificial atoms start to loose their
insensitivity to charge noise, which is a distinguishing
property of transmons. For instance, at EΦ

J /EC = 10,
[maxΩ(nb) − minΩ(nb)]/Ω(nb) ≈ 3%. Here, Ω(nb) de-
notes the mean qubit transition frequency, averaged over
all possible bias charges nb. However, the characteristic
features of the quench dynamics of our circuit QED quan-
tum simulator occur on short timescales (see main text),
so that one should get along with the reduced dephasing
times of charge qubits in this regime (compared to usual

! " #! #"
!

$

%

&

'

! " #! #"
!(!

!($

!(%

!(&

!('

#(!

FIG. S2. (a) Qubit-qubit coupling J and (b) normalized
transverse field ξ = Ω/2J vs. qubit transition frequency Ω
for two identical charge qubits operated at the charge de-
generacy point. The system is characterized by the charging
energy EC and the flux-tunable total Josephson energy EΦ

J of
a qubit, and by the capacitive coupling energy EC . The ratio
EΦ

J /EC fully determines a point on each axis (i.e., the quanti-
ties Ω/EC , J/EC , and EC

EC
ξ). The dots correspond to the inte-

ger values 0, 1, . . . , 40 of EΦ
J /EC . The solid lines are a guide

to the eye. Dashed, approximate analytical results for the
limits EΦ

J /4EC � 1 (Cooper-pair boxes) and EΦ
J /4EC � 1

(transmons).

transmons). For example, an energy relaxation time T1

of ∼ 7µs and a dephasing time T2 of ∼ 500ns have been
reported even for a CPB (at the charge degeneracy point)
[11]. We remark that, depending on the charge bias nb,
Ω can be equal to the energy difference between second
and first excited state of the artificial atom, E2,1, which
would invalidate the two-level approximation for the ar-
tificial atoms. For instance, if nb = 0.5 as considered
here, this happens at EΦ

J /EC ≈ 9.03 [10]. However, the
difference of these transitions crosses zero very steeply as
a function of EΦ

J /EC [10]. Thus, the two-level approxi-
mation for the artificial atoms is justified as long as start
or end point of the quench are not too close to this value.
We finally remark that working with tunable coupling
capacitances [12] might provide an alternative to work-
ing with transmons out of their optimal parameter range.
This would allow one to tune ξ via tuning EC .

Coming now to the general case of a chain of artifi-
cial atoms of arbitrary length, it turns out that we can
directly apply our results for N = 2. Having written
the Lagrangian of such a system in terms of the classical
variables φj and φ̇j [6, 7], one finds that the canonical
charge variables qj are given by q = Cφ̇. Here, we have
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defined q = (q1, . . . , qN )T , φ̇ = (φ̇1, . . . , φ̇M )T , and

C =




C + C −C 0 · · · 0
−C C + 2C −C
0 −C C + 2C −C
...

. . . . . . . . .
−C C + 2C −C

0 −C C + C




,

and we have assumed that the artificial atoms are identi-
cal, Cj = C and Cj = C. Inverting C yields φ̇(q). With
that, one obtains the Hamiltonian H of the system, which
is then quantized as usual [6, 7]. To first order in C/C,

H =

N�

j=1

�
q2
j

2C
− EΦ

J cos 2eφj

�

+
C
C

�
−q2

1 − q2
N −�N−1

j=2 2q2
j +

�N−1
j=1 2qjqj+1

2C

�
.

(S.7)

The same steps as for N = 2 now lead to a straightfor-
ward generalization of Eq. (S.1), where artificial atoms
with Hamiltonian hj are coupled to their nearest neigh-
bours via n̂b,j n̂b,j+1 [for N = 2, Eq. (S.7) equals the first
order expansion of H(2) above Eq. (S.1)]. To first order
in C/C, the only difference for N > 2 is that the effec-
tive charging energies of the artificial atoms in the bulk
of the chain (j �= 1, N) are slightly reduced compared
to those at the surface (j = 1, N). This is because the
bulk artificial atoms couple to two neighbours. In reality,
this surface inhomogeneity should be negligible already
because the capacitance of the surface artificial atoms is
also increased by their coupling to other parts of the cir-
cuit. Therefore, to first order in C/C, our derivation of
the Hamiltonian HI of the TFIC from the circuit the-
ory of two artificial atoms also holds for larger chains,
only with a slightly renormalized EC . The same is true
for our corresponding deliberations on the dependence of
Ω, J , and ξ on the fundamental circuit quantities. We
remark that taking into account terms of order (C/C)l

introduces coupling terms ∝ qjqj+l in Eq. (S.7) (and, for
l > 1, renormalizes also the nearest neighbour coupling
energies EC compared to the case N = 2). Hence, the
integrability-breaking longer-range coupling decays expo-
nentially with distance l in our system and is therefore
neglected in this work. We finally remark that nonpertur-
bative numerical calculations strongly suggest that also
the renormalized values of EC and EC for N > 2 do not
allow one to achieve EC/EC < 1. This means that the
ferromagnetic phase cannot be reached with transmons
in the limit of large EΦ

J /EC [cf. Eq. (S.6)].

II. DIAGONALIZATION AND SPECTRUM OF
THE TRANSVERSE-FIELD ISING CHAIN

In this section, we diagonalize the Hamiltonian HI

[Eq. (2) of the main text] and calculate the qubit au-

tocorrelator ρ(t) = �σ1
x(t)σ1

x(0)� and the corresponding
spectrum ρ̃(ω) =

�
dteiωtρ(t). Our method and notation

follow Ref. [13].
In the main text, we have focussed on a circuit QED

system with ferromagnetic qubit-qubit coupling J > 0.
Since setups with antiferromagnetic coupling are also
conceivable, we generalize in the remainder of these sup-
plementary notes the Hamiltonian of the transverse-field
Ising chain to

HI =
Ω

2

N�

j=1

σj
z − J

N−1�

j=1

σj
xσ

j+1
x , (S.8)

where J may be negative (Ω > 0 as before). We define
J = |J |. Applying the Jordan-Wigner transformation
σ+

j = c†
j exp(iπ

�j−1
k=1 c†

kck) to HI leads to

HI = −NΩ

2
+ Ω

N�

j=1

c†
jcj − J

N−1�

j=1

[c†
jc

†
j+1+ c†

jcj+1+H.c.],

(S.9)

with fermionic cj . In this form, HI can be diagonalized
using the method for diagonalizing quadratic fermionic
Hamiltonians of the form

H =
N�

i,j=1

[c†
iAi,jcj + 1/2(c†

iBi,jc
†
j + H.c.)] (S.10)

of Ref. [13]. In our case,

A =




Ω −J 0 · · · 0
−J Ω −J
0 −J Ω −J
...

. . . . . . . . .
−J Ω −J

0 −J Ω




, (S.11)

and B is obtained by substituting Ai,i = Ω → 0 and
Ai+1,i = −J → J in A. H is diagonalized by introduc-
ing new fermions ηk =

�N
j=1 gk,jcj + hk,jc

†
j . The com-

ponents gk,j and hk,j of the vectors gk and hk and the
eigenvalues Λk of H are determined by defining normal-
ized vectors φk = gk + hk and ψk = gk − hk and solving
the equations

φk(A − B) = Λkψk, ψk(A + B) = Λkφk. (S.12)

For Λk �= 0, this is most easily done by solving, e.g.,

(A − B)(A + B)φk = Λ2
kφk (S.13)

and calculating ψk via Eqs. (S.12). Note that since AT =
A and BT = −B, Λ2

k ≥ 0 and the φk and ψk can be
chosen real and orthogonal for different k,

�
j φk,jφk�,j =�

j ψk,jψk�,j = δk,k� . For A and B as defined above, one
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FIG. S3. Excitation energies Λk vs. the allowed real wave
vectors k of a transverse-field Ising chain with N = 30 and ξ =
0.5, 1, 1.2, 3 (dots). For ξ = 0.5, there is also one imaginary
wave vector (see text). The solid lines are a guide to the
eye. The shaded regions indicate the bandwidth of the Ising
chain for ξ = 0.5 (ferromagnetic phase, orange) and for ξ = 3
(paramagnetic phase, blue).

obtains

HI =
�

k

Λk(η†
kηk − 1/2), (S.14)

Λk = 2J
�

1 + ξ2 − 2ξ cos k, (S.15)
φk,j = Ak sin k(N + 1 − j), (S.16)

ψk,j = sign
� J sin k

sin k(N + 1)

�
Ak sin kj, (S.17)

Ak = 2
�
2N + 1 − sin[k(2N + 1)]/ sin k

�−1/2
. (S.18)

Here, ξ = Ω/2J is the normalized transverse field, and
the possible values of k are solutions of

sin kN

sin k(N + 1)
= ξ. (S.19)

If |ξ| ≥ N/(N + 1) (|ξ| < N/(N + 1)), Eq. (S.19) has N
(N − 1) real solutions ∈ [0,π]. If |ξ| < N/(N + 1), there
is also one imaginary solution k� = iκ (k� = π + iκ) for
positive (negative) ξ with sinhκN/ sinhκ(N + 1) = |ξ|.
These solutions exhaust the eigenmodes of the system.
Note that Λk� → 0 if |ξ| → 0 or N → ∞.

For N → ∞, HI undergoes a second order QPT at
ξ = ±1 from a ferromagnetic [ξ ∈ (0, 1)] or an antiferro-
magnetic [ξ ∈ (−1, 0)] ordered phase with doubly degen-
erate eigenstates (Λk� → 0) to a paramagnetic disordered
phase (|ξ| > 1) with Λk > 0 for all k. This QPT is sig-
naled by correlators of the order parameter σx. Note,
though, that �σj

x� ≡ 0 for all ξ. Since HI commutes with�
j σ

j
z, all eigenstates of HI formally obey this symmetry

that maps σj
x → −σj

x.
Fig. S3 shows the excitation energies Λk of HI vs. the

allowed (real) wave vectors k for N = 30 and various
ξ (for ξ = 0.5, there is one imaginary wave vector k� ≈
0.693i, and Λk� ≈ 0). In the limit N → ∞, the Λk form a
continuous band. Its gap is given by |1− |ξ|| and vanishes
at the quantum critical point |ξ| = 1. In the disordered
phase (|ξ| > 1), the bandwidth is 4J (indicated for ξ = 3

!"! !"# $"! $"# %"!
!"!

!"%

!"&

!"'

!"(

$"!

)*+,-./*-/ 01/23 Ξ

Σ
!$
Σ
!"

!"! !"# $"! $"# %"!
$!!4

$!!#

!"!!$

!"$

)*+,-./*-/ 01/23 Ξ

Σ
!$
Σ
!"

FIG. S4. End-to-end correlator |�σ1
xσ

N
x �| vs. normalized mag-

netic field |ξ| = Ω/2J for N = 5, 10, 20, 30 (blue, red, green,
orange). The signs of �σ1

xσ
N
x �(ξ) and ξ agree except that N is

odd and ξ < 0. Inset, same plot but |�σ1
xσ

N
x �| on a logarithmic

scale covering values from 10−7 to 1.

in Fig. S3) and independent of ξ. In the ordered phase
(|ξ| < 1), the bandwidth is given by 4J |ξ|.

Signatures of the QPT are already present for rela-
tively small system sizes. This is evident from Fig. S4
where we plot the end-to-end correlator �σ1

xσ
N
x �, an or-

der parameter of the QPT for N → ∞, as function of
ξ for different (finite) N (at zero temperature; see Sec.
V and [13] for calculations). Already for N � 10, the
end-to-end correlator becomes very small at |ξ| ≈ 1 and
displays a distinct transition from algebraic to exponen-
tial decay (see inset of Fig. S3). This illustrates that
even small Ising chains of a comparable size exhibit in-
teresting quantum many-body physics. For more details
on the transverse-field Ising chain and its QPT, see, e.g.,
[13–15].

Assuming zero temperature, the qubit autocorrelator
ρ(t) = �σ1

x(t)σ1
x(0)� can now be easily calculated using

σ1
x = c†

1 + c1 =
�

k

φk,1(η
†
k + ηk). (S.20)

One obtains

ρ(t) =
�

k

φ2
k,1e

−itΛk . (S.21)

The Fourier transform ρ̃(ω) of ρ(t) is a sum of delta
peaks. In order to obtain a continuous spectrum ρ̃(ω),
we have to take the limit N → ∞ in Eq. (S.21). As
its RHS contains rapidly oscillating terms for N → ∞
(like sin Nk), it cannot be straightforwardly transformed
into an integral via a Riemann sum. We therefore write
kl = π/N(l− νl) for l = 1, . . . , N [13] and find, by means
of Eq. (S.19),

νl =
1

π
arctan

� ξ sin(πl/N)

ξ cos(πl/N) − 1

�
+ O(1/N). (S.22)

With these expressions for kl and νl, ρ(t) can be trans-
formed into an integral

� N

1
dl for N → ∞. Substituting

dl → dk (k as defined above, dk/dl ≈ π/N) and dropping
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all terms O(1/N) finally leads to

ρ(t) = Θ(1 − |ξ|)(1 − |ξ|2)

+
2

π

� π

0

dk
ξ2 sin2 k

1 + ξ2 − 2ξ cos k
e−itΛ(k), (S.23)

where Θ(x) is the Heaviside step function and Λ(k)
stands for Λk with continuous k. The first term on the
RHS of Eq. (S.23) is the k�-term in Eq. (S.21) for N → ∞,
which must be treated separately. It causes a nonzero
mean value of Reρ(t) in the ordered phase. Taking the
Fourier transform of Eq. (S.23) yields

ρ̃(ω) = 2πδ(ω)Θ(1 − |ξ|)(1 − |ξ|2)
+ Θ(ω − 2J |1 − |ξ||) Θ(2J |1 + |ξ|| − ω)

× 4|ξ|
ω

�
1 − cos2 k(ω), (S.24)

where cos k(ω) = [1 + ξ2 − ( ω
2J )2]/(2ξ). Note that this

result does not depend on the sign of J (and the sign
of ξ = Ω/2J ). For ferromagnetic coupling J > 0 (and
ξ > 0), Eq. (S.24) can be simplified to the form of Eq. (3)
and is plotted in Fig. 2(a) of the main text. For antifer-
romagnetic coupling J < 0 (and ξ < 0), one just has to
replace ξ → |ξ| in Eq. (3). Thus, with this replacement,
our discussion of ρ̃(ω) below Eq. (3) and the plots in Fig.
2 of the main text hold for antiferromagnetic coupling as
well.

III. SPECTRUM OF THE RESONATOR

In this section, we calculate the spectrum S(ω) of the
resonator of our system, which is coupled to the Ising
chain. Complementary to Figs. 2(b) and 2(c) of the main
text, we plot S(ω) in the limiting cases g/J � 1 and
g/J � 1, and for finite N . In these plots, we vary the
transverse field ξ at fixed qubit-qubit coupling J , as ex-
perimentally realistic for Cooper-pair boxes (see Sec. I
of these supplementary notes). However, if the proposed
setup is implemented with standard transmons instead of
Cooper-pair boxes, then ξ will be constant and J will be
flux-tunable. We also provide plots of S(ω) for this sce-
nario. We remark that, like ρ̃(ω), S(ω) turns out to be in-
dependent of the sign of J (and of the sign of ξ = Ω/2J ).
For ease of notation, we will therefore refer to J as the
qubit-qubit coupling and identify ξ = |ξ| = Ω/2J where
appropriate throughout this section.

In order to calculate S(ω), we assume g/ω0 � 1 and
linearize the Hamiltonian H [Eq. (1) of the main text].
That is, we now consider the Hamiltonian

H̃ =
1

2
(p2

0 + ω2
0x2

0) + x0

N�

j=1

λjxj + Hh, (S.25)

where λj =
�

2g2ω0λ̃j and Hh =
�N

j=1(p
2
j +w2

j x2
j )/2. It

is obtained by substituting the coupling term in Eq. (1)

by g(a† + a)
�N

j=1 λ̃jxj (λ̃j is a coupling constant) and
HI by Hh, the Hamiltonian of a set of harmonic oscil-
lators with frequencies wj , and by introducing canonical
coordinates for the resonator via x0 = 1/

√
2ω0(a

† + a)

and p0 = i
�
ω0/2(a†−a). Note that x0 couples to a force

Fh(t) =
�N

j=1 λjxj(t) in Eq. (S.25). By writing H [Eq.
(1)] in terms of x0 and p0, one finds that here x0 couples
to a force FI(t) =

�
2g2ω0σ

1
x(t). The parameters λ̃j and

wj in H̃ can be chosen such that

�Fh(t)Fh(0)� =

N�

j=1

λ2
j

2wj
e−iwjt = �FI(t)FI(0)� (S.26)

(in this case also the spectra of the forces will agree).
Indeed, wj = Λkj

and λ̃2
j = 2wjA

2
kj

sin2 Nkj guarantee
Eq. (S.26). We now calculate S(ω), the Fourier transform
of 2ω0�0̃|x0(t)x0|0̃�, where |0̃� is the ground state of H̃.
To that end, we first reformulate

H̃ =
1

2
(PT P + XTΩ2X), (S.27)

with XT = (x0, x1, . . . , xN ), PT = (p0, p1, . . . , pN ), and

Ω2 =




ω2
0 λ1 . . . λN

λ1 w2
1

...
. . .

λN w2
N


 . (S.28)

There is an orthogonal matrix G for which

H̃ =
1

2
(P̃T P̃ + X̃T Ω̃

2
X̃), (S.29)

where X̃ = GT X, P̃ = GT P, and Ω̃
2

is diagonal with
Ω̃2

j ≡ (Ω̃
2
)jj being an eigenvalue of Ω2. We calculate

�0̃|x0(t)x0|0̃� =
N�

j,j�=0

G0,jG0,j��0̃|x̃j(t)x̃j� |0̃� (S.30)

=
N�

j=0

G2
0,j

2Ω̃j

e−itΩ̃j (S.31)

and obtain with that

S(ω) = 2πω0

N�

j=0

G2
0,j

Ω̃j

δ(ω − Ω̃j) (S.32)

= 4Θ(ω)ω0Im
�
R(Ω2,ω2 − i0+)0,0

�
. (S.33)

In the last line, the matrix element of the resolvent
R(Ω2,ω2) = (ω2 − Ω2)−1 is to be taken in the basis in
that Ω2 has the form of Eq. (S.28). It can be calculated
following Ref. [16]. The result is

S(ω) =
4Θ(ω)ω0[�FhFh�ω/2 + 0+]

[ω2 − ω2
0 − 2χ̃(ω2)]2+[0++ �FhFh�ω/2]2

,

(S.34)

χ̃(ω2) =
1

2π

�
dΩ

Ω�FhFh�Ω
ω2 − Ω2

. (S.35)
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Thus, we have expressed the spectrum of the resonator
S(ω) in terms of the spectrum �FhFh�ω of the bath of
harmonic oscillators which is the Fourier transform of
�Fh(t)Fh(0)� [Eq. (S.26)]. Note that in the limit N →
∞, �FhFh�ω can become continuous and then χ̃(ω2) is
a principal value integral. If we now assume that we
have chosen λ̃j and wj in H̃ [Eq. (S.25)] such that Eq.
(S.26) holds, we can substitute �FhFh�ω → �FIFI�ω =
2g2ω0ρ̃(ω). This leads to

S(ω)=
4Θ(ω)ω0[g

2ω0ρ̃(ω) + 0+]

[ω2−ω2
0−4g2ω0χ(ω2)]2+[0++ g2ω0ρ̃(ω)]2

,

(S.36)

where χ(ω2) is the principal value integral

χ(ω2) =
1

2π

�
dΩ

ρ̃(Ω)Ω

ω2 − Ω2
. (S.37)

Note that S(ω)|g=0 = 2πδ(ω − ω0). However, the spec-
trum of any realistic microwave resonator at g = 0 will
be a Lorentzian with full linewidth κ at half maximum.
We use the case g = 0 to relate the so far infinitesimal
real number 0+ in Eq. (S.36) to κ by demanding

S(ω)|g=0 =
4Θ(ω)ω00

+

(ω2 − ω2
0)2 + (0+)2

≈ κ

(ω − ω0)2 + (κ/2)2
.

(S.38)

For κ� ω0, it is sufficient to focus on the vicinity of the
strongly pronounced peak of S(ω)|g=0 at ω = ω0 (i.e.,
on ω − ω0 � ω0), and we find that here Eq. (S.38) is
fulfilled for 0+ = κω0. Inserting this expression in Eq.
(S.36) finally leads to Eq. (4) of the main text. Note that
the properties of the TFIC enter our result for S(ω) only
via the spectrum ρ̃(ω) of the bare TFIC. Therefore, Eq.
(4) also holds if the resonator is coupled to a different
system than the TFIC, with some other spectrum. Note
further that S(ω) is independent of the sign of J (and
the sign of ξ = Ω/2J ) because the spectrum ρ̃(ω) of the
TFIC has this property.

Fig. S5 complements Figs. 2(b) and 2(c) of the main
text by showing S(ω) in the limiting cases g/J � 1 [Fig.
S5(a)] and g/J � 1 [Fig. S5(b)]. In Fig. S5(a), we choose
the parameters J/ω0 and κ/ω0 as in Fig. 2(b), but g/ω0 =
0.05. Where the Ising chain is off-resonant with ω0, the
spectrum is qualitatively similar to the one of Fig. 2(b).
Also here one observes the dispersive shift (∝ g2) of the
resonator frequency in analogy to the N = 1 case and a
broad side maximum of width ∼ 4J (blue and green lines
in the inset). Both are less pronounced than in Fig. 2(b)
due to the lower value of g. On resonance (ξ ≈ ω0/2J),
though, the double peak structure reminiscent of the N =
1 case is no longer visible. Instead, S(ω) is a Lorentzian
around ω0 with full width at half maximum given by
2g2/J (as long as κ� g2/J and ω is within the band of
the Ising chain). Indeed, assuming small g/J , one may
replace ρ̃(ω) by its maximum 2/J and take χ(ω2) ≈ 0 in
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FIG. S5. Spectrum S of a resonator coupled to the first
spin of an Ising chain (N → ∞) vs. frequency ω and nor-
malized transverse field ξ. (a) The case g/J � 1 (the pa-
rameters are g = 0.05, J = 0.1, and κ = 10−4). Inset, S(ω)
for ξ = 3.9, 5, 6.1 (blue, red, green). (b) The case g/J � 1
(the parameters are g = 0.12, J = 0.05, and κ = 10−4).
Inset, S(ω) for ξ = 7.8, 10, 12.2 (blue, red, green). All pa-
rameters are measured in units of ω0. The dashed lines are
the first two excitation energies of H for the same parame-
ters, but N = 1. For better visibility of the features, values of
S(ω) > 1 [S(ω) > 8] in the density plot of (a) [(b)] are plotted
in white. The lines in the insets correspond to cuts along the
arrows in the main plots.

Eq. (S.36). One can then verify

S(ω)|ξ≈ω0/2J ≈ 2g2/J

(ω − ω0)2 + (g2/J)2
. (S.39)

In Fig. S5(b), we choose the parameters g/ω0 and κ/ω0

as in Fig. 2(b), but J/ω0 = 0.05. This case has already
much similarity with the usual single-qubit case. Off res-
onance, the resonator experiences again the same disper-
sive shift as for N = 1. On resonance, the broad double
peak structure of Figs. 2(b,c) with width 4J has devel-
oped into two sharp Lorentzians separated by ≈ 2g as for
N = 1 (red line in the inset). The chain is visible only
as faint band of width 4J in between these peaks.

In order to illustrate finite-size effects on the res-
onator spectrum S(ω), we calculate the spectrum ρ̃(ω)
of a finite transverse-field Ising chain. It is given by
the Fourier transform of Eq. (S.21) and reads ρ̃(ω) =
2π
�

k φ
2
k,1δ(ω − Λk). We assume that the delta peaks

in ρ̃ are broadened by decay processes and replace them
with Lorentzians centered around Λk and having a full
width at half maximum of γ. Together with Eq. (4) of
the main text, this yields the spectrum S(ω) of a res-
onator coupled to a TFIC of finite length. In Fig. S6,
we plot S(ω) for similar system parameters as in Fig. 2
of the main text (g/J ≈ 1), but N = 20. Signatures of
the QPT at ξ = 1, the dispersive shift of the resonator
frequency, and the double-peak structure on resonance
with 4J separation of the peaks (rather than 2g as in the
case N = 1) are present also for N = 20. We remark that
compared to the case N → ∞ (Fig. 2), the ratio g/J has
to be slightly increased for N = 20 (Fig. S6) such that
the double peak structure of S(ω) on resonance is clearly
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FIG. S6. (a) Spectrum S of a resonator coupled to the first
spin of a finite Ising chain (N = 20) vs. frequency ω and
normalized transverse field ξ. The parameters are g = 0.12,
J = 0.08, κ = 10−4, and γ = 5 × 10−3 (in units of ω0). (b)
S(ω) for ξ = 6.1. This curve corresponds to a cut along the
arrows in (a).

visible. This is because the weight of the edges of the
band of the Ising chain in the spectrum ρ̃(ω) increases
with N .

Finally, we plot S(ω) for varying values of the qubit-
qubit coupling J and keep the normalized transverse field
ξ = Ω/2J constant. This corresponds to an implementa-
tion of our proposal with usual flux-tunable transmons.
In such an implementation, J and Ω change with the ex-
ternal flux approximately in the same proportion. Thus,
J is tunable and ξ is constant (see Sec. I of these supple-
mentary notes).

An Ising chain with tunable J but constant ξ is con-
fined to one phase. If implemented with transmons, this
has to be the paramagnetic phase (ξ > 1; see Sec. I).
Thus, when plotted as function of J at constant ξ, the
resonator spectrum S(ω) will not carry signatures of a
phase transition. Moreover, the bandwidth of the chain
(4Jξ for ξ < 1 and 4J for ξ > 1) will not be constant.
Otherwise S(ω) displays the same features for transmons
as before for CPBs, as Fig. S7 demonstrates. Before dis-
cussing Fig. S7, we remark that the tunability of J for
transmons implies that ratio g/J is not constant. We
have seen that shape of the spectrum S depends crucially
on the ratio g/J if the Ising chain is resonant with the
resonator. Therefore, we differentiate the cases g/J � 1,
g/J ≈ 1, and g/J � 1 (as for CPBs) for the Ising chain
formed by transmons being resonant with the resonator
frequency ω0.

Under these conditions, Fig. S7(a) corresponds to Figs.
2(b) and 2(c) of the main text. That is, these figures il-
lustrate the situation where the qubit-qubit coupling J
in a semi-infinite chain of transmons resonant with ω0

[Fig. S7(a)] and in a semi-infinite chain of CPBs [Figs.
2(b,c)] is comparable to the coupling g of the respective
first artificial atom and the resonator. Explicitly, like in
Figs. 2(b,c), we have chosen g/ω0 = 0.12 in Fig. S7(a).
Moreover, the choice ξ = 5 (a realistic value for trans-
mons) ensures that the center of the band of the Ising
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FIG. S7. (a) Spectrum S of a resonator coupled to the first
spin of an Ising chain (N → ∞) vs. probe frequency ω and
qubit-qubit coupling J . The normalized transverse field ξ is
constant (ξ = 5). This corresponds to an implementation of
the Ising chain with standard transmons. Here, the resonator
and the first spin couple with a strength g = 0.12. The color
scale covers values of S from 0 (black) to 15 (white), and
values > 15 are also plotted in white. Inset, S(ω) for the
same parameters and J = 0.08, 0.096, 0.125 (blue, red, green).
These curves correspond to cuts along the arrows through the
density plot of (a). (b) Spectrum S as in (a) in the limiting
case g/J � 1. The plot shows S(ω) for ξ = 5, g = 0.05, and
J = 0.08, 0.1, 0.13 (blue, red, green). (c) Spectrum S as in (a)
in the limiting case g/J � 1. The plot shows S(ω) for ξ = 10,
g = 0.12, and J = 0.03, 0.05, 0.07 (blue, red, green). For all
plots we have chosen the resonator linewidth κ = 10−4. All
parameters are measured in units of the resonator frequency
ω0.

chain (2Jξ) formed by transmons is on resonance with
the resonator at J/ω0 = 0.1 [like in Figs. 2(b,c)]. As
expected, the bandwidth of the TFIC increases linearly
with J in Fig. S7(a). Out of resonance, one observes the
usual dispersive shift of the resonator frequency. On res-
onance, the spectrum exhibits the characteristic double-
peak structure with 4J separation of the peaks, which is
also present for Cooper-pair boxes [Fig. 2(c)].

Also in the limiting cases g/J � 1 and g/J � 1 (on
resonance), a chain of transmons displays the same be-
havior that we have found before for CPBs: Fig. S7(b)
shows S(ω) for ξ = 5 as in (a), but with g/ω0 = 0.05. For
the different curves, J is chosen such that the TFIC is
below (blue), on resonance with (red), and above (green)
the resonator frequency ω0. This plot corresponds to the
inset of Fig. S5(a). The spectrum of a chain of transmons
weakly coupled to a resonator is essentially identical to
the one for a chain of CPBs, and its features can be ex-
plained in the same manner. In order to study the limit-
ing case g/J � 1 for transmons, we chose g = 0.12 and
ξ = 10 for the curves in Fig. S7(c). With this choice of ξ,
the Ising chain formed by transmons is on resonance with
the resonator at J = 0.05. This was also the case in Fig.
S5(b), where we have studied the limiting case g/J � 1
for CPBs. As Fig. S7(b), Fig. S7(c) shows S(ω) for J
chosen such that the TFIC is below (blue), on resonance
with (red), and above (green) the resonator frequency ω0.
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FIG. S8. Nonequilibrium time evolution of �σj
z� after a π-

pulse on the first qubit in a transverse-field Ising chain of
length N = 20 in the paramagnetic phase (normalized trans-
verse field ξ = 8). Qubit 11 is strongly detuned from the
rest of the chain. Values > −0.5 are plotted in white. The
measurable observable �σ1

z� is singled out left.

Like for CPBs, one can clearly see how the usual Jaynes-
Cummings spectrum (corresponding to the case N = 1)
emerges as limiting case.

IV. PROPAGATION OF A LOCALIZED
EXCITATION IN THE ISING CHAIN

This section contains the explicit evaluation of the
RHS of Eq. (5) of the main text. Further, it is shown
that by deliberately detuning the transition frequency of
one qubit, the effective length of the TFIC can be modi-
fied. With

Lj ≡ c†
j + cj =

�

k

φk,j(η
†
k + ηk) (S.40)

Mj ≡ c†
j − cj =

�

k

ψk,j(η
†
k − ηk), (S.41)

where φk,j and ψk,j are determined by Eqs. (S.12) [and
explicitly given in Eqs. (S.16) and (S.17)], we reformulate
Eq. (5) in terms of fermions,

�σj
z�(t) = �0|L1Mj(t)Lj(t)L1|0�. (S.42)

The RHS of this equation can be evaluated using Wick’s
theorem, which was first used in this context in Ref. [13].
One finds

�σj
z�(t) = −

�

k

ψk,jφk,j +
�

k,k�

ei(Λk−Λk� )t
�
φk,1φk�,1

× (ψk,jφk�,j + ψk�,jφk,j)
�
. (S.43)

This formula was used for the plots in Fig. 3 of the main
text.

If the transition frequencies Ωj of the qubits can be
tuned individually, one can intentionally detune one
qubit from the rest of the chain and observe how the
system dynamics changes depending on the detuning.

qubit number j

ti
m
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J
t
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50 100

50

�σj
z�
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FIG. S9. Time evolution of �σj
z� in a transverse-field Ising

chain of length N = 100 after a quench of the normalized
transverse field ξ = 8 → 1. Values < −0.55 (> −0.52) are
plotted in black (white).

Fig. S8 shows the time evolution of �σj
z�(t) after a lo-

cal excitation has been created on the first site for the
same system parameters as in Fig. 3, but with qubit 11
strongly detuned from the others, explicitly Ω11 = 1.3Ωj

for j �= 11. This local inhomogeneity acts as a barrier
for the propagating excitation and leads to its reflection.
The revival of the measurable observable �σ1

z�(t) takes
place at t ≈ N/2J rather than at t ≈ N/J as in Fig. 3 of
the main text. Thus, strongly detuning one qubit from
the others effectively changes the length of the chain.

V. QUENCH DYNAMICS OF THE
MAGNETIZATION AND THE END-TO-END

CORRELATIONS

We calculate the time evolution of �σj
z� and �σ1

xσ
N
x �

that follows a sudden change from ξ = ξa to ξ = ξb at
t = 0. We plot and discuss the result for �σ1

xσ
N
x � and

provide a plot of �σj
z� in addition to Fig. 4 of the main

text. In the following, quantities belonging to HI,a are
labelled by a (like Λa

k), and analogously for HI,b.
First, we focus on

�σj
z�(t) = a�0|eiHI,btσj

ze
−iHI,bt|0�a. (S.44)

To evaluate the RHS, we use the usual mapping to free
fermions [13, 14]: We express σj

z by ηb
k and ηb†

k whose time
dependence is trivial. Then we express these operators
by ηa

k and ηa†
k whose action on |0�a is known. One obtains

�σj
z�(t) = −

�

k

ψb
k,jφ

b
k,j + 2

�

k,k�

{ψb
k,jφ

b
k�,j×

[Xk,k� cos t(Λb
k + Λb

k�) + Yk,k� cos t(Λb
k − Λb

k�)]
�
. (S.45)

Here,

Xk,k� =
�
(gb

k)T Ha + (hb
k)T Ga

��
(Ga)T gb

k� + (Ha)T hb
k�
�
,

Yk,k� =
�
(gb

k)T Ha + (hb
k)T Ga

��
(Ha)T gb

k� + (Ga)T hb
k�
�
,
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FIG. S10. Time evolution of the end-to-end correlator �σ1
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N
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in a transverse-field Ising chain of length N = 30 after a
quench of the normalized transverse field ξ = 8 → 1.5.

and G and H are matrices containing the gk and hk

as columns, respectively. Complementary to Fig. 4 of
the main text, we plot in Fig. S9 �σj

z�(t) for a quench
ξa = 8 → ξb = 1 in a transverse-field Ising chain with
length N = 100. We focus here on t ≤ T and choose a
relatively large chain to strongly contrast the initial ap-
proach of �σj

z� to a constant value with the effects of the
finite system size. The choice of the non-generic value
ξb = 1 minimizes dispersion of Λk and, thus, of the ve-
locities of the quasiparticles. The features of �σj

z�(t) for
t ≤ T described in the main text are more pronounced
and clearly visible in Fig. S9.

Let us now turn to the quench dynamics of the end-
to-end correlator

�σ1
xσ

N
x �(t) = a�0|eiHI,btσ1

xσ
N
x e−iHI,bt|0�a. (S.46)

We remark that similar quantities have been studied in
[17]. To evaluate the RHS of (S.46), we use that HI

commutes with eiπ
�N

k=1 c†
kck for all ξ. Consequently, |0�a

is also an eigenstate of the latter operator [13]. It is now
easy to see that

σN
x (t)|0�a = [c†

N (t) − cN (t)]eiπ
�N

k=1 c†
kck |0�a (S.47)

= [c†
N (t) − cN (t)]|0�a, (S.48)

where O(t) = eiHI,btOe−iHI,bt for an operator O. The
same strategy as for �σj

z� leads to

�σ1
xσ

N
x �(t) =

�

k

φb
k,1ψ

b
k,N + 2

�

k,k�

{φb
k,1ψ

b
k�,N×

[Xk,k� cos t(Λb
k + Λb

k�) − Yk,k� cos t(Λb
k − Λb

k�)]
�
, (S.49)

with Xk,k� and Yk,k� defined above. This result is plotted
in Fig. S10 for a quench within the paramagnetic phase.
The observable �σ1

xσ
N
x � is an order parameter of the Ising

chain in equilibrium and does not develop a nonzero mean
value for quenches within the paramagnetic phase. How-
ever, at t ≈ N/2v0 = T/2, where v0 = 2J in the para-
magnetic phase, oscillations of �σ1

xσ
N
x � arise. After an

abrupt increase, their amplitude decreases again, and this
pattern quasiperiodically repeats with period T = N/v0.
The observed behavior of the end-to-end correlator can,
again, be understood in the QP picture (see [17] for a re-
lated analysis). Among the pairs of momentum-inverted
QP trajectories with the same origin only those origi-
nating at j = N/2 have trajectories hitting the system
boundaries simultaneously. Since only contiguously gen-
erated QPs carry quantum correlations, only the QPs
generated at j = N/2 can build up correlations between
the surface spins which will manifest themselves in a
nonzero value of �σ1

xσ
N
x �. These QPs arrive for the first

time at the surface spins at t = N/2v0 = T/2, are then
reflected, and build up correlations between the surface
spins each time they have travelled through the whole
chain, that is, after multiples of T = N/v0. This ex-
plains the two different time scales T/2 and T and the
quasiperiodicity (for t > T/2) of the end-to-end correla-
tor �σ1

xσ
N
x �(t). Slower QPs generated at j = N/2 will also

arrive simultaneously but delayed at the surface spins.
They are responsible for the slow decay of the oscilla-
tions of the correlator for t � T/2 and will, for large t,
eventually smear out the quasiperiodic structure.
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4.6 Publication: The quantum transverse-field Ising chain in
circuit quantum electrodynamics: effects of disorder on
the nonequilibrium dynamics

In this section, we study the effects of disorder on the (dynamical) behavior of our quantum
simulator. Small amounts of disorder in the system parameters have to be expected in an actual
implementation of our circuit QED setup, caused by imperfections in the fabrication process.
We address the question whether this disorder would spoil the experimental results predicted
in the previous section and how much disorder can be tolerated. We also study the regime of
strong disorder, which leads to qualitatively new effects such as the Anderson localization of
propagating quasiparticles. The crossover between weak and strong disorder should be directly
accessible in our setup by detuning individual qubits in situ. Our work in this regard has been
previously published as an article in New Journal of Physics. This section contains a reprint of
this publication.
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implementation of the quantum transverse-field Ising chain in the framework
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the effects of disorder on the nonequilibrium behavior of the system. We show
that small amounts of fabrication-induced disorder in the system parameters
do not jeopardize the observation of previously predicted phenomena. Based
on a numerical extraction of the mean free path of a wave packet in the
system, we also provide a simple quantitative estimate for certain disorder effects
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of Anderson localization of the system’s wave functions, and the qualitatively
different dynamics it leads to.
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1. Introduction

Circuit quantum electrodynamics (QED) systems consist of superconducting artificial atoms
coupled to the electromagnetic field in a microwave resonator [1]. Such systems have been
successfully used for the implementation of elementary quantum optical Hamiltonians [2, 3]
and basic quantum information processing [4–7]. The rapid technological development in
the field of circuit QED will soon facilitate experiments with highly coherent multi-atom,
multi-resonator circuit QED architectures. This makes circuit QED a promising platform
for observing interesting multi-atom quantum optical effects [8–10] and even for simulating
genuinely interacting quantum many-body systems from solid state physics [11–20].

In [20], we have proposed and analyzed a circuit QED design that implements the quantum
transverse-field Ising chain (TFIC) coupled to a microwave resonator for readout. The TFIC is
an elementary example of an integrable quantum many-body system. Despite its simplicity, it
still exhibits interesting features, e.g. a quantum phase transition (QPT), and therefore serves
as a model example system in the theory of quantum criticality [21] and nonequilibrium
thermodynamics [22]. Our circuit QED quantum simulator can be used to study quench
dynamics, the propagation of localized excitations and other nonequilibrium phenomena in the
TFIC, based on a design that could easily be extended to break the integrability of the system.
While in [20] we have focused on an idealized implementation of the TFIC with perfectly
uniform parameters, the main purpose of the present paper is to investigate the effects of disorder
in the system parameters on the dynamical behavior of our quantum simulator.

The study of disorder effects on quantum simulators is relevant for two reasons. Firstly, on
the more practical level, any real experimental system will come with a degree of unwanted
disorder (especially in condensed matter settings). In the case of circuit QED systems,
inhomogeneities of the system parameters are caused by fabrication issues as well as by static
noise fields (e.g. produced by defects). It is important to verify that the basic behavior of a
quantum simulator survives the amounts of disorder which are present in realistic systems or
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even to estimate the amount of disorder that can be tolerated. Secondly, on a more fundamental
level, simulating quantum many-body systems with built-in (potentially tunable) disorder is
interesting in its own right. Many physical phenomena, from free propagation of wave packets to
quench dynamics to (quantum) phase transitions, can be affected in significant ways by disorder,
and this leads to phenomena such as Anderson localization or disorder-induced phases.

To prepare for our study, we briefly review the system (section 2.1), discuss sources of
disorder and how disorder scales with the tunable system parameters (section 2.2) and explain
the mathematical approach to and some properties of the quantum Ising chain (section 2.3). We
start our main discussion by considering the time-dependent correlations of the order parameter
of the chain, where the finite-size effects and the long-time behavior will be analyzed in the
absence of disorder (section 3.1). Based on this, we will move on to the spectrum of the resonator
coupled to the quantum Ising chain in our system, which is closely related to the aforementioned
time-dependent correlations. To that end, we employ a very useful approximation which we
have introduced in [20] and which will presumably become important also for future studies
of quantum many-body systems coupled to resonators. In this approximation, the full quantum
many-body system is replaced by a bath of harmonic oscillators with an identical spectrum. We
show here that this approximation actually works very well under appropriate circumstances
(section 3.2). We then calculate the spectrum of the resonator coupled to a slightly disordered
Ising chain and find that the effects of disorder on the spectrum are small (section 3.3). The
Ising chain in our circuit-QED quantum simulator can be driven out of equilibrium in several
ways. This allows one to perform various types of nonequilibrium experiments, a particularly
appealing application of our setup. In our previous work, we have suggested to observe the
propagation of a localized excitation through the chain or the nonequilibrium dynamics of the
system after a quantum quench. Here, we show that the predicted phenomena are insensitive
to a small amount of disorder in the system parameters (sections 4.1 and 4.2, respectively).
Moreover, we provide a simple estimate of the amount of disorder that will qualitatively change
the wave functions and, thus, strongly affect the dynamics even of small systems (that is, on the
scale of neighboring artificial atoms). However, as argued above, it would be highly desirable to
possess also a quantitative theory of disorder effects. Since the nonequilibrium dynamics of the
uniform TFIC is determined by the ballistic propagation of quasiparticles (QPs; wave packets),
we formulate and numerically verify for the weakly disordered case a relation between the mean
free path of the latter and the parameters of the system and the disorder potential. By means of
this relation we are able to predict the dynamical behavior of our quantum simulator given a
certain disorder strength, and to estimate the amount of disorder that a particular experiment
can tolerate (section 4.1).

2. The quantum transverse-field Ising chain in circuit quantum electrodynamics

2.1. Setup

We consider a circuit QED quantum simulator of the TFIC as proposed in [20]. It consists
of a chain of N capacitively coupled charge-based superconducting artificial atoms [23], such
as transmons or Cooper-pair boxes (the latter have to be biased to their charge degeneracy
point [23] to properly simulate the TFIC). For a review on superconducting artificial atoms,
see [23]. The first artificial atom is capacitively coupled to a microwave resonator (see figure 1).
This resonator A is required for initialization and readout of the first artificial atom. For
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N

resonator A

j1

(optional)
resonator B

artificial atom j

Figure 1. Circuit QED implementation of the quantum TFIC (adapted
from [20]). Charge-based artificial atoms are capacitively coupled to their nearest
neighbors. Coupling the first (N th) artificial atom to resonator A (B) allows one
to use standard circuit QED techniques for initialization and read-out of the first
(N th) artificial atom.

certain types of experiments, e.g. for measuring end-to-end correlators, one also needs a second
resonator B, coupled to the N th artificial atom. For details of the implementation and the
theoretical description of the system, see [20]. The system (at first, only with resonator A)
can be approximately described by the Hamiltonian

H= ω0a†a + g(a† + a)σ 1
x +HI, (1)

and HI is the Hamiltonian of the TFIC,

HI =
N�

j=1

� j

2
σ j

z −
N−1�

j=1

J jσ
j

x σ j+1
x . (2)

Here, σ
j

x/z is a Pauli matrix. That is, the artificial atoms are considered as two-level systems
(qubits), and their two states are described as spin states. The operators a† and a generate and
annihilate a photon of energy ω0. The transition frequency � j > 0 of the j th qubit corresponds
to a local magnetic field acting on the j th spin in the usual interpretation of the TFIC.
As such, it would be transverse to the direction of the qubit–qubit coupling J j . The latter
can be either ferromagnetic (J j > 0, as in the geometry of figure 1) or anti-ferromagnetic
(J j < 0, if the qubits in figure 1 are rotated by 90◦). While in our previous work we have
focused on the uniform case J j = J and � j = � for all j , here we are often interested in
the case where these system parameters are explicitly nonuniform. This is because, on the one
hand, a slight nonuniformity of the � j and J j has to be expected from imperfections of the
fabrication process. On the other hand, one can also intentionally detune one or several qubits
(by threading the SQUID-like loops of the qubits with different fluxes) and observe how the
system’s properties change depending on the detuning.

2.2. Disorder and tunability of the system parameters

Let us discuss the flux tunability and the undesired disorder of the system parameters in some
more detail. We will argue that the qubit transition frequencies � j and the qubit–qubit couplings
J j , when normalized to their respective mean values, may be assumed to be flux independent.
This will be relevant for our theoretical description of the disorder in the system.
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In reality, it should be possible to engineer the geometry of the qubits essentially uniform.
That is, the areas of the qubits’ SQUID loops, their charging energies and the coupling
capacitances between the qubits will only vary weakly in the chain. However, the (flux-tunable)
total Josephson energies EJ(�) of the artificial atoms should be experimentally harder to control
since these depend exponentially on the properties of the Josephson junctions. For a flux-tunable
(i.e. SQUID-type) artificial atom with two Josephson junctions [24],

EJ(�) = (�1
J + �2

J ) cos
�

�π

�0

� �
1 + d2 tan2

�
�π

�0

��1/2

. (3)

Here, �i
J is the Josephson coupling energy of one Josephson junction, �0 is the superconducting

flux quantum, � is the tunable external flux threading the SQUID loop, and d = (�1
J − �2

J )/(�
1
J +

�2
J ). Assuming equal qubit geometries, � can be chosen identical for all qubits (e.g. by

using a common flux line) and only the �i
J can give rise to disorder. Even if one allows for

|d| ∼ 0.1, this still means that d2 � 1, and one can approximate the total Josephson energy
of the j th artificial atom by EJ j(�) ≈ (�1

J j + �2
J j)cos(�π/�0) (as long as |�| �≈ �0/2). Now,

for Cooper-pair boxes at the charge degeneracy point � j(�) ≈ EJ j(�), and for transmons
� j(�) ≈ [8EJ j(�)EC]1/2 [24]. Thus, under the assumption of identical geometry, both for
Cooper-pair boxes and for transmons the transition frequencies � j(�) of all qubits j scale
with a j-independent function α(�) of the (global) flux �, � j(�) = α(�)� j(0). Here,
α(�) = cos(�π/�0) for Cooper-pair boxes and α(�) = [cos(�π/�0)]1/2 for transmons. This
result implies that the qubit transition frequencies, when normalized to their flux-dependent
mean value, do not depend on � and, hence, have the same statistical properties for all �.
Explicitly, the mean value of the � j is given by � j(�) = α(�)� j(0). Thus, the mean value
of the � j is flux tunable. However, the normalized qubit transition frequencies � j(�)/� j(�)
are independent of �, which must also be the case, for instance, for their standard deviation.
This will become important for our numerical implementation of disorder in the � j when we
consider changes of the external magnetic flux �.

The qubit–qubit couplings J j can also depend on the EJ j(�) and, thus, on the � j . This is
the case for transmons, where approximately J j ∝ (� j� j+1)

1/2 ∝ (EJ j EJ j+1)
1/4 [20, 25]. That

is, the disorder in the � j and the J j will not be independent for transmons. Moreover, � j , J j

and their mean values � j and J j change with the external flux � approximately in the same
proportion (∝ [cos(�π/�0)]1/2). For Cooper-pair boxes, on the other hand, the J j depend only
on charging energies and not on the EJ j(�) [20]. This means that the J j are not affected by
changes of the external flux. Furthermore, the disorder in the J j should be less pronounced
than and hardly correlated with the disorder in the � j . Concerning the relative strength and
the correlation of the disorder in the J j and the � j , we remark that also static noise fields
can play a role, producing some disorder also in the various charging energies of the system
(in particular for Cooper-pair boxes, which have small electrostatic capacitances). Apart from
that, disorder in the J j will turn out to have a much weaker effect than disorder in the � j .
These deliberations allow us to assume for simplicity that, both for Cooper-pair boxes and for
transmons, disorder in the � j and J j can be present to a comparable degree and that disorder
in the � j (J j ) would be uncorrelated with the disorder possibly present in the J j (� j ). We
finally remark that many properties of the TFIC are determined by the ratio � j/J j , since this
ratio essentially (in the limit of weak disorder) determines the eigenstates of the system (see
below). For standard transmons, the ratio � j/J j is not straightforwardly flux tunable. One of
the experiments we suggest to perform with our quantum simulator relies on the possibility to
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change the eigenfunctions of the system (cf section 4.2), which can be done only by changing
the ratio � j/J j . All other possible experiments discussed in this paper can be performed, in
principle, with Cooper-pair boxes and transmons equally well, irrespective of the J j being flux-
dependent or not [20]. Therefore, when plotting our results as a function of a flux-tunable system
parameter, we will assume for definiteness that our circuit-QED quantum simulator of the TFIC
is implemented with Cooper-pair boxes and that the J j do not change with the external magnetic
flux.

2.3. The transverse-field Ising chain

The Hamiltonian (2) can be exactly diagonalized by means of a Jordan–Wigner transformation,
which was first used in this context in [26, 27]. This transformation maps the spin degrees of
freedom to fermionic operators c j , c†

j via σ +
j = c†

j exp(iπ
� j−1

k=1 c†
kck) and yields

HI = −
N�

j=1

� j

2
+

N�

j=1

� j c
†
j c j −

N−1�

j=1

J j [c
†
j c

†
j+1 + c†

j c j+1 + H.c.]. (4)

Up to a constant −
�

j � j/2, this Hamiltonian is of the form

H =
N�

i, j=1

[c†
i Ai, j c j + 1/2(c†

i Bi, j c
†
j + H.c.)]. (5)

Note that the conditions H = H † and {c j , c†
j} = 1 require that A = A† and B = −BT. By

introducing new fermions ηk =
�N

j=1 gk, j c j + hk, j c
†
j , such Hamiltonians can be transformed into

the diagonal form H =
�

k �k(η
†
kηk − 1/2) +

�
j A j, j/2 [26]. The components gk, j and hk, j of

the vectors gk and hk and the excitation energies �k of H are determined by defining normalized
vectors φk = gk + hk and ψk = gk − hk and by solving the equations

φk(A − B) = �kψk, ψk(A + B) = �kφk. (6)

In our case

A =





�1 −J1 0 · · · 0
−J1 �2 −J2

0 −J2 �3 −J3
...

. . .
. . .

. . .

−JN−2 �N−1 −JN−1

0 −JN−1 �N




, (7)

and B is obtained by substituting A j, j = � j → 0 and A j+1, j = −J j → J j into A. For uniform
� j and J j , the φk , ψk and �k can be analytically calculated from equations (6) (see, e.g., [20]).
For nonuniform system parameters, these quantities have to be determined numerically. In both
cases, the Hamiltonian HI of the TFIC can be written in the form

HI =
�

k

�k(η
†
kηk − 1/2), (8)

and knowledge of the φk and ψk allows one to express spin observables in terms of the
ηk-fermions, which is the basis of many of our calculations. For instance,

σ j
z = (c†

j + c j)(c j − c†
j) =

�

k,k�

φk, jψk�, j(η
†
k + ηk)(ηk� − η†

k�). (9)
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We collect some important facts about the TFIC. In the uniform case,

�k = 2J
�

1 + ξ 2 − 2ξ cos k. (10)

Here, J = |J | and ξ = �/2J is the normalized transverse field. The possible values of k are
solutions of sin k N = ξsin k(N + 1). For N → ∞, the uniform TFIC undergoes a second-order
QPT at � = ±1 from a ferromagnetic [� ∈ (0, 1)] or an anti-ferromagnetic [� ∈ (−1, 0)] ordered
phase with doubly degenerate eigenstates (one �k → 0) to a paramagnetic disordered phase
with �k > 0 for all k. The QPT is signaled by the disappearance of long-range correlations
in σx . This QPT will also occur in a nonuniform system (at some mean transverse field
strength � j ) [21]. However, there can be weakly (dis)ordered Griffith–McCoy ‘phases’ in the
vicinity of the critical point [28–31].

Finally, we introduce a convenient notation for nonuniform � j and J j . In this case,
we will frequently write � j = �τ j and J j = J τ �

j , where τ j and τ �
j usually have mean 1,

or, if � j and J j follow probability distributions, expectation value 1. We will refer to �
as the ‘mean’ qubit transition frequency, even if � = �� j� is the expectation value of a
probability distribution and the actual mean value � j is (for finite N ) in general different
from �. We use the same convention for the qubit–qubit coupling J . Furthermore, we
define the local and the ‘mean’ normalized transverse magnetic field, ξ j = � j/2J j and ξ =
�/2J . Note that in general both ξ �= ξ j and ξ �= �ξ j� (but for the probability distributions
we will consider, (ξ − �ξ j�)/�ξ j� < 1%). We usually characterize HI by the parameters ξ ,
J , τ j and τ �

j . Under the assumptions formulated in section 2.1, � and thus ξ are flux-
tunable without changing the τ j in the proposed circuit-QED quantum simulator of the
TFIC.

3. Spectrum of the system

In order to provide a guideline for the initial experimental characterization of our setup, we
have calculated in [20] the transmission spectrum S of the resonator as a function of the probe
frequency ω and the flux-tunable qubit transition frequency � (see below equation (28)). To
that end, we have first calculated the spectrum of the bare TFIC for coupling to the first qubit
via σ 1

x ,

ρ̃(ω) =
�

dt eiωt�σ 1
x (t)σ 1

x (0)�, (11)

which is the Fourier transform of the qubit autocorrelator ρ(t) = �σ 1
x (t)σ 1

x (0)�. We have argued
that for sufficiently large (but finite) N , qubit decay processes will render the measured
spectrum continuous and akin to the spectrum one would obtain by taking the limit N →
∞ in the calculation of ρ. Assuming small coupling g/ω0 � 1 of the first qubit and the
resonator, we have then considered the TFIC as a linear bath for the resonator, and this
approximation allowed us to calculate the resonator spectrum S in the coupled system. In
this section, we add some remarks on the interpretation of the autocorrelator, the transition
N → ∞ and the linear approximation. Moreover, we discuss how a small amount of disorder
in the qubit parameters due to imperfections in the fabrication process affects the resonator
spectrum S.
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Figure 2. Imaginary part of the qubit autocorrelator ρ(t) = �σ 1
x (t)σ 1

x (0)� of
the TFIC with normalized transverse field ξ = �/2J = 8 in the cases N = 20
(black) and N → ∞ (magenta).

3.1. Time-dependent correlations in the transverse-field Ising chain

By means of the spin–free-fermion mapping described in section 2.3, one readily finds that

ρ(t) = �σ 1
x (t)σ 1

x (0)� =
�

k

φ2
k,1 e−it�k . (12)

Here and in the following, expectation values are calculated under the assumption of zero
temperature. This is justified because the band gap of the Ising chain is of the same order of
magnitude as the qubit transition frequencies � ∼ 5 GHz (except near the critical point) and,
thus, much bigger than the usual mK temperatures of a cryogenic environment. In the uniform
case � j = � and J j = J , where explicit expressions for φk and �k can be found, the limit
N → ∞ can be taken analytically and yields [20]

ρ(t) = �(1 − |ξ |)(1 − |ξ |2) +
2
π

� π

0
dk

ξ 2 sin2 k
1 + ξ 2 − 2ξ cos k

e−it�(k). (13)

Here, �(x) is the Heaviside step function and �(k) stands for �k with continuous k
(equation (10)). The first term on the rhs of (13) causes a nonzero mean value of Re ρ(t) in
the ordered phase. Figure 2 shows Im ρ(t) for ξ = 8 in the cases N = 20 (equation (12)) and
N → ∞ (equation (13)) (the time evolutions of Re ρ and Im ρ are qualitatively similar and
agree for |ξ | � 1 up to a phase). For small times, the curves coincide (the second covers the
first). However, the finite size of the TFIC with N = 20 causes a revival of ρ at Tr ≈ 2N/v with
v = max[d�(k)/dk] (v = 2J |�| for � < 1 and v = 2J for |ξ | > 1). This can be understood in
the following way. The autocorrelator ρ is related to the linear response ��σ 1

x �(t) of the TFIC
to a perturbation ∝ δ(t)σ 1

x relative to the equilibrium value �σ 1
x � = 0. Indeed, Kubo’s formula

predicts that ��σ 1
x �(t) ∝ Im ρ(t). The δ-pulse at t = 0 forces the first spin in the −x-direction.

This local excitation in position space is composed of many excitations in k-space. Since most
of them have velocity v [20], the local excitation propagates with velocity v through the system,
is reflected at the far end of the chain and causes revivals of ρ at multiples of Tr = 2N/v. To
further clarify the transition N → ∞, we note that for large t , ρ has a standard deviation from
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its mean ∝ 1/
√

N . This can be expected from (12) since |ρ(t)|2 ∼ 1/N 2 �
k,k� eit (�k−�k� ) and,

for t → ∞, all terms in the sum except for those with k = k � will cancel. In general, the t → ∞
fluctuations that we find for all time-dependent observables considered in this work are due to
the finite system size and decrease with N (but not all of them behave like ∝1/

√
N ).

3.2. Spectrum of the resonator—the linear approximation

Taking the Fourier transform of equations (12) and (13) yields the spectrum ρ̃(ω) of the TFIC
for a force that couples to σ 1

x for finite N and N → ∞, respectively. In order to calculate the
spectrum S of the resonator, whose coordinate (a† + a) couples to σ 1

x (cf equation (1)), we have
suggested [20] a useful approximation: we consider the TFIC as a linear bath for the resonator.
That is, we replace the TFIC by a set of harmonic oscillators having the spectrum ρ̃ of the TFIC.
This approximation can be straightforwardly generalized to other contexts, where a different
many-body system couples to a resonator. It is justified in the limit of small qubit–resonator
coupling g/ω0 � 1, as we discuss in the following.

The linear approximation for the TFIC-bath fails as soon as probing the resonator
sufficiently excites the TFIC so that its nonlinearity becomes important. Thus, the linear
approximation requires a small coupling g and is worst if the TFIC is on resonance with
the resonator (ω0 within the band �k of the TFIC). The ‘most nonlinear’ bath possible
for the resonator, that is, the bath whose nonlinearity becomes important for the smallest
value of g, is a bath consisting of only a single qubit on resonance with the resonator. If
the linear approximation is adequate for such a system in the limit g/ω0 � 1, it will be
also sufficient for our purposes. Therefore, we now consider the case N = 1 and � = ω0

of equation (1) and calculate the spectrum of the resonator by linearizing the single-qubit
bath. Since the atomic Hilbert space is small for N = 1, we can then numerically check the
accuracy of our approximation. We also compare our approximation with the resonator spectrum
calculated analytically within the rotating wave approximation (RWA), which is the standard
approximation of H in this specific situation.

For N = 1 and � = ω0, the Hamiltonian H (equation (1)) becomes

HN=1 = ω0a†a + g(a† + a)σx +
ω0

2
σz. (14)

That is, the resonator coordinate (a† + a) couples to a single-qubit bath with the Hamiltonian
Hq = ω0

2 σz via a force gσx . The spectrum of this force is

F̃q(ω) =
�

dt eiωt
q�gσx(t) gσx(0)�q = 2πg2δ(ω − ω0), (15)

where the time evolution of σx and the expectation value q� . �q are to be calculated with respect
to (the ground state of) Hq. Now we linearize the system and replace HN=1 by

Hlin = ω0a†a + g�(a† + a)(b† + b) + wb†b (16)
with bosonic b, b† and parameters g� and w to be determined. In (16), the resonator couples
to a force g�(b† + b) exerted by a bath that consists of a single harmonic oscillator with the
Hamiltonian Hho = wb†b. The spectrum of this force reads

F̃ho(ω) = 2π(g�)2δ(ω − w). (17)
Thus, we choose g� = g and w = ω0 such that F̃ho = F̃q. With this substitution, we now calculate
the autocorrelator of the resonator coordinate

ρlin(t) = lin�[a†(t) + a(t)][a†(0) + a(0)]�lin, (18)
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and its Fourier transform, the resonator spectrum

ρ̃lin(ω) =
�

dt eiωtρlin(t), (19)

according to equation (16). To that end, we express the resonator coordinate (a† + a) in terms of

the (bosonic) eigenmodes c̃± with frequencies ω̃± =
�

ω2
0 ± 2 gω0 of Hlin,

(a† + a) =
�

ω0

2

�
c̃†

+ + c̃+√
ω̃+

+
c̃†

− + c̃−�
ω̃−

�

. (20)

Using (20), one readily finds that

ρlin(t) = ω0

2

�
e−iω̃+t

ω̃+
+

e−iω̃−t

ω̃−

�
, (21)

ρ̃lin(ω) = π

�
ω0

ω̃+
δ(ω − ω̃+) +

ω0

ω̃−
δ(ω − ω̃−)

�
. (22)

Before we go on and compare these approximate analytical results with numerical finite-
size calculations for HN=1 (equation (14)), we calculate the same quantities on the basis of the
standard approximation toHN=1 for g/�0 � 1, the RWA (see, e.g., [32]). This will be a helpful
benchmark for estimating the quality of the linear approximation. In the RWA, the Hamiltonian
HN=1 reduces to the Jaynes–Cummings Hamiltonian

HRWA = ω0a†a + g(a†σ− + aσ +) +
ω0

2
σz. (23)

This Hamiltonian can be straightforwardly diagonalized, and one can therefore analytically
calculate the autocorrelator ρRWA(t) and the spectrum ρ̃RWA(ω) of the resonator in the
approximation provided by HRWA,

ρRWA(t) = 1
2

�
e−it (ω0+g) + e−it (ω0−g)

�
, (24)

ρ̃RWA(ω) = π [δ(ω − (ω0 + g)) + δ(ω − (ω0 − g))]. (25)

On the basis of (23), the results (24) and (25) are exact.
The autocorrelator and the spectrum of the resonator can also be calculated numerically

after truncating the photonic Hilbert space. This is achieved by expanding HN=1 and the
resonator coordinate (a† + a) in the product basis {|sz, ν�}, where sz =↑, ↓ and ν ∈N0, and
dropping all matrix elements with ν > νmax. In this finite-size approximation, the eigenvalues
En and eigenvectors |n� of HN=1 can be numerically calculated (n = 0, . . . , nmax = 2νmax + 1)
and give ρ(t) and ρ̃(ω) according to

ρ(t) =
nmax�

n=0

e−i(En−E0)t |�0|(a† + a)|n�|2, (26)

ρ̃(ω) = 2π

nmax�

n=0

δ(ω − (En − E0)) |�0|(a† + a)|n�|2. (27)
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Figure 3. Comparison of the RWA and the linear approximation with highly
accurate finite-size numerics for a resonator with frequency ω0 resonantly
coupled to a single qubit with coupling strength g/ω0 = 0.12. (a) The
autocorrelator ρ(t) = �[a†(t) + a(t)][a†(0) + a(0)]� of the resonator (red), and
the same quantity calculated within the RWA (ρRWA, blue) and the linear
approximation (ρlin, green). (b) The spectrum ρ̃(ω) =

�
dt eiωtρ(t) of the

resonator (red), and the same quantity calculated within the RWA (ρ̃RWA, blue)
and the linear approximation (ρ̃lin, green). The dashed line is a guide to the eye.

Even for a relatively strong coupling g/ω0 = 0.3, the numerical results for ρ(t) and ρ̃(ω) are
already converged if νmax = 3 photonic excitations are taken into account. However, to be on the
safe side, we choose νmax = 10 in our calculations, which is still numerically easily tractable.

Our results for the autocorrelator ρ(t) and the spectrum ρ̃(ω) of the resonator in
HN=1 are plotted, respectively, in figure 3(a) (equations (21), (24), (26)) and figure 3(b)
(equations (22), (25), (27)). In both plots, we choose g/ω0 = 0.12, which is the largest ratio
of g/ω0 used in this work and in [20]. The autocorrelator ρ(t) of the resonator (red) is well
approximated both by the RWA (ρRWA, blue) and the linear approximation (ρlin, green), and the
quality of these approximations is essentially equal. For small t , the linear approximation might
be even more accurate than the RWA, but becomes worse at large t . This can be understood
in the frequency domain. In figure 3(b), we plot the spectral weights of the delta peaks in
the spectra ρ̃, ρ̃RWA and ρ̃lin (red, blue and green) at the corresponding peak positions. The
spectrum ρ̃ contains also delta peaks at higher frequencies than the ones plotted, but their weight
is virtually zero (2π |�0|(a† + a)|n�|2 < 10−7 for all n �= 1, 2). Both approximations yield good
predictions for the positions and the spectral weights of the peaks in ρ̃. The RWA is more precise
in predicting the peak positions and the linear approximation in predicting the spectral weights
(note, however, that the peak positions in ρ̃lin and ρ̃RWA agree up to first order in g/ω0). Thus, the
linear approximation is more precise for small t , in particular at t ≈ 0 and where the envelope of
ρ(t) has a minimum, but becomes worse for large t . In summary, we conclude that even for the
situation N = 1 and � = ω0, the linear approximation yields good results for the autocorrelator
and the spectrum of the resonator in the limit g/ω0 � 1 that are qualitatively comparable to the
usual RWA in this context. This implies that the linear approximation is well justified in our
calculation of the spectrum of a resonator coupled to a TFIC.
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3.3. Spectrum of the resonator—disorder effects

The linear approximation for the TFIC allows one to express the spectrum S(ω) of the (coupled)
resonator as a function of the spectrum ρ̃(ω) of the TFIC [20],

S(ω) = 4�(ω)[κ + g2ρ̃(ω)]
[ω2/ω0 − ω0 − 4g2χ(ω2)]2 + [κ + g2ρ̃(ω)]2

. (28)

Here, κ is the full-linewidth at half-maximum of the Lorentzian spectrum of the
uncoupled (g = 0) resonator and χ(ω2) denotes the principal-value integral χ(ω2) =
1/(2π)

�
d�ρ̃(�)�/(ω2 − �2). This result is actually general and holds for any linear bath

coupled to a resonator, with an arbitrary spectrum ρ̃. Plots of S, with ρ̃(ω) being the Fourier
transform of (13), are presented in [20]. However, in an actual implementation of the proposed
setup, the qubit parameters J j and � j will not be perfectly uniform, due to imperfections in
the fabrication process. We now investigate how this modifies the characteristic features of the
spectrum S of the uniform system. It is known in the field of random-matrix theory that disorder
would have to be very strong in order to have a dominant effect on (average) spectra. We will
observe the same here, in this concrete model system.

For a nonuniform TFIC, no closed analytical expressions for ρ̃(ω) are available. Thus,
we have to consider finite system sizes and calculate numerically the relevant quantities,
specifically, the spectrum of a finite-size nonuniform TFIC,

ρ̃(ω) = 2π
�

k

φ2
k,1δ(ω − �k), (29)

which is the Fourier transform of equation (12). To take the effect of qubit decay processes
into account, we phenomenologically broaden the delta peaks in (29) and replace them by
Lorentzians of width γ around the �k . We model the nonuniformity of the qubit parameters by
writing � j = �τ j and J j = J τ �

j and choosing τ j and τ �
j to be random variables, which follow

Gaussian distributions with means 1 and standard deviations στ = στ � = 0.02. Uniformity of
the qubit parameters � j and J j of this degree will turn out to be sufficient for all proposed
experiments. Much stronger disorder is not generally tolerable, as we will see below. However,
from the experimental data for a sample with three (even spatially separated) qubits presented
in [33], we calculate a standard deviation of the qubit transition frequencies from their mean of
0.8% (for zero flux bias). Thus, the requirements on the uniformity of � j and J j appear to be
attainable. With a typical set of system parameters that was also used in [20], we numerically
calculate ρ̃(ω) according to (29) and the corresponding resonator spectrum S according to (28).
In order to judge the effects of disorder, we also reproduce our calculation of S for the
corresponding uniform system [20] (figure S6). Figure 4 shows S as a function of ω and the
(mean) normalized transverse field ξ = �/2J for the uniform system (figures 4(a) and (b)) and
for a typical disorder configuration (figures 4(c) and (d)). In the uniform case, the signatures of
the QPT at ξ = 1, the dispersive shift of the resonator frequency and, on resonance, the double
peak with a separation of 4J (rather than 2g as in the case N = 1) that we have discussed in
detail for N → ∞ in [20] are clearly visible also for N = 20. These characteristic features are
insensitive with respect to a small amount of disorder in the system parameters, as figures 4(c)
and (d) demonstrate.
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Figure 4. (a) Spectrum S of a resonator coupled to a finite uniform TFIC with
N = 20 versus probe frequency ω and normalized transverse field ξ = �/2J .
The parameters are g = 0.12, J = 0.08, κ = 10−4 and � = 5 × 10−3 (in units
of �0). For better visibility of the features, values > 3 are plotted in white. (b)
Spectrum S(ω) for ξ = 6.1. This curve corresponds to a cut along the arrows in
(a). (c) The same as in (a) but with � j and J j following a Gaussian distribution
with a standard deviation of 2% around their mean values. (d) Cut along the
arrows in (c).

We remark that in several recent circuit QED experiments the qubits have been found to
be unexpectedly hot [34–36]. A corresponding non-negligible equilibrium population of the
excited many-body eigenstates of the Ising chain in our setup would lead to additional lines in
the described spectroscopy experiment, at frequencies smaller than the bandwidth of the Ising
chain. In the experimentally realistic case that the Ising chain is deeply in the paramagnetic
phase (� � 2J ), these resonances at ω � 4J (the bandwidth of the chain in the paramagnetic
phase) would be well below the lower band edge � − 2J . Thus, they would be distinguishable
from the band of the Ising chain as plotted in figure 4, and their intensity might allow one to
estimate the spurious population of the excited states. However, for the proposed time-domain
experiments with our circuit QED quantum simulator that we discuss in the following sections,
a non-negligible equilibrium excitation of the Ising chain might necessitate post-selection or
initialization techniques.
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4. Disorder effects on the system dynamics

A particularly interesting application of the proposed system would be to simulate the
nonequilibrium dynamics of the TFIC. In [20], we have suggested to experimentally track
the propagation of a localized excitation in the (uniform) TFIC that can be easily created in
our system and to measure the system dynamics after quenching the transition frequencies of
all qubits. In this section, we show that none of the predicted experimental results changes
qualitatively if the parameters of the TFIC are slightly disordered, as has to be expected
in reality. Stronger disorder, accessible, e.g., by deliberately detuning individual qubits, is
shown to produce qualitatively different physics in the previously proposed experiments, like
Anderson localization of the propagating excitation. For the realistic case � � J , we give
an estimate of the corresponding disorder strength. Finally, we develop a quantitative theory
of the effects of weak disorder on the system’s nonequilibrium dynamics that explains the
results of numerical experiments with the disordered TFIC. This theory might be helpful
for experimentalists to estimate system and disorder parameters for successfully performing
nonequilibrium experiments with the TFIC (e.g. for a given measurement resolution) without
having to do numerical simulations.

4.1. Propagation of localized excitations

For the first type of experiments we have suggested in [20], it is assumed that the TFIC is
deeply in the paramagnetic phase (ξ � 1) and detuned from the resonator. In this situation,
the TFIC is essentially decoupled from the resonator and its ground state is characterized by
�σ j

z � ≈ −1. Applying a fast π -pulse to the first qubit thus creates a localized excitation in the
system that subsequently propagates through the chain due to the qubit–qubit coupling J . The
time evolution of the observable �σ j

z � after the π -pulse can be approximately described by [20]

�σ j
z �(t) = −

�

k

ψk, jφk, j +
�

k,k�

ei(�k−�k� )t
�
φk,1φk�,1(ψk, jφk�, j + ψk�, jφk, j)

�
. (30)

We plot this result in figure 5(a) for all j in a chain of length N = 20 and for a mean normalized
transverse field ξ = �/2J = 8 (the same system parameters as in [20]) and, again, we randomly
choose � j = �τ j and J j = J τ �

j according to Gaussian distributions with standard deviations
of 2% from the mean values � and J as before (right panel). The experimentally measurable
observable �σ 1

z �(t) is singled out in the left panel. The propagation of a localized excitation
through the chain, and its reflection at the far end of the chain that leads to a distinct revival of
�σ 1

z �(t) at t ≈ N/J , are still clearly visible in this slightly nonuniform system.
If the transition frequencies � j of the qubits can be tuned individually, the effective

length of the TFIC has been shown to be adjustable by strongly detuning one qubit from the
others [20]. This holds true also for a slightly nonuniform system: figure 5(b) shows the typical
result for a system with the same parameters and disorder strength as in (a), but with qubit 11
strongly detuned by setting τ11 = 1.3. This result is qualitatively identical with the result for the
corresponding nondisordered system [20]. The strong nonuniformity at j = 11 acts as a barrier
for the propagating excitation and leads to its reflection. Thus, it effectively changes the length
of the TFIC.
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Figure 5. Propagation of a localized excitation in a slightly disordered TFIC
of length N = 20. Specifically, the density plots show the nonequilibrium time
evolution of �σ j

z � for all j after a π -pulse on the first qubit while the system is
in the paramagnetic phase (mean normalized transverse field ξ = 8). For better
visibility of the features, values > −0.5 are plotted in white. The experimentally
accessible observable �σ 1

z � is singled out in the left panels. (a) The qubit
transition frequencies � j and qubit–qubit couplings J j are randomly chosen
according to Gaussian distributions with standard deviations of 2% from the
mean values. (b) The same as in (a) but with qubit 11 strongly detuned.

Having shown that the experiments with propagating localized excitations proposed in [20]
yield qualitatively the same results for ordered and slightly disordered systems, we now proceed
and study disorder effects on this type of experiment quantitatively. Parts of the following
analysis also apply to other nonequilibrium experiments with the TFIC, as will be discussed
in the context of quantum quenches (section 4.2).

Since it is assumed that the system is deeply in the paramagnetic phase, the mean qubit
transition frequency � is larger than the modulus of the mean qubit–qubit coupling J , �/J � 1.
As before, we further assume uncorrelated disorder of the system parameters via � j = �τ j

and J j = J τ �
j , where τ j and τ �

j follow Gaussian distributions with standard deviations στ

and στ � from 1. That is, for στ = στ � , the absolute variation of the � j will be larger than the
absolute variation of the J j . Therefore, the dynamics of the system may be expected to be
much more sensitive to increasing στ than στ � . Moreover, one may expect that disorder effects
start to qualitatively affect the system dynamics even of small systems (that is, on the scale of
neighboring qubits j and j + 1) when the disorder in the qubit transition frequencies becomes
comparable to the modulus of the mean qubit–qubit coupling, �στ = J . These deliberations
are confirmed by numerical experiments: we first consider the wave functions gk, j and hk, j in
position space (ηk =

�N
j=1 gk, j c j + hk, j c

†
j ). For zero disorder, they are extended over the whole

chain (except for the mode with �k → 0 in the ordered phase [37]). Increasing στ localizes
the wave functions much more strongly than increasing στ � , and the localization length of
the wave functions indeed reduces from many (� 1) sites to a few (� 1) sites at �στ ≈ J .
Correspondingly, the propagation of an excitation initially localized at site 1 is only weakly
affected by disorder in J . However, if στ � J/�, it propagates only a few sites before becoming
completely trapped due to the disorder. This manifestation of Anderson localization [38] is
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Figure 6. (a) Propagation of an initially localized excitation in a strongly
disordered TFIC. Initialization and system parameters are identical to figure 5(a),
but the � j and J j are randomly chosen according to Gaussian distributions with
standard deviations of 6.5% from the mean values. The plot clearly shows that
strong localization of the excitation prohibits its propagation through the chain.
(b) Mean free path l of the propagating excitation (defined in the main text)
versus normalized standard deviation στ of the qubit transition frequencies for
different values of the normalized transverse field ξ on the log–log scale. The
points are lστ ,ξ as gained by numerically averaging many disorder configurations.
The lines are best fits of 1/σ a

τ ξ b to these data. (c), (d) Behavior of a
nondisordered system, with uniform � j = � and J j = J , for comparison. (c)
Maximum excitation probabilities p j

0,� of the j th qubits in the nonequilibrium
time evolution of uniform TFICs of lengths N = 10, 20, 30, 40, 50 after the first
qubit has been flipped. For each chain length, p j

0,ξ is plotted for ξ = 3, 5, 8 (red,
green, blue). Apart from boundary effects, the decay of p j

0,ξ with j is slower
than ∝ 1/j . The maximum excitation probabilities pN

0,ξ of the last qubits of the
chains are significantly enhanced compared to nearby bulk sites. (d) Maximum
excitation probability pN

0 of the N th qubit versus chain length N (for any ξ � 1).

illustrated in figure 6(a), where we have used the same system parameters as in figure 5,
but we have randomly chosen τ j and τ �

j according to Gaussian distributions around 1 with
standard deviations στ = J/� = 0.0625 = στ � . For definiteness, we always choose στ � = στ in
the following.

We have seen that for |ξ | � 1 (paramagnetic phase) the effective disorder strength in
the quantum Ising chain is set by στ�/J ∝ στ |�|. Now we try to determine how the relevant
observables in the currently considered type of experiment depend on this quantity. The
observable we focus on in the following is the maximum excitation probability (maximized
over time) of the j th qubit caused by the propagation of the localized excitation through the
disordered chain. In an experiment, one would for instance create an excitation of the first
qubit and measure the excitation probability of some other (e.g. the N th) qubit as a function
of time. The maximum excitation probability of the j th qubit is an important quantity since
it will determine whether the effect of the propagating excitation can be measured at site j ,
given a certain measurement resolution. In a single disordered system, the maximum excitation
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probability of qubit j will depend on the specific (random) disorder configuration of this system.
Therefore, a study of the effect of disorder as characterized by the statistical quantity στ |ξ | can
only refer to the statistical average of the maximum excitation probability of qubit j in one
disordered system over an ensemble of many disordered systems (disorder configurations), all
chosen according to the same probability distribution. Stated as a formula, this ensemble average
of the maximum excitation probability of qubit j is given by

p j
στ ,|ξ | =

1
2

�
max

t
[�σ j

z �(t)] + 1
�
. (31)

Here, the double overbar · denotes the ensemble average over many disordered systems
(disorder configurations) with the same system and disorder parameters ξ , J and στ = στ � . This
average is taken after one has maximized �σ j

z �(t) for a specific disordered system over time.
Our goal is to find the explicit functional dependence of p j

στ ,|ξ | on στ and |ξ | (in fact, we expect
dependence only on the product στ |ξ |). Note that we assume that p j

στ ,|ξ | depends neither on the
sign of ξ nor explicitly on the mean qubit–qubit coupling J , but only on the ratio of � and J (via
|ξ |). This is strictly true for στ = στ � = 0. By explicitly solving equations (6) for this case [20],
one can show that after substituting ξ → −ξ , the new allowed wave vectors are q = π − k
with �q = �k , φq, j = (−1)N− jφk, j , and ψq, j = (−1)N− jψk, j . With that one can easily see that
equation (30) does not depend on the sign of ξ . Moreover, φk and ψk are independent of J
(which also follows from equations (6)), and �k ∝ J such that changing J corresponds only to
a rescaling of time. The influence of disorder, however, is essentially set by στ |ξ | (for |ξ | � 1),
as we have argued above. Consequently, we may take p j to be independent of J and of the sign
of ξ . Nevertheless, to keep notation short, we write ξ instead of |ξ | for the remainder of this
section. For simplicity, we first focus on a semi-infinite system (N → ∞) and discuss later the
increase of p j at the end of the chain (due to the refocusing of the dispersed wave packet of the
propagating excitation).

As usual for disordered systems (e.g. [39]), we will try to characterize the disorder effects
on the ensemble-averaged maximum qubit excitation p j

στ ,ξ
via a mean free path. To that

end, it pays to first discuss in more detail the uniform case, p j
0,ξ . Even there, analyzing the

propagation of the dispersive wave packet that determines the maximum excitation probability
of a qubit requires some care. For ξ � 1, this excitation probability does not depend on ξ .
This is because the dispersion relation of the TFIC becomes that of the tight binding model,
�k = 2J

�
1 + ξ 2 − 2ξ cos k ≈ 2J sign(ξ)(ξ − cos k). Thus, � only sets the band gap but does

not influence the shape of the dispersion relation. Except for the aforementioned boundary
effects, p j

0,ξ also does not depend on N . This is evident from figure 6(c), where we plot p j
0,ξ

for several ξ and N . The curves for different ξ but the same N lie almost on top of each other
(henceforth, we drop the index ξ from p j

0,ξ ), and curves for different N can be distinguished
only by the boundary effects, that is, by the strong increase of p j

0 at j = N (which will
be discussed later). The decay of the p j

0 with j is relatively slow (slower than 1/j), which
should considerably simplify the experiments proposed in [20]. This slow decay of p j

0 can be
understood from the dispersion relation �k of the system which, for ξ � 1, is quadratic in
k at k ≈ 0, π , and linear at k ≈ π/2: if an initially localized wave packet with width s and
momentum q, ψ(x, 0) = α e−x2/2 s2+iqx , α = (s2π)−1/4, is evolved in time by the Hamiltonians
H1 = h1k and H2 = h2k2, respectively, one finds that

|ψ(x, t)|2H1
= |ψ(x − h1t, 0)|2 = α2e−(x−h1t)2/s2

, (32)
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|ψ(x, t)|2H2
= α2 s2

�
s4 + 4h2

2t2
exp

�
−(x − 2h2tq)2

s4 + 4h2
2t2

�
. (33)

That is, for H1, the maximum and width of the probability distribution for finding the particle at
a position x are constant, while for H2 and strong initial localization (or large times) the width
is ∝ t and the maximum is ∝ 1/t . As the dispersion relation of the TFIC interpolates between
these two cases, one may expect a decay of p j

0 slower than 1/j .
Coming back now to the disordered case, one might suspect that the ensemble-averaged

maximum qubit excitation p j
στ ,ξ

is related to the corresponding quantity for a nondisordered
system p j

0 via an exponential decay, governed by a finite mean free path lστ ,ξ for the propagation
of the localized excitation,

p j
στ ,ξ

= p j
0 e− j/ lστ ,ξ . (34)

If (34) holds,

1
lστ ,ξ

= 1
j

ln

�
p j

0

p j
στ ,ξ

�

(35)

should be independent of j . This observation can be used to check our assumption
(34). We numerically calculate p j

στ ,ξ
for all combinations of ξ = 3, . . . , 8 and 100 × στ ∈

{1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8} in a chain of length N = 20, and we average over 100 disorder
configurations. This turns out to be a good compromise between calculation time and ensemble
and system size as long as the effective disorder στξ is not too small (see below). With these
p j

στ ,ξ
, we calculated the rhs of (35) for j = 5, . . . , 16. Other j are not considered, in order to

minimize boundary effects. Our results for j = 5, . . . , 16 are approximately equal, with the
ratio of standard deviation to mean value being < 0.1 for given στ and ξ . We note that for very
weak effective disorder στξ � 0.1 we have to average over 500 disorder configurations such
that this ratio is < 0.1, because with decreasing ratio p j

0/p j
στ ,ξ

the slope of the logarithm on the
rhs of (35) increases. Thus, the numerical data seem to confirm our assumption (34), and the
influence of disorder on the considered experiment is captured by a mean free path lστ ,ξ . In our
subsequent analysis, we try to find simple expressions for this quantity.

The propagation of the localized excitation in the Gaussian disordered TFIC is akin to
the propagation of a particle in an uncorrelated random potential V (r) with �V (r)V (r �)� =
V 2

0 δ(r − r �). To lowest order in perturbation theory (Fermi’s golden rule, e.g. [39]), the mean
free path of the latter decreases as the inverse square of the disorder strength, ∝ 1/V 2

0 . In our
case, the effective disorder strength is determined by the dimensionless quantity στξ . Therefore,
we expect that

lστ ,ξ = 1
(στξ)2

. (36)

To check this, we calculate lστ ,ξ for the same combinations of στ and ξ as before by averaging
the rhs of (35) over j = 5, . . . , 16. Then we fit the function l(στ , ξ) = 1/σ a

τ ξ b to our data for
lστ ,ξ . We find the exponents a ≈ 2.002 and b ≈ 2.071, which comes close to our expectation
of a = b = 2. Numerical data and fit are plotted on the log–log scale in figure 6(b). As long
as the effective disorder strength is not too big (στξ � 0.2), l(στ , ξ) with the fit values of a
and b reproduces the numerically (by ensemble-averaging) extracted mean free path lστ ,ξ . Here,
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Figure 7. Propagation of a localized excitation in a nonuniform TFIC of length
N = 30 and with normalized transverse field ξ = 4. (a) The qubit transition
frequencies � j and qubit–qubit couplings J j are randomly chosen according to
Gaussian distributions with standard deviations of 3.4% from the mean values.
(b) the same as in (a) but with a cosine modulation of the qubit transition
frequencies � j with standard deviation ≈ 3.4%, instead of uncorrelated disorder
of � j and J j .

one may attribute the deviations of a and b from 2 to the finite ensemble sizes. For stronger
disorder, however, the fit of l(στ , ξ) = 1/σ a

τ ξ b begins to deviate from lστ ,ξ . Thus, higher-order
effects (beyond Fermi’s golden rule) and/or the disorder in J seem to be no longer negligible.

Finally, in setups with a second readout resonator (cf figure 1), the maximum population
pN

στ ,ξ
of the N th qubit will be an experimentally relevant quantity. Since the dispersed wave

packet of the propagating excitation is refocused at the end of the chain, the maximum excitation
probability of the N th qubit is considerably enhanced compared to nearby bulk qubits (see
figure 6(c)). It turns out that pN

στ ,ξ
can also be estimated by means of (34), the mean free

path (36), and the value of pN
0 for the corresponding nondisordered system, which we plot

for N = 1, . . . , 50 in figure 6(d).
Summing up, equations (34) and (36), together with figures 6(c) and (d), allow one to easily

estimate suitable system and disorder parameters for successfully implementing the presently
considered type of experiment. For instance, if in a system with N = 30 and ξ = 4 the N th
qubit should get a population of p30

στ ,� = 0.3 (which corresponds to max
�
�σ 30

z �(t)
�
= −0.4),

then one can roughly (i.e. averaged over many systems) afford a standard deviation of the qubit
transition frequencies from their mean of στ =

�
(Nξ 2)−1 log

�
p30

0 /0.3
��1/2 ≈ 0.034, where we

have extracted p30
0 ≈ 0.53 from figure 6(d). A typical result for these parameters is plotted

in figure 7(a). Here, the maximum excitation probability is found to be p30
0.034,4 ≈ 0.29 (since

maxt
�
�σ 30

z �(t)
�
≈ −0.43).

We remark that the foregoing deliberations only hold for uncorrelated disorder of the
system parameters and do not take into account qubit decay. Correlated disorder can yield
qualitatively different results and has to be studied explicitly via equation (30). We also remark
that if the � j are individually tunable, it becomes possible to study the propagation of localized
excitations in arbitrary potentials. For instance, it might be interesting to choose � j = �[1 +√

2στ cos(2π j/N )] and to compare the system dynamics with the Gaussian disordered case.
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For large N , both distributions of � j have the same mean and the same standard deviation, but
in the former case the system is not disordered and the localization of the propagating excitation
is much weaker than in the genuinely disordered case. Figure 7(b) shows the propagating
excitation in such a system with N , ξ and στ as in figure 7(a) (with uniform J j ).

4.2. Quench dynamics

The second type of nonequilibrium experiment we have proposed in [20] relies on the possibility
to rapidly change the transition frequency � of a superconducting qubit in a circuit QED
system by tuning the magnetic flux through its SQUID loop. This has been shown to be
possible virtually instantaneously on the dynamical time scale of a circuit QED system [4, 6, 7],
without changing the system’s wave function. Let us now assume that the circuit QED quantum
simulator of the (uniform) TFIC proposed in [20] is implemented with Cooper-pair boxes. For
this system, such a sudden change of all � j = � corresponds to a global quantum quench
of the normalized transverse magnetic field ξ = �/2J . We remark that one can also produce
quenches of ξ by using transmons in a non-standard parameter regime instead of Cooper-pair
boxes, or by using usual transmons with tunable coupling capacitances [20, 40]. We also remark
that the observation of the phenomena described in the following will set higher requirements
on the energy relaxation and phase coherence times of the collective many-body quantum states
of the Ising chain than the experiments proposed in sections 3.3 and 4.1. The global quantum
quench brings the Ising chain in a globally excited state whose time evolution has to be coherent
on the time scale N/J of these phenomena (see below). Nevertheless, meeting this constraint
seems feasible, since even for N = 30 and a moderate coupling strength J/2π = 100 MHz, we
find that N/J ∼ 50 ns, which is far below the energy relaxation times T1 ∼ 7.3 µs and coherence
times T2 ∼ 500 ns achieved for individual Cooper-pair boxes [41].

The nonequilibrium dynamics of the TFIC following a quantum quench is currently subject
to much theoretical research, e.g. [22, 42–53], and should be experimentally observable with our
circuit QED quantum simulator. In this context it is usually assumed that for t < 0 the system
is in the ground state |0�a of a Hamiltonian HI,a (characterized by ξa). At t = 0, the overall
transverse field is changed, �a → �b, and the nonequilibrium time evolution of some observable
O under HI,b is investigated,

�O�(t) =a�0|eitHI,bO e−itHI,b |0�a. (37)

In [20] we have focused on the time evolution of the local transverse magnetization �σ j
z � and

the end-to-end correlator �σ 1
x σ N

x � (indicating long-range order) after quenching � within the
paramagnetic phase. These quantities should be experimentally easily accessible in our system.
In this section, we show that also for such quantum quenches the predicted experimental results
of our earlier work are insensitive to a small amount of fabrication-induced disorder.

In general, two sets of the �- and J -parameters, {�a/b
j } and {J a/b

j }, fully specify the
Hamiltonians HI,a/b (equation (2)). Given these parameters, the time evolution (37) of the local
magnetization and the end-to-end correlator can be written as [20]

�σ j
z �(t) = −

�

k

ψb
k, jφ

b
k, j + 2

�

k,k�

{ψb
k, jφ

b
k�, j [Xk,k� cos t (�b

k + �b
k�) + Yk,k� cos t (�b

k − �b
k�)]}, (38)

�σ 1
x σ N

x �(t)=
�

k

φb
k,1ψ

b
k,N +2

�

k,k�

{φb
k,1ψ

b
k�,N [Xk,k� cos t (�b

k +�b
k�)−Yk,k� cos t (�b

k − �b
k�)]}. (39)
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Here,

Xk,k� =
�
(gb

k )
T H a + (hb

k)
TGa

��
(Ga)Tgb

k� + (H a)Thb
k�
�
, (40)

Yk,k� =
�
(gb

k )
T H a + (hb

k)
TGa

��
(H a)Tgb

k� + (Ga)Thb
k�
�
, (41)

and G and H are matrices that, respectively, contain the gk and hk as columns. In these
equations, a quantity carrying the index a or b is to be calculated from equations (6) with
parameter set a or b.

To implement disorder of the system parameters before the quantum quench, we write
again �a

j = �aτ j and J j = J τ �
j , and we randomly choose τ j and τ �

j according to Gaussian
distributions with standard deviations στ and στ � from 1. As we have argued in section 2.1,
tuning the flux � through the SQUID loops of the qubits only changes the mean qubit transition
frequency �a → �b (and, thus, the mean transverse field ξa = �a/2J → ξb = �b/2J ), but
leaves τ j , J and τ �

j unaffected. Hence, by fixing ξa/b and στ/τ � , the system is fully specified
before and after the quench (as in section 4.1, the absolute values of �a/b and J can be absorbed
in the time scale J t of the dynamics), and we are ready to evaluate equations (38) and (39).

Figure 8(a) shows the local magnetization �σ j
z �(t) for all j and for the same system

parameters as in figure 4 of [20], but with �
a/b
j and J j having standard deviations στ = στ � = 2%

around their mean values (right panel). The experimentally easily measurable trace of �σ 1
z � is

singled out in the left panel (black). For comparison, we also plot (green) the local magnetization
of the first qubit �σ 1

z � of the uniform system (as plotted in the left panel of figure 4 of [20]).
Correspondingly, figure 8(b) shows (39) for a uniform system as in figure S6 of [20] (green),
and with 2% disorder in �

a/b
j and J j (black). The plots demonstrate that the quench dynamics

of the considered observables is not qualitatively affected by the presence of a small amount of
disorder.

For a more systematic analysis of the disorder effects on the quench experiments
considered here, we make use of our findings for the mean free path of a propagating localized
excitation from the previous section. This is possible because the quench dynamics of the TFIC
is governed by the propagation of QPs through the system [20, 43, 44, 46, 48, 54]. These
correspond to flipped spins, essentially like the localized excitation of the previous section.
Indeed, if the system is initially in the paramagnetic phase, the time evolution immediately after
the quantum quench e−itHb |0�a ∝

�
j e−itJ (ξb−ξa)/ξaσ

j
x σ

j+1
x |0�a flips pairs of adjacent spins so that

they point in the +z-direction. Due to the qubit–qubit coupling, these local excitations propagate
as QPs with velocity v ≈ 2J through the chain. For an interpretation of the quench dynamics
and the time scales indicated in the plots (all of which scale as N/J ) in terms of these QPs,
see [20]. If ξb is in the paramagnetic phase, the mean free path l of the QPs in a disordered TFIC
can be estimated by l = 1/(στξb)

2 according to the previous section. The characteristic quasi-T -
periodic behavior (T = N/v) of the local magnetization after the quench in the nondisordered
TFIC can be understood as a revival of coherence each time QPs initially generated at the same
spot meet again [20, 48]. This happens when the QPs have traveled multiples of the chain
length N . If there should be a significant probability that two contiguously generated QPs meet
again at least once before being scattered and thus decrease the local magnetization at t = T ,
the mean free path has to be sufficiently large, l > 2N . The appearance of significant end-to-
end correlations after the quench (that are stronger than those for t → ∞) requires that QPs
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Figure 8. (a) Time evolution of the magnetization �σ j
z � in a disordered TFIC

of length N = 30 after a quench of the mean normalized transverse field ξ =
�/2J = 8 → 1.2 (right). Values < −0.9 (> −0.6) are plotted black (white). The
measurable observable �σ 1

z � is plotted separately in the left panel (black), along
with the corresponding trace for a uniform system (green). (b) Time evolution of
the end-to-end correlator �σ 1

x σ N
x � in a disordered TFIC of length N = 30 after a

quench of the mean normalized transverse field ξ = 8 → 1.5 (black), along with
the corresponding trace for a uniform system (green). In both plots the qubit
transition frequencies � j and qubit–qubit couplings J j are randomly chosen
according to Gaussian distributions with standard deviations of 2% from the
mean values � and J .

generated in the middle of the chain reach the edges of the chain without being scattered, hence
l > N . We have performed numerical experiments which indeed suggest that the corresponding
values of στ mark the transition to a degree of disorder where the described phenomena are
no longer present. In that sense, the distinctive features of the quench dynamics of the end-to-
end correlator are less sensitive to disorder than those of the local magnetization (and, due to
the shorter time scale, less sensitive to decoherence or decay). We finally note that also here
the effective chain length can be adjusted by strongly detuning individual qubits (this can also
be used to create local quantum quenches by ‘joining’ two initially independent chains) and
arbitrary effective potentials � j can be chosen.

5. Conclusion

In the quest for controllable large-scale quantum systems, the framework of circuit QED offers
several advantages, such as fast, high-fidelity readout, a great flexibility in design and steadily
increasing coherence times. However, a potentially significant disadvantage arises from the
hardly avoidable static noise and disorder sources in these man-made devices. The central result
of this work is that also in this respect, there is reason to be optimistic: the requirements on the
homogeneity of the system parameters for observing interesting (and predictable) many-body
physics in a circuit QED system are not too high to be achievable with present-day or near-
future technology. This underlines the prospects of circuit QED as a promising platform for
implementing quantum simulations of complex quantum many-body Hamiltonians. In addition,
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we have shown that circuit QED quantum simulators could be used to study deliberately the
effects of tunable disorder on quantum many-body dynamics.
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[18] Houck A A, Türeci H E and Koch J 2012 On-chip quantum simulation with superconducting circuits Nature

Phys. 8 292–9
[19] Hwang M J and Choi M S 2012 Large-scale Schrödinger-cat states and majorana bound states in coupled

circuit-QED systems arXiv:1207.0088 (in preparation)

New Journal of Physics 15 (2013) 035013 (http://www.njp.org/)

4.6 Publication: The TFIC in circuit QED – effects of disorder 135



24

[20] Viehmann O, von Delft J and Marquardt F 2013 Observing the nonequilibrium dynamics of the quantum
transverse-field Ising chain in circuit QED Phys. Rev. Lett. 110 030601

[21] Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)
[22] Polkovnikov A, Sengupta K, Silva A and Vengalattore M 2012 Colloquium: nonequilibrium dynamics of

closed interacting quantum systems Rev. Mod. Phys. 83 863–83
[23] Clarke J and Wilhelm F K 2008 Superconducting quantum bits Nature 453 1031–42
[24] Koch J et al 2007 Charge-insensitive qubit design derived from the Cooper pair box Phys. Rev. A 76 042319
[25] Dewes A et al 2012 Characterization of a two-transmon processor with individual single-shot qubit readout

Phys. Rev. Lett. 108 057002
[26] Lieb E, Schultz T and Mattis D 1961 Two soluble models of an antiferromagnetic chain Ann. Phys. 16 407–66
[27] Pfeuty P 1970 The one-dimensional Ising model with a transverse field Ann. Phys. 57 79–90
[28] Griffiths R B 1969 Nonanalytic behavior above the critical point in a random Ising ferromagnet Phys. Rev.

Lett. 23 17–9
[29] McCoy B M 1969 Incompleteness of the critical exponent description for ferromagnetic systems containing

random impurities Phys. Rev. Lett. 23 383–86
[30] Fisher D S 1992 Random transverse field Ising spin chains Phys. Rev. Lett. 69 534–37
[31] Fisher D S 1995 Critical behavior of random transverse-field Ising spin chains Phys. Rev. B 51 6411–61
[32] Walls D F and Milburn G J 2008 Quantum Optics (Berlin: Springer)
[33] Fink J M et al 2009 Dressed collective qubit states and the Tavis–Cummings model in circuit QED Phys. Rev.

Lett. 103 083601
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4.7 Experimental implementation
For the experimental realization of our proposal, we have established a collaboration with the
group of Professor Irfan Siddiqi at UC Berkeley. In this section, we report and analyze the
experimental results obtained so far. The experimental data and the photographs of the circuit
QED devices shown in this section were taken by Edward Henry and Andrew Schmidt, who are
carrying out the experiments.

Device description

The samples studied so far are based on the 3D circuit QED technology (Paik et al., 2011).
This avoids the modification of the standard cavity design necessary in 2D architectures and
promises lower decoherence. Figure 4.1(a) shows the two halves of a typical 3D cavity used in
the experiments. The photograph also shows a chip on which qubit chains of different lengths
are patterned. The chains of lengths N = 4 and N = 6 are shown magnified in the inset. One
such chain is placed inside the 3D cavity. To create a situation where only the first qubit of the
chain is coupled to the cavity, the 3D transmons simulating the spins j > 1 are made relatively
small and are rotated by π/2 relative to the large 3D transmon simulating the spin j = 1. That is,
two neighboring small islands in the inset of Figure 4.1(a) form one transmon and are connected
by a Josephson junction. This can be seen in Figure 4.1(b), which shows a minimal test system,
a chain of length N = 2, further magnified. We remark that the bridge between the islands of
the small transmon, which contains the Josephson junction, is twisted so that all junctions in the
device have the same ‘orientation’ and can be fabricated in one step.

The chain of qubits is placed inside the resonator such that the polarisation vector e of the
cavity mode closest in frequency to the qubits is parallel to the axis of the first qubit and orthogo-
nal to the axes of the j> 1 qubits. This minimizes the qubit-cavity coupling∼ e ·d j for j> 1 and
maximizes the qubit-cavity coupling for j = 1. Here, d j is the transition dipole matrix element of
qubit j, which will have a significantly larger magnitude for j = 1 than for j > 1 because of the
size difference of the qubits. Using a 3D cavity makes it difficult to flux bias the qubits individu-
ally with separate flux lines. In all samples studied so far, only the first qubit was fabricated with
a split Josephson junction and therefore tunable in-situ from a maximum transition frequency
Ω1 = Ω1,max to lower Ω1. The transition frequencies Ω j>1 of all other qubits are fixed by design
and chosen to be far below the cavity frequency ωc. Typical values for the samples studied so
far are Ω1,max ≈ 5.5 GHz, Ω j>1 ≈ 4 GHz and ωc ≈ 7 GHz. To tune the first qubit, the cavity is
made of copper (instead of superconducting material), and the whole device is threaded by the
flux from an external bias coil. The line width of a copper cavity is significantly larger than for
superconducting cavities. To protect the qubits from Purcell decay, a large detuning from the
cavity resonance is necessary. Using an external coil, the tuning the first qubit can be done only
slowly compared to all frequencies appearing in the Ising Hamiltonian. However, by employing
a Stark-pulse technique (e.g., as used by Majer et al. (2007)), it seems feasible to bring the first
qubit non-adiabatically into and out of resonance with the other qubits (see below).
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Figure 4.1: Experimental implementation of the transverse-field Ising chain in circuit QED (pho-
tos by E. Henry and A. Schmidt). (a) 3D cavity and chip on which qubit chains of different
lengths are laid out. The inset shows a zoom-in on the chains with N = 4 and N = 6 3D transmon
qubits. The two large, vertically aligned islands on the left end of each chain form the qubit that
couples to the cavity. All other qubits, each of which is formed by two smaller islands, are ro-
tated by π/2 relative to this qubit and couple to the cavity only marginally. The bridges between
the islands, which contain the Josephson junctions, are not visible on this scale. See main text
for further details. (b) Rendered image of a minimal Ising chain of length N = 2 in the same
design. Also shown is the magnification of a Josephson junction equivalent to that of the small
qubit. Only the large qubit is fabricated with a split junction and flux-tunable.

Theoretical description
Our theoretical description of the system is based on the Hamiltonian

H = ωca†a+
N

∑
j=1

(
Ω j

2
σ

j
z +g j(a† +a)σ j
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Far in the dispersive regime, the cavity hybridizes only weakly with the qubits. Given the large
cavity line width, the marginal qubit-induced Kerr-nonlinearity of the cavity will be indiscernible
and can be neglected. Ideally, g j>1≈ 0. To see if is the case, we keep the g j>1 in the Hamiltonian.
If the system is driven by ν different tones of frequencies ωl (see below), we describe it by

Hν = H +
ν

∑
l=1

Fl(aeiωlt +a†e−iωlt), (4.4)

where we assume drive amplitudes Fl ∈ R for simplicity. In the case of ν = 1, we define F = F1
and ω = ω1. In this case, in a frame rotating at ω (cf. Equation (2.44) and below),
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where δc = ωc−ω, δ
j
q = Ω j−ω, and we have dropped all counter-rotating terms. The Lindblad

master equation (Walls and Milburn, 1994)

d
dt

ρ =−i[Hν,ρ]+∑
l

Γl(RlρR†
l −

1
2

R†
l Rlρ−

1
2

ρR†
l Rl) (4.6)

for the density matrix ρ of the system has the same form in the laboratory frame and in the
rotating frame. One only has to replace Hν→H ′ν and ρ→ ρ′ =UρU† (U is the straightforward
generalization of Equation (2.44) to N qubits), but the Lindblad operators Rl = a,σ j

−,σ
j
z for

cavity decay, qubit decay and pure dephasing, respectively, remain unaffected. As usual, we
denote the corresponding rates Γl by κ, γ j, and γϕ, j/2. Recall that these are related to the qubit
energy relaxation and dephasing times via T−1

1 = γ and T−1
2 = γ/2 + γϕ, where the index j

is implicit (see Section 2.2). Since the RHS of Equation (4.6) is linear in ρ, one can find an
operator L so that the Liouville equation

d
dt

ρ =−iL(t)ρ (4.7)

is equivalent to the Lindblad master equation (4.6). This is useful for the numerical implemen-
tation of the dissipative dynamics since Equation (4.7) allows one to easily map ρ to a column
vector and the Liouvillian L(t) to a usual (generally non-hermitian) matrix. Note that if one
can remove the time dependence from the Hamiltonian, for instance, by going into a rotating
frame and dropping the counter-rotating terms as in Equation (4.5), a steady state ρ(t → ∞) of
the system is an eigenvector of L with eigenvalue 0. Often one is interested only in these steady
states, in which case one can utilize the efficient numerical algorithms available for finding the
eigenvalue of smallest magnitude and the corresponding eigenstate of L (e.g., Arnoldi iteration).

To gain some insight into the properties of the system, we return to H (Equation (4.3)) and
consider the experimentally realistic case that all couplings g j and J j are much smaller than ωc,
Ω j, and all detunings ωc−Ω j. In this situation, the cavity remains approximately harmonic
but its frequency is dispersively shifted from ωc to ω′c due to the perturbation ∑ j g j(a† +a)σ j

x−
∑ j J jσ

j
xσ

j+1
x . We can calculate perturbatively the shifted cavity frequency according to ω′c =

E(|ν+ 1,s〉)−E(|ν,s〉), using |ν,s〉 as unperturbed basis and the mean value of the couplings
divided by one of the large energies as a small parameter. Here, |ν〉 is a photon Fock state and
|s〉= |s1, . . . ,sN〉 encodes the qubit states, si =↑,↓. The first-order correction to ωc vanishes. The
second-order correction is seen to consist of two sums, one ν-independent sum stemming from
the J j terms and one ν-dependent sum from the g j terms. Thus, the dispersive (direct) qubit-qubit
coupling contributes only in third order perturbation theory to ω′c. The second-order result reads

ω
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where 〈σ j
z〉 = 〈ν,s|σ j

z |ν,s〉 and the approximation in the second line corresponds to making the
rotating-wave approximation. Thus, the dispersive cavity shift of our quantum simulator is ex-
pected to depend on the qubit states in straightforward generalization of the single-qubit case
of Equation (2.42) (note that ideally only g1 6= 0, though). The same result can be obtained in
a more cumbersome way by applying the transformation U = exp[a†

∑i εiσ
−
i −a∑i εiσ

+
i ] to H ,

which generalizes the single-qubit dispersive transformation (Equation (2.41)). Keeping terms
to second order in εi and making the rotating-wave approximation yields
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if ε j = g j/(ωc−Ω j). In this dispersive approximation to H , the linear coupling of cavity and
qubits is removed. We recognize the dispersively shifted cavity, the photon-number dependent
qubit transitions, and the Lamb shift as the diagonal part of the Hamiltonian (first line). The
direct nearest-neighbor qubit-qubit coupling (second line) remains strong in this dispersive ap-
proximation to H (linear in J if the qubits are resonant). There is a residual off-resonant mixing
of the cavity and the qubits (last two terms in the second line), which slightly contributes to
the direct qubit-qubit coupling and also slightly modifies the cavity frequency of the first line.
However, these effects do no occur in proportion to the corresponding (second-order) coupling
J jε j′ , as we have already discussed for the cavity frequency above. The third line describes the
purely cavity-mediated qubit-qubit coupling (weaker than the direct nearest-neighbor coupling
by a factor ∼ ε j′). In the ideal case g j>0 = 0, this third line vanishes from the Hamiltonian. We
also remark that in the case of N = 2, J j = 0, g j = g, and Ω j = Ω, Equation (4.10) reduces to the
Hamiltonian of Equation (2.48).

Spectroscopy
For an initial characterization of this previously unexplored type of setup, spectroscopy on differ-
ent samples with small N (ranging form N = 2 to N = 6) and varying chain designs is currently
being performed. The main goals of these experiments are to determine (I) the qubit-qubit cou-
pling strength J and its dependence on the design features of the sample such as the qubit-qubit
spacing or the presence or absence of additional interdigitated capacitors between the qubits, (II)
the undesired residual coupling of the qubits j > 1 to the cavity, (III) the homogeneity of the
qubit parameters, (IV) the undesired residual longer-range qubit-qubit coupling.

Since the qubit system is off-resonant with the cavity for all values of the bias flux Φext,
spectroscopy experiments are done using a two-tone technique, a one-qubit variant of which was
first used by Schuster et al. (2005). In a first step, one measures the dispersively shifted cavity



142 4. Quantum simulations of non-equilibrium spin chains in circuit QED

Figure 4.2: Two-tone spectroscopy of two-qubit samples (data by E. Henry and A. Schmidt).
(a) Measured transmitted intensity of the cavity probe tone as a function of the current through
the external flux bias coil and the drive frequency ωd for the sample shown in Figure 4.1(b).
The avoided crossing has a width of 2J. In this case, J/2π = 270 MHz. The vertical streaks in
the plot are due to imperfections in the readjustment of the cavity probe tone with varying flux
(see main text). Note that for minimal detuning of the first qubit from the cavity, the lines of
this first qubit slightly split up since they are photon-number resolved in this region and there
is a nonzero cavity population. The point of minimal detuning is slightly shifted from zero bias
current due to a small amount of trapped flux. (b) High-resolution spectroscopy of the avoided
crossing of a different two-qubit sample with J/2π = 135 MHz. Plotted is the measured phase
of the transmitted signal.

frequency ω′c(Φext) as a function of Φext by one-tone transmission spectroscopy. The dependence
of ω′c on Φext stems from the flux-dependent detuning ωc−Ω1(Φext) between the bare cavity
frequency ωc and the frequency of the first qubit Ω1(Φext). Note that the qubit system remains
essentially in its ground state during this measurement. In a second step, the cavity is weakly
probed with a probe tone of frequency ωp = ω′c(Φext), while a second tone with frequency ωd
strongly drives the system in the vicinity of the frequencies of the qubits. If this second tone
excites the qubit system, the dispersive shift of the cavity frequency changes in accordance with
Equations (4.9) and (4.10). This then leads to a drop of the transmission of the probe and to a
phase shift in both the reflected and transmitted probe signal, each of which can be detected. Note
that the transmitted intensity only drops significantly if the qubit-state dependent frequency shift
of the cavity is larger than the cavity line width. Therefore, for the described situation of strongly
detuned qubits and copper cavities, phase measurements oftentimes yield a higher visibility of
the features of the spectrum.

Regarding goal (I), two-qubit samples are measured with the described spectroscopy tech-
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nique (see Figure 4.2). As expected, the capacitive qubit-qubit coupling is found to be strong.
For the sample shown in Figure 4.1(b), the avoided crossing reveals J/2π = 260 MHz (Figure
4.2(a)). It is likely that this value can be further increased by using larger coupling capacitances.
However, for time-domain experiments on the basis of Stark-pulses on the first qubit, smaller
coupling seems to be favorable. While Stark pulses are fast enough for non-adiabatic pulses
under couplings of this strength, sufficiently large frequency shifts into and out of the avoided
crossing are difficult to obtain with this technique. Therefore, samples with significantly re-
duced J (down to∼ 40 MHz) have been fabricated and measured as well, which should allow for
time-domain measurements soon.

It can also be estimated from Figure 4.2 that the spurious coupling (II) of the second, small
qubit and the cavity is weak. This is indicated by the fact that in regions of the flux bias, where
this second qubit is only weakly hybridized with the first qubit, it is hardly visible in the spec-
troscopy experiments. The dependence of the visibility of the spectroscopy lines on the degree
of the hybridization can be seen well in Figure 4.2(b), which shows the avoided crossing of a
two-qubit sample with J/2π = 135 MHz in high resolution.

The simplest way to compare the measured two-tone spectroscopy with theory is to calculate
the transition rates of the system from its ground state to its excited states due to the qubit
drive tone ωd. These rates are a measure for the visibility (or the intensity) of the corresponding
transitions in a spectroscopy experiment. Explicitly, we consider the qubit drive as a perturbation
to H and evaluate numerically the induced transition rates Γ(g→ f ) from the ground state |g〉
to the excited states | f 〉 of H as predicted by Fermi’s golden rule,

Γ(g→ f ) = 2πF2
δ(E f −Eg−ω)|〈 f |a†|g〉|2. (4.11)

Figure 4.3 shows the transition frequencies of H for N = 2 and varying values of the residual
coupling g2. The corresponding transition rates, calculated according to Equation (4.11), are
encoded in the color of the curves. Explicitly, for each plot, we calculate the squared matrix el-
ement |〈 f |a†|g〉|2 of each plotted data point. Since these strongly increase where Ω1 approaches
ωc (except for g1 = g2), we apply a color scale only for these squared matrix elements that lie
within a range of 0% (blue) to 10% (red) of the maximum squared matrix element. All other
data points are plotted in red. Only for the leftmost plot (g2 = g1) the color scale is applied to all
data points. The parameters used in the numerical calculations roughly correspond to those mea-
sured for the sample studied in Figure 4.2(b). If g2 = g1, the second excitation of the resonant
qubit system (Ω1 = Ω2) is dark. The reason for this will be explained in the next paragraphs.
With decreasing ratio g2/g1, the dark spot shifts to the off-resonant regime, but is still distinct at
g2/g1 = 1/2. Upon decreasing this ratio to 1/4, the intensity of the spectroscopy lines becomes
strongly asymmetric with respect to |Ω1−Ω2|. For smaller residual coupling, this asymmetry
vanishes and, except in the vicinity of the avoided crossing, only the first qubit is bright. For
g2/g1 ≥ 1/4, the calculated intensity of the spectroscopy lines is qualitatively different from
the measured one, in that neither a dark spot nor an asymmetry as described above is observed
experimentally. Since this holds true also if g1, Ω2, and J differ from the values assumed for
Figure 4.3 within some range, it should be safe to assume that the residual cavity coupling of the
second qubit in the experiment of Figure 4.2(b) is smaller than the cavity coupling of the first
qubit at least by a factor of 1/4.
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Figure 4.3: Calculated excitation frequencies and their visibility in a spectroscopy experiment
of a circuit QED system with two Ising-coupled qubits for different residual couplings g2 in the
vicinity of the avoided crossings of the qubits. In all plots, the frequency of the first qubit Ω1
varies on the horizontal axes while the frequency of the second qubit is constant at Ω2/ωc = 0.6.
The coupling of the first qubit and the cavity, g1, and the qubit-qubit coupling J are the same
for all plots, g1/ωc = 0.03 and J/ωc = 0.02. The coupling of the second qubit g2 varies as
indicated in the plots. The color of the curves encodes the visibility in a spectroscopy experiment
according to Fermi’s golden rule (blue: low, red: high). The color coding of the leftmost plot
is on a different scale than that of the other plots. The calculated visibility for g2/g1 ≥ 1/4 is
incompatible with the experimental data of Figure 4.2(b). See text for details.

To strengthen and possibly to further decrease this upper bound, more detailed studies are
necessary. For instance, one might compare the Rabi frequencies (∝ g j) of the bright and the
dark qubit. Also high-resolution measurements of the shapes of the spectroscopy lines might be
helpful (see below). On the theory side, an accurate modelling of such experiments will also
have to take dissipation into account. To prepare further studies with our quantum simulator and
to deepen our understanding of it, we model the experimental two-tone spectroscopy once again
and include dissipation.

Bearing in mind the experimental situation of the two-tone spectroscopy, we assume that the
visibility (or the intensity) of the spectroscopy signal is proportional to the shift of the cavity
frequency due to the driving of the qubit system. We calculate this shift according to Equa-
tion (4.9), which we evaluate (i) in the ground state of the coupled system and (ii) in the steady
state of the system in the presence of a qubit drive tone with amplitude F and frequency ωd and
qubit and cavity decay rates γ j and κ. Subtracting the result of (ii) from (i) gives the cavity shift
caused by the qubit drive in the long-time limit. Our results are plotted in Figure 4.4 for (a) the
ideal case of zero residual cavity coupling of the second qubit, g2 = 0, and (b) equally strong
cavity coupling of the two qubits, g1 = g2. The qubit parameters used are the same as in Fig-
ure 4.3. The decay rates used roughly correspond to the experimentally measured cavity quality
factor Q = ωc/κ ∼ 3×103 and an conservative estimate for the qubit energy relaxation time of
T1 ∼ 1 µs. We remark that the actual qubit relaxation time in the sample studied in Figure 4.2 is
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Figure 4.4: Calculated shift of the cavity frequency ωc due to the qubit drive in a dissipative
circuit QED system with two directly coupled qubits for different coupling strengths of one of
the qubits and the cavity. In the density plots, the frequency of the first qubit is varied, Ω1, and
the frequency of the second qubit is constant at Ω2 = 0.6. The shift (and all other energies) are
measured in units of ωc. The color scale ranges from −2.11×10−3 in (a) and −2.34×10−3 in
(b) (black) to 0 (white). In all plots, the qubit and cavity decay rates are γ j = 5×10−5 for j = 1,2,
κ = 5× 10−4, and the drive amplitude is F = 2.5× 10−3. Moreover, J = 0.02, g1 = 0.03, and
g2 = 0 in (a) and g2 = g1 in (b). The right panels in (a) and (b) show cuts through the density
plots for Ω1 = Ω2 (black curves). The green curves result from increasing the drive amplitudes
by a factor of 6. The dashed red lines indicate two of the coupled eigenfrequencies of the bare
qubit system, Ω± J.

higher. A Rabi experiment recently revealed a energy relaxation time of T1 = 27 µs of the cavity-
coupled qubit (with sufficient detuning from the second qubit). Remarkably, this suggests that
the presence of a second qubit does not significantly reduce the relaxation time of a 3D transmon.
Preliminary results indicate that the same is true for the dephasing time T2 (. T1). For calculating
spectra, we can therefore neglect pure dephasing without making qualitative mistakes.

The plots in Figure 4.4 are consistent with our calculations of the spectrum on the basis of
Fermi’s golden rule. The increasing level splitting from (a) to (b) is a consequence of the ad-
ditional cavity-mediated qubit-qubit coupling which exists if g2 6= 0 (see the third line of Equa-
tion (4.10)). This effect was also present in Figure 4.3 but becomes visible only on the scale of
Figure 4.4. Cuts through the density plots at the positions of the arrows show the drive-dependent
cavity shift for resonant qubits Ω1 = Ω2 (black curves in the right panels of (a) and (b)). One can
see that also in the case g2 = 0, there is a slight shift of the resonances of the qubit system from
Ω1±J = Ω2±J (marked by the dashed red lines) to lower frequencies because of the dispersive
coupling of the qubit system and the resonator. Both in (a) and (b), the calculated drive-induced
frequency shifts of the cavity amount to a few MHz and are experimentally realistic. By numer-
ical integration, we find that the area between zero and the black curve in (b) is approximately
twice the area between zero and the black curve in (a). Thus, we can understand the formation of
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the dark state for symmetric coupling g1 = g2 in (b) as an interference effect. If the drive tone can
excite the qubit system via the first and the second qubit equally, these excitation pathways inter-
fere constructively for the first excited state of the system and destructively for the second excited
state of the system. To quantify this, notice that in these states the qubits are approximately in
the superpositions | ↑↓〉± | ↓↑〉, respectively. We can estimate schematically that the transition
rates from the ground state to these states (or the area between zero and the black curves) are
proportional to

∣∣(〈↓↑|±〈↑↓|
)(

g1σ
1
++g2σ

2
+

)
|↓↓〉

∣∣2 = |g1±g2|2. (4.12)

This estimation fits to our numerical results in the right panels of Figure 4.4 and can also be
used to estimate experimentally the residual coupling g2 by a detailed experimental analysis of
the spectroscopy lines and their relative weights on resonance. Finally, we remark that both in
the experiments (not shown) and in our numerics (shown for Ω1 = Ω2 in the right panels of (a)
and (b) as green curves) another line approximately at (Ω1+Ω2)/2 appears if the drive power is
increased (in addition to the power broadening of the spectroscopy lines). These are caused by
two-photon excitations of the qubit system to the state |↑↑〉 and provide further evidence for the
soundness of our theoretical description of the circuit QED system.

Turning now to the goals (III) and (IV) of the spectroscopy experiments, the estimation of
the homogeneity of the qubit parameters and the longer-range qubit-qubit coupling, let us first
consider the experimental spectroscopy results for a six-qubit sample shown in Figure 4.5(a). For
comparison, we plot the lowest excitation energies of H (Equation (4.3)) for N = 6 as a function
of Ω1 in the vicinity of the avoided crossings of the qubit system in Figure 4.5(b). As before,
we encode the transition rates (4.11) from the ground state to the excited states due to the qubit
drive in the color of the lines, according to the same scheme as in Figure 4.3 (where g2 < g1). We
assume experimentally realistic couplings g1 and J j, but we make the idealizing assumptions that
g j>1 = 0, J j = J, and Ω j>1 = 0.6ωc (independent of j). The visibility of the spectroscopy lines
in (a) roughly matches the theoretical expectation in (b). This indicates that also in this sample
the undesired qubit-cavity couplings g j>1 are small. However, the structure of the experimentally
measured avoided crossings obviously deviates from the result of our calculation.

The potential sources of this non-ideal spectrum are inhomogeneities in the Ω j>1 and longer-
range couplings in the system. In the dispersive regime, spurious qubit-cavity couplings g j>1
have little effect. The nearest-neighbor Ising couplings J j can inherit some disorder from the Ω j.
For transmons, they are approximately proportional to

√
Ω jΩ j+1 (see Section 4.5). The con-

stants of proportionality, however, are determined by the geometry of the chain and thus may be
expected to have no strong dependence on j (possibly except for j = 1). Longer-range couplings
and disorder in the Ω j can be straightforwardly implemented in the numerics to simulate their in-
fluence on the spectrum. However, for N = 6, the parameter space of the Ω j and the longer-range
couplings is too large to search for a parameter set yielding curves like in Figure 4.5.

To investigate the disorder and the longer-range coupling present in the experimental imple-
mentation of the quantum Ising chain, it is therefore advisable to consider the smallest system in
which these detrimental effects can occur – a chain of length N = 3. Spectroscopic results for
such a system are shown in Figure 4.6(a). The avoided crossings are found to have widths of
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Figure 4.5: Spectrum of a circuit QED system containing six capacitively coupled qubits. The
frequency of the first qubit, Ω1, is tuned, the frequencies Ω j>1 of the other qubits are constant.
(a) Experimental results (data by E. Henry and A. Schmidt). In the experiment, Ω1 is tuned
via a bias current through an external coil. (b) Calculated resonances of a six-qubit Ising chain
coupled to a cavity as a function of Ω1. The color code represents the calculated visibility of the
resonances (blue: low, red: high; see main text for details). The parameters used in the calculation
are, in units of the cavity frequency ωc, Ω j>1 = 0.6, J j = 0.02, g1 = 0.03, g j>1 = 0.

approximately 80 MHz (upper crossing) and 280 MHz (lower crossing) thus to have a ratio of
about 1/3.5. To compare this with theory, we diagonalize the Hamiltonian H (Equation (4.3))
for N = 3 and calculate the transition rates (4.11) as before. However, now we also allow for
a next-nearest-neighbor coupling −J1,3σ1

xσ3
x in H . Our calculation for the ideal case J1,3 = 0,

J j = J, g j>1 = 0, and Ω j>1≡Ω> (independent of j), shown in Figure (4.11) (b), exhibits avoided
crossings of about the same size and is not compatible with the experimental results in (a). Since
residual cavity coupling g j>1 > 0 does not have a strong effect on the positions of the resonances
in the dispersive regime, we may assume g j>1 = 0 for finding the source of the non-ideal posi-
tions of the resonances in (a). For completeness, we first consider the case where J1 6= J2 and
otherwise ideal parameters, which might be relevant in the measured three-qubit sample because
of the different geometry of the first qubit. In this situation, the spectrum changes appreciably,
see (c), but this alone cannot account for the unequal level splitting in (a). We can conclude
that longer-range coupling and/or inhomogeneities of the Ω j>0 must play a role in the sample
measured for Figure 4.6(a). These, however, are difficult to tell apart or to quantify just on the
basis of the measured spectrum (a). This can be seen from the plots (d) and (e), which both agree
qualitatively with (a) but have been obtained by letting Ω3 >Ω2 (d) and J1,3 6= 0 (e). Of course,
the spectrum (a) might also result from a combination of these uncontrolled system parameters.
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Figure 4.6: Spectrum of a circuit QED system containing N = 3 capacitively coupled qubits.
Similar to the situation of Figure 4.5, Ω1 is tuned and the Ω j>1 are constant. (a) Experimental
results (data by E. Henry and A. Schmidt). (b) Calculated resonances of a three-qubit Ising chain
with nearest-neighbor couplings J1 and J2 and next-nearest-neighbor coupling J1,3, coupled to
a cavity via the first qubit, g1 = 0.03, g j>1 = 0. The calculated visibility of the resonances is
color-coded as before. In the idealized situation (b), the parameters are Ω j>1 = 0.6, J j = 0.02,
and J1,3 = 0. The parameters used in the plots (c-e) differ from those of (b) in that J2 = 0.01 in
(c), Ω3 = 0.64 (and J2 = J1

√
Ω3/Ω2) in (d), and J1,3 = 0.01 in (e).

Thus, there is still much work to be done to reach a full understanding of the Hamiltonian
of the currently investigated design or to realize an improved design that comes closer to imple-
menting the desired Hamiltonian. For instance, it might be helpful to measure several samples
with identical layout. If these exhibit the same spectrum, the disorder of the Ω j>1 must be small
(except there are systematic errors in the sample fabrication process). Such a result should al-
low one to assess the longer-range qubit-qubit coupling by calculations as in Figure 4.6(e). A
complementary approach would be to fabricate samples with the Ω j>1 deliberately detuned from
one another (by altering the properties of the Josephson junctions). This would allow one to
determine the longer-range coupling by spectroscopy. However, its dependence on the qubit fre-
quencies also had to be determined for being able to transfer the results of such a measurement
back to the resonant case.

Time domain

An essential prerequisite for quantum simulations with our circuit QED setup is the demon-
stration of time-domain control over some of its degrees of freedom. Experiments with this
objective are currently being prepared, based on elementary architectures as the ones discussed
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in the previous section. As already mentioned, the coherence times of the qubits in such circuit
QED systems are comparable to those found in usual 3D architectures, which further encourages
studies in the time-domain. Two-qubit samples, for which all coupling parameters can be already
well estimated by spectroscopy, allow for a straightforward comparison of theory and experiment
and thus are a good starting point for benchmarking time-domain experiments. Studies of longer
chains in the time domain might also be worthwhile, even at this early state of the experiments, as
they might further our understanding of features such as next-nearest-neighbor coupling. In this
section, we discuss possible time-domain experiments with the small versions of our quantum
simulator already at hand. In particular, we analyze their feasibility given the system properties
described in the last section.

A simple time-domain experiment would be to excite the first qubit of the chain, swap the
excitation into the second qubit, and measure the time-dependent excitation probability of the
first qubit (as proposed in Section 4.5, only with a shorter chain). The first, cavity-coupled qubit
dominates the dispersive shift of the cavity (in particular if detuned from the chain), which has
already been used for time-resolved measurements of the state of this qubit in Rabi and Ramsey
experiments. As mentioned above, fast flux lines are not yet incorporated in the 3D architecture.
These would allow one to bring the first qubit rapidly into resonance with the rest of the chain
after an excitation has been created in this qubit. This can be compensated for by a fast Stark
pulse on the first qubit. Experimentally realistic values for the magnitude and the time scales of
the induced Stark shifts are ∆Ω1/2π∼ 150 MHz and ∆t ∼ 10 ns, respectively.

We simulate such an experiment in a two-qubit sample to investigate whether the preparation
of the system, the excitation swapping, and the revival of the first qubit could succeed under
realistic conditions and in the presence of decay, dephasing, and spurious coupling of the second
qubit and the cavity. We choose the parameters in our simulation such that for ωc/2π = 7 GHz,
the Ω j are at about 2π× 4 GHz, initially detuned by ∆Ω1/2π = 140 MHz, and coupled with
a strength J/2π = 35 MHz. The decay and dephasing rates we assume in our calculation are
pessimistic and correspond to T1 ≈ 0.5 µs and T2 ≈ 0.3 µs and a cavity Q factor of Q = 2×
103. The result of our simulation is shown in Figure 4.7(a). We plot the cavity population
〈a†a〉 and the qubit excitation probabilities P j

↑ = (1+ 〈σ j
z〉)/2 as a function of the dimensionless

time ωct. Note that one time unit corresponds roughly to 1 ns. As initial condition, we set the
density matrix equal to the ground state of the system. At ωct = 10, we switch on a Rabi drive
at a frequency ω = Ω1 for a duration ωcTπ = π(ωc−Ω1)/(2g1F) = 66, where F is the drive
amplitude. We assume here the simplest case of a (smoothed) rectangular pulse. We remark
that by optimizing the pulse shape, the fidelity of the qubit excitation can be enhanced. Note
that the drive also excites the second qubit, both directly via the residual coupling g2 = g1/4
and indirectly via the qubit-qubit coupling. At ωct = 90, we tune the first qubit into resonance
with the second qubit in a time ∆t ∼ 10/ωc. In an experiment, this would be done with the
Stark drive (which is numerically difficult to calibrate). One can clearly see how the excitation
is coherently exchanged between first and second qubit despite the various decay channels in the
system. Like in the hamiltonian case, the exchange takes place in a time T ∼ π/J and should
be easily resolvable in the measurement of the first qubit. Hence, the simulation suggest the
feasibility of time-domain experiments on the basis of Stark pulses without further improvements
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Figure 4.7: Excitation swapping on the basis of Stark pulses. Plotted are the calculated cavity
population 〈a†a〉 and the qubit excitation probabilities P j

↑ = (1+ 〈σ j
z〉)/2 as a function of time.

(a) A Rabi drive with amplitude F = 0.3 at the frequency Ω1 of the first qubit is applied to a two-
qubit sample initially prepared in its ground state from t = 10 to t = 76. The first qubit is detuned
from the second qubit by an amount of ∆Ω1 = Ω1−Ω2 = 0.02. The detuning is reduced to zero
near t = 90 (solid curves). The frequency Ω2 of the second qubit remains constant throughout
whole process. For comparison, the time evolution of the qubits without this reduction of the
detuning is plotted as dashed curves. The parameters used in the simulation are Ω2 = 0.6, J =
0.005, g1 = 0.03, g2 = 0.0075, κ = 5× 10−4, and γ j = γϕ, j = 5× 10−5 for j = 1,2. (b) Time
evolution of the qubit and cavity excitations for the same protocol as in (a) in a sample with
three qubits and otherwise identical parameters. All energies (times) are measured in units of ωc
(1/ωc).

of the circuit QED design being required. We remark that without the Stark pulse, one would
still find a partial excitation exchange between the first and the second qubit owing to the small
ratio of ∆Ω1/J (dashed lines). This implies also that if it should turn out to be necessary, in
an experiment with Stark pulse, to switch off the Stark pulse for measuring the first qubit, the
measurement should be fast compared to this spurious excitation exchange. This still appears to
be possible.

For a three-qubit sample with identical parameters and decay rates, the same protocol gen-
erates the time evolution shown in Figure 4.7(b). Notwithstanding the stronger influence of the
dissipation due to the increased evolution time and the stronger dispersion of the wave packet,
decay and revivals of the first qubit should be observable also in this case. It is interesting to note
the short period of relaxation of the third qubit (black curve, at t & 100) after the drive has been
switched off and before the excitation propagating through the chain further populates this qubit.

Finally, we mention that deviations from the time evolution predicted by Figure 4.7(b) might
be helpful to quantify the next-nearest-neighbor coupling or the disorder in the qubit frequen-
cies Ω j>1, which seemed to be present in the samples with N > 2 studied so far (see previous
section). For instance, the sets of system parameters yielding the qualitatively similar spectra of
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Figure 4.8: Calculated dissipative dynamics of a chain of three qubits coupled to a cavity. The
system is initially prepared in the state | ↑↓↓,0〉 with Ω1 = Ω2 and evolves in the presence of
decay and dephasing rates κ = 5× 10−4 and γ j = γϕ, j = 5× 10−5. (a) The non-dissipative part
of the time evolution is governed by the same Hamiltonian as used for Figure 4.6(d), that is,
Ω3 6= Ω2. (b) The non-dissipative part of the time evolution is governed by the same Hamiltonian
as used for Figure 4.6(e), that is J1,3 6= 0.

Figures 4.6(d) and 4.6(e) would generate the time evolutions plotted in Figure 4.8(a) and 4.8(b),
respectively, at Ω1 = Ω2 and could be easily differentiated from each other by measuring the
revivals of the first qubit.1 Of course, this would presume that one can ensure Ω1 = Ω2.

In summary, first results have been already obtained on the way to realize our circuit QED
quantum simulator. A way to implement it in the framework of a 3D circuit QED device has been
discussed. The comparison of theory and spectroscopy experiments has revealed that the cavity-
coupling of the rotated qubits is indeed weak. We have been able to estimate an upper bound
for this coupling and have suggested experiments to strengthen or possibly to further reduce this
bound. We have identified non-ideal behavior of the samples measured so far and have found
that they must incorporate longer-range coupling and/or qubit inhomogeneities. Finally, time-
domain experiments with small chains on the basis of Stark pulses have been simulated under
experimentally realistic conditions. The simulations indicate feasibility of such experiments
without any further improvements of the sample design. Thus, we are confident that experiments
on the time evolution of small versions of our quantum simulator will be successfully conducted
soon. The interplay of theory and experiment will hopefully advance our understanding of the
system in the near future to a point where the quantum simulator can be scaled up in a controlled
way.

1. For simplicity, we do not simulate the initial π pulse and the Stark shift acting on the first qubit in these plots but
start the dissipative time evolution directly from the state |↑↓↓,0〉.





Conclusion

In this thesis, circuit QED systems with multiple Josephson qubits have been studied theoretically
with respect to their ability of undergoing superradiant phase transitions and with respect to their
potential as quantum simulators of interacting spin chains. We conclude by summarizing the
main results of this thesis.

Superradiant phase transitions:

– Common, second-order superradiant phase transitions cannot occur in circuit QED systems
with Josephson charge qubits.

– The standard theory of circuit QED is not fully reliable for multi-qubit setups.

Quantum simulations:

– A circuit QED setup that simulates the quantum Ising chain has been proposed and ana-
lyzed.

– The setup should be suited to simulate the non-equilibrium dynamics of the quantum Ising
chain and might be extended to simulate non-integrable spin systems.

– Weak disorder in the qubit parameters can thereby be tolerated, strong disorder leads to
interesting new physics. The tolerable amount of disorder can be estimated.

– Experimental results for small chains are already available and can be theoretically under-
stood. They are generally very promising. Some system parameters are yet to be deter-
mined precisely.

Scaling up the system size is arguably one of the main objectives in the field of circuit QED. Rich
physics promises to be accessible in such larger-scale quantum systems with many controllably
interacting entities, also long before universal quantum computing comes within reach. We hope
that the work presented in this thesis sheds some light on aspects of this physics.
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Delanty, M., S. Rebić, and J. Twamley, 2011, Superradiance and phase multistability in circuit
quantum electrodynamics, New Journal of Physics 13, 053032.

DeMarco, B., and D. S. Jin, 1999, Onset of Fermi degeneracy in a trapped atomic gas, Science
285, 1703.

Deutsch, D., and R. Jozsa, 1992, Rapid solution of problems by quantum computation, Proceed-
ings of the Royal Society of London. Series A: Mathematical and Physical Sciences 439, 553.

Devoret, M. H., 1997, Quantum fluctuations in electrical circuits, in Quantum Fluctuations (Les
Houches Session LXIII) (Elsevier, Amsterdam) pp. 351–385.

Devoret, M. H., J. M. Martinis, and J. Clarke, 1985, Measurements of macroscopic quantum
tunneling out of the zero-voltage state of a current-biased Josephson junction, Phys. Rev. Lett.
55, 1908.

Devoret, M. H., and R. J. Schoelkopf, 2013, Superconducting circuits for quantum information:
An outlook, Science 339, 1169.

Devoret, M. H., A. Wallraff, and J. M. Martinis, 2004, Superconducting qubits: A short re-
view, in Quantum entanglement and Information Processing (Les Houches Session LXXIX),
edited by J. M. Raimond, J. Dalibard, and D. Esteve, 443rd ed. (Elsevier) pp. 443–485, cond-
mat/0411174v1.

Dewes, A., F. R. Ong, V. Schmitt, R. Lauro, N. Boulant, P. Bertet, D. Vion, and D. Esteve, 2012,
Characterization of a two-transmon processor with individual single-shot qubit readout, Phys.
Rev. Lett. 108, 057002.

DiCarlo, L., J. M. Chow, J. M. Gambetta, L. S. Bishop, D. I. Schuster, J. Majer, A. Blais, L. Frun-
zio, S. M. Girvin, and R. J. Schoelkopf, 2009, Demonstration of two-qubit algorithms with a
superconducting quantum processor, Nature 460, 240.

http://dx.doi.org/10.1103/PhysRevLett.109.179301
http://dx.doi.org/10.1103/PhysRevLett.109.179301
http://dx.doi.org/10.1103/PhysRevLett.109.179301
http://dx.doi.org/10.1038/nature07128
http://dx.doi.org/10.1038/nature07128
http://dx.doi.org/10.1038/nature07128
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1088/1367-2630/13/5/053032
http://dx.doi.org/10.1088/1367-2630/13/5/053032
http://dx.doi.org/10.1088/1367-2630/13/5/053032
http://dx.doi.org/10.1126/science.285.5434.1703
http://dx.doi.org/10.1126/science.285.5434.1703
http://dx.doi.org/10.1126/science.285.5434.1703
http://dx.doi.org/10.1098/rspa.1992.0167
http://dx.doi.org/10.1098/rspa.1992.0167
http://dx.doi.org/10.1098/rspa.1992.0167
http://dx.doi.org/10.1098/rspa.1992.0167
http://dx.doi.org/10.1103/PhysRevLett.55.1908
http://dx.doi.org/10.1103/PhysRevLett.55.1908
http://dx.doi.org/10.1103/PhysRevLett.55.1908
http://dx.doi.org/10.1126/science.1231930
http://dx.doi.org/10.1126/science.1231930
http://dx.doi.org/10.1126/science.1231930
http://arxiv.org/abs/cond-mat/0411174v1
http://arxiv.org/abs/cond-mat/0411174v1
http://dx.doi.org/10.1103/PhysRevLett.108.057002
http://dx.doi.org/10.1103/PhysRevLett.108.057002
http://dx.doi.org/10.1103/PhysRevLett.108.057002
http://dx.doi.org/10.1103/PhysRevLett.108.057002
http://dx.doi.org/10.1038/nature08121
http://dx.doi.org/10.1038/nature08121
http://dx.doi.org/10.1038/nature08121


160 BIBLIOGRAPHY

DiCarlo, L., M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M.
Girvin, M. H. Devoret, and R. J. Schoelkopf, 2010, Preparation and measurement of three-
qubit entanglement in a superconducting circuit, Nature 467, 574.

Dicke, R. H., 1954, Coherence in spontaneous radiation processes, Phys. Rev. 93, 99.

Dimer, F., B. Estienne, A. S. Parkins, and H. J. Carmichael, 2007, Proposed realization of the
Dicke-model quantum phase transition in an optical cavity QED system, Phys. Rev. A 75,
013804.

DiVincenzo, D. P., 2000, The physical implementation of quantum computation, Fortschritte der
Physik 48, 771.

Dutt, M. V. G., L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer,
and M. D. Lukin, 2007, Quantum register based on individual electronic and nuclear spin
qubits in diamond, Science 316, 1312.

Eichler, C., D. Bozyigit, C. Lang, L. Steffen, J. Fink, and A. Wallraff, 2011, Experimental state
tomography of itinerant single microwave photons, Phys. Rev. Lett. 106, 220503.

Eichler, C., C. Lang, J. M. Fink, J. Govenius, S. Filipp, and A. Wallraff, 2012, Observation of
entanglement between itinerant microwave photons and a superconducting qubit, Phys. Rev.
Lett. 109, 240501.

Emary, C., and T. Brandes, 2003a, Chaos and the quantum phase transition in the Dicke model,
Phys. Rev. E 67, 066203.

Emary, C., and T. Brandes, 2003b, Quantum chaos triggered by precursors of a quantum phase
transition: The Dicke model, Phys. Rev. Lett. 90, 044101.

Esslinger, T., 2010, Fermi-Hubbard physics with atoms in an optical lattice, Annual Review of
Condensed Matter Physics, Annual Review of Condensed Matter Physics 1, 129.

Esteve, Daniel, Michel H. Devoret, and John M. Martinis, 1986, Effect of an arbitrary dissipative
circuit on the quantum energy levels and tunneling of a josephson junction, Phys. Rev. B 34,
158.

Faraon, A., I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, 2008, Coherent
generation of non-classical light on a chip via photon-induced tunnelling and blockade, Nat.
Phys. 4, 859.

Fazio, R., and H. van der Zant, 2001, Quantum phase transitions and vortex dynamics in super-
conducting networks, Physics Reports 355, 235.

Fedorov, A., L. Steffen, M. Baur, M. P. da Silva, and A. Wallraff, 2012, Implementation of a
Toffoli gate with superconducting circuits, Nature 481, 170.

http://dx.doi.org/:10.1038/nature09416
http://dx.doi.org/:10.1038/nature09416
http://dx.doi.org/:10.1038/nature09416
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRevA.75.013804
http://dx.doi.org/10.1103/PhysRevA.75.013804
http://dx.doi.org/10.1103/PhysRevA.75.013804
http://dx.doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
http://dx.doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
http://dx.doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
http://dx.doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
http://dx.doi.org/10.1126/science.1139831
http://dx.doi.org/10.1126/science.1139831
http://dx.doi.org/10.1126/science.1139831
http://dx.doi.org/10.1103/PhysRevLett.106.220503
http://dx.doi.org/10.1103/PhysRevLett.106.220503
http://dx.doi.org/10.1103/PhysRevLett.106.220503
http://dx.doi.org/10.1103/PhysRevLett.109.240501
http://dx.doi.org/10.1103/PhysRevLett.109.240501
http://dx.doi.org/10.1103/PhysRevLett.109.240501
http://dx.doi.org/10.1103/PhysRevLett.109.240501
http://dx.doi.org/10.1103/PhysRevE.67.066203
http://dx.doi.org/10.1103/PhysRevE.67.066203
http://dx.doi.org/10.1103/PhysRevE.67.066203
http://dx.doi.org/10.1103/PhysRevLett.90.044101
http://dx.doi.org/10.1103/PhysRevLett.90.044101
http://dx.doi.org/10.1103/PhysRevLett.90.044101
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104059
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104059
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104059
http://dx.doi.org/10.1103/PhysRevB.34.158
http://dx.doi.org/10.1103/PhysRevB.34.158
http://dx.doi.org/10.1103/PhysRevB.34.158
http://dx.doi.org/10.1038/nphys1078
http://dx.doi.org/10.1038/nphys1078
http://dx.doi.org/10.1038/nphys1078
http://dx.doi.org/10.1038/nphys1078
http://dx.doi.org/10.1016/S0370-1573(01)00022-9
http://dx.doi.org/10.1016/S0370-1573(01)00022-9
http://dx.doi.org/10.1016/S0370-1573(01)00022-9
http://dx.doi.org/10.1038/nature10713
http://dx.doi.org/10.1038/nature10713
http://dx.doi.org/10.1038/nature10713


BIBLIOGRAPHY 161

Feynman, R. P., 1982, Simulating physics with computers, International Journal of Theoretical
Physics 21, 467.

Fink, J. M., R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S. Filipp, P. J. Leek, A. Blais, and
A. Wallraff, 2009, Dressed collective qubit states and the Tavis-Cummings model in circuit
QED, Phys. Rev. Lett. 103, 083601.

Fink, J. M., M. Goppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, and A. Wallraff, 2008,
Climbing the Jaynes-Cummings ladder and observing its nonlinearity in a cavity QED system,
Nature 454, 315.

Fisher, M. P. A., P. B. Weichman, G. Grinstein, and D. S. Fisher, 1989, Boson localization and
the superfluid-insulator transition, Phys. Rev. B 40, 546.

Fleischhauer, M., A. Imamoglu, and J. P. Marangos, 2005, Electromagnetically induced trans-
parency: Optics in coherent media, Rev. Mod. Phys. 77, 633.

Flurin, E., N. Roch, F. Mallet, M. H. Devoret, and B. Huard, 2012, Generating entangled mi-
crowave radiation over two transmission lines, Phys. Rev. Lett. 109, 183901.

Forn-Díaz, P., J. Lisenfeld, D. Marcos, J. J. García-Ripoll, E. Solano, C. J. P. M. Harmans, and
J. E. Mooij, 2010, Observation of the Bloch-Siegert shift in a qubit-oscillator system in the
ultrastrong coupling regime, Phys. Rev. Lett. 105, 237001.

Fragner, A., M. Göppl, J. M. Fink, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, and A. Wallraff,
2008, Resolving vacuum fluctuations in an electrical circuit by measuring the Lamb shift,
Science 322, 1357.

Frey, T., P. J. Leek, M. Beck, A. Blais, T. Ihn, K. Ensslin, and A. Wallraff, 2012, Dipole coupling
of a double quantum dot to a microwave resonator, Phys. Rev. Lett. 108, 046807.

Friedenauer, A., H. Schmitz, J. T. Glueckert, D. Porras, and T. Schaetz, 2008, Simulating a
quantum magnet with trapped ions, Nat. Phys. 4, 757.

Friedman, J. R., V. Patel, W. Chen, S. K. Tolpygo, and J. E. Lukens, 2000, Quantum superposi-
tion of distinct macroscopic states, Nature 406, 43.

Fukuhara, T., A. Kantian, M. Endres, M. Cheneau, P. Schausz, S. Hild, D. Bellem, U. Scholl-
wöck, T. Giamarchi, C. Gross, I. Bloch, and S. Kuhr, 2013, Quantum dynamics of a mobile
spin impurity, Nat. Phys. 9, 235.

Fulton, T. A., and G. J. Dolan, 1987, Observation of single-electron charging effects in small
tunnel junctions, Phys. Rev. Lett. 59, 109.

Gerritsma, R., G. Kirchmair, F. Zahringer, E. Solano, R. Blatt, and C. F. Roos, 2010, Quantum
simulation of the Dirac equation, Nature 463, 68.

http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1103/PhysRevLett.103.083601
http://dx.doi.org/10.1103/PhysRevLett.103.083601
http://dx.doi.org/10.1103/PhysRevLett.103.083601
http://dx.doi.org/10.1038/nature07112
http://dx.doi.org/10.1038/nature07112
http://dx.doi.org/10.1038/nature07112
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/RevModPhys.77.633
http://dx.doi.org/10.1103/RevModPhys.77.633
http://dx.doi.org/10.1103/RevModPhys.77.633
http://dx.doi.org/10.1103/PhysRevLett.109.183901
http://dx.doi.org/10.1103/PhysRevLett.109.183901
http://dx.doi.org/10.1103/PhysRevLett.109.183901
http://dx.doi.org/10.1103/PhysRevLett.105.237001
http://dx.doi.org/10.1103/PhysRevLett.105.237001
http://dx.doi.org/10.1103/PhysRevLett.105.237001
http://dx.doi.org/10.1126/science.1164482
http://dx.doi.org/10.1126/science.1164482
http://dx.doi.org/10.1126/science.1164482
http://dx.doi.org/10.1103/PhysRevLett.108.046807
http://dx.doi.org/10.1103/PhysRevLett.108.046807
http://dx.doi.org/10.1103/PhysRevLett.108.046807
http://dx.doi.org/10.1038/nphys1032
http://dx.doi.org/10.1038/nphys1032
http://dx.doi.org/10.1038/nphys1032
http://dx.doi.org/doi:10.1038/35017505
http://dx.doi.org/doi:10.1038/35017505
http://dx.doi.org/doi:10.1038/35017505
http://dx.doi.org/10.1038/nphys2561
http://dx.doi.org/10.1038/nphys2561
http://dx.doi.org/10.1038/nphys2561
http://dx.doi.org/10.1103/PhysRevLett.59.109
http://dx.doi.org/10.1103/PhysRevLett.59.109
http://dx.doi.org/10.1103/PhysRevLett.59.109
http://dx.doi.org/10.1038/nature08688
http://dx.doi.org/10.1038/nature08688
http://dx.doi.org/10.1038/nature08688


162 BIBLIOGRAPHY

Gerritsma, R., B. P. Lanyon, G. Kirchmair, F. Zähringer, C. Hempel, J. Casanova, J. J. García-
Ripoll, E. Solano, R. Blatt, and C. F. Roos, 2011, Quantum simulation of the Klein paradox
with trapped ions, Phys. Rev. Lett. 106, 060503.

Giaever, I., 1965, Detection of the AC Josephson effect, Phys. Rev. Lett. 14, 904.

Ginzburg, V.L., and L.D. Landau, 1950, On the theory of superconductivity, Zh. Eksp. Teor. Fiz.
20, 1064.

Girvin, S. M., 2013, Basic concepts in quantum information, arXiv:1302.5842.

Gor’kov, L.P., 1959, Microscopic derivation of the Ginzburg-Landau equations in the theory of
superconductivity, Sov. Phys. JETP 36, 1364.

Goy, P., J. M. Raimond, M. Gross, and S. Haroche, 1983, Observation of cavity-enhanced single-
atom spontaneous emission, Phys. Rev. Lett. 50, 1903.

Greentree, A. D., C. Tahan, J. H. Cole, and L. C. L. Hollenberg, 2006, Quantum phase transitions
of light, Nat. Phys. 2, 856.

Greif, D., T. Uehlinger, G. Jotzu, L. Tarruell, and T. Esslinger, 2013, Short-range quantum mag-
netism of ultracold fermions in an optical lattice, Science 340, 1307.

Greiner, M., O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, 2002a, Quantum phase tran-
sition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature 415, 39.

Greiner, M., O. Mandel, Theodor W. Hänsch, and I. Bloch, 2002b, Collapse and revival of the
matter wave field of a Bose-Einstein condensate, Nature 419, 51.

Greiner, M., C. A. Regal, and D. S. Jin, 2003, Emergence of a molecular Bose-Einstein conden-
sate from a Fermi gas, Nature 426, 537.

Gross, M., and S. Haroche, 1982, Superradiance: An essay on the theory of collective sponta-
neous emission, Physics Reports 93, 301.

Grover, L. K., 1996, A fast quantum mechanical algorithm for database search, in Annual ACM
symposium on theory of computing (ACM) pp. 212–219.

Hagley, E., X. Maître, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche,
1997, Generation of Einstein-Podolsky-Rosen pairs of atoms, Phys. Rev. Lett. 79, 1.

Hartmann, M. J., F. G. S. L. Brandao, and M. B. Plenio, 2006, Strongly interacting polaritons in
coupled arrays of cavities, Nat. Phys. 2, 849.

Hatridge, M., S. Shankar, M. Mirrahimi, F. Schackert, K. Geerlings, T. Brecht, K. M. Sliwa,
B. Abdo, L. Frunzio, S. M. Girvin, R. J. Schoelkopf, and M. H. Devoret, 2013, Quantum
back-action of an individual variable-strength measurement, Science 339, 178.

http://dx.doi.org/10.1103/PhysRevLett.106.060503
http://dx.doi.org/10.1103/PhysRevLett.106.060503
http://dx.doi.org/10.1103/PhysRevLett.106.060503
http://dx.doi.org/10.1103/PhysRevLett.14.904
http://dx.doi.org/10.1103/PhysRevLett.14.904
http://dx.doi.org/10.1103/PhysRevLett.14.904
http://arxiv.org/abs/1302.5842
http://dx.doi.org/10.1103/PhysRevLett.50.1903
http://dx.doi.org/10.1103/PhysRevLett.50.1903
http://dx.doi.org/10.1103/PhysRevLett.50.1903
http://dx.doi.org/10.1038/nphys466
http://dx.doi.org/10.1038/nphys466
http://dx.doi.org/10.1038/nphys466
http://dx.doi.org/10.1126/science.1236362
http://dx.doi.org/10.1126/science.1236362
http://dx.doi.org/10.1126/science.1236362
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/nature00968
http://dx.doi.org/10.1038/nature00968
http://dx.doi.org/10.1038/nature00968
http://dx.doi.org/10.1038/nature02199
http://dx.doi.org/10.1038/nature02199
http://dx.doi.org/10.1038/nature02199
http://dx.doi.org/10.1016/0370-1573(82)90102-8
http://dx.doi.org/10.1016/0370-1573(82)90102-8
http://dx.doi.org/10.1016/0370-1573(82)90102-8
http://dx.doi.org/10.1103/PhysRevLett.79.1
http://dx.doi.org/10.1103/PhysRevLett.79.1
http://dx.doi.org/10.1103/PhysRevLett.79.1
http://dx.doi.org/10.1038/nphys462
http://dx.doi.org/10.1038/nphys462
http://dx.doi.org/10.1038/nphys462
http://dx.doi.org/10.1126/science.1226897
http://dx.doi.org/10.1126/science.1226897
http://dx.doi.org/10.1126/science.1226897


BIBLIOGRAPHY 163

Helmer, F., M. Mariantoni, A. G. Fowler, J. von Delft, E. Solano, and F. Marquardt, 2009, Cav-
ity grid for scalable quantum computation with superconducting circuits, EPL (Europhysics
Letters) 85, 50007.

Hennessy, K., A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and
A. Imamoglu, 2007, Quantum nature of a strongly coupled single quantum dot-cavity system,
Nature 445, 896.

Hepp, K., and E. H. Lieb, 1973, On the superradiant phase transition for molecules in a quan-
tized radiation field: the Dicke maser model, Annals of Physics 76, 360.

Hofheinz, M., H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. O’Connell,
D. Sank, J. Wenner, J. M. Martinis, and A. N. Cleland, 2009, Synthesizing arbitrary quantum
states in a superconducting resonator, Nature 459, 546.

Hofheinz, M., E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. O’Connell,
H. Wang, J. M. Martinis, and A. N. Cleland, 2008, Generation of Fock states in a supercon-
ducting quantum circuit, Nature 454, 310.

Holstein, T., and H. Primakoff, 1940, Field dependence of the intrinsic domain magnetization of
a ferromagnet, Phys. Rev. 58, 1098.

Hopfield, J. J., 1958, Theory of the contribution of excitons to the complex dielectric constant of
crystals, Phys. Rev. 112, 1555.

Horodecki, R., P. Horodecki, M. Horodecki, and K. Horodecki, 2009, Quantum entanglement,
Rev. Mod. Phys. 81, 865.

Houck, A. A., J. A. Schreier, B. R. Johnson, J. M. Chow, Jens Koch, J. M. Gambetta, D. I.
Schuster, L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, 2008, Controlling
the spontaneous emission of a superconducting transmon qubit, Phys. Rev. Lett. 101, 080502.

Houck, A. A., D. I. Schuster, J. M. Gambetta, J. A. Schreier, B. R. Johnson, J. M. Chow, L. Frun-
zio, J. Majer, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, 2007, Generating single
microwave photons in a circuit, Nature 449, 328.

Houck, A. A., H. E. Tureci, and J. Koch, 2012, On-chip quantum simulation with superconduct-
ing circuits, Nat. Phys. 8, 292.

Hulet, R. G., E. S. Hilfer, and D. Kleppner, 1985, Inhibited spontaneous emission by a Rydberg
atom, Phys. Rev. Lett. 55, 2137.

Hwang, M.-J., and M.-S. Choi, 2012, Large-scale Schrödinger-cat states and Majorana bound
states in coupled circuit-QED systems, arXiv:1207.0088.

http://dx.doi.org/10.1209/0295-5075/85/50007
http://dx.doi.org/10.1209/0295-5075/85/50007
http://dx.doi.org/10.1209/0295-5075/85/50007
http://dx.doi.org/10.1209/0295-5075/85/50007
http://dx.doi.org/10.1038/nature05586
http://dx.doi.org/10.1038/nature05586
http://dx.doi.org/10.1038/nature05586
http://dx.doi.org/10.1016/0003-4916(73)90039-0
http://dx.doi.org/10.1016/0003-4916(73)90039-0
http://dx.doi.org/10.1016/0003-4916(73)90039-0
http://dx.doi.org/10.1038/nature08005
http://dx.doi.org/10.1038/nature08005
http://dx.doi.org/10.1038/nature08005
http://dx.doi.org/10.1038/nature07136
http://dx.doi.org/10.1038/nature07136
http://dx.doi.org/10.1038/nature07136
http://dx.doi.org/10.1103/PhysRev.58.1098
http://dx.doi.org/10.1103/PhysRev.58.1098
http://dx.doi.org/10.1103/PhysRev.58.1098
http://dx.doi.org/10.1103/PhysRev.112.1555
http://dx.doi.org/10.1103/PhysRev.112.1555
http://dx.doi.org/10.1103/PhysRev.112.1555
http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1103/PhysRevLett.101.080502
http://dx.doi.org/10.1103/PhysRevLett.101.080502
http://dx.doi.org/10.1103/PhysRevLett.101.080502
http://dx.doi.org/10.1038/nature06126
http://dx.doi.org/10.1038/nature06126
http://dx.doi.org/10.1038/nature06126
http://dx.doi.org/10.1038/nphys2251
http://dx.doi.org/10.1038/nphys2251
http://dx.doi.org/10.1038/nphys2251
http://dx.doi.org/10.1103/PhysRevLett.55.2137
http://dx.doi.org/10.1103/PhysRevLett.55.2137
http://dx.doi.org/10.1103/PhysRevLett.55.2137
http://arxiv.org/abs/1207.0088


164 BIBLIOGRAPHY

Islam, R., E. E. Edwards, K. Kim, S. Korenblit, C. Noh, H. Carmichael, G. D. Lin, L. M. Duan,
C. C. Joseph Wang, J. K. Freericks, and C. Monroe, 2011, Onset of a quantum phase transition
with a trapped ion quantum simulator, Nat Commun 2, 377.

Jaksch, D., C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, 1998, Cold bosonic atoms in
optical lattices, Phys. Rev. Lett. 81, 3108.

Jaynes, E.T., and F. W. Cummings, 1963, Comparison of quantum and semiclassical radiation
theories with application to the beam maser, Proceedings of the IEEE 51 (1), 89.

Johansson, J., S. Saito, T. Meno, H. Nakano, M. Ueda, K. Semba, and H. Takayanagi, 2006,
Vacuum Rabi oscillations in a macroscopic superconducting qubit LC oscillator system, Phys.
Rev. Lett. 96, 127006.

Johnson, B. R., M. D. Reed, A. A. Houck, D. I. Schuster, Lev S. Bishop, E. Ginossar, J. M.
Gambetta, L. DiCarlo, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, 2010, Quantum non-
demolition detection of single microwave photons in a circuit, Nat. Phys. 6, 663.

Johnson, M. W., M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris,
A. J. Berkley, J. Johansson, P. Bunyk, E. M. Chapple, C. Enderud, J. P. Hilton, K. Karimi,
E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M. C. Thom, E. Tolkacheva, C. J. S.
Truncik, S. Uchaikin, J. Wang, B. Wilson, and G. Rose, 2011, Quantum annealing with man-
ufactured spins, Nature 473, 194.

Jordan, P., and E. Wigner, 1928, Über das Paulische Äquivalenzverbot, Zeitschrift für Physik 47,
631.

Jördens, R., N. Strohmaier, K. Gunter, H. Moritz, and T. Esslinger, 2008, A Mott insulator of
fermionic atoms in an optical lattice, Nature 455, 204.

Josephson, B.D., 1962, Possible new effects in superconductive tunnelling, Physics Letters 1,
251.

Kamerlingh Onnes, H., 1911, On the sudden change in the rate at which the resistance of mercury
disappears, Commun. Phys. Lab. Univ. Leiden. Suppl. 124c.

Kane, B. E., 1998, A silicon-based nuclear spin quantum computer, Nature 393, 133.

Kelly, W. R., Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, 2010,
Direct observation of coherent population trapping in a superconducting artificial atom, Phys.
Rev. Lett. 104, 163601.

Ketterson, J.B., and S.N. Song, 1999, Superconductivity (Cambridge University Press).

Kinoshita, T., T. Wenger, and D. S. Weiss, 2006, A quantum Newton’s cradle, Nature 440, 900.

http://dx.doi.org/10.1038/ncomms1374
http://dx.doi.org/10.1038/ncomms1374
http://dx.doi.org/10.1038/ncomms1374
http://dx.doi.org/10.1103/PhysRevLett.81.3108
http://dx.doi.org/10.1103/PhysRevLett.81.3108
http://dx.doi.org/10.1103/PhysRevLett.81.3108
http://dx.doi.org/10.1109/PROC.1963.1664
http://dx.doi.org/10.1109/PROC.1963.1664
http://dx.doi.org/10.1109/PROC.1963.1664
http://dx.doi.org/10.1103/PhysRevLett.96.127006
http://dx.doi.org/10.1103/PhysRevLett.96.127006
http://dx.doi.org/10.1103/PhysRevLett.96.127006
http://dx.doi.org/10.1103/PhysRevLett.96.127006
http://dx.doi.org/10.1038/NPHYS1710
http://dx.doi.org/10.1038/NPHYS1710
http://dx.doi.org/10.1038/NPHYS1710
http://dx.doi.org/10.1038/nature10012
http://dx.doi.org/10.1038/nature10012
http://dx.doi.org/10.1038/nature10012
http://dx.doi.org/10.1007/BF01331938
http://dx.doi.org/10.1007/BF01331938
http://dx.doi.org/10.1007/BF01331938
http://dx.doi.org/10.1038/nature07244
http://dx.doi.org/10.1038/nature07244
http://dx.doi.org/10.1038/nature07244
http://dx.doi.org/10.1016/0031-9163(62)91369-0
http://dx.doi.org/10.1016/0031-9163(62)91369-0
http://dx.doi.org/10.1016/0031-9163(62)91369-0
http://dx.doi.org/10.1038/30156
http://dx.doi.org/10.1038/30156
http://dx.doi.org/10.1038/30156
http://dx.doi.org/10.1103/PhysRevLett.104.163601
http://dx.doi.org/10.1103/PhysRevLett.104.163601
http://dx.doi.org/10.1103/PhysRevLett.104.163601
http://dx.doi.org/10.1103/PhysRevLett.104.163601
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1038/nature04693


BIBLIOGRAPHY 165

Kirchmair, G., B. Vlastakis, Z. Leghtas, S. E. Nigg, H. Paik, E. Ginossar, M. Mirrahimi, L. Frun-
zio, S. M. Girvin, and R. J. Schoelkopf, 2013, Observation of quantum state collapse and
revival due to the single-photon Kerr effect, Nature 495, 205.

Kitaev, A. Y., 2001, Unpaired Majorana fermions in quantum wires, Physics-Uspekhi 44, 131.

Kitaev, A. Y., 2003, Fault-tolerant quantum computation by anyons, Annals of Physics 303, 2.

Knill, E., R. Laflamme, and G. J. Milburn, 2001, A scheme for efficient quantum computation
with linear optics, Nature 409, 46.

Koch, J., T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret,
S. M. Girvin, and R. J. Schoelkopf, 2007, Charge-insensitive qubit design derived from the
Cooper pair box, Phys. Rev. A 76, 042319.

Kubo, Y., C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya, N. Morishita, H. Abe, S. Onoda,
T. Ohshima, V. Jacques, A. Dréau, J.-F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve,
and P. Bertet, 2011, Hybrid quantum circuit with a superconducting qubit coupled to a spin
ensemble, Phys. Rev. Lett. 107, 220501.

Kuhn, W., 1925, Über die Gesamtstärke der von einem Zustande ausgehenden Absorptionslinien,
Zeitschrift für Physik A Hadrons and Nuclei 33, 408.

Kumar, B., and S. Jalal, 2012, Quantum Ising dynamics and Majorana fermions in the Rabi
lattice model, arXiv:1210.6922.

Lang, C., C. Eichler, L. Steffen, J. M. Fink, M. J. Woolley, A. Blais, and A. Wallraff, 2013, Corre-
lations, indistinguishability and entanglement in Hong-Ou-Mandel experiments at microwave
frequencies, Nat. Phys. 9, 345.

Lanyon, B. P., C. Hempel, D. Nigg, M. Müller, R. Gerritsma, F. Zähringer, P. Schindler, J. T.
Barreiro, M. Rambach, G. Kirchmair, M. Hennrich, P. Zoller, R. Blatt, and C. F. Roos, 2011,
Universal digital quantum simulation with trapped ions, Science 334, 57.

Lanyon, B. P., J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D.
Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, 2010,
Towards quantum chemistry on a quantum computer, Nat Chem 2, 106.

Law, C. K., and J. H. Eberly, 1996, Arbitrary control of a quantum electromagnetic field, Phys.
Rev. Lett. 76, 1055.

Leek, P. J., J. M. Fink, A. Blais, R. Bianchetti, M. Göppl, J. M. Gambetta, D. I. Schuster, L. Frun-
zio, R. J. Schoelkopf, and A. Wallraff, 2007, Observation of Berry’s phase in a solid-state
qubit, Science 318, 1889.

Leggett, A. J., 1980, Macroscopic quantum systems and the quantum theory of measurement,
Progress of Theoretical Physics Supplement 69, 80.

http://dx.doi.org/10.1038/nature11902
http://dx.doi.org/10.1038/nature11902
http://dx.doi.org/10.1038/nature11902
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1038/35051009
http://dx.doi.org/10.1038/35051009
http://dx.doi.org/10.1038/35051009
http://dx.doi.org/10.1103/PhysRevA.76.042319
http://dx.doi.org/10.1103/PhysRevA.76.042319
http://dx.doi.org/10.1103/PhysRevA.76.042319
http://dx.doi.org/10.1103/PhysRevLett.107.220501
http://dx.doi.org/10.1103/PhysRevLett.107.220501
http://dx.doi.org/10.1103/PhysRevLett.107.220501
http://dx.doi.org/10.1007/BF01328322
http://dx.doi.org/10.1007/BF01328322
http://dx.doi.org/10.1007/BF01328322
http://arxiv.org/abs/1210.6922
http://dx.doi.org/10.1038/nphys2612
http://dx.doi.org/10.1038/nphys2612
http://dx.doi.org/10.1038/nphys2612
http://dx.doi.org/10.1126/science.1208001
http://dx.doi.org/10.1126/science.1208001
http://dx.doi.org/10.1126/science.1208001
http://dx.doi.org/10.1038/nchem.483
http://dx.doi.org/10.1038/nchem.483
http://dx.doi.org/10.1038/nchem.483
http://dx.doi.org/10.1103/PhysRevLett.76.1055
http://dx.doi.org/10.1103/PhysRevLett.76.1055
http://dx.doi.org/10.1103/PhysRevLett.76.1055
http://dx.doi.org/10.1103/PhysRevLett.76.1055
http://dx.doi.org/10.1126/science.1149858
http://dx.doi.org/10.1126/science.1149858
http://dx.doi.org/10.1126/science.1149858
http://dx.doi.org/10.1143/PTPS.69.80
http://dx.doi.org/10.1143/PTPS.69.80
http://dx.doi.org/10.1143/PTPS.69.80


166 BIBLIOGRAPHY

Leggett, A. J., and A. Garg, 1985, Quantum mechanics versus macroscopic realism: Is the flux
there when nobody looks?. Phys. Rev. Lett. 54, 857.

Lieb, E., T. Schultz, and D. Mattis, 1961, Two soluble models of an antiferromagnetic chain,
Annals of Physics 16, 407.

Lieb, E. H., and D. W. Robinson, 1972, The finite group velocity of quantum spin systems, Com-
munications in Mathematical Physics 28, 251.

Lin, Y. J., R. L. Compton, K. Jimenez-Garcia, J. V. Porto, and I. B. Spielman, 2009, Synthetic
magnetic fields for ultracold neutral atoms, Nature 462, 628.

Lloyd, S., 1996, Universal quantum simulators, Science 273, 1073.

London, F., 1950, Superfluids (John Wiley & Sons).

Loss, Daniel, and David P. DiVincenzo, 1998, Quantum computation with quantum dots, Phys.
Rev. A 57, 120.

Lucero, E., R. Barends, Y. Chen, J. Kelly, M. Mariantoni, A. Megrant, P. O’Malley, D. Sank,
A. Vainsencher, J. Wenner, T. White, Y. Yin, A. N. Cleland, and J. M. Martinis, 2012, Com-
puting prime factors with a Josephson phase qubit quantum processor, Nat. Phys. 8, 719.

Lutchyn, Roman M., Jay D. Sau, and S. Das Sarma, 2010, Majorana fermions and a topologi-
cal phase transition in semiconductor-superconductor heterostructures, Phys. Rev. Lett. 105,
077001.

Ma, X.-S., B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, 2011, Quantum simulation of the
wavefunction to probe frustrated Heisenberg spin systems, Nat. Phys. 7, 399.

Majer, J., J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio,
D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, 2007, Coupling superconducting qubits via a cavity bus, Nature 449, 443.

Makhlin, Y., G. Schön, and A. Shnirman, 2001, Quantum-state engineering with Josephson-
junction devices, Rev. Mod. Phys. 73, 357.

Mallet, F., M. A. Castellanos-Beltran, H. S. Ku, S. Glancy, E. Knill, K. D. Irwin, G. C. Hilton,
L. R. Vale, and K. W. Lehnert, 2011, Quantum state tomography of an itinerant squeezed
microwave field, Phys. Rev. Lett. 106, 220502.

Mallet, F., F. R. Ong, A. Palacios-Laloy, F. Nguyen, P. Bertet, D. Vion, and D. Esteve, 2009,
Single-shot qubit readout in circuit quantum electrodynamics, Nat. Phys. 5, 791.

Manucharyan, V. E., J. Koch, L. I. Glazman, and M. H. Devoret, 2009, Fluxonium: Single
Cooper-pair circuit free of charge offsets, Science 326, 113.

http://dx.doi.org/10.1103/PhysRevLett.54.857
http://dx.doi.org/10.1103/PhysRevLett.54.857
http://dx.doi.org/10.1103/PhysRevLett.54.857
http://dx.doi.org/10.1007/BF01645779
http://dx.doi.org/10.1007/BF01645779
http://dx.doi.org/10.1007/BF01645779
http://dx.doi.org/10.1007/BF01645779
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1126/science.273.5278.1073
http://dx.doi.org/10.1126/science.273.5278.1073
http://dx.doi.org/10.1126/science.273.5278.1073
http://dx.doi.org/10.1103/PhysRevA.57.120
http://dx.doi.org/10.1103/PhysRevA.57.120
http://dx.doi.org/10.1103/PhysRevA.57.120
http://dx.doi.org/10.1103/PhysRevA.57.120
http://dx.doi.org/10.1038/NPHYS2385
http://dx.doi.org/10.1038/NPHYS2385
http://dx.doi.org/10.1038/NPHYS2385
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1038/nphys1919
http://dx.doi.org/10.1038/nphys1919
http://dx.doi.org/10.1038/nphys1919
http://dx.doi.org/10.1038/nature06184
http://dx.doi.org/10.1038/nature06184
http://dx.doi.org/10.1038/nature06184
http://dx.doi.org/10.1103/RevModPhys.73.357
http://dx.doi.org/10.1103/RevModPhys.73.357
http://dx.doi.org/10.1103/RevModPhys.73.357
http://dx.doi.org/10.1103/PhysRevLett.106.220502
http://dx.doi.org/10.1103/PhysRevLett.106.220502
http://dx.doi.org/10.1103/PhysRevLett.106.220502
http://dx.doi.org/10.1038/NPHYS1400
http://dx.doi.org/10.1038/NPHYS1400
http://dx.doi.org/10.1038/NPHYS1400
http://dx.doi.org/10.1126/science.1175552
http://dx.doi.org/10.1126/science.1175552
http://dx.doi.org/10.1126/science.1175552


BIBLIOGRAPHY 167

Mariantoni, M., H. Wang, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell,
D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N.
Cleland, 2011a, Photon shell game in three-resonator circuit quantum electrodynamics, Nat.
Phys. 7, 287.

Mariantoni, M., H. Wang, T. Yamamoto, M. Neeley, R. C. Bialczak, Y. Chen, M. Lenander,
E. Lucero, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, Y. Yin, J. Zhao, A. N. Korotkov,
A. N. Cleland, and J. M. Martinis, 2011b, Implementing the quantum von Neumann architec-
ture with superconducting circuits, Science 334, 61.

Marquardt, F., and C. Bruder, 2001, Superposition of two mesoscopically distinct quantum states:
Coupling a Cooper-pair box to a large superconducting island, Phys. Rev. B 63, 054514.

Martinis, J. M., M. H. Devoret, and J. Clarke, 1985, Energy-level quantization in the zero-voltage
state of a current-biased Josephson junction, Phys. Rev. Lett. 55, 1543.

Martinis, J. M., S. Nam, J. Aumentado, and C. Urbina, 2002, Rabi oscillations in a large
Josephson-junction qubit, Phys. Rev. Lett. 89, 117901.

Mattis, D. C., and J. Bardeen, 1958, Theory of the anomalous skin effect in normal and super-
conducting metals, Phys. Rev. 111, 412.

McCumber, D. E., 1968, Effect of AC impedance on DC voltage-current characteristics of su-
perconductor weak-link junctions, Journal of Applied Physics 39, 3113.

Meekhof, D. M., C. Monroe, B. E. King, W. M. Itano, and D. J. Wineland, 1996, Generation of
nonclassical motional states of a trapped atom, Phys. Rev. Lett. 76, 1796.

Meissner, W., and R. Ochsenfeld, 1933, Ein neuer Effekt bei Eintritt der Supraleitfähigkeit,
Naturwissenschaften 21, 787.

Menzel, E. P., R. Di Candia, F. Deppe, P. Eder, L. Zhong, M. Ihmig, M. Haeberlein, A. Baust,
E. Hoffmann, D. Ballester, K. Inomata, T. Yamamoto, Y. Nakamura, E. Solano, A. Marx, and
R. Gross, 2012, Path entanglement of continuous-variable quantum microwaves, Phys. Rev.
Lett. 109, 250502.

Meschede, D., H. Walther, and G. Müller, 1985, One-atom maser, Phys. Rev. Lett. 54, 551.

Monroe, C., D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, 1995, Demonstration
of a fundamental quantum logic gate, Phys. Rev. Lett. 75, 4714.

Monroe, C., D. M. Meekhof, B. E. King, and D. J. Wineland, 1996, A “Schrödinger cat” super-
position state of an atom, Science 272, 1131.

Mooij, J. E., T. P. Orlando, L. Levitov, L. Tian, C. H. van der Wal, and S. Lloyd, 1999, Josephson
persistent-current qubit, Science 285, 1036.

http://dx.doi.org/10.1038/NPHYS1885
http://dx.doi.org/10.1038/NPHYS1885
http://dx.doi.org/10.1038/NPHYS1885
http://dx.doi.org/10.1038/NPHYS1885
http://dx.doi.org/10.1126/science.1208517
http://dx.doi.org/10.1126/science.1208517
http://dx.doi.org/10.1126/science.1208517
http://dx.doi.org/10.1103/PhysRevB.63.054514
http://dx.doi.org/10.1103/PhysRevB.63.054514
http://dx.doi.org/10.1103/PhysRevB.63.054514
http://dx.doi.org/10.1103/PhysRevLett.55.1543
http://dx.doi.org/10.1103/PhysRevLett.55.1543
http://dx.doi.org/10.1103/PhysRevLett.55.1543
http://dx.doi.org/10.1103/PhysRevLett.89.117901
http://dx.doi.org/10.1103/PhysRevLett.89.117901
http://dx.doi.org/10.1103/PhysRevLett.89.117901
http://dx.doi.org/10.1103/PhysRev.111.412
http://dx.doi.org/10.1103/PhysRev.111.412
http://dx.doi.org/10.1103/PhysRev.111.412
http://dx.doi.org/10.1063/1.1656743
http://dx.doi.org/10.1063/1.1656743
http://dx.doi.org/10.1063/1.1656743
http://dx.doi.org/10.1103/PhysRevLett.76.1796
http://dx.doi.org/10.1103/PhysRevLett.76.1796
http://dx.doi.org/10.1103/PhysRevLett.76.1796
http://dx.doi.org/10.1007/BF01504252
http://dx.doi.org/10.1007/BF01504252
http://dx.doi.org/10.1007/BF01504252
http://dx.doi.org/10.1103/PhysRevLett.109.250502
http://dx.doi.org/10.1103/PhysRevLett.109.250502
http://dx.doi.org/10.1103/PhysRevLett.109.250502
http://dx.doi.org/10.1103/PhysRevLett.109.250502
http://dx.doi.org/10.1103/PhysRevLett.54.551
http://dx.doi.org/10.1103/PhysRevLett.54.551
http://dx.doi.org/10.1103/PhysRevLett.54.551
http://dx.doi.org/10.1103/PhysRevLett.75.4714
http://dx.doi.org/10.1103/PhysRevLett.75.4714
http://dx.doi.org/10.1103/PhysRevLett.75.4714
http://dx.doi.org/10.1126/science.272.5265.1131
http://dx.doi.org/10.1126/science.272.5265.1131
http://dx.doi.org/10.1126/science.272.5265.1131
http://dx.doi.org/10.1126/science.285.5430.1036
http://dx.doi.org/10.1126/science.285.5430.1036
http://dx.doi.org/10.1126/science.285.5430.1036


168 BIBLIOGRAPHY

Murch, K. W., U. Vool, D. Zhou, S. J. Weber, S. M. Girvin, and I. Siddiqi, 2012, Cavity-assisted
quantum bath engineering, Phys. Rev. Lett. 109, 183602.

Nagourney, W., J. Sandberg, and H. Dehmelt, 1986, Shelved optical electron amplifier: Obser-
vation of quantum jumps, Phys. Rev. Lett. 56, 2797.

Nakamura, Y., C. D. Chen, and J. S. Tsai, 1997, Spectroscopy of energy-level splitting between
two macroscopic quantum states of charge coherently superposed by Josephson coupling,
Phys. Rev. Lett. 79, 2328.

Nakamura, Y., Yu. A. Pashkin, and J. S. Tsai, 1999, Coherent control of macroscopic quantum
states in a single Cooper-pair box, Nature 398, 786.

Nakamura, Y., Yu. A. Pashkin, T. Yamamoto, and J. S. Tsai, 2002, Charge echo in a Cooper-pair
box, Phys. Rev. Lett. 88, 047901.

Nataf, P., and C. Ciuti, 2010a, Vacuum degeneracy of a circuit QED system in the ultrastrong
coupling regime, Phys. Rev. Lett. 104, 023601.

Nataf, P., and C. Ciuti, 2010b, No-go theorem for superradiant quantum phase transitions in
cavity QED and counter-example in circuit QED, Nat Commun 1, 72.

Neeley, M., R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. O’Connell, D. Sank,
H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A. N. Cleland, and J. M. Martinis,
2010, Generation of three-qubit entangled states using superconducting phase qubits, Nature
467, 570.

Neuhauser, W., M. Hohenstatt, P. Toschek, and H. Dehmelt, 1978, Optical-sideband cooling of
visible atom cloud confined in parabolic well, Phys. Rev. Lett. 41, 233.

Neuhauser, W., M. Hohenstatt, P. E. Toschek, and H. Dehmelt, 1980, Localized visible Ba+

mono-ion oscillator, Phys. Rev. A 22, 1137.

Nielsen, M.A., and I.L. Chuang, 2000, Quantum Computation and Quantum Information (Cam-
bridge University Press).

Niemczyk, T., F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll,
D. Zueco, T. Hummer, E. Solano, A. Marx, and R. Gross, 2010, Circuit quantum electrody-
namics in the ultrastrong-coupling regime, Nat. Phys. 6, 772.

Nigg, S. E., H. Paik, B. Vlastakis, G. Kirchmair, S. Shankar, L. Frunzio, M. H. Devoret, R. J.
Schoelkopf, and S. M. Girvin, 2012, Black-box superconducting circuit quantization, Phys.
Rev. Lett. 108, 240502.

Niskanen, A. O., K. Harrabi, F. Yoshihara, Y. Nakamura, S. Lloyd, and J. S. Tsai, 2007, Quantum
coherent tunable coupling of superconducting qubits, Science 316, 723.

http://dx.doi.org/10.1103/PhysRevLett.109.183602
http://dx.doi.org/10.1103/PhysRevLett.109.183602
http://dx.doi.org/10.1103/PhysRevLett.109.183602
http://dx.doi.org/10.1103/PhysRevLett.56.2797
http://dx.doi.org/10.1103/PhysRevLett.56.2797
http://dx.doi.org/10.1103/PhysRevLett.56.2797
http://dx.doi.org/10.1103/PhysRevLett.79.2328
http://dx.doi.org/10.1103/PhysRevLett.79.2328
http://dx.doi.org/10.1103/PhysRevLett.79.2328
http://dx.doi.org/10.1038/19718
http://dx.doi.org/10.1038/19718
http://dx.doi.org/10.1038/19718
http://dx.doi.org/10.1103/PhysRevLett.88.047901
http://dx.doi.org/10.1103/PhysRevLett.88.047901
http://dx.doi.org/10.1103/PhysRevLett.88.047901
http://dx.doi.org/10.1103/PhysRevLett.104.023601
http://dx.doi.org/10.1103/PhysRevLett.104.023601
http://dx.doi.org/10.1103/PhysRevLett.104.023601
http://dx.doi.org/10.1038/ncomms1069
http://dx.doi.org/10.1038/ncomms1069
http://dx.doi.org/10.1038/ncomms1069
http://dx.doi.org/10.1038/nature09418
http://dx.doi.org/10.1038/nature09418
http://dx.doi.org/10.1038/nature09418
http://dx.doi.org/10.1103/PhysRevLett.41.233
http://dx.doi.org/10.1103/PhysRevLett.41.233
http://dx.doi.org/10.1103/PhysRevLett.41.233
http://dx.doi.org/10.1103/PhysRevA.22.1137
http://dx.doi.org/10.1103/PhysRevA.22.1137
http://dx.doi.org/10.1103/PhysRevA.22.1137
http://dx.doi.org/10.1038/nphys1730
http://dx.doi.org/10.1038/nphys1730
http://dx.doi.org/10.1038/nphys1730
http://dx.doi.org/10.1103/PhysRevLett.108.240502
http://dx.doi.org/10.1103/PhysRevLett.108.240502
http://dx.doi.org/10.1103/PhysRevLett.108.240502
http://dx.doi.org/10.1103/PhysRevLett.108.240502
http://dx.doi.org/10.1126/science.1141324
http://dx.doi.org/10.1126/science.1141324
http://dx.doi.org/10.1126/science.1141324


BIBLIOGRAPHY 169

O’Brien, Jeremy L., 2007, Optical quantum computing, Science 318, 1567.

O’Connell, A. D., M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Nee-
ley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, 2010,
Quantum ground state and single-phonon control of a mechanical resonator, Nature 464, 697.

Oreg, Y., G. Refael, and F. von Oppen, 2010, Helical liquids and Majorana bound states in
quantum wires, Phys. Rev. Lett. 105, 177002.

van Oudenaarden, A., and J. E. Mooij, 1996, One-dimensional Mott insulator formed by quantum
vortices in Josephson junction arrays, Phys. Rev. Lett. 76, 4947.

Paik, H., D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani, A. P. Sears, B. R. Johnson, M. J.
Reagor, L. Frunzio, L. I. Glazman, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, 2011,
Observation of high coherence in Josephson junction qubits measured in a three-dimensional
circuit QED architecture, Phys. Rev. Lett. 107, 240501.

Palacios-Laloy, A., F. Mallet, F. Nguyen, P. Bertet, D. Vion, D. Esteve, and A. N. Korotkov,
2010, Experimental violation of a Bell’s inequality in time with weak measurement, Nat. Phys.
6, 442.

Paredes, B., A. Widera, V. Murg, O. Mandel, S. Folling, I. Cirac, G. V. Shlyapnikov, T. W.
Hänsch, and I. Bloch, 2004, Tonks-Girardeau gas of ultracold atoms in an optical lattice,
Nature 429, 277.

Perets, H. B., Y. Lahini, F. Pozzi, M Sorel, R. Morandotti, and Y. Silberberg, 2008, Realization
of quantum walks with negligible decoherence in waveguide lattices, Phys. Rev. Lett. 100,
170506.

Peruzzo, A., M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou,
Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L.
OBrien, 2010, Quantum walks of correlated photons, Science 329, 1500.

Petersson, K. D., L. W. McFaul, M. D. Schroer, M. Jung, J. M. Taylor, A. A. Houck, and J. R.
Petta, 2012, Circuit quantum electrodynamics with a spin qubit, Nature 490, 380.

Petta, J. R., A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus,
M. P. Hanson, and A. C. Gossard, 2005, Coherent manipulation of coupled electron spins in
semiconductor quantum dots, Science 309, 2180.

Pfeuty, P., 1970, The one-dimensional Ising model with a transverse field, Annals of Physics 57,
79.

Pirkkalainen, J. M., S. U. Cho, Jian Li, G. S. Paraoanu, P. J. Hakonen, and M. A. Sillanpaa, 2013,
Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator, Nature 494,
211.

http://dx.doi.org/10.1126/science.1142892
http://dx.doi.org/10.1126/science.1142892
http://dx.doi.org/10.1126/science.1142892
http://dx.doi.org/10.1038/nature08967
http://dx.doi.org/10.1038/nature08967
http://dx.doi.org/10.1038/nature08967
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.76.4947
http://dx.doi.org/10.1103/PhysRevLett.76.4947
http://dx.doi.org/10.1103/PhysRevLett.76.4947
http://dx.doi.org/10.1103/PhysRevLett.107.240501
http://dx.doi.org/10.1103/PhysRevLett.107.240501
http://dx.doi.org/10.1103/PhysRevLett.107.240501
http://dx.doi.org/10.1038/NPHYS1641
http://dx.doi.org/10.1038/NPHYS1641
http://dx.doi.org/10.1038/NPHYS1641
http://dx.doi.org/10.1038/nature02530
http://dx.doi.org/10.1038/nature02530
http://dx.doi.org/10.1038/nature02530
http://dx.doi.org/10.1103/PhysRevLett.100.170506
http://dx.doi.org/10.1103/PhysRevLett.100.170506
http://dx.doi.org/10.1103/PhysRevLett.100.170506
http://dx.doi.org/10.1126/science.1193515
http://dx.doi.org/10.1126/science.1193515
http://dx.doi.org/10.1126/science.1193515
http://dx.doi.org/10.1038/nature11559
http://dx.doi.org/10.1038/nature11559
http://dx.doi.org/10.1038/nature11559
http://dx.doi.org/10.1126/science.1116955
http://dx.doi.org/10.1126/science.1116955
http://dx.doi.org/10.1126/science.1116955
http://dx.doi.org/10.1038/nature11821
http://dx.doi.org/10.1038/nature11821
http://dx.doi.org/10.1038/nature11821


170 BIBLIOGRAPHY

Pla, J. J., K. Y. Tan, J. P. Dehollain, W. H. Lim, J. J. L. Morton, F. A. Zwanenburg, D. N.
Jamieson, A. S. Dzurak, and A. Morello, 2013, High-fidelity readout and control of a nuclear
spin qubit in silicon, Nature 496, 334.

Polkovnikov, A., K. Sengupta, A. Silva, and M. Vengalattore, 2011, Colloquium : Nonequilib-
rium dynamics of closed interacting quantum systems, Rev. Mod. Phys. 83, 863.

Pollet, L., 2012, Recent developments in quantum Monte Carlo simulations with applications for
cold gases, Reports on Progress in Physics 75, 094501.

Porras, D., and J. I. Cirac, 2004, Effective quantum spin systems with trapped ions, Phys. Rev.
Lett. 92, 207901.

Purcell, E. M., 1946, Spontaneous emission probabilities at radio frequencies, Phys. Rev. 69,
674.

Raimond, J. M., M. Brune, and S. Haroche, 2001, Manipulating quantum entanglement with
atoms and photons in a cavity, Rev. Mod. Phys. 73, 565.

Reed, M. D., L. DiCarlo, B. R. Johnson, L. Sun, D. I. Schuster, L. Frunzio, and R. J. Schoelkopf,
2010, High-fidelity readout in circuit quantum electrodynamics using the Jaynes-Cummings
nonlinearity, Phys. Rev. Lett. 105, 173601.

Reed, M. D., L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, 2012,
Realization of three-qubit quantum error correction with superconducting circuits, Nature 482,
382.

Regal, C. A., M. Greiner, and D. S. Jin, 2004, Observation of resonance condensation of
fermionic atom pairs, Phys. Rev. Lett. 92, 040403.

Reiche, F., and W. Thomas, 1925, Über die Zahl der Dispersionselektronen, die einem sta-
tionären Zustand zugeordnet sind, Zeitschrift für Physik A Hadrons and Nuclei 34, 510.

Rempe, G., H. Walther, and N. Klein, 1987, Observation of quantum collapse and revival in a
one-atom maser, Phys. Rev. Lett. 58, 353.

Rigetti, C., J. M. Gambetta, S. Poletto, B. L. T. Plourde, J. M. Chow, A. D. Córcoles, J. A. Smolin,
S. T. Merkel, J. R. Rozen, G. A. Keefe, M. B. Rothwell, M. B. Ketchen, and M. Steffen, 2012,
Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms, Phys.
Rev. B 86, 100506.
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