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Abstract. We study several dynamical properties of a recently proposed
implementation of the quantum transverse-field Ising chain in the framework
of circuit quantum electrodynamics (QED). Particular emphasis is placed on
the effects of disorder on the nonequilibrium behavior of the system. We show
that small amounts of fabrication-induced disorder in the system parameters
do not jeopardize the observation of previously predicted phenomena. Based
on a numerical extraction of the mean free path of a wave packet in the
system, we also provide a simple quantitative estimate for certain disorder effects
on the nonequilibrium dynamics of the circuit QED quantum simulator. We
discuss the transition from weak to strong disorder, characterized by the onset
of Anderson localization of the system’s wave functions, and the qualitatively
different dynamics it leads to.
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1. Introduction

Circuit quantum electrodynamics (QED) systems consist of superconducting artificial atoms
coupled to the electromagnetic field in a microwave resonator [1]. Such systems have been
successfully used for the implementation of elementary quantum optical Hamiltonians [2, 3]
and basic quantum information processing [4–7]. The rapid technological development in
the field of circuit QED will soon facilitate experiments with highly coherent multi-atom,
multi-resonator circuit QED architectures. This makes circuit QED a promising platform
for observing interesting multi-atom quantum optical effects [8–10] and even for simulating
genuinely interacting quantum many-body systems from solid state physics [11–20].

In [20], we have proposed and analyzed a circuit QED design that implements the quantum
transverse-field Ising chain (TFIC) coupled to a microwave resonator for readout. The TFIC is
an elementary example of an integrable quantum many-body system. Despite its simplicity, it
still exhibits interesting features, e.g. a quantum phase transition (QPT), and therefore serves
as a model example system in the theory of quantum criticality [21] and nonequilibrium
thermodynamics [22]. Our circuit QED quantum simulator can be used to study quench
dynamics, the propagation of localized excitations and other nonequilibrium phenomena in the
TFIC, based on a design that could easily be extended to break the integrability of the system.
While in [20] we have focused on an idealized implementation of the TFIC with perfectly
uniform parameters, the main purpose of the present paper is to investigate the effects of disorder
in the system parameters on the dynamical behavior of our quantum simulator.

The study of disorder effects on quantum simulators is relevant for two reasons. Firstly, on
the more practical level, any real experimental system will come with a degree of unwanted
disorder (especially in condensed matter settings). In the case of circuit QED systems,
inhomogeneities of the system parameters are caused by fabrication issues as well as by static
noise fields (e.g. produced by defects). It is important to verify that the basic behavior of a
quantum simulator survives the amounts of disorder which are present in realistic systems or
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even to estimate the amount of disorder that can be tolerated. Secondly, on a more fundamental
level, simulating quantum many-body systems with built-in (potentially tunable) disorder is
interesting in its own right. Many physical phenomena, from free propagation of wave packets to
quench dynamics to (quantum) phase transitions, can be affected in significant ways by disorder,
and this leads to phenomena such as Anderson localization or disorder-induced phases.

To prepare for our study, we briefly review the system (section 2.1), discuss sources of
disorder and how disorder scales with the tunable system parameters (section 2.2) and explain
the mathematical approach to and some properties of the quantum Ising chain (section 2.3). We
start our main discussion by considering the time-dependent correlations of the order parameter
of the chain, where the finite-size effects and the long-time behavior will be analyzed in the
absence of disorder (section 3.1). Based on this, we will move on to the spectrum of the resonator
coupled to the quantum Ising chain in our system, which is closely related to the aforementioned
time-dependent correlations. To that end, we employ a very useful approximation which we
have introduced in [20] and which will presumably become important also for future studies
of quantum many-body systems coupled to resonators. In this approximation, the full quantum
many-body system is replaced by a bath of harmonic oscillators with an identical spectrum. We
show here that this approximation actually works very well under appropriate circumstances
(section 3.2). We then calculate the spectrum of the resonator coupled to a slightly disordered
Ising chain and find that the effects of disorder on the spectrum are small (section 3.3). The
Ising chain in our circuit-QED quantum simulator can be driven out of equilibrium in several
ways. This allows one to perform various types of nonequilibrium experiments, a particularly
appealing application of our setup. In our previous work, we have suggested to observe the
propagation of a localized excitation through the chain or the nonequilibrium dynamics of the
system after a quantum quench. Here, we show that the predicted phenomena are insensitive
to a small amount of disorder in the system parameters (sections 4.1 and 4.2, respectively).
Moreover, we provide a simple estimate of the amount of disorder that will qualitatively change
the wave functions and, thus, strongly affect the dynamics even of small systems (that is, on the
scale of neighboring artificial atoms). However, as argued above, it would be highly desirable to
possess also a quantitative theory of disorder effects. Since the nonequilibrium dynamics of the
uniform TFIC is determined by the ballistic propagation of quasiparticles (QPs; wave packets),
we formulate and numerically verify for the weakly disordered case a relation between the mean
free path of the latter and the parameters of the system and the disorder potential. By means of
this relation we are able to predict the dynamical behavior of our quantum simulator given a
certain disorder strength, and to estimate the amount of disorder that a particular experiment
can tolerate (section 4.1).

2. The quantum transverse-field Ising chain in circuit quantum electrodynamics

2.1. Setup

We consider a circuit QED quantum simulator of the TFIC as proposed in [20]. It consists
of a chain of N capacitively coupled charge-based superconducting artificial atoms [23], such
as transmons or Cooper-pair boxes (the latter have to be biased to their charge degeneracy
point [23] to properly simulate the TFIC). For a review on superconducting artificial atoms,
see [23]. The first artificial atom is capacitively coupled to a microwave resonator (see figure 1).
This resonator A is required for initialization and readout of the first artificial atom. For
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Figure 1. Circuit QED implementation of the quantum TFIC (adapted
from [20]). Charge-based artificial atoms are capacitively coupled to their nearest
neighbors. Coupling the first (N th) artificial atom to resonator A (B) allows one
to use standard circuit QED techniques for initialization and read-out of the first
(N th) artificial atom.

certain types of experiments, e.g. for measuring end-to-end correlators, one also needs a second
resonator B, coupled to the N th artificial atom. For details of the implementation and the
theoretical description of the system, see [20]. The system (at first, only with resonator A)
can be approximately described by the Hamiltonian

H= ω0a†a + g(a† + a)σ 1
x +HI, (1)

and HI is the Hamiltonian of the TFIC,

HI =

N∑
j=1

� j

2
σ j

z −

N−1∑
j=1

J jσ
j

x σ
j+1

x . (2)

Here, σ j
x/z is a Pauli matrix. That is, the artificial atoms are considered as two-level systems

(qubits), and their two states are described as spin states. The operators a† and a generate and
annihilate a photon of energy ω0. The transition frequency � j > 0 of the j th qubit corresponds
to a local magnetic field acting on the j th spin in the usual interpretation of the TFIC.
As such, it would be transverse to the direction of the qubit–qubit coupling J j . The latter
can be either ferromagnetic (J j > 0, as in the geometry of figure 1) or anti-ferromagnetic
(J j < 0, if the qubits in figure 1 are rotated by 90◦). While in our previous work we have
focused on the uniform case J j = J and � j =� for all j , here we are often interested in
the case where these system parameters are explicitly nonuniform. This is because, on the one
hand, a slight nonuniformity of the � j and J j has to be expected from imperfections of the
fabrication process. On the other hand, one can also intentionally detune one or several qubits
(by threading the SQUID-like loops of the qubits with different fluxes) and observe how the
system’s properties change depending on the detuning.

2.2. Disorder and tunability of the system parameters

Let us discuss the flux tunability and the undesired disorder of the system parameters in some
more detail. We will argue that the qubit transition frequencies� j and the qubit–qubit couplings
J j , when normalized to their respective mean values, may be assumed to be flux independent.
This will be relevant for our theoretical description of the disorder in the system.
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In reality, it should be possible to engineer the geometry of the qubits essentially uniform.
That is, the areas of the qubits’ SQUID loops, their charging energies and the coupling
capacitances between the qubits will only vary weakly in the chain. However, the (flux-tunable)
total Josephson energies EJ(8) of the artificial atoms should be experimentally harder to control
since these depend exponentially on the properties of the Josephson junctions. For a flux-tunable
(i.e. SQUID-type) artificial atom with two Josephson junctions [24],

EJ(8)= (ε1
J + ε2

J ) cos

(
8π

80

)(
1 + d2 tan2

(
8π

80

))1/2

. (3)

Here, εi
J is the Josephson coupling energy of one Josephson junction,80 is the superconducting

flux quantum,8 is the tunable external flux threading the SQUID loop, and d = (ε1
J − ε2

J )/(ε
1
J +

ε2
J ). Assuming equal qubit geometries, 8 can be chosen identical for all qubits (e.g. by

using a common flux line) and only the εi
J can give rise to disorder. Even if one allows for

|d| ∼ 0.1, this still means that d2
� 1, and one can approximate the total Josephson energy

of the j th artificial atom by EJ j(8)≈ (ε1
J j + ε2

J j)cos(8π/80) (as long as |8| 6≈80/2). Now,
for Cooper-pair boxes at the charge degeneracy point � j(8)≈ EJ j(8), and for transmons
� j(8)≈ [8EJ j(8)EC]1/2 [24]. Thus, under the assumption of identical geometry, both for
Cooper-pair boxes and for transmons the transition frequencies � j(8) of all qubits j scale
with a j-independent function α(8) of the (global) flux 8, � j(8)= α(8)� j(0). Here,
α(8)= cos(8π/80) for Cooper-pair boxes and α(8)= [cos(8π/80)]1/2 for transmons. This
result implies that the qubit transition frequencies, when normalized to their flux-dependent
mean value, do not depend on 8 and, hence, have the same statistical properties for all 8.
Explicitly, the mean value of the � j is given by � j(8)= α(8)� j(0). Thus, the mean value
of the � j is flux tunable. However, the normalized qubit transition frequencies � j(8)/� j(8)

are independent of 8, which must also be the case, for instance, for their standard deviation.
This will become important for our numerical implementation of disorder in the � j when we
consider changes of the external magnetic flux 8.

The qubit–qubit couplings J j can also depend on the EJ j(8) and, thus, on the � j . This is
the case for transmons, where approximately J j ∝ (� j� j+1)

1/2
∝ (EJ j EJ j+1)

1/4 [20, 25]. That
is, the disorder in the � j and the J j will not be independent for transmons. Moreover, � j , J j

and their mean values � j and J j change with the external flux 8 approximately in the same
proportion (∝ [cos(8π/80)]1/2). For Cooper-pair boxes, on the other hand, the J j depend only
on charging energies and not on the EJ j(8) [20]. This means that the J j are not affected by
changes of the external flux. Furthermore, the disorder in the J j should be less pronounced
than and hardly correlated with the disorder in the � j . Concerning the relative strength and
the correlation of the disorder in the J j and the � j , we remark that also static noise fields
can play a role, producing some disorder also in the various charging energies of the system
(in particular for Cooper-pair boxes, which have small electrostatic capacitances). Apart from
that, disorder in the J j will turn out to have a much weaker effect than disorder in the � j .
These deliberations allow us to assume for simplicity that, both for Cooper-pair boxes and for
transmons, disorder in the � j and J j can be present to a comparable degree and that disorder
in the � j (J j ) would be uncorrelated with the disorder possibly present in the J j (� j ). We
finally remark that many properties of the TFIC are determined by the ratio � j/J j , since this
ratio essentially (in the limit of weak disorder) determines the eigenstates of the system (see
below). For standard transmons, the ratio � j/J j is not straightforwardly flux tunable. One of
the experiments we suggest to perform with our quantum simulator relies on the possibility to
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change the eigenfunctions of the system (cf section 4.2), which can be done only by changing
the ratio � j/J j . All other possible experiments discussed in this paper can be performed, in
principle, with Cooper-pair boxes and transmons equally well, irrespective of the J j being flux-
dependent or not [20]. Therefore, when plotting our results as a function of a flux-tunable system
parameter, we will assume for definiteness that our circuit-QED quantum simulator of the TFIC
is implemented with Cooper-pair boxes and that the J j do not change with the external magnetic
flux.

2.3. The transverse-field Ising chain

The Hamiltonian (2) can be exactly diagonalized by means of a Jordan–Wigner transformation,
which was first used in this context in [26, 27]. This transformation maps the spin degrees of
freedom to fermionic operators c j , c†

j via σ +
j = c†

j exp(iπ
∑ j−1

k=1 c†
kck) and yields

HI = −

N∑
j=1

� j

2
+

N∑
j=1

� j c
†
j c j −

N−1∑
j=1

J j [c
†
j c

†
j+1 + c†

j c j+1 + H.c.]. (4)

Up to a constant −
∑

j � j/2, this Hamiltonian is of the form

H =

N∑
i, j=1

[c†
i Ai, j c j + 1/2(c†

i Bi, j c
†
j + H.c.)]. (5)

Note that the conditions H = H † and {c j , c†
j} = 1 require that A = A† and B = −BT. By

introducing new fermions ηk =
∑N

j=1 gk, j c j + hk, j c
†
j , such Hamiltonians can be transformed into

the diagonal form H =
∑

k 3k(η
†
kηk − 1/2)+

∑
j A j, j/2 [26]. The components gk, j and hk, j of

the vectors gk and hk and the excitation energies3k of H are determined by defining normalized
vectors φk = gk + hk and ψk = gk − hk and by solving the equations

φk(A − B)=3kψk, ψk(A + B)=3kφk. (6)

In our case

A =



�1 −J1 0 · · · 0
−J1 �2 −J2

0 −J2 �3 −J3
...

. . .
. . .

. . .

−JN−2 �N−1 −JN−1

0 −JN−1 �N

 , (7)

and B is obtained by substituting A j, j =� j → 0 and A j+1, j = −J j → J j into A. For uniform
� j and J j , the φk , ψk and 3k can be analytically calculated from equations (6) (see, e.g., [20]).
For nonuniform system parameters, these quantities have to be determined numerically. In both
cases, the Hamiltonian HI of the TFIC can be written in the form

HI =

∑
k

3k(η
†
kηk − 1/2), (8)

and knowledge of the φk and ψk allows one to express spin observables in terms of the
ηk-fermions, which is the basis of many of our calculations. For instance,

σ j
z = (c†

j + c j)(c j − c†
j)=

∑
k,k′

φk, jψk′, j(η
†
k + ηk)(ηk′ − η

†
k′). (9)
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We collect some important facts about the TFIC. In the uniform case,

3k = 2J
√

1 + ξ 2 − 2ξ cos k. (10)

Here, J = |J | and ξ =�/2J is the normalized transverse field. The possible values of k are
solutions of sin k N = ξsin k(N + 1). For N → ∞, the uniform TFIC undergoes a second-order
QPT at n = ±1 from a ferromagnetic [n ∈ (0, 1)] or an anti-ferromagnetic [n ∈ (−1, 0)] ordered
phase with doubly degenerate eigenstates (one 3k → 0) to a paramagnetic disordered phase
with 3k > 0 for all k. The QPT is signaled by the disappearance of long-range correlations
in σx . This QPT will also occur in a nonuniform system (at some mean transverse field
strength � j ) [21]. However, there can be weakly (dis)ordered Griffith–McCoy ‘phases’ in the
vicinity of the critical point [28–31].

Finally, we introduce a convenient notation for nonuniform � j and J j . In this case,
we will frequently write � j =�τ j and J j = J τ ′

j , where τ j and τ ′

j usually have mean 1,
or, if � j and J j follow probability distributions, expectation value 1. We will refer to �

as the ‘mean’ qubit transition frequency, even if �= 〈� j〉 is the expectation value of a
probability distribution and the actual mean value � j is (for finite N ) in general different
from �. We use the same convention for the qubit–qubit coupling J . Furthermore, we
define the local and the ‘mean’ normalized transverse magnetic field, ξ j =� j/2J j and ξ =

�/2J . Note that in general both ξ 6= ξ j and ξ 6= 〈ξ j〉 (but for the probability distributions
we will consider, (ξ − 〈ξ j〉)/〈ξ j〉< 1%). We usually characterize HI by the parameters ξ ,
J , τ j and τ ′

j . Under the assumptions formulated in section 2.1, � and thus ξ are flux-
tunable without changing the τ j in the proposed circuit-QED quantum simulator of the
TFIC.

3. Spectrum of the system

In order to provide a guideline for the initial experimental characterization of our setup, we
have calculated in [20] the transmission spectrum S of the resonator as a function of the probe
frequency ω and the flux-tunable qubit transition frequency � (see below equation (28)). To
that end, we have first calculated the spectrum of the bare TFIC for coupling to the first qubit
via σ 1

x ,

ρ̃(ω)=

∫
dt eiωt

〈σ 1
x (t)σ

1
x (0)〉, (11)

which is the Fourier transform of the qubit autocorrelator ρ(t)= 〈σ 1
x (t)σ

1
x (0)〉. We have argued

that for sufficiently large (but finite) N , qubit decay processes will render the measured
spectrum continuous and akin to the spectrum one would obtain by taking the limit N →

∞ in the calculation of ρ. Assuming small coupling g/ω0 � 1 of the first qubit and the
resonator, we have then considered the TFIC as a linear bath for the resonator, and this
approximation allowed us to calculate the resonator spectrum S in the coupled system. In
this section, we add some remarks on the interpretation of the autocorrelator, the transition
N → ∞ and the linear approximation. Moreover, we discuss how a small amount of disorder
in the qubit parameters due to imperfections in the fabrication process affects the resonator
spectrum S.
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Figure 2. Imaginary part of the qubit autocorrelator ρ(t)= 〈σ 1
x (t)σ

1
x (0)〉 of

the TFIC with normalized transverse field ξ =�/2J = 8 in the cases N = 20
(black) and N → ∞ (magenta).

3.1. Time-dependent correlations in the transverse-field Ising chain

By means of the spin–free-fermion mapping described in section 2.3, one readily finds that

ρ(t)= 〈σ 1
x (t)σ

1
x (0)〉 =

∑
k

φ2
k,1 e−it3k . (12)

Here and in the following, expectation values are calculated under the assumption of zero
temperature. This is justified because the band gap of the Ising chain is of the same order of
magnitude as the qubit transition frequencies �∼ 5 GHz (except near the critical point) and,
thus, much bigger than the usual mK temperatures of a cryogenic environment. In the uniform
case � j =� and J j = J , where explicit expressions for φk and 3k can be found, the limit
N → ∞ can be taken analytically and yields [20]

ρ(t)=2(1 − |ξ |)(1 − |ξ |2)+
2

π

∫ π

0
dk

ξ 2 sin2 k

1 + ξ 2 − 2ξ cos k
e−it3(k). (13)

Here, 2(x) is the Heaviside step function and 3(k) stands for 3k with continuous k
(equation (10)). The first term on the rhs of (13) causes a nonzero mean value of Re ρ(t) in
the ordered phase. Figure 2 shows Im ρ(t) for ξ = 8 in the cases N = 20 (equation (12)) and
N → ∞ (equation (13)) (the time evolutions of Re ρ and Im ρ are qualitatively similar and
agree for |ξ | � 1 up to a phase). For small times, the curves coincide (the second covers the
first). However, the finite size of the TFIC with N = 20 causes a revival of ρ at Tr ≈ 2N/v with
v = max[d3(k)/dk] (v = 2J |n| for n< 1 and v = 2J for |ξ |> 1). This can be understood in
the following way. The autocorrelator ρ is related to the linear response 1〈σ 1

x 〉(t) of the TFIC
to a perturbation ∝ δ(t)σ 1

x relative to the equilibrium value 〈σ 1
x 〉 = 0. Indeed, Kubo’s formula

predicts that 1〈σ 1
x 〉(t)∝ Im ρ(t). The δ-pulse at t = 0 forces the first spin in the −x-direction.

This local excitation in position space is composed of many excitations in k-space. Since most
of them have velocity v [20], the local excitation propagates with velocity v through the system,
is reflected at the far end of the chain and causes revivals of ρ at multiples of Tr = 2N/v. To
further clarify the transition N → ∞, we note that for large t , ρ has a standard deviation from
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its mean ∝ 1/
√

N . This can be expected from (12) since |ρ(t)|2 ∼ 1/N 2
∑

k,k′ eit (3k−3k′ ) and,
for t → ∞, all terms in the sum except for those with k = k ′ will cancel. In general, the t → ∞

fluctuations that we find for all time-dependent observables considered in this work are due to
the finite system size and decrease with N (but not all of them behave like ∝1/

√
N ).

3.2. Spectrum of the resonator—the linear approximation

Taking the Fourier transform of equations (12) and (13) yields the spectrum ρ̃(ω) of the TFIC
for a force that couples to σ 1

x for finite N and N → ∞, respectively. In order to calculate the
spectrum S of the resonator, whose coordinate (a† + a) couples to σ 1

x (cf equation (1)), we have
suggested [20] a useful approximation: we consider the TFIC as a linear bath for the resonator.
That is, we replace the TFIC by a set of harmonic oscillators having the spectrum ρ̃ of the TFIC.
This approximation can be straightforwardly generalized to other contexts, where a different
many-body system couples to a resonator. It is justified in the limit of small qubit–resonator
coupling g/ω0 � 1, as we discuss in the following.

The linear approximation for the TFIC-bath fails as soon as probing the resonator
sufficiently excites the TFIC so that its nonlinearity becomes important. Thus, the linear
approximation requires a small coupling g and is worst if the TFIC is on resonance with
the resonator (ω0 within the band 3k of the TFIC). The ‘most nonlinear’ bath possible
for the resonator, that is, the bath whose nonlinearity becomes important for the smallest
value of g, is a bath consisting of only a single qubit on resonance with the resonator. If
the linear approximation is adequate for such a system in the limit g/ω0 � 1, it will be
also sufficient for our purposes. Therefore, we now consider the case N = 1 and �= ω0

of equation (1) and calculate the spectrum of the resonator by linearizing the single-qubit
bath. Since the atomic Hilbert space is small for N = 1, we can then numerically check the
accuracy of our approximation. We also compare our approximation with the resonator spectrum
calculated analytically within the rotating wave approximation (RWA), which is the standard
approximation of H in this specific situation.

For N = 1 and �= ω0, the Hamiltonian H (equation (1)) becomes

HN=1 = ω0a†a + g(a† + a)σx +
ω0

2
σz. (14)

That is, the resonator coordinate (a† + a) couples to a single-qubit bath with the Hamiltonian
Hq =

ω0
2 σz via a force gσx . The spectrum of this force is

F̃q(ω)=

∫
dt eiωt

q〈gσx(t) gσx(0)〉q = 2πg2δ(ω−ω0), (15)

where the time evolution of σx and the expectation value q〈 . 〉q are to be calculated with respect
to (the ground state of) Hq. Now we linearize the system and replace HN=1 by

Hlin = ω0a†a + g′(a† + a)(b† + b)+wb†b (16)

with bosonic b, b† and parameters g′ and w to be determined. In (16), the resonator couples
to a force g′(b† + b) exerted by a bath that consists of a single harmonic oscillator with the
Hamiltonian Hho = wb†b. The spectrum of this force reads

F̃ho(ω)= 2π(g′)2δ(ω−w). (17)

Thus, we choose g′
= g andw = ω0 such that F̃ho = F̃q. With this substitution, we now calculate

the autocorrelator of the resonator coordinate

ρlin(t)= lin〈[a
†(t)+ a(t)][a†(0)+ a(0)]〉lin, (18)
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and its Fourier transform, the resonator spectrum

ρ̃lin(ω)=

∫
dt eiωtρlin(t), (19)

according to equation (16). To that end, we express the resonator coordinate (a† + a) in terms of

the (bosonic) eigenmodes c̃± with frequencies ω̃± =

√
ω2

0 ± 2 gω0 of Hlin,

(a† + a)=

√
ω0

2

(
c̃†

+ + c̃+
√
ω̃+

+
c̃†
− + c̃−√
ω̃−

)
. (20)

Using (20), one readily finds that

ρlin(t)=
ω0

2

[
e−iω̃+t

ω̃+
+

e−iω̃−t

ω̃−

]
, (21)

ρ̃lin(ω)= π

[
ω0

ω̃+
δ(ω− ω̃+)+

ω0

ω̃−

δ(ω− ω̃−)

]
. (22)

Before we go on and compare these approximate analytical results with numerical finite-
size calculations for HN=1 (equation (14)), we calculate the same quantities on the basis of the
standard approximation toHN=1 for g/x0 � 1, the RWA (see, e.g., [32]). This will be a helpful
benchmark for estimating the quality of the linear approximation. In the RWA, the Hamiltonian
HN=1 reduces to the Jaynes–Cummings Hamiltonian

HRWA = ω0a†a + g(a†σ− + aσ +)+
ω0

2
σz. (23)

This Hamiltonian can be straightforwardly diagonalized, and one can therefore analytically
calculate the autocorrelator ρRWA(t) and the spectrum ρ̃RWA(ω) of the resonator in the
approximation provided by HRWA,

ρRWA(t)=
1

2

[
e−it (ω0+g) + e−it (ω0−g)

]
, (24)

ρ̃RWA(ω)= π [δ(ω− (ω0 + g))+ δ(ω− (ω0 − g))]. (25)

On the basis of (23), the results (24) and (25) are exact.
The autocorrelator and the spectrum of the resonator can also be calculated numerically

after truncating the photonic Hilbert space. This is achieved by expanding HN=1 and the
resonator coordinate (a† + a) in the product basis {|sz, ν〉}, where sz =↑,↓ and ν ∈N0, and
dropping all matrix elements with ν > νmax. In this finite-size approximation, the eigenvalues
En and eigenvectors |n〉 of HN=1 can be numerically calculated (n = 0, . . . , nmax = 2νmax + 1)
and give ρ(t) and ρ̃(ω) according to

ρ(t)=

nmax∑
n=0

e−i(En−E0)t |〈0|(a† + a)|n〉|
2, (26)

ρ̃(ω)= 2π
nmax∑
n=0

δ(ω− (En − E0)) |〈0|(a† + a)|n〉|
2. (27)
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Figure 3. Comparison of the RWA and the linear approximation with highly
accurate finite-size numerics for a resonator with frequency ω0 resonantly
coupled to a single qubit with coupling strength g/ω0 = 0.12. (a) The
autocorrelator ρ(t)= 〈[a†(t)+ a(t)][a†(0)+ a(0)]〉 of the resonator (red), and
the same quantity calculated within the RWA (ρRWA, blue) and the linear
approximation (ρlin, green). (b) The spectrum ρ̃(ω)=

∫
dt eiωtρ(t) of the

resonator (red), and the same quantity calculated within the RWA (ρ̃RWA, blue)
and the linear approximation (ρ̃lin, green). The dashed line is a guide to the eye.

Even for a relatively strong coupling g/ω0 = 0.3, the numerical results for ρ(t) and ρ̃(ω) are
already converged if νmax = 3 photonic excitations are taken into account. However, to be on the
safe side, we choose νmax = 10 in our calculations, which is still numerically easily tractable.

Our results for the autocorrelator ρ(t) and the spectrum ρ̃(ω) of the resonator in
HN=1 are plotted, respectively, in figure 3(a) (equations (21), (24), (26)) and figure 3(b)
(equations (22), (25), (27)). In both plots, we choose g/ω0 = 0.12, which is the largest ratio
of g/ω0 used in this work and in [20]. The autocorrelator ρ(t) of the resonator (red) is well
approximated both by the RWA (ρRWA, blue) and the linear approximation (ρlin, green), and the
quality of these approximations is essentially equal. For small t , the linear approximation might
be even more accurate than the RWA, but becomes worse at large t . This can be understood
in the frequency domain. In figure 3(b), we plot the spectral weights of the delta peaks in
the spectra ρ̃, ρ̃RWA and ρ̃lin (red, blue and green) at the corresponding peak positions. The
spectrum ρ̃ contains also delta peaks at higher frequencies than the ones plotted, but their weight
is virtually zero (2π |〈0|(a† + a)|n〉|

2 < 10−7 for all n 6= 1, 2). Both approximations yield good
predictions for the positions and the spectral weights of the peaks in ρ̃. The RWA is more precise
in predicting the peak positions and the linear approximation in predicting the spectral weights
(note, however, that the peak positions in ρ̃lin and ρ̃RWA agree up to first order in g/ω0). Thus, the
linear approximation is more precise for small t , in particular at t ≈ 0 and where the envelope of
ρ(t) has a minimum, but becomes worse for large t . In summary, we conclude that even for the
situation N = 1 and �= ω0, the linear approximation yields good results for the autocorrelator
and the spectrum of the resonator in the limit g/ω0 � 1 that are qualitatively comparable to the
usual RWA in this context. This implies that the linear approximation is well justified in our
calculation of the spectrum of a resonator coupled to a TFIC.
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3.3. Spectrum of the resonator—disorder effects

The linear approximation for the TFIC allows one to express the spectrum S(ω) of the (coupled)
resonator as a function of the spectrum ρ̃(ω) of the TFIC [20],

S(ω)=
42(ω)[κ + g2ρ̃(ω)]

[ω2/ω0 −ω0 − 4g2χ(ω2)]2 + [κ + g2ρ̃(ω)]2
. (28)

Here, κ is the full-linewidth at half-maximum of the Lorentzian spectrum of the
uncoupled (g = 0) resonator and χ(ω2) denotes the principal-value integral χ(ω2)=

1/(2π)
∫

d�ρ̃(�)�/(ω2
−�2). This result is actually general and holds for any linear bath

coupled to a resonator, with an arbitrary spectrum ρ̃. Plots of S, with ρ̃(ω) being the Fourier
transform of (13), are presented in [20]. However, in an actual implementation of the proposed
setup, the qubit parameters J j and � j will not be perfectly uniform, due to imperfections in
the fabrication process. We now investigate how this modifies the characteristic features of the
spectrum S of the uniform system. It is known in the field of random-matrix theory that disorder
would have to be very strong in order to have a dominant effect on (average) spectra. We will
observe the same here, in this concrete model system.

For a nonuniform TFIC, no closed analytical expressions for ρ̃(ω) are available. Thus,
we have to consider finite system sizes and calculate numerically the relevant quantities,
specifically, the spectrum of a finite-size nonuniform TFIC,

ρ̃(ω)= 2π
∑

k

φ2
k,1δ(ω−3k), (29)

which is the Fourier transform of equation (12). To take the effect of qubit decay processes
into account, we phenomenologically broaden the delta peaks in (29) and replace them by
Lorentzians of width γ around the 3k . We model the nonuniformity of the qubit parameters by
writing � j =�τ j and J j = J τ ′

j and choosing τ j and τ ′

j to be random variables, which follow
Gaussian distributions with means 1 and standard deviations στ = στ ′ = 0.02. Uniformity of
the qubit parameters � j and J j of this degree will turn out to be sufficient for all proposed
experiments. Much stronger disorder is not generally tolerable, as we will see below. However,
from the experimental data for a sample with three (even spatially separated) qubits presented
in [33], we calculate a standard deviation of the qubit transition frequencies from their mean of
0.8% (for zero flux bias). Thus, the requirements on the uniformity of � j and J j appear to be
attainable. With a typical set of system parameters that was also used in [20], we numerically
calculate ρ̃(ω) according to (29) and the corresponding resonator spectrum S according to (28).
In order to judge the effects of disorder, we also reproduce our calculation of S for the
corresponding uniform system [20] (figure S6). Figure 4 shows S as a function of ω and the
(mean) normalized transverse field ξ =�/2J for the uniform system (figures 4(a) and (b)) and
for a typical disorder configuration (figures 4(c) and (d)). In the uniform case, the signatures of
the QPT at ξ = 1, the dispersive shift of the resonator frequency and, on resonance, the double
peak with a separation of 4J (rather than 2g as in the case N = 1) that we have discussed in
detail for N → ∞ in [20] are clearly visible also for N = 20. These characteristic features are
insensitive with respect to a small amount of disorder in the system parameters, as figures 4(c)
and (d) demonstrate.
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Figure 4. (a) Spectrum S of a resonator coupled to a finite uniform TFIC with
N = 20 versus probe frequency ω and normalized transverse field ξ =�/2J .
The parameters are g = 0.12, J = 0.08, κ = 10−4 and c = 5 × 10−3 (in units
of x0). For better visibility of the features, values > 3 are plotted in white. (b)
Spectrum S(ω) for ξ = 6.1. This curve corresponds to a cut along the arrows in
(a). (c) The same as in (a) but with � j and J j following a Gaussian distribution
with a standard deviation of 2% around their mean values. (d) Cut along the
arrows in (c).

We remark that in several recent circuit QED experiments the qubits have been found to
be unexpectedly hot [34–36]. A corresponding non-negligible equilibrium population of the
excited many-body eigenstates of the Ising chain in our setup would lead to additional lines in
the described spectroscopy experiment, at frequencies smaller than the bandwidth of the Ising
chain. In the experimentally realistic case that the Ising chain is deeply in the paramagnetic
phase (�� 2J ), these resonances at ω . 4J (the bandwidth of the chain in the paramagnetic
phase) would be well below the lower band edge �− 2J . Thus, they would be distinguishable
from the band of the Ising chain as plotted in figure 4, and their intensity might allow one to
estimate the spurious population of the excited states. However, for the proposed time-domain
experiments with our circuit QED quantum simulator that we discuss in the following sections,
a non-negligible equilibrium excitation of the Ising chain might necessitate post-selection or
initialization techniques.
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4. Disorder effects on the system dynamics

A particularly interesting application of the proposed system would be to simulate the
nonequilibrium dynamics of the TFIC. In [20], we have suggested to experimentally track
the propagation of a localized excitation in the (uniform) TFIC that can be easily created in
our system and to measure the system dynamics after quenching the transition frequencies of
all qubits. In this section, we show that none of the predicted experimental results changes
qualitatively if the parameters of the TFIC are slightly disordered, as has to be expected
in reality. Stronger disorder, accessible, e.g., by deliberately detuning individual qubits, is
shown to produce qualitatively different physics in the previously proposed experiments, like
Anderson localization of the propagating excitation. For the realistic case �� J , we give
an estimate of the corresponding disorder strength. Finally, we develop a quantitative theory
of the effects of weak disorder on the system’s nonequilibrium dynamics that explains the
results of numerical experiments with the disordered TFIC. This theory might be helpful
for experimentalists to estimate system and disorder parameters for successfully performing
nonequilibrium experiments with the TFIC (e.g. for a given measurement resolution) without
having to do numerical simulations.

4.1. Propagation of localized excitations

For the first type of experiments we have suggested in [20], it is assumed that the TFIC is
deeply in the paramagnetic phase (ξ � 1) and detuned from the resonator. In this situation,
the TFIC is essentially decoupled from the resonator and its ground state is characterized by
〈σ j

z 〉 ≈ −1. Applying a fast π -pulse to the first qubit thus creates a localized excitation in the
system that subsequently propagates through the chain due to the qubit–qubit coupling J . The
time evolution of the observable 〈σ j

z 〉 after the π -pulse can be approximately described by [20]

〈σ j
z 〉(t)= −

∑
k

ψk, jφk, j +
∑
k,k′

ei(3k−3k′ )t
[
φk,1φk′,1(ψk, jφk′, j +ψk′, jφk, j)

]
. (30)

We plot this result in figure 5(a) for all j in a chain of length N = 20 and for a mean normalized
transverse field ξ =�/2J = 8 (the same system parameters as in [20]) and, again, we randomly
choose � j =�τ j and J j = J τ ′

j according to Gaussian distributions with standard deviations
of 2% from the mean values � and J as before (right panel). The experimentally measurable
observable 〈σ 1

z 〉(t) is singled out in the left panel. The propagation of a localized excitation
through the chain, and its reflection at the far end of the chain that leads to a distinct revival of
〈σ 1

z 〉(t) at t ≈ N/J , are still clearly visible in this slightly nonuniform system.
If the transition frequencies � j of the qubits can be tuned individually, the effective

length of the TFIC has been shown to be adjustable by strongly detuning one qubit from the
others [20]. This holds true also for a slightly nonuniform system: figure 5(b) shows the typical
result for a system with the same parameters and disorder strength as in (a), but with qubit 11
strongly detuned by setting τ11 = 1.3. This result is qualitatively identical with the result for the
corresponding nondisordered system [20]. The strong nonuniformity at j = 11 acts as a barrier
for the propagating excitation and leads to its reflection. Thus, it effectively changes the length
of the TFIC.
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Figure 5. Propagation of a localized excitation in a slightly disordered TFIC
of length N = 20. Specifically, the density plots show the nonequilibrium time
evolution of 〈σ j

z 〉 for all j after a π -pulse on the first qubit while the system is
in the paramagnetic phase (mean normalized transverse field ξ = 8). For better
visibility of the features, values >−0.5 are plotted in white. The experimentally
accessible observable 〈σ 1

z 〉 is singled out in the left panels. (a) The qubit
transition frequencies � j and qubit–qubit couplings J j are randomly chosen
according to Gaussian distributions with standard deviations of 2% from the
mean values. (b) The same as in (a) but with qubit 11 strongly detuned.

Having shown that the experiments with propagating localized excitations proposed in [20]
yield qualitatively the same results for ordered and slightly disordered systems, we now proceed
and study disorder effects on this type of experiment quantitatively. Parts of the following
analysis also apply to other nonequilibrium experiments with the TFIC, as will be discussed
in the context of quantum quenches (section 4.2).

Since it is assumed that the system is deeply in the paramagnetic phase, the mean qubit
transition frequency� is larger than the modulus of the mean qubit–qubit coupling J ,�/J � 1.
As before, we further assume uncorrelated disorder of the system parameters via � j =�τ j

and J j = J τ ′

j , where τ j and τ ′

j follow Gaussian distributions with standard deviations στ
and στ ′ from 1. That is, for στ = στ ′ , the absolute variation of the � j will be larger than the
absolute variation of the J j . Therefore, the dynamics of the system may be expected to be
much more sensitive to increasing στ than στ ′ . Moreover, one may expect that disorder effects
start to qualitatively affect the system dynamics even of small systems (that is, on the scale of
neighboring qubits j and j + 1) when the disorder in the qubit transition frequencies becomes
comparable to the modulus of the mean qubit–qubit coupling, �στ = J . These deliberations
are confirmed by numerical experiments: we first consider the wave functions gk, j and hk, j in
position space (ηk =

∑N
j=1 gk, j c j + hk, j c

†
j ). For zero disorder, they are extended over the whole

chain (except for the mode with 3k → 0 in the ordered phase [37]). Increasing στ localizes
the wave functions much more strongly than increasing στ ′ , and the localization length of
the wave functions indeed reduces from many (� 1) sites to a few (& 1) sites at �στ ≈ J .
Correspondingly, the propagation of an excitation initially localized at site 1 is only weakly
affected by disorder in J . However, if στ & J/�, it propagates only a few sites before becoming
completely trapped due to the disorder. This manifestation of Anderson localization [38] is
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Figure 6. (a) Propagation of an initially localized excitation in a strongly
disordered TFIC. Initialization and system parameters are identical to figure 5(a),
but the � j and J j are randomly chosen according to Gaussian distributions with
standard deviations of 6.5% from the mean values. The plot clearly shows that
strong localization of the excitation prohibits its propagation through the chain.
(b) Mean free path l of the propagating excitation (defined in the main text)
versus normalized standard deviation στ of the qubit transition frequencies for
different values of the normalized transverse field ξ on the log–log scale. The
points are lστ ,ξ as gained by numerically averaging many disorder configurations.
The lines are best fits of 1/σ a

τ ξ
b to these data. (c), (d) Behavior of a

nondisordered system, with uniform � j =� and J j = J , for comparison. (c)
Maximum excitation probabilities p j

0,n of the j th qubits in the nonequilibrium
time evolution of uniform TFICs of lengths N = 10, 20, 30, 40, 50 after the first
qubit has been flipped. For each chain length, p j

0,ξ is plotted for ξ = 3, 5, 8 (red,

green, blue). Apart from boundary effects, the decay of p j
0,ξ with j is slower

than ∝ 1/j . The maximum excitation probabilities pN
0,ξ of the last qubits of the

chains are significantly enhanced compared to nearby bulk sites. (d) Maximum
excitation probability pN

0 of the N th qubit versus chain length N (for any ξ � 1).

illustrated in figure 6(a), where we have used the same system parameters as in figure 5,
but we have randomly chosen τ j and τ ′

j according to Gaussian distributions around 1 with
standard deviations στ = J/�= 0.0625 = στ ′ . For definiteness, we always choose στ ′ = στ in
the following.

We have seen that for |ξ | � 1 (paramagnetic phase) the effective disorder strength in
the quantum Ising chain is set by στ�/J ∝ στ |n|. Now we try to determine how the relevant
observables in the currently considered type of experiment depend on this quantity. The
observable we focus on in the following is the maximum excitation probability (maximized
over time) of the j th qubit caused by the propagation of the localized excitation through the
disordered chain. In an experiment, one would for instance create an excitation of the first
qubit and measure the excitation probability of some other (e.g. the N th) qubit as a function
of time. The maximum excitation probability of the j th qubit is an important quantity since
it will determine whether the effect of the propagating excitation can be measured at site j ,
given a certain measurement resolution. In a single disordered system, the maximum excitation
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probability of qubit j will depend on the specific (random) disorder configuration of this system.
Therefore, a study of the effect of disorder as characterized by the statistical quantity στ |ξ | can
only refer to the statistical average of the maximum excitation probability of qubit j in one
disordered system over an ensemble of many disordered systems (disorder configurations), all
chosen according to the same probability distribution. Stated as a formula, this ensemble average
of the maximum excitation probability of qubit j is given by

p j
στ ,|ξ |

=
1

2

(
max

t
[〈σ j

z 〉(t)] + 1
)
. (31)

Here, the double overbar · denotes the ensemble average over many disordered systems
(disorder configurations) with the same system and disorder parameters ξ , J and στ = στ ′ . This
average is taken after one has maximized 〈σ j

z 〉(t) for a specific disordered system over time.
Our goal is to find the explicit functional dependence of p j

στ ,|ξ |
on στ and |ξ | (in fact, we expect

dependence only on the product στ |ξ |). Note that we assume that p j
στ ,|ξ |

depends neither on the
sign of ξ nor explicitly on the mean qubit–qubit coupling J , but only on the ratio of� and J (via
|ξ |). This is strictly true for στ = στ ′ = 0. By explicitly solving equations (6) for this case [20],
one can show that after substituting ξ → −ξ , the new allowed wave vectors are q = π − k
with 3q =3k , φq, j = (−1)N− jφk, j , and ψq, j = (−1)N− jψk, j . With that one can easily see that
equation (30) does not depend on the sign of ξ . Moreover, φk and ψk are independent of J
(which also follows from equations (6)), and 3k ∝ J such that changing J corresponds only to
a rescaling of time. The influence of disorder, however, is essentially set by στ |ξ | (for |ξ | � 1),
as we have argued above. Consequently, we may take p j to be independent of J and of the sign
of ξ . Nevertheless, to keep notation short, we write ξ instead of |ξ | for the remainder of this
section. For simplicity, we first focus on a semi-infinite system (N → ∞) and discuss later the
increase of p j at the end of the chain (due to the refocusing of the dispersed wave packet of the
propagating excitation).

As usual for disordered systems (e.g. [39]), we will try to characterize the disorder effects
on the ensemble-averaged maximum qubit excitation p j

στ ,ξ
via a mean free path. To that

end, it pays to first discuss in more detail the uniform case, p j
0,ξ . Even there, analyzing the

propagation of the dispersive wave packet that determines the maximum excitation probability
of a qubit requires some care. For ξ � 1, this excitation probability does not depend on ξ .
This is because the dispersion relation of the TFIC becomes that of the tight binding model,
3k = 2J

√
1 + ξ 2 − 2ξ cos k ≈ 2J sign(ξ)(ξ − cos k). Thus, n only sets the band gap but does

not influence the shape of the dispersion relation. Except for the aforementioned boundary
effects, p j

0,ξ also does not depend on N . This is evident from figure 6(c), where we plot p j
0,ξ

for several ξ and N . The curves for different ξ but the same N lie almost on top of each other
(henceforth, we drop the index ξ from p j

0,ξ ), and curves for different N can be distinguished

only by the boundary effects, that is, by the strong increase of p j
0 at j = N (which will

be discussed later). The decay of the p j
0 with j is relatively slow (slower than 1/j), which

should considerably simplify the experiments proposed in [20]. This slow decay of p j
0 can be

understood from the dispersion relation 3k of the system which, for ξ � 1, is quadratic in
k at k ≈ 0, π , and linear at k ≈ π/2: if an initially localized wave packet with width s and
momentum q, ψ(x, 0)= α e−x2/2 s2+iqx , α = (s2π)−1/4, is evolved in time by the Hamiltonians
H1 = h1k and H2 = h2k2, respectively, one finds that

|ψ(x, t)|2H1
= |ψ(x − h1t, 0)|2 = α2e−(x−h1t)2/s2

, (32)
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|ψ(x, t)|2H2
=

α2 s2√
s4 + 4h2

2t2
exp

(
−
(x − 2h2tq)2

s4 + 4h2
2t2

)
. (33)

That is, for H1, the maximum and width of the probability distribution for finding the particle at
a position x are constant, while for H2 and strong initial localization (or large times) the width
is ∝ t and the maximum is ∝ 1/t . As the dispersion relation of the TFIC interpolates between
these two cases, one may expect a decay of p j

0 slower than 1/j .
Coming back now to the disordered case, one might suspect that the ensemble-averaged

maximum qubit excitation p j
στ ,ξ

is related to the corresponding quantity for a nondisordered

system p j
0 via an exponential decay, governed by a finite mean free path lστ ,ξ for the propagation

of the localized excitation,

p j
στ ,ξ

= p j
0 e− j/ lστ ,ξ . (34)

If (34) holds,

1

lστ ,ξ
=

1

j
ln

(
p j

0

p j
στ ,ξ

)
(35)

should be independent of j . This observation can be used to check our assumption
(34). We numerically calculate p j

στ ,ξ
for all combinations of ξ = 3, . . . , 8 and 100 × στ ∈

{1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8} in a chain of length N = 20, and we average over 100 disorder
configurations. This turns out to be a good compromise between calculation time and ensemble
and system size as long as the effective disorder στξ is not too small (see below). With these
p j
στ ,ξ

, we calculated the rhs of (35) for j = 5, . . . , 16. Other j are not considered, in order to
minimize boundary effects. Our results for j = 5, . . . , 16 are approximately equal, with the
ratio of standard deviation to mean value being < 0.1 for given στ and ξ . We note that for very
weak effective disorder στξ . 0.1 we have to average over 500 disorder configurations such
that this ratio is < 0.1, because with decreasing ratio p j

0/p j
στ ,ξ

the slope of the logarithm on the
rhs of (35) increases. Thus, the numerical data seem to confirm our assumption (34), and the
influence of disorder on the considered experiment is captured by a mean free path lστ ,ξ . In our
subsequent analysis, we try to find simple expressions for this quantity.

The propagation of the localized excitation in the Gaussian disordered TFIC is akin to
the propagation of a particle in an uncorrelated random potential V (r) with 〈V (r)V (r ′)〉 =

V 2
0 δ(r − r ′). To lowest order in perturbation theory (Fermi’s golden rule, e.g. [39]), the mean

free path of the latter decreases as the inverse square of the disorder strength, ∝ 1/V 2
0 . In our

case, the effective disorder strength is determined by the dimensionless quantity στξ . Therefore,
we expect that

lστ ,ξ =
1

(στξ)2
. (36)

To check this, we calculate lστ ,ξ for the same combinations of στ and ξ as before by averaging
the rhs of (35) over j = 5, . . . , 16. Then we fit the function l(στ , ξ)= 1/σ a

τ ξ
b to our data for

lστ ,ξ . We find the exponents a ≈ 2.002 and b ≈ 2.071, which comes close to our expectation
of a = b = 2. Numerical data and fit are plotted on the log–log scale in figure 6(b). As long
as the effective disorder strength is not too big (στξ . 0.2), l(στ , ξ) with the fit values of a
and b reproduces the numerically (by ensemble-averaging) extracted mean free path lστ ,ξ . Here,

New Journal of Physics 15 (2013) 035013 (http://www.njp.org/)

http://www.njp.org/


19

Figure 7. Propagation of a localized excitation in a nonuniform TFIC of length
N = 30 and with normalized transverse field ξ = 4. (a) The qubit transition
frequencies � j and qubit–qubit couplings J j are randomly chosen according to
Gaussian distributions with standard deviations of 3.4% from the mean values.
(b) the same as in (a) but with a cosine modulation of the qubit transition
frequencies� j with standard deviation ≈ 3.4%, instead of uncorrelated disorder
of � j and J j .

one may attribute the deviations of a and b from 2 to the finite ensemble sizes. For stronger
disorder, however, the fit of l(στ , ξ)= 1/σ a

τ ξ
b begins to deviate from lστ ,ξ . Thus, higher-order

effects (beyond Fermi’s golden rule) and/or the disorder in J seem to be no longer negligible.
Finally, in setups with a second readout resonator (cf figure 1), the maximum population

pN
στ ,ξ

of the N th qubit will be an experimentally relevant quantity. Since the dispersed wave
packet of the propagating excitation is refocused at the end of the chain, the maximum excitation
probability of the N th qubit is considerably enhanced compared to nearby bulk qubits (see
figure 6(c)). It turns out that pN

στ ,ξ
can also be estimated by means of (34), the mean free

path (36), and the value of pN
0 for the corresponding nondisordered system, which we plot

for N = 1, . . . , 50 in figure 6(d).
Summing up, equations (34) and (36), together with figures 6(c) and (d), allow one to easily

estimate suitable system and disorder parameters for successfully implementing the presently
considered type of experiment. For instance, if in a system with N = 30 and ξ = 4 the N th
qubit should get a population of p30

στ ,n
= 0.3 (which corresponds to max

[
〈σ 30

z 〉(t)
]
= −0.4),

then one can roughly (i.e. averaged over many systems) afford a standard deviation of the qubit
transition frequencies from their mean of στ =

[
(Nξ 2)−1 log

(
p30

0 /0.3
)]1/2

≈ 0.034, where we
have extracted p30

0 ≈ 0.53 from figure 6(d). A typical result for these parameters is plotted
in figure 7(a). Here, the maximum excitation probability is found to be p30

0.034,4 ≈ 0.29 (since
maxt

[
〈σ 30

z 〉(t)
]
≈ −0.43).

We remark that the foregoing deliberations only hold for uncorrelated disorder of the
system parameters and do not take into account qubit decay. Correlated disorder can yield
qualitatively different results and has to be studied explicitly via equation (30). We also remark
that if the � j are individually tunable, it becomes possible to study the propagation of localized
excitations in arbitrary potentials. For instance, it might be interesting to choose � j =�[1 +
√

2στ cos(2π j/N )] and to compare the system dynamics with the Gaussian disordered case.
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For large N , both distributions of � j have the same mean and the same standard deviation, but
in the former case the system is not disordered and the localization of the propagating excitation
is much weaker than in the genuinely disordered case. Figure 7(b) shows the propagating
excitation in such a system with N , ξ and στ as in figure 7(a) (with uniform J j ).

4.2. Quench dynamics

The second type of nonequilibrium experiment we have proposed in [20] relies on the possibility
to rapidly change the transition frequency � of a superconducting qubit in a circuit QED
system by tuning the magnetic flux through its SQUID loop. This has been shown to be
possible virtually instantaneously on the dynamical time scale of a circuit QED system [4, 6, 7],
without changing the system’s wave function. Let us now assume that the circuit QED quantum
simulator of the (uniform) TFIC proposed in [20] is implemented with Cooper-pair boxes. For
this system, such a sudden change of all � j =� corresponds to a global quantum quench
of the normalized transverse magnetic field ξ =�/2J . We remark that one can also produce
quenches of ξ by using transmons in a non-standard parameter regime instead of Cooper-pair
boxes, or by using usual transmons with tunable coupling capacitances [20, 40]. We also remark
that the observation of the phenomena described in the following will set higher requirements
on the energy relaxation and phase coherence times of the collective many-body quantum states
of the Ising chain than the experiments proposed in sections 3.3 and 4.1. The global quantum
quench brings the Ising chain in a globally excited state whose time evolution has to be coherent
on the time scale N/J of these phenomena (see below). Nevertheless, meeting this constraint
seems feasible, since even for N = 30 and a moderate coupling strength J/2π = 100 MHz, we
find that N/J ∼ 50 ns, which is far below the energy relaxation times T1 ∼ 7.3µs and coherence
times T2 ∼ 500 ns achieved for individual Cooper-pair boxes [41].

The nonequilibrium dynamics of the TFIC following a quantum quench is currently subject
to much theoretical research, e.g. [22, 42–53], and should be experimentally observable with our
circuit QED quantum simulator. In this context it is usually assumed that for t < 0 the system
is in the ground state |0〉a of a Hamiltonian HI,a (characterized by ξa). At t = 0, the overall
transverse field is changed, na → nb, and the nonequilibrium time evolution of some observable
O under HI,b is investigated,

〈O〉(t)=a〈0|eitHI,bO e−itHI,b |0〉a. (37)

In [20] we have focused on the time evolution of the local transverse magnetization 〈σ j
z 〉 and

the end-to-end correlator 〈σ 1
x σ

N
x 〉 (indicating long-range order) after quenching n within the

paramagnetic phase. These quantities should be experimentally easily accessible in our system.
In this section, we show that also for such quantum quenches the predicted experimental results
of our earlier work are insensitive to a small amount of fabrication-induced disorder.

In general, two sets of the �- and J -parameters, {�
a/b
j } and {J a/b

j }, fully specify the
Hamiltonians HI,a/b (equation (2)). Given these parameters, the time evolution (37) of the local
magnetization and the end-to-end correlator can be written as [20]

〈σ j
z 〉(t)= −

∑
k

ψb
k, jφ

b
k, j + 2

∑
k,k′

{ψb
k, jφ

b
k′, j [Xk,k′ cos t (3b

k +3b
k′)+ Yk,k′ cos t (3b

k −3b
k′)]}, (38)

〈σ 1
x σ

N
x 〉(t)=

∑
k

φb
k,1ψ

b
k,N +2

∑
k,k′

{φb
k,1ψ

b
k′,N [Xk,k′ cos t (3b

k +3b
k′)−Yk,k′ cos t (3b

k −3b
k′)]}. (39)
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Here,

Xk,k′ =
[
(gb

k )
T H a + (hb

k)
TGa

][
(Ga)Tgb

k′ + (H a)Thb
k′

]
, (40)

Yk,k′ =
[
(gb

k )
T H a + (hb

k)
TGa

][
(H a)Tgb

k′ + (Ga)Thb
k′

]
, (41)

and G and H are matrices that, respectively, contain the gk and hk as columns. In these
equations, a quantity carrying the index a or b is to be calculated from equations (6) with
parameter set a or b.

To implement disorder of the system parameters before the quantum quench, we write
again �a

j =�aτ j and J j = J τ ′

j , and we randomly choose τ j and τ ′

j according to Gaussian
distributions with standard deviations στ and στ ′ from 1. As we have argued in section 2.1,
tuning the flux8 through the SQUID loops of the qubits only changes the mean qubit transition
frequency �a

→�b (and, thus, the mean transverse field ξa =�a/2J → ξb =�b/2J ), but
leaves τ j , J and τ ′

j unaffected. Hence, by fixing ξa/b and στ/τ ′ , the system is fully specified
before and after the quench (as in section 4.1, the absolute values of�a/b and J can be absorbed
in the time scale J t of the dynamics), and we are ready to evaluate equations (38) and (39).

Figure 8(a) shows the local magnetization 〈σ j
z 〉(t) for all j and for the same system

parameters as in figure 4 of [20], but with�a/b
j and J j having standard deviations στ = στ ′ = 2%

around their mean values (right panel). The experimentally easily measurable trace of 〈σ 1
z 〉 is

singled out in the left panel (black). For comparison, we also plot (green) the local magnetization
of the first qubit 〈σ 1

z 〉 of the uniform system (as plotted in the left panel of figure 4 of [20]).
Correspondingly, figure 8(b) shows (39) for a uniform system as in figure S6 of [20] (green),
and with 2% disorder in �a/b

j and J j (black). The plots demonstrate that the quench dynamics
of the considered observables is not qualitatively affected by the presence of a small amount of
disorder.

For a more systematic analysis of the disorder effects on the quench experiments
considered here, we make use of our findings for the mean free path of a propagating localized
excitation from the previous section. This is possible because the quench dynamics of the TFIC
is governed by the propagation of QPs through the system [20, 43, 44, 46, 48, 54]. These
correspond to flipped spins, essentially like the localized excitation of the previous section.
Indeed, if the system is initially in the paramagnetic phase, the time evolution immediately after
the quantum quench e−itHb |0〉a ∝

∏
j e−itJ (ξb−ξa)/ξaσ

j
x σ

j+1
x |0〉a flips pairs of adjacent spins so that

they point in the +z-direction. Due to the qubit–qubit coupling, these local excitations propagate
as QPs with velocity v ≈ 2J through the chain. For an interpretation of the quench dynamics
and the time scales indicated in the plots (all of which scale as N/J ) in terms of these QPs,
see [20]. If ξb is in the paramagnetic phase, the mean free path l of the QPs in a disordered TFIC
can be estimated by l = 1/(στξb)

2 according to the previous section. The characteristic quasi-T -
periodic behavior (T = N/v) of the local magnetization after the quench in the nondisordered
TFIC can be understood as a revival of coherence each time QPs initially generated at the same
spot meet again [20, 48]. This happens when the QPs have traveled multiples of the chain
length N . If there should be a significant probability that two contiguously generated QPs meet
again at least once before being scattered and thus decrease the local magnetization at t = T ,
the mean free path has to be sufficiently large, l > 2N . The appearance of significant end-to-
end correlations after the quench (that are stronger than those for t → ∞) requires that QPs
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Figure 8. (a) Time evolution of the magnetization 〈σ j
z 〉 in a disordered TFIC

of length N = 30 after a quench of the mean normalized transverse field ξ =

�/2J = 8 → 1.2 (right). Values<−0.9 (>−0.6) are plotted black (white). The
measurable observable 〈σ 1

z 〉 is plotted separately in the left panel (black), along
with the corresponding trace for a uniform system (green). (b) Time evolution of
the end-to-end correlator 〈σ 1

x σ
N
x 〉 in a disordered TFIC of length N = 30 after a

quench of the mean normalized transverse field ξ = 8 → 1.5 (black), along with
the corresponding trace for a uniform system (green). In both plots the qubit
transition frequencies � j and qubit–qubit couplings J j are randomly chosen
according to Gaussian distributions with standard deviations of 2% from the
mean values � and J .

generated in the middle of the chain reach the edges of the chain without being scattered, hence
l > N . We have performed numerical experiments which indeed suggest that the corresponding
values of στ mark the transition to a degree of disorder where the described phenomena are
no longer present. In that sense, the distinctive features of the quench dynamics of the end-to-
end correlator are less sensitive to disorder than those of the local magnetization (and, due to
the shorter time scale, less sensitive to decoherence or decay). We finally note that also here
the effective chain length can be adjusted by strongly detuning individual qubits (this can also
be used to create local quantum quenches by ‘joining’ two initially independent chains) and
arbitrary effective potentials � j can be chosen.

5. Conclusion

In the quest for controllable large-scale quantum systems, the framework of circuit QED offers
several advantages, such as fast, high-fidelity readout, a great flexibility in design and steadily
increasing coherence times. However, a potentially significant disadvantage arises from the
hardly avoidable static noise and disorder sources in these man-made devices. The central result
of this work is that also in this respect, there is reason to be optimistic: the requirements on the
homogeneity of the system parameters for observing interesting (and predictable) many-body
physics in a circuit QED system are not too high to be achievable with present-day or near-
future technology. This underlines the prospects of circuit QED as a promising platform for
implementing quantum simulations of complex quantum many-body Hamiltonians. In addition,
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we have shown that circuit QED quantum simulators could be used to study deliberately the
effects of tunable disorder on quantum many-body dynamics.
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