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1. Introduction

Developing devices on a nanoscale is one of the main goals of current research in nanophysics.
A key prerequisite for designing properly functioning nanodevices is a profound understand-
ing of the physics of transport on this scale. This is subject of the striking field of quantum
transport. One important example of such nanodevices is the quantum point contact (QPC).
It is a short quantum wire that allows to observe quasi-one-dimensional transport. Its first
application has been reported by van Wees et al. [1] and simultaneously by Wharam et al.
[2] in 1988, who observed quantized conductance within the QPC. Measuring conductance
as a function of gate voltage one observes that with decreasing gate voltage the conductance
reduces in equal steps. Each plateau is a multiple of the so-called conductance quantum
GQ = 2e2/h. This observation can be explained in a single-particle picture as the decreasing
number of contributing transport channels.

In 1996 Thomas et al. [3] adressed a feature, that became famous as the ’0.7 anomaly’.
It concerns the anomalous behaviour of the first step of the quantized conductance, which
exhibits a shoulder that enhances with increasing magnetic field and temperature. This has
led to a lively debate about the origin of this anomaly. While all possible explanations agree
that the electron-electron interactions causes this phenomenon, they differ widely regarding
the detailed mechanisms by which this happens.

Bauer et al. [4] approach this problem within a fRG scheme and identify a smeared van Hove
singularity as the origin of the 0.7 anomaly. They argue that the shoulder is a consequence
of an enhanced Hartree effect when the van Hove ridge passes the chemical potential. This
effect is even more pronounced in a parallel magnetic field, which increases the effective
Landé factor.

The present thesis is motivated by their work and aims to model a QPC with n subbands to
observe conductance for more than one transport channel through it. To this end, Bauer’s
model is extended up to n chains, representing the n subbands. Interactions on one chain as
well as between the chains are modeled using on-site interactions, and interband transitions
are neglected. Calculations are performed using the functional Renormalization Group,
which is a powerful method to treat interacting many-body systems ([5], [6], [7]). The main
issue of interest here is the open question why the 0.7 anomaly is typically significantly
stronger for the first than for higher conductance steps. First results point out that the first
conductance step behaves differently compared to the higher steps.

The thesis is structured as follows: In the subsequent chapter an introduction to the method
of functional Renormalization Group is presented, where a diagrammatical approach is used
to derive the fRG equations. The third chapter introduces the setup of a QPC, describes the
conductance quantization and the observations linked to the 0.7 anomaly. Further, the key
points of the explanation of Bauer et al. are presented, which is background to interprete
the results of this work. In chapter 4 a detailed explanation of the model and a derivation of
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the concrete fRG equations within this model, are given and all computed observables will
be defined. In the fifth chapter the numerical results are presented. Firstly, the comparison
of a one-band model with the utilized n-band model offers the possibility to investigate the
effect of one higher order term in the fRG equations on the conductance of the one-band
model. Secondly, models with two and with four subbands are considered for two different
choices of interaction in this system. Here several observables such as conductance and local
density are computed. Moreover, the conductance of a band that interacts with a half-filled
subband is studied. In the last chapter, we conclude and give an outlook on possible future
research within this topic.



2. Functional Renormalization Group (fRG)

In this chapter the functional Renormalization Group (fRG) is explained. Since there are
already a lot of very good derivations of the fRG differential equations (e.g. [8], [9], [10])
via the strict functional integral formalism, a diagrammatical approach is used as it has been
done by Jakobs ([11], [12]). This chapter starts with an introduction to the keynote of fRG,
then some diagrammatic vocabulary will be set up to use it for the subsequent derivation.This
is followed by some comments on the used truncation, the flow parameter dependence and on
the approximation of static fRG. Lastly, the final fRG equations are derived and symmetries
are explained.

2.1. Introduction

Functional Renormalization Group is a ’renormalization group enhanced perturbation the-
ory’ [10] for the treatment of interacting many-body systems. It is based on the renor-
malization group scheme (RG) developed by K.G. Wilson and uses the functional integral
formulation of many-body physics. fRG is a very powerful method, which yields results
which can be superior to perturbation theory results ([5], [6],[7]).

The fundamental idea of fRG is to introduce an infrared cutoff Λ which serves as flow
parameter, take the derivative of the vertex functions with respect to this flow parameter
and subsequently study the behaviour in the limit Λ → 0, i.e. in the limit of the original
system [10]. This way, it can be used for low dimensional systems, which show infrared
divergencies.

Thus, fRG is based on a hierarchy of differential equations of n-particle vertex functions γn
with respect to the flow parameter Λ

d

dΛ
γn = F(γ1, γ2, ..., γn+1,Λ) (2.1)

where as we will see later the derivative of the nth vertex function depends on all other up to
the (n+1)th vertex function and on the flow parameter. The flow parameter is introduced
into the Green’s function

G0 → G0,Λ (2.2)

such that

G0,Λinitial = 0 G0,Λfinal = G0 (2.3)

holds. Integration from Λinitial to Λfinal can be regarded as an integration from bare in-
teraction to the full, renormalized interaction. This point becomes clear, when the vertex
functions are defined diagrammatically in the subsequent section.
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The main goal is to solve these differential equations to obtain solutions for the vertex
functions. In particular, one is interested in the one-particle vertex function Σ to facilitate
calculation of the full, renormalized Green’s function G via the well-known Dyson equation

G =
1

(G0)−1 − Σ
. (2.4)

The full, renormalized Green’s function G in turn can be used to compute several observables.

In general this infinite hierarchy of differential equation cannot be solved exactly. Thus,
different truncation and approximation schemes have been developed. Later in this chapter,
the commonly used static fRG and the truncation schemes are explained.

2.2. Vertex functions and Green’s functions

As a first step some graphic representations is set up, i.e. some graphic ’vocabulary’ which
is needed to derive the fRG equations diagrammatically. We will work in a simple frame,
where we assume point-like and frequency independent two particle interaction. Therefore
the bare interaction between two incoming and two outgoing particles is denoted with U
and graphically represented by a black dot.

U = (2.5)

Next, there is the non-interacting, single-particle Green’s function, also denoted as free
propagator. It has been set to depend on the flow parameter Λ and is graphically represented
as a bare line

G0,Λ = (2.6)

The so-called full Green’s function is the sum of all possible ways to connect two points with
the free propagator via any number of interaction events. It is represented as

GΛ = (2.7)
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A first step to use the diagrammatic language is to clarify what is meant by a full Green’s
function and derive the Dyson equation eq.(2.4) in this representation:

= + + + +

+ + + ...

= +
(

+ + + ... )

+
(

+ + + ... )

+ ...

= + (2.8)

The full propagator is the sum of all connected diagrams with one incoming and one outgoing
particle as sketched in the first line of eq.(2.8). This sum consists of two types of diagrams:
There are diagrams which can be separated into two parts by just cutting one line, called
one-particle reducible diagrams. And there are those diagrams which cannot be separated
by cutting one line, which are called one-particle irreducible (1PI) diagrams.

Further one can see that the reducible diagrams can be built of the irreducible ones. We
can now reorder this sum of diagrams such that the 1PI diagrams are factored out and a
reducible diagram is represented by multiplying two diagrams. This way we multiply the
sum of all one-particle irreducible diagrams with an infinite sum of all connected diagrams
containing reducible and irreducible diagrams, i.e. the full propagator. The sum of all
connected, one-particle irreducible diagrams with two amputated legs is called self-energy
Σ and is graphically denoted with a circle. Finally, one ends up with the diagrammatic
illustration of the well known Dyson equation (2.4).

The first few diagrams of the infinite sum of diagrams of the self-energy are:

Σ = = + + + + + ... (2.9)

Analogously to the self-energy, one can define any n-particle vertex function γn as the
sum of all connected, one-particle irreducible diagrams with 2n amputated legs. The first
contributing diagrams of the two-particle vertex function γ2 are depicted below, where lowest



6 Chapter 2. Functional Renormalization Group (fRG)

order diagram is the bare interaction. This vertex function γ2 is illustrated by a rectangle.

γ2 = = + + +

+ + ... (2.10)

As a last example, the first diagram of the three-particle vertex function is depicted below.
This vertex function is represented by a hexagon:

γ3 = = + ... (2.11)

Finally, a derivative of the free propagator with respect to the flow parameter Λ is repre-
sented with a crossed out line

∂ΛG
0,Λ = / (2.12)

Now, we have set up the diagrammatical representation of all objects we need and we can
start with the derivation of the flow equations.

2.3. Diagrammatical derivation of fRG flow equations

As mentioned in the introduction the flow parameter Λ is introduced into the Green’s
function such that G0,Λinitial is zero and G0,Λfinal is the ordinary propagator. If we consider
the initial situation and set all propagators to zero in all vertex functions, the only remaining
diagram is the bare interaction. For Λ = Λinitial, all γn (n 6= 2) are zero, while γ2 equals
the bare interaction. Thus, integrating from Λinitial to Λfinal is equivalent to

→ (2.13)

i.e. it is integrated from bare interaction up to the full interaction.

As a first step to set up the fRG equations we take the derivative of the vertex functions
with respect to the flow parameter. There is a Λ - dependence in each propagator, but the
bare two-particle interaction does not depend on it. Graphically that leads to one crossed
out line in each diagram and of course one needs to use the chain rule and take the derivative
of each line, i.e. of each free Green’s function in the diagram. For the self-energy this is
depicted below:
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d

dΛ
Σ =

d

dΛ
=

/

+

/

+

/

+

/

+
/

+
/

+ /

+
/

+
/

+ ...

+
/

+

/

+ / + ... (2.14)

The derived diagrams are reordered in the next step such that they can be rewritten in
terms of the vertex functions. This needs to be done in the following manner: Imagine the
diagram without the crossed out line and find all 1PI subdiagrams. Each subdiagram is
marked with the dotted sign of the according vertex function to which it belongs.

d

dΛ
Σ =

d

dΛ
=

/

+

/

+

/

+

/

+ ...

+

/

+
/

+
/

+ ...

+

/

+

/

+
/

+ ... (2.15)

For example, the pure interaction belongs to the two-particle vertex function and therefore
it is marked with a rectangle in the lower part of the first diagram. Equally the marked
bubble in the second diagram belongs to γ2, because it is the second diagram in eq. (2.10).
In the third diagram one of the lower legs is crossed out. This divides the diagram into two
1PI subdiagrams. Here, the closed loop with the interaction belongs to the self-energy, while
the lower interaction belongs again to γ2. This way one can proceed with all diagrams.

In the next step, all marked diagrams that show the same structure are grouped together.
In eq. (2.15) most of the diagrams belong to the same structure. These diagrams include a
part that belongs to γ2 and a crossed out propagator. The third diagram shows a slightly
different structure of a part that belongs to γ2 and a subdiagram that belongs to the self-
energy, connected by a full propagator and a crossed out propagator. Two of the diagrams
in the last line are constructed of a subdiagram that belongs to γ2, which is connected by
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one crossed out propagator and two free propagators to two subdiagrams that belong to the
self-energy. Hence, all diagrams are constructed of a γ2 with a closed loop of one crossed out
propagator, any number of self-energies and a corresponding number of free propagators.
Diagrams with the same structure then sum up to the following equation:

d

dΛ
Σ =

d

dΛ
=

/

+

/

+

/

+ ... (2.16)

To add up all these diagrams a so called the single scale propagator S is defined. The single
scale propagator is the sum of all diagrams which contribute to the full Green’s function
where the derivative is taken of one free propagator. This free propagator needs to be such
a line that by cutting it, the diagram is divided into two parts. In diagrams, this can be
written:

/ + / + / + / + ...

=
(

+ 1
)

/

(
1 +

)

=
(

+
)[ ]−1

/

[ ]−1(
+

)

= /

= SΛ (2.17)

where in the third line a [G0,Λ]−1 is factored out. The single scale propagator is represented
by a double, crossed out line and defined as:

SΛ = GΛ [G0,Λ]−1∂ΛG
0,Λ [G0,Λ]−1GΛ = GΛ ∂Λ[G0,Λ]−1 GΛ (2.18)

Using this definition of the single scale propagator it leads to :

d

dΛ
Σ =

d

dΛ
=

/

(2.19)

Hence, we end up with one structure and equation (2.19) is the diagrammatical representa-
tion of the first equation of the fRG hierarchy. As predicted the derivative of Σ depends on
the two-particle vertex function.
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The same procedure can be applied to the two-particle vertex function. Again the derivative
is taken obeying chain rule

d

dΛ
γ2 =

d

dΛ
= / +

/
+ ...

+ / + / + ...

+

/

+ / +
/

+ ...(2.20)

Subsequently the 1PI subdiagrams are marked according to their belonging

d

dΛ
γ2 =

d

dΛ
=

/
+

/

+
/

+
/

+ ...

+

/

+
/

+

/

+ ...

(2.21)

Ordering and adding up the diagrams with respect to their structure, yields the following
representation.

d

dΛ
γ2 =

d

dΛ
=

/

+

/

+

/

+ ...

+

/

+ ....

=

/

+

/

(2.22)

In the last step the definition of the single scale propagator (eq.(2.17)) has been used again.
Equation (2.22) describes the second differential equation of the fRG hierarchy. Here we
have two types of structure, one that depends on the two-particle vertex function and one
that depends on the three-particle vertex function. We could proceed for all vertex function,
and we will always see that the derivative of the n-particle vertex function depends on all
vertex functions up to the (n+1)th vertex function. Since this poses an infinite hierarchy,
truncation is required at some point.
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2.4. Truncation

In general, one can truncate at any point. Later truncation yields more precise results, but
solving the equations becomes less feasible. A truncation after the mth vertex function,
with

d

dΛ
γm+1 = 0 (2.23)

is called fRG m. The most commonly used truncations are fRG 1 and fRG 2.

fRG 1 includes only the first equation (eq.(2.19)) and the vertex flow is neglected i.e. the full
vertex function γ2 in this equation is substituted with the bare interaction U . This yields
qualitatively good results and can give a good impression of the physics of a system.

Truncation after the two-particle vertex function yields to quantitatively better results. To
set

d

dΛ
γm+1 = 0 with m ≥ 2 (2.24)

can be justified as follows:

As in perturbation theory the bare interaction needs to be small to ensure convergency.
While the lowest order diagrams in Σ and γ2 are generated in first order in the interaction,
all diagrams of the three-particle vertex function are generated at least in third order of the
interaction. It is thus reasonable to neglect those higher order diagrams.

For fRG 2 the derivative of γ3 is set to zero, i.e. the second structure of equation (2.22) is
canceled out.

2.5. Static fRG

In general, all Green’s functions and vertex functions depend on frequency. Consequently,
within the Matsubara formalism an infinite sum over all possible frequencies needs to be
evaluated. Static fRG neglects the entire frequency dependence of the vertex function and
thus the frequency dependence of the external vertices. Therefore internal frequencies need
to add up to zero to ensure energy conservation.

Results of static fRG can only be trusted in the limit of ω → 0, i.e. for T = 0. In this work,
static fRG is used and therefore all results are only valid for zero temperature.

2.6. Λ-dependence

In the introduction it has already been mentioned that an infrared cutoff is needed which
works as a flow parameter Λ. This flow parameter has been introduced into the Green’s
function, but no precise dependence has been determined. Since possible divergencies in low
dimensional systems usually show up for energies around the zero-point of the energy scale,
a convenient choice of Λ dependence for T = 0 is

G0,Λ = θ(|ω| − Λ)G0. (2.25)
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with θ as the Heaviside-function. For a detailed justification read [13]. Since we work with
static fRG, we stick to the case of T = 0 for the whole thesis and can use this cutoff. With
Λinitial =∞ and Λfinal = 0 this dependence then leads to G0,Λinitial = 0 and G0,Λfinal = G0

as demanded in the beginning.

2.7. Final structure of fRG 2

In our diagrammatical illustration of the structure of the fRG equations, we did not use any
arrows, i.e. no directions have been considered until now. This is fine as long as one keeps in
mind that each structure includes several topological different diagrams. To set up the final
equations we also need to take into account directions of the participating particles and add
some further Feynman rules to the diagrammatical representations:

• Draw all topological different diagrams. Topological different diagrams are those which
cannot be deformed into each other including all arrows and external indices.

• Multiply with (−1)F with F as the number of closed fermion loops.

• Multiply with (−1) for each interchange of external legs.

• Sum over the Matsubara frequencies
∑

wn
.

• If two fermion lines form a closed loop their frequencies are equal and with opposite
signs, if they propagate in the same direction (static fRG).

• Sum over all internal indices
∑

q,q′,s,s′ .

For the first differential equation, there is only one diagram because any other can be
deformed into this one. Blue and red arrows indicate the external indices of the incoming
and outgoing amputated legs, respectively. The final equations we set up for γ1 instead of
Σ. It is defined as γ1 = −Σ, hence there is an extra minus which leads to:

d

dΛ
γ1(k′1, k1) = − d

dΛ
Σ(k′1, k1) =

d

dΛ
k′1 k1 =

k′1 k1
(2.26)

For fRG 2 the second structure in eq. (2.22) is canceled out. Thus, we are left with only
one structure, which includes five topological different diagrams:
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d

dΛ
γ2(k′1, k

′
2, k1, k2) =

d

dΛ

k′2

k′1

k2

k1

= −
/

k′2

k′1

k2

k1

−
/

k′2

k′1

k2

k1

−
/

k′2

k′1

k2

k1

+
/

k′1

k′2

k2

k1

+
/

k′1

k′2

k2

k1

(2.27)

This is the final version of the fRG equation, with truncation after the two-particle vertex
function. So far, no further approximations have been made. The signs are already evaluated
here to give a better overview of the structure of the equations.

Now, static fRG and the respective cutoff for zero temperature get involved. If the cutoff
(2.25) is introduced into the Green’s function, the single-scale propagator can be rewritten
as follows:

SΛ = GΛ∂Λ[G0,Λ]−1GΛ

=
1

1 + θG0γΛ
1

θG0[G0]−1 1

θ2
δ

1

1 + θG0γΛ
1

θG0

=
δ

(1 + θG0γΛ
1 )2

G0

= δ∂θ

[ 1

1 + θG0γΛ
1

θG0
]

= δ(|ω| − Λ)∂θGΛ (2.28)

where a short notation has been used with θ = θ(|ω| − Λ) and respectively δ = δ(|ω| − Λ).

Due to static fRG only the propagator is frequency dependent and therefore, the sum over
the Matsubara frequencies can be evaluated separately. Further, in the limit of T = 0 the
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Matsubara sum becomes an integral. With the rewritten single scale propagator (2.28)

1

2π

∫
dω SΛ

q,q′(iω)

=
1

2π

∫
dω δ(|ω| − Λ)∂θGΛ

(∗)
=

1

2π

∫
dω δ(|ω| − Λ)

∫ 1

0
dt∂tGΛ

q,q′(iω)|θ=t

=
∑

ω=±Λ

G̃Λ
q′,q(iω) . (2.29)

In the last step a new propagator is defined, where now only the self-energy depends on Λ:

G̃Λ =
1

[G0]−1 − ΣΛ
1

. (2.30)

Also the diagrammatic illustration is redefined:

G̃Λ = (2.31)

The (∗) in (2.29) and (2.33) indicates the use of the so-called Morris’ Lemma [14], which
states that

δεf(θε)→ δ

∫ 1

0
f(t)dt (2.32)

for a product of δ- and θ-function, which are defined as the limits of smooth functions
δ = limε→0 δε and θ = limε→0 θε and where f can be any continous function.

Analogously, this can be done for the integral over the single scale propagator and the
Green’s function as it is needed for the diagrams of the second equation.

1

2π

∫
dω SΛ

q,q′(iω)G̃Λ
s′,s(±iω)

(∗)
=

1

2π

∫
dω δ(|ω| − Λ)

∫ 1

0
dt [∂tGΛ

q,q′(iω)]θ=t[G̃Λ
s,s′(±iω)]θ=t

=
1

2π

∫
dω δ(|ω| − Λ)

∫ 1

0
dt

1

2
∂t[GΛ

q,q′(iω)]θ=t[G̃Λ
s,s′(±iω)]θ=t

=
1

4π

∫
dω δ(|ω| − Λ)G̃Λ

q′,q(iω)G̃Λ
s,s′(±iω)

=
1

4π

∑

ω=±Λ

G̃Λ
q′,q(iω)G̃Λ

s,s′(±iω) (2.33)

Due to the introduction of the redefined propagator, the second and the third, as well as
the fourth and the fifth diagram become equal in eq. (2.27). It leads to an extra factor of
2 for these diagrams.
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If Feynam rules are applied to evaluate the diagrams, with eq. (2.29) and (2.33), it leads to
the final fRG 2 equations:

d

dΛ
γΛ

1 (k′, k) =
1

2π

∑

ω=±Λ

∑

q,q′
G̃Λ
q,q′(iω)γΛ

2 (k′, q′; k, q) , (2.34)

d

dΛ
γΛ

2 (k′1, k
′
2; k1, k2) =

1

2π

∑

ω=±Λ

∑

q,q′,s,s′

[
− 1

2
G̃Λ
q,q′(iω)γΛ

2 (q′, s′; k1, k2)G̃Λ
s,s′(−iω)γΛ

2 (k′1, k
′
2; s, q)

− G̃Λ
q,q′(iω)γΛ

2 (k′1, q
′; k1, s)G̃Λ

s,s′(iω)γΛ
2 (k′2, s

′; k2, q)

+ G̃Λ
q,q′(iω)γΛ

2 (k′2, q
′; k1, s)G̃Λ

s,s′(iω)γΛ
2 (k′1, s

′; k2, q)
]
. (2.35)

And in their diagrammatically representation:

d

dΛ
γ1(k′1, k1) =

d

dΛ
k′1 k1 =

k′1 k1
(2.36)

d

dΛ
γ2(k′1, k

′
2, k1, k2) =

d

dΛ
k′2

k′1

k2

k1

= − 1

2

k′2

k′1

k2

k1

−

k′2

k′1

k2

k1

+

k′1

k′2

k2

k1

(2.37)

The final differential equation of the two particle vertex function consists of three different
structures. Each represents one of the three channels of two-particle interaction. While
the first diagram represents the particle-particle interaction (P-channel), the second and
third diagram represent particle-hole interactions. The two contributions only differ in an
interchange of legs and represent according to their structure the direct interaction (D-
channel) and exchange interaction (X-channel), respectively.

2.8. Symmetries

The symmetries of the two particle vertex function can be derived if one takes into account
the Feynman rule for exchanging external legs. It is then easy to see that γ2 is antisymmetric
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under the exchange of the incoming particles with each other and analogously under the ex-
change of the outgoing particles. Further, in the special case of static fRG and time reversal
symmetry the vertex function becomes symmetric under the exchange of the incoming with
the outgoing particles.

γ2(k′1, k
′
2, k1, k2) = −γ2(k′2, k

′
1, k1, k2)

= −γ2(k′1, k
′
2, k2, k1)

= γ2(k1, k2, k
′
1, k
′
2) (2.38)

By exploiting these symmetries to the vertex function in the fRG equations, it can be shown
that the equations preserve the symmetries.





3. Quantum Point Contacts (QPC)

In this chapter the quantum point contact (QPC) is studied. Firstly, the setup of a QPC
and its use to observe one-dimensional transport is illustrated, afterwards the conductance
quantization is adressed within a noninteracting picture. Further, a short overview over the
conductance anomaly, as it can be observed within a QPC, and related observations is given.
Finally, we adress the explanation of the conductance anomaly by Bauer et al. [4], since this
is the starting point to understand the results in chapter 5.

3.1. One-dimensional transport through a QPC

A quantum point contact (QPC) is a short, quasi-one-dimensional transport channel between
two reservoirs. A picture of an experimental setup is depicted in Figure 3.1. A QPC can be
realized in a two-dimensional electron gas (2DEG) in e.g. an AlGaAs/GaAs heterostructure
[15]. Metal gates as depicted in Figure 3.1 form a ’split-gate’ architecture within this 2DEG.
These side and central gates, marked with s and c respectively, establish a barrier potential
which constricts the transport channel in y-direction. The two reservoirs are source and
drain reservoirs and an applied source-drain voltage leads to transport through the contact.
Due to the spatial confinement within the contact, there are discretized energy levels. The
top gate is used to deplete the 2DEG, such that the number of occupied transversal modes
can be assigned.

If one assumes an adiabatically changing potential barrier within the contact that confines
the electrons in y-direction, one can consider the transport analogous to transport through
a waveguide with locally flat and parallel walls [16]. This leads to the same discretized
transverse modes as in a waveguide with a rectangular cross-section, with a width ly and a
height lz.

Figure 3.1.: Picture of experimental setup of a quantum point contact. Within a 2DEG metal gates
form a ’split-gate’ architecture in between source and drain reservoir. Side and central
gates can be biased such that they establish a barrier potential which forms a constriction
i.e a quasi one-dimensional transport channel. An applied source drain voltage leads to
transport through this contact. Top gate voltage controls the depletion of the 2DEG
and thus assigns the contributing transport channels.Taken from [4]
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The wave function of the electrons can be written:

Ψn(x, y, z) = Ψny(x, y)Φnz(z) . (3.1)

The z-dependence can be separated and lz considered as constant, since only the lowest
energy mode is occupied (nz = 1). The Schrödinger equation for Ψ(x, y) then is:

(
− ~2

2m

∂2

∂x2
− ~2

2m

∂2

∂y2
+ V (x, y)

)
Ψny(x, y) = EnyΨny(x, y) . (3.2)

where V (x, y) is the potential that defines the form of the constriction. It has been shown
that a saddle-point potential in the constriction of the form

V (x, y) = Vc −
1

2
mωxx

2 +
1

2
mωyy

2 (3.3)

is an realistic assumption [17]. Here the electrons pass a quadratic potential barrier in
direction of propagation and are confined in the transverse direction within a parabolic
potential with a width propotional to the width of the constriction. Again the variables can
be separated locally because the potential only changes adiabatically. The wave function of
free motion in x-direction then fulfills:

(
− ~2

2m

∂2

∂x2
+ Eny

)
ψ(x) = ψ(x) . (3.4)

En(x) is the mode dependent energy

Eny(x) = ~ωy[ny + 1/2] + V (x, 0) . (3.5)

and the total energy is

E = Eny(x) +
~2k2

x

2m
. (3.6)

Only those modes with energy Eny < EF contribute to the transport through the channel.
Via the negative top gate voltage the occupied transversal modes can be adjusted.

3.2. Conductance quantization

Transport through a QPC is considered firstly in a noninteracting picture, since it suffices
to understand the crude physics.

We consider the current through the constriction coupled to a left and a right reservoir:

I = 2se
∑

n

∫ ∞

−∞

dkx
2π

vx(kx) Tn(E)[fL(E(kx)− fR(E(kx))] (3.7)

where for those electrons with kx > 0, i.e. coming from left reservoir it holds fL(E(kx)) ≡
fF (E(kx)−µL), whereas for electrons with kx < 0, i.e. coming from right reservoir fR(E(kx)) ≡
fF (E(kx)−µR). If one inserts vx = 1

~
∂E
∂kx

and defines GQ = 2e2

h as the conductance quantum,
it leads to

I =
GQ
e

∑

n

∫
dE Tn(E)[fL(E)− fR(E)] . (3.8)
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Figure 1. The linear differential conductance G = dI/dV versus
gate voltage Vg from a QPC with W = 950 nm, L = 400 nm at a
temperature T = 60 mK defined in a 2DEG with a depth of 280 nm,
an electron density n = 1.8 ⇥ 1011 cm�2 and a mobility
µ = 4.5 ⇥ 106 cm2 V�1 s�1. Inset: schematic of a QPC of width W
and length L defined by metal gates biased at Vg. The two adjacent
2DEG regions connect to source (S) and drain (D) Ohmic contacts
made with annealed NiGeAu alloy. Directions x and y in the plane
of the 2DEG are also indicated, with the z direction pointing out of
the page. (b) A detail of the plateau at 0.7G0. Figure (a) adapted
with permission from [11]. Copyright 1996 by the American
Physical Society. Figure (b) adapted with permission from [12].
Copyright 1998 by the American Physical Society.

The width of the constriction can be tuned continuously
by adjusting the negative bias Vg applied to the gates, leading
to a staircase of plateaus in the measured linear differential
conductance G = dI/dV versus Vg, as shown in figure 1(a).
The staircase of plateaus occurs because the confinement
in the y direction leads to quantisation of the transverse
wavevector ky. As the constriction is narrowed by making
Vg more negative, the allowed ky states, known as 1D
subbands, rise up in energy, depopulating once they exceed
the Fermi energy of the adjacent 2DEG reservoirs EF =
⇡ h̄2ns

m⇤ . The plateaus occur at integer multiples of G0 = 2e2/h,
where e is the electron charge and h is Planck’s constant.
This quantisation of the plateau conductance can also
be understood under a simple, single-particle picture—the
conductance is dependent on the product of the electron
velocity and the 1D density of states, each of which contain
terms in

p
E that fortuitously cancel to give an equal,

energy-independent conductance contribution for each 1D
subband [13].

1.2. Introducing the 0.7 ⇥ 2e2/h conductance anomaly

With that said, it might appear that a comprehensive and
complete understanding of the 1D conductance in QPCs
has been achieved. However, this is certainly not the
case—there are several features in the conductance of QPCs

that lack an accepted explanation and are the subject of
extensive debate [14]. Foremost is an anomalous plateau
typically observed at a conductance of G ' 0.7G0, shown
in figure 1(b). First addressed specifically by Thomas et al
in 1996 [12], this feature was frequently observed in earlier
work (e.g. see figure 2 of [5], figures 2, 6 and 7 of [15]
and figure 3 of [16]). Analogous non-quantised plateaus
at G > 2e2/h for applied dc source–drain bias [17] and
in-plane magnetic field [18], along with an anomalous
peak in the differential conductance versus dc source–drain
bias for G < 2e2/h [19], known as a ‘zero-bias anomaly’,
have also been observed in QPCs and associated with the
0.7 ⇥ 2e2/h conductance anomaly. Again, taking a quick
survey pre-1996, similar features are observed by Patel
et al [20, 21]1. A large number of possible explanations
have been offered for this effect. The two dominant ones
are a spontaneous spin-polarisation [12] and Kondo-like
effects [19, 22–24]. However, other explanations include
phenomenological spin-gap models [17, 25–27], subband
pinning effects [25, 28], electron–phonon interactions [29],
singlet–triplet effects [30, 31], Wigner crystallisation [32,
33] and charge density waves [34]. Despite the diversity
of explanations offered, there is one clear point of general
consensus—the 0.7 plateau and associated features cannot be
described under a single-particle framework, and arise from
many-body effects (i.e. electron–electron interactions).

1.3. Content and structure of this review

This topical review focuses on experimental studies of
fractionally quantised plateaus in the 1D conductance of
QPCs. My focus in writing this review is to provide a detailed
introduction for beginners, be they new graduate students or
researchers interested in contributing to the on-going work
in this area or drawing inspiration from it. As such, I have
sacrificed brevity for depth of discussion. Experts in the field
may wish to skim rather than read or defer to the special
edition of Journal of Physics: Condensed Matter edited
by Pepper and Bird [35] published in 2008. It contains a
number of shorter invited reviews of key experimental and
theoretical works related to the 0.7G0 conductance anomaly
and electron–electron interactions in 1D systems and provides
a more focused coverage of specific experiments discussed in
this topical review. There is also a shorter, recent review by
Berggren and Pepper [36] more suited to existing experts on
1D conductance in QPCs.

Readers seeking a general background on nanoelec-
tronics and low-dimensional devices can consult books by
Davies [37] and Ferry et al [38]. For very comprehensive
reviews of earlier studies of quantised 1D conductance,
readers should consult articles by Beenakker and van
Houten [13], van Houten et al [39], and for a more recent
focus, by Clarke et al [40]. Very useful magazine-style
discussions of low-dimensional physics and the Kondo effect
in quantum dots can be found in articles by Berggren

1 For later reference, it is interesting to note the absence of a zero-bias
anomaly in figure 4 of [21].

3

Figure 3.2.: Measurement of the linear differential conductance G = dI
dV as a function of gate voltage.

Equal and equidistant plateaus are observed. Inset sketch (a) shows the schematic setup
of the QPC, where S and D indicate source and drain reservoir respectively and the black
boxes indicate metal gates charged with voltage Vg and thus adjust the passing modes.
Inset (b) shows the first plateau which reveals a kink, the so-called 0.7 anomaly. Taken
from [18]

Assuming that the transmission Tn is either 1 or 0 for an open or closed channel, respectively,
it simplifies to

I =
GQ
e
Nopen(µL − µR) = GQNopenVsd . (3.9)

Vsd is the source drain voltage, not to be confused with the gate voltage.

Measuring the linear differential conductance G = dI
dVsd

as a function of the applied gate
voltage Vg one observes plateaus with equal height at equal steps of gate voltage, a staircase
of plateaus. Each plateau is an integer multiple of GQ = 2e2/h, where the conductance
increases with increasing gate voltage as shown in Figure 3.2. This has been observed for
the first time by van Wees et al. [1] and simultaneously by Wharam et al. [2] in 1988.

One can now easily understand this quantization of conductance. It can be explained in
a rather simple single particle picture without any interaction between the electrons using
eq.(3.9). By decreasing the gate voltage the 2DEG becomes more and more depleted and
less transversal modes are occupied, i.e. less modes contribute to the conductance. Since the
conductance is proportional to number of open channel times conductance quantum, one
can directly read off the number of open channels. Thus, with each lower plateau one further
channel has been closed. This means that one can adjust the number of open channels and
this way assign the conductance.

3.3. Conductance anomaly

But a close look on the first plateau, as it is shown in the inset of Figure 3.2, reveals the
fact that this does not explain the whole physics. One can see that the first plateau shows
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FIG. 1. (I) Gate voltage GsVgd characteristics showing 20
conductance plateaus quantized in units of 2e2yh. (II) The gate
characteristics (offset by 0.3 V for clarity) in a magnetic field
of 11 T. Insets: (a) detail of the structure at 0.7s2e2yhd; (b) the
in-plane g factors as a function of subband index, as obtained
from the Zeeman splitting at 8.2 T.

the splitting of the transconductance peaks was linear in
V

sd

, indicating that V
sd

does not perturb the electrostatic
confinement potential within the constriction. We shall
rely on this result when we use Eq. (1) to measure both
gk and g' for all 26 1D subbands.
Low temperature measurements of the two-terminal

conductance, GsVgd ≠ dIydV , were performed using an
excitation voltage of 10 mV at a frequency of 71 Hz. Mea-
surements in an in-plane magnetic field were carried out

FIG. 2. Transconductance traces dGydVg of the transition
between G ≠ 0 and 2e2yh as a function of Bk. The traces
have been vertically offset for clarity. The inset shows the gate
voltage splitting dVg of the transconductance peak positions as
a function of Bk.

FIG. 3. The evolution of the structure at 0.7s2e2yhd into
a step at e2yh in a parallel magnetic field Bk ≠ 0 2 13 T,
in steps of 1 T. For clarity, successive traces have been
horizontally offset by 0.015 V.

with the field applied either parallel sBkd or perpendicu-
lar sB'd to the current j through the constriction. The
results presented here are qualitatively the same for both
field orientations. To check for an out-of-plane magnetic
field component due to misalignment, we monitored the
Hall voltage; from such measurements we were able to
align the samples to better than 1

±. All the results pre-
sented in this paper were reproducible on different sample
cooldowns, and have been observed in a variety of devices
fabricated on different wafers. The bulk 2DEG resistance
changes with B, and so conductance sweeps have been cor-
rected by choosing a series resistance (typically less than

FIG. 4. Temperature dependence of the 0.7 structure com-
pared to the quantized plateau at 2e2yh.

136

(a) Evolution with increasing temperature of the
first step of the differential conductance mea-
sured as a function of gate voltage. It can
be seen that the general step structure flat-
tens with rising temperature. But the first
step shows different behaviour where the kink
becomes more pronounced and the inclination
until this kink only changes slightly with tem-
perature. Taken from [3].

2

FIG. 1: (a) The di↵erential conductance G as a function of
gate voltage Vg at 200 mK, for a QPC with L = 300 nm
and W = 400 nm. The in-plane magnetic field is increased
from B = 0 T to B = 9 T. The first three spin-degenerate
plateaus at integer multiples of 2e2/h for B = 0 T split into
six spin-resolved plateaus integer multiples of e2/h for B =
9 T. (b) Micrograph of a device containing 8 QPCs. From
left to right the width W is increased, where W is defined as
the spacing between the gate electrodes as shown in (c). L
is the length of the channel. Table I contains all values for L
and W of the measured devices. (d) Di↵erential conductance
G as a function of gate voltage Vg at zero field for di↵erent
temperatures. The 0.7 anomaly becomes more pronounced
with increasing temperature.

However we do not claim that this zero-field splitting
leads to a static ferromagnetic polarization. This new
observation provides evidence that the splitting of the
0.7 anomaly is dominated by this field-independent ex-
change splitting. The Kondo e↵ect appears as a zero-bias
peak in the di↵erential conductance G, and the width of
this peak is set by the Kondo temperature TK , an energy
scale that represents the strength of the Kondo e↵ect.
Our measurements of TK suggest a correlation between
TK and the splitting of the 0.7 anomaly.

This paper is organized as follows. Section II presents
information about sample fabrication and measurement

techniques. In section III we present measurements of
the conductance of our set of QPCs, and we extract the
energy splittings between subbands and spin splittings.
In section IV we focus on analyzing the signatures of
many-body e↵ects in our QPC data, before ending with
concluding remarks in the last section.

II. EXPERIMENTAL REALIZATION

Our devices were fabricated using a
GaAs/Al0.32Ga0.68As heterostructure with a 2DEG
at 114 nm below the surface from modulation doping
with Si. The bu↵er layer had a thickness of 36.8 nm,
and Si doping was about nSi ⇡ 1 · 1024 m�3. At 4.2 K,
the mobility of the 2DEG was µ = 159 m2/Vs, and the
electron density ns = (1.5 ± 0.1) · 1015 m�2. A QPC is
formed by applying a negative gate voltage Vg to a pair
of electrodes on the wafer surface. The 2DEG below the
electrodes is then fully depleted, and tuning of Vg allows
for controlling the width of a short one-dimensional
transport channel. Our QPCs had di↵erent values for
the length L and width W for the electrode spacing
that defines the device (see Table I, and Figs. 1b,c).
Note that W should not be confused with the actual
width of the transport channel that is controlled with
Vg. The depletion gates were defined with standard
electron-beam lithography and lift-o↵ techniques, using
deposition of 15 nm of Au with a Ti sticking layer.
The reservoirs were connected to macroscopic leads via
Ohmic contacts, which were realized by annealing a thin
Au/Ge/Ni layer that was deposited on the surface.

All QPCs were fabricated in close proximity of each
other on a single central part of the wafer to ensure the
same heterostructure properties for all QPCs. The set
of 8 QPCs for which we varied L (Device 1 in Table I)
had all QPCs within a range of about 10 µm. The set
of 8 QPCs for which we varied W (Device 2 in Table I
and Fig. 1b) had an identical layout, and was positioned
at 2 mm from Device 1. Thus, all semiconductor pro-
cessing steps (resist spinning, e-beam lithography, metal
deposition, etc.) could be kept nominally identical for
all 16 QPCs. Electron-microscope inspection of the mea-
sured devices (after the measurements) confirmed that
the dimensions of all gate electrodes were within 10 nm
of the designed values (see table I. In our data this ap-
pears as a very regular dependence of QPC properties
(see for example the discussion of the pinch-o↵ voltage
Vpo and subband spacing ~!12 in the next section) on L
and W for QPCs within the sets of Device 1 and 2. At
the same time, two devices from two di↵erent sets with
nominally identical values of L and W (labeled (1) and
(2) in Figs. 3 and 4) show slightly di↵erent QPC proper-
ties (in particular for the subband spacing ~!12). This is
not fully understood.

Measurements were performed in a dilution refriger-
ator with the sample at temperatures from ⇠ 5 mK
to 4.2 K. For all our data the temperature dependence

(b) Evolution with increasing magnetic field of the
first three steps of the differential conductance
measured as a function of gate voltage. It is
observed that the shoulder deepens with the
magnetic field. With high magnetic field the
first three steps evolve into six spin-resolved
plateaus. Taken from [19].

Figure 3.3.: Evolution of the conductance with increasing temperature and increasing magnetic field.

a kink at G ' 0.7GQ. This phenomenon has caught the interest in 1996 for the first time,
when Thomas at al. [3] addressed this problem. The anomaly and the related observations
became due to the appearance around a value of G/GQ = 0.7 famous as the ’ 0.7 anomaly’.

Thomas et al. made three important observations about it. Firstly, the kink strengthens
with increasing temperature. In Figure 3.3a one can see that while increasing temperature
flattens the step structure of the plateaus, the first step behaves differently. Here the kink
becomes more pronounced but the lower part of the step changes its inclination only slightly,
the step stays as sharp as it is. The fact that above the kink the steps become less sharp
with rising temperature can be explained via eq. (3.8). The Fermi function broadens with
rising temperature and therefore the energy range of the integral becomes bigger which
broadens the steps of the conductance. But the behaviour of the kink in the first step is
counterintuitive.

Secondly, increasing the in-plane magnetic field strenghtens the shoulder and leads for high
magnetic fields to the first spin-resolved plateau where the spin degeneracy is lifted (Figure
3.3b). The lifted spin degeneracy can also be observed in higher conductance steps.

And thirdly, they meassured an enhanced g-factor at the first plateau. This is a good
indicator that interaction causes the shoulder and that the enhanced interactions are the
reason why the 0.7 feature shows up only at the first step.

All these observations have led to a lively debate about the origin of the 0.7 anomaly. While
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12

Figure S8: Schematic depiction of the one-dimensional model
of Eq. (A1) (for a QPC barrier shape). It represents an in-
finite tight-binding chain with constant hopping matrix ele-

ment ⌧ (gray); the prescribed local potential eVj (blue) and
on-site interaction Uj (red) are nonzero only within a cen-
tral constriction region (CCR) of N = 2N 0 + 1 sites. The
CCR is connected to two semi-infinite non-interacting leads
on the left and right. A homogeneous Zeeman magnetic field
eB (orange) can be switched on along the whole chain.

this is a prerequisite for understanding the Fermi-liquid
properties discussed in the main article. Our fRG cal-

culations for eB = 0 thus assume zero spin polarization
from the outset. Remarkably they yield, instead of the
strong additional peak found by DFT+LSDA, only the
weak shoulder (ii) mentioned above, which is consistent
with the compressibility data of Smith et al. Further ar-
guments in support of the absence of spontaneous spin
polarization at zero field are o↵ered at the end of Sec. S-
2 E.

PART II: THEORETICAL DETAILS

S-4. MODEL USED FOR FRG CALCULATIONS

A. Choice of potential Ej and interaction Uj

This section specifies the model used for our fRG calcu-
lations in detail, by describing our choices for the on-site
interaction strength Uj and local potential Ej . (For the
perturbative calculations reported in Fig. A5, we used a
slightly modified model, described in Sec. S-7 B. )

The model Hamiltonian of Eq. (A1),

H =
X

j�

h
eVj�n̂j� � ⌧j(d

†
j+1�dj� + h.c.)

i
+
X

j

Ujnj"nj# ,

(S13)

is depicted schematically in Fig. S8, showing a tight-
binding chain divided into two semi-infinite, non-
interacting, uniform leads on the left and right, con-
nected to the central constriction region (CCR), consist-
ing of an odd number N = 2N 0 + 1 of sites centered on
j = 0. The lattice does not represent actual atomic sites,
but instead is merely used to obtain a discrete, coarse-
grained description of transport in the lowest subband.
The position-dependent parameters Uj and Ej , nonzero
only within the CCR, are taken to vary slowly on the

Figure S9: a, Dispersion relation ✏k vs. k [Eq. (S14)] for a bulk
non-interacting tight-binding chain (infinite, homogeneous,
Ej = Uj = 0). The filling factor in the leads is controlled
by the global chemical potential µ (blue dashed line); it is
here drawn at µ 6= 0 for generality, although our fRG calcu-
lations use µ = 0. b, The corresponding j-independent bulk
LDOS [Eq. (S21)], shown both as A0

bulk(!) (on x-axis) versus
✏k = ! + µ (on y-axis), and using a color scale. The distance
from the chemical potential to the bulk band bottom !min

bulk is
"F = 2⌧ + µ = �!min

bulk (> 0). c and d, The one-dimensional
potential Ej of Eq. (S17) (thick dashed black line) for a QD

potential (eVs > eVc) and a QPC potential (eVc > eVs), respec-
tively. In the outer region of the CCR (j0  |j|  N 0),
Ej is described by quartic polynomial, in the inner region
(|j| < j0) by a quadratic one (thin red and blue lines, respec-

tively, shown only for j > 0.) For given N 0, js, eVs and eVc,
the parameters j0 and ⌦x are adjusted such that the resulting
potential Ej depends smoothly on j throughout the CCR. e,
The on-site interaction Uj of Eq. (S16). ToDo: JH: In b:
replace !min

bulk by �!min
bulk, since the lower band-edge is

negative! In a: Please use two-headed arrow for "F,
as elsewhere in this figure. Reminder: add scale bar
for color scale.

(a) Dispersion relation and resulting spectral func-
tion of a tight-binding chain. The spectral
function shows two van Hove singularities.
While the upper one is a feature of the model
and of no further importance, the lower one
is characteristic for a one-dimensional system.
Taken from [4]

(b) Resulting band and spectral function shifted
by the barrier potential with respect to site j.
Colour bar indicates height of spectral func-
tion. Taken from [4]

Figure 3.4.: Dispersion relation and density of states of a tight-binding model and the density of
states within the band shaped by a barrier potential.

all possible explanations agree that the electron-electron interaction causes this phenomenon,
there have been very different approaches to explain it.

3.4. 0.7 anomaly as an interaction effect

An explanation of the 0.7 anomaly has recently been found by Bauer et al. [4]. They show
that the phenomenon can be understood as a consequence of the renormalization of the
potential due to the great interactions between the electrons within the constriction of the
QPC and state that the smeared van Hove singularity of an one-dimensional system is the
origin of this anomaly.

They use a tight-binding chain with a parabolic barrier potential with curvature Ωx to model
the QPC. A tight-binding model has two van Hove singularities as depicted in Figure 3.4a.
While the lower one is the characteristic van Hove singularity of an one-dimensional system,
the upper one is an artefact of the model and of no further importance. With the applied
potential barrier of a quantum point contact the local density of states deforms with the
potential as illustrated in figure (3.4b). Bauer et al. show that the relevant singularity is
cut off due to the missing translational invariance and that the peak is asymmetric with
respect to its maximum. Further they point out that the maximum is not at the energy of
the barrier height but shifted by an amount of Ωx, as illustrated in Figure 3.5.

With decreasing barrier, transport channels open up and conductance can be measured. As
described above in a noninteracting picture we would expect that the conductance unifor-
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Figure 3.5.: Barrier potential and corresponding peak of the spectral function in the center of the
constriction for three different heights of the barrier. Dashed line indicates the chemical
potential and coloured solid line indicate position of corresponding barrier top. It is
illustrated that the maximum of the peak is shifted with respect to the top of the barrier.
Further it can be seen that the change in the local density n is more dramatically if the
peak is around the chemical potential (red line) than far away of it (blue and black
cases).

mally rises and one would measure a symmetric step of the form

G/GQ =
1

e2π(Vg−µ)/Ωx + 1
. (3.10)

where Ωx is the curvature of the barrier potential and µ the chemical potential. This
noninteracting conductance is depicted in Figure 3.7a.

But interaction plays a crucial role. As the interaction of two electrons with each other
is proportional to their overlap integral, within the constriction the interaction is strongly
enhanced due to the tight transversal potential. This strong interaction leads to two effects
that renormalize the effective potential. Even all their calculations are made within the
fRG scheme, thus far beyond first order perturbation theory, they can already explain the
anomaly by considering a first order self-energy.

Due to the repelling interactions between the electrons the potential becomes renormalized,
which in terms of perturbation theory can be written as

Ṽj = Vj + Σj (3.11)

with the first order self-energy

Σj = njUj . (3.12)
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Figure 3.6.: Local density plotted as a function of the site number for a gate voltage above the point
where the maximum of the potential passes the chemical potential. Hence, the density
is zero in the center and rises towards the leads, because the potential decreases. The
Hartree effect is therefore higher where the potential is low. The oscillations are Friedel
oscillations and the second slope in the outer region arises because here the potential is
so low that the influence of the interaction on the density dominates.

Consequently, this Hartree effect leads to an effectively higher potential at every site with
an increasing impact due to an increasing n. Since the local density on each site is given by

nj =

∫ µ

−∞
A0
j (ω)dω (3.13)

one can see in Figure 3.6 that in general at sites with low potential the local density and thus
the impact of this effect is bigger than at those with a high potential. But more important
for the characteristic form of the conductance step is the change of the local density with
changing gate voltage. In Figure 3.5 three different positions of the barrier height and the
corresponding lower peak of spectral function at the central site j = 0 are depicted, which
illustrates the following relation

dnj
dVg
∝ −A0

j (µ) (3.14)

i.e. that the change in n with changing gate voltage is more drastically if the peak of the
density of states is around the chemical potential than far away of it.

This in mind, one considers the local density at the central site, as depicted in Figure 3.7a.
Here the density and the corresponding conductance are plotted as a function of gate voltage
with and without interaction. One can see that the density with interaction is always lower
due to an effectively higher potential. Further for a certain range of gate voltage the density’s
increase is considerably less compared to the noninteracting case. The Hartree effect seem
to compensate partly the decreasing barrier potential in this domain. It happens when
the gate voltage is reduced such that the peak of the DOS passes the chemical potential,
which enhances the local density exceedingly. At the same time the higher local density
amplifies the Hartree effect, which counteracts and thus compensates partly the rise. The
density increases less, a kink arises. The impact on the conductance is accordingly, it can
be seen precisely that the increase is less than in the noninteracting case which leads to the
pronounced shoulder.

There is a second effect which can be considered as a scattering effect. This effect becomes
relevant when the maximum of the DOS lies exactly at the chemical potential. A lot of
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(a) Local density and corresponding conductance
as a function of gate voltage with and without
interaction. Zero point of the gate voltage cor-
responds to barrier top at chemical potential.
Interaction lowers the local density due to the
effectively higher potential. When the peak of
the spectral function passes the chemical po-
tential the local density in the interacting case
increases less, because the Hartree effect partly
compensates the exceeding increase in the local
density of states. Thus a kink in the density
arises. This has the same impact on the slope
of the conductance, there is a pronounced kink
in the step. Further, the whole step is shifted
due to the higher effective potential.
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(b) Spin resolved local density and corresponding
conductance as a function of gate voltage com-
pared to the density and conductance without
magnetic field. Zero point of the gate voltage
corresponds to barrier top at chemical poten-
tial. Effective potentials of the spin up and
spin down electrons are shifted appart, be-
cause the effective Hartree effect for spin up
electrons is decreased for spin down electrons
increased. Therefore, their effective potentials
pass at very diferent gate voltages the chemi-
cal potential, i.e. while the local density of the
spin down electrons firstly show only slight in-
crease, the local density of the spin up elec-
trons rises exceedingly, because its effective po-
tential is already around the chemical poten-
tial.The impact on the conductance is accord-
ingly, the shoulder is more pronounced for the
spin up electrons, while the conductance of the
spin down electrons rises considerably later.

Figure 3.7.: Local density and conductance as a function of gate voltage for the central site.

possible states at the Fermi level then enhance the possibility of elastic scattering which
further lowers the increase of the conductance.

Recalling that the maximum of the spectral function lies slightly above the barrier height, it
becomes apparent that the peak of the DOS passes the chemical potential for slightly higher
gate voltages than the barrier height does. Bauer et al. showed that for a gate voltage
related to a conductance of around 0.7GQ, the peak passes the chemical potential. Thus,
the combination of these effects lead to the special form of the first step of the conductance
measured as a function of gate voltage, where the increase of the conductance is diminished
in a certain range which forms the prominent kink of the 0.7 anomaly.

The evolution of the conductance with increasing magnetic field can be understood as a
consequence of the enhanced Landé factor.

It can be explained in terms of a Hartree effect as well: An applied magnetic field shifts
the effective potential within the QPC. Electrons with a spin in direction of the magnetic
field experience a lower effective potential, electrons with opposite spin an effectively higher
one. This also causes a shift of the density of states and therefore causes a higher density n↑
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than n↓ as depicted in Figure 3.7b. Due to the repelling interaction between the electrons
the incoming spin down electrons experience an even higher potential, because they are
repelled by the electrons which are already within the constriction. Altogether this rises
the difference in between the effective potentials of spin up and spin down electrons, i.e.
enhances the effective g-factor. In terms of perturbation theory this can be understood
similarly as described above, where the effective potential of spin down electrons is

Ṽ ↓j = V ↓j + Σ↓j (3.15)

with
Σ↓j = n↑jUj . (3.16)

A magnetic field therefore shifts effective potential of spin up and spin down electrons with
respect to each other. This increases the total Hartree effect for spin down electrons, whereas
for spin up electrons this effect decreases the total Hartree effect. As we can see in Figure 3.7b
it leads to a less pronounced shoulder of the conductance of spin up electrons, while the
whole step of the conductance of the spin down electrons is clearly shifted towards lower
gate voltages due to this effectively higher Hartree effect. Because the increase of Hartree
effect for spin down electrons exceeds the decrease for spin up electrons, combinated to the
total conductance this strengthens the kink with increasing magnetic field.





4. fRG applied to a QPC with n subbands

In this chapter our tight-binding model of a QPC with n subbands is explained, which offers
us the possibility to compute n conductance steps and investigate the influence of the higher
modes on the conductance. The fRG equations are set up using an approximation developed
by Bauer et al [4] within a static fRG2 scheme. Finally, we define the observables that have
been computed.

4.1. Model

In order to compute the conductance through a QPC with n contributing transversal modes
we model this system with n infinite tight-binding chains. All chains are exposed to quadratic
potentials that form the barriers. On-site Coulomb interaction are between electrons on
one site as well as between electrons of the same site of different subbands. Interband
transitions are excluded in our model. The model consists of a central contact region which
is coupled to semi-infinite noninteracting leads on both sides. This is described by the
following Hamiltonian with n subbands:

H =
N∑

j=1

n∑

k=1

[
(Ekj − µ)(nk↑,j + nk↓,j)−

∑

σε↑,↓
τ(d†kσ,j+1dkσ,j + h.c.)

+
∑

σ,σ′ε↑,↓

n∑

l=1

Ukσ,lσ
′

j nkσ,j nlσ′,j −
B

2
(nk↑,j − nk↓,j)

]
. (4.1)

B

U2

U12
E2

j
E1

j

Figure 4.1.: Illustration of the used model for n = 2.
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d†kσ,j , dkσ,j are creation and annihilation operator, respectively and nkσ,j is the local density
operator where k labels the subband, σ the spin and j the number of site. The first term
describes with Ekj a local potential to model the quantum point contact. The second term
specifies the hopping between sites with τ as the hopping amplitude. And the third term

describes with Ukσ,lσ
′

j the Coulomb interaction, where Ukσ,kσj = 0 due to Pauli principle. The
last term describes Zeeman splitting with B as an external magnetic field. Local potential
as well as Coulomb interaction are constricted to the central contact region.

An infinite, homogeneous tight-binding chain is a convenient choice to model a channel
through a quantum point contact, since it is applicable to the fRG scheme and shows as
discussed in section (3.4) two van Hove singularities, where the one with εmin reflects the
singularity of a one-dimensional system, whereas the singularity at εmax is an artefact of
this model which does not do any harm.

Infinity of the chains is modeled by coupling the constriction region to semi-infinite, non-
interacting leads on both site. Via projection method one can calculate a lead Green’s
function g which projects the influence of the semi-infinite chain into the interacting region.
For further information about this see [8] or [13]. The noninteracting leads thus are reflected
in the Green’s function:

G(ω) =
1

w −H − Σ− glead(|1〉 〈1|+ |N〉 〈N |)
. (4.2)

As discussed in section 3.1, the potential to model a QPC barrier is a negative quadratic
potential. Therefore inside the constriction area it is modeled as follows

Ej = Ṽg −
1

2
mω2

xx
2 = Ṽg −

Ω2
xj

2

4τ
(4.3)

where the analogy to a harmonic oscillator is used, defining x = aj, the mass of electron at
the bottom of the energy band m = ~2

2τa2
and the curvature of the potential as Ωx = ~ωx.

Bauer et al. [4] showed that Ωx defines an energy scale and it is henceforth used as such.
Potentials for different subbands are all choosed equal in curvature, but with different offset
Ṽg, such that there is a sublevel spacing ∆E = Ej+1 − Ej .

The interaction is site-dependent and turned on adiabatically to avoid extra effects due to
a sudden rise, since the leads are modeled as noninteracting. Therefore the site dependent
factor of the interaction is modeled via

Uj = exp(− ((j − 0.5N + 0.5)/2N)6

1− (j − 0.5N + 0.5)/2N)6
) . (4.4)

The total interaction then consists of

Ukσ,lσj = Uj · Ukσ,lσ′ (4.5)

where the second contribution takes care of the band dependent maximal value of the
interaction. U/

√
τΩx defines an effective interaction strength [4], which needs to be chosen

carefully in order to avoid divergency, but at the same time cannot be too small to see
proper interaction effects.



4.2 fRG equations 29

For the dependence on the subband numbers k and l we consider the following two possibili-
ties. Firstly, a physical assumption is to calculate the overlap of the wave functions which is
proportional to the interaction strength. Since we model our constriction with a harmonic
potential, the wave functions of a harmonic oscillator can be used to calculate the ratio of
interactions. Assuming on-site interactions this leads to

Uk,l ∝
∫ ∞

−∞
dx|Ψk(x)|2|Ψl(x)|2 (4.6)

with Ψk as wave function of the harmonic oscillator. One can calculate e.g. that U2,2 =
0.75 U1,1 and U1,2 = 0.5 U1,1. Here we see that the overlap decreases with increasing energy
level. As a second possibility, we will also study the case that all interactions are equal.
This is at first glance unphysical, but can be used to see possible screening effects in the
effective interaction of the higher subbands.

4.2. fRG equations

Starting point are the written out fRG equations for the one- and two-particle vertex func-
tions (eq.(2.34) and (2.35)), because we work in this system with static fRG2. The two-
particle vertex functions can be divided into four parts consisting of the three contributions
to the vertex function generated by the P -, X- and D- channel plus the bare two-particle
interaction U:

γΛ
2 = U + γΛ

p + γΛ
x + γΛ

d (4.7)

For our calculations we only take those vertices into account which are generated in second
order by the bare interaction and set all other vertices to zero. All these vertices and the
generating diagrams are depicted below. They are arranged according to their spin and
space structure and labeled by the channel in which they are generated most intuitively.
It needs to be emphasized that the D- and X- channel are equal up to a minus sign due
to an interchange of two legs in the diagram. Therefore, this labeling isn’t unique. There
are the following types of two-particle vertex functions and their corresponding generating
diagrams in second order (black dots denote bare interaction):

P σ1,σ2ij := γΛ
p (iσ1, iσ2; jσ1, jσ2) (4.8)

σ2

σ1

k′2, iσ2

k′1, iσ1

k2, jσ2

k1, jσ1

P̄ σ1,σ2ij := γΛ
p (iσ1, iσ2; jσ2, jσ1) (4.9)

σ2

σ1

k′2, iσ2

k′1, iσ1

k2, jσ1

k1, jσ2
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Xσ1,σ2
ij := γΛ

x (iσ1, jσ2; jσ1, iσ2) (4.10)
σ2 σ1

k′1, iσ1

k′2, jσ2

k2, iσ2

k1, jσ1

X̄σ1,σ2
ij := γΛ

d (jσ1, iσ2; iσ2, jσ1) (4.11)
σ3 σ3

k′1, jσ1

k′2, iσ2

k2, jσ1

k1, iσ2

Dσ1,σ2
ij := γΛ

d (jσ1, iσ2; jσ1, iσ2) (4.12)
σ3 σ3

k′2, iσ2

k′1, jσ1

k2, iσ2

k1, jσ1

D̄σ1,σ2
ij := γΛ

d (iσ1, jσ2; iσ2, jσ1) (4.13)
σ1 σ2

k′2, jσ2

k′1, iσ1

k2, jσ1

k1, iσ2

In order to keep the notation as simple as possible, the subband number is absorbed into
the spin number, i.e. instead of using the labels j, k and σε(↑, ↓), we use j and σε(1 ↑, 1 ↓
, 2 ↑, 2 ↓).

Time-reversal symmetry of the Hamiltonian leads to

G̃ij(iω) = G̃ji(iω) . (4.14)

With this and the symmetries of the two-particle vertex function (as seen in section (2.8)),
we get the following symmetries of P , D and X:

P σ1,σ2ij = P σ1,σ2ji = P σ2,σ1ji = P σ2,σ1ij = −P̄ σ1,σ2ij , (4.15)

P̄ σ1,σ2ij = P̄ σ1,σ2ji = P̄ σ2,σ1ji = P̄ σ2,σ1ij = −P σ1,σ2ij , (4.16)

Xσ1,σ2
ij = Xσ1,σ2

ji = Xσ2,σ1
ji = Xσ2,σ1

ij = −D̄σ1,σ2
ij , (4.17)
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X̄σ1,σ2
ij = X̄σ1,σ2

ji = X̄σ2,σ1
ji = X̄σ2,σ1

ij = −Dσ1,σ2
ij , (4.18)

Dσ1,σ2
ij = Dσ1,σ2

ji = Dσ2,σ1
ji = Dσ2,σ1

ij = −X̄σ1,σ2
ij , (4.19)

D̄σ1,σ2
ij = D̄σ1,σ2

ji = D̄σ2,σ1
ji = D̄σ2,σ1

ij = −Xσ1,σ2
ij , (4.20)

If σ1 = σ2, it holds

Dσ,σ
ij = −Xσ,σ

ij and P σ,σij = 0 . (4.21)

Finally, after exploting all these symmetries we end up with three different types of vertices,
denoted P , X and D, one for each channel. For two subbands for example, i.e. four spin
possibilities this leads to 22 different vertex functions.

To set up the differential equations for these vertices, equation (2.35) is splitted into its
three parts, following the idea of Bauer [4]. In this way a structure similar to the known
random phase approximation structure (RPA) is achieved. Each type of vertex function
only generates itself in its corresponding channel, i.e. in that channel in which it has been
generated in second order. Those vertex functions, which are generated in higher order in
this channel are set to zero. That leads to the following equations:

ṖΛ,σ1,σ2
ij = γ̇Λ

p (iσ1, iσ2; jσ1, jσ2)

=
1

2π

∑

ω=±Λ

∑

kl

γΛ
2 (iσ1, iσ2; kσ1, kσ2)G̃σ2,Λkl (−iω)G̃σ1,Λkl (iω)γΛ

2 (lσ1, lσ2; jσ1, jσ2) ,

(4.22)

ẊΛ,σ1,σ2
ij = γ̇Λ

x (iσ1, jσ2; jσ1, iσ2)

=
1

2π

∑

ω=±Λ

∑

kl

γΛ
2 (iσ1, kσ2; kσ1, iσ2)G̃σ1,Λkl (iω)G̃σ2,Λkl (iω)γΛ

2 (lσ1, jσ2; jσ1, lσ2) ,

(4.23)

ḊΛ,σ1,σ2
ij = γ̇Λ

d (jσ1, iσ2; jσ1, iσ2)

= − 1

2π

∑

ω=±Λ

∑

kl

∑

σ3=
all spins

γΛ
2 (jσ1, kσ3; jσ1, kσ3)G̃σ3,Λkl (iω)G̃σ3,Λkl (iω)γΛ

2 (lσ3, iσ2; lσ3, iσ2) ,

(4.24)

Eq. (4.23) only holds for σ1 6= σ2, the differential equation of Xσ,σ
ij is covered by eq. (4.24).
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These equation can be written in a compact matrix notation:

d

dΛ
P σ1,σ2 = P̃ σ1,σ2Πσ1,σ2

p P̃ σ1,σ2 , (4.25)

d

dΛ
Xσ1,σ2 = X̃σ1,σ2Πσ1,σ2

x X̃σ1,σ2 , (4.26)

d

dΛ
Dσ1,σ2 =

∑

σ3=
all spins

−D̃σ1,σ3Πσ3,σ3
d D̃σ3,σ2 , (4.27)

P̃ , X̃ and D̃ are defined as follows:

P̃ σ1,σ2ij = P σ1,σ2ij + δij(X
σ1,σ2
jj +Dσ1,σ2

jj ) , (4.28)

X̃σ1,σ2
ij = Xσ1,σ2

ij + δij(P
σ1,σ2
jj +Dσ1,σ2

jj ) , (4.29)

D̃σ1,σ2
ij = Dσ1,σ2

ij + δij(1− δσ1,σ2)(P σ1,σ2jj +Xσ1,σ2
jj )− δijδσ1,σ2Dσ1,σ2

ij , (4.30)

The side diagonal term of P̃ , X̃ and D̃ takes into account the fact that

γΛ
2 (jσ1, jσ2; jσ1, jσ2) = Uσ1,σ2j + P σ1,σ2jj +Xσ1,σ2

jj +Dσ1,σ2
jj ∝ δσ1,σ2 (4.31)

i.e. that more than one channel contributes to this vertex function in second order and in
eq.(4.30) the last term uses eq.(4.21) and thereby ensures Pauli principle.

The bubbles for the P - and X/D-channel are defined in the following manner, respectively:

Πσ1,σ2
p,kl =

∑

ω=±Λ

G̃σ1,Λkl (−iω)G̃σ2,Λkl (iω) =
∑

ω=±Λ

G̃σ1,Λkl (iω)G̃σ2,Λkl (−iω) , (4.32)

Πσ1,σ2
x,kl = Πσ1,σ2

d,kl =
∑

ω=±Λ

G̃σ1,Λkl (iω)G̃σ2,Λkl (iω) (4.33)

where σ1 and σ2 can take any possible spin value. The differential equation for the self-
energy and accordingly the one-particle vertex function can be written in the following way
starting from eq.(2.34):

d

dΛ
Σσ1,Λ
ji = −γ̇Λ

1 (jσ1; iσ1)

= − 1

2π

∑

ω=±Λ

∑

σ2 6=σ1

G̃σ2,Λji (iω)P σ1,σ2ij + G̃σ2,Λjj (iω)Uσ1,σ2j δij + G̃σ2,Λji (iω)Xσ1,σ2
ij

+δij
∑

k

G̃σ2,Λkk (iω)Dσ1,σ2
jk − G̃σ1,Λji (iω)Dσ1,σ1

ij (1− δij)

+δij
∑

k 6=j
G̃σ1,Λkk (iω)Dσ1,σ1

jk (4.34)
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where eq. (4.31) has been used and the fact that

γΛ
2 (jσ, jσ; jσ, jσ) = 0 (4.35)

due to Pauli principle.

Initially, we set all vertex functions to zero:

P σ1,σ2,Λi
ij = Xσ1,σ2,Λi

ij = Dσ1,σ2,Λi
ij = 0 (4.36)

Here Λi is the initial value of flow parameter Λ.

4.3. Observables

4.3.1. Conductance

Our main goal is to compute the transport through the interacting system of a QPC. In
order to compute the conductance we use the Landauer-Büttiker formula, which a priori
is only valid within a noninteracting model. But it has been shown that it is valid for
interacting systems within the fRG scheme. Thus, the formula is just quoted here, for a
detailed explanation, see [9].

G =
e2

h

∑

σ

|2πρlead(µ)τL1 τ
R
NGσN,1(µ)|2 (4.37)

where ρlead is the density of states of the noninteracting leads and τ are the coupling con-
stants to the leads.

4.3.2. Local density

Another physical observable which is computed is the local density, also called local charge,
which is composed of the spin resolved local density as

nj = nj↑ + nj↓ . (4.38)

As already used in section (3.4) the local density can be written as

nσj =

∫ µ

−∞
Aσj (ω)dω

= − 1

π

∫ µ

−∞
Im Gσjj(ω)dω (4.39)

for T=0 [[20], section 11.4.2]. On the other hand,

nσj = < cj,σc
†
j,σ > =

1

β

∑

n

Gσjj(iωn)ei0
+

(4.40)
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and it can be shown that the convergence factor leads to an extra factor of 1
2 [21]

nσj =
1

β

∑

ωn≥0

Re Gσjj(iωn) +
1

2
(4.41)

which is the used equation to compute it numerically.

Because we use static fRG, we are forced to set up the frequency dependent Green’s function
with the frequency independent self-energy computed in our fRG scheme. This seems to be
a crude approximation, but it has been shown by Andergassen et al. [5] that this leads to
good and reliable results.

4.3.3. Local magnetization

The local magnetization is computed from the local density via

mj =
1

2
(nj,↑ − nj,↓) . (4.42)

4.3.4. Spin susceptibility

The local spin susceptibility is computed as

χj =
(∂mj

∂B

)
B=0

, (4.43)

the total spin susceptibility

χtot =
∑

j

χj (4.44)

with the sum over the central contact region.

4.3.5. Low-energy scale B*

For a fixed gate voltage the conductance can be described in dependence of magnetic field
B, temperature T and source drain voltage Vsd as [4]

G(B, T, Vsd)

GQ
' 1− B2

B∗2 −
T 2

T∗2 −
V 2
sd

Vsd∗2
. (4.45)

Since we work with static fRG, we can access neither the influence of nonzero temperature
nor of the source drain voltage, but only of the magnetic field. Thus, we only consider the
dependence on the magnetic field of the conductance

G(B)

GQ
' 1− B2

B∗2 . (4.46)

By computing B* the strength of the influence of the magnetic field on conductance is
evaluated. The smaller the energy scale B* the stronger the influence of the magnetic field.



5. Results

The model of a QPC with n subbands as presented in section 4.1 is used within the fRG
scheme to investigate the impact of higher modes on the conductance and the 0.7 anomaly.
The numerically computed results are presented in this chapter. Firstly, our model and
the corresponding fRG equations offer the possibility to investigate the effect of one third
order term in the fRG equations on the conductance of a one-band model. To investigate
the impact of more than one transport channel on the conductance anomaly, systems with
two subbands and with four subbands are considered. Finally, the impact of one half-filled
subband on a second subband is examined.

In all figures in this chapter the gate voltage as defined in (4.3) is shifted by half the bandwidth
2τ :

Vg = Ṽg − 2τ . (5.1)

This way the zero point denotes the gate voltage where the barrier top is at the chemical
potential. Further, the hopping amplitude is chosen constant throughout the whole thesis
and set to one, i.e. τ = 1.

5.1. Effect of one higher order term on the conductance of a
one-band model

If one looks at the fRG equations as set up in section 4.2, one can consider the vertex
functions of a model with two or more subbands and compare them with the vertex functions
which are generated in second order in a one-band model. In equations (4.8) to (4.12)
the different types of vertices and their generating diagrams are shown. Vertex functions
denoted as P σ1,σ2i,j and Xσ1,σ2

i,j can be generated in a one-band model the same way, but the
vertex function denoted as Dσ1,σ2

i,j is generated in second order only for σ1 = σ2. Looking at
equation (4.12) and its corresponding diagram this is easy to understand. For a second order
diagram there needs to be a third possible number in σ if σ1 and σ2 are different, because
there is no interaction between electrons in the same state due to Pauli principle. Recalling
that the quantum number σ is a composite index for both the spin and the band number,
we can easily see that for a one-band model there are only spin up and spin down, i.e. two
possibilities for σ. Therefore the diagram of eq.(4.12) is not possible in a one-band model if
σ1 6= σ2, because it requires at least three different spin-band-states. But the corresponding
vertex function is generated in third order in a one-band model.

Our equations are set up to consider a two-band model, but setting U2 = U12 = 0 we can
take the equations for the one-band model as well. Further we can either set the extra third
order Dσ1,σ2

i,j vertex artificially to zero or take it into account and this way we can see its
influence on the full interaction.
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Figure 5.1.: Comparison of vertex functions at the central site and conductance plotted against gate
voltage for one band. The dashed lines denote the purely second order model, the
solid lines the model with D↑,↓

0,0 . The D↑,↓
0,0 is positive and therefore enhances the effective

interaction. Its effect on P ↑,↓
0,0 and X↑,↓

0,0 is small, while it causes the conductance shoulder
to become less pronounced.

−2 −1 0 1
0

0.2

0.4

0.6

0.8

1

V
g
/Ω

x

G
/G

Q

 Ω
x
= 0.031 τ, N = 301,U =0.63τ

2nd order

 B=0.000 Ω
x

 B=0.028 Ω
x

 B=0.040 Ω
x

 B=0.056 Ω
x

 B=0.078 Ω
x

 B=0.109 Ω
x

 B=0.153 Ω
x

 B=0.214 Ω
x

 B=0.300 Ω
x

(a) Conductance as a function of gate voltage for
several values of B for the purely second order
model of one band.
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Figure 5.2.: Comparison of the conductance as a function of gate voltage for several values of a
magnetic field B for the purely second order model and the one with the extra D struc-
ture. With increasing magnetic field the kink becomes more pronounced. Its effect is
even stronger with D↑,↓

0,0 nonzero, in agreement with the higher effective interaction (see
Figure 5.1). In the purely second order model the lower part of the step is more faned
out.
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Figure 5.3.: Low-energy scale B* logarithmic plotted as a function of gate voltage, computed with
and without the extra D↑,↓

0,0 structure. B* shows a negative exponential dependence on
the gate voltage for Vg < −0.4 Ωx. The extra D structure leads here to a shift of the
curve towards higher gate voltage and between Vg = 0 Ωx and Vg = −0.8 Ωx to a smaller
B*, thus an increased impact of the magnetic field.

In Figure 5.1 the results are compared. The different contributions to the full vertex function
at the central site of the potential and the conductance as a function of gate voltage are
depicted. Dashed lines are used for the purely second order model, solid lines for a model
with the third order Dσ1,σ2

i,j structure. The vertex functions P ↑,↓0,0 , X↑,↓0,0 and D↑,↓0,0 are defined
in eq.(4.8) to (4.12) with n=1 and sum up to the full vertex function γ2 (eq.(4.31)). All
values are considered for i = j = 0, i.e. at the central site of the chain.

We can see that the D↑,↓0,0 vertex is positive and adds up such that the full vertex γ2 is
enhanced. It is smaller than the contribution of the two other structures, as expected for a
higher order term. There is an influence on the P ↑,↓0,0 and X↑,↓0,0 structure due to the fact that
for diagonal term as by definition (4.28, 4.29, 4.30) the vertex functions of different channels

contribute to each other. But this influence is rather small. The conductance with the D↑,↓0,0

function rises slightly quicker and therefore shows a less pronounced shoulder.

In Figures 5.2a and 5.2b the evolution of the conductance with rising magnetic field is
illustrated without and with D↑,↓0,0 respectively. One can see the expected enhancement of
the kink with rising magnetic field. Though the conductance step with zero magnetic field
shows a less pronounced shoulder with nonzero D↑,↓0,0, the influence of the magnetic field is
enhanced, especially for small magnetic fields. This is in agreement with the higher effective
interaction in Figure 5.1, since the interaction increases the effective Landé factor. Further
it can be observed that the lower tail is more faned out for the purely second order model
than with the extra D structure.

These observations are confirmed, if the low-energy scale B* is considered. It is a quantity
that measures the impact of the magnetic field and defined via eq. (4.46). In Figure 5.3
the dependence of B* with respect to the gate voltage is depicted for a purely second order
model and with the extra D structure. B* shows a negative exponential dependence on
the gate voltages if Vg < −0.4Ωx. If the extra D structure is included the curve becomes
shifted towards higher gate voltages. Between Vg = 0 Ωx and Vg = −0.8 Ωx B* is smaller,
accordingly the effect of the magnetic field is enhanced, as observed above. Below Vg =

−0.8 Ωx the energy scale B* is slightly higher if D↑,↓0,0 is included, the influence of the magnetic
field decreased.
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Figure 5.4.: Comparison of conductance and vertex functions on the central site for two different
choices of the interaction plotted as a function of gate voltage. The width of the plateau
is much bigger if the interactions are chosen equal than if the interactions are chosen
as in eq. (5.2). In both cases the shape of the steps appear equal. Vertex function on
the central site are depicted in units of the on-site interaction of the first mode. Overall
behaviour is equal in both cases, but the vertex functions in the case of equal interactions
are bigger due to the bigger interactions. Further they show more pronounced maxima
and minima and as the conductance they are shifted towards smaller gate voltage. Only
the vertex function of the first mode γ2(1 ↑, 1 ↓) shows a pronounced difference. In
case of equal interactions it decreases, when the second step of conductance starts to
rise and thus becomes smaller than the corresponding vertex function in the case of
different interactions. Comparing the vertex functions γ2(1 ↑, 1 ↓) and γ2(2 ↑, 2 ↓) in
case of equal interactions, it is noticed that the vertex function of the second mode has
a slightly smaller maximum.

5.2. QPC modelled with two subbands

As presented in section 3.4, Bauer et al. [4] modeled a quantum point contact with one
tight-binding chain to compute the first conductance step, where the conductance anomaly
of a QPC is observed. Motivated by this work, we now considered the model presented in
section 4.1 with n chains, i.e. with n transversal modes to study conductance where more
than one mode is involved. We begin by considering a model with two chains.

It has been discussed in section 4.1 that it is a physical assumption that the on-site interac-
tion for the first mode is larger than the one in the second mode and in between the modes.
Calculated with eq. (4.6), for a two-band model we take

U2 = 0.75 · U1 and U12 = 0.5 · U1 . (5.2)

On the other hand, setting all interactions equal, potential screening effects on the effective
interaction could be observed. Hence, all observables are computed for these two possible
choices of interaction strengths. Throughout this chapter the first choice is denoted as ’with
different interaction’ and respectively the second one as ’with equal interaction’.
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(a) Conductance as a function of gate voltage for
several values of magnetic field B for a two-
band model with equal interactions with a
small subband spacing.
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(b) Conductance as a function of gate voltage for
several values of magnetic field B for a two-
band model with equal interactions with bigger
subband spacing.
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(c) Conductance as a function of gate voltage for
several values of magnetic field B for a two-
band model with different interactions with a
small subband spacing.
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Figure 5.5.: Conductance as a function of gate voltage for two different sublevel spacings ∆E. Up-
per row shows conductance with equal interactions, lower row shows conductance with
interactions chosen with the ratio of eq.(5.2). Equal interactions lead to a largely elon-
gated conductance step compared to the case of different interactions. The impact of
the magnetic field can be seen best in the Figures 5.5a and 5.5d, where one can observe
that the change with magnetic field in the second step is larger if U2 = U1 than if they
are chosen differently.
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Figure 5.6.: Low-energy scale B* plotted logarithmically as a function of gate voltage for the first
and second subband in the cases of equal and different interactions. B* shows a negative
exponential dependence on the gate voltage. This holds better for the second subbands
than for the first bands, where the slope is not perfectly straight. The curve for B*
with equal interactions is slightly shifted towards higher gate voltages. The curves for
the second subbands are shifted with respect to each other analogously as the second
conductance step. The minimum of B* for the second band with different interactions
lies at a higher value, which reflects the fact, that the influence of the magnetic field is
less in the second step as observed in Fig. 5.5d.

In Fig. 5.4 conductance and vertex functions on the central site are plotted as a function of
gate voltage for the two choices of interactions. Though the sublevel spacing ∆E = 1.2 ∗Ωx

is equal in both cases and thus one would expect the same plateau width, one notices that
the width is much bigger if the interactions are chosen equal than with different interactions.
The shape of the conductance steps does not differ, neither in between the different choices
of interaction nor in between the first and second step of the same case.

Fig. 5.4 also depicts the vertex functions at the central site in units of the bare interaction
U1, i.e. the on-site interaction of the first mode. The interaction is chosen as U1 = 0.63τ .
Comparing the vertex function for the two cases of interactions, it is observed that they
show nearly equal behaviour. The most pronounced difference is exhibited by the vertex
function of the first mode γ2(1 ↑, 1 ↓), which is the biggest vertex function in both cases.
It has a maximum at the gate voltage, where the conductance bends. Further it can be
observed that in the case of equal interactions the vertex function decreases when the second
step of the conductance starts to rise, while with different interactions it does not decrease
that explicitly. Hence, for low gate voltages this vertex function is smaller in the case
of equal interactions than with different interactions. The vertex function of the second
mode γ2(2 ↑, 2 ↓) and all vertex functions for interaction between the two modes γ2(1σ, 2σ′)
show similar behaviour for both cases. γ2(2 ↑, 2 ↓) shows a maximum at that gate voltage,
where the conductance bends. All γ2(1σ, 2σ′) have the same value, independent of the exact
spins and show unexplicit maxima and minima. In the case of different interactions, i.e.
with smaller U12 and U2, the vertex function are accordingly smaller, show less pronounced
minima and maxima and they are shifted as the second step of the conductance with respect
to the gate voltage. Comparing the vertex functions γ2(1 ↑, 1 ↓) and γ2(2 ↑, 2 ↓) in the case
of equal interactions, it is noticed that the vertex function of the second mode has a slightly
smaller maximum.

In the Figures 5.5 the conductance is plotted as a function of gate voltage and one can see
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eral values of magnetic field B. The gate volt-
age is chosen such that the first transport chan-
nel is open, while the second one is still closed.
The minimum of the local density lies at the
central site and is nonzero for the first band
and zero for the second subband. With de-
creasing potential towards the leads, the local
density increases. The density of the first band
is bent, when the local density of the second
band starts to rise. In the outer regime the
influence of the interaction dominates the im-
pact of the potential, which yields the different
slope. A magnetic field does not change the lo-
cal density of the first band.

Figure 5.7.: Local density as a function of gate voltage (5.7a) and as a function of the number of site
j for several values of B (5.7b).

again that the choice of the interaction affects the width of the first plateau. While the
whole appearance of the steps with different interactions is a little more elongated than
with equal interactions, the plateau is much larger with equal interactions. Therefore, we
computed the conductance for two different sublevel spacing ∆E = 0.8 Ωx and ∆E = 1.4 Ωx.
One can see that in the case of equal interactions the width is very broad with a sublevel
spacing of ∆E = 1.4 Ωx, hence a better choice is ∆E = 0.8 Ωx. On the other hand, for the
case where the interaction are chosen via eq. (5.2) a sublevel spacing of ∆E = 0.8 Ωx is too
small. When the second channel starts to open, the first step is not saturated yet. In this
case a more reasonable choice seems to be a sublevel of ∆E = 1.4 Ωx.

The influence of the magnetic field on the conductance can be seen best with reasonable
sublevel spacing as in the Fig. 5.5a and Fig. 5.5d. It is equal in the first and the second step
in the case of equal interactions, which is consistent with equal interactions in the first and
second mode. For different interactions (Fig. 5.5d) it can be noticed that the effect of the
magnetic field is larger in the first step than in the second step, which analogously might
be explained with the smaller interaction in the second mode. Further one can see that in
the second step the lower part is more faned out in both cases of interaction. This cannot
be seen in the first step, there all curves lie above each other in the lower tail of the step.

The influence of the magnetic field can also be read off the low-energy scale B*. It is depicted
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(a) Local magnetization as a function of the site
number j for the first subband. The gate volt-
age is chosen such that the first channel is
open, while the second one is closed. The mag-
netization has its maximal value at the central
region, which enhances with increasing mag-
netic field. With particular high magnetic field
the effective potential for spin down electrons
is too high, only spin up electrons can pass
which leads to the small dip in the maximum.
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(b) Local magnetization as a function of the site
number j for the first subband. The gate volt-
age is chosen such that both channels are open.
Therefore, magnetization is rather small and
has its maximum at the central site, which in-
creases with increasing magnetic field.
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(c) Local magnetization as a function of the site
number j for the second subband. The gate
voltage is chosen such that the first channel is
open, while the second one is closed. Thus,
in the central region there is no local density
independent of the magnetic field. With de-
creasing potential towards the leads the den-
sity increases and therefore the magnetization
abruptly rises and then again exponentially de-
cays in the outer regime. The abrupt increase
is observed because in this region the magnetic
field not only lowers one spin resolved den-
sity while enhancing the other, but can lead
to an effectively closed channel for spin down
where spin up can already pass the constric-
tion. With increasing magnetic field the mag-
netization rises.
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(d) Local magnetization as a function of the site
number j for the second subband. The gate
voltage is chosen such that both channels are
open. This leads to a maximal magnetization
in the central region, which increases with in-
creasing magnetic field.

Figure 5.8.: The local magnetization as a function of the site number j for several values of the
magnetic field B and equal interactions. The upper row shows the magnetization for the
first subband, the second row the second subband. First column shows the magnetization
for a gate voltage that leads to an open first, but closed second channel, while in the
second column both channels are open.The oscillations are a consequence of the Friedel
oscillations of the local density.
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in Figure 5.6 for the first and the second subband and in the case of equal and different
interactions. The B* of the first band shows a very broad minimum compared to the one of
the second subband. In case of equal interactions the whole curve is shifted towards lower
gate voltages in comparison to the case with different interactions. With decreasing gate
voltage B* rises, but greater as in the second subband and not that straight. The low-energy
scale B* of the second subband shows a perfect straight slope with decreasing gate voltage.
The two different curves of the two possible choices of interactions are shifted with respect
to each other, as expected since the second steps of the conductance are shifted as well.
Further one can see that the minimum of B* of the second subband in case of different
interactions is higher as the minima of the first subband and as the minimum of the second
subband in case of equal interactions. This reflects the above discussed observation that the
influence of the magnetic field is smaller in the second step if the interactions U12 and U2

are smaller.

In Figure 5.7a the local density (computed via eq. (4.41)) for the central site in the first
and second step is compared for the situations with equal and different interactions. It is
observed that the density of the first subband with different interactions starts to rise earlier
than with equal interactions. Both rise with the same slope. Very pronounced is the effect of
the second subband on the local density of the first band. When the second channel opens,
the rising local density of the second band leads to a kink in the slope of the density of
the first band. In the case of equal interactions this evens yields a regime of constant local
density. Further it needs to be remarked, that even with nearly doubled sublevel spacing in
case of different interactions the second channel starts to open up for higher gate voltages
as the second channel in case of equal interactions.

In Figure 5.7b the local density as a function of site number j is presented. Firstly, the local
density of the first and second subband is depicted for a gate voltage, such that only the first
channel is open. Friedel oscillations are observed and in the central region the density of the
first subband is nonzero, while the local density of the second band vanishes. Secondly, the
evolution of the density with magnetic field is illustrated and it is noticed, that a nonzero
magnetic field does not change the total density.

Magnetization indicates the difference between the local density of spin up and spin down,
calculated as defined in eq. (4.42). Thus, it is zero in the absence of a magnetic field and
increases with increasing magnetic field. It is studied for the first and the second subband
for different gate voltages and in the case of equal and different interactions. In Figure 5.8
the magnetization as a function of the site number with equal interactions is depicted. In
the first row for the first subband and in the second row for the second subband. Each for
two different values of gate voltage, such that either only the first channel or both channels
are open. If only the first channel is open (Fig. 5.8a), the magnetization of the first band
has its maximal value in the central region, which increases with increasing magnetic field.
For a particularly high magnetic field, the local magnetization at the central site becomes
reduced. In the second subband the magnetization in the central site is zero, as expected and
abruptly increases as the site number increases. This is enhanced with increasing magnetic
field. In both subbands the envelope of the magnetization decays exponentially towards the
outer region, while the magnetization oscillates due to the Friedel oscillations of the local
density.

If both channels are open the magnetization of the first band has a maximum at the central
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site and decays oscillating towards the outer flanks (Fig. 5.8b). The magnetization of the
second subband is now maximal in the central region and rises with increasing magnetic
field. Towards the outer region of the chain the magnetization shows the same oscillations
and its envelope decays exponentially.

To understand the magnetization, one needs to picture the impact of a magnetic field on
the effective potential and thus on the local density. A parallel magnetic field leads to an
effective higher potential for the spin down electrons, while the spin up electrons experience
an effective lower one, which does not affect the total local density for both spin types, but
the spin-resolved local densities. The effective potential leads to a higher local density for
spin up and to a lower local density for spin down as depicted in section 3.4 in Figure 3.7b.
One can now understand that, if the local density is zero, the magnetic field has no impact,
as e.g. in the central region of the unpopulated second band. With increasing site numer
the local density rises as well as the influence of the magnetic field. For small but finite local
density its impact is especially high because it can yield such a high effective potential for
spin down electrons that only spin up electrons can pass the constriction. This explains the
maxima for the small site numbers, where the local density is nonzero, but small.

In Figure 5.9, for the sake of completeness, the four figures are shown in case of different
interactions. The evolution is the same, as a well as each figure shows an equivalent situation.

The local susceptibility is computed via eq. (4.43) and depicted as a function of site number
j in Figure 5.10. Susceptibility is the change of magnetization with magnetic field B and
indicates the density of states at the Fermi level. The same four situations as in the magne-
tization are considered, i.e. susceptibility of the first and the second band for gate voltage
such that either only the first band is populated or both are. Considering the susceptibility
of the first band if only this one is populated (Fig. 5.10a), the expected maximum at the
central site is observed, which is consistent with the observation in the magnetization of the
first band at this value of gate voltage. The height of the maximum rises with the magnitude
of interaction, i.e. the density of states at the chemical potential enhances. In Figure 5.10b
where both bands are populated, we see that the impact of the increasing interaction on
the susceptibility of the first band is weak, because the density of states at the chemical
potential is very low. Considering the susceptibility of the second band for gate voltage such
that only the first band is populated, consistent with Fig. 5.8c one observes a maximum,
where the magnetization has its maximum as well. In Figure 5.10d the susceptibility of
the second band in the case of such a low gate voltage that both bands are populated is
depicted. The susceptibility is maximal in the central region and enhanded with increasing
magnetic field.

In Figure 5.12 the total susceptibility as a function of gate voltage for several values of
interaction U1 of the first and second subband in the cases of equal and different interactions
are compared. The total susceptibility is the sum of the local susceptibility within the
interaction region (eq.(4.44)). The position of its maximum indicates the gate voltage,
where the peak of the local density of states passes the chemical potential. The total
susceptibility increases with increasing interaction. The maximum of the second band is
shifted with higher interactions towards lower gate voltages. With equal interactions this
effect is even more enhanced. In the case of different interactions the maximum of the
second band lies below the maximum of the first band for all values of interaction, due to
the smaller interactions in the second band. If all interactions are equal the maxima have
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(a) Local magnetization as a function of the site
number j for the first subband. The gate volt-
age is chosen such that the first channel is
open, while the second one is closed.The mag-
netization has its maximal value at the central
region, which enhances with increasing mag-
netic field. With particular high magnetic field
the effective potential for spin down electrons
is too high, only spin up electrons can pass
which leads to the small dip in the maximum.
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(b) Local magnetization as a function of the site
number j for the first subband. The gate volt-
age is chosen such that both channels are open.
Therefore, magnetization is rather small and
has its maximum at the central site, which in-
creases with increasing magnetic field.

−150 −100 −50 0 50 100 150

0

0.01

0.02

0.03

0.04

0.05

j

m
j

 Ω
x
= 0.031 τ, N = 301, ∆ E=1.4*Ω

x
, V

g
=−0.6 Ω

x

2nd band , U
1
=0.61τ, U

12
=0.5*U

1
, U

2
=0.75*U

1

 B=0.000 Ω
x

 B=0.012 Ω
x

 B=0.031 Ω
x

 B=0.077 Ω
x

 B=0.192 Ω
x

 B=0.481 Ω
x

(c) Local magnetization as a function of the site
number j for for the second subband. The gate
voltage is chosen such that the first channel is
open, while the second one is closed. Thus,
in the central region there is no local density
independent of the magnetic field. With de-
creasing potential towards the leads the den-
sity increases, because in this region the mag-
netic field not only lowers one spin resolved
density while enhancing the other, but can lead
to an effectively closed channel for spin down
where spin up can already pass the constric-
tion. With increasing magnetic field the mag-
netization rises.
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(d) Local magnetization as a function of the site
number j for the second subband. The gate
voltage is chosen such that both channels are
open. Maximal magnetization is again observ-
able in the central region, where for a very high
magnetic field analogously as in Figure a) a dip
arises in the maximum.

Figure 5.9.: The local magnetization as a function of the site number j for several values of the
magnetic field B and different interactions. The upper row shows the magnetization in
the first subband, the second row magnetization in the second subband. First column
shows the magnetization for a gate voltage that leads to an open first, but closed second
channel, while in the second column both channels are open. The different interactions do
not change the behaviour of the magnatization compared to the case of equal interactions.
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(a) Local susceptibility as a function of the site
number j for the first subband. The gate volt-
age is chosen such that the first channel is
open, while the second one is closed. Max-
imum is in the central region and enhanced
with rising interactions.
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(b) Local susceptibility as a function of the site
number j for the first subband. The gate volt-
age is chosen such that both channels are open.
Impact of the interaction is very weak, because
the gate voltage is so low that independent
of the interaction the spectral function at the
chemical potential is very low.
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(c) Local susceptibility as a function of the site
number j for the second subband. The gate
voltage is chosen such that the first channel
is open, while the second one is closed. In-
teraction enhances the shift of the maxima to-
wards higher site numbers. The susceptibility
is zero in the central region, since the potential
lies above the chemical potential and thus the
density of states is zero here. Maxima indicate
where the peaks of the density of states lie at
chemical potential.
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(d) Local susceptibility as a function of the site
number j for the second subband. The gate
voltage is chosen such that both channels are
open. Maximal value of the susceptibility lies
in the central region. Here the influence of
the interaction on the sublevel spacing is very
pronounced. In case of small interactions the
susceptibility is very low because the gate volt-
age is so low that the potential of the second
band lies much below the chemical potential.
Differently for strong interactions, the suscep-
tibility is high, here the peak of the density of
states in the central region lies at the chemical
potential.

Figure 5.10.: The local susceptibility as a function of the site number j for several values of the
magnetic field B and equal interactions. The upper row shows the susceptibilty in
the first subband, the second row susceptibilty in the second subband. First column
shows the susceptibility for a gate voltage that leads to an open first, but closed second
channel, while in the second row both channels are open.
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(a) Local susceptibility as a function of the site
number j for the first subband. The gate volt-
age is chosen such that the first channel is
open, while the second one is closed.Maximum
is in the central region and enhanced with ris-
ing interactions.
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(b) Local susceptibility as a function of the site
number j for the first subband. The gate
voltage is chosen such that both channels are
open.Impact of the interaction is very weak,
because the gate voltage is so low that inde-
pendent of the interaction the spectral func-
tion at the chemical potential is very low.
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(c) Local susceptibility as a function of the site
number j for for the second subband. The gate
voltage is chosen such that the first channel is
open, while the second one is closed. Inter-
action enhances the shift of the maxima to-
wards higher site numbers. The susceptibility
is zero in the central region, since the potential
lies above the chemical potential and thus the
density of states is zero here. Maxima indicate
where the peaks of the density of states lie at
chemical potential.
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(d) Local susceptibility as a function of the site
number j for the second subband. The gate
voltage is chosen such that both channels are
open. Maximal value is again in the central
region and significantly enhanced with rising
interactions.

Figure 5.11.: The local susceptibility as a function of the site number j for several values of the mag-
netic field B and different interactions. The upper row shows the susceptibilty in the
first subband, the second row susceptibilty in the second subband. First column shows
the susceptibility for a gate voltage that leads to an open first, but closed second chan-
nel, while in the second row both channels are open. The different interactions do not
change the behaviour of the magnatization compared to the case of equal interactions.
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(a) Total susceptibility as a function of gate volt-
age in case of different interactions. The maxi-
mal value of the susceptibility rises for the first
and the second band with increasing interac-
tion. It indicates the gate voltage, where the
peak of the density of states in the central re-
gion passes the chemical potential. The max-
imal value of the second band is shifted with
increasing interaction towards lower gate volt-
age and lies below the maximum of the first
band, due to the smaller interaction in the sec-
ond band.
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(b) Total susceptibility as a function of gate volt-
age in case of equal interactions. The posi-
tion of the maximum indicates the gate voltage
where the peak of the density of states passes
the chemical value. The maximal value in-
creases with increasing interaction. The maxi-
mum of the second band is shifted much more
towards lower gate voltage with increasing in-
teraction as in case of different interactions.
Its maximal value equals the maximal value of
the first band, except for the highest value of
interaction, where it even lies above the maxi-
mum of the first band.

Figure 5.12.: Total susceptibility for different and equal interactions as a function of gate voltage.

equal values, with very high interaction the susceptibility of the second band shows even a
higher maximum.

Finally, the conductance as a function of gate voltage for several values of interaction is
investigated. Although this is not an experimental measurable quantity, it is important to
investigate the impact of the magnitude of the interaction. Its impact on the conductance of
the first channel is very different between the two possibilities of interaction. In the case of
different interaction (Fig. 5.13a) both conductance steps show a more pronounced shoulder
and shifted towards lower gate voltage with increasing interaction. This effect is largely
enhanced in the second step by the high local density of the first subband, such that the
width of the first plateau increases with increasing interaction.

If the interactions are chosen to be equal, the impact of the interaction changes in the
first step. For small but increasing interaction the step also becomes shifted, but higher
increasing interactions lead to contrary behviour. The increase leads to a big shift towards
higher gate voltages. In the second step the evolution with increasing interaction leads again
to a more pronunced shoulder and a shifted step and the impact is also much bigger as in
the first step due to the filled first subband and even larger than in the case of different
interactions.

We can conclude that we observe with our model a second conductance step, where the
choice of interaction is very important. It defines the effective sublevel spacing as well as the
response of the conductance to the magnetic field. The response of the magnetic field in the
first step is as expected (Fig. 5.5a and 5.5d). The response of the second step is respectively
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(a) Conductance as a function of gate voltage for
several values of interaction for a two-band
model with different interactions. With in-
creasing interaction the steps show a more pro-
nounced shoulder and become shifted towards
lower gate voltages. This effect is largely en-
hanced in the second step by the high local
density of the first channel.
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(b) Conductance as a function of gate voltage for
several values of interaction for a two-band
model with equal interactions. Small, but
increasing interactions lead to a more pro-
nounced shoulder and a shifted step in direc-
tion of smaller gate voltage, while high inter-
action yield the inverse behaviour and shift
the first step in opposite direction. Differently
the second step is shifted significantly towards
smaller gate voltage with increasing interac-
tion, which is amplified by the high local den-
sity of the first channel.

Figure 5.13.: Conductance plotted as a funtion of gate voltage for several values of the interaction
U1. In the left plot the interactions are chosen differently, while in the right plot all
interactions are equal. This leads to very different behaviour in the first step.

smaller or equal, depending on the choice of interaction. Comparing it with measurements
as depicted in Figure 3.3b, the computed second step shows different behaviour. While the
measurement shows a shift with increasing magnetic field, the computed second conductance
step is fanned out in the lower part around a center point, where all conductance curves
intersect.

Moreover, we can state that the local density of the first mode is affected by the density
of the second one as expected and observations in the magnetization and local and total
susceptibility are in agreement with the results of Bauer et al. [4] such as high magnetization
and an accordingly high susceptibility in the central region of an open transport channel.
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Figure 5.14.: Conductance plotted as a funtion of gate voltage for a four-band model with differ-
ent interactions. With increasing magnetic field the steps shows a more pronounced
shoulder. But differently to the observation in the one or two-band model, the highest
magnetic field does not yet yield the expected spin-resolved plateaus, but only a smaller
slope. The change in the conductance with increasing magnetic field decreases towards
higher steps. The most pronounced difference between the first and the higher steps is
the fanned out lower part of the higher steps which is not observed in the first step.

5.3. QPC modelled with four subbands

The quantum point contact is now studied with four subbands. As in the previous section
we will consider two different cases of interaction. The first case is to choose all interactions
equal. The second one is to calculate them via eq. (4.6), such that

U12 = 0.5 · U1 U13 = 0.375 · U1 U14 = 0.3125 · U1

U22 = 0.75 · U1 U23 = 0.4375 · U1 U24 = 0.344 · U1

U33 = 0.64 · U1 U34 = 0.398 · U1 U44 = 0.57 · U1 (5.3)

This choice of interaction we will again label as ’different interactions’. The sublevel spacings
are chosen equally between the different transversal modes to observe the effect of the
interactions on it.

The computed conductance with different interaction is considered in Figure 5.14 as function
of gate voltage. Magnetic field leads in all four steps to the same effect, a smaller slope. In
all other conductance steps except the first one, it yields a fanned out step in the lower part.
In the four-band model even the biggest magnetic field does not show an approach towards
spin-resolved plateaus. Obviously, the effect of the magnetic field is smaller compared to
effect of the same field in a two-band model.
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Figure 5.15.: Low-energy scale B* plotted logarithmically as a function of gate voltage for the four
subbands. It can be observed that minimum of B* rises with number of the subband,
i.e. for higher conductance step the influence of the magnetic field decreases.

The impact of the magnetic field decreases with increasing number of subband. This is con-
firmed, if one considers the low-energy scale B* (Fig. 5.15). B* again depends exponentially
on −Vg. Looking at the minima, it is noticeable that they increase with increasing subband
number, i.e. the influence decreases.

Since one is interested in the different behaviour of the conductance through each band,
in Figure 5.16a the four steps are plotted individually and shifted towards the first step to
compare them. One can see that the second, third and fourth step show nearly the same
slope, while the slope of the first conductance step is larger.

This is confirmed in Figure 5.16b, where the conductance with B = 0 Ωx and its derivative
with respect to gate voltage is depicted. Here it is noticed as well that the first slope is
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(a) Comparison of conductance steps for the four-
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compare them. It is noticeable that the first
step has a very different rise compared to the
other three.
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Figure 5.16.: Comparison of the conductance steps and the derivative of the conductance in a four-
band model with different interactions.
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Figure 5.17.: Conductance and vertex function at the central site plotted as a function of gate voltage
for a four-band model in the case of different interactions. The vertex functions de-
crease with increasing number of the involved subbands, as well as interaction between
different subbands is smaller. All vertex function show a minimum, when the respective
conductance step starts to rise.

larger than the slope of the higher steps. As it can be read off from the positions of the
maxima of the derivative, the three higher steps are nearly equidistant, only the first step
is slightly broader.

In Figure 5.17 the vertex funcion at the central site and the according conductance with
B = 0 Ωx are depicted as a function of gate voltage. The vertex functions are measured in
units of the initial value of the first chain U1. The interactions are initialized as different,
i.e. the interaction decreases with increasing number of the involved subbands, as well as
interactions between subbands are smaller as on one chain. Hence, it is expected that the
largest vertex function is γ2(1 ↑, 1 ↓) and the other vertex function are accordingly smaller.
Those vertex functions that are effective interactions on the same subband are depicted by
solid lines. Each of these vertex functions has a minimum in the regime of gate voltage,
where the respective transport channel opens. Vertex functions between different subbands
are illustrated with dashed lines and show only small or no minima. None of the vertex
functions become considerably larger than their initial value.

In Figure 5.18a conductance as a function of gate voltage for several values of interaction is
depicted. For small interaction the increase leads to a shift towards smaller gate voltage. But
for high interactions this behaviour becomes inverse and the conductance is shifted towards
higher gate voltage. With increasing interaction the width of the plateaus enhances. This
effect is even stronger in higher modes due to the amplifying effect of the local density of
the lower subbands. It appears to be smaller for high interaction, but this is due to the
overall shift of the conductance graph.

The total susceptibility as a function of gate voltage for the four subbands in case of different
interactions is illustrated in Figure 5.18b. The maxima indicate the gate voltage, where the
peak of density of states of the respective subband passes the chemical potential. Consistent
with Figure 5.18a the maxima of the first band are shifted towards higher gate voltage. The
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(a) Conductance plotted as a function of gate volt-
age for a four-band model for several values
of the interaction in case of different interac-
tions. Increasing interactions lead to a shift
towards smaller gate voltages and a more pro-
nounced shoulder. Very high interaction leads
to inverse behaviour and a pronounced shift to-
wards higher gate voltage of the whole graph.
The plateau widths are enhanced by higher in-
teractions, even more for the higher steps due
to the amplifying effect of the local density of
the lower subbands.
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(b) Total susceptibility as a function of gate volt-
age for the four subbands in case of different
interactions. Maxima of the total suscepti-
bility of the four subbands indicate the gate
voltage, where the corresponding peak of the
density of states passes the chemical potential.
Consistent with Fig. 5.18a the maxima of the
first band are shifted towards higher gate volt-
age. The stronger the interactions the larger
is the shift. Due to the increasing width of the
plateaus with increasing interactions, the max-
ima of the fourth band are pushed accordingly
towards lower gate voltages. The intervals be-
tween the maxima of the four subbands are
nearly identical for one choice of interaction

Figure 5.18.: Conductance and total susceptibility as a function of gate voltage for several value of
interaction U1.
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(a) Local density plotted as a function of gate volt-
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(b) Local density plotted as a function of site num-
ber in case of different interactions. The in-
fluence of the subband on each other is pro-
nounced as well. The local density of each suc-
cessive band lowers the slope of the density of
previous band. In particular, the influence of
the third on the fourth subband is apparent.

Figure 5.19.: Local density in case of different interactions
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Figure 5.20.: Conductance plotted as a funtion of gate voltage for a four-band model with equal
interactions. It is conspicious that the first conductance steps starts to rise already
at a gate voltage much higher than zero. The influence of the magnetic field is small,
especially in the first step due to the small interaction. It can be observed that the first
step has a larger slope than the other steps.

stronger the interactions the larger is the shift. Due to the increasing width of the plateaus
with increasing interactions, the maxima of the fourth band are pushed accordingly towards
lower gate voltages. The intervals between the maxima of the four subbands are nearly
identical for one choice of interaction.

The local density of the several bands affect each other explicitly, as observable in Fig-
ure 5.19. In Figure 5.19a the local density at the central site is depicted as a function of
gate voltage. If the local density of the second subband rises, this yields a pronounced kink
in the local density of the first band. Equally this happens in all further bands, i.e. if the
local density of a band starts to rise it yields a strong kink in the band prior to it. An
effect of the higher subbands (e.g. the third or fourth) on the local density of the first band
is not observable explicitly. Considering the local density as a function of site number an
equal, pronounced impact of the sucessive subbands on each other is observed (Fig. 5.19b).
In particular, the influence of the third on the fourth subband is apparent.

Now, the case of equal interactions is considered. In Figure 5.20 the conductance is depicted
as a function of gate voltage. The depicted plot is computed with a small interactions
compared to e.g. the respective plot in case of different interactions. This is due to the
fact that the choice of equal interactions yields to divergencies at much smaller interactions,
i.e. already with U1 = 0.57τ the vertex functions diverge. Further it can be noticed that
the whole graph is shifted towards higher gate voltages, where the first channel in this case
already opens up at around Vg ≈ 1 Ωx. This is a first hint of the unphysical behaviour,which
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(b) Low-energy scale B* plotted logarithmically as
a function of gate voltage for the four sub-
bands. It can be observed that the minima
of B* are equal for all subbands except the
first one. The minimum of the first subband
is even slightly higher, i.e. the influence of the
magnetic field is smaller.

Figure 5.21.: Derivative of the conductance and low-energy scale B* in case of equal interactions

we observe for this choice of interactions in a four-band model. This shift enhances strongly
with increasing interactions as we will see below.

For this rather small interaction, we can see that the first step changes very little with
increasing magnetic field, while the change in the higher step is analogous to the change as
observed above in case of different interactions. The slope decreases, but the magnetic field
is not yet high enough to yield the spin-resolved plateaus in this model.

The influence of the magnetic field can also be read off the low-energy scale B* as depicted
in Figure 5.21b. B* again depends exponentially on −Vg. The minima of B* are at the same
height in all bands except the first band, which has a minimum with a larger value, which
confirms that the influence on the first step is smaller. Taking the derivative of the con-
ductance with respect to the gate voltage makes the width of the plateaus observable. The
conductance with B = 0 Ωx and its corresponding derivative is illustrated in Figure 5.21a.
The first step is shorter as the successive ones, which are equidistant and explicitly larger.
Furthermore, the first derivative is larger, i.e. the rise of the first step is bigger.

In Figure 5.22 conductance with B = 0 Ωx and the corresponding the vertex functions at the
central site are depicted as a function of gate voltage. The vertex functions are measured
in units of the initial value U1 and all initial interactions are equal. It can be observed
that the vertex functions are a little bit smaller as their initial value and only differ very
little within the considered regime of gate voltage. In the regime of gate voltage, where
the first conductance step rises, the vertex function γ2(1 ↑, 1 ↓) has its minimum, while the
dominant one is the vertex function γ2(4 ↑, 4 ↓). The minima of the several vertex function
move towards smaller gate voltage with higher number of the involved subbands, such that
the minima are located at the gate voltage, where the respective conductance starts to rise.

The local density of the four subbands is depicted in Figure 5.23. In Figure 5.23a local
density of the central site is illustrated as a function of gate voltage. Here, equal behaviour
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Figure 5.22.: Conductance and vertex function at the central site plotted as a funtion of gate voltage
for a four-band model in the case of equal interactions. It can be observed that the
vertex functions become smaller than their intitial value. The minima of the several
vertex function move towards smaller gate voltage with higher number of the involved
subbands, such that the minima are located at the gate voltage, where the respective
conductance starts to rise. The overall change is not very pronounced, no strong screen-
ing effects can be observed. In the regime of gate voltage, where the first channel opens
up, γ2(1 ↑, 1 ↓) has its minimum, while γ2(4 ↑, 4 ↓) dominates.
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(a) Local density plotted as a function of gate volt-
age in case of equal interactions. The influ-
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nounced. When the local density of a subse-
quent subband starts to rise, it yields a kink in
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(b) Local density plotted as a function of site num-
ber in case of equal interactions.Again the in-
fluence of the subbands on each other is very
pronounced. It can be observed that each slope
is influenced by the local density of the succes-
sive bands.

Figure 5.23.: Local density in case of equal interactions
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Figure 5.24.: Conductance plotted as a funtion of gate voltage for a four-band model for several
values of the interaction in the case of equal interactions. With higher interaction the
behaviour becomes unphysical: The effective potential is so low, that the first channel
opens up at gate voltages much higher than zero and a plateau at G = GQ is not
observable.

can be observed as in the case of different interactions: The rise of the local density of each
subsequent channel yields a kink in the rising density of the band prior to it, while the third
or fourth band does not affect the local density of the first band explicitly. Local density as
a function of site number shows as well a pronounced impact of the successive bands on the
local density of each band (Fig. 5.23b).

In Figure 5.24 it is illustrated, how higher interactions effect the conductance. Conductance
in case of zero magnetic field as a function of gate voltage is depicted. For an interaction U1 =
0.47 the effective potential is so low that the conductance becomes nonzero already for a gate
voltage much higher than zero. Furthermore, the first two steps become indistinguishable,
there is no plateau at G = 1GQ visible. Thus, the choice of equal interaction leads to
unphysical behaviour in the conductance

We can conclude that the choice of interactions in a four-band model strongly influences
the conductance. If the interactions are all chosen equal, the effective potential is so low
that the transport channels open up at very high gate voltage, which is in no agreement
with experimental observations. This effect is already observable with small interactions,
but largely enhanced with increasing interactions. A better choice seems to be the different
interactions, chosen as defined in eq. (5.3). In this case the observation are in better agree-
ment with experiments. We observe that the first step always behaves differently to the
higher ones with a higher slope and a greater response to a magnetic field. But the response
of the higher conductance step on the magnetic field is different compared to the experi-
ments, as depicted in Figure 3.3b. While in the experiment an increasing magnetic field
shifts the higher conductance steps, we rather observe that the steps fan out in the lower
part of the step. Moreover, a pronounced influence of the higher modes on the conductance
is noticed. Although the local density within the central region of the higher modes is zero,
in the regime, where the first transport channel opens, the density in the boundaries of the
constriction region apparently affects the potential and therefore the first conductance step.
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(a) Conductance of the second band plotted as a
function of gate voltage for several values of
magnetic field in case of equal interactions.
The high local density of the lower band yields
such a high effective potential that the conduc-
tance does not start to rise until Vg ≈ −20 Ωx.
Compared to the case of different interactions
the influence of the magnetic field is depleted.
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(b) Conductance of the second band plotted as a
function of gate voltage for several values of
magnetic field in case of different interactions.
The high local density of the lower band yields
such a high effective potential that the conduc-
tance does not start to rise until Vg ≈ −9.5 Ωx.
The influence of the magnetic field is higher as
in the case of equal interactions.

Figure 5.25.: Conductance of the second band as a function of gate voltage with a half-filled first
subband.

5.4. Effect of one half-filled subband on the conductance

The final considered system consists of two bands, where the lower one is half-filled. Only
conductance through the second band is computed under the influence of the lower band.
Interactions in the lower band are turned off, i.e. U1 = 0, interactions between the bands
are nonzero (U12 6= 0). This way the influence of a half-filled band is investigated, which
models the impact of a nearly constant background. Recalling the dispersion relation of a
tight-binding chain (Fig. 3.4a), it becomes apparent that if the lower chain is initialized in
particle-hole symmetry, a change in energy only slightly affects the density of states and
thus the local density. An example of such a constant background in an experiment would
be the metal gates within the quantum point contact.

In Figure 5.25 conductance of the second band is depicted as a function of gate voltage. The
high local density of the first band yields such a high effective potential that the conductance
of the second band does not start to rise until Vg ≈ −20 Ωx in case of equal interactions and
Vg ≈ −9.5 Ωx in case of different interactions. Surprisingly, the effect of the magnetic field
is in case of different interactions higher than in case of equal interactions.

Considering the local density of the first and second subband in case of gate voltages, where
the conductance is about to become nonzero, one observes the known shape of the local
density in the second band (Fig. 5.27). In the first band the local density is very high with
a maximum in the central region of n0 = 1.18 in case of equal interactions and n0 = 1.09 in
case of different interactions.

The vertex functions in case of equal interactions are accordingly high (Fig. 5.26a), where
it is not surprising that the vertex functions γ2(1σ, 2σ′) are bigger than γ2(2 ↑, 2 ↓). While
the first one does not change at all over whole regime of gate voltage, γ2(2 ↑, 2 ↓) shows
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(a) In the case of equal interactions the dominant
vertex functions are γ2(1σ, 2σ′), which stay at
its initial value at all time. The vertex function
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(b) In the case of different interactions, where the
interaction between the bands is half the value
of the onchain interaction in the second band,
the vertex function γ2(2 ↑, 2 ↓) is larger and
has a maximum, where the conductance bends.
It is slightly smaller as its initial value. The
vertex functions γ2(1σ, 2σ′) are smaller and
stay constant over the whole regime of gate
voltage.

Figure 5.26.: Conductance and vertex function at the central site of the second subband as a function
of gate voltage with a half-filled first subband.

again a minimum, when the conductance starts to rise. The vertex function behaves similar
in case of different interactions (Fig. 5.26b), where the only difference is that γ2(1σ, 2σ′) is
accordingly at half the value . Further the minimum of γ2(2 ↑, 2 ↓) is more pronounced in
this case.

With increasing interaction the impact of the high local density of the first band is enhanced,
i.e. the conductance rises for lower gate voltage the stronger the interactions are (see
Fig. 5.28). In case of equal interaction the impact is even larger.

Thus, we can conclude that a constant background of high local density increases the effective
potential severely, and thus leads to a constant shift towards lower gate voltage according
to the interactions, but does not affect the vertex function nor the form of the conductance
in particular.
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(b) As observable in the conductance the high lo-
cal density in the first subband yields a high
effective potential, thus that the local den-
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Figure 5.27.: Local density of the first and second subband in case of an initial half-filled first subband
for equal and different interactions.
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Figure 5.28.: Comparison of the conductance of the second band under the influence of a half-filled
subband for equal and different interactions



6. Conclusion and Outlook

The origin of the 0.7 anomaly of a quantum point contact is subject of investigation and
discussions for nearly 20 years. Bauer et al. [4] recently found a consistent explanation of
this phenomenon and its numerous related observations.

The present thesis is motivated by their work and presents a model, that offers the possibility
to observe conductance through a quantum point contact with more than one transport
channel. A model with n chains is used, where on-site interaction on one chain and in
between the chains is assumed, while interband transitions are neglected. Modelling a QPC
with n subbands aims to explain why the 0.7 anomaly is typically significantly featured only
in the first conductance step.

Within this model fRG equations have been derived and used to compute the full, renormal-
ized Green’s function of this system. This in turn is used to compute several observables,
in particular the conductance.

Three different situations have been modeled: A QPC with two subbands and with four
subbands as well as a model of two subbands, where the lower half-filled band affects the
conductance of the second band. This way the impact of a background of a nearly constant
local density of electrons is investigated. All considered systems have been studied with
two choices of interactions. In the first case, all interactions are chosen to be equal. In the
second case, a ratio of the interactions has been computed via overlap integrals between the
wave functions within a quadratic potential.

We computed up to four conductance steps with our model and show that the conductance
of the first mode behaves differently compared to the higher ones. The first step shows a
higher slope and a different response to the magnetic field. Moreover, the first conductance
step seems to be affected by the higher modes. In addition to the expected impact of the
local density of higher modes on the density of the first mode, when the concerning channels
open up, the density in the boundaries seems to affect the local potential and hence the first
conductance step. Magnetization as well as local and total susceptibility, considered within
the two-band model, are in agreement with the results of Bauer. For an open channel a
high magnetization and susceptibility in the central region of the constriction are observed.
The effect of the magnetic field on the higher conductance step is not in perfect agreement
with experiments and needs to be subject of further studies. The choice of interaction, in
particular in the four-band model, is an important issue, since it strongly influences the
results. Choosing the inter-and intraband interactions to be equal can yield unphysical
behaviour and convergence problems for high interactions, while choosing the interactions
as different leads to better results. The model with a half-filled subband shows that a
background of high local density yields a high effective potential, i.e. a conductance step
that rises at very low gate voltage, but does not change the physics.
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An important future concern should be a systematic analysis of the strong influence of the
choice of interactions and the impact of higher modes on the first conductance step.



A. Transport through coupled quantum wires

As some preliminary studies a system of two parallel, coupled quantum wires has been con-
sidered within the static fRG 1 scheme with nearest neighbour interactions. In the fRG
1 scheme only the first fRG equation (2.19) is taken into account and the full interaction
is substituted by the bare interaction, i.e. the vertex flow is neglected, see section 2.4. In
two different models the conductance is computed with and without interactions to compare
the results.The models are motivated by Atland et al. [22] and Nakaharai et al. [23]. The
noninteracting system can be explained in a single-particle-picture and it will be shown that
interactions renormalize the interchain hopping and velocity of the electron, but we find no
indication that they change the system’s behavior in a fundamental manner.

A.1. Models

A.1.1. Model I

The first model describes two parallel chains, where electrons interact with each other on
the chain and with electrons on the same site of the other chain within a scattering region.
Both chains are finite on one site and coupled to a noninteracting lead on the other site.
The model is depicted in Figure A.1.

We are working with a Hamiltonian of a spinless system, which can be separated in three
parts:

H = Hu +Hd +Hud (A.1)

Hamiltonian of the upper chain:

Hu =

N∑

i=−∞
−µ ni,u + τ(c†i+1,uci,u + h.c.) +

N∑

i=−N1+1

Uni,uni+1,u (A.2)

Hamiltonian of the lower chain:

Hd =

∞∑

i=1

−µ ni,d + τ(c†i+1,dci,d + h.c.) +

N+N1∑

i=1

Uni,dni+1,d (A.3)

Figure A.1.: Model I with two leads
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Figure A.2.: Model II without finite ends. This model is expected to show less boundary effects.

τ is the nearest-neighbour hopping amplitude, U is a nearest-neighbour interaction.

The third part describes hopping with τ12 as interchain hopping and interaction U12 in
between the chains:

Hud =
N∑

i=1

τ12(c†i,uci,d + h.c.) + U12ni,uni,d (A.4)

In order to minimize scattering effects at the boundaries between the scattering region and
the noninteracting leads, the interaction U is turned on adiabatically within the region of
N1 (see A.1).

Uupper(j) = U ∗ (1− 1

exp(β∗j−j′) +1
) (A.5)

U lower(j) = U ∗ 1

expβ∗(j−N−N1+j′) +1
(A.6)

The values of N1 and β are chosen, such that all interactions are maximal and constant
throughout the whole scattering region. Further the maximal value of the on-chain interac-
tion equals the maximal value of the interchain interaction, i.e. Umax = U12,max.

A.1.2. Model II

Since we observe strong boundary effects (see below) with model I, we also consider a second
model with leads at each of the four ends, as illustrated Figure A.2. The Hamiltonian consists
of the same three parts, extended by the extra leads.

H = Hu +Hd +Hud (A.7)

Hamiltonian of the upper/lower chain with s = u, d, respectively:

Hs =

∞∑

i=−∞
−µ ni,s + τ(c†i+1,sci,s + h.c.) +

N+N1∑

i=−N1+1

Uni,sni+1,s (A.8)

Hopping and interactions are the same as in the first model:

Hud =

N∑

i=1

τ12(c†i,uci,d + h.c.) + U12ni,uni,d (A.9)
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Figure A.3.: Conductance as a function of number of sites and interchain hopping τ12 for model I
and II. The comparison shows that the missing leads in Model I lead to extra boundary
effects.

The interaction U is turned on adiabatically, such that within the scattering region the
interaction is constant and maximal, as in the first model.

In both models the conductance is computed with the Landauer formula (4.37), with trans-
mission in between the upper, left lead and the lower,right lead, i.e. in between the sites
(-N1,u) and (N+N1,d):

G =
e2

h
|2πρlead(0)τ2G−N1,u;N+N1,d(0)|2 (A.10)

If the temperature T 6= 0 and U = 0 the conductance in between the same site is coputed
with Landauer-Büttiker formula:

G =
−e2

h

∫
dεf ′(ε)|2πρlead(ε)τ2G−N1,u;N+N1,d(ε)|2 (A.11)

where f denotes the Fermi function.

A.2. Results

In the conductance of model I (Fig. A.3a) different oscillations can be observed. On the
one hand, the conductance depends strongly on the length of the scattering region. If the
number of sites of the central region N is even, a zero conductance is computed, if N is odd
the conductance is finite. Further an envelope oscillations is observed. Its width B depends
on the interchain hopping τ12 as B ∝ 1/τ12.
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Figure A.4.: Comparison of numerical computed conductance with the transmission calculated with
eq.(A.14) of model I. The transmission equation is in perfect agreement with the nu-
merically computed conductance.

If the conductance is plotted as a function of the interchain hopping τ12 for different values
of the length N (Fig. A.3b), again one observes an oscillating conductance with a width
proportional to 1/N .

Using the well known dispersion relation of the tight-binding-chain

ω = −2τ ∗ cos(k) (A.12)

the velocity of an electron propagating through one chain can be computed. The time t an
electron needs to pass the scattering region is

t = N/v = N/
dω

dk
(A.13)

With an intrachain hopping of τ = 1 and kF = π/2 this leads to a velocity of v = 2.
Interchain hopping τ12 is neglected in this caculation, but if τ12 is small, this is a good
approximation. If one assumes that the electron propagates through the scattering region,
while hopping back and forth and that it becomes reflected at the ends of the chain, where
no leads are connected, then all possibles ways of the particle can be added up, including the
quantum mechanical phase. The probability that the particle has changed the chain after
passing the whole scattering region of length N is proportional to sin(τ12t) and respectively
that it did not change the chain proportional to cos(τ12T ). Thus the system can be consid-
ered in an analogy to a Fabry-Perot-Interferometer. This leads to the following relation for
the transmission:

T ≈ | sin
( τ12N

2τ sin k

)
+ cos2

( τ12N

2τ sin k

)
ei(N+1)π sin

( τ12N

2τ sin k

) 1

1− eiNπ sin2(τ12N/(2τ sin k))
|2

(A.14)
This equation is in very good agreement with the numerical computed conductance for small
τ12, even if ω 6= 0.

The conductance of model II plotted as a function of the scattering length N does not show
the even-odd oscillations of the first model. The conductance has a sinusoidal dependence of
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N and the interchain hopping τ12 (Fig. A.3). The transmission through this system can be
regarded analogously to the transmission of the first model by adding up all possible ways
to propagate from the upper, left lead to the lower,right lead. Due to the extra two leads,
there is only one possible way. Thus the transmission can be described via

T ≈ sin2(τ12 ∗N/(2τ sin(k))) (A.15)

with k and T computed as described above. Again this relation is in very good agreement
with the numerical computed results for small τ12.

The conductance as a function of the temperature decreases with increasing temperature
(Fig. A.5), because the velocity of the electron decreases with rising temperature. Interchain
hopping and the site number N are chosen such that for T = 0 the conductance is nearly at
its maximum. The smaller velocity leads to oscillations with changed oscillation length and
thus the conductance decreases, because the oscillation is changed with respect to number
of sites and τ12. In model I the decrease is even stronger with low temperatures (Fig. A.5a).
This can be explained considering that there are two oscillations in the conductance, one
due to the velocity one because of the quantum mechanical phase. With small temperatures
the second one is the leading one.

If now model I is considered with interactions (Fig. A.6a and A.6b), it is noticed that
the width of the oscillations is changed, but not the apperance. The interaction changes
the effective value of τ12 and the effective value of the velocity of the electron through
the scattering region. The maximum of the coductance becomes slightly smaller. In the
noninteracting case Gmax = 1, in the interacting case it lies below this value depending on
the choice of τ12 and N . The impact of interactions on model II is the same, the effective
hopping amplitude and the velocity become smaller and thus the width of the oscillation is
changed.
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Figure A.5.: Conductance plotted as a function of temperature for both models.
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(a) Conductance plotted as a function of the inter-
chain hopping τ12 of model I.
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Figure A.6.: Comparison of the interacting with the noninteracting system. Interaction does not
change the physics within the system, but renormalizes the effective value of the inter-
chain hopping τ12 and the effective velocity, which can be read off the changed oscillation
length.
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