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1. Introduction

In recent years, the steady miniaturization of electronics has become part of our everyday
life. Without even realizing it, most of us work and interact with devices that consist of
small structures on the order of a few nanometers. For instance, a transistor being part of
the CPU in a commercially available smartphone or laptop is already smaller than 100nm.
At those scales, quantum effects come into play and might drastically change the physical
properties of a system. With continuing progress in the field of semiconductors pushing
the miniaturization process to new limits, it becomes increasingly important to obtain a
profound understanding of solid state physics at nano scales.

Since a quantum system cannot be isolated perfectly in any realistic situation, it is
particularly important to find an appropriate description of the system interacting with
its environment, which often consists of a large number of degrees of freedom. For the
theoretical analysis of such situations, one typically relies on quantum impurity models, that
in general consist of a small impurity system with only few degrees of freedom coupled to a
large non-interacting quantum systems, the bath or reservoir, containing a large number of
fermionic or bosonic particles. Famous examples of quantum impurity models include the
Kondo model [1, 2], the interacting resonant level mode [3] or the spin-boson model [4, 5].
The latter is particularly interesting due to its bosonic nature, which allows the simulation of
a non-charged environment. Popularized in 1987 by Leggett et al. in the context of quantum
dissipation [4, 6], the spin-boson model has been applied to a variety of physical systems such
as electron transfer processes in biomolecules [7], noisy qubits [8, 9] and cold atom quantum
dots [10, 11], to name but a few.

Due to the complexity arising from the large number of degrees of freedom contained in
the bath, only very few quantum impurity models can be treated in an exact way. At the same
time, perturbative approaches can fail to capture the physical properties completely, since
multiple energy scales may become important. Instead, one relies on powerful numerical
methods such as the Numerical Renormalization Group (NRG) [12, 13] and the Density
Matrix Renormalization Group (DMRG) [14, 15] in order to fully characterize the physical
properties of a quantum impurity model.

More recently, bosonic quantum impurity models have attracted new attention in the
context of phase transitions at zero temperature, so-called quantum phase transition. The
debate was initiated by first numerical studies of the critical properties of the spin-boson
model, which exhibits a quantum phase transition between a localized and a delocalized
state. The results obtained with bosonic NRG suggested a failure of quantum-to-classical
correspondence [16, 17, 18], an analytic technique which characterizes a quantum phase
transition by mapping it onto a thermal phase transition of a classical model. Since this
statement implied far-reaching consequences not only for the physics of the spin-boson model,
it triggered successive works employing different numerical schemes, which all confirmed the
validity of quantum-to-classical correspondence [19, 20, 21]. The method introduced by Guo
et al., based on a Variational Matrix Product State (VMPS) procedure [22], was not only
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2 Chapter 1. Introduction

capable to study the spin-boson model with high accuracy across the entire phase diagram,
but also illustrated the limitations of bosonic NRG in a very convincing way.

Motivated by Guo’s work, we extend the powerful VMPS approach to enable a dynam-
ical analysis of the standard spin-boson model. Moreover, we continue Guo’s VMPS study
of a generalized spin-boson model including a second bath, which exhibits a highly non-
trivial ground state phase diagram including a novel phase at intermediate coupling. The
main focus of this thesis is the study of the critical phenomena of the two-bath spin-boson
model. We present the first extensive numerical study of the critical properties of the two-
bath model and compare the numerical results to analytic renormalization group predictions.

The thesis is structured as follows:

� Chapter 2 – Critical phenomena: In this chapter we briefly introduce the physics
of critical phenomena including a discussion of analytic approaches such as mean-field
theory and renormalization group. In addition, we address the topic of quantum phase
transitions and sketch the idea of quantum-to-classical correspondence

� Chapter 3 – Numerical methods: Starting with the matrix product state for-
malism, we present the procedure of NRG applied to a bosonic quantum impurity
model. Moreover, we explain how the most important limitation of bosonic NRG can
be cured by a variational matrix product state approach. Finally, we extend the VMPS
algorithm to the treatment of real-time dynamics.

� Chapter 4 – Spin-boson model: This chapter briefly summarizes the ground state
properties of the spin-boson model at zero temperature and its critical phenomena.
We present VMPS results for various critical exponents, before discussing the non-
equilibrium dynamics of the ohmic and sub-ohmic model.

� Chapter 5 – Two-bath spin-boson model: The discussion of the two-bath version
starts with reviewing the symmetries incorporated in the XY -symmetric Hamiltonian
and the VMPS setup for this model. In the next step, we elaborate on the rich ground
state phase diagram at zero temperature, which includes two distinct quantum phase
transitions and focus on the properties of the intermediate coupling phase. Based on
VMPS results, we finally present an extensive study of the critical properties.

� Chapter 6 – Conclusion: The last chapter summarizes the main results of this work
and gives an outlook on possible topics of future research.



2. Critical phenomena

Phase transitions have been a major subject of active studies in statistical and condensed
matter physics for more than a century. Powerful methods, including renormalization group
approaches have been developed to describe the striking physical properties observed in
systems near a transition point, known as critical phenomena. Triggered by experiments on
high-temperature superconductors and heavy fermion compounds, focus has been drawn to a
subclass of phase transitions occurring in systems at zero temperature, called Quantum Phase
Transitions (QPT). Not driven by thermal but by quantum fluctuations, QPTs strongly affect
the low temperature phase diagram of electronic systems including examples of quantum
impurity models, such as the Kondo [1, 2] or the spin-boson model [4, 5].

In this chapter, we give a short introduction into the rich physics of critical phenomena,
that will be relevant for our numerical results in Chap. 4 and 5. Starting with a classical sys-
tem, we briefly discuss theoretical concepts such as mean field theory, renormalization group
and scaling, mainly following the books of H. Nishimori, G. Ortiz [23] and D. Uzunov [24].
Based on the reviews of M. Vojta [25], T. Vojta [26] and the book of S. Sachdev [27] we con-
tinue with quantum phase transitions in the second part, sketching the idea of quantum-to-
classical mapping, a technique that allows to relate a QPT to a classical transition located in
a higher dimension. We conclude the chapter with a discourse on QPTs in quantum impurity
models, which are also subject of the numerical calculations presented in this thesis.

2.1 Classical phase transitions

The phenomenon of a phase transition describes the crossover between two phases of matter
due to the variation of a system parameter such as temperature or pressure. This is accom-
panied by a dramatic change of macroscopic properties in the system which can be described
theoretically by the appearance of singularities in functions characterizing physical quanti-
ties like entropy S, specific heat C or volume V . But what exactly causes the occurrence of
a phase transition from a physical point of view? Consider the free energy F = E − TS of
the system, which consists of the internal energy E and the entropy S of the system. Both
terms compete with each other: while the first term (E) favors an ordered state, the second
one (S) prefers a disordered one. Which of the two terms dominates is determined by the
values of external parameters (such as temperature T or volume V ). Therefore a sudden
change in the latter can lead to a phase transition.

To distinguish different phases of a material, we introduce a physical quantity called
the order parameter, which ’measures’ the order or rather the degree of asymmetry of the
system. Being usually non-zero in the ordered (symmetry-broken) phase, the order parameter
vanishes in the disordered (symmetric) phase. For example, the magnetization m is the best
choice of the order parameter in ferromagnetic materials. Below the Curie temperature Tc
the electronic spins can align in one specific direction (spontaneous symmetry breaking),
leading to a finite magnetization and an ordered phase. Above Tc the spins do not favor any
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4 Chapter 2. Critical phenomena

particular direction, therefore the material is in a disordered phase with zero magnetization.
There exists a classification going back to Ehrenfest [28], that divides phase transitions

into two different types. Those which are accompanied by a singularity in a first-order deriva-
tive of the free energy F are labeled first order phase transitions. At such transitions the
correlation length ξ of the system is generally finite.1 A transition is called continuous if a
singularity shows up in a second- or higher-ordered derivative of the free energy. Further-
more, such a transition is characterized by a diverging correlation length. By convention a
phase transition is classified by the order of the derivative that first shows a divergence or
discontinuity. In Fig. 2.1 both types of transitions are shown for a ferromagnet.

h

T

Tc

0

(b)

(c)

m

T

(b) (c)(a)

m

h

Tc

Figure 2.1: Possible phase transitions in a ferromagnetic material: changing the magnetic field
h below Tc from positive to negative value as shown in (b) induces a first order phase transition,
where the sign of the magnetization flips. As illustrated in (c), lowering the temperature T from
T > Tc to a value below the critical point leads to spontaneous magnetization - the system
performs a second order phase transition. Figure adapted from [23].

2.1.1 Critical phenomena and exponents

Critical phenomena is the collective name associated with the fascinating physical behavior
of a system that appears near the critical point in continuous phase transitions.

To explain the idea of critical phenomena let us get back to our ferromagnetic example.
Starting in the delocalized phase with m = 0, T > Tc and h = 0+, we approach the critical
point at Tc by lowering the temperature. The magnetization still stays at zero in the vicinity
of the critical point. Nevertheless, it now rises rapidly if a finite magnetic field h is applied.
While we observe a linear response of m to the magnetic field for T � Tc, the magnetization
follows a super-linear power law near the critical point, m ∝ h1/δ (with δ > 1). Defining the
magnetic susceptibility χ as the first-order derivative of m with respect to the external field
h, it follows that χ ≈ m/h ∝ h1/δ−1 diverges for h→ 0 in the critical system. There exist an
very intuitive explanation for this effect. Although the spins do not align spontaneously on a
macroscopic scale yet, the material shows a tendency to form fairly large clusters of aligned
spins for T close to Tc. Because the clusters react coherently to an external magnetic field,
the magnetization rises rapidly with increasing h.

The behavior of m near the critical point illustrated above is one example of a critical
phenomenon. It is characterized by the power-law exponent δ, a so called critical exponent.

1The correlation length is a measure of the range over which fluctuations in one region of space are
correlated with those in another region.
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In general these basic variables describe the divergence or the degree of singularity of physi-
cal quantity near the critical point and specify the underlying critical phenomena. The most
commonly used critical exponents and their definitions are summarized in table (2.1).

phys. Quantity Definition Exponent Condition
Specific heat C ∝ |t|−α α t→ 0, h = 0
Order parameter m ∝ |t|−β β t→ 0−, h = 0
Susceptibility χ ∝ |t|−γ γ t→ 0, h = 0
Order parameter m ∝ |h|−1/δ δ t = 0, h→ 0
Correlation length ξ ∝ |t|−ν ν t→ 0, h = 0
Correlation function G(r) ∝ r−d+2−η η t = 0, h = 0
Correlation time τc ∝ ξz z

Table 2.1: Definition of critical exponents. |t| denotes the (dimensionless) difference between
the control parameters and their critical value (e.g. t = (T − Tc)/Tc in case of temperature),
G(r) the connected two-point correlation function G(r) = 〈SiSi+r〉 − 〈Si〉〈Si+r〉 of two spins Si,
Si+r separated by a distance r, ξ the correlation length, τc the correlation time and d the space
dimensionality of the system.

Particularly interesting is the exponent ν which describes the singular behavior of the
correlation length ξ close to the critical point. The divergence of ξ implies that spacial correla-
tions of order parameter fluctuations become long-ranged, since ξ specifies the characteristic
length scales over which these fluctuations decay in the system. Analogous fluctuations show
long range time-correlations near the critical point. This is indicated by the correlation time
τc, which also diverges in a critical system, τc ∝ ξz, where z is called the dynamic critical
exponent.

Since critical exponents play a key role in the characterization of critical phenomena, a
lot of effort is put into developing systematic ways to calculate their values.

2.1.2 Landau Theory

To study critical phenomena from a theoretical point of view, one starts with a model that
captures the essential features of the examined system, then tries to solve it according to the
prescription of statistical mechanics. In general, such many-body systems are very difficult
to handle, since they usually include a huge number of interacting particle. Therefore an
exact solution can only be found for a few exceptions and we have to resort to approximate
methods to understand the essential physics of the system. Commonly used and very efficient
techniques are mean-field theories. The main idea of these methods is to replace all inter-
actions between particles by an averaged or effective one, thereby reducing a many-particle
problem to an effective one-body problem. While having limitations, mean-field theories
provide a reasonable starting point in the study of critical phenomena.

Early examples of mean-field theories are the Weiss’ molecular field theory of ferromag-
nets [29] or the van-der-Waals theory of the liquid-gas transition [30]. Modern approaches
are often based on the Landau theory of phase transitions [31], which can be understood as
a unification of earlier mean-field approaches.

Landau theory is a phenomenological theory, i. e. it does not include the elementary
degrees of freedom of the microscopic model. It assumes that the free energy F is an
analytic function of the order parameter and therefore can be expanded in a power-series.
For a ferromagnetic phase transition the expansion of F in terms of the magnetization m
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m

(b)

m m

F F F

(a) (c) T < TcT > Tc T ⇡ Tc

Figure 2.2: Free energy of a ferromagnetic material (a) in a disordered, (b) in a critical and
(c) in an ordered state.

reads

FL(m) = F0 + am2 + bm4 +O(m5), (2.1)

where F0, a and b are constants as functions of m but have dependencies on external param-
eters such as temperature or magnetic field. Usually, comparison to experimental data or
first-principle calculations from the microscopic model are used to determine their value for
a given system. The equilibrium value of m is calculated by minimizing FL(m) for a given
set of external parameters.

Interestingly, critical phenomena within Landau theory are super-universal, indicating
that the behavior of all continuos phase transitions is identical. Consequently, critical expo-
nents in completely different physical systems always have the same value in Landau theory
(or any other mean-field approaches), listed in table (2.2).

Exponent Mean-field value
α 0
β 1/2
γ 1
δ 3

Table 2.2: Mean-field values of critical exponents

Experimental results generally lead to deviations in comparison to the predictions of
Landau theory. Although critical phenomena show a certain degree of universality, it turns
out to be weaker than the predicted super-universality. Why Landau theory not fully agrees
with experimental data was a controversial problem for decades and could only be resolved
by the introduction of Wilson’s renormalization group [12, 32].

The fundamental limitation of Landau theory (and of any mean-field approach) is that
it does not include fluctuations around the average of the order parameter. Especially in
low-dimensional systems these fluctuations play an important role for the physical behavior
at the critical point, while their effects generally decrease in higher dimensions. It turns out
that in sufficiently high-dimensional systems Landau theory actually does lead to the correct
critical exponents. A dimensional analysis shows that for a given model, there exist two
critical dimensions, duc and dlc, called the upper and lower critical dimension, respectively.
In systems where the spatial dimensionality d exceeds its upper critical dimension, d > duc,
critical exponents always correspond to the mean-field predictions. If d lies in between upper
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and lower critical dimensions, duc > d > dlc, there is still a phase transition present in the
system, but the critical exponents no longer agree with the mean-field values. In systems with
a dimensionality below the lower critical dimension, d < dlc, the strength of the fluctuations
destroys the ordered phase completely, so no phase transition takes place.
In a ferromagnetic system at nonzero temperature duc = 4, while dlc = 2 or dlc = 1,
depending on whether the system obeys Ising or Heisenberg symmetry, respectively [26].

2.1.3 Renormalization group and scaling

Mean-field theories offer useful insights as a first step towards understanding critical phenom-
ena, because they give an overview of the physical behavior at the critical point. However, in
a system where fluctuations become dominant, it is necessary to proceed beyond mean-field
approaches in order to draw clear qualitative and quantitative conclusions. A very pow-
erful tool to analyze critical phenomena while systematically including fluctuations is the
Renormalization Group (RG) [12, 32].

The key idea behind RG is the exploitation of an additional symmetry present at the
critical point, which is absent in the underlying Hamiltonian. We have already encountered
one major feature of critical phenomena: the divergence of the correlation length ξ close to
the critical point. In a system with a characteristic length scale going to infinity, the physics
is invariant under a scaling transformation, because the structure of correlations is the same
at all length scales. This means that a coordinate transformation of the kind r→ r′ = r/b,
where b is the rescaling factor, leaves the dominant physical features of the system invariant.

A renormalization group transformation transforms the Hamiltonian of one scale to the
one on the next scale starting from the original Hamiltonian. Applied to an Hamiltonian H
with a set of coordinates r, the RG transformation only affects r but not the form of the
Hamiltonian,

R[H(r)] = H(r′). (2.2)

The sequence of effective Hamiltonians resulting from the RG transformation describe the
renormalization group flow. Usually, the RG flow converges to one or more so-called fixed
points r∗, which are invariant under the RG transformation R[H(r∗)] = H(r∗). The fixed
points give the possible macroscopic states at a large scale. In addition, it is possible to
calculate the critical exponents of the system based on the RG flow. A detailed treatment of
the single steps would be beyond the scope of this thesis. However, we briefly elaborate on
important scaling relations for the critical exponents and their derivation using very general
arguments.

Before exploiting the rescaling invariance of the system at the critical point, we have to
include what was missing in Landau theory - we have to take the fluctuations of the order
parameter into account. To accomplish that, we formulate the partition function of the
system as a functional integral

Z = e−H/kbT =
∫
D[Φ]e−S[Φ]/kbT , (2.3)

where a fluctuating field Φ(r) now represents the local order parameter and S[Φ] is the
Landau-Ginzburg-Wilson free energy functional given by

S[Φ] =
∫
ddr
[
c(∇Φ(r))2 + FL(Φ(r))− hΦ(r)

]
. (2.4)

The thermodynamic average m of the order parameter is calculated by taking the thermal
average 〈Φ〉 with the statistical weight e−S/kbT . Even though m is still zero in the delocalized
phase, fluctuations of Φ are now included [26].
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We have already mentioned that in the vicinity of the critical point all physical properties
remain unchanged when we rescale all lengths in the system by a factor b. Within the RG
framework this makes it possible to derive so called homogeneity relation for thermodynamic
quantities, which can be used to evaluate critical exponents. For the free energy density
f = −(kbT/V ) log(Z) the homogeneity relations is given by

f(t, h) = b−df(tb1/yt , hbyh), (2.5)

where yt and yh are exponents of scaling fields entering the RG equations (for a detailed
derivation see [23] chap. 4). The four critical exponents α, β, γ, δ, which are directly derived
from the free energy density, relate to yt and yh very generally,

α = 2− d

yt
, β =

d− yh
yt

, γ =
2yh − d
yt

, δ =
yh

d− yh . (2.6)

Note that only two scaling parameters appear in Eq. (2.5), while there exist four critical
exponents α, β, γ, δ which can be derive from f . Thus knowledge of only two of the latter
is sufficient to determine the remaining two critical exponents. Their dependence can be
expressed in the form of scaling relations

2− α = 2β + γ, 2− α = β(δ − 1). (2.7)

Using an additional homogeneity relation for the correlation function, it is also possible to
express the critical exponents ν and η in terms of yh and yt,

ν =
1
yt
, η = d− 2yh + 2. (2.8)

A careful analysis reveals several additional scaling relations,

α = 2− dν, β =
ν(d− 2 + η)

2
, γ = ν(2− η), δ =

d+ 2− η
d− 2 + η

. (2.9)

Scaling relations for exponents that involve explicitly the dimensionality of the system are
called hyperscaling relations. In contrast to (ordinary) scaling relations in Eq. (2.7), hyper-
scaling relations only hold below the upper critical dimension duc [33].

The above scaling relations are a generic feature of continuous phase transitions and do
not depend on the underlying system. They are a signature of the universality of critical
phenomena. There exist wide classes of different physical systems that show the same critical
behavior (so called universality classes). For example, a liquid gas transition and a ferro-
magnetic phase transition in uniaxial magnets belong to the same universality class. This
can be understood by the fact that microscopic details of the systems are rendered irrelevant
at the critical point due to the diverging correlation length ξ. Critical phenomena thus only
depend on more general features of the Hamiltonian such as symmetries.

2.2 Quantum phase transitions

Until now, we only focussed on thermal fluctuations driving the phase transition. As tem-
perature is lowered, however, thermal fluctuations decrease and eventually cease as T → 0.
Quantum fluctuations on the other hand are still present even at very low temperature.
Being a consequence of Heisenberg’s uncertainty principle, these fluctuations can initiate a
different class of phase transitions called quantum phase transitions (QPT) at absolute zero,
which has attracted a lot of attention in the last two decades. At very first sight QPTs seem
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to be solely an academic topic, since it is impossible to reach T = 0 in any experimental
setup. However, since the properties of a critical point govern the behavior of the system also
in the vicinity of the critical point, the presence of a QPT is discernable at non-zero tem-
peratures, as well. Indeed, it turns out that QPTs contribute to the solution of many open
problems in condensed matter physics such as high-temperature super conductors [34, 35],
heavy fermion compounds [36, 37] and two-dimensional electron gases [38, 39].

There exist several excellent reviews on QPTs [39, 25] including the book of S. Sachdev [27],
we will refrain from introducing the topic at length here. After a phenomenological discus-
sion on QPTs we sketch the idea of quantum-to-classical mapping and focus on the quantum
impurity phase transitions, a subclass which occurs in open quantum systems.

2.2.1 Quantum vs. classical phase transitions

It is worthwhile to ask how quantum mechanics affects a second order phase transition. Two
possible answers exist. Firstly quantum mechanics can be relevant in the description of the
ordered phase, e.g. in the case of superconductors. Then again quantum fluctuations may
directly affect the critical behavior determining the universality class the system belongs to.
This can only occur if the typical energy scale of quantum fluctuations in the system, ~ωc, is
significantly larger than the thermal energy, kBT . We stated in the previous section that the
correlation time τc of the order parameter fluctuations diverges close to the critical point.
Accordingly the typical frequency scale ωc, and for the same reason also the typical energy
scale, drop to zero according to (see table 2.1)

~ωc ∝ |t|νz t→ 0. (2.10)

As a consequence, quantum mechanics will not influence the critical behavior for a system at
a finite temperature T ∗ as long as for that temperature the condition ~ωc < T ∗ is satisfied,
i.e. as long as the distance to the critical point is smaller than the crossover scale, |t| <
[T ∗]1/νz. Since this condition can always be satisfied by tuning the temperature sufficiently
close to Tc, critical phenomena of finite temperature transitions are dominantly affected by
thermal fluctuations and we can ignore quantum mechanics in these cases. Following this
argument, it is justified to call them ’classical’ phase transition.

In contrast, a transition at zero temperature controlled by a non-thermal parameter
(magnetic field, pressure) is fully determined by quantum fluctuations, since the crossover
scale T ∗ vanishes. Phase transitions of this kind are called quantum phase transitions.

Near the Quantum Critical Point (QCP) both thermal and quantum fluctuations can
intertwine, giving rise to two interesting types of phase diagrams shown in Fig. (2.3). In the
first case displayed in Fig. 2.3(a), the system can establish an ordered phase only at T = 0.
Consequently, the phase transition is not accessible in any real experiment. Nevertheless,
there still are interesting signatures of the QPT observable at finite temperatures. Depending
on the strength of the control parameter g used to tune the system through the QPT, we
can distinguish three regimes. While in the so-called thermally disordered region thermal
fluctuations are responsible for the destruction of long ranged order, quantum fluctuations
dominate in the so-called quantum disordered region at g > gc. Here the system essentially
resembles that in its quantum disordered ground. For values of g close to gc the system
enters the so-called quantum critical phase, where both thermal and quantum fluctuations
play an important role. Here the system shows to some extent critical behavior with respect
to g, but the thermal fluctuations drive it away from criticality. This leads to unusual
properties such as non-Fermi liquid behavior and unorthodox power laws [25]. In Fig. 2.3(b)
the ordered phase also exists at finite temperatures, making a classical phase transition
observable between ordered and thermally disordered phases at finite temperatures.
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Figure 2.3: Schematic phase diagram of system in the vicinity of a quantum phase transition,
where g is a non-thermal control parameter. In (a) the system can only form an ordered phase
at T = 0 (red solid line), while in (b) the ordered phase exist also at finite temperatures (solid
black line). Figure adapted from [39].

2.2.2 Scaling and quantum to classical mapping

Similar to the classical continuous phase transition, scaling arguments are useful to gain
further insides of the critical behavior close to a quantum phase transitions. However, the
quantum mechanical case is more complicated. In classical statistical mechanics the kinetic
and potential contribution to the partition function Z factorize, thus making it possible
to study thermodynamic critical behavior using effective time-independent theories with
dimensionality d, equal to the number of spatial dimension in the corresponding system.
The situation is different in quantum statistical mechanics, where the kinetic and potential
part of the Hamiltonian usually do not commute. Consequently, the partition function
Z = Tr exp(−βĤ) no longer factorizes and thermodynamic and dynamic critical behavior
have to be solved together. This can be accomplished by interpreting the canonical density
operator exp(−βĤ) as a time-evolution operator in imaginary time, −it/h = τ ∈ [0, β] [26].
The resulting functional corresponding to the classical Landau-Ginzburg-Wilson function in
Eq.(̇2.4) needs to be formulated in terms of time- and space dependent fields,

S[Φ] =
∫ β

0
dτ

∫
ddr
[
a(∂τΦ(r, τ))2 + c(∇Φ(r, τ))2 + FL(Φ(r, τ))− hΦ(r, τ)

]
. (2.11)

From Eq. (2.11) we can derive an amazing feature of quantum statistical mechanics. At
zero temperature the imaginary time acts as another spatial dimension with infinite exten-
sion. Thus a quantum phase transition in d dimensions can be interpreted as a classical
phase transition in d + z dimensions2. This property is called quantum-to-classical corre-
spondence. Analogous to the classical case, scaling techniques can be applied to derive a
modified homogeneity law for the free energy density [27]. Quite often the corresponding
classical transition has already been subject to detailed study, simplifying calculations to
extract the critical behavior of the QPT tremendously. For example, the QCP of the later
discussed spin-boson model corresponds to the classical transition in an 1D Ising model with
long ranged interaction [40, 41].

2Note from the previous section that time scales like the zth power of a length in the vicinity of the critical
point, z being the dynamical critical exponent.
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While a quantum-to-classical mapping does simplify the description of QPTs in many
systems, it is not always applicable. For example, a Berry phase term showing up in topo-
logical phases can lead to an negative statistical weight, making it impossible to identify the
quantum partition function with a classical one [27]. Even if the mapping is successful, only
the thermodynamic criticality can be extracted. For a description of real time dynamics,
novel theories are necessary [26].

2.2.3 Quantum impurity phase transition

An interesting subcategory of QPTs are so-called boundary quantum phase transitions, where
only the degrees of freedom belonging to a subsystem of the full system show a critical
behavior. Such types of QPTs occur for example in quantum impurity models, where the
impurity acts as a boundary which can become critical independent from the rest of the
system [41]. In general, a quantum impurity model consists of a small quantum system, the
impurity, that is coupled to a large reservoir or bath of particles. Typically, the Hamiltonian
has the general structure

Ĥ = Ĥimp + Ĥbath + Ĥcoupling, (2.12)

where the first two terms describe the independent contribution of impurity and bath to
the Hamiltonian, while the interaction between the two systems is defined in the last term.
The bulk degrees of freedom in Ĥbath can be of fermionic or bosonic nature and are usually
considered to be non-interacting, though this assumption is not valid in general. In most
models the spectrum of the bath is gapless and shows a power law behavior at low frequencies.
Since QPTs occur at T = 0 only, the low energy contributions to the bath spectrum are most
important. Furthermore, the thermodynamic limit of the bath has to be considered in order
to study the critical phenomena of the model. The impurity Hamiltonian Ĥimp consists of
only few degrees of freedom, e.g. one or more quantum spins. The most prominent examples
of quantum impurity models that show interesting QPTs are the Kondo model [1, 2] and the
spin-boson model [4, 5], that we discuss further below.

Three types of impurity QPTs can be distinguished. A first order transition indicates
a simple level crossing in the system’s ground state, which is not topic of this thesis. The
more interesting type of QPT are continuous QPTs, which are accompanied by critical ex-
ponents. The critical phenomena then depend on a continuous parameter that specifies the
low-energy power law in the density of bath states. Moreover, the effective dimension of the
system is essentially determined by this parameter for some quantum impurity models as
the spin-boson model. Thus it influences, for example, the validity of hyperscaling relations
(see Sec. 2.1.3). If the model approaches its lower-critical dimension dlc, the QPT can turn
into a Kosterlitz-Thouless transition, which is characterized by an exponentially diverging
correlation length [42].



3. Numerical Methods

The purpose of this chapter is to introduce two very popular numerical methods, that allow
the study of quantum criticality and other low-energy properties in quantum impurity mod-
els: the Numerical Renormalization Group (NRG) [12, 13] and the Density Matrix Renor-
malization Group (DMRG) [14, 15]. Both methods can be formulated within the framework
of Matrix Product States (MPS), a concept originally developed in quantum information.
The MPS formulation of NRG [43] and DMRG [44, 45, 22] not only lead to a deeper under-
standing of the methodology and opened the door for various extensions hard to see in the
conventional formulations [46]. Moreover, it allowed to establish a close connection between
both methods [47, 43], crucial for the development of the numerical setup used in this work.

In the following sections we give an MPS based introduction to NRG and DMRG focusing
on application to bosonic systems only. Based on extensive reviews on the topic of MPS
[22, 48], we first summarize the most important properties and the diagrammatic notation
of matrix product states relevant for our results. Afterwards, we discuss bosonic NRG [16, 49]
and the issue of bosonic state truncation arising in this method. In the last part, we explain
how this problem can be overcome using a DMRG based technique [21], which is used to
obtain the results in the remainder of this work. This chapter is only intended to make the
thesis self-contained, thus not covering every detail or providing derivations.

3.1 Matrix Product States

We start by considering a 1D physical chain consisting of N equal sites with local and next-
neighbor interaction only, where d denotes the dimension of the local Hilbert space on each
site. Thus the Hilbert space of the total system H scales exponentially with the size of
the local state spaces, dim(H) = dN . A generic quantum many-particle state |ψ〉 located
somewhere in H is given by

|ψ〉 =
∑

n1...nN

ψn1,...,nN |n1〉 ... |nN 〉, (3.1)

where ni = 1, .., d labels the local basis states of site i. In general, the entanglement of a
generic quantum state and therefore the size of its coefficient space ψ scales with system
size. A proxy of the amount of entanglement present in a many-body state is given by the
von-Neumann entropy

S(ρr) = −Tr[ρr ln ρr], (3.2)

where ρr is the reduced density matrix of a subregion of the chain (cf. Sec. 3.1.4). The
extensive character of S for a generic state is referred to as volume scaling. For some specific
states such as the ground state, however, the entropy scales according to an area law [50, 51,
52], which in case of our 1D chain indicates that the entropy stays constant with increasing
system size (with logarithmic correction at criticality). In other words, only a small partition

12
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of the total Hilbert space is necessary to give an accurate description of the ground state of
a quantum many-body system.

With this in mind, we introduce the concept of matrix product states (MPS) as a conve-
nient and efficient way to describe an a priori unknown quantum state in a 1D system. To
form an MPS we decompose the coefficients in Eq. (3.1) into a product of matrices A[nk],

|ψ〉 =
∑

n1...nN

A[n1]A[n2] ... A[nN ]|n1〉 ... |nN 〉, (3.3)

Overall the state consists of N × d so-called A-tensors, since a matrix A[nk] is associated
with each of the d local states nk on every site. The indices at the end of the chain,
i.e. the first index of A[n1] and the second one of A[nN ], only range over one value to account
for open boundary conditions. Thus A[n1] and A[nN ] have row- and column-vector shape,
respectively.1

In principle, the transformation of |ψ〉 in Eq. (3.1) into an MPS in Eq. (3.3) is formally
exact, if the dimension of the A-tensors is chosen sufficiently large. Nevertheless, an exact
transformation is often neither feasible in terms of numerical resources nor it is necessary
considering area laws. In 1D, we still get a very good approximation of the ground state
properties of our system, if we can truncate the total Hilbert space by limiting the dimensions
of the A-matrices to some upper cutoff dimension D. This is achieved trough the systematic
use of singular value decomposition (SVD) [22].

3.1.1 Global vs. local picture

There exist two equivalent pictures when dealing with matrix product states, a global and
a local picture, both having their particular application. In the global picture an MPS is
written in the form of Eq. (3.3), where the state is stored in the A-tensors and formally
described in terms of the product of the local Hilbert spaces |n1〉 ... |nN 〉 with the main
purpose of reducing resources (but without locally exploiting orthonormality properties). In
this case all sites are treated equally and no special local site is picked out.

The local picture denotes an alternative formulation of an MPS, where we choose any
specific site k as the local site of the quantum chain and combine all others to effective basis
sets, so that

|ψ〉 =
∑
lkrknk

A
[nk]
lk,rk
|lk〉|nk〉|rk〉, (3.4)

where |lk〉 and |rk〉 are sets of states describing the left and the right part of the chain with
respect to the current site k. In this picture, the A[nk]-matrices give the full representation
of the wavefunction, where its coefficients define a linear combinations of the orthonormal
many-body basis states |lk〉, |nk〉 and |rk〉. Moreover, the effective basis set |lk〉 to the left of
site k can be built up iteratively in terms of A-tensors and the local state spaces such that

|lk〉 =
∑

n1...nk−1

(
A[n1] ... A[nk−1]

)
lk
|n1〉 ... |nk−1〉

=
∑
nk−1

∑
lk−1

∑
n1...nk−2

(
A[n1] ... A[nk−2]

)
lk−1
|n1〉 ... |nk−2〉︸ ︷︷ ︸

|lk−1〉

A
[nk−1]
lk−1,lk

|nk−1〉

=
∑
nk−1

A
[nk−1]
lk−1,lk

|lk−1〉|nk−1〉. (3.5)

1While not considered in our project, MPS can also obey periodic boundary conditions. In that case the
2D matrix shape of A[n1] and A[nN ] is kept and one traces over the open indices at the end.
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Figure 3.1: Schematic diagram of an MPS wavefunction in the (a) global and (b) local picture.
In general, blocks indicate the coefficient spaces of the A-matrices and lines refer to indices, which
correspond to state spaces. The open lines connect to the basis, e.g. the vertical lines correspond
to the local state spaces. Indices connecting two A-matrices are summed (contracted). In case of
open boundary conditions, the left and right end of an MPS is terminated by the vacuum states
(small circle). Figure adapted from [48].

A[nk−1] specifies the mapping of the effective left basis |lk−1〉 combined with the local state
basis nk−1 onto the effective left basis |lk〉. The same applies to the effective right basis set
|rk〉, which expressed in terms of |rk+1〉 and nk+1 by the A[nk+1]-matrices,

|rk〉 =
∑
nk+1

A
[nk+1]
rk,rk+1 |rk+1〉|nk+1〉. (3.6)

A graphical representation of an MPS in global and local picture is shown in Fig. 3.2. Nu-
merical methods such as NRG or DMRG usually treat every site of the chain iteratively in
the local picture and heavily employ orthonormality conditions present in this formulation.
Given Eqs. (3.5) and (3.6), an iterative update towards a nearest neighbor site is the most
efficient numerically.

3.1.2 Orthogonalization of effective basis sets

While a priori only the local basis states |nk〉 in Eq. (3.4) form an orthonormal basis, we also
impose orthonormality on the effective basis sets |lk〉 and |rk〉,

〈lk|l′k〉 = δll′ , (3.7)
〈rk|r′k〉 = δrr′ . (3.8)

From the iterative structure of |lk〉 and |rk〉 in Eqs. (3.5) and (3.6) it follows immediately
that orthonormality of the effective basis sets results in certain conditions of the A-tensors:∑

ni

A[ni]
†
A[ni] = I if i < k, (3.9)∑

ni

A[ni]A[ni]
†

= I if i > k. (3.10)

Note that an arbitrary MPS (even randomly initialized) can be transformed, so that the
effective basis sets obey the orthonormality conditions in the local picture for any given local
site k.

Assume that for a given state |ψ〉 in the local picture at site k the left effective basis
set |lk〉 is orthonormal. When we switch the current site to k + 1 we want to ensure that
|lk+1〉 is an orthonormal basis set as well. This can be achieved by applying a singular value
decomposition (SVD) [22] to A[nk],

A
[nk]
lk,rk

= A(lkσk),rk = (USV †)(lknk),rk =
∑
m,n

U(lknk),mδm,nsm(V †)n,rk =
∑
m

U
[nk]
lk,m

(SV †)m,rk ,
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Figure 3.2: Graphical representation of orthonormality conditions in Eqs. (3.9) and (3.10). In
(a) the contraction of a left-orthonormalized A-tensor is shown, which results in an identity
tensor. The orthonormality condition in panel (a) allows to replace the explicit contraction by a
direct connection of the indices ri, r′i allowing more efficient calculations. The same can be done
for a right-orthonormalized A-tensor in (b). Figure adapted from [53].

with U and V both being column-orthonormal. S is a diagonal matrix consisting of real
positive elements si (singular values). In the next step, we contract SV † onto A[nk+1] and
replace A[nk] with U thereby ensuring that k+ 1 now has an orthonormal left basis as well:

A[nk]A[nk+1] =
∑
i

A
[nk]
lk,i

A
[nk]
i,rk+1

=
∑
i,m

U
[nk]
lk,m

(SV †)m,iA
[nk]
i,rk+1

= Ã[nk]Ã[nk+1], (3.11)

as schematically depicted in Fig. 3.3. Note that this procedure does not change the overall
state |ψ〉 when all singular values in S are kept. Employing this procedure systematically
starting at site 1 (which by construction has the vacuum state as its an orthonormal left
basis) moving to the right end, we generate an left-carnonical MPS, where the left basis sets
are orthonormal for any given site k.

Analogously, the approach works for the effective right basis: proceeding from site N
(where the right basis set is orthonormal by construction) sweeping to the left end generates
a right-carnonical MPS with orthonormalized right basis sets at every site.

= p= pAk+1Ak Ak+1U SV † Ãk Ãk+1Ak+1U SV †SV D=

Figure 3.3: Diagrammatic representation of generating a orthonormalization procedure in
Eq. (3.11). Applying the SVD to A[nk] and contracting SV † on A[nk+1] yields an updated Ã[nk+1]

with orthonormal left basis set |lk+1〉. Figure adapted from [48].

3.1.3 Basic MPS application

Scalar product

Calculating the overlap of two states |ψ′〉 and |ψ〉 is one of the simplest operations within
the MPS framework. It is calculated by contracting over the corresponding local indices of
the two wave functions,

〈ψ′|ψ〉 = 〈n′1| ... 〈n′N |
∑

n′1...n
′
N

(
A[n′1] ... A[n′N ]

)∗ ∑
n1...nN

(
A[n1] ... A[nN ]

)
|n1〉 ... |nN 〉

=
∑

n1...nN

(
A′[n1] ... A′[nN ]

)∗(
A[n1] ... A[nN ]

)
, (3.12)
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where we used the orthonormality of the local basis sets, 〈n′k|nl〉 = δklδn′knk . The operation
is graphically depicted in Fig. 3.4.

A1 A2 ANAN�1

h 0| i =
A0⇤

1 A0⇤
2 A0⇤

N�1 A0⇤
N

Figure 3.4: Schematic diagram of the overlap of two |ψ′〉, |ψ〉 in MPS notation. The calculation
is carried out by contracting the corresponding local indices ni resulting in overall scalar quantity.

Operator application

The application of a local operator to a state |ψ〉 is an essential ingredient within the DMRG
procedure, which we elaborate on in Sec. 3.3. Consider an operator that acts only on two
consecutive sites k and k + 1,

Ô[k,k+1] =
∑
nkn

′
k

∑
nk+1n

′
k+1

O(nk,nk+1),(n′k,n
′
k+1)|nk, nk+1〉〈n′k, n′k+1|. (3.13)

Since an MPS is naturally expressed in the local basis, the operator’s affect on the wave
function only at the two corresponding A-tensors,

Ô[k,k+1]|ψ〉 =
∑

n1...nN

A[n1] ...
∑

n′kn
′
k+1

(
O(nk,nk+1),(n′k,n

′
k+1)A

[n′k]A[nk+1′ ]
)

︸ ︷︷ ︸
C[nk,nk+1]

... A[nN ]|n1〉 ... |nN 〉

=
∑

n1...nN

A[n1] ... C [nk,nk+1] ... A[nN ]|n1〉 ... |nN 〉

SV D=
∑

n1...nN

A[n1] ... Ã[nk]Ã[nk+1] ... A[nN ]|n1〉 ... |nN 〉. (3.14)

In the first step, the enlarged tensor C is formed by contracting A[nk] and A[nk+1] with
Ô[k,k+1]. Next, the original structure of |ψ〉 is restored by applying SVD on C truncating
the from Dd2 states down to D states by keeping the largest singular values only. This leads
to properly orthonormalized new A-tensors, Ã[nk] and Ã[nk+1].

Expectation value

After having introduced how to calculate the scalar product and the operator application to
an MPS, it is straightforward to evaluate an expectation value of a local operator Ô[k,k+1].
Choosing k and k + 1 as local sites, the orthonormality conditions in Eqs. (3.9) and (3.10)
with respect to the current local site k or k+ 1 allow us to compact the term in the left part
of Fig. 3.5 without explicit contraction such that just four A-matrices remain,

〈ψ|Ô[k,k+1]|ψ〉 = 〈n′1| ... 〈n′N |
∑

n′1...n
′
N

∑
n1...nN

(
A[n′1] ... A[n′N ]

)∗
Ô[k,k+1]

(
A[n1] ... A[nN ]

)
|n1〉 ... |nN 〉

=
∑

n′kn
′
k+1nknk+1

(
A[nk]A[nk+1]

)∗
O(nk,nk+1),(n′k,n

′
k+1)A

[n′k]A[n′k+1] (3.15)
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Figure 3.5: Graphical representation of the calculation of an expectation value involving an
two-site local operator Ô[k,k+1] carried out in Eq. (3.15). Using the orthonormality condition in
the local picture with respect to site k or k + 1, all A-tensors corresponding to sites unequal
k, k+ 1 are eliminated from the explicit calculation. The remaining contractions that need to be
performed only involve f A[nk], A[nk+1] and Ô[k,k+1].

3.1.4 Reduced density matrix and block entropy

In the beginning of the section, we have already elaborated on the important role of entan-
glement in MPS based numerical methods such as DMRG. Let us consider a state |ψ〉 in the
local picture of site k,

|ψ〉 =
∑
lkrknk

A
[nk]
lk,rk
|lk〉|nk〉|rk〉. (3.16)

The entanglement between left and right block of the chain can be quantified by the spec-
trum of the reduced density matrix, which we calculate by tracing out the right side of the
system, ρln1,...,nk

= trrk(|ψ〉〈ψ|) = trnk+1,...,nN (|ψ〉〈ψ|). Making again use of the orthonor-
mality conditions in the local picture the expression for the reduced density matrix can be
reduced to

ρln1,...,nk
=

∑
n1...nk

∑
n′1...n

′
k

(
A[n1] ... A[nk]

)∗(
A[n1] ... A[nk]

)
|n1〉〈n′1| ... |nk〉〈n′k| (3.17)

=
∑
ll′

ρll′ |lk+1〉〈l′k+1| (3.18)

The entanglement of the two blocks is derived from the von-Neumann entropy Sk (in this
context the so-called block entropy), which is defined by the eigenspectrum ρ

(k)
α of the reduced

density matrix,

Sk = −
∑
α

ρ(k)
α log2(ρ(k)

α ). (3.19)

Strongly entangled blocks yield a high value of Sk corresponding to a more equally dis-
tributed eigenspectrum ρ

(k)
α , while one dominant eigenvalue usually indicates a disentangled

state. Importantly, DMRG uses the eigenspectrum of the reduced density matrix as a ef-
ficient truncation criterium: by discarding the smallest eigenvalues ρ(k)

α < ε � 1 and the
corresponding state spaces, we truncate only those parts of the Hilbert space that are most
irrelevant for an accurate approximation of |ψ〉. The eigenspectrum of the reduced density
matrix is equivalent to the squared singular value spectrum obtained by an SVD of A[nk],
i.e. ρ(k)

α = [sk]2 (see Sec. 3.1.2). Therefore the SVD spectrum serves as an equally efficient
truncation criterium.
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3.1.5 Symmetries

The matrix product state framework allows for a straightforward incorporation of preserved
symmetries of the model Hamiltonian. Generally speaking, the symmetry induced selection
rules cause a large number of matrix elements to be exactly zero, thus tensors become sparse.
Keeping only the non-zero elements, we can achieve tremendous improvement in speed and
accuracy in numerical simulations by the inclusion of symmetries. Especially for numerically
demanding systems, such as multi-band models, it is crucial to exploit as many symmetries
of the Hamiltonian as possible.

A. Weichselbaum [54] has recently presented a very general and transparent framework
for the implementation of abelian and non-abelian symmetries for matrix product and tensor-
network states. The so-called QSpace, a unified tensor representation for quantum symmetry
spaces, is particularly useful to function in renormalization group algorithms such as DMRG
or NRG. While in general being able to deal with complicated non-abelian symmetries, here
we apply QSpace for the implementation of abelian U(1) symmetries in a bosonic setting.

In this context consider a Hamiltonian Ĥ, which is invariant under a a set of ns in-
dependent abelian symmetries, Sλ being the irreducible representation for each symmetry
λ = 1, ..., ns. Hence, the Hamiltonian and the specific symmetry generator Ŝλα satisfy the
commutation relations [Ĥ, Ŝλα] = 0. Furthermore [Ŝλ

′
α′ , Ŝ

λ
α] = 0 for λ 6= λ′ indicates that the

symmetries act independent of each other.
For the symmetry implementation we introduce basis states |q〉 labeled in terms of the

symmetry eigenbasis. The quantum labels q ≡ (q1, ..., qns) reference the irreducible rep-
resentations Sλ. Since q is conserved by the Hamiltonian, the matrix representation of
Ĥ acquires a block-diagonal structure and general tensors get subdivided into well-defined
symmetry sectors. Retaining only the few remaining non-zero data blocks with an efficient
bookkeeping, QSpace leads to an enormous gain in numerical efficiency.
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3.2 Bosonic numerical renormalization group

The Numerical Renormalization Group (NRG) is a powerful numerical method to treat
quantum impurity models. One of its major advantages and a distinct feature in comparison
to other renormalization group techniques is its non-perturbative character, which allows
the treatment of interacting quantum many-body systems with a continuum of excitations
spread over a broad interval of energies. Since its development by Kenneth Wilson in the
1970s [12, 32], NRG has been applied to numerous quantum impurity models and thus helped
to solve many questions in the field of Kondo physics, transport or dissipation [55, 56, 57,
58, 59, 60, 61].

There exists only one major restriction regarding the applicability of NRG on specific
quantum impurity models. Many-body interactions affect only the impurity, the bath or
reservoir of the model is considered to be non-interacting. Apart from that, the bath gener-
ally can be consisting of bosonic (e.g. phonons, magnons, particle-hole pairs etc.) or fermionic
particle (e.g. electrons in the conduction band), while the setup of the impurity is not con-
strained at all.

For almost three decades NRG was exclusively applied to fermionic models such as the
single impurity Anderson model or the single and multi-channel Kondo models. Only in
2003, Bulla et al. [16] employed NRG for the first time in a bosonic context, i.e. to calculate
the critical properties of the Spin-Boson model. Why did it take almost 30 years to transfer
the method to bosonic systems? It turns out that bosonic bath are far more complicated
to manage numerically compared to their fermionic counterparts. Since Pauli’s principle
prevents that two fermions occupy the same state, the local fermionic Hilbert space dimension
stays finite and small. However, each bosonic state can be occupied by an infinite number
of bosons yielding infinitely large local Hilbert spaces, which make numerical approaches far
more complicated. An efficient numerical treatment of this issue arising from the fundamental
nature of the particles will be the major topic of the following sections.

Since we focus in this work on bosonic quantum impurity models, we introduce NRG in
the context of bosonic baths only, following [49]. After reviewing the basic steps of the NRG
procedure, we shortly discuss the connection between NRG and MPS pointed out by [43]
and comment on the main problem of bosonic NRG [62]. For a general overview on NRG
we refer to the review of Bulla et al. [13].

3.2.1 Spin-Boson model

While bosonic NRG can be applied to a variety of quantum impurity models involving a
bosonic bath with a continuous spectrum, we base the discussion of the conceptual steps on
the spin-boson model, the first application of bosonic NRG [16]. Since a detailed analysis of
the physical properties of the model is presented later on in Chap. 4, for now we only introduce
the basic features of the model which are essential for the understanding of bosonic NRG.
We start with the Hamiltonian of the continuous version of the spin-boson model, which is
given by

Ĥ =
ε

2
σ̂x − ∆

2
σ̂z︸ ︷︷ ︸

Ĥimp

+
∑
i

ωiâ
†
i âi︸ ︷︷ ︸

Ĥbath

+
σ̂x
2

∑
i

λi(âi + â†i )︸ ︷︷ ︸
Ĥcoupling

. (3.20)

The impurity consists of a generic two-state system, represented by the Pauli matrices σ̂x,z,
linearly coupled by λi to a bath of harmonic oscillators with creation operators ai and
frequencies ωi, the coupling being with respect to the position x̂ = 1/

√
2(âi + â†i ) of each
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oscillator. ε is an additional bias in coupling direction and ∆ gives the bare tunneling
amplitude between the two spin eigenstates |+〉 and |−〉 of σ̂x. The effect of the bath on the
impurity is fully determined by the bath spectral function,

J(ω) = π
∑
i

λ2
i δ(ω − ωi), (3.21)

generally defined by the density of states of the bath ρ(ω) and the coupling λ(ω). For
the description of asymptotic low-temperature behavior of the model only the low-energy
spectrum of the bath plays a role. Therefore in the standard parametrization of the spectral
function only frequencies up to a critical frequency ωc are taken into account and the high
energy spectrum is neglected. Usually a power law form is chosen,

J(ω) = 2παω1−s
c ωs, 0 < ω < ωc, s > 0, (3.22)

where the dimensionless constant α indicates the dissipation strength. Depending on the
value of s, we distinguish between ’ohmic’ (s = 1), ’sub-ohmic’ (s < 1) and ’super-ohmic’
(s > 1) dissipation. In the following, we set ωc to 1 as the unit of energy.

3.2.2 Logarithmic discretization

Similar to other numerical settings, we first need to apply some sort of coarse-graining to
the continuous bath. While there are many ways to discretize such a system generally, NRG
works with a logarithmic discretization scheme. This choice is motivated by the fact, that
for many quantum impurity models the relevant energy scales can become exponentially
small. To resolve these scales appropriately a logarithmic coarse-graining is required, since
it yields an exponentially enhanced low-energy resolution compared to a linear discretization.
Moreover, a logarithmic discretization separates consecutive energy intervals and therefore
allows a controlled numerical treatment within the iterative diagonalization procedure.

To discretize the spectral function of a bosonic bath it is convenient to start at the
continuous version of the SBM Hamiltonian by replacing the discrete sum over the bath
modes by a continuous interval over the energy variable ε and substituting âi → âε/

√
ρ(ε),

with [âε, â
†
ε′ ] = δ(ε − ε′) and ρ(ε) being the bath density of states. Thus the spin-boson

Hamiltonian in Eq. (3.20) takes the form

Ĥ = Ĥimp +
∫

dω
(
ωâ†ωâω

)
+
σ̂x
2

∫
dω
√
ρ(ω)λ(ω)

(
âω + â†ω

)
, (3.23)

where ρ(ω) and the coupling function λ(ω) are related to the spectral function J(ω) via

1
π
J(ω) = ρ(ω)[λ(ω)]2. (3.24)

The spectral function of a bosonic bath is defined in the interval [0, ωc = 1] and is therefore
restricted to positive energies only. To logarithmically discretize the bath spectral func-
tion, we introduce the dimensionless parameter Λ > 1 which defines a set of intervals with
discretization points,

ωn = Λ−n n = 0, 1, 2, ... . (3.25)

The width of each energy interval is given by dn = Λ−n(1− Λ−1). Within each interval n a
complete set of orthonormal functions can be defined,

Ψnp(ω) =

{
1√
dn
eiωnpω for Λ−(n+1) < l < Λ−n,

0 outside this interval,
(3.26)
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with p = 0,±1,±2, ..., and ωn = 2π/dn. The creation and annihilation operators â†ω and âω
can be represented in this basis,

âω =
∑
np

ânpΨnp(ω) (3.27)

â†ω =
∑
np

â†npΨ
∗
np(ω). (3.28)

Since the impurity only couples to the p = 0 component of the bosonic operators â†np and ânp,
we neglect other contributions p 6= 0 although those components are still linked to the p = 0
components of the free bath (very similar to the fermionic case). Thus a single annihilation
and creation operator now represents the continuous spectrum of bosonic modes in each
energy interval n. In the next step we redefine the creation and annihilation operators in
each interval,

ân ≡ 1√
N2
n

∫ Λ−n

Λ−(n+1)

√
J(ω)
π

ân0Ψn0dω, (3.29)

â†n ≡ 1√
N2
n

∫ Λ−n

Λ−(n+1)

√
J(ω)
π

â†n0Ψn0dω, (3.30)

where the normalization Nn is chosen such that the bosonic commutator relation [ân, â
†
n′ ] =

δnn′ holds:

N2
n =

∫ Λ−n

Λ−(n+1)

J(ω)
π

dω. (3.31)

Splitting the continuous spin-boson Hamiltonian of Eq. (3.23) into a sum of integrals over
the discretized intervals and employing Eqs. (3.29) and (3.30), we arrive at the discretized
”star” Hamiltonian

Ĥstar = Ĥimp +
∑
n

ξnâ
†
nân +

σ̂x
2
√
π

∑
n

γn(ân + â†n), (3.32)

where

γ2
n =

∫ Λ−(n+1)

Λ−n
J(ω)dω =

2πα
s+ 1

(1− Λ−(s+1))Λ−n(s+1), (3.33)

ξn = γ−2
n

∫ Λ−(n+1)

Λ−n
J(ω)ωdω =

s+ 1
s+ 2

1− Λ−(s+2)

1− Λ−(s+1)
Λ−n. (3.34)

In the last step we used the standardized form of the bath spectral function in Eq. (3.22) to
evaluate the integrals defining ξn and γn.

The ”star” label of the discretized Hamiltonian in Eq. (3.32) indicates its structure: the
impurity couples to bosonic modes of all energy scales very similar as in the original spin-
boson Hamiltonian. However, now each bosonic degree of freedom represents the continuous
spectrum of bosonic modes within its energy interval.

3.2.3 Mapping onto the Wilson tight-binding chain

Following the standard NRG methods, the discretized ”star”-Hamiltonian is mapped exactly
into a semi-infinite chain with only nearest-neighbor interaction. In the NRG framework
such a setup is referred to as Wilson-chain. The mapping procedure involves a unitary
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transformation for the bosonic annihilation and creation operators, b̂n =
∑∞

m=0 Unmân,
and can be carried out numerically by standard tridiagonalization procedures (e.g. Lanczos
algorithm).

The resulting ”chain” Hamiltonian generated by the mapping of Eq. (3.32) is given by

Ĥchain = Ĥimp +
√
η0

π

σ̂x
2

(b̂0 + b̂†0) +
∞∑
n=0

[
εnb̂
†
nb̂n + tn(b̂†nb̂n+1 + b̂†n+1b̂n)

]
, (3.35)

with η0 =
∫
J(ω)dω describing the overall coupling between bath and impurity, which is

located on the first site of the chain. Note that the impurity spin now couples to the second
site (i.e. the first bosonic site) of tight-binding chain only. Each bosonic site is connected
to its direct neighbors by the hopping amplitude tn and obtains an on-site energy εn. The
parameters εn and tn decay exponentially as Λ−n and are calculated numerically from the
spectral function J(ω) (for details see App. 1 in [49]). Note that εn and tn fall of as Λ−n/2

in the fermionic case. This difference arises from the absence of holes for bosonic baths.

 

 

s=0.5
s=1
s=2

⇤�1⇤�2⇤�3 1...

!/!c

J(!)
⇠0

⇠1

⇠2

⇠3

⇠4
⇠5

⇠6

⇠7

⇠8

✏0 ✏1 ✏2 ✏3 ✏n�1 ✏nr
⌘0
⇡

t0 t1 t2 tn

⇤�1 ⇤�2 ⇤�3 ⇤�n

(a) (b)

(c)

s = 1
s = 0.5

s = 2

Figure 3.6: (a) Spectral function J(ω) of a bosonic bath in the spin-boson model for ohmic
(s = 1), sub-ohmic (s = 0.5) and super-ohmic (s = 2) dissipation. The logarithmic discretization
of J(ω) leads to a Hamiltonian of ”star”-structure schematically illustrated in (b), where the
impurity (blue) still couples to each bath oscillator individually. The discretized Hamiltonian is
then exactly mapped onto the semi-infinite tight-binding chain in (c), where the exponentially
decaying energy scale is illustrated by thinning bonds between different sites. In the Wilson
chain Hamiltonian, the impurity couples only to the first bosonic site.
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3.2.4 Iterative diagonalization

After mapping the discretized Hamiltonian on a Wilson chain, we solve the model with
an iterative diagonalization procedure. This is achieved by writing Ĥchain as a series of
Hamiltonians ĤN (N > 0) that equal Ĥchain in the limit N →∞,

Ĥ = lim
N→∞

Λ−NĤN , (3.36)

with ĤN being a rescaled version of Ĥ including only N sites of the Wilson chain,

ĤN = ΛN
[
Ĥimp +

√
η0

π

σ̂x
2

(b̂0 + b̂†0) +
N∑
n=0

εnb̂
†
nb̂n +

N−1∑
n=0

tn(b̂†nb̂n+1 + b̂†n+1b̂n)
]
. (3.37)

Two successive Hamiltonians are related by the recurrence relation

ĤN+1 = ΛĤN + ΛN+1
[
εN+1b̂

†
N+1b̂N+1 + tN (b̂†N b̂N+1 + b̂†N+1b̂N )

]
. (3.38)

The rescaling factor ΛN allows us to directly compare the low energy spectrum of subsequent
Hamiltonians and with each additional site we get a better resolution of the low-energy
spectrum of Ĥ.

The starting point of the iterative NRG procedure is Ĥ0 consisting only of the impurity
and the first bosonic site,

Ĥ0 = Ĥimp +
√
η0

π

σ̂x
2

(b̂0 + b̂†0) + ε0b̂
†
0b̂0. (3.39)

Diagonalizing Ĥ0 in a basis formed by the product states of the σx-eigenstates |σ〉 and an
appropriate basis |n0〉 for the first bath site (see Sec. 3.2.6 for details), we obtain a set of
eigenenergies and eigenstates. In each subsequent step we construct the rescaled ĤN+1

according to Eq. (3.38) in terms of the eigenstates |sN 〉 of ĤN and the bosonic state basis
|nN+1〉 of the additional site. By diagonalization of ĤN+1 we obtain a new set of eigenstates
|sN+1〉 which connects to the old states |sN 〉 via a unitary transformation A[N ],

|sN+1〉 =
∑

nN+1,sN

A
[nN+1]
sN ,sN+1 |sN 〉|nN+1〉, (3.40)

where A[N+1] represents the d A-matrices that link to the underlying product space |sN 〉 ⊗
|nN+1〉 (d < ∞ referring to the dimension of the added local state space). We notice that
the transformation in Eq. (3.40) shows a structure similar to an MPS in the local picture
(cf. Eq (3.3)). Based on this observation, NRG can be fully reformulated in the MPS language
leading to advantages in many applications [63, 53].

Retaining all eigenstates obtained by diagonalization of ĤN+1 is numerically not feasible
for the complete iterative procedure as the Hilbert space grows exponentially with each
added site. It is necessary to truncate the state space after the first iteration by keeping only
a fixed number of D lowest lying eigenstates as indicated in Fig. 3.7(a). In the context of
truncation we again stress the importance of the logarithmic discretization. If the discarded
states should have no influence on later iterations, then their energy scales should sufficiently
be separated from those in successive iterations. The energy scale separation is achieved only
by a logarithmic coarse graining. Following this idea an alternative truncation criterium is to
keep eigenstates up to some rescaled energy Ekeep instead of a fixed number. However, it is a
priori not clear which specific choice of the truncation parameters D or Ekeep is optimal for
the individual model. Therefore NRG calculations must always include a validation criterium
to check whether the results are converged (e.g. discarded weight [64]).
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Figure 3.7: (a) Sketch of unscaled energy levels at different NRG iterations with ground state
energy set to zero. After the second step we start discarding the high energy states in the
spectrum (grey) thus obtaining a highly resolved low energy spectrum at iteration N . (b)
Typical energy-level flow diagram of U(1) symmetric two-channel spin-boson model. For the
first 10 iterations, the system resides in the localized regime where the impurity strongly couples
to the bosonic baths and thus localizes in coupling direction. Between iterations 10-20, the
system flows to a delocalized fixed point lifting the two-folded ground state degeneracy. The
red bar indicates the cross-over at iteration N∗ = 18 characterized by the low-energy scale
T ∗ ∝ Λ−N

∗ ≈ 3 · 10−06.

3.2.5 Renormalization group flow

The recursion formula in Eq. (3.38) points out the renormalization group character of NRG,
because its structure is similar (but not equivalent) to a standard RG transformation. We
have already discussed in Sec. 2.1.3, that a renormalized Hamiltonian can be described by
an effective Hamiltonian with a given set of parameters that changes during the RG trans-
formation. Usually, after a sufficient number of iterations, the parameters approach a fixed
point, where additional RG transformations leave the set of parameters invariant. Thus by
studying the parameter flow we can extract information about the physics of the underlying
model.

Since the Hamiltonian changes its form after each iteration in NRG, the RG flow concept
has to be adapted. Instead of studying the parameter flow, we can examine the flow of the
rescaled eigenenergies EN along the Wilson chain sites N to identify different fixed points
connecting to different physical behavior of the specific system. The energy-flow diagram
of the two-channel spin-boson model is shown in Fig. 3.7(b) as an example, where we can
distinguish two regimes: for the first 15 sites the system is localized while it flows to a
delocalized fixed point for later iterations.

Note that for a bosonic model we observe no even-odd effects in the energy flow. This is
another difference to the fermionic case, where the spectrum usually oscillates between two
sets of energy levels for even and odd iterations.

3.2.6 Choice of bosonic basis

In the previous discussion of the bosonic NRG procedure we only touched the most important
difference in comparison to the fermionic setup on the surface. We face two major problems
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when setting up the local bosonic basis |nN 〉 on each site of the Wilson chain that are not
present for a fermionic model:

1. Since bosonic occupation numbers are not limited by Pauli’s principle, a single local
bosonic state space in principle includes infinitely many states. In the numerical ap-
proach we have to truncate each local basis set |nk〉 to a finite number of dk states
(typically dk ≈ 25). Therefore bosonic NRG carries a non-trivial truncation error from
the very first iteration, which has to be monitored carefully.

2. We have to select dk states from the infinitely large bosonic basis, that give the best
description of the lowest-lying eigenstates of HN+1.

These problems combined pose a serious challenge to any bosonic NRG procedure, especially
since the different regimes of the spin-boson model require different choices of an optimal
bosonic basis. This is illustrated best by considering a mean-field version of the original
spin-boson Hamiltonian in Eq. (3.20),

ĤMF = Ĥspin + Ĥboson (3.41)

Ĥspin =
ε

2
σ̂x − ∆

2
σ̂z +

σ̂x
2

∑
i

λi〈âi + â†i 〉 (3.42)

Ĥboson =
〈σ̂x〉

2

∑
i

λi(âi + â†i ) +
∑
i

ωiâ
†
i âi. (3.43)

At the delocalized fixed point the magnetization of the impurity spin is equal to zero, 〈σ̂x〉 =
0. Hence, the coupling term in Ĥboson vanishes and it is clear, that the lowest-lying eigenstates
of HN+1 can be constructed from the undisplaced lowest bosonic excitations. Thus the
optimal basis choice is formed by the dk lowest eigenstates |ni〉 of â†i âi, with â†i âi|ni〉 = ni|ni〉.

The situation is different at the localized fixed point where we obtain a finite magneti-
zation, 〈σ̂x〉 6= 0. Now we can’t drop the coupling term in Eq. (3.43) with the consequence,
that each bosonic mode âi acquires a displacement δi ∝ λi〈σ̂x〉/(2ωi), i.e.

â′i = âi + δi. (3.44)

Therefore displaced oscillators are the optimal choice of the basis set in the localized regime
to construct the lowest-lying set of eigenstates of HN+1. However, the displacements δi are
generally not known a priori and grow exponentially in the Wilson chain setup with each
iteration, which poses a severe challenge for any NRG implementation. Thus no complete
algorithm exists to setup an optimal bosonic basis for the complete parameter spectrum
of the spin-boson model. While there have been attempts to incorporate a displaced basis
in the NRG [49], most bosonic NRG applications are calculated with an undisplaced local
basis set. This leads to huge systematic errors, especially when calculating critical properties
[62, 65].

The bosonic basis problem motivated Guo et al. [21] to develop a DMRG based method,
that overcomes this issue by finding the displacement δi variationally, thus allowing a con-
trolled and efficient treatment of any bosonic impurity model. A detailed introduction of
this variational approach is given in Sec. 3.3.
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3.3 Variational matrix product states

Although NRG has been widely successful in the non-perturbative calculation of the static
and dynamic properties of numerous quantum impurity models, it fails in the application
to real-space lattice models such as the Hubbard model, which feature constant hopping
amplitudes. This inspired Steven White to develop the Density Matrix Renormalization
Group (DMRG) to solve one-dimensional lattice models [14, 66]. Opposed to NRG, which
still contains the essential features of a renormalization group approach, DMRG should be
understood as a variational method (despite of its name).

People quickly became exited about DMRG, since it allows very efficient and accurate
description of ground-state properties of interacting 1D real-space lattice models. Extensions
of static DMRG to the calculation of dynamical [67, 68] and thermodynamical properties
[69, 70] were developed, different approaches of generalizing the method to higher dimensional
systems have been introduced [71, 72, 73, 74, 75]. Moreover, it was shown that DMRG can
fully be reformulated in terms of matrix product states [44, 76, 77, 22]. In the MPS setting,
the DMRG algorithm works as a variational optimization scheme, in which the ground-state
energy is minimized in the space of all matrix product states. In this context, the term
variational matrix product state (VMPS) often replaces the acronym DMRG. The MPS
framework not only simplified the implementation of the method, but it also helped to put
DMRG on a solid theoretical basis using insights already known from quantum information
theory (e.g. discussion on area laws in Sec. 3.1).

In 2005, Weichselbaum et al. [63] showed that the iterative NRG procedure can be un-
derstood in the language of MPS, as well. Applied to a Wilson chain, both methods produce
similar MPS representations of the ground state of the model. However, the results are not
equivalent since VMPS and NRG use two different truncation criteria to keep the size of effec-
tive Hilbert space numerically feasible. While NRG discards the highest-energy eigenstates
of a series of effective Hamiltonians, VMPS truncation relies on the singular value decom-
position of the matrices composing the MPS. Correspondingly, the energy-scale separation
imbedded in the NRG procedure is in general not required in the VMPS setup.

The application of VMPS compared to NRG can be - but does not have to be - advanta-
geous with respect to numerical efficiency and accuracy. Which of the methods is the better
choice depends essentially on the quantum impurity model. A detailed comparison of the
two approaches applied to fermionic models is given in [47]. For systems with bosonic baths
VMPS should always be the preferred method, since it allows - in contrast to NRG - the
implementation of an optimal displaced oscillator basis.

3.3.1 Variational ground state calculation

The VMPS procedure can be understood as a variational optimization scheme working within
the MPS space. In general, we start with a given 1D Hamiltonian Ĥ (e.g. the chain Hamil-
tonian of the spin-boson model in Eq. (3.32) including N sites) and generate a random and
properly orthonormalized state |ψ〉. Next, we try to find an optimal approximation for the
ground state of the system, by gradually reducing the energy E = 〈ψ|Ĥ|ψ〉/〈ψ|ψ〉 treating
one site at a time. Given |ψ〉 in the local picture at site k,

|ψ〉 =
∑
lkrknk

A
[nk]
lk,rk
|lk〉|nk〉|rk〉, (3.45)
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this is achieved by iterative varying E with respect to the local A[nk]-matrices while keeping
all other A-tensors constant,

min[E] =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 → ∂

∂A∗k

〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 = 0. (3.46)

The optimization problem in Eq. (3.46) can be transformed into an eigenvalue problem within
the local Hilbert space spanned by |lk〉 ⊗ |nk〉 ⊗ |rk〉. Since we are mainly interested in the
ground state of the system, it is not necessary to diagonalize Ĥ exactly (which usually turns
out to be impossible even in the local picture due to the size of Ĥ). It suffices to calculated
Ĥ|ψ〉 in the local picture of site k and to determine the optimized ground state with the
help of an sparse eigensolver (employing Lanzcos or Davidson algorithm [78, 79]).

Ĥ| i =

Ak
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Figure 3.8: Graphical representation of application of the Hamiltonian Ĥ to |ψ〉 during the
VMPS optimization step. The five different parts of the Hamiltonian are transformed into the
effective local basis of site k.

To this end we transform the Hamiltonian in the effective state basis of site k and split
it into five parts,

Ĥk = Ĥ [l] + Ĥ [l,k] + Ĥ [k] + Ĥ [k,r] + Ĥ [r], (3.47)

with each part represented in the basis |lk〉 ⊗ |nk〉 ⊗ |rk〉, as illustrated in Fig. 3.8:

� Ĥ [l] = Ĥ [l] ⊗ I[k] ⊗ I[r] acts only at the left part of the chain

� Ĥ [l,k] =
∑

α Ô
[l]
α ⊗ Ô[k]

α ⊗ I[r] is the coupling between left part of the chain and local
site k

� Ĥ [k] = I[l] ⊗ Ĥ [k] ⊗ I[r] acts only at the local site

� Ĥ [k,r] = I[l] ⊗∑α Ô
[k]
α ⊗ Ô[r]

α is the coupling between local site k and right part of the
chain

� Ĥ [r] = I[l] ⊗ I[k] ⊗ Ĥ [r] acts only at the right part of the chain.

Here, I[l], I[k], I[r] describe identity matrices in respective spaces. While the representation of
Ĥ [k] and Ô

[k]
α is trivially given in the local state space of site k, the other terms require an

iterative transformation into the effective basis of site k first.
Ô

[l]
α and Ô

[r]
α are constructed by transforming the basis of the operators Ô[k−1]

α , Ô
[k+1]
α

from their local bases sets |nk−1〉 and |nk+1〉 to the effective basis sets |lk〉 and |rk〉, respec-
tively. After applying the basis transformation, we can combine them with their respective
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counterparts Ô[k]
α to a part of the Hamiltonian. The construction of Ĥ [l,k] is given by

Ĥ
[l,k]
lk,l
′
k,nk,n

′
k

=
∑
α

∑
nk−1,n

′
k−1,lk−1

(
(A[nk−1]

lk−1,l
′
k
)∗Ô[k−1],α

nk−1,n
′
k−1

A
[nk−1]
lk−1,lk

)
Ô

[k],α
nk,n

′
k

(3.48)

=
∑
α

Ô
[l],α
lk,l
′
k
Ô

[k],α
nk,n

′
k
. (3.49)

Analogously we form Ĥ [r,k] by a similar calculation:

Ĥ
[r,k]
nk,n

′
k,rk,r

′
k

=
∑
α

Ô
[k],α
nk,n

′
k

∑
nk+1,n

′
k+1,rk+1

(
(A[nk+1]

rk+1,r
′
k
)∗Ô[k+1],α

nk+1,n
′
k+1

A
[nk+1]
rk+1,rk

)
(3.50)

=
∑
α

Ô
[k],α
nk,n

′
k
Ô

[r],α
rk,r

′
k
. (3.51)

The Hamiltonians affecting the right and the left block of the chain, Ĥ [l] and Ĥ [r], are
constructed iteratively from Ĥ [r,k] and Ĥ [l,k] [48].

In this work, VMPS is solely applied to bosonic Wilson-chain Hamiltonians (e.g. Eq. (3.32)),
where energy scale decays exponentially across the chain as ∝ Λ−k. For such models it is
highly recommended to replicate the rescaling procedure known from NRG. Otherwise, we
lose numerical accuracy at higher iteration due to the limits of numerical double precision.
Before the calculation of the sparse eigensolver is carried out, we therefore multiply Ĥk in
Eq. (3.47) by an appropriate rescaling factor Λk to ensure that optimization can take place
on the effective energy scale ∝ ωc.

Sweeping and convergence

By running the sparse eigensolver we create an optimized A-tensor A
′[nk] which minimizes

the energy of |ψ〉 in the matrix space of all local A-tensors at site k. Therefore replacing
A[nk] with its optimized version A

′[nk] generates an improved approximation of the ground
state.

Since VMPS suffers from the same problem of an exponentially growing Hilbert space as
NRG, a truncation of the state space is required after each optimization step. This is usually
done when switching the current site to k± 1 using SVD, as discussed in Sec. 3.1.2. Instead
of performing an exact SVD, we keep only the D largest singular values and discard those
states having the smallest relevance for a proper approximation of the ground state. After
switching to a neighboring site, the optimization routine is repeated for A[nk±1].

Usually, the VMPS procedure is started at the first site of the chain and then moves to
the right end optimizing the A-tensors site by site. After reaching the end of the chain, the
process is carried out in the other direction. By moving twice through the chain (from left to
right and back again) we complete one ”sweep”.2 After each sweep, we check the convergence
of |ψ〉 by calculating the variance of the (unscaled) ground state energy Ek calculated at each
site k ∈ [1, N ] units,

var(Ek) =
std(Ek)
|Ē| , (3.52)

where N is the chain length, Ē the average value of Ek and std(Ek) defines the standard
deviation

std(Ek) =

√
1

N − 1

∑
k

(Ek − Ē). (3.53)

2For a Wilson chain Hamiltonian it suffices to only sweep from left to right, since the right part of the
chain has negligible influence on the first iterations due to the exponentially decaying energy scale.
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If we find var(Ek) to be smaller than some lower bound ε ≈ 10−13 - 10−15, the optimization
procedure is stopped and the resulting state |ψ〉 is considered to be a reliable approximation
of the system’s ground state. Otherwise, successive sweeps are carried out until var(Ek)
drops below ε.

3.3.2 Optimal bosonic basis and shift

As discussed in Sec. 3.2.6, the Hilbert-space truncation limits the applicability of NRG to
quantum impurity models with bosonic baths. However, recent work by Guo et al. [21]
showed how to overcome problem by using a VMPS based method. A general algorithm is
presented which allows to study bosonic quantum impurity models across the entire phase
diagram by setting up an optimal bosonic basis of displaced oscillators variationally. As
most of our results are obtained using this procedure, we introduce the basic steps of the
method in the following (more details can be found in [80]).

| i =

V1 V2 VNVN�1

ñN�1 ñNñ1 ñ2

ÃN�1 ÃNÃ1 Ã2A0

|n1i |n2i |nN i|nN�1i

|�i

Figure 3.9: Schematic diagram of |ψ〉 in the OBB representation. A0 links to the impurity
at the first site of the Wilson chain, while all other sites have a local bosonic basis nk. The
V -matrices transform the original (large) local basis set to an optimal (smaller) basis set used
for the optimization of the Ã-tensors.

The main advantage of VMPS in comparison to NRG is that it allows to change the local
basis during the sweeping, while in NRG the local basis is fixed after adding the site to the
chain. To exploit this, [21] makes use of two main ideas, (a) the effective optimal bosonic
basis representation (OBB) and (b) the implementation of an oscillator shift:

(a) Originally introduced by [81], the OBB representation describes a basis transformation
V of the original local harmonic oscillator basis |nk〉 onto a smaller, effective basis |ñk〉
on each site k,

|ñk〉 =
dk−1∑
nk=0

Vñk,nk |nk〉 (ñk = 0, ... , dopt − 1), (3.54)

with dk and dopt denoting the size of the original and effective basis, respectively.
Including V into the A-tensors on each bosonic site, the structure of A[nk] is now given
by

A
[nk]
lk,rk

=
dopt−1∑
ñk=0

Ã
[ñk]
lk,rk

Vñk,nk , (3.55)

where Ã[ñk] links the effective bosonic basis to the left and right part of the chain,
while V maps the original to the effective local basis. The previously presented local
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optimization procedure thus splits into two steps: at first, V is updated and in this
process the optimal effective local basis set |ñk〉 is determined. Then we optimize Ã[ñk]

using the new local basis states and move to the next site. The main advantage of the
OBB representation is that it allows us to significantly increase the size of the local
basis sets from dk ≈ 25 to dk 6 104.

(b) The local bosonic state space can further be expanded by incorporating a displacement
of the oscillator modes when constructing the OBB. Following [20], the oscillator coor-
dinates x̂k = (b̂k + b̂†k) are shifted by their equilibrium value 〈x̂k〉, such that the OBB
captures the quantum fluctuations near the shifted coordinate x̂′k = x̂′k − 〈x̂k〉. This is
achieved by formulating the shift δk as an unitary transformation

Û(δk) = e
δk
2

(b̂†k−b̂k), (3.56)

acting on the local bosonic operators b̂†k and b̂k as

b̂′k = Û †(δk)b̂kÛ(δk) = b̂k +
δk√

2
, (3.57)

b̂†
′

k = Û †(δk)b̂
†
kÛ(δk) = b̂†k +

δk√
2
. (3.58)

By the application of Û(δk) on b̂†k, b̂k we automatically shift x̂k by δk,

x̂′k =
1√
2

(b̂′k + b̂†
′

k ) = x̂k + δk. (3.59)

Therefore Guo et al. proposed to calculate 〈x̂k〉 after processing the local optimization
procedure from (a). Then by setting δk = 〈x̂k〉 and replacing b̂†k, b̂k by their displaced
version b̂†

′

k , b̂
′
k, the shift can be included exactly on the Hamiltonian level, Ĥ ′c(b̂

†
k, b̂k) =

Ĥc(b̂
†′
k , b̂
′
k). Afterwards, the optimization of the current site is repeated in the shifted

local bosonic basis until 〈x̂k〉 converges, before moving to the next site.

The implementation of an OBB with shifted oscillator modes allows to simulate an effective
local basis that would require a local dimension of deffk ≈ 1010 in the unshifted basis, while
the actual shifted basis can be kept small, dk = 102. In addition, since the variational
procedure determines the optimal shift δk for each site of the Wilson chain individually, the
exponential growth of 〈x̂k〉 ∝ Λk with increasing iteration k poses no further problem for the
method.

Note that with the introduction of the OBB a second adjustable dimension dopt besides
the bond dimension D exists. In this work both are chosen in the spirit of [21], i.e. they are
chosen large enough to keep all singular values larger than 10−5.

3.3.3 One-site vs. two-site optimization

Above, we referred to VMPS as a one-site method indicating that during each step only
one site is optimized while all others are kept constant. Alternatively, we can implement
VMPS as a two-site algorithm, where to two A-tensors of neighboring sites are updated
simultaneously. This version is mathematically equivalent to the original formulation of
(finite) DMRG, where local updates are always performed on a two-site block [22].

For a bosonic model, the one-site optimization is often the preferred choice though con-
verging generally slower. Since the Hilbert space dimension of the eigenvalue problem scales
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only as D2dk for the one-site update compared to D2dkdk+1 in case of a two-site optimization,
there is a significant difference in numerical cost for large dk.

On the other hand, using one-site optimization has also a downside. Opposed to two-
site VMPS, an implementation of a dynamic truncation procedure gets more complicated
(nevertheless possible [22]). Usually, the initial choice fixes the bond dimension D throughout
the calculation. This is problematic especially when symmetries are incorporated. Applying
one-site VMPS causes the symmetry sectors in the A-tensors at each site to remain fixed, not
allowing the state to expand into new sectors during the calculations, if required. Obviously,
this leads to systematic errors in the determination of the ground state. Therefore we used a
two-site optimization of an MPS in OBB representation (cf. Eq. (3.55)), which is employed in
all calculations of the U(1)-symmetric two-channel spin-boson model in Chap. 5. For details
see A.1.

3.3.4 Energy-level flow diagrams

When VMPS is applied to a Wilson chain Hamiltonian, it is possible to generate the counter-
part to the NRG energy-level flow diagram, discussed in Sec. 3.2.5. To this end, we calculate
the eigenvalues Ek of the left block Hamiltonian Ĥl in each iteration k when sweeping from
the left to the right end of the Wilson chain. Multiplied with the correct rescaling factor
Λk−1, the spectrum Ek corresponds to the rescaled eigenspectrum EN determined in an
NRG step. Analogously to its counterparts, the VMPS flow diagram contains information

s = 0.8,↵ = 0.8,
hz = 0.05, ⇤ = 2

EN
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Figure 3.10: VMPS energy-level flow diagram of U(1) symmetric two-channel spin-boson
model. The behavior shows a similar transition from a localized to a delocalized fixed point
as the NRG flow-diagram in Fig. 3.7. Due to the variational ground state optimization the lines
corresponding to higher energy states display a less smooth flow than their counterparts in the
NRG flow. In addition, the transition to the delocalized fixed point occurs at earlier iterations
for the VMPS case. This behavior should be expected, since information of the complete chain
is included in each VMPS optimization step, while the NRG spectrum only ”knows” about prior
iterations at higher energies.

about the fixed points of the impurity model. Comparing the flow diagrams of the spin-
boson model in Fig. 3.10, the characteristics of the delocalized and the localized phase are
clearly visible in the ground-state degeneracy. However, due to the variational procedure
focusing on the ground state of the system only, the energy flow is less smooth than in NRG
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(especially when using a shifted bosonic basis). Note that the quality of the VMPS energy
flow diagrams can drastically be improved by the incorporating symmetries of the model.

3.3.5 Time-dependent VMPS

The analysis of the dynamic and thermodynamic properties of quantum systems is a central
topic of modern solid state physics, which also influenced the development of the DMRG
formalism. At first, DMRG was only able to treat static systems only, but the method
has quickly been extended to calculate real-time dynamics and thermodynamics of quantum
lattice systems. While a number of different approaches to implement time-dependence into
DMRG exist [82, 83, 84, 85], we focus only on adaptive time-dependent DMRG (tDMRG)
implemented in the MPS framework.

Considering a time-independent Hamiltonian Ĥ of a 1D chain containing N sites with
local and nearest-neighbor interaction only, the time-evolution of the state |ψ(t = 0)〉 up to
some time t is governed by the time-evolution operator,

Û(t) = e−iĤt, (3.60)

requiring the numerically challenging exponentiation of the many-body Hamiltonian Ĥ. In-
stead of carrying out the direct exponentiation of Ĥ as a whole, we first separate the Hamil-
tonian into a sum of bond terms ĥk acting only on sites k and k + 1,

Ĥ = Ĥeven + Ĥodd, with Ĥeven =
∑

k=even

ĥk, Ĥodd =
∑
k=odd

ĥk. (3.61)

Now we apply the Suzzuki-Trotter decomposition to separate Ĥ for a small time step τ into
a product of even and odd terms,

Û(τ) = e−iĤevenτe−iĤoddτ +O(τ2) (3.62)

= e−iĥ2τe−iĥ4τ ... e−iĥ1τe−iĥ3τ ... +O(τ2) (3.63)
= Û2(τ)Û4(τ) ... Û1(τ)Û3(τ) ... +O(τ2), (3.64)

where we used in the second step that all odd and even bond terms respectively commute
with each other. Due to the non-commutivity of neighboring bond term, [ĥi, ĥi+1] 6= 0 a
so-called Trotter error of order O(τ2) is introduced, which can be reduced by using higher
orders of the decomposition.

The determination of Û is drastically simplified by the Suzzuki-Trotter decomposition,
since the exponentiation is now carried out for each bond term ĥk individually.

Evolving |ψ(t = 0)〉 one time step τ is now easily calculated. In a first sweep to the
right we evolve all odd bonds, i.e. step by step we multiply the two-site operators e−iĥkτ , k
being odd, onto their corresponding A-tensors, A[nk] and A[nk+1], and truncate afterwards
to prevent the bond dimensions to grow from D to d2

kD. Note that the application of a
two-site operator has already been introduced in Sec. 3.1.3. Sweeping back to the right all
even bonds are evolved in the same way concluding one time step τ as shown in Fig 3.11.

After each time step, physical observables can be calculated by evaluating the expectation
values 〈Ô(t)〉 = 〈ψ(t)|Ô|ψ(t)〉. The same applies to time-dependent correlation function such
as 〈Ô(t)Ô′〉 = 〈ψ(t)|Ô|φ(t)〉, where |ψ(t)〉 = e−iĤt|ψ〉 and |φ(t)〉 = e−iĤtÔ′|ψ〉.

The tDMRG procedure introduces two sources of error, one due to truncation of the
bond dimensions in each time step and the other due to the Trotter decomposition. Usu-
ally, the first one is more problematic: since the entanglement of |ψ(t)〉 can grow linearly
with increasing time t, the required bond dimension D rises exponentially thus limiting the
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Figure 3.11: MPS diagram illustrating the application of Û(τ) to |ψ〉. In a first sweep to from
left to right only the odd bonds are evolved. While sweeping back to the right all even bonds
are evolved concluding one time step τ .

reachable time scale of tDMRG. Compared to truncation, the Trotter error plays a minor
role for reasonably small values of τ and can be further reduced by using higher orders of
the Suzzuki-Trotter decomposition. In our calculations, an algorithm based on second-order
Trotter decomposition is employed,

e−iĤτ = e−iĤoddτ/2e−iĤevenτe−iĤoddτ/2 +O(τ3), (3.65)

where the error per time step τ can be reduced by one order. This comes without additional
costs if we pair steps of τ/2 and evaluate observables not at every time-step.



4. Spin-boson model

A particular interesting bosonic quantum impurity model is the spin-boson model (SBM),
which consists of a two-state system (e.g. a spin 1/2 impurity) coupled to a bath of non-
interacting bosonic modes. In recent years, the SBM has gained a lot of attention because it
is one of the simplest non-trivial models for studying the physics of competing interactions
relevant in a wide range of applications. Popularized in 1987 by Leggett et al. in the context
of quantum dissipation [4, 6], the SBM has been applied to a wide range of physical systems
including the description of electron transfer processes in biomolecules [7], entanglement of
qubits with the environment [8, 9], trapped ions [86] and cold atom quantum dots [10, 11],
to name but a few.

The SBM hosts an impurity quantum phase transition at zero temperature, that has been
subject of controversial discussion in the community for many years. Quantum-to-classical
correspondence predicts that the quantum phase transition of the SBM corresponds to the
classical transition of a 1D-Ising chain with long-ranged interactions. The first numerical
studies of the QPT based on NRG obtained results that suggested a failure of quantum-
to-classical correspondence for the SBM [16, 17, 18]. However, subsequent studies reasoned
that the two limitations of bosonic NRG - namely the bosonic truncation and the mass-flow
error - perturb calculations of critical properties, and thus doubted the former conclusions
on the breakdown of quantum-to-classical correspondence [87, 88, 89]. Indeed more recent
works quantum Monte Carlo, exact diagonalization and VMPS confirm its validity for the
SBM [19, 20, 21].

�

✏

�x = "
�x = #

Figure 4.1: Schematic display of the spin-boson system with the quantum tunneling coefficient
∆ and the bias ε.

In this chapter we explore the static and dynamic physical properties of the spin-boson
model at zero temperature using the VMPS method introduced previously. Starting with the
ground-state phases and the QPT, we present results for additional critical exponents. Then

34
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we present results of the non-equilibrium dynamic of the SBM in the ohmic and sub-ohmic
regime obtained by tDMRG.

4.1 Static properties

We have already encountered the spin-boson Hamiltonian briefly in the discussion of bosonic
NRG in Sec. 3.2.1. The impurity consists of a single spin 1/2 represented by the Pauli
matrices σ̂x,z, which is coupled linearly by λi to a bath of harmonic oscillators with creation
operators ai and frequencies ωi:

Ĥ =
ε

2
σ̂x − ∆

2
σ̂z︸ ︷︷ ︸

Ĥimp

+
∑
i

ωiâ
†
i âi︸ ︷︷ ︸

Ĥbath

+
σ̂x
2

∑
i

λi(âi + â†i )︸ ︷︷ ︸
Ĥcoupling

, (4.1)

where ε is an additional bias in coupling direction and ∆ gives the bare tunneling amplitude
between the two spin eigenstates |+〉 and |−〉 of σ̂x. The properties of coupling and bath
are completely characterized by the bath spectral function, which is generally defined by the
density of states of the bath ρ(ω) and the coupling λ(ω),

J(ω) = π
∑
i

λ2
i δ(ω − ωi). (4.2)

For the description of the asymptotic low-temperature behavior of the model only the low-
energy spectrum of the bath plays a role. Since we are particularly interested in the zero-
temperature physics of the model only the low-energy spectrum of the bath needs to be
taken into account. Hence, we employ the standard parametrization of the spectral function
of power law form and only retain frequencies up to a critical frequency ωc.

J(ω) = 2παω1−s
c ωs, 0 < ω < ωc, s > 0. (4.3)

where the dissipation strength of the bath is characterized by the dimensionless constant α.
s determines the density of low-energy states and takes up the role of an effective dimension,
which we comment on in detail in the discussion of the critical phenomena. One distinguishes
between ohmic (s = 1), sub-ohmic (s < 1) and super-ohmic (s > 1) dissipation.

To apply the aforementioned VMPS procedure to the SBM, we discretize Eq. (4.1) and
map it onto a semi-infinite Wilson chain (see Sec. 3.2.2 and 3.2.3 for details),

Ĥchain = Ĥimp +
√
η0

π

σ̂x
2

(b̂0 + b̂†0) +
∞∑
n=0

[
εnb̂
†
nb̂n + tn(b̂†nb̂n+1 + b̂†n+1b̂n)

]
. (4.4)

All calculations in this section are carried out employing the VMPS procedure including an
displaced optimal bosonic basis. If not stated otherwise, we use the discretization parameter
Λ = 2, bond dimensions D = 40, dopt = 16 and chain-length N = 50 in all calculations. Note
that for ε = 0 the Wilson chain Hamiltonian in Eq. (4.4) commutes with the parity operator,

P̂ = σxe
iπN̂ , (4.5)

where N̂ =
∑

i b̂
†
i b̂i counts the total number of bosons on the Wilson chain. The incorporation

of parity symmetry into the VMPS procedure is especially crucial for the VMPS energy-flow
diagrams. These are very sensitive to numerical perturbations on early sites of the Wilson
chain, which can lead to artificial symmetry breaking. Since a VMPS code with explicit
parity symmetry guarantees the correct degeneracy corresponding to the different ground
states of the SBM, all VMPS flow diagrams in this chapter are generated in that manner
(see next section).
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4.1.1 Ground state phases
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Figure 4.2: VMPS energy-flow diagrams for the sub-ohmic SBM with s = 0.6. (a) and (c) show
the flow from the critical towards the delocalized and localized fixed point, respectively. In (b)
the system is located directly at the phase boundary displaying a completely smooth energy-flow,
signal of a critical fixed point.

At zero temperature and zero bias ε, the interplay between dissipation and spin precession,
driven by the coupling α and the tunneling coefficient ∆ respectively, determines the physical
properties of the SBM. The model exhibits two distinct types of ground states:

1. A strongly coupled, localized ground state, where the dissipation is strong enough to
localize the spin in the direction of the bath coupling resulting in a finite magnetization,
〈σx〉 6= 0, corresponding to a spontaneous symmetry breaking. Moreover, the ground
state in the localized phase is two-fold degenerate.

2. A weakly coupled, delocalized ground state, where the bath coupling does not suffice to
localize the impurity spin. Thus the magnetization of the ground state in the coupling
direction remains zero, 〈σx〉 = 0, and no degeneracy is present.

Both types of ground states correspond to two stable fixed points in the RG language, which
can be identified in the VMPS flow diagrams, as illustrated for s = 0.6 in Fig. 4.2. Panel
(a) displays the characteristic energy-flow of a delocalized fixed point with non-degenerate
ground state at late iterations, while in (c) the system flows to a localized fixed point with
a two-fold degeneracy of the ground state energy level. The quantum phase transition
separating the two stable fixed points corresponds to an additional fixed point in the sub-
ohmic regime, illustrated in Fig. 4.2(b) and is discussed in the next section. Which fixed
point is reached depends on the interplay of dissipation strength α, tunneling coefficient ∆
and the power law exponent of the bosonic bath s. This is illustrated in the phase diagram
in Fig. 4.3(a), where the critical coupling αc(∆) is plotted for different values of ∆ denoting
the location of the phase transition between localized and delocalized regime. Since the
bath exponent s determines the bosonic density of states at low energies (it decreases if s
increases), s directly influences the dissipation strength α > αc necessary to localize the spin.
Hence, the critical coupling αc rises with increasing s, reaching its maximum value at s = 1
in the ohmic regime. Similarly, a larger tunneling coefficient drives the delocalization of the
spin and thus increases αc as well. In Fig. 4.3(b) the ∆-dependence of the critical coupling
is displayed. For small ∆, αc shows a power law behavior, αc ∝ ∆k, where k = 1− s. Note
that the phase transition is no longer present in the super-ohmic regime, since the system
always delocalizes.
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Figure 4.3: The phase diagram of the SBM in (a) shows a transition between a localized
(α > αc) and a delocalized (α < αc) regime for various values of the tunneling coefficient ∆. In
(b) the ∆ dependence of the critical coupling αc is displayed for different values of s.
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Figure 4.4: Characteristic behavior of
bosonic occupation numbers 〈nx〉 on the
Wilson chain for the sub-ohmic SBM
with s = 0.6 in the localized (blue), delo-
calized (light blue) phase and at the QPT
(black).

Different ways exist to determine the critical cou-
pling αc numerically. One approach typically
used in the Wilson chain setup of the SBM relies
on energy-flow diagrams. For sub-ohmic dissipa-
tion, the flow diagrams show a crossover from the
quantum critical fixed point to the localized (α >
αc) or delocalized fixed point (α < αc) as illus-
trated in Fig. 4.2. The crossover can be charac-
terized by a low-energy scale T ∗ = cΛ−N

∗
, where

N∗ defines the iteration where the crossover be-
comes apparent and c is a constant prefactor.
The critical coupling can be determined by non-
linearly fitting the numerical data for T ∗(α), as
described in [49].

For our calculations we employed a different
scheme, that is based on the characteristic be-
havior of the bosonic occupation numbers 〈nx〉
in the ground state on the Wilson chain. As de-
picted in Fig. 4.4, we observe an increase of the
numbers of bosons on each site towards the end of the chain in the localized phase, while
the occupation numbers steadily decay going to higher iterations in the delocalized regime.
The critical point is characterized by an almost constant occupation throughout the chain
followed by a sharp decay at the end. We have verified that this characteristic feature can be
used to numerically determining the critical coupling αc with equivalent accuracy compared
to the first approach. We have thus adopted this approach throughout for determining the
α-values involved in the results described below.

As noted in [80], accessing critical properties requires a resolution down to the low-
energy scale T ∗ ∝ |α− αc|ν , where ν is the critical exponent of the correlation length. The
energy scale accessible by the bosonic Wilson chain of length N scales exponentially as Λ−N .
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Therefore ν and N essentially determine how accurately αc can be determined numerically.
In other words, if we want to calculate αc with an accuracy of 10−a, the Wilson chain requires
a minimum length of

N ∝ aν ln(10)
ln Λ

. (4.6)

4.1.2 Quantum phase transition

In the regime of 0 < s 6 1, the spin-boson model displays a quantum phase transition at zero
temperature between a localized and a delocalized phase, which has gained much attention
in recent years [16, 17, 19, 20, 21]. Quantum-to-classical correspondence predicts that the
QPT of the SBM belongs to the same universality class as the classical transition of a 1D
Ising chain with long-ranged interaction,

ĤIsing = −
∑
〈ij〉

JijŜ
x
i Ŝ

x
j + ĤSR, (4.7)

with the interaction term Jij = J/|i − j|1+s, where ĤSR contains additional generic short-
ranged interactions arising from the transverse field, which is considered irrelevant for the
critical behavior of the model [90, 91]. The 1D Ising chain exhibits a phase transition for
0 < s 6 1. In this context, s acts as an effective dimension, since it determines the power
law of the spectra and correlations [17]. It has been shown that the upper and lower critical
dimensions of the model are located at s = 1/2 and s = 1, respectively [91].
As a consequence of the quantum-to-classical mapping, the critical phenomena of the SBM
and of the 1D Ising chain should be equivalent. This results in the following predictions for
the critical exponents of the SBM, which are defined in table 4.1:

� For s = 1, the QPT is of Kosterlitz-Thouless type, classified by an exponentially
diverging correlation length and the absence of an additional critical fixed point. A
Kosterlitz-Thouless phase transition is typical for a system reaching its lower critical
dimension.

� In the regime 1/2 < s < 1 the effective dimension of the system lies between the
upper and lower critical dimension, indicating non-trivial critical behavior. Critical
exponents can be related to the effective dimension s via perturbative RG calculations,
which lead to x = γ = s. Moreover the exponents obey so-called hyperscaling relations,

δ =
1 + x

1− x =
1 + s

1− s, 2β = ν(1− x) = ν(1− s). (4.8)

� For 0 < s < 1/2, the effective dimension of the model exceeds the upper critical
dimension indicating mean-field behavior,

β =
1
2
, δ = 3, ν =

1
s
, γ = 1, x =

1
2
. (4.9)

The first numerical results for the critical properties of the SBM were obtained in 2003 by
Bulla et al. [16] using bosonic NRG. The study confirmed the Kosterlitz-Thouless transition
for s = 1 and the hyperscaling relations in the regime 1/2 < s < 1 but, interestingly, it
did not agree with the predictions of quantum-to-classical correspondence for 0 < s < 1/2.
Instead of finding the predicted mean-field behavior, the critical exponents extracted with
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physical Quantity Definition Exponent Condition
Local magnetization 〈σx〉 ∝ |α− αc|−β β |α− αc| → 0, ε = 0, T = 0
Local susceptibility χ ∝ |α− αc|−γ γ |α− αc| → 0, ε = 0, T = 0
Local magnetization 〈σx〉 ∝ |ε|−1/δ δ α = αc, ε→ 0, T = 0
Correlation length ξ ∝ |α− αc|−ν ν |α− αc| → 0, ε = 0, T = 0
Local susceptibility χ ∝ T−x x α = αc, ε = 0, T → 0

Table 4.1: Critical exponents of the spin-boson model where 〈σx〉 is the impurity magnetization,
αc the critical coupling, ε a bias of the impurity spin in coupling direction, T the temperature,
ξ the correlation length and χ the susceptibility of the impurity.

bosonic NRG follow the hyperscaling relations in Eq. (4.8) across the entire sub-ohmic regime,
0 < s < 1. These results were confirmed in subsequent NRG based works on the SBM and
the related Bose-Fermi Kondo model [17, 18], hence it was concluded that quantum-to-
classical correspondence would break down for sub-ohmic dissipation 0 < s < 1/2. This
was a strong statement, since the failure of quantum-to-classical correspondence would be
accompanied by implications not only for dissipative bosonic systems but also for the Kondo
lattice [92, 93]. Thus, the topic attracted more attention, leading to further studies based on
different numerical approaches (quantum Monte Carlo [19], exact diagonalization [20] and
VMPS [21]). All of these contradicted the NRG results by finding mean-field exponents for
0 < s < 1/2. Thus the validity of quantum-to-classical correspondence for the spin-boson
model can at present be regarded as well-established (although some still advocate its failure
[94]). The discrepancies of the NRG results compared to other methods connect to the two
limitations of bosonic NRG, the truncation error and the massflow error [87, 89].
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Figure 4.5: Critical exponents (a) β and (b) δ for different values of s calculated with VMPS
(blue squares) and NRG (red dots). Only the VMPS calculations in (a) and (b) agree with
the mean-field predictions (dashed black lines) for 0 < s < 1/2, while NRG leads to different
results following hyperscaling in (b). For 1/2 < s < 1 both methods agree reasonably well with
δ satisfying the hyperscaling relation in Eq. (4.8). Figure is adapted from [21].

In [21], the truncation effects of the local bosonic state spaces on the results of the critical
exponents δ and β were illustrated very convincingly using the same VMPS procedure as
in this work. While calculations using with a unshifted local bosonic basis yielded results
for δ that obey the hyperscaling relation δ = (1 + s)/(1 − s) for 0 < s < 1/2, the mean-
field value δ = 1/2 was reached when employing a displaced OBB procedure according to
Sec. 3.3.2. Similarly, β = 1/2 was found with the optimized bosonic basis. Fig. 4.5 displays
the dependency of δ and β with respect to s as displayed in [21]. We reproduced these results
in reasonable calculation time using VMPS.
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4.1.3 Subsequent results for critical exponents

While the results for the critical exponents β and δ already have been presented in [21], the
VMPS procedure further allows us to determine the correlation length exponent ν as well
as the temperature exponent x.

As noted previously, the correlation length exponent ν determines how to the low-energy
scale T ∗, which describes the energy resolution on which quantum critical phenomena are
observable, vanishes near the quantum critical point,

T ∗ ∝ |α− αc|ν . (4.10)

Within the VMPS framework, the low-energy scale T ∗ can be read off energy-flow diagrams,
as indicated in Fig. 4.2. T ∗ relates to the Wilson chain site N∗, where the transition of
the flow from a critical to a localized/delocalized fixed point is observed, as T ∗ ∼ Λ−N

∗
.

In general, T ∗ vanishes with the same exponent ν when approaching the QPT from the
delocalized or localized phase. In our calculations, we started at the localized fixed point
and defined N∗ as the specific Wilson chain site where the energy of the first excited states
decreases below ∆E01 ≡ (E1 − E0) . 0.05 (in rescaled units).
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Figure 4.6: (a) Critical exponent ν of the spin-boson model for different values of s together
with mean-field prediction of Eq. (4.9). (b) Vanishing of T ∗ close to the critical point for s = 0.7.
The dashed black line indicates the numerical fit for the extracted exponent ν.

In Fig. 4.6(b) the vanishing of T ∗ close to the QPT is shown for s = 0.7. We clearly see
that T ∗ decreases in a power law fashion, which allows us to extract the exponent ν via a
non-linear fit. The resulting values of ν for different s are illustrated in Fig. 4.6(a), while
the corresponding fitting can be found in Fig. B.1 of the appendix. ν diverges as expected
for both s → 1 (Kosterlitz-Thouless transition) and s → 0 (completely localized system).
Moreover, it follows the expected mean-field relation 1/ν ∝ s in the regime of 0 < s < 1/2,
with small deviations close to s = 1/2. At this point we expect logarithmic corrections to
the leading power law, because the system is at its upper critical dimension. Since ν is
neither corrupted by the bosonic truncation error nor the massflow error, we can compare
our results with NRG studies [17] and find agreement with these over the complete interval
of s.

Although we restrict our calculations to zero temperature only, VMPS allows to determine
the critical exponent x which defines the temperature scaling of the susceptibility χ at
the critical point. This can be achieved by studying the finite-size scaling of the impurity
magnetization m = |〈σx〉| in coupling direction. In general, the system size L relates to the
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Figure 4.7: Finite-size scaling of the magnetization m at the QPT for various values of s. The
inset displays dependence of the exponent p defining the exponential decay of m on the value
of s (blue triangles). The dashed lines indicate the values of p expected for mean-field (black)
behavior, x = 1/2, and the RG predictions valid in the presence of hyperscaling, x = s.

discretization parameter of the Wilson chain Λ and its length N as

1
L
∝ 1

ΛN
. (4.11)

Assuming that the magnetization m approaches a well defined value m0 in the limit L→∞,
we expect corrections to m0 for finite systems exponentially scaling with L,

m = m0 + a
1
Lp

= m0 + a(Λ−N )p

= m0 + ae− ln (Λ)pN . (4.12)

According to [95], the magnetization of a gapped system scales as m ∝ ∆̃(1−x)/2 close to a
critical fixed point (m0 = 0), with ∆̃ being the finite energy gap. Since the lower energy
cut-off Λ−N acts as an effective energy gap [96], the exponent p of the finite-size corrections
relates to the temperature exponent x at the critical point such as,

m ∝ (Λ−N )p = (Λ−N )(1−x)/2, (4.13)

which results in 2p = 1 − x. Thus by studying the finite-size scaling of m at the phase
boundary of the QPT and extracting the exponent p, we are able to determine the critical
exponent x. Note that this relation is only valid in the presence of hyperscaling relations,
i.e. below the upper critical dimension of the system (here s = 1/2).

In Fig. 4.7 the finite-size scaling of m is displayed for various values of s, while the
extracted exponents p are illustrated in the inset. The inset suggests that x = s for the
complete dissipation spectrum of the sub-ohmic SBM, 0 < s < 1. This result agrees with the
perturbative RG predictions for 1/2 < s < 1; however, it disagrees with expected mean-field
result x = 1/2 in the regime 0 < s < 1/2. The reason for this disagreement is as follows: For
these values of s the system remains above the upper critical dimension and x is distorted by
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the so-called massflow error that is inherent in the iterative finite-size scaling [88]. Similar
to the iterative NRG procedure, the renormalization of the system is only taken partially
into account at each iteration (lower energy scales to the left are disregarded). Thus at
any step there is a missing parameter shift set by the current energy scale of the iteration.
This indicates that the location of the critical coupling depends strongly on the minimal
energy scale reached, i.e. on T ∗ ∝ Λ−N where N is the length of the Wilson chain. By only
including M < N iterations, the finite-size scaling analysis in effect moves the system away
from criticality, causing the deviation of x from the mean-field predictions.

As already discussed, the critical exponents follow the hyperscaling relations in Eq. (4.8)
in the regime 1/2 < s < 1. While the validity of the first hyperscaling relation for δ has
already been proven in [21], the access to ν and x enables us to also check the validity of the
second hyperscaling relation,

x = (1− 2β/ν). (4.14)
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Figure 4.8: Critical exponent x cal-
culated from finite-size scaling (blue
squares) and hyperscaling (red crosses)
compared with the RG prediction x = s.

Fig. 4.8 compares different results of x in the
hyperscaling regime 1/2 < s < 1. The blue
squares indicate the extracted values of x from
the finite size scaling, the red crosses display the
results of Eq. (4.14) using β and ν collected from
VMPS data and the dashed line relates to the RG
prediction x = s. We find excellent agreement
between the predicted values of x with VMPS
calculations (deviations smaller than 2%). Al-
though this result is to be expected, it proves the
accuracy of the employed VMPS method. More-
over, it serves as a benchmark calculation illus-
trating that ν and x are accessible within VMPS.
This is crucial when discussing the validity of our
VMPS results for the critical phenomena of the
two-channel spin-boson model in Chap. 5.
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4.2 Non-equilibrium dynamics

In the previous section the discussion focused on static properties of the spin-boson model,
which have gained much attention in recent years mainly due to the controversy of the
sub-ohmic quantum phase transition. Nevertheless, the model was originally introduced
to study the dynamics of dissipative quantum systems [4], since the SBM is the simplest
non-linear model displaying quantum coherence, friction and fluctuations of thermal and
quantum nature, all essential features for the realistic description of a quantum system
interacting with its environment. Particularly its applicability in quantum information,
where the SBM models the interaction of an qubit with its environment, has turned the
SBM to one of the most studied dissipative systems in the last decades. Despite its simplicity
compared to other models, full analytical solutions of its dynamical behavior exist only in
a few exceptional cases. However, various approximation methods have been developed for
the different parameter regimes of the SBM, that help to gain deeper understanding of the
impurity spin dynamics especially in the ohmic regime. For a detailed discussion on this
extensive topic we refer to the book of U. Weiss [5].

In this section we briefly study the non-equilibrium dynamics of the SBM in the ohmic and
sub-ohmic regime. For this purpose we extended the static version of our VMPS code using
adaptive time-dependent DMRG as described in Sec. 3.3.5. We simulate a quantum quench
by preparing the impurity spin in coupling direction by applying a strong bias field ε and then
start the time-evolution while simultaneously setting ε = 0. Depending on the parameter
regime of the SBM, we can observe coherent oscillations or an incoherent relaxation of the
impurity spin. We compare our tVMPS data for the ohmic SBM in the weak coupling regime
with the non-interacting blip approximation [4, 97, 5] finding good quantitative agreement.
Furthermore, we study the non-equilibrium dynamics of the sub-ohmic SBM and are able to
reproduce the finding of [98], stating that a transition from coherent damped oscillations to
a monotonic decay can be observed even in the localized limit of s→ 0.

4.2.1 tVMPS and z-averaging

When employing the bosonic tVMPS code discussed in Sec. 3.3.5, we have to consider the
numerical problems arising in this procedure. First of all, since we study the relaxation of a
non-equilibrium system we expect the entanglement of the time-evolved state |ψ(t)〉 to grow
linearly thus blowing up the required bond dimensions of the MPS. The induced truncation
error increases exponentially with time and therefore limits the accessible time to t ∼ 104/ωc.

The bosonic nature of the SBM introduces a second issue, the truncated bosonic basis.
Whenever we apply bosonic tVMPS, we have to include a sufficiently large bosonic basis on
each site of the Wilson chain to ensure the time-evolution is not corrupted by truncating
parts of the Hilbert space required for an accurate description of |ψ(t)〉. This problem does
not arise in the delocalized regime, where a small local basis suffices to describe the low-
energy excitations. We know on the other hand, that the localized phase requires a shifted
basis to appropriately represent the low-energy states of the system. Since the displaced
oscillator basis is not applicable in tVMPS, we can access the localized regime only close to
the QPT on short time scales.

Moreover, when considering a Wilson chain with finite length N we represent a system
with a continuous bath spectrum by a discretized finite size version. This yields another
source of error for the time-evolution of the model known from time-dependent NRG ap-
proaches [59]. The finite system size affects the time evolution in two ways. On the one hand,
the finite energy resolution limits the accuracy of the system dynamics to times t < ΛN . This
is only a minor problem, since we can usually adapt the chain to a sufficiently large length.
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We found that the major restriction on the accessible time scale is rather caused by the bond
truncation error. On the other hand, an accurate time-evolution relies on a continuous high
energy spectrum of the bath modes, posing a serious challenge to any finite size representa-
tion using a logarithmic discretization scheme. To simulate the continuous bath spectrum we
borrow a method successfully applied in NRG, Oliveira’s so-called z-trick [99]. The idea is to
add a shift to the discretization of the bath spectral function using an additional parameter
z,

ωn = Λ−n+z, n = 1, 2, 3, ..., z ∈ [0, 1), (4.15)

where each choice of z includes different high energy states of the bosonic bath. By calcu-
lating the time-evolution separately for nz different z-values equally spaced over the interval
[0, 1) and averaging the time-dependent observables, we simulate a continuous bath spec-
trum. In this way we reduce numerical artifacts that manifest themselves for example in
unphysical oscillation as shown in Fig. 4.9(a).

0 200 400 600
−0.2

0

0.2

0.4

0.6

0.8

1

t/ω
c

<
σ x(t

)>

 

 
z=0.125
z=0.25
z=0.375
z=0.5
z=0.625
z=0.75
z=0.875
z=1
z−averaged

(a)

0 100 200 300 400 500−1

−0.5

0

0.5

1

t/ωc

<σ
x(t)

>

 

 

(b)

Figure 4.9: Time-evolution of the ohmic SBM starting from an fully polarized impurity spin.
In (a) the z-averaging procedure is illustrated for the relaxation at the Toulouse point, α = 0.5
with ∆ = 0.1. While the dotted lines, each representing the spin dynamics for one particular
value of z, show unphysical oscillations caused by discretization artifacts, their average (black
line) displays a smooth relaxation of the impurity spin. (b) shows the spin dynamics for various
values of α in the delocalized regime with ∆ = 0.1. In the week coupling regime, 0 < α < 1/2
we observe damped oscillations, while the spin decays monotonically to zero for strong coupling,
1/2 < α < αc.

To study the non-equilibrium dynamic of the SBM, we first apply a strong bias ε(t < 0) =
100 and set the tunneling coefficient ∆(t < 0) = 0 to obtain a fully polarized impurity spin as
an initial state by standard VMPS calculation. Before we start the time-evolution employing
tVMPS, we set ε(t = 0) = 0 and change ∆ to a finite value. For all calculations presented in
this section, we chose the maximum bond dimension D = 150, the local dimension of d1 = 20
for the first and dk = 5 for the other bosonic sites, the chain length N = 35, nz = 8 different
z-values, a discretization parameter Λ = 1.2 and the time-step τ = 0.2. For all calculations
we carefully checked a priori that no divergence of the bosonic occupation numbers occurs
on the Wilson chain.
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4.2.2 Ohmic dynamics

Contrary to the SBM with sub-ohmic dissipation, the dynamical behavior of the ohmic SBM
is well understood [4, 5]. The time evolution of the impurity spin in coupling direction 〈σx(t)〉
for a system with initially fully polarized spin, finite ∆ and ε = 0 strongly depends on the
value of the coupling constant α. For 0 < α < 1/2 the system shows coherent oscillations
that decay to zero. At the so-called Toulouse point, α = 1/2, the characteristics of the
dissipation changes drastically so that for 1/2 6 α < αc the spin decays monotonically to
zero and oscillations are no longer present. In the localized phase, α > αc, the magnetization
〈σx(t)〉 does not approach zero anymore for t → ∞. Instead the spin localizes at a finite
value.

In Fig. 4.9(b) the time-evolution of 〈σx(t)〉 is calculated with tVMPS for various values
of the coupling constant α. We are able to reproduce the underdamped oscillations for
0 < α < 1/2 and the monotonic decay for 1/2 < α < αc, where αc ≈ 1.15. However, since
tVMPS is restraint to comparatively short long time scales due to the exponentially growing
Hilbert space dimension, our method is not able to prove that the spin approaches a finite
value in the localized phase. Nevertheless, the spin dynamics close to αc already indicates a
very slow decay that eventually saturates at a finite magnetization.
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Figure 4.10: Non-equilibrium dynamics of a polarized impurity spin in the SBM for various
values of α in the weak coupling regime 0 < α < 0.5 and tunneling coefficient ∆ = 0.1. The
tVMPS results (solid lines) show good quantitative agreement with the predictions of the non-
interacting blip approximation (dashed lines), calculated with Eq. (4.16).

Among various analytical methods that have been employed to study the spin dynamics
in the weak coupling regime 0 < α < 1/2, the non-interacting blip approximation (NIBA)
is one of the most prominent. It relies on the key assumption that the system spends much
more of its time in a diagonal state of the density matrix than in an off-diagonal or ’blip’
state. While this approximation leads to discrepancies in the asymptotic limit of t→∞, it is
considered to work well for the unbiased SBM (ε = 0) on short and intermediate time scales
[5]. While NIBA was originally derived in a diagrammatic approach using a path-integral
formalism [4], more compact derivations can be found in the literature [97]. According the
NIBA formulation in [5], the time evolution of an initially polarized impurity spin is given



46 Chapter 4. Spin-boson model

by

〈σx(t)〉 =
∞∑
m=0

(−1)m

Γ[1 + (2− 2α)m]
(∆efft)(2−2α)m, (4.16)

where ∆eff is the effective tunneling coefficient defined as,

∆eff = [Γ(1− 2α) cos(πα)]1/[2(1−α)]∆(∆/ωc)α/(1−α). (4.17)

It can be shown, that the effective tunneling coefficient ∆eff is equal to ∆ for α = 0 and
equal to π∆2/2ωc for α = 1/2. Thus, NIBA recovers for α → 0 the dynamic solution of an
undamped spin-1/2 system, 〈σx(t)〉 = cos (∆t). At the Toulouse point, α = 1/2, the SBM
can be mapped on a resonant level mode, which can be solved exactly [5]. In this case NIBA
reproduces the exact solution,

〈σx(t)〉 = e−π∆2/(ωc2) (4.18)

describing the monotonic relaxation of the spin to zero. For short times t∆eff � 1, the
leading term of non-interacting blip approximation in Eq. (4.16) is given by

〈σx(t)〉 = 1− (∆efft)2−2α

Γ(3− 2α)
+O[(∆efft)4−4α]. (4.19)
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Figure 4.11: Non-equilibrium dynamics of a polarized impurity spin in the ohmic SBM (a) at
the Toulouse point α = 1/2 and (b) for short time scales in the weak damping regime 0 < α < 1/2.
The solid line in (a) indicates the exact analytic result of Eq. (4.18) for α = 1/2 and ∆ = 0.1,
which is in agreement with the dotted line corresponding to the tVMPS calculation. The short-
time analysis in (b) shows that tVMPS data (dotted lines) follow the analytic NIBA results of
Eq. (4.19) almost exactly in the weak damping regime with ∆ = 0.01.

The NIBA predictions in the weak coupling regime 0 < α < 1/2 allow us to benchmark
our tVMPS results. Fig. 4.10 displays the respective tVMPS (solid lines) and NIBA results
(dashed lines) on a rescaled time-axis, where the latter are calculated with Eq. (4.16). Our
method show good quantitative agreement with the NIBA predictions. On short time scales
t∆eff � 1, where NIBA is assumed to give a correct description of the time evolution via
Eq. 4.19, tVMPS almost perfectly agrees with NIBA, as indicated in Fig. 4.11(b). The solid
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lines illustrate the analytic solution while the dotted lines are calculated with tVMPS. A de-
tailed analysis of the Toulouse point, α = 1/2, is presented in Fig. 4.11(a). The tVMPS data
is in accordance with the exact solution of Eq. (4.18), though we observe minor deviations
that are most likely caused by finite size effects.

In conclusion, we are able to reproduce the dynamical behavior of a fully polarized impu-
rity spin coupled to an ohmic bath with high accuracy using tVMPS. A further application
to the sub-ohmic regime of the spin-boson model is presented in the next section.
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4.2.3 Sub-ohmic dynamics

In contrast to the ohmic case, the dynamical properties of the SBM with sub-ohmic dis-
sipation are only partially understood. One of the few analytic approaches studying the
time-evolution of an initial non-equilibrium state suggests that there exists a transition from
damped coherent oscillations at weak coupling to an incoherent decay at strong coupling,
similar to the ohmic case [100]. Interestingly, the dynamics should always change from co-
herent to incoherent, even in the limit s → 0 where the system localizes for all couplings
α. Since we expect the SBM to show almost classical behavior for s = 0, this picture seems
counter-intuitive.
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Figure 4.12: Non-equilibrium dynamics of a fully polarized spin in the sub-ohmic SBM with
s = 0.7 and ∆ = 0.1 for different values of α in the delocalized regime. We observe a transition
from damped coherent oscillations to an incoherent decay for 0.15 < α < 0.2.

Nevertheless, a numerical TD-NRG study confirmed the predictions by observing a tran-
sition from coherent to incoherent dynamics even in the localized phase for s → 0 [98]. We
are able to reproduce these finding using tVMPS applied to the non-equilibrium spin dynam-
ics of the sub-ohmic SBM. In Fig. 4.12 the time-evolution of the impurity spin is shown for
s = 0.7. We can clearly observe a transition from damped oscillations to an incoherent decay
for intermediate couplings 0.15 < α < 0.2 in the delocalized phase. The phase boundary is
approximately located at αc ≈ 0.262. Fig. 5.6a(a) displays a similar behavior for s = 0.5,
where a shallow oscillation can be observed even for α > αc = 0.105 in the localized phase.
The most striking feature is shown by the spin dynamics in the limit s → 0 illustrated in
Fig. 5.6a(b). Even though the impurity spin localizes for infinitesimally small couplings α,
we can clearly see damped coherent oscillations around some finite value 〈σx(∞)〉.

Although we are able to access the localized regime at intermediate coupling on short
time scales where we do not observe a divergence of the bosonic occupation numbers on the
Wilson chain, we are restricted to regions close to the QPT. For strong couplings, α � αc,
tVMPS breaks down due to the truncation of the local state space. Very recent works
employing path-integral Monte Carlo techniques succeed to describe the sub-ohmic SBM in
the strong coupling regime [101, 102]. They come to a fascinating conclusion: for 0 < s < 1/2
the coherence in the non-equilibrium dynamics persists even for arbitrarily strong couplings
α - even when the thermal equilibrium is of almost classical nature. There is no intuitive
argument to explain these findings yet, indicating that further work has to be done in order
to understand dissipation on the nanoscale.
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Figure 4.13: Non-equilibrium dynamics of a fully polarized spin for the sub-ohmic SBM with
dissipation (a) s = 0.5 and (b) s = 0 for various values of α (∆ = 0.1). In (a) the impurity
spin displays strong coherent oscillations in the delocalized regime for α < αc ≈ 0.105, while the
oscillations are suppressed (but still slightly visible) in the localized phase. In (b) the system
localizes for any infinitesimally small coupling α. Nevertheless, we observe damped coherent
oscillations around finite values of the magnetization.



5. Two-bath spin-boson model

The second bosonic quantum impurity model considered in this work is a generalized version
of the spin boson model, where two independent bosonic baths couple to different components
of the impurity spin. This model is particularly interesting because it hosts the phenomenon
of frustration of decoherence [103, 104]: both baths compete rather than cooperate by trying
to localize a different component of the impurity spin. This induces a new critical phase
at intermediate coupling with highly non-trivial physical properties. The XY -symmetric
version of the two-bath spin-boson model (SBM2) studied in this chapter may represent
distinct noise sources arising in the context of impurities in quantum magnets [105, 106] or
noisy qubits [103, 104, 107].

Recently, the first numerical study of the SBM2 based on VMPS has been carried out by
[21], who extensively studied the ground state phase diagram and confirmed the existence
of the critical phase in the sub-ohmic regime. However, the characterization of the two
quantum phase transitions occurring in the system remained an open question. Continuing
the work of [21], we present for the first time numerical results for the critical properties of
the two-bath spin-boson model in the following. We start by discussing the model and its
underlying abelian U(1) symmetry, which turns out to be of great importance in order to
obtain clean numerical results. Next, we present a short review of the ground state phase
diagram and the most important properties of the critical phase, before turning to the critical
phenomena. The corresponding RG results cited in this chapter are provided by Matthias
Vojta [21, 96].

5.1 Model Hamiltonian

In general, the two-bath version of the spin-boson Hamiltonian has a similar structure as its
one-bath counterpart,

ĤSBM2 = −
~h

2
· ~σ︸ ︷︷ ︸

Ĥimp

+
∑
k=x,y

[∑
i

ωiâ
†
k,iâk,i︸ ︷︷ ︸

Ĥbath

+
σ̂k
2

∑
i

λk,i(âk,i + â†k,i)︸ ︷︷ ︸
Ĥcoupling

]
. (5.1)

In contrast to the standard SBM, the two-level impurity here couples both to an external
field ~h and to two independent bosonic baths via two different spin components, σ̂x and σ̂y,
where σ̂i again denotes the Pauli matrix i. In this formulation the x- and y-component of the
external field ~h takes on the role of the bias ε in the standard SBM notation (c.f. Eq. (3.20),
while hz, acting perpendicular to the baths coupling acts, as an effective tunneling coeffi-
cient. For an appropriate description of the low-energy spectrum, the two spectral functions
J(ω)k = π

∑
i λ

2
kiδ(ω − ωi) characterizing the bosonic baths and their interaction with the

impurity are defined to be of power law form,

Jk(ω) = 2παkω1−s
c ωs, 0 < ω < ωc = 1, s > 0. (5.2)
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where both coupling constants are set to be equal, α = αx = αy, in order to study the
XY -symmetric model. The reason for this choice is that we are particularly interested
in the competition between the two baths, which amongst other things gives rise to an
unconventional critical phase at intermediate coupling. As we will see in Sec. 5.4, small
differences in the coupling coefficients lead to situations where the slightly stronger coupled
bath dominates the physical behavior of the system.

In order to apply the VMPS framework to the SBM2, the model Hamiltonian in Eq. (5.1)
is logarithmically discretized and then mapped on a Wilson chain following the standard
protocol introduced in Secs. 3.2.2 and 3.2.3. This results in

ĤSBM2
chain = Ĥimp +

∑
k=x,y

[√ηk
π
σ̂k(b̂k,0 + b̂†k,0) +

∑
n

(εk,nb̂
†
k,nb̂k,n + [tk,nb̂

†
k,nb̂k,n+1 + h.c.])

]
,

(5.3)

with the on-site energies εk,n, the hopping elements tk,n and the impurity-bath coupling ηk
are calculated numerically.

5.1.1 Symmetries

U(1) symmetry

For most of this chapter we consider the XY -symmetric model where the couplings between
the impurity spin and both baths are identical, αx = αy. Consequently, we can drop the
k-label in the hopping elements tx,n = ty,n = tn and on-site energies εx,n = εy,n = εn of the
Wilson chain Hamiltonian in Eq. (5.3). By introducing a convenient spinor notation (whose
characteristic property is the absence of the x- or y-index on b̂ or ˆsigma),

b̂ ≡
(
b̂x
b̂y

)
, σ̂ ≡

(
σ̂x
σ̂y

)
, (5.4)

we can write the Hamiltonian in a more compact way

Ĥ = Ĥimp +
√
η

π

(
σ̂†b̂0 + h.c.

)
+
∑
n

(
εnb̂
†
nb̂n + [tnb̂†nb̂n+1 + h.c.]

)
. (5.5)

In case of zero bias, i.e. Ĥimp = hzσ̂z/2 with hx = hy = 0, the system possesses an abelian
U(1) symmetry in the xy-plane. In other words, the Hamiltonian is invariant under simulta-
neous rotation of the impurity spin in the σxσy-plane and the bosonic baths in the bxby-planes
by a generic angle φ. A rotation of this type can be induced by a unitary operator Û(φ),

|ψ〉 → eiφŜ︸︷︷︸
Û(φ)

|ψ〉, (5.6)

where Ŝ is the generator of the U(1) symmetry, given by

Ŝ =
1
2
σ̂z + i

∑
n

(
b̂†y,nb̂x,n − b̂†x,nb̂y,n

)
=

1
2
σ̂z +

∑
n

(
b̂†nσy b̂n

)
, (5.7)

with Ŝ commuting with the Hamiltonian in Eq. (5.5), [Ĥ, Ŝ] = 0.1 In this form, the symmetry
sectors of Ŝ involve a hopping between the two bath in the local bosonic state spaces, which

1Note that the spin operators acting in the local space of the impurity are always denoted by σ̂i, while σi
without hat explicitly denotes a Pauli matrix.
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poses a serious challenge for the numerical implementation of the symmetry. Hence, it
is useful to bring Ŝ in a diagonal form in the spinor space of b̂ by applying a canonical
transformation to the bosonic spinor, b̃ ≡ Ub̂. The particular choice

U =
1√
2

(
1 +i
1 −i

)
(5.8)

transforms the generator into a diagonal form in the spinor space:

Ŝ =
1
2
σ̂z +

∑
n

(
b̂†nσy b̂n

)
=

1
2
σ̂z +

∑
n

(
b̂†nU

†︸ ︷︷ ︸
≡b̃†

UσyU
† Ub̂n︸︷︷︸
≡b̃

)
(5.9)

=
1
2
σ̂z −

∑
n

(
b̃†nσz b̃n

)
=

1
2
σ̂z +

∑
n

(
b̃†y,nb̃y,n − b̃†x,nb̃x,n

)
, (5.10)

where the relation UσyU
† = −σz was used in the second line. In this form, the symmetry

sectors are characterized by the z-component of the impurity spin and the difference in the
bosonic occupation number in both baths rather than a hopping term, allowing a simpler
symmetry implementation [108].

The canonical transformation employed on the bosonic operators also affects the coupling
term of the Hamiltonian, which is now given by

Ĥ = Ĥimp +

√
2η
π

√
2
(
σ̂−[b̃x,0 + b̃†y,0] + σ̂+[b̃†x,0 + b̃y,0]

)
+
∑
n

(
εnb̃
†
nb̃n + [tnb̃†nb̃n+1 + h.c.]

)
.

(5.11)

Since the SBM2 Hamiltonian and Ŝ commute, it follows that any eigenstate |q〉 of Ŝ is also
an eigenstate of Ĥ, with |q〉 being defined as

Ŝ|q〉 = q|q〉 with q =
1
2
σz + Ñy − Ñx, (5.12)

where Ñx,y =
∑

n b̃
†
(x,y),nb̃(x,y),n is the total number of bosons occupying the Wilson chain of

the individual baths and σz is the spin component in z-direction. It follows that given any
ground state |G〉, one may obtain another ground state via eiφŜ |G〉. In case of a two-fold
degeneracy of the ground state, the corresponding subspace can be described by the states
|Gq=±1/2〉 with the following properties:

Ŝ|Gq=±1/2〉 = ±1
2
|Gq=±1/2〉 (5.13)

Ĥ|Gq=±1/2〉 = Eg|Gq=±1/2〉, (5.14)

where Eg is the ground state energy. These two states are the only ones with a symmet-
ric distribution of boson numbers (Ñx = Ñy). By construction, the expectation value 〈σx,y〉
evaluated using ground states that are also symmetry eigenstates is zero. How to reconstruct
the magnetization of the ’original’ ground state is explained in App. C.1.

Parity symmetry

In addition to the U(1) symmetry present in the XY -symmetric model, the Hamiltonian is
also invariant under parity transformations. There exist three different parity operators for
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the SBM2 Hamiltonian, which can be defined as

P̂x = σ̂xe
iπN̂y (5.15)

P̂y = σ̂ye
iπN̂x (5.16)

P̂z = σ̂ze
iπ(N̂x+N̂y) = −iP̂xP̂y. (5.17)

where N̂x =
∑

k b̂
†
kxb̂kx and N̂y =

∑
k b̂
†
ky b̂ky count the total bosonic occupation numbers of

the x- and y-bath. Note that the application of P̂z to a state can be carried out by combining
P̂x and P̂y (P̂z = −iP̂xP̂y), hence P̂z does not describe an additional independent symmetry.
The parity obeys Csv, which is an abelian point group. It follows that[

P̂x, Ŝ
] 6= 0 (5.18)[

P̂y, Ŝ
] 6= 0 (5.19)[

P̂x, P̂y
] 6= 0. (5.20)

A joint symmetry implementation of P̂x or P̂y with Ŝ is therefore not possible. On the other
hand, the U(1) symmetry already contains P̂z as a special case (P̂z = exp(iπŜ)). Therefore
the U(1) eigenstates have a well defined parity eigenvalue pz.

P̂z|q〉 = pz|q〉 (5.21)

where pz = +1 in case of an state with a positive q-value, while q < 0 corresponds to a
negative parity eigenvalue pz = −1.

5.1.2 VMPS setup

In principle, two different setups exist for the VMPS implementation of the SBM2. In
contrast to NRG, where the impurity is always located at the first site of the Wilson chain
due to energy scale separation, VMPS enables one to place the impurity in the middle of
two separate Wilson chains coupling to one bath at the left and one at the right side. The
sweeping procedure then moves from the left end (first bath) across the impurity in the
middle to right end (second bath) and back again optimizing the ground state.

However, when studying the XY -symmetric version of the SBM2 such a setup leads to
numerical problems, since the ground state is very sensitive to small asymmetries in the
spin-bath coupling ηx = ηy = η. A separate treatment of the baths during the sweeping may
induce a coupling asymmetry, causing convergence problems of the ground state. Therefore
we employ a different VMPS setup, which is based on multi-channel NRG implementations.
By combining the local Hilbert spaces of the two bosonic baths on each site of the Wilson
chain, we form ’super-sites’ in a folded setup. This is achieved by replacing the matrix
representation of the bosonic operators in Eq. (5.3) with

Bx,n = bx,n ⊗ Iy,n (5.22)
By,n = Ix.n ⊗ by,n, (5.23)

where Ixy,n is the identity matrix in the respective local bosonic space on site n. A schematic
picture of the folded setup is displayed in Fig. 5.1.

Though the folded setup reduces coupling asymmetries arising in the sweeping procedure,
VMPS does not guarantee a priori that symmetries of the underlying model are conserved
in the numerical procedure. Due to the exponentially decreasing energy scale along the
Wilson chain, small numerical noise at early iterations may lead to symmetry breaking at
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x-chain

y-chain

Figure 5.1: Schematic picture of the folded VMPS setup of the SBM2.

late iterations during the VMPS procedure. In our experience, these perturbations play a
crucial role within the critical regime and near the phase boundaries for 0.75 < s < 1 while
the other phases of the SBM2 are more stable against these numerical effects. Being partic-
ularly interested in critical properties of the model, it is necessary to explicitly incorporate
the aforementioned abelian U(1) symmetry in the numerical setup by labeling the symme-
try sectors according to the symmetry quantum number q in Eq. (5.12) with QSpace (see
Sec. 3.1.5). This not only improves numerical stability, it also drastically speeds up calcula-
tion time. For a detailed comparison of the results obtained with and without the explicit
conservation of the U(1) symmetry see Sec. 5.5.

Note that we are not yet able to include a shift δn of the local bosonic basis into our
symmetry implementation. The shift leads to additional terms in Ŝ,

Ŝ =
1
2
σz +

∑
n

(
b̃†y,nb̃y,n+

δy,n√
2

(b̃y,n+ b̃†y,n)+
δ2
y,n

2
− b̃†x,nb̃x,n−

δx,n√
2

(b̃x,n+ b̃†x,n)
)− δ2

x,n

2
).

(5.24)

Because of the additional terms linear in δn, Ŝ is no longer diagonal in the b̃x-b̂y plane. In
combination with the continuous nature of δn, an implementation of the shift as indicated
above together with the abelian U(1) symmetry is not possible. Therefore the results of this
chapter are obtained with two different versions of the VMPS code:

� Version 1 (V1) works with the standard one-site optimization scheme described in
Sec. 3.3 and employs the displacement of the local bosonic basis sets. On the other
hand this version does not guarantee the conservation of the U(1) symmetry. It is
employed for 0 < s < 1/2, where the correct description of the critical phenomena
requires a displaced oscillator basis, and in all calculations that include a symmetry
breaking magnetic field hx,y in one of the directions of the bath couplings.

� Version 2 (V2) explicitly incorporates the U(1) symmetry therefore requiring a two-site
VMPS optimization scheme as described in App. A.1. Due to symmetry conservation,
the bosonic displacement is not included. This limits the application of V2 to the regime
1/2 < s < 1, where results do not depend on the shifted basis. The symmetry-improved
VMPS version is used for all calculations of the critical phenomena for 1/2 < s < 1
which do not involve symmetry breaking magnetic field. Moreover, all VMPS energy-
flow diagrams are generated with V2.
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5.2 Ground state phases

We begin by briefly reviewing the main findings of Guo et al. [21]. The physical properties of
ground-state in the XY -symmetric two-bath spin-boson model at zero temperature and zero
bias fields hx = hy = 0 are determined by the competition of the two baths in the xy-plane
and a perpendicular external field in z-direction, all trying to align the impurity spin in their
respective direction. The symmetric bath coupling constants αx = αy = α, the strength of
the external field hz and the value of the bath exponent s are the determining parameters of
the ground state phase diagram, which is schematically illustrated in Fig. 5.2. In contrast to

Figure 5.2: Schematic phase diagram (adapted from [21]) of the two-bath spin-boson model
as function of the bath exponent s, the coupling α and the transverse field hz. The localized
(L) and delocalized (D) phase are separated by the colored plane representing the critical field
hzc. In the hz = 0 plane, the critical phase (CR) exists for s > s∗ and small coupling α. At
a critical coupling αc, illustrated by the red line, a phase transition occurs from the critical to
the localized phase. The critical phase is unstable with respect to a finite transverse field and is
separated from the free phase (F) by the line s = 1 (blue line).

the standard one-bath spin-boson model, the sub-ohmic SBM2 includes three distinct types
of ground states phases:

� At strong couplings exists a localized phase, where the strength of the dissipation
suffices to align the impurity spin in direction of the bath couplings in the xy-plane
resulting in a finite magnetization, 〈σx,y〉 6= 0. A ground state in the localized regime
exhibits a two-fold degeneracy.

� In the delocalized phase at weak couplings (or for strong values of hz) the baths do
not succeed in localizing the spin in the xy-plane, therefore any state in this regime
has zero magnetization in the directions of the bath couplings, 〈σx,y〉 = 0, but aligns
parallel to hz, 〈σz 6= 0〉. In contrast to the localized and the critical phase, a delocalized
ground state is always non-degenerate.

� The so-called critical phase at intermediate couplings is a special feature of the XY -
symmetric SBM2; it is characterized by 〈~σ〉 = 0, a non-linear response of 〈~σ〉 to an
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applied magnetic field ~h and a two-fold ground state degeneracy. This behavior corre-
sponds to a fluctuating fractional spin [95, 106] generated by the competing bath cou-
plings partially neutralizing each other. This phase explicitly requires a XY -symmetric
setup; already small asymmetries in the coupling constants, αx 6= αy, destabilize it (see
Sec. 5.4).

10 20 30 40
0

0.5

1

N

E
N

α=0.9, h
z
=0.105

1

2

3

(a)

10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

α=0.9, h
z
=0

N

E
N

2
2

2

2

2

2

(b)

10 20 30 40
0

0.5

1

N

E
N

α=0.5, h
z
=0

2

2

2

2
2

2

(c)

Figure 5.3: Characteristic VMPS energy-flow diagrams for the sub-ohmic SBM2 with s = 0.8,
in the three ground state phases for different values of α and hz. The energy-levels flow to a
delocalized (a), localized and critical (c) fixed point, where the degree of degeneracy of each state
is indicated by the numbers on the right side of each panel. While the localized and critical fixed
point show a two-fold degeneracy, the delocalized fixed point is non-degenerate [V2: N = 50,
D = 60, dopt = 40, Λ = 2].

The phases correspond to three stable RG fixed points with distinct flow characteristics
illustrated in the VMPS flow diagrams in Fig. 5.3. Which of the fixed points is reached
strongly depends on the interplay of three model parameters, namely the bath exponent s,
the coupling strength α and the perpendicular external field hz, as schematically illustrated
in Fig. 5.4. It follows from the RG equations that the critical fixed point is located at
intermediate couplings α∗ = 1− s+O[(1− s)2] and hz = 0. While originally assumed to be
present for all 0 < s < 1 [106], the critical fixed point exists only for hz = 0 and s > s∗ with
s∗ = 0.75± 0.01 being a universal lower bond s indicated in Fig. 5.2 [21]. In this regime of s,
a strong coupling α > αc drives the system from a critical to a localized fixed point separated
by a continuous quantum phase transition at α = αc corresponding to an additional unstable
fixed point (dubbed QC1 in the following). In contrast to the critical phase, the system can
stay in the localized phase for all s down to s = 0, although a strong enough transverse
field hz may destabilize it. For hz > hzc the flow reaches a delocalized fixed point, with the
transition between localized and delocalized phase being characterized by another continuous
quantum phase transition located at hz = hzc, that corresponds to a second unstable fixed
point (labeled QC2). Both phase transitions are topic of extensive studies in the remainder
of this chapter, where the first numerical results examining the critical phenomena of the
SBM2 are presented.
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Figure 5.4: Schematic RG flow (adapted from [21]) of the two-bath spin-boson model as function
of the coupling α and the transverse field hz, where the thick lines correspond to a continuous
QPT and the full (open) circles indicate stable (unstable) fixed points. Only in (a) with s∗ <
s < 1 the flow reaches the critical fixed point (CR) for small α and hz = 0, which is separated
from the localized fixed point (L) by the critical QC1 fixed point. As indicated in (b), CR and
QC1 disappear for s < s∗.

5.2.1 Properties of critical coupling phase

As already discussed, the critical phase corresponds to a partially-screened impurity spin
with zero magnetization in the ground state, 〈~σ〉 = 0. However, the VMPS calculations find
a small but still finite magnetization, as indicated in Fig. 5.5(a), where the behavior of σx,y is
displayed in the transition from the localized to the critical phase. We clearly observe a decay
towards the critical phase, nevertheless the magnetization remains at a finite value 10−2 6= 0.
This effect was previously interpreted as a result of U(1) symmetry breaking in the numerical
optimization procedure [109]. However, the data shown in Fig. 5.5(a) was obtained using the
symmetry improved VMPS code (V2), thus demonstrating the non-vanishing magnetization
is not caused by U(1) symmtry breaking. Instead, we find that finite-size effects within
the critical regime are the actual reason for the numerical discrepancy, as illustrated in
Fig. 5.5(b). While m =

√
〈σ2
x〉+ 〈σ2

y〉 approaches the well-defined physical value m0 = 0 in
the limit of a infinitely large system size L → ∞, we observe corrections for finite systems
that decreases exponentially with the effective system size L,

m = a
1
Lp

= a(Λ−N )p = ae− ln (Λ)pN , (5.25)

where we used L = Λ−N in the second line (analogous to the discussing of the standard SBM
in Sec. 4.1.3). Our results in Fig. 5.5(b) clearly show that the finite size correction vanishes
with a small exponent p, leading to finite values of m for the chain lengths (N = 50) that
are typically used in our calculations.

Nevertheless, the finite-size effects do not influence the characteristic non-linear response
of the impurity spin in the critical regime, which is of power law type

〈σx,y〉 ∝ h1/δ
x,y , 〈σz〉 ∝ h1/δ′

z , (5.26)

with δ, δ′ > 1. Perturbative RG calculations around the free-spin fixed point at α = 0 predict
a scaling of the exponents with s,

1/δ =
1− s

2
+O([1− s]2), (5.27)

1/δ′ = 1− s+O([1− s]2). (5.28)
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Figure 5.5: Magnetization m =
√
〈σ2
x〉+ 〈σ2

y〉 inside the critical phase. In (a) m is displayed for
the transition between localized and critical phase with αc ≈ 0.7684. We observe that m remains
non-zero in the critical regime due to finite-size effects. The finite-size scaling in (b) illustrates
that the magnetization decays only slowly with increasing Wilson chain length N characterized
by the exponent p. The temperature exponent x extracted from the finite-size scaling corresponds
excellent with perturbative RG predictions of Eq. (5.29) [V2: N = 50, D = 60, dopt = 40, Λ = 2].

Numerical results of the non-linear response in the critical regime are displayed in Fig. 5.6
for different values of s. As already shown in [21], we can observe a clear power law scaling
over several orders of magnitude and find good agreement with the perturbative predictions
for both δ and δ′. The small deviations of the numerical data from the RG calculations for
larger values of (1 − s) is expected, since the higher order contributions in Eqs. (5.27) and
(5.28) become more important.

Furthermore, the exponent p characterizing the finite-size corrections in Eq. (5.25) allows
us to calculate the temperature exponent x in the critical phase, if we can negelect the
massflow error. As discussed in Sec. 4.1.3 in context of the one-bath SBM, the we can
determine x by the relation 1 − x = −2p. The perturbative RG predictions for x are given
in first order by

1− x = 1− s+O([1− s]2). (5.29)

The VMPS results of p and x for different values of s are displayed in Fig. 5.5(b). Similar
to the non-linear response of the impurity spin, x also shows excellent agreement with the
perturbative RG calculations. Note that the calculation of x relies on the irrelevance of the
massflow error in the critical phase, which is only a hypothesis, so far. Though the excellent
agreement with the RG predictions strongly supports this assumption, we should keep it in
mind when interpreting VMPS results involving x.

Note that for all calculations carried out in this section, α was chosen so that the system
is located near the stable intermediate-coupling fixed point at α∗ = 1 − s + O[(1 − s)2]
arising from the RG flow equations. Tuning α towards the critical fixed point coupling α∗,
the unconventional behavior of the impurity spin within the critical phase becomes most
pronounced. At the same time the system is less sensitive to numerical perturbations in
comparison to other points in the critical phase. We can determine the value of α∗ for
different s using the VMPS flow diagrams displayed in Fig. 5.7. Close to α∗, the flow shows
a very flat behavior at early iterations with only minor weak bending of the lines towards the
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Figure 5.6: Non-linear response of the symmetry spin inside the critical phase to a transverse
field hz (a) and a in-plane bias field hx (b) for different values of s. We find the expected power
law behavior of the non-linear response in agreement with the perturbative RG predictions in
Eq. (5.27) and (5.28) [V2: N = 50, D = 60, dopt = 40, Λ = 2].
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Figure 5.7: Energy-level flow diagrams for fixed s = 0.85 and different values of α close to the
critical fixed point.

final converged fixed point – a typical characteristic of a system close to a fixed point. For
values of α below (beyond) α∗ we observe a downwards (upwards) bending of the flow before
reaching a plateau. We can use this property to determine α∗ qualitatively by examining
the flow diagrams.

5.2.2 Determining the phase boundaries

In order to study the critical phenomena of the SBM2, it is necessary to determine the phase
boundaries of QC1 and QC2 accurately, i.e. to numerically calculate the critical coupling αc
and the critical transverse field hzc, which define the location of QC1 and QC2, respectively.
A strategy involving the VMPS flow diagrams is prone to errors, since the flow of the SBM2 is
very sensitive to numerical noise at later iterations – even if the U(1) symmetry is incorporate
in the code. At the same time, the use of the order parameter to approximately determine
the phase boundary and then employ a ’best power law’ method as in [21], i.e. to tune αc
and hzc until 〈σx,y〉 shows the best power law scaling at the phase transition, might work



60 Chapter 5. Two-bath spin-boson model

for QC2. However, since the order parameter is not an accurate indicator for the location
of QC1 due to the non-vanishing magnetization in the critical phase caused by finite-size
corrections, the application of the method to QC1 is not possible.
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Figure 5.8: Characteristic behavior of the bosonic occupation numbers on the Wilson chain near
QC1 (a) and QC2 (b). In both cases, the occupation numbers stay almost constant throughout
the chain directly at the phase boundary, while increasing towards the end of the chain in the
localized phase. In the delocalized and critical regime, we observe a steady decay.

In our experience, the most accurate and at the same time most efficient way to calcu-
late αc and hzc is to distinguish the phases by the characteristic behavior of the bosonic
occupation numbers 〈nx,y〉 on the Wilson chain. Similar to the one-bath SBM, the average
occupation of boson modes increases towards the end of the Wilson chain in the localized
phase, while it decreases in both critical and delocalized phases. Moreover, at the critical
points QC1 and QC2 the occupation numbers stay almost constant throughout the chain,
except for a sharp decay at the end. This characteristic behavior, illustrated in Fig. 5.8, can
be used to determine the phase boundaries with high accuracy. We have thus adopted this
approach throughout for determining the α-values involved in the results described below.
Note that the accessible accuracy depends again on the chain length N : the calculation of
αc or hz up to a decimal points requires a minimal chain length

N ∝ aν ln(10)
ln Λ

, (5.30)

where ν is the critical exponent of the correlation length. As described in the following
section, it often is necessary to use chain lengths N > 100, since ν is particularly small for
QC1.
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5.3 Critical Phenomena

So far, the critical properties of the SBM2 have not been studied in the literature. The emer-
gence of the critical phase without classical counterpart leads to highly non-trivial critical
properties. While quantum-to-classical correspondence suggests that the QPT between local-
ized and delocalized phase corresponds to the thermal transition in a classical XY -symmetric
spin-chain with long-range interactions, the transition between critical and localized phase
has no classical counterpart. In this section, we extensively examine the critical properties of
the SBM2 using VMPS with the aim to characterize the two phase transitions by calculating
the corresponding critical exponents, summarized in Table 5.1.

physical Quantity Definition Exponent Condition
Local magnetization 〈σx,y〉 ∝ |g|−β β |g| → 0, hx,y = 0, T = 0
Local magnetization 〈σx,y〉 ∝ |hx,y|−1/δ δ g = 0, hx,y → 0, T = 0
Correlation length ξ ∝ |g|−ν ν |g| → 0, hx,y = 0, T = 0
Local susceptibility χ ∝ T−x x g = 0, hx,y = 0, T → 0

Table 5.1: Critical exponents of the two-bath spin-boson model where 〈σx,y〉 is the magnetiza-
tion of the impurity, hx,y a bias of the impurity spin in the respective coupling direction, T the
temperature, ξ the correlation length and χ the susceptibility of the impurity. The coefficient g
denotes the distance to the critical point, where g = α− αc at QC1 and g = hzc − hz at QC2.

5.3.1 Quantum critical point 1 (QC1)

We begin the analysis of the critical behavior of the symmetric SBM2 with the quantum
phase transition between the localized and the critical phase, dubbed quantum critical point
1 (QC1). Only present at zero transverse field (hz = 0), the dependence of the critical
coupling αc on the bath exponent s is illustrated in Fig. 5.9(a). The VMPS calculations
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Figure 5.9: (a) Phase diagram in the hz = 0 plane and (b) energy flow for a typical point
at QC1. Employing the above described procedure to determine the critical coupling αc(s), in
(a) the location of the phase boundary between localized and critical phase is shown for various
values of s. The VMPS flow diagram in (b) displays a completely smooth behavior, which is a
signature of the fixed point at QC1.
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indicate that QC1 moves towards α→∞ for s→ 1−, while lowering s decreases the critical
coupling. In the limit of s → s∗+, QC1 merges with the critical fixed point and disappears
for s < s∗, which also implies that phase boundary between the critical and localized phases
is vertical at s∗ and small α.

The critical behavior of the SBM2 at QC1 is particularly interesting, because there is
no classical counterpart to this phase transition. In contrast to QC2, quantum-to-classical
correspondence breaks down for QC1, since a path integral representation of SBM2 leads
to negative Boltzmann weights in the absence of a finite hz [21]. This introduces an ad-
ditional difficulty, since no predictions from classical models can be consulted in order to
check the validity of the VMPS results presented below. Nevertheless, we may consider the
hyperscaling relations,

δ =
1 + x

1− x, (5.31)

2β = ν(1− x), (5.32)

which should be valid as long as the system’s dimension is below its upper critical dimension
duc.
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Figure 5.10: Energy-level flow diagrams for s = 0.85 in the localized phase close to QC1. The
smooth behavior in the first iterations reflects the criticality while the bending and jumps in the
lines indicate that the system flows to a localized fixed point. The the red bar illustrates the
iteration characteristic iteration N∗ of the transition used to calculate the low-energy scale T ∗.

The correlation length exponent ν characterizes how the low-energy scale T ∗ vanishes
close to QPT, T ∗ ∝ |α − αc|ν . By analyzing the behavior of the energy flow close to the
critical point we are able to calculate ν. To this end, we determine the iteration N∗ where
the flow starts to deviate significantly from the characteristic flow at QC1, illustrated in
Figs. 5.9(b) and 5.10. The latter displays typical flow diagrams close to QC1, where the
transition is indicated with a red bar corresponding to the iteration N∗, where the first
excited energy level drops below E < 0.05 (in rescaled energy units). For practical purposes,
ν was calculated by moving from the localized phase to the critical point. The energy scales
T ∗ determined from such an analysis, finally, are collected and analyzed in Fig. 5.11(a). The
VMPS calculations for ν strongly suggest that ν diverges both in the limit s → s∗+ and
s → 1−, a typical result for a system below its upper critical dimension. For s close to 1,
the leading term characterizing the exponent seems to be 1/ν = 1− s+O[(1− s)2].

Panel (b) of Fig. 5.11 displays the results for the critical exponent β describing the scaling
of the magnetization 〈σx,y〉 close to QC1. While the upper panel displays a typical loglog plot
used for the extraction of β, the lower panel shows the dependence of β on different values
of s. We find increasing values of β > 1 for s→ s∗, while in the limit of s→ 1− the VMPS
calculations suggest that β approaches 1/2. The latter is consistent with the hyperscaling
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Figure 5.11: VMPS results for the critical exponents ν and β for various values of s at QC1.
The upper panel in (a) displays a typical plot of the low-energy scale T ∗ vanishing as |α− αc|ν
for s = 0.875, while the dependency of ν on s is illustrated in the lower panel. Similarly, (b)
shows both the scaling of the magnetization σx ∝ (α−αc)β for s = 0.875 (upper panel) and the
resulting values of β for various s at QC1 (lower panel). All VMPS data corresponding to the
lower panels in (a) and (b) can be found in Figs. C.4 and C.5, respectively.

relation in Eq. (5.32), assuming that the temperature exponent follows the relation x = s
(see below). Note that determining β is particularly complicated for QC1, since the large
values of ν require very long Wilson chains in order to resolve the critical properties. At the
same time, calculations become sensitive to numerical noise due to the vicinity to the critical
phase. Therefore the usage of the symmetry code V2 is essential in order to generate a clean
power law scaling of the magnetization over several orders of magnitude, as illustrated in
Fig. 5.11(b). One could worry whether V2 leads to inconsistent results for β, since it does
not include a displaced local bosonic basis. But as discussed in Sec. C.2, the treatment of
QC1 does not require a shifted basis. The results presented here thus should be correct
within the fitting error.

Considering the temperature exponent x at QC1, we used a finite-size scaling of the
magnetization m =

√
〈σ2
x〉+ 〈σ2

y〉 to extract the exponent p, which characterizes the decay
of finite-size corrections to m, as discussed in previous sections. Assuming that hyperscaling
is valid and the mass-flow error can be neglected (see below), the relation −2p = 1 − x is
employed to determine the critical exponent x. The VMPS results for x at QC1 are shown
in Fig. 5.12(a), where the blue squares denote the values of x extracted from the finite-size
scaling displayed in Fig. 5.13, while the red crosses are calculated via the hyperscaling relation
in Eq. (5.32) using the numerical values of β and ν presented in Fig. 5.11. Both methods
show excellent agreement with x = s for the complete range of s at QC1. This result already
supports the validity of hyperscaling at QC1.

Following this hypothesis and assuming that x = s is a valid results, the hyperscaling
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Figure 5.12: VMPS results for the critical exponents x and δ at QC1. In (a) x is displayed
for different values of s calculated via finite-size scaling (blue squares) and with the hyperscaling
relation in Eq. (5.32) using VMPS results of β and ν. The results of both methods show excellent
agreement with x = s (note that |xfit − s| < 10−5 [!]). The upper panel of (b) illustrates the
scaling of σx ∝ hx at the phase boundary for an typical value of s = 0.8 used to determine δ. The
lower panel shows that the dependence of δ on s follows the hyperscaling relation in Eq. (5.33).
All VMPS data corresponding to the lower panels in (b) can be found in Fig. C.6.

relation for the critical exponent δ in Eq. (5.31) is given by

δ =
1 + s

1− s. (5.33)

VMPS calculations of δ confirm hyperscaling as shown in Fig. 5.12(b). While the upper
panel shows the scaling of 〈σx〉 for a typical value of s = 0.8 at QC1, the data shown in the
lower panel strongly indicates that δ follows Eq. (5.33) for various values of s at the phase
boundary. All VMPS calculations thus suggest that the critical exponents at QC1 follow
hyperscaling. Nevertheless, we should keep in mind, that this conclusion is only correct if the
VMPS results of x are not corrupted by the massflow error. So far, this is only a hypothesis,
although our additional findings for β, δ and ν strongly support its validity.

Similar to β, the determination of δ in the asymptotic limit s→ 1− becomes increasingly
difficult, since very long Wilson chains are required due to the divergence of the exponent ν.
In addition, the finite external magnetic field hx breaks the U(1) symmetry implying that
in all calculations of δ, we had to use the slower and less accurate version V1 instead of the
symmetry improved V2.
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indicating that x = s at QC1.
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5.3.2 Quantum critical point 2 (QC2)

In case of a finite transverse field hz, the critical phase becomes unstable and disappears
together with QC1. For any 0 < s < 1, the ground state of the system may then either
be localized or delocalized, depending on the interplay of the coupling strength α and the
magnetic field hz. The quantum phase transition separating the two regimes is reached at
the critical field hz = hzc and is governed by the quantum critical point 2 (QC2).
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Figure 5.14: (a) The dependence of the critical field hzc on the coupling constant α for different
values of s, which follows a power law relation in the asymptotic limit hzc = αk, with k = 1/(1−s).
The VMPS flow diagram in (b) displays a completely smooth behavior, which is a signature of
the fixed point at QC2.

The phase boundary strongly depends on the bath exponent s and the coupling constant
α. For small α, the values of hzc follow a power law relation, hzc ∝ αk. As indicated in
Fig. 5.14(a), the VMPS data agree well with the result of weak coupling RG, which states
that k = 1/(1− s).

In contrast to QC1, this phase transition has a classical counterpart. Employing quantum-
to-classical correspondence, it is possible to map QC2 onto the thermal phase transition of
a classical XY -symmetric spin chain with long-range interactions. The resulting predictions
for the critical exponents resemble those of the standard spin-boson model with mean-field
behavior for 0 < s < 1/2 and hyperscaling for 1/2 < s < 1.

We studied QC2 extensively using VMPS and are able to confirm the predictions of
quantum-to-classical correspondence for a wide range of the bath exponent s. For the critical
exponents β and δ, which characterize the scaling behavior of the magnetization 〈σx,y〉 near
the phase boundary, quantum-to-classical correspondence makes the following predictions:

β = 1/2 for s < 1/2, (5.34)
β = 1/[2 + (12/5)ε] for s = 1/2 + ε, ε� 1, (5.35)
β = 1/[2 +O(ε′2)] for s = 1− ε′, ε′ � 1, (5.36)
δ = 3 for s < 1/2, (5.37)
δ = (1 + s)/(1− s) for s > 1/2. (5.38)

The corresponding VMPS results are displayed in Fig. 5.15. While the upper panels in (a)
and (b) show typical power law fits of β and δ for s = 0.4, the lower panels illustrate the
dependence of both exponents on s. The mean-field results β = 1/2 and δ = 3 are clearly
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Figure 5.15: VMPS results for the critical exponents β and δ at QC1. The upper panels
in (a) and (b) display the power law scaling of the magnetization at the phase boundary for
fixed s = 0.4, from which the exponents β and δ are extracted. The lowers panels shows the
dependence of β (a) and δ (b) for various values of s, both following mean-field behavior for
0 < s < 1/2. All VMPS data corresponding to the lower panels in (a) and (b) can be found in
Figs. C.7 and C.8, respectively.

reached for 0 < s < 1/2 within the error-bars, while we observe deviations from the RG
predictions for β in the regime s = 1/2 + ε with ε� 1. This discrepancy might be caused by
logarithmic corrections to the leading power laws which are expected near s = 1/2, since the
transition is at its upper critical dimension for this particular value of the bath exponent.
In the limit of s → 1−, β shows the tendency to approach the value 1/2 as suggested in
Eq. (5.36). The critical exponent δ follows the hyperscaling relation in Eq. (5.38) for all
1/2 < s < 1 with small deviations only around s = 1/2.

Moreover, our analysis includes the correlation length exponent ν, which according to
quantum-to-classical correspondence is given by

1/ν = s for s < 1/2, (5.39)
1/ν = 1/2− (3/5)ε for s = 1/2 + ε, ε� 1, (5.40)
1/ν = 1/ε′ for s = 1− ε′, ε′ � 1. (5.41)

Analogous to QC1, we calculated ν by determining the cross-over scale T ∗ ∝ |hzc − hz|ν
using the VMPS energy-flow diagrams. For both practical purposes and consistency with our
treatment of QC1, we approached QC2 from the localized phase and identify the deviation
from the critical flow at the iteration N∗, where the first excited energy level drops below
E < 0.05. In such an analysis, we determine a vanishing low-energy scale T ∗ that allows
the extraction of ν as illustrated in Fig. 5.16. The upper panel of Fig. 5.16(a) displays the
vanishing energy scale T ∗ for a fixed s = 0.5 at QC2, while the lower panel shows ν(s) for
various values of s. The predicted mean-field behavior of Eq. (5.39) is clearly visible for
0 < s < 1/2, while ν shows deviations from the RG results near s = 1/2. Similar to the
previous discussion on δ and β, this might be caused by logarithmic corrections arising from
the transition of system below its upper critical dimension.

In order to test the validity of the VMPS results for ν and β near s = 1/2+ε, we consider
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Figure 5.16: VMPS results for the critical exponents ν and x at QC2. The upper panel in (a)
shows that the low-energy scale T ∗ vanishes close to the critical point as |α− αc|ν for a typical
value of s = 0.5, while the dependency of ν on s is illustrated in the lower panel. Panel (b)
displays x for different values of s, calculated via finite-size scaling (blue squares) and with the
hyperscaling relation in Eq. (5.42) using VMPS results of β and ν (red crosses). All VMPS data
corresponding to the lower panels in (a) can be found in Fig. C.9.

the previously encountered hyperscaling relation

x = (1− 2β/ν), (5.42)

which should be valid in the regime 1/2 < s < 1. Despite the logarithmic corrections around
s = 1/2, the VMPS results shown in Fig. 5.16(b) indicate the validity of this hyperscaling
relation, as they agree with the expected result for the temperature exponent given by
x = s. For better comparison, we also determined x by analyzing the finite-size scaling of
the magnetization at QC2 shown in Fig. 5.17, and find excellent agreement in the regime
1/2 < s < 1. However, above the upper critical dimension of the SBM2, i.e. for 0 < s < 1/2,
the critical exponent x does not agree with its mean-field prediction x = 1/2 and follows
x = s instead. Analogous to the standard one-bath spin-boson model, this is caused by the
massflow error (see discussion in Sec. 4.1.3).
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Figure 5.17: Finite-size scaling of the magnetization for various values of s at QC2. The inset
shows the s-dependence of the exponent p which characterizes the vanishing magnetization at
QC2. For all considered values of s we find that the exponent follows p = (1 − s)/2 with high
accuracy. This is only in agreement with the RG predictions for 1/2 < s < 1; for 0 < s < 1/2
our results disagree with the expected mean-field result p = 1/4. Analogous to the standard
spin-boson model this is caused by the massflow error, which inevitably plagues finite-size NRG
calculations.



70 Chapter 5. Two-bath spin-boson model

5.4 Asymmetric coupling

So far, we only considered an XY -symmetric SBM2 with both baths coupled symmetrically
to the impurity, i.e.αx = αy = α. As stated in the previous sections, the competition of the
two baths gives rise to the critical phase at intermediate coupling only in such a situation.
In other words, the underlying symmetry is essential for the stability of the critical phase
according to RG arguments [21]. Introducing a small asymmetry in the bath couplings,
∆α = |αx − αy|, we can study the stability of the critical phase and examine whether the
breaking of the XY -symmetry leads to a breakdown of the critical phase.

A first analysis of the magnetization 〈σx,y〉 in direction of the baths couplings for the
localized and critical phase is shown in Fig. (5.18), where the coupling asymmetry ∆α is tuned
over a large interval. We observe a symmetric behavior of the magnetization, 〈σx〉 = 〈σy〉,
for very small ∆α < 10−4. For this parameter spectrum, the stronger coupled bath is not yet
able to dominantly influence the impurity spin. For larger coupling asymmetries the impurity
spin delocalizes in direction of the weaker coupled bath (in x-direction) and strongly localizes
in the direction of strong coupling. While the transition behaves smoother in the critical
regime (Fig. 5.18(b)), it occurs rather abruptly in the localized phase (Fig. 5.18(a)). Note
that the finite magnetization in the critical phase is due to finite-size effects discussed in
Sec. 5.2.1.
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Figure 5.18: Magnetization 〈σx,y〉 for increasing coupling coupling asymmetries ∆α = αy −αx
in both (a) localized and (b) critical phase [V1: N = 50, D = 60, dopt = 24, Λ = 2].

In order to analyze the stability of the critical phase in more detail, it is useful to study
the special properties of the critical phase with respect to an increasing coupling asymmetry
∆α. As discussed previously, the impurity spin shows a non-linear response to an external
field in the critical phase, which is of power law character, such as

〈σx,y〉 ∝ h1/δ
x,y , 〈σz〉 ∝ h1/δ′

z (5.43)

with δ, δ′ > 1 characterized by the perturbative RG predictions in Eqs. (5.27) and (5.28). In
the cross-over to the localized regime, we expect that the field response of the impurity spin
becomes linear, i.e. 1/δ′ = 1. Thus monitoring δ and δ′ for increasing coupling asymmetries
sheds light on the stability of the critical phase.
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Figs. 5.19(a) and (b) show the response of the impurity spin to an external field inside
the critical phase for different values of the coupling asymmetry ∆α on a loglog scale. The
results confirm our previous observations: for small asymmetry, we find δ and δ′ in excellent
agreement with the perturbative predictions indicating that the critical phase still exists.
Towards larger coupling asymmetries, ∆α > 10−3, the critical phase breaks down and crosses
over into a y-localized regime. Hence, the response of the impurity spin in x- and z-direction
becomes linear for small fields (e.g. δ′ = δ = 1), while the magnetization localizes in y-
direction thus showing no longer a power law response.
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Figure 5.19: Non-linear response of the impurity spin to a magnetic field in (a) x- and (b)
z-direction for different coupling asymmetries ∆α and fixed s in the critical phase [V1: N = 50,
D = 60, dopt = 24, Λ = 2].
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5.5 Comparison of methods: symmetry improved VMPS

We conclude this chapter by giving a short comparison of the numerical results obtained by
the two different implementations of the VMPS procedure. As introduced above, we refer to
the VMPS program without explicitly incorporated U(1) symmetry as V1, while V2 denotes
the symmetry conserving VMPS version.

In our experience both versions work equally well in the delocalized phase of the SBM2,
where the non-degenerated ground state is very stable against numerical noise and thus
hardly affected by artificial symmetry breaking in the numerics. On the other hand, the
localized and particularly the critical phase suffer from U(1) symmetry breaking in V1,
which can be associated with the lifting of the ground state degeneracy.

Critical phase

Starting with the critical phase, this can be illustrated best by considering the energy-level
flow diagrams obtained by the VMPS procedure. In Fig. 5.20 the rescaled energy flow of
the SBM2 is displayed for a fixed value of s and α inside the critical phase calculated with
V1 (a) and V2 (b) using the same choice of VMPS parameters (e.g bond dimension D,
OBB dimension dopt, chain length N). Although we observe that the two-fold ground state

10 20 30 40 50 60
0

0.5

1

N

E
N

V1: s=0.9, α=0.1, h
z
=0, D=60, d

opt
=24, Λ=2

(a)

10 20 30 40 50 60
0

0.5

1

N

E
N

V2: s=0.9, α=0.1, h
z
=0, D=60, d

opt
=24, Λ=2

(b)

Figure 5.20: VMPS energy-level flow diagrams in the critical regime calculated with (a) V1
and (b) V2. The black circle highlights the lifting of the two-fold ground state degeneracy.

degeneracy is lifted when using both V1 and V2, the symmetry improved version V2 clearly
conserves the degeneracy up to higher iterations Nsplit ≈ 50 compared to Nsplit ≈ 40 in V1.
This indicates symmetry breaking is the reason for the lifting of the ground state degeneracy
in V1. In the symmetry improved version, we are able to conserve it approximately up to the
iteration that is associated with an energy scale slightly below numerical double precision,
T ∗ ∼ Λ−Nsplit < 10−16. For systems with longer chains, numerical noise at early iterations
can influence results at late iterations strongly, which leads to a lifting of the ground state
degeneracy despite exactly conserving the U(1). These perturbations seem to play a crucial
role within the critical regime while the other phases of the SBM2 are more stable against
these numerical effects.

Employing the symmetry improved V2, we generally succeed in conserving the ground
state degeneracy within the critical phase for all iterations N corresponding to a low-energy
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scale T ∼ Λ−N above machine precision. Choosing the discretization parameter Λ = 2, this
indicates that we obtain numerically stable results for VMPS calculations with chain length
N < 50. What’s more, it seems the numerical perturbations play a less important role near
the critical fixed point at α∗ and close to QC1, the phase boundary between critical and
localized regime. As Fig. 5.21 indicates, in those cases the degeneracy can be preserved for
iterations beyond N = 50. To assess the implications of the lifted degeneracy on physical
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Figure 5.21: VMPS flow diagrams for fixed model parameter s = 0.85 and different values
of α inside the critical phase. The ground state degeneracy is conserved for higher iterations
Nsplit > 50 when α is close to the critical fixed point coupling α∗ ≈ 0.08 and near the phase
boundary at αc ≈ 1.29960.

properties of the critical ground state, it is useful to study the finite-size scaling of the
magnetization, which is expected to vanish in the limit of N → ∞. Fig. 5.22 shows the
finite-size behavior of the magnetization of the impurity spin for a fixed value of s and α
inside the critical phase calculated with both V1 and V2. While both VMPS versions display
the expected decay of m during the first N ≈ 40 iterations, the magnetization saturates at a
constant value of m for later sites when employing V1. In contrast, V2 is able to preserve the
exponential decay for approximately 10 more iterations. This strongly resembles the behavior
of the corresponding energy flow discussed above, implying that the lifting of the ground state
degeneracy leads to artificial effects in physical observables such as the magnetization.
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Figure 5.22: Finite size scaling of the magnetization in the critical phase calculated with V1
(red solid line) and V2 (blue dashed line).
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Localized phase

Numerical effects associated with U(1) symmetry breaking are also found in the localized
phase of the SBM2, where the ground state is two-fold degenerate as well. As discussed
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Figure 5.23: VMPS energy-level flow diagrams for fixed s = 0.65 and α = 0.1 in the localized
regime calculated with (a) V1 and (b) V2. Using the latter, we succeed in conserving the ground
state degeneracy for all iterations.

above, we can connect the U(1) symmetry breaking with the lifting of the ground state
degeneracy. The flow diagrams in Fig. 5.23 display this effect very clearly: employing V1
the degeneracy is only conserved for few iterations with Nsplit ≈ 20. On the other hand
when using V2, the ground state degeneracy is conserved for all iterations, and even for
sites > 50 where the corresponding energy scale reaches values below the order of numerical
double precision. Thus the symmetry improved VMPS procedure V2 drastically improves
the stability of the numerical results in localized phase. In contrast to the critical regime,
where numerical perturbations affect the calculations with long chains despite the exactly
incorporated U(1) symmetry, numerical noise at early iterations does not influence the results
at late iterations in the localized phase.

These observations are also reflected in the finite-size scaling of the magnetization inside
the localized regime as displayed in Fig. 5.24(a). Using V1, the magnetization m decays
exponentially for very small systems m, and then after reaching a constant value shows a
jump around iteration N = 25. That this effect occurs in correspondence with the lifting
of the ground state degeneracy in Fig. 5.23 can be understood as signature of the breaking
of U(1) symmetry in the SBM2. When employing the symmetry improved version V2, the
jump vanishes completely and m remains almost constant for larger systems. The slight
decay of m for iterations N > 30 can be explained by the diverging bosonic numbers on the
chain in the localized regime, that reach the cap around site 30 as indicated in Fig. 5.24(b).
Nevertheless, it is possible to extract the physically correct value of m in the SBM2 for
1/2 < s < 1 (for detail see App. C.2).

Thus the symmetry implementation V2 is not only relevant to obtain qualitatively clean
energy-flow diagrams, which allow a fixed point analysis and the determination of the corre-
lation length exponent ν. Moreover, the correct description of the phase transition QC1 and
QC2 for 1/2 < s < 1 requires the symmetry improved VMPS procedure. Particularly for
large values of s 6 1, the critical behavior of the SBM2 at both QC1 and QC2 is governed
by a diverging exponent ν, requiring exponentially growing chain lengths (see Sec. 5.2.2).
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Figure 5.24: (a) Finite size scaling of the magnetization in the critical phase calculated with
V1 (red solid line) and V2 (blue dashed line) and the corresponding bosonic occupation numbers
on the Wilson chain.

Only V2 is able to systematically access the critical phenomena of the SBM2 in this regime
due to shorter calculation times and drastically improved numerical accuracy. Using V1 not
only limits the chain length to N 6 80 (already requiring a run time of 2 days or more
for each data point), it also suffers from systematic convergence problems near the phase
boundaries, as displayed in Fig. 5.25. Here, the magnetization of the system is plotted at
the transition from the localized to the delocalized phase for s = 0.9. The VMPS results of
V1 in Fig. 5.25(a) are clearly distorted while V2 in (b) resolves the physical properties of the
system for the same set of VMPS parameters correctly.
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Figure 5.25: Vanishing magnetization at the transition between localized and delocalized phase
calculated with (a) V1 and (b) V2 for fixed s = 0.9, α = 3 and identical VMPS parameters. We
observe drastic numerical problems in (a) not allowing a correct description of the physical prop-
erties near the phase transition. On the other hand, the symmetry improved VMPS procedure
in (b) leads to well-converged results.



6. Conclusion

Since the introduction of the spin-boson model in the 1980s [6, 4], bosonic quantum impurity
models have been successfully applied in various contexts from quantum information to
biological systems and helped gaining profound insights in the physical properties of open
quantum systems [4, 5]. Due to the presence of interaction, however, the full quantum-
many-body state space must be explored. As a consequence, these models involve a high
degree of complexity so that only few analytic approaches are able to assess and describe the
underlying physics. Particularly the study of critical phenomena requires powerful numerical
first-principle methods, that are able to deal with the specific difficulties arising from the
bosonic nature of the model.

This thesis is motivated by the recent work of Guo et al. [21], who presented a variational
matrix product state approach based on a hybrid of NRG and DMRG, which is capable to
study bosonic quantum impurity models with high accuracy across the entire phase diagram.
By employing an extended version of their VMPS method, the thesis pursued two objectives:
(i) to revise the critical and dynamical properties of the standard spin-boson model, and (ii)
to fully characterize the critical phenomena of a generalized two-bath spin-boson model.

After introductory remarks on the physics of critical phenomena and quantum criticality
(Chap. 2), the relevant numerical methods – MPS, NRG and VMPS – were presented, in-
cluding a discussion on the implementation of symmetries and time-dependence, the latter
based on adaptive time-dependent DMRG (Chap. 3).

Starting with the one-bath version of the spin-boson model (Chap. 4), the numerical
results for the critical properties of the system were found to be in agreement with the
predictions of quantum-to-classical correspondence. Moreover, it was demonstrated how to
access additional critical exponents within the VMPS formalism. Employing time-dependent
VMPS, the simulation of the non-equilibrium dynamics successfully reproduced NIBA results
in the weak-coupling regime of the ohmic SBM, as well as the characteristic transition from
damped oscillations to incoherent decay observed for sub-ohmic dissipation.

The application of VMPS to the XY -symmetric two-bath spin-boson model revealed
details of the rich ground state phase diagram, that consists of three distinct phases – a
delocalized, localized and critical regime – and exhibits two independent quantum phase
transitions at zero temperature (Chap. 5). The extensive numerical study of critical points
allowed a detailed characterization of the critical properties of the SBM2. We confirmed
that the transition between localized and delocalized regime is equivalent to the thermal
transition in a classical XY -symmetric spin chain with long-range interactions, following
mean-field predictions for 0 < s < 1/2 and hyperscaling for 1/2 < s < 1. In addition,
our calculations indicate that the exponents describing the quantum critical point between
localized and critical phase obey hyperscaling as well. By successful application of VMPS
to the two-bath spin-boson model, we were thus able to determine the critical phenomena
of this model for a wide range of parameters, which so far had been an open problem.

Possible topics for future research include the application of VMPS to other quantum
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impurity models such as the Bose-Fermi Kondo model, where bosonic NRG results suggested
the breakdown of quantum-to-classical correspondence [18]. Analogous to the spin-boson
model, the validity of these results is may be compromised, since the bosonic NRG procedure
did not properly account for the truncated local bosonic basis sets. The VMPS procedure
should be able to reveal the correct critical properties of this model. Furthermore, it would
be interesting to study models with two or more interacting spins located at the impurity,
relevant in various applications in the context of noisy qubits [110]. While we have already
carried out preliminary studies on a two-spin version of the one-bath SBM [111], a generalized
two-baths version might contain exciting new critical phenomena.
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Appendix A

A.1 Two-site VMPS with optimal bosonic basis

It is often more effective to employ one-site VMPS optimization for bosonic models, since
the large local basis sets make a two-site update numerically expensive. Nevertheless, the
presence of symmetries or the need for a dynamic Hilbert space truncation may require the
implementation of a two-site update. There exists no literature on this topic for an MPS
with optimal bosonic basis, nevertheless the details of the procedure are very similar.

Consider an MPS with OBB structure of general form,

|ψ〉 =
∑
σ=↑↓

∑
n1...nN

A[σ]A[n1]A[n2] ... A[nN ]|σ〉|n1〉|n2〉 ... |nN 〉 (A.1)

where the form of A[nk] is given bys

A
[nk]
lk,m

=
dkopt−1∑
ñk=0

Ã
[ñk]
lk,rk

Vñk,nk , (A.2)

We again emphasize that here the sum over ñk is not carried out explicitly, i.e. the tensors
Ã and V are kept separate. Nevertheless, the two-site update can be adapted to the two
blocks Ã and V to dynamically adjust not only the bond dimensions Dk but also the OBB
dimensions dkopt. This requires an additional optimization step compared to the standard
two-site update without OBB.

1. We start in the local picture with current site k for given state |ψ〉,

|ψ〉 =
∑
lkrknk

dkopt−1∑
ñk

Ã
[ñk]
lk,rk

Vñk,nk |lk〉|nk〉|rk〉, (A.3)

where |lk〉|nk〉|rk〉 are the effective orthonormal basis sets of the left, local and right
state space, respectively. We set Ãlk,rk,ñk ≡ Ã[ñk]

lk,rk
and now carry out the sum over ñk

explicitly

Blk,rk,nk =
dkopt∑
ñk

Ãlk,rk,ñkVñk,nk . (A.4)

After transforming the Hamiltonian and operators into the effective |lk〉|nk〉|rk〉 basis,
we optimize the B-matrix using standard VMPS procedure of Sec. 3.3.1.
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Figure A.1: Steps 1 and 2 of the two-site update procedure when sweeping from left to
right. The indices connecting the matrices surrounded by the dashed lines are contracted.
The red filled square is the subject of the VMPS optimization.

2. To restore the original OBB structure, we perform a SVD on the updated B′

B′lk,rk,nk = B′(lkrk),nk

SV D=
dk−1∑
m,n=0

U(lkrk),msmV
†
m,nk

truncate≈
dkopt−1∑
m,n=0

U(lkrk),msmV
†
m,nk

=
dkopt−1∑
m=0

Ulk,rk,m(SV †)m,nk

=
dkopt−1∑
m=0

Ã′lk,rk,mV
′
m,nk

. (A.5)

The SVD is carried out exactly with respect to the local index nk. In the following
truncation step, we only keep the dkopt largest instead of all singular values in S. In
contrast to the one-site update this allows to adapt dkopt easily.

3. Now we are ready to perform the two-site optimization by shifting to a local setting of
sites k and k + 1,

|ψ〉 =
∑

lkrk+1ñkñk+1

Dk∑
m

Ãklk,m,ñkÃ
k+1
m,rk+1,ñk+1

|lk〉|ñk〉|ñk+1〉|rk+1〉, (A.6)

where we assume site k to have an orthonormal left basis and site k + 1 to have an
orthonormal right basis. To calculate the update it is most convenient and also most
efficient in practice to change to an expanded left and right basis [112, 113, 54],

|lc〉 = I[ñk]
lk,lc
|lk〉|ñk〉 = δ(lknk),lc |lk〉|ñk〉 (A.7)

|rc〉 = I[ñk+1]
rc,rk+1 |ñk+1〉|rk+1〉 = δrc,(nk+1rk+1)|ñk+1〉|rk+1〉, (A.8)

where the two A-matrices are merged into the center matrix

Clc,rc =
∑
m

Ãklc=(lkñk),mÃ
k+1
m,rc=(ñk+1rk+1). (A.9)

Transforming the Hamiltonian into the effective basis |lc〉|rc〉, the optimization of the
matrix C is carried out.
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Figure A.2: Steps 3 and 4 of the two-site update procedure when sweeping from left to
right. The indices connecting the matrices surrounded by the dashed lines are contracted.
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4. In the final step, we switch into the local picture with current site k + 1 to terminate
the two-site optimization of sites k and k + 1.

I[ñk]CI[ñk+1] SV D=
∑
lcrc

Dkdkopt∑
m,n=1

δ(lkñk),lcUlc,msmV
†
m,rcδrc,(ñk+1rk+1)

truncate≈
Dk∑

m,n=1

U(lkñk),msmV
†
m,(ñk+1rk+1)

=
Dk∑
m=1

Ulk,ñk,m(SV †)m,ñk+1,rk+1

=
∑
m=1

Ã
′k
lk,m,ñk

Ã
′k+1
m,rk+1

(A.10)

Again, we calculate the exact SVD of the matrix C, then truncate from Dkdkopt states
back to Dk states by keeping only the largest singular values. Dk can be adapted
freely and for example chosen such that we keep all singular values bigger than some
threshold.

The state is now described in the local picture of site k + 1

|ψ〉 =
∑

lk+1rk+1nk+1

dk+1
opt −1∑
ñk+1

Ã
[ñk+1]
lk+1,rk+1

Vñk+1,nk+1
|lk+1〉|nk+1〉|rk+1〉, (A.11)

where we start over the two-site update by repeating steps 1-4 for site k+ 1 and k+ 2.
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B.1 SBM1: critical exponents
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Figure B.1: Critical exponent ν extracted from T ∗ ∼ (α − αc)1/ν for different s at the QPC
of the SBM. In all calculations we used the parity code [N = 100, D = 40, dopt = 16, Λ = 2].
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Appendix C

C.1 SBM2: Calculation of the magnetization in the U(1) sym-
metry code

The ground state of the SBM2 in the localized and critical phase is twofold degenerate.
A VMPS run breaks the degeneracy at the end of the Wilson chain and chooses one of
the two physical states as numerical ground state. In case of an exact U(1) symmetry
implementation, we can attach a well defined symmetry label to the numerical ground state
(q = 0 ∨ q = 1).

Let us consider the magnetization in x- and y-direction in the ground state. The diagonal
matrix elements vanish per definition,

mx = 〈ψq′ |σimpx |ψq〉 = 0 for q = q′ (C.1)
my = 〈ψq′ |σimpy |ψq〉 = 0 for q = q′. (C.2)

When not enforcing the U(1) symmetry the final ground state of a VMPS calculation is
always the symmetry broken, with maximized mi=x,y. To reconstruct the magnetization of
this ’original’ ground state, we have to calculate the non-diagonal matrix elements of the
magnetization. In general there are two ways to do that:

1. We calculate in two separate VMPS runs |ψq=1〉 and |ψq=0〉. Then we determine the
matrix elements 〈ψq=1|σimp

i |ψq=0〉 with an explicit calculation. From a numerical point
of view this is expensive - for each data point and each chain length N we have to carry
out two VMPS runs.

2. We use only one VMPS run to determine either |ψq=1〉 or |ψq=0〉 and use the following
method to determine the magnetization of a system with arbitrary Wilson chain length
0 < n < N :

� ground state is brought into left-canonical form:

|ψq〉N =
∑

n1...nN

A[n1]A[n2] ... A[nN ]|n1, n2, ..., nN 〉 (C.3)

� projection into 2D hilbert space of ground state: we project the state into the
effective eigenbasis of the hamiltonian Ĥn (0 < n < N) and only keep the two
states of lowest energy.1 Using NRG notation the lowest lying eigenstates of Ĥn

can be written as

|s〉n =
∑
n1...nn

(
A[n1]A[n2] .. A[nn]

)
s
|n1, n2, ... , nn〉 s ∈ {0, 1} (C.4)

1As seen in the flowdiagrams in Figure (2) the two lowest lying energy states stay the same for all systems
n < N (e.g. no line crossing)
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� next we calculate all matrix elements (Mi)
[n]
ss′ ≡ n〈s|σimpi |s′〉n of the magnetization,

where one of the matrix elements is given by

(Mi)
[n]
ss′ =

(∑
nn

Ã
′[nn]†

(
...
(∑

n2

A
′[n2]†

(∑
n1

A
′[n1]†σimpi A[n1]

)
A[n2]

)
...
)
A[nn]

)
ss′

(C.5)

� The eigenvalues of the 2 × 2 matrix M
[n]
i give the two possible values of the

magnetization of the system with chain length n in the ground state 〈σimpi 〉 =
±mi (therefore the plain thermal average without spontaneous symmetry breaking
would result in zero magnetization).

A direct comparison of the two different methods to calculate m is shown in Fig. C.1
for the example of a finite size scaling. In general, we observe excellent agreement between
both results. Therefore the second (numerically cheaper) method of determining m in the
symmetry code of the SBM2 leads to reliable results.
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Figure C.1: Finite-size scaling of the magnetization in the localized (blue lines) and in the
critical (black lines) regime. For the triangles we carried out different VMPS runs for each data
point, while for the solid lines we used an NRG based approximation explained in the main text.
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C.2 SBM2: Influence of diverging bosonic basis on QC1 and
QC2

Since to incorporation of the bosonic shift into the symmetry improved VMPS version V1 is
still an open task, the question arises to what extend the diverging bosonic basis influences
the results for critical exponents (especially β) at QC1 and at QC2 for 1/2 < s < 1.

A similar analysis has already been carried out in [89] for the NRG application to the
one-channel spin-boson model. The bosonic truncation error should not spoil 〈σimpx 〉, if the
magnetization saturates at an NRG iteration where the bosonic occupation number 〈nx〉 is
not yet affected by the Hilbert space truncation, i.e. the occupation number has not reached
its maximum value yet. This condition is satisfied for 0.5 < s < 1 for the SBM1 and explains
why critical exponents obtained by NRG agree with VMPS/QMC results in this regime. On
the other hand, the magnetization and the bosonic occupation number saturate at the same
iterations for 0 < s < 0.5, indicating that the truncation error affects the value of 〈σimpx 〉.

We extend this analysis to SBM2 treated by a VMPS procedure with incorporated U(1)
symmetry. In Figs. C.2(a) and (b) 〈σimpx 〉 and 〈nx〉 are shown for two values near QC2
in the localized regime for 0.5 < s < 1. We see clearly that the magnetization saturates
before 〈nx〉 reaches the plateau. Transfering the argument of [89] from NRG to VMPS,
this indicates that the a bosonic shift is not absolutely necessary to obtain correct results.
Nevertheless, 〈σimpx 〉 further decreases after the bosonic occupation number has reached its
maximum value, which we identify as an effect of the bosonic state space truncation in the
VMPS procedure. To circumvent this systematic error, we extract 〈σimpx 〉 not at the end of
the chain but chose an iteration right before 〈nx〉 saturates as indicated by the red lines. For
QC1 the situation is similar as shown in Fig. C.2(c).

In Fig. C.3 the influence of the truncation error on the critical exponent β is shown for a
typical value of s at QC1. Extracting 〈σimpx 〉 at the end of the chain reduces β significantly
compared to its ’correct’ value.
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Figure C.2: 〈σimpx 〉, 〈nx〉 and flow diagrams for typical points in the localized regime close to
QC2 (a,b) and QC1 (c). The bosonic state space truncation results in an unnatural decrease of
the magnetization for iterations where 〈nx〉 has already reached its maximum value. The red
bar indicates the ’correct’ choice of 〈σimpx 〉.
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C.3 SBM2: Critical exponents

C.3.1 ν at QC1
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Figure C.4: Critical exponent ν for different values s at QC1 [V2: N = 120, D = 60, dopt = 40,
Λ = 2].
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C.3.2 β at QC1

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

α−α

|<
σ x>

|

 

 

s=0.78, α
c
=0.5524(8)

β
fit

=1.62±0.04

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−2

10
0

α−α
c

|<
σ x>

|
 

 

s=0.8, α
c
=0.76405(9)

β
fit

=0.93±0.02

10
−5

10
−3

10
−1

10
−4

10
−2

10
0

α−α
c

|<
σ x>

|

 

 

s=0.825, α
c
=1.01751(1)

β
fit

=0.60±0.01

10
−5

10
−3

10
−1

10
−3

10
−2

10
−1

10
0

α−α
c

|<
σ x>

|

 

 

s=0.85, α
c
=1.29960(2)

β
fit

=0.54±0.01

10
−6

10
−4

10
−2

10
0

10
−4

10
−3

10
−2

10
−1

10
0

α−α
c

|<
σ x>

|

 

 

s=0.875, α
c
=1.64176(1)

β
fit

=0.48±0.01

10
−4

10
−3

10
−2

10
−1

10
0

10
−2

10
−1

α−α
c

|<
σ x>

|

 

 

s=0.9, α
c
=2.09858(1)

β
fit

=0.44±0.02

10
−4

10
−2

10
0

10
−2

10
−1

α−α
c

|<
σ x>

|

 

 

s=0.925, α
c
=3.1036(6)

β
fit

=0.45±0.03

10
−2

10
0

10
−1

α−α
c

|<
σ x>

|

 

 

s=0.95, α
c
=4.172(1)

β
fit

=0.43±0.05

Figure C.5: Critical exponent β for different values s at QC1 [V2: D = 60, dopt = 40, Λ = 2,
N = 120 (s < 0.9), N = 150 (s > 0.9)]. The error bars correspond to the two extremal values
of the exponent obtained by using only the upper or lower half of the full fitting interval that is
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C.3.3 δ at QC1

10
−8

10
−6

10
−4

10
−2

10
−1

10
0

h
x

|<
σ x>

|

 

 

s=0.78, α
c
=0.5524(8)

δ
fit

=8.2±0.1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−1

10
0

h
x

|<
σ x>

|
 

 

s=0.8, α
c
=0.76405(9)

δ
fit

=9.2±0.2

10
−10

10
−8

10
−6

10
−4

10
−2

10
−0.9

10
0

h
x

|<
σ x>

|

 

 

s=0.825, α
c
=1.01751(1)

δ
fit

=10.6±0.3

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

0.3

1

h
x

|<
σ x>

|

 

 

s=0.85, α
c
=1.29960(2)

δ
fit

=12.8±0.3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

h
x

|<
σ x>

|

 

 

s=0.875, α
c
=1.64176(1)

δ
fit

=15.1±0.3

10
−5

10
−4

10
−3

10
−2

10
−1

10
−0.2

10
−0.1

h
x

|<
σ x>

|
 

 

s=0.9, α
c
=2.09858(1)

δ
fit

=15.1±0.4

Figure C.6: Critical exponent δ for different values of s at QC1, where the vertical lines indicate
the fitting range [V1: N = 60, D = 60, dopt = 24, Λ = 2].
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C.3.4 β at QC2
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Figure C.7: Critical exponent β for different values of s at QC2, where the vertical black lines
indicate the fitting range. In calculations for s 6 0.5 we included the bosonic shift [V1: N = 60,
D = 60, dopt = 24, Λ = 2]. For 0.5 < s < 1 we employed the symmetry code [V2: D = 60,
dopt = 40, Λ = 2, N = 60 (0.5 < s < 0.8), N = 120 (s = 0.9)].
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C.3.5 δ at QC2
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Figure C.8: Critical exponent δ for different s at QC2, where vertical black lines indicate the
fitting range [V1: N = 60, D = 60, dopt = 24, Λ = 2].
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C.3.6 ν at QC2

0.01 0.08
10

−15

10
−12

10
−9

10
−6

10
−3

10
0

h
zc

−h
z

T
*

 

 

s=0.1, α=0.01, h
zc

=0.149(1)

1/ν
fit

=0.1±0.04, 1/ν
pred

=0.1

10
−3

10
−2

10
−1

10
−15

10
−12

10
−9

10
−6

10
−3

10
0

h
zc

−h
z

T
*

 

 
s=0.2, α=0.1, h

zc
=0.74919(6)

1/ν
fit

=0.19±0.03, 1/ν
pred

=0.2

10
−5

10
−4

10
−3

10
−2

10
−15

10
−12

10
−9

10
−6

10
−3

10
0

h
zc

−h
z

T
*

 

 
s=0.3, α=0.1, h

zc
=0.350028(5)

1/ν
fit

=0.30±0.02, 1/ν
pred

=0.3 

10
−6

10
−5

10
−4

10
−3

10
−2

10
−15

10
−12

10
−9

10
−6

10
−3

h
zc

−h
z

T
*

 

 
s=0.4, α=0.1, h

zc
=0.148345(4)

1/ν
fit

=0.41±0.02, 1/ν
pred

=0.4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−12

10
−9

10
−6

10
−3

10
0

h
zc

−h
z

T
*

 

 
s=0.5, α=0.1, h

zc
=0.045037(6)

1/ν
fit

=0.51±0.02, 1/ν
pred

=0.5

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−14

10
−11

10
−8

10
−5

10
−2

h
zc

−h
z

T
*

 

 

s=0.55, α=0.1, h
zc

=0.01887(6)

1/ν
fit

=0.51±0.02, 1/ν
pred

=0.47

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−14

10
−11

10
−8

10
−5

10
−2

h
zc

−h
z

T
*

 

 

s=0.6, α=0.3, h
zc

=0.151536(3)

1/ν
fit

=0.51±0.03, p
pred

=0.44

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−15

10
−12

10
−9

10
−6

10
−3

10
0

h
zc

−h
z

T
*

 

 

s=0.7, α=0.6, h
zc

=0.28241(5)

1/ν
fit

=0.44±0.02, 1/ν
pred

=0.38

10
−4

10
−3

10
−2

10
−1

10
−15

10
−12

10
−9

10
−6

10
−3

h
zc

−h
z

T
*

 

 

s=0.8, α=1.1, h
zc

=0.50812(6)

1/ν
fit

=0.33±0.02, 1/ν
pred

=0.32

10
−1

10
0

10
−16

10
−13

10
−10

10
−7

10
−4

h
zc

−h
z

T
*

 

 

s=0.9, α=2.5, h
z
=1.8225(3)

1/ν
fit

=0.13±0.03, 1/ν
pred

=0.1

Figure C.9: Critical exponent ν for different s at QC2 [V2: N = 60, D = 60, dopt = 40, Λ = 2].
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als die in der Arbeit angegebenen Quellen und Hilfsmittel benutzt zu haben.

München, den 5. Juni 2013


	1 Introduction
	2 Critical phenomena
	2.1 Classical phase transitions
	2.1.1 Critical phenomena and exponents 
	2.1.2 Landau Theory
	2.1.3 Renormalization group and scaling 

	2.2 Quantum phase transitions
	2.2.1 Quantum vs. classical phase transitions
	2.2.2 Scaling and quantum to classical mapping
	2.2.3 Quantum impurity phase transition


	3 Numerical Methods
	3.1 Matrix Product States 
	3.1.1 Global vs. local picture
	3.1.2 Orthogonalization of effective basis sets 
	3.1.3 Basic MPS application 
	3.1.4 Reduced density matrix and block entropy 
	3.1.5 Symmetries 

	3.2 Bosonic numerical renormalization group
	3.2.1 Spin-Boson model 
	3.2.2 Logarithmic discretization 
	3.2.3 Mapping onto the Wilson tight-binding chain 
	3.2.4 Iterative diagonalization
	3.2.5 Renormalization group flow 
	3.2.6 Choice of bosonic basis 

	3.3 Variational matrix product states 
	3.3.1 Variational ground state calculation 
	3.3.2 Optimal bosonic basis and shift 
	3.3.3 One-site vs.two-site optimization
	3.3.4 Energy-level flow diagrams
	3.3.5 Time-dependent VMPS 


	4 Spin-boson model 
	4.1 Static properties
	4.1.1 Ground state phases
	4.1.2 Quantum phase transition
	4.1.3 Subsequent results for critical exponents 

	4.2 Non-equilibrium dynamics
	4.2.1 tVMPS and z-averaging
	4.2.2 Ohmic dynamics
	4.2.3 Sub-ohmic dynamics


	5 Two-bath spin-boson model 
	5.1 Model Hamiltonian
	5.1.1 Symmetries
	5.1.2 VMPS setup

	5.2 Ground state phases
	5.2.1 Properties of critical coupling phase 
	5.2.2 Determining the phase boundaries 

	5.3 Critical Phenomena
	5.3.1 Quantum critical point 1 (QC1)
	5.3.2 Quantum critical point 2 (QC2)

	5.4 Asymmetric coupling 
	5.5 Comparison of methods: symmetry improved VMPS 

	6 Conclusion
	Appendices
	A.1 Two-site VMPS with optimal bosonic basis 
	B.1 SBM1: critical exponents
	C.1 SBM2: Calculation of the magnetization in the U(1) symmetry code 
	C.2 SBM2: Influence of diverging bosonic basis on QC1 and QC2 
	C.3 SBM2: Critical exponents
	C.3.1  at QC1
	C.3.2  at QC1
	C.3.3  at QC1
	C.3.4  at QC2
	C.3.5  at QC2
	C.3.6  at QC2



