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A phase transition indicates a sudden change in the properties of a large system. For temperature-driven

phase transitions this is related to nonanalytic behavior of the free energy density at the critical

temperature: The knowledge of the free energy density in one phase is insufficient to predict the

properties of the other phase. In this Letter we show that a close analogue of this behavior can occur

in the real time evolution of quantum systems, namely nonanalytic behavior at a critical time. We denote

such behavior a dynamical phase transition and explore its properties in the transverse-field Ising model.

Specifically, we show that the equilibrium quantum phase transition and the dynamical phase transition in

this model are intimately related.
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Phase transitions are one of the most remarkable phe-
nomena occurring in many-particle systems. At a phase
transition a system undergoes a nonanalytic change of its
properties, for example the density at a temperature driven
liquid-gas transition, or the magnetization at a paramagnet-
ferromagnet transition. What makes the theory of such
equilibrium phase transitions particularly fascinating is
the observation that a perfectly well-behaved microscopic
Hamiltonian without any singular interactions can lead to
nonanalytic behavior in the thermodynamic limit of the
many-particle system. In fact, the occurrence of equilibrium
phase transitions was initially a puzzling problem because
one can easily verify no-go theorems for finite systems;
therefore, the thermodynamic limit is essential [1].

Today the theory of equilibrium phase transitions is well
established, especially for classical systems undergoing
continuous transitions, where the powerful tool of renor-
malization theory bridges the gap from microscopic
Hamiltonian to universal macroscopic behavior. On the
other hand, the behavior of nonequilibrium quantum
many-body systems is by far less well understood.
Recent experimental advances have triggered a lot of
activity in this field [2], like the experiments on the real
time evolution of essentially closed quantum systems in
cold atomic gases [3,4]. The experimental setup is typi-
cally a quantum quench, that is a sudden change of some
parameter in the Hamiltonian. Therefore the system is
initially prepared in a nonthermal superposition of the
eigenstates of the Hamiltonian which drives its time
evolution.

From a formal point of view, there is a very suggestive
similarity between the canonical partition function of an
equilibrium system

Zð�Þ ¼ Tre��H (1)

and the overlap amplitude of some time-evolved initial
quantum state j�ii with itself,

GðtÞ ¼ h�ije�iHtj�ii: (2)

This leads to the question of whether some analogue of
temperature (�)-driven equilibrium phase transitions in (1)
exists in real time evolution problems. In the theory of
equilibrium phase transitions it is well established that the
breakdown of the high-temperature (small �) expansion
indicates a temperature-driven phase transition. Likewise,
we propose the term dynamical phase transition for non-
analytic behavior in time, that is the breakdown of a short
time expansion in the thermodynamic limit at a critical
time. In this Letter we study this notion of dynamical phase
transition in the one-dimensional transverse-field Ising
model, which serves as a paradigm for one-dimensional
quantum phase transitions [5]. It can be solved exactly,
which permits us to establish the existence of dynamical
phase transitions that are intimately related to the equilib-
rium quantum phase transition in this model.
Our key quantity of interest is the boundary partition

function

ZðzÞ ¼ h�ije�zHj�ii (3)

PRL 110, 135704 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

29 MARCH 2013

0031-9007=13=110(13)=135704(5) 135704-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.110.135704


in the complex plane z 2 C. For imaginary z ¼ it this just
describes the overlap amplitude (2). For real z ¼ R it can
be interpreted as the partition function of the field theory
described by H with boundaries described by boundary
states j�ii separated by R [6]. In the thermodynamic limit
one defines the free energy density (apart from a different
normalization)

fðzÞ ¼ � lim
N!1

1

N
lnZðzÞ (4)

where N is the number of degrees of freedom. Now subject
to a few technical conditions [1] one can show that for
finite N the partition function (3) is an entire function of z
since inserting an eigenbasis of H yields sums of terms
e�zEj , which are entire functions of z. According to the
Weierstrass factorization theorem [7] an entire function
with zeros zj 2 C can be written as

ZðzÞ ¼ ehðzÞ
Y
j

�
1� z

zj

�
(5)

with an entire function hðzÞ. Thus

fðzÞ ¼ � lim
N!1

1

N

�
hðzÞ þX

j

ln

�
1� z

zj

��
(6)

and the nonanalytic part of the free energy density is solely
determined by the zeros zj. A similar observation was

originally made by M. E. Fisher [1], who pointed out that
the partition function (1) is an entire function in the com-
plex temperature plane. This observation is analogous to
the Lee-Yang analysis of equilibrium phase transitions in
the complex magnetic field plane [8]. For example in the
2D Ising model the Fisher zeros in the complex tempera-
ture plane approach the real axis at the critical temperature
z ¼ �c in the thermodynamic limit, indicating its phase
transition [9].

We now work out these analytic properties explicitly for
the one-dimensional transverse-field Ising model (with
periodic boundary conditions)

HðgÞ ¼ � 1

2

XN�1

i¼1

�z
i�

z
iþ1 þ

g

2

XN

i¼1

�x
i : (7)

For magnetic field g < 1 the system is ferromagnetically
ordered at zero temperature, and a paramagnet for g > 1
[5]. These two phases are separated by a quantum critical
point at g ¼ gc ¼ 1. The Hamiltonian (7) can be mapped
to a quadratic fermionic model [10–12]

HðgÞ ¼ � 1

2

XN�1

i¼1

ðcyi ciþ1 þ cyi c
y
iþ1 þ H:c:Þ þ g

XN

i¼1

cyi ci:

(8)

Diagonalization yields the dispersion relation

�kðgÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðg� coskÞ2 þ sin2k

p
.

In a quantum quench experiment the system is prepared
in the ground state for parameter g0, j�ii ¼ j�GSðg0Þi,
while its time evolution is driven with a HamiltonianHðg1Þ
with a different parameter g1. In the sequel we will first
analyze quench experiments in the setting of the fermionic
model (8). A subtle difference occurs when thinking in
terms of the spin model (7) since in the ferromagnetic
phase the ground state of the spin model is twofold degen-
erate, while the fermionic model always has a unique
ground state. We will say more about this later. Taking
the ground state of the fermionic model in Eq. (8) as the
initial state j�ii, the free energy density (4) describing this
sudden quench g0 ! g1 can be calculated analytically [13]
yielding

fg0;g1ðzÞ ¼ �
Z �

0

dk

2�
lnðcos2�k þ sin2�ke

�2z�kðg1ÞÞ: (9)

Here �k¼�kðg0Þ��kðg1Þ, and tan½2�kðgÞ�¼def sink=
ðg� coskÞ, �kðgÞ 2 ½0; �=2�. In (9) we have ignored an
uninteresting additive contribution zEGSðg1Þ=N that
depends on the ground state energy of Hðg1Þ.
In the thermodynamic limit the zeros of the partition

function in the complex plane coalesce to a family of lines
labeled by a number n 2 Z

znðkÞ ¼ 1

2�kðg1Þ ½lntan
2�k þ i�ð2nþ 1Þ�: (10)

The limiting infrared and ultraviolet behavior of the
Bogoliubov angles,

�k¼0 ¼

8>><
>>:

0 quench in same phase

�=4 quench to or from quantum critical point

�=2 quench across quantum critical point

�k¼� ¼ 0; (11)

immediately shows that the lines of Fisher zeros cut the time
axis for a quench across the quantum critical point (Fig. 1)
since then limk!0Re znðkÞ ¼ 1, limk!�Re znðkÞ ¼ �1.
In fact, the limiting behavior (11) remains unchanged for
general ramping protocols [14].
The free energy density (4) is just the rate function of the

return amplitude GðtÞ ¼ exp½�NfðitÞ�. Likewise for the
return probability (Loschmidt echo) LðtÞ¼def jGðtÞj2 ¼
exp½�NlðtÞ� one has lðtÞ ¼ fðitÞ þ fð�itÞ. The behavior
of the Fisher zeros for quenches across the quantum critical
point therefore translates into nonanalytic behavior of the
rate functions for return amplitude and probability at cer-
tain times t�n. For sudden quenches one can work out these
times easily,

t�n ¼ t�
�
nþ 1

2

�
; n ¼ 0; 1; 2; . . . (12)

with t� ¼ �=�k� ðg1Þ and k� determined by cosk� ¼
ð1þ g0g1Þ=ðg0 þ g1Þ. We conclude that for any quench
across the quantum critical point the short time expansion
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for the rate function of the return amplitude and probability
breaks down in the thermodynamic limit, analogous to the
breakdown of the high-temperature expansion at an equi-
librium phase transition. In fact, the nonanalytic behavior
of lðtÞ at the times tn has already been derived by Pollmann
et al. Reference [15] for slow ramping across the quantum
critical point. For a slow ramping, protocol �k� ðg1Þ
becomes the mass gap mðg1Þ ¼ jg1 � 1j of the final
Hamiltonian, but in general it is a new energy scale gen-
erated by the quench and depending on the ramping pro-
tocol. In the universal limit for a quench across but very
close to the quantum critical point, g1 ¼ 1þ �, j�j � 1

and fixed g0, one finds �k� ðg1Þ=mðg1Þ / 1=
ffiffiffiffiffiffij�jp

. Hence in
this limit the nonequilibrium energy scale �k� becomes
very different from the mass gap, which is the only equi-
librium energy scale of the final Hamiltonian.

The interpretation of the mode k� follows from the obser-
vation nðk�Þ ¼ 1=2, where nðkÞ is the occupation of the
excited state in the momentum k-mode in the eigenbasis of
the final Hamiltonian Hfðg1Þ. Modes k > k� have thermal

occupation nðkÞ< 1=2, while modes k < k� have inverted
population nðkÞ> 1=2 and therefore formally negative
effective temperature. The mode k� corresponds to infinite
temperature. In fact, the existence of this infinite tempera-
ture mode and thus of the Fisher zeros cutting the time axis
periodically is guaranteed for arbitrary ramping protocols
across the quantum critical point. For example, for slow
ramping across the quantum critical point the existence of
this mode and the negative temperature region in relation to
spatial correlations was discussed in Ref. [16].

One measurable quantity in which the nonanalytic
behavior generated by the Fisher zeros appears naturally
is the work distribution function of a double quench ex-
periment: We prepare the system in the ground state of

Hðg0Þ, then quench to Hðg1Þ at time t ¼ 0, and then
quench back to Hðg0Þ at time t. The amount of work W
performed follows from the distribution function

PðW; tÞ ¼ X
j

�½W � ðEj � EGSðg0ÞÞ�jhEjj�iðtÞij2 (13)

where the sum runs over all eigenstates jEji of the initial

Hamiltonian Hðg0Þ. It obeys a large deviation form

PðW; tÞ � e�Nrðw;tÞ with a rate function rðw; tÞ � 0
depending on the work density w ¼ W=N. In the thermo-
dynamic limit one can derive an exact result for rðw; tÞ:
According to the Gärtner-Ellis theorem [17] it is just the
Legendre transform

�rðw; tÞ ¼ inf
R2R

½wR� cðR; tÞ� (14)

where

cðR; tÞ ¼ �
Z �

0

dk

2�
ln½1þ sin2ð2�kÞsin2ð�kðg1ÞtÞ

� ðeð�2�kðg0ÞRÞ � 1Þ� (15)

is the rate function for the cumulant generating func-

tion of the work distribution function, CðR; tÞ ¼R
dWPðW; tÞe�RW ¼ e�NcðR;tÞ. In Fig. 2 we show rðw; tÞ

for a quench across the quantum critical point. Forw ¼ 0 it
just gives the return probability to the ground state,
rðw ¼ 0; tÞ ¼ lðtÞ; therefore, the nonanalytic behavior at
the Fisher zeros shows up as nonanalytic behavior in the
work distribution function. However, from Fig. 2 one can
see that these nonanalyticities at w ¼ 0 also dominate the
behavior for w> 0 at t�n, corresponding to more likely
values of the performed work. The suggestive similarity
to the phase diagram of a quantum critical point, with
temperature being replaced by the work density w, moti-
vates us to call this behavior dynamical quantum phase
transitions. Notice that experimentally the work density
can be lowered by postselection [18].
So far we have analyzed the quench dynamics in terms

of the fermionic model (8). When thinking in terms of the
transverse-field Ising model (7), all results carry over for
quenches starting in the paramagnetic phase since then
the spin ground state is unique. Specifically, one finds the
nonanalytic behavior in the Loschmidt echo and the work
distribution function for quenches from the paramagnetic
to the ferromagnetic phase. For quenches originating in the
ferromagnetic phase, the Loschmidt echo calculated above
corresponds to working in the Neveu-Schwarz sector [19],
which amounts to an unphysical superposition of spin-up
and spin-down ground states in the spin language.
However, looking at the experimentally relevant quantity
work distribution function, one derives the same result in
the thermodynamic limit as above when starting from
either of the two degenerate ferromagnetic ground states.
Specifically, one obtains the nonanalytic behavior in

FIG. 1 (color online). Lines of Fisher zeros for a quench within
the same phase g0 ¼ 0:4 ! g1 ¼ 0:8 (left) and across the quan-
tum critical point g0 ¼ 0:4 ! g1 ¼ 1:3 (right). Notice that the
Fisher zeros cut the time axis for the quench across the quantum
critical point, giving rise to nonanalytic behavior at t�n (the times
t�n are marked with dots in the plot).
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Pðw ¼ 0; tÞ at the critical times (12) for quenches from the
ferromagnetic to the paramagnetic phase [18].

Interestingly, the nonequilibrium time scale (12) also
plays a role in the dynamics of a local observable after
the quench. We have calculated the longitudinal magneti-
zation by numerical evaluation of Pfaffians [20]. For
quenches within the ordered phase it is known analytically
[21,22] that the order parameter decays exponentially as a
function of time, which is expected since in equilibrium
one only finds long range order at zero temperature (g<1).
For a quench across the quantum critical point an addi-
tional oscillatory behavior is superimposed on this
exponential decay, see Fig. 3. Notice that the behavior of
the magnetization remains perfectly analytic, but the pe-
riod of its oscillations agrees exactly (within numerical
accuracy) with the period t� of Fisher times. A conjecture
consistent with our observation was also formulated in
Ref. [19]. A better understanding of this observation will
be the topic of future work. At low energies the oscillatory
decay transforms into real-time nonanalyticities at the
Fisher times using the concept of postselection, allowing
us to observe the dynamical phase transitions in local
observables [18].

Summing up, we have shown that ramping across the
quantum critical point of the transverse-field Ising model
generates periodic nonanalytic behavior at certain times
t�n. This breakdown of the short time expansion is reminis-
cent of the breakdown of a high temperature expansion
for the free energy at an equilibrium phase transition. We
have therefore denoted this behavior dynamical phase

transition. Very recent numerical results in Ref. [23]
show that the dynamical phase transitions in the Ising
model are stable against weak integrability breaking per-
turbations and indicate that the appearance of the real-time
nonanalyticities seem to be a generic feature also in other
systems as long as the respective quenches cross the equi-
librium critical points. Notice that there are other related
but not identical notions of dynamical phase transitions, for
example, a sudden change of the dynamical behavior of an
observable as a function of some control parameter
[24,25], or qualitative changes in the ensemble of trajecto-
ries as a function of the conjugate field of a dynamical
order parameter [26].
For quenches within the same phase (including to or

from the quantum critical point) the lines of Fisher zeros lie
in the negative half plane, Re zjðkÞ � 0 (Fig. 1). Hence the

knowledge of the equilibrium free energy fðRÞ on the
positive real axis completely determines the time evolution
by a simple Wick rotation. This is no longer true for a
quench or ramping protocol across the quantum critical
point since then the lines of Fisher zeros cut the complex
plane into disconnected stripes, Fig. 1: Knowing fðRÞ for
R � 0 does not determine the time evolution for t > t�0.

FIG. 3 (color online). Dynamics of the magnetization after the
quench. The bottom plot shows the longitudinal magnetization
for various quenches across the quantum critical point. The time
axis is shifted by a fit parameter t’ and one can see that the

period of the oscillations is the time scale t� (12). The upper
plots show the magnetization dynamics in the y� z plane for a
quench across the quantum critical point g0 ¼ 0:3 ! g1 ¼ 1:4
(left) and a quench in the ordered phase g0 ¼ 0:3 ! g1 ¼ 0:8
(right). For better visibility the magnetization is normalized to

unit length: ŝy;zðtÞ¼def sy;zðtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2yðtÞ þ s2zðtÞ

q
. Notice the Larmor

precession for the quench across the quantum critical point,
while the dynamics for the quench in the ordered phase is
asymptotically just an exponential decay [21].

FIG. 2 (color online). The bottom plot shows the work distri-
bution function rðw; tÞ for a double quench across the quantum
critical point (g0 ¼ 0:5, g1 ¼ 2:0). The dashed line depicts the
expectation value of the performed work, rðw; tÞ ¼ 0. The top
plot shows various cuts for fixed values of the work density w.
The line w ¼ 0 is just the Loschmidt echo: Its nonanalytic
behavior at t�n becomes smooth for w> 0, but traces of the
nonanalytic behavior extend into the work density plane. In this
respect work density plays a similar role to temperature in the
phase diagram of an equilibrium quantum phase transition.
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In this sense nonequilibrium time evolution is no longer
described by equilibrium properties.
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