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We investigate the equilibrium behavior of a superconducting circuit QED system containing a large

number of artificial atoms. It is shown that the currently accepted standard description of circuit QED via an

effectivemodel fails in an important aspect: it predicts the possibility of a superradiant phase transition, even

though a full microscopic treatment reveals that a no-go theorem for such phase transitions known from

cavityQEDapplies to circuitQED systems aswell.Wegeneralize the no-go theorem to the case of (artificial)

atoms with many energy levels and thus make it more applicable for realistic cavity or circuit QED systems.
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Recent years have seen rapid progress in fabrication and
experimental control of superconducting circuit QED sys-
tems, in which a steadily increasing number of artificial
atoms interact with microwaves [1–4]. These develop-
ments set the stage to study collective phenomena in circuit
QED. An interesting question in that context is whether a
system with many artificial atoms undergoes an equilib-
rium phase transition as the coupling of artificial atoms and
electromagnetic field is increased (at zero temperature).
Phase transitions of this type have been intensely discussed
for cavity QED systems [5–10] and are known as super-
radiant phase transitions (SPTs) [6]. However, in cavity
QED systems with electric dipole coupling their existence
is doubted due to a no-go theorem [8]. Recently, it has been
claimed that SPTs are possible in the closely related circuit
QED systems with capacitive coupling [10–12]. This
would imply that the no-go theorem of cavity QED does
not apply and challenges the well-established analogy of
circuit and cavity QED.

Here, we show in a full microscopic analysis that circuit
QED systems are also subject to the no-go theorem. We
argue that such an analysis is necessary since the standard
description of circuit QED systems by an effective model
(EM) is deficient in the regime considered here. A toy
model is used to illustrate this failure of an EM. Finally,
we close a possible loophole of the no-go theorem by
generalizing it from two-level to multilevel (artificial)
atoms. Thus, our work restores the analogy of circuit
and cavity QED and rules out SPTs in these systems under
realistic conditions that have not been covered before.

Dicke Hamiltonian in cavity and circuit QED.—Both
circuit QED systems and cavity QED systems with N
(artificial) atoms (Fig. 1) are often described by the
Dicke Hamiltonian [13] (@ ¼ 1)

H D ¼ !ayaþ!

2

XN

k¼1

!k
z þ

"ffiffiffiffi
N

p
XN

k¼1

!k
xðay þ aÞ

þ #ðay þ aÞ2: (1)

The (artificial) atoms are treated as two-level systems with
energy splitting ! between ground state jgik ¼ ð01Þk and
excited state jeik ¼ ð10Þk (!k

x;!
k
z are Pauli matrices). In the

case of circuit QED, we assume Cooper-pair boxes as
artificial atoms, which justifies the two-level approxima-
tion. Our main results, though, hold for any charge-based
artificial atoms (capacitive coupling) [14]. Further, ay

generates a photon of energy !. Matter and field couple
with a strength ". The # term, often neglected in other
contexts, will become crucial below. In cavity QED, H D

derives from minimal coupling of atoms and electromag-
netic field. For an atom (n electrons) at a fixed position,

H 0
cav ¼

Xn

i¼1

½pi ! eAðriÞ'2
2m

þ Vintðr1; . . . ; rnÞ: (2)

The pA and A2 terms in the analog N-atom Hamiltonian
yield the " and # term in H D, respectively. In circuit
QED, H D arises from a widely used EM for a charge-
based artificial atom in a transmission line resonator [15],

H 0
cir ¼ 4EC

X

$

ð$! "$Þ2j$ih$j!EJ

2

X

$

ðj$þ 1ih$jþH:c:Þ:

Here, $ counts the excess Cooper pairs on the island, EJ

and EC ¼ e2=½2ðCG þ CJÞ' are the Josephson energy and

FIG. 1 (color online). Cavity QED system with N atoms (a)
and circuit QED system with N Cooper-pair boxes as artificial
atoms (b).
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the charging energy of the Cooper-pair box, and CG and CJ

are the coupling capacitance and the capacitance of the
Josephson junction. Moreover, "$ ¼ CGðVG þV Þ=2e, VG

is an external gate voltage andV the quantum voltage due
to the electromagnetic field in the resonator. The Cooper-
pair box is assumed to be at its degeneracy point [15]. As it
is described by macroscopic quantities (like EC) and only
1 degree of freedom ($), H cir

0 is an EM for a Cooper-pair
box in a transmission line. Starting either from H 0

cav or
H 0

cir, one obtains H D using the following approxima-
tions: The N (artificial) atoms are identical, noninteracting
two-level systems with ground and excited states jgi
and jei which are strongly localized compared to the
wavelength of the single considered field mode
[i.e., Aðrki Þ ( A ) A0!ðay þ aÞ, where j!j ¼ 1, and
V ðrkÞ ( V ) V0ðay þ aÞ].

Superradiant phase transitions and no-go theorem.—In
the limit N ! 1, H D undergoes a second order phase
transition at a critical coupling strength [6–8]

"2
c ¼

!!

4

"
1þ 4#

!

#
: (3)

This phase transition was discovered for H D with # ¼ 0
and termed SPT [6]; see [9] for recent studies. At "c, the
atoms polarize spontaneously, hPk!

k
zi=N ! !1, and a

macroscopic photon occupation arises, hayai=N ! 0. A
gapless excitation signals the critical point [Fig. 2(a)].

In cavity QED systems, however, "c cannot be reached
if the # term is not neglected [8]. That is because " and #
are not independent of each other. Let us define a parame-
ter % via # ¼ %"2=!. Then Eq. (3) becomes "2

cð1! %Þ ¼
!!=4, and criticality requires %< 1. With A0 ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2&0!V

p
(V is the volume of the cavity) one finds

"cav ¼
!j! * djffiffiffiffiffiffiffiffiffiffiffiffi
2&0!

p
ffiffiffiffi
N

V

s
; #cav ¼

n

2&0!

e2

2m

N

V
; (4)

where d ¼ hgjePn
i¼1 rijei and %cav!j! * dj2 ¼ ne2=2m.

But the Thomas-Reiche-Kuhn sum rule (TRK) ([16],
Sec. A)

X

l

ðEl ! EgÞj! * hgje
Xn

i¼1

rijlij2 ¼ n
e2

2m
(5)

for the Hamiltonian H0 ¼ Pn
i¼1 p

2
i =2mþ Vintðr1; . . . ; rnÞ

of an uncoupled atom with spectrum fEl; jlig implies!j! *
dj2 + ne2=2m, consequently %cav , 1. This is known
as the no-go theorem for SPTs [8,10]. Notice that %cav

determines how strongly !j! * dj2 exhausts the TRK.
We remark that a direct dipole-dipole coupling between
atoms (omitted here) can lead to a ferroelectric phase
transition, which, however, occurs only at very high atomic
densities [17].
Surprisingly, the no-go theorem was recently argued not

to apply in circuit QED [10]. Indeed, the standard EM of
circuit QED yields

"cir ¼
eCG

CG þ CJ

ffiffiffiffiffiffiffiffi
!N

Lc

s
; #cir ¼

C2
G

2ðCG þ CJÞ
!N

Lc
; (6)

where L denotes the length of the transmission line reso-
nator, c its capacitance per unit length, and we have used
V0 ¼ ð!=LcÞ1=2 [15]. Here %cir ¼ EJ=4EC < 1 is easily
possible [1]. According to this argument, a SPT should be
observable in a circuit QED system.
Effective models and superradiant phase transitions.—

The EM has proved to be a very successful description of
circuit QED whose predictions have been confirmed in
numerous experiments. However, the circuit QED setups
operated so far contained only few artificial atoms. It is not
obvious that an EM also provides a good description of
circuit QED systems withN - 1 atoms and, thus, a proper
starting point to study SPTs in circuit QED. We now
present a toy model illustrating how an EM similar to the
one in circuit QED can erroneously predict a SPT.
The toy model consists of N harmonic oscillator poten-

tials with frequency !, each trapping n noninteracting
fermions of mass m and charge e, which all couple to a
bosonic mode with frequency ! [Fig. 2(b)].
This toy model can be viewed as a very simplified

description of (artificial) atoms with n microscopic con-
stituents inside a resonator. It is governed by the
Hamiltonian

H tm ¼ !ayaþ
XN

k¼1

Xn

i¼1

ðpk
i ! eAÞ2
2m

þm!2ðxki Þ2
2

; (7)

where we assume again Aðxki Þ ( A ¼ A0ðay þ aÞ. Since A
couples only to the center of mass coordinate of the kth
oscillator, H tm can be diagonalized ([16], Sec. B):
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FIG. 2 (color online). (a) Excitation energies &þ and &! of the
Dicke Hamiltonian H D versus coupling " (in units of ! ¼ !),
for % ¼ #!="2 ¼ 0; 0:8; 1; 1:2. For % ¼ 0, &! vanishes at
"¼0:5, thus signaling a SPT. Only % , 1 is compatible with

the TRK sum rule. For these %, &! !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! 1=%

p
and remains

finite for all ". The excitations &.ð"Þ of H tm correspond to
% ¼ 1. (b) Toy model of an (artificial) atom. The oval line
indicates the degree of freedom in the simplified effective model.
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H tm ¼ &.

"
ay.a. þ 1

2

#
þ

XnN!1

i¼1

!
"
byi bi þ

1

2

#
;

2&2.ð"Þ ¼ !2 þ 4#!þ!2

.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!2 þ 4#!!!2Þ2 þ 16"2!!

q
: (8)

Here, ay. generate excitations that mix photon field with
collective center of mass motion, the byi excite the remain-

ing degrees of freedom, " ¼ A0!d
ffiffiffiffi
N

p
and # ¼ "2=!. As

d ¼ hnjexjn! 1i ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=2m!

p
, the TRK is exhausted.

Note that &.ð"Þ are also the relevant excitation energies
of H D for N ! 1, as can be shown using methods of
Ref. [9] ([16], Sec. B), and demanding &! ¼ 0 yields
Eq. (3). One sees that &.ð"Þ is real and nonzero for all "
and that the ground state energy is an analytic function of "
[Fig. 2(a)]. Hence, no phase transition is possible.

Let us now consider an EM for the toy model. Similar to
the standard EM of circuit QED, we focus on the fermion
with the highest energy in the kth harmonic oscillator and
treat it as a two-level system with jgki ¼ jn! 1ik
and jeki ¼ jnik [Fig. 2(b)]. Accounting only for one
fermion per ‘‘atom,’’ that is, expanding H EM

tm ¼
!ayaþPN

k¼1ðpk ! eAÞ2=2mþm!2ðxkÞ2=2 in the basis
fjn!1ik;jnikg, yields a Dicke Hamiltonian with "EM ¼ "
and #EM ¼ #=n ¼ Ne2A2

0=2m. Crucially, only "EM de-
pends on n. This allows "EM to be increased at constant
#EM; therefore, %EM ¼ 1=n can be <1 and a SPT is
possible. This failure of the EM can be interpreted as
follows. The relation " ¼ "EM / d / ffiffiffi

n
p

reveals that the
coupling of an ‘‘atom’’ to the bosonic mode is fully cap-
tured by the EM and grows with atom size n. However, in a
proper description of the system, increasing the coupling
by increasing n unavoidably also increases # in proportion
to n: all fermions of all atoms couple to the bosonic mode
and each causes an A2 term. This is lost in the EM with
only 1 degree of freedom per atom. Interestingly, %EM < 1
only if n > 1, i.e., as long as the effective description
actually neglects degrees of freedom.

Microscopic description of circuit QED.—This example
suggests not to rely on the standard description for inves-
tigating SPTs in circuit QED. Although the dipole coupling
of field and qubit states might be fully represented by "cir,
#cir could still underestimate the A2 terms of all charged
particles in the Cooper-pair boxes. Instead, let us describe a
circuit QED system with N artificial atoms by a minimal-
coupling Hamiltonian that accounts for all microscopic
degrees of freedom:

H mic ¼ !ayaþ
XN

k¼1

Xnk

i¼1

ðpk
i ! qkiAÞ2
2mk

i

þ Vintðrk1; . . . ; rknkÞ:

As we allow arbitrary charges qki and masses mk
i and an

arbitrary interaction potential Vint of the nk constituents of
the kth artificial atom, H mic most generally captures the
coupling of N arbitrary (but mutually noninteracting)

objects to the electromagnetic field. We subject it to the
same approximations that led fromH 0

cir, the EM of circuit
QED, to H D. For identical artificial atoms fnk; qki ; mk

i g !
fn; qi; mig. The Hamiltonian of an uncoupled artificial
atom then reads H0

mic ¼
Pn

i¼1 p
2
i =2mi þ Vintðr1; . . . ; rnÞ.

Its qubit states jgi and jei, which in the standard EM
are superpositions of the charge states j$i, are among the
eigenstates fjlig ofH0

mic. ExpandingH mic in the fjgik; jeikg
basis and taking Aðrki Þ ( A gives the Dicke Hamiltonian
H D with parameters generalizing those of cavity QED
[Eq. (4)],

"mic
cir ¼ !j! * djffiffiffiffiffiffiffiffiffiffiffiffi

2&0!
p

ffiffiffiffi
N

V

s
; #mic

cir ¼ 1

2&0!

"Xn

i¼1

q2i
2mi

#
N

V
; (9)

where d ¼ hgjPn
i¼1 qirijei. This microscopic description

of circuit QED facilitates the same line of argument which
in Ref. [8] allowed the conclusion that there is no SPT
in cavity QED: Criticality [Eq. (3)] requires !j! * dj2 >Pn

i¼1 q
2
i =2mi, which is ruled out by TRK for H0

mic,

X

l

ðEl ! EgÞj! * hgj
Xn

i¼1

qirijlij2 ¼
Xn

i¼1

q2i
2mi

: (10)

Hence, the no-go theorem of cavity QED applies to circuit
QED as well. This result confirms the analogy of cavity
and circuit QED also with respect to SPTs. It has been
obtained under the same approximations that led from the
standard description of circuit QED,H 0

cir, toH D with "cir

and #cir. The discrepancy of the predictions of the micro-
scopic and the standard description of circuit QED thus
shows the limitations of the validity of the latter. This
might be important for future circuit QED architectures
with many artificial atoms in general, even for applications
not related to SPTs. We emphasize, though, that our con-
clusion neither forbids SPTs in circuit QED systems with
inductively coupling flux qubits [18] nor is it at odds with
the great success of the standard description for few-atom
systems: there, the deficiency of #cir does not manifest
itself qualitatively as the # term in H D mimics slightly
renormalized system parameters ~! and ~".
Possible loophole in the no-go theorem.—Although the

two-level approximation for the anharmonic spectrum of
(artificial) atoms is well justified in many cases, one might
argue that higher levels should be taken into account in this
context. Indeed, a SPT does not require ! ( !, and
thereby does not single out a particular atomic transition.
For a more profound reason for dropping the two-level

assumption, consider the elementary question of how the
presence of N mutually noninteracting atoms shifts a res-
onator’s frequency!. This situation is described byH mic.
It can be rewritten as H mic ¼ !ayaþPN

k¼1ðHk
mic þ

H k
pA þH k

A2Þ, where H k
pA and H k

A2 are the pA and A2

terms due to the kth atom ([16], Sec. C). Let us perturba-
tively calculate the frequency shift '! ¼ '!pA þ '!A2

caused by
P

H k
pA and

P
H k

A2 ([16], Sec. C). To this end,

PRL 107, 113602 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

9 SEPTEMBER 2011

113602-3



take ! / !k
m for all m; k, where !k

m is the mth excitation
energy of Hk

mic. Remarkably, it turns out ([16], Sec. C) that
'!pA (< 0) and '!A2 (> 0) cancel almost exactly due
to the TRK. The total frequency shift is small, '!0
ð!=!k

mÞ2. As a SPT equates to '! ¼ !!, the significance
of both pA and A2 terms for its existence becomes clear.
The pA terms cause a strong negative shift and favor a
SPT, the A2 terms do the opposite. This means, most
crucially, that one must not unequally truncate pA and
A2 terms for assessing the possibility of a SPT by an
approximate Hamiltonian. Dropping the A2 terms in H D

(# ¼ 0) leads to the prediction of a SPT. In contrast, H D

with # ! 0 fully incorporates the A2 terms of H mic. But,
due to the two-level approximation, it has only one matrix
element of the pA terms per atom, thereby possibly under-
estimating the tendency towards a SPT. To exclude SPTs in
cavity and circuit QED, a generalization of the no-go
theorem to (artificial) atoms with more than two energy
levels is necessary.

Generalized no-go theorem.—Let us consider N ! 1
identical atoms coupled to a field mode with frequency !.
The atomic Hamiltonians Hk

mic may have an arbitrary
spectrum f!l; jlki ¼ jlikg, with !0 ¼ 0 and ( excited
states (Fig. 3).

With dl;l0 ¼ ! * hljPn
i¼1 qirijl0i, the full Hamiltonian of

the system reads

H mic ¼ !ayaþ #ðay þ aÞ2 þ
XN

k¼1

X(

l;l0¼0

ð!l'l;l0 jlkihlkj

þ iA0ð!l0 !!lÞdl;l0ðay þ aÞjlkihl0kjÞ: (11)

We now follow a strategy similar to that of Refs. [9]: We
derive a generalized Dicke Hamiltonian H GD having the
same low-energy spectrum as H mic for a small density of
atoms, N=V ’ 0, using A0 / V!1=2 as small parameter. We
then check whether H GD has a gapless excitation if the
density is increased, which would signal a SPT and mark
the breakdown of the analogy of H GD and H mic.

Expanding the eigenstates and eigenenergies ofH mic as
jEi / P1

s¼0 A
s
0jEsi and E / P

ss0A
sþs0
0 hEsjH micjEs0 i, we

note that contributions from all dl!0;l0!0 terms may be
neglected: they are smaller than those retained by a factor
of at least one power of A0 (for sþ s0 > 1) or )=N / 1
(for sþ s0 + 1), where ) ¼ P

k

P
l>0 jhlkjE0ij2 is the

number of atomic excitations in jE0i, which is / N for

low-lying eigenstates ([16], Sec. D). We thus define H GD

by setting dl!0;l0!0 ! 0 inH mic. Up to a constant, we find
([16], Sec. D)

H GD ¼ ~!ayaþ
X(

l¼1

!lb
y
l bl þ

X(

l¼1

~"lðbyl þ blÞðay þ aÞ;

(12)

by introducing byl ¼ 1ffiffiffi
N

p
PN

k¼1 jlkih0kj as collective excita-
tion, omitting the energy of the ‘‘dark’’ collective
excitations ([16], Sec. D), and removing the # term

by a Bogolyubov transformation yielding ! ! ~! ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ 4#!

p
and "l ! ~"l ¼

ffiffiffi!
~!

p
"l, with "l ¼

A0!ljd0;lj
ffiffiffiffi
N

p
. For dilute excitations, the bl are bosonic,

½bl; byl0 ' ¼ 'l;l0 [19]. The system undergoes a SPT if an
eigenfrequency &i of H GD can be pushed to zero by
increasing the couplings "l. We cannot calculate the &i’s
explicitly, but we will show that the assumption &i ¼ 0
contradicts the TRK. An &i solves the characteristic equa-
tion ([16], Sec. D)

"Y(

l0¼1

ð!2
l0 !&2Þ

#"
ð ~!2!&2Þ!4 ~!

X(

l¼1

!l
~"2
l

!2
l !&2

#
¼0: (13)

If &i were zero, this would imply

!

4NA2
0
¼

X(

l¼1

!ljd0lj2 !
Xn

i¼1

q2i
2mi

(14)

and contradict the TRK for H0
mic [Eq. (10)], which ensures

that the right-hand side is negative even if the entire atomic
spectrum is incorporated. This result is irrespective of the
details of the atomic spectra. Note that for # ¼ 0, the
negative term on the right-hand side of Eq. (14) vanishes,
and one recovers the SPT for critical couplings "lc withP(

l¼1 "
2
lc=!l ¼ !=4. This resembles Eq. (3) with # ¼ 0.

Experimental evidence for our conclusions could be
gained by probing the shifted resonator frequency of a
suitable circuit QED system. Consider a sample containing
N artificial atoms with "=

ffiffiffiffi
N

p
¼ 2*1 120 MHz and

!=2* ¼ !=2* ¼ 3 GHz. If %cir ¼ EJ=4EC ¼ 0:1, as
predicted by the standard theory, there should be signatures
of criticality for N ¼ 174 [according to Eq. (3)], and the
resonator frequency should be close to zero. But even if we
assume % ¼ 1, the minimal value compatible with the
TRK (that corresponds to ideal two-level atoms), we find
the lowest excitation &! to be still at &! ( 2*1 2 GHz.
We have verified that these phenomena are insensitive to
small fluctuations of the atomic parameters ([16], Sec. E;
see also [18]) and hence experimentally observable.
We thank S.M. Girvin, A. Wallraff, J. Fink, A. Blais,

J. Siewert, D. Esteve, J. Keeling, P. Nataf, and C. Ciuti
for discussions. Support by NIM, the Emmy-Noether
program, and the SFB 631 of the DFG is gratefully
acknowledged.

FIG. 3 (color online). Situation of the generalized no-go theo-
rem. Many multilevel (artificial) atoms couple to the photon
field. Transitions between excited atomic states are irrelevant for
the low-energy spectrum of the system.
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EPAPS: Supplementary Information for
“Superradiant Phase Transitions and the Standard Description

of Circuit QED”
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We provide intermediate steps for the derivation of some important statements and equa-
tions of the main text (Secs. A-D). Furthermore, we discuss the influence of disorder in the
parameters of artificial atoms on a possible experimental verification of our results (Sec. E).
For clarity, formulas contained in the main text are typeset in blue.

A. Thomas-Reiche-Kuhn sum rule. We derive the TRK [1] for the Hamiltonian

H
0
mic =

n�

i=1

p
2
i

2mi
+ Vint(r1, . . . , rn), (S1)

yielding Eq. (9) of the main text; Eq. (4) follows as a special case. The derivation of the TRK
is based upon the identities

n�

i=1

q
2
i

2mi
= −i

�
� ·

n�

i=1

qiri , � ·
n�

i�=1

qi�pi�

2mi�

�
,

n�

i=1

qipi

mi
= i

�
H

0
mic,

n�

i=1

qiri

�
, (S2)

for a real unit vector �. We denote the eigenspectrum of H0
mic by {El, |l�}. It comprises a

ground state |g� of energy Eg. The TRK follows by combining the commutators of Eqs. (S2):

n�

i=1

q
2
i

2mi
= �g|

�
� ·

n�

i=1

qiri ,
�

2
·

�
H

0
mic,

n�

i�=1

qi�ri�

��
|g� (S3a)

=
�

l

(El − Eg)|� · �g|
n�

i=1

qiri|l�|
2
. (S3b)
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B. Diagonalization of HD and Htm. It is demonstrated that the diagonalization of
both the Dicke Hamiltonian HD for N → ∞ and the Hamiltonian Htm describing the toy
model can be reduced to the diagonalization of special cases of HGD, which appears in the
context of the generalized no-go theorem. The characteristic equation of HGD, that will be
derived in Sec. D of these supplementary notes, is solvable for the special cases and yields the
diagonal forms of HD and Htm.

Diagonalization of HD. First, we focus on the Dicke Hamiltonian

HD= ωa
†
a+

Ω

2

N�

k=1

σ
k
z +

λ
√
N

N�

k=1

σ
k
x(a

† + a) + κ(a+ a
†)2 (S4a)

= ω̃a
†
a+

Ω

2

N�

k=1

σ
k
z +

λ̃
√
N

N�

k=1

σ
k
x(a

† + a) + C (S4b)

with ω̃ =
√
ω2 + 4κω, λ̃ =

�
ω/ω̃λ, and C = (ω̃−ω)/2. The Hamiltonian (S4b) was diagonal-

ized by means of a Holstein-Primakoff transformation in Refs. [2]. We employ here a closely
related approach developed in [3], which is more convenient for a generalization beyond the
two-level approximation and was also used in the derivation of HGD. We drop C, set the
energy of the atomic ground states to zero, introduce the operators

a
†
k = |ek��gk|, b

†
qj =

1
√
N

N�

k=1

e
iqjk|ek��gk|, (S5)

where qj = 2π(j/N) and j ∈ {0, 1, . . . , N − 1}, and obtain for N → ∞

H
�
D = ω̃a

†
a+ Ω

N�

k=1

a
†
kak + λ̃(b†q0 + bq0)(a

† + a) (S6a)

= ω̃a
†
a+ Ω

N−1�

j=0

b
†
qj bqj + λ̃(b†q0 + bq0)(a

† + a). (S6b)

In the limit of dilute excitations, that is applicable as long as the excitation energies of the
system are finite, the bqj obey bosonic commutation relations. Note that only the j = 0
collective mode couples to the radiation field. The j �= 0 modes are ‘dark’ and will be omitted
in the following. We write b instead of bq0 and arrive at

H
��
D = ω̃a

†
a+ Ωb†b+ λ̃(b† + b)(a† + a), (S7)

which corresponds to HGD (Eqs. (11) and (S28)) with µ = 1. Later we will derive a character-
istic equation for the eigenfrequencies of HGD (Eqs. (12) and (S32b)). For µ = 1 this equation
has the solutions

2�2± = ω
2 + 4κω + Ω2

±
�
(ω2 + 4κω − Ω2)2 + 16λ2ωΩ. (S8)
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Diagonalization of Htm. Now we consider Htm (Eq. (6)). The coupling of the electromag-
netic field and a single harmonic oscillator ‘atom’ is described by

H
0
tm =

n�

i=1

(pi − eA)2

2m
+

mΩ2
x
2
i

2
. (S9)

Note that we drop the index k numbering the atoms in Htm for a moment. As usual, we
assume A(r) ≈ A = A0(a† + a) in the region where the atoms are located. It is convenient to
make the canonical transformation x̃i = −pi/(mΩ) and p̃i = mΩxi. This yields

H
0
tm =

n�

i=1

�
p
2
i

2m
+

mΩ2
x
2
i

2

�
+ eA0Ω(a

† + a)
n�

i=1

xi +
ne

2
A

2
0

2m
(a† + a)2, (S10)

where we have written xi and pi instead of x̃i and p̃i to keep notation simple. Succes-
sively introducing relative and center-of-mass coordinates, {x1, p1, x2, p2} → {x̃1, p̃1, X1, P1},
{X1, P1, x3, p3} → {x̃2, p̃2, X2, P2}, . . ., leads to

H
0
tm =

n−1�

i=1

�
p̃
2
i

2µi
+

µiΩ2
x̃
2
i

2

�
+

P̃
2

2M
+

MΩ2
X

2

2
+ eA0Ω(a

† + a)nX +
ne

2
A

2
0

2m
(a† + a)2.

(S11)

Here, X = Xn = 1
n

�n
j=1 xj and P = Pn =

�n
j=1 pj are the center-of-mass coordinates of all

particles in the harmonic oscillator atom, and M = nm. The relative coordinates are given
by x̃i = (1/i

�i
j=1 xj)− xi+1 and p̃i = 1/(i+ 1)(

�i
j=1 pj − ipj+1), and µi = mi/(i+ 1). Note

that the electromagnetic field couples only to the center of mass. With this preliminary work
done, one can write the full Hamiltonian as

Htm = ω̃a
†
a+ Ω

N�

k=1

c
†
kck + γ̃

N�

k=1

(c†k + ck)(a
† + a) + Ω

N(n−1)�

i=1

(b†i bi +
1

2
) + C

�
. (S12)

The operator c†k excites the center-of-mass degree of freedom of the kth atom, and the gener-

ators for the N(n− 1) relative coordinates are denoted by b
†
i . We have introduced

γ = eA0

�
nΩ

2m
, κ = nN

e
2
A

2
0

2m
, (S13)

and removed the κ-term by means of ω̃ =
√
ω2 + 4κω and γ̃ =

�
ω/ω̃γ as before (C � = (ω̃ −

ω+NΩ)/2). The first three terms are again a special case of HGD with Ωl = Ω and λ̃l = γ̃ for
all l, and µ = N . Hence, their eigenvalues follow from the roots of the characteristic equation
for HGD (Eq. (S32b)), simplified by the present conditions. They can be explicitly calculated
and are the frequencies of the normal modes of field and center-of-mass coordinates. We find
N − 1 eigenfrequencies being equal to Ω and represent the generators of the corresponding
collective excitations also by b

†
i . Only two eigenfrequencies �± are nondegenerate,

2�2± = ω
2 + 4κω + Ω2

±
�
(ω2 + 4κω − Ω2)2 + 16Nγ2ωΩ (S14a)

= ω
2 + 4κω + Ω2

±
�
(ω2 + 4κω − Ω2)2 + 16λ2ωΩ. (S14b)
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We have defined λ =
√
Nγ. Since the dipole moment d of the transition from the ground state

of an atom to its first excited state is given by d = �n|ex|n− 1� = e

�
n/2mΩ, we can rewrite

λ = A0Ωd
√
N and κ = λ

2
/Ω. Denoting the generators of the �±-modes by a±, we arrive at

Htm = �±(a
†
±a± +

1

2
) +

nN−1�

i=1

Ω(b†i bi +
1

2
)−

ω

2
. (S15)

C. Shift of the resonator frequency due to the pA- and A
2
-terms. Consider

a system of N mutually noninteracting objects (e.g. atoms) with Hamiltonians

H
k
mic =

nk�

i=1

(pk
i )

2

2mk
i

+ Vint(r
k
1 , . . . , r

k
nk
) (S16)

coupled to a field mode of frequency ω. It is described by

Hmic = ωa
†
a+

N�

k=1

�
H

k
mic +H

k
pA +H

k
A2

�
, (S17)

where H
k
mic =

�nk

i=1 (p
k
i )

2
/2mk

i + Vint(rk1 , . . . , r
k
nk
), Hk

pA = −
�nk

i=1 q
k
i Ap

k
i /m

k
i , and Hk

A2 =�nk

i=1 (q
k
i )

2
A

2
/2mk

i . We denote the eigenspectrum of H
k
mic by {Ek

mk
, |mk�k} and the pho-

ton states by |l� and calculate the shifts δωpA and δωA2 of the resonator frequency due to�
Hk

pA and
�

Hk
A2 using the first nonzero terms in a perturbation series for the energy

of |0, . . . , 0, l�. We take ω � (Ek
mk

− E
k
0 ) =: Ωk

mk
for mk �= 0 and A(rki ) ≈ A. With

d
k
mk,0 = k�mk|

�nk

i=1 q
k
i r

k
i |0�k, we find for the jth terms ∆E

j
pA and ∆E

j
A2 in the perturbation

series for the perturbations
�

Hk
pA and

�
Hk

A2

∆E
1
pA = 0 (S18a)

∆E
2
pA = −A

2
0

N�

k=1

�

mk �=0

Ωk
mk

|� · dk
mk,0|

2



 (l + 1)

1 + ω
Ωk

mk

+
l

1− ω
Ωk

mk



 (S18b)

≈ −A
2
0

N�

k=1

�

mk �=0

Ωk
mk

|� · dk
mk,0|

2

�
(2l + 1)−

�
ω

Ωk
mk

�
+ (2l + 1)

�
ω

Ωk
mk

�2
�

(S18c)

∆E
1
A2 = A

2
0(2l + 1)

N�

k=1

nk�

i=1

(qki )
2

2mk
i

(S18d)

Therefore,

δωpA =− 2A2
0

N�

k=1

�

mk �=0

Ωk
mk

|� · dk
mk,0|

2
�
1 +

ω
2

(Ωk
mk

)2
�

(S19a)

δωA2 =2A2
0

N�

k=1

nk�

i=1

(qki )
2

2mk
i

. (S19b)
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Figure S1: Situation of the generalized no-go theorem. Atomic spectra are drawn black, eigenenergies
of the free electromagnetic field blue. (a) Structure of a low-energy state |E0� of the uncoupled system.
For N → ∞, the numbers of excited atoms ξ and of photons χ in |E0� are small compared to N , ξ � N
and χ � N . (b) Structure of a component of E1. The coupling has induced one atomic transition and
created or annihilated one photon (shown is an excitation of the second atom and the creation of a
photon). The state |E1� is the sum of all such states. Their amplitude in the eigenstate of the coupled
system is smaller than the amplitude of |E0� by a factor ∝ A0 ∝ V −1/2. In general, |Es� represents
the sum over all states obtained from |E0� via s atomic transitions and s creations or annihilations of
a photon. They contribute to the eigenstate of the coupled system by an amplitude ∝ As

0.

The pA-terms cause a negative and the A
2-terms a positive frequency shift. Note that δωpA

and δωA2 almost cancel due to the TRK (applied for each k). The resulting total frequency
shift δω = δωpA + δωA2 is suppressed by ∼ (ω/Ωk

mk
)2 as compared with δωpA and δωA2 .

D. The generalized Dicke Hamiltonian HGD. In this section, we derive the Hamil-
tonian HGD (Eq. (11)) from Hmic (in the form of Eq. (10)) for N → ∞ and show how to
obtain and evaluate its characteristic equation.

According to our strategy formulated in the main text, we start from low atomic densities
and expand the eigenstates |E� of Hmic in powers of A0 ∝ V

−1/2,

|E� ∝

∞�

s=0

A
s
0|Es�, (S20)

where |Es� stands for a sum over components that each describe s transitions from |E0� both in
its atomic and in its photonic part and hence has weight ∝ A

s
0 (Fig. S1). The corresponding

eigenenergies can be written as E ∝
�

ss� A
s+s�

0 �Es|Hmic|Es��. We are interested only in the
low-energy spectrum of Hmic. Thus, we assume that the number of atomic excitations ξ =�

k

�
l>0 |�lk|E0�|

2 and the number of photons χ = �E0|a
†
a|E0� in the uncoupled eigenstates

|E0� are small compared to N , ξ � N and χ � N . We now calculate E by dropping all
s+ s

� ≥ 2 terms and show that for the low-energy spectrum of Hmic all matrix elements that
induce transitions in-between excited atomic states are irrelevant. To that end, we write

Hmic = ω̃a
†
a+

N�

k=1

µ�

l,l�=0

�
Ωlδl,l� |lk��lk|+ iA0

�
ω̃

ω
(Ωl� − Ωl)dl,l�(a

† + a)|lk��l
�
k|

�
+ C, (S21)
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with ω̃ =
√
ω2 + 4κω and C = (ω̃ − ω)/2, and we define

H = ω̃a
†
a+

N�

k=1

µ�

l=1

Ωl|lk��lk| (S22a)

Hcpl = (a† + a)
N�

k=1

µ�

l=1

A0

�
ω̃

ω
Ωl

�
id0,l|0k��lk|− idl,0|lk��0k|

�
(S22b)

∆H = (a† + a)
N�

k=1

µ�

l>l�≥1

A0

�
ω̃

ω
(Ωl − Ωl�)

�
idl�,l|l

�
k��lk|− idl,l� |lk��l

�
k|
�
. (S22c)

Accordingly,

E ∝ �E|Hmic|E� (S23a)

∝ �E0|H|E0�+A0

�
�E0|Hcpl|E1�+ �E1|Hcpl|E0�+ �E0|∆H|E1�+ �E1|∆H|E0�

�
. (S23b)

Let us now compare the contributions of Hcpl and ∆H to E . The photonic parts of Hcpl

and ∆H are equal and need not be further considered. We write �Hcpl� = �E0|Hcpl|E1� +
�E1|Hcpl|E0� and �∆H� = �E0|∆H|E1�+ �E1|∆H|E0�, and we find

�∆H�

�Hcpl�
=

�µ
l>l�≥1(Ωl − Ωl�)Im

�
dl�,l

�N
k=1

�
�E0|l

�
k��lk|E1�+ �E1|l

�
k��lk|E0�

��

�µ
l=1 ΩlIm

�
d0,l

�N
k=1

�
�E0|0k��lk|E1�+ �E1|0k��lk|E0�

�� (S24)

Since N → ∞, the number of nonzero terms in the k-sums is decisive. For given l, l
�, the

sum over k in the numerator has at most ξ nonzero terms, whereas the sum over k in the
denominator has at least N − ξ nonzero terms. Hence, we drop ∆H, which represents the
matrix elements of Hmic connecting the excited states of an atom, and keep Hcpl as the
relevant coupling part of Hmic. We reintroduce the κ-term and call the resulting Hamiltonian
generalized Dicke Hamiltonian HGD,

HGD = ωa
†
a+ κ(a† + a)2 +

N�

k=1

µ�

l=1

�
Ωl|lk��lk|− ΩlA0(a

† + a)
�
idl,0|lk��0k|+H.c.

��
. (S25)

It has the same low-energy spectrum as Hmic. Paralleling our treatment of HD, we introduce

a
†
k,l = |lk��0k|, b

†
qj ,l

=
1

√
N

N�

k=1

e
iqjk|lk��0k|, (S26)

where qj = 2π(j/N) and j ∈ {0, 1, . . . , N−1} as before. With
�N

k=1 a
†
k,lak,l =

�N−1
j=0 b

†
qj ,l

bqj ,l,

Eq. (S25) becomes

HGD = ωa
†
a+ κ(a† + a)2 +

µ�

l=1

�
Ωl

N−1�

j=0

b
†
qj ,l

bqj ,l −A0Ωl

√
N(a† + a)

�
idl,0b

†
q0,l

+H.c.
��

.

(S27)

The operators bqj ,l are bosonic in the limit of dilute excitations (ξ � N)[3]. The j > 0
collective modes do not couple to the electromagnetic field. Again, we drop the energy of
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these ‘dark’ modes, write bl instead of bq0,l, define λ = A0Ωl|d0l|
√
N , and remove the κ-term

by substituting ω → ω̃ =
√
ω2 + 4κω and λl → λ̃l =

�
ω/ω̃λl and adding C = (ω̃ − ω)/2.

This gives

HGD = ω̃a
†
a+

µ�

l=1

Ωlb
†
l bl +

µ�

l=1

λ̃l(b
†
l + bl)(a

† + a) + C. (S28)

In order to find the eigenfrequencies of HGD, we introduce canonical coordinates by means of

x =
1

√
2ω̃

(a† + a), px = i

�
ω̃

2
(a† − a), yl =

1
√
2Ωl

(b†l + bl), pl = i

�
Ωl

2
(b†l − bl), (S29)

and define X
T = (x, y1, . . . , yµ), PT = (px, p1, . . . , pµ), and gl = 2λ̃l

√
ω̃Ωl. This yields

HGD =
P

T
P

2
+

1

2
X

TΩ2
X−

1

2

�
ω +

µ�

l=1

Ωl) (S30)

where

Ω2 =





ω̃
2

g1 · · · gµ

g1 Ω2
1

...
. . .

gµ Ω2
µ




(S31)

The orthogonal matrix G that diagonalizes Ω2 induces a point transformation to the normal
modes X̃ = GX and P̃ = GP. The eigenvalues �

2
i of Ω2 are the squared eigenfrequencies of

the system. They solve the characteristic equation

0 =
� µ�

l�=1

(Ω2
l� − �

2)
��

(ω̃2
− �

2)−
µ�

l=1

g
2
l

Ω2
l − �2

�
(S32a)

=
� µ�

l�=1

(Ω2
l� − �

2)
��

(ω̃2
− �

2)− 4ω̃
µ�

l=1

Ωlλ̃
2
l

Ω2
l − �2

�
. (S32b)

None of them can be zero since this would imply

ω

4NA
2
0

=
µ�

l=1

Ωl|d0l|
2
−

n�

i=1

q
2
i

2mi
. (S33)

We have used ω̃ =
√
ω2 + 4κω, λ̃l =

�
ω/ω̃λl, λl = A0Ωl|d0l|

√
N , and κ = NA

2
0

�n
i=1 q

2
i /2mi.

However, the left side of Eq. (S33) is positive, whereas its right side is negative according to
the TRK for H0

mic (Eqs. (S3) or Eq. (9) of the main text).
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E. Influence of disorder in the atomic parameters. The unavoidable fluctuations
of the transition frequencies and coupling strengths of the artificial atoms may be expected to
weaken the tendency towards a SPT in a circuit QED system and thus should not jeopardize
the assertion of the no-go theorem. However, the experimental verification of the failure of
the standard description of circuit QED proposed in the main text requires that the coupling-
induced shift of the resonator frequency and the SPT predicted by the standard description are
robust with respect to some disorder in the atomic parameters. Further, for a coupling that is
critical according to the standard description, the minimal excitation energy compatible with
the TRK has to be well-separated form zero also for a disordered system.

In this section, we present numerical results showing that disorder in the atomic parameters
does not have a significant influence on the lowest excitation energy of a circuit QED system
with a large number of artificial atoms, both according to the standard description of circuit
QED and according to a microscopic description that obeys the TRK. The proposed method
for experimentally observing the failure of the standard description is consequently not affected
by a small amount of disorder in the atomic parameters. Finally, we show that in case of very
strong coupling, the failure of the standard description of circuit QED can become measurable
already for a system with N = 10.

Neither in the standard description nor in the microscopic description it is possible to
numerically calculate the excitation energies for a system containing as many as N ∼ 200
artificial atoms. One can therefore not demonstrate in this way that also for disordered systems
the standard description predicts a SPT, whereas according to the microscopic description all
excitation energies remain nonzero. Hence, we will follow a strategy pursued in a similar
context in Ref. [4] and consider smaller systems with varying number of artificial atoms to
study the effect of disorder under increasing system size. For non-identical artificial atoms,
the Dicke Hamiltonian reads

HD = ωa
†
a+

N�

k=1

Ωk

2
σ
k
z +

N�

k=1

λk
√
N

σ
k
x(a

† + a) +
N�

k=1

κk(a
† + a)2, (S34)

where κk represents the A2-terms due to a single atom (κ =
�N

k=1 κk). Note that Ωk, λk, and
κk depend on the properties of the kth atom and may slightly fluctuate in a way that has to
be specified. The effective model for an artificial atom employed in the standard description
leads to (cf. Eqs. (5) of the main text)

λcir,k =
eC

k
G

C
k
G + C

k
J

�
ωN

Lc
, κcir,k =

(Ck
G)

2

2(Ck
G + C

k
J )

ω

Lc
, (S35)

while the microscopic approach yields (cf. Eqs. (8) of the main text)

λ
mic
cir,k =

Ωk|� · dk|
√
2�0ω

�
N

V
, κ

mic
cir,k =

1

2�0ωV

nk�

i=1

(qki )
2

2mk
i

, (S36)

and d
k = �ek|

�nk

i=1 q
k
i r

k
i |gk�. We define a parameter αk via Nκk = αkλ

2
k/Ωk and find

αcir,k =
E

k
J (C

k
G + C

k
J )

2e2
≡

E
k
J

4Ek
C

, α
mic
cir,k =

�nk

i=1 (q
k
i )

2
/2mk

i

Ωk|� · dk|2
, (S37)

where α
mic
cir,k ≥ 1 due to the TRK (Eq. (9) of the main text). We assume for the microscopic

description α
mic
cir,k = 1, which corresponds to the strongest shift of the lowest excitation energy
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allowed by the TRK (in other words, the atoms are taken to be perfect two-level systems).
Now we implement disorder in the system and write Ωk = Ωτk, where we choose τk to be a
random number following a normal distribution with mean 1 and standard deviation 0.1. To
determine how disorder in the Ωk affects λk and κk both in the standard and in the microscopic
description of the system, it is further assumed that the artificial atoms have approximately
the same shape and chemical composition, that the disorder is only due to imperfections in
the fabrication of the Josephson junctions, and that CG � C

k
J . Thus, κcir,k = κcir/N and

κ
mic
cir,k = κ

mic
cir /N are taken to be independent of k. Under these conditions, λmic

cir,k = λ
mic
cir

√
τk,

whereas λcir,k = λcir does not depend on the fluctuations of the atomic transition frequencies.
Note that αcir,k = EJ,k/4EC = Ωk/4EC = (EJ/4EC)τk = αcirτk. By fixing αcir = EJ/4EC =
0.1 as in the calculation for the ordered system, we have expressed Ωk, λk and κk both in the
standard and in the microscopic description of the disordered system by mean values Ω and λ

and a disorder configuration {τk}.
In our numerical analysis, we calculate the lowest excitation energies �

N,d
− of disordered

circuit QED systems with N = 3, 5, 7 artificial atoms as functions of λ according to the
standard and the microscopic description. It will be necessary to consider couplings of the
same order of magnitude as Ω. Even though with present-day technologies such couplings are
not realistic for N = 3, 5, 7, this gives us the evolution of the lowest excitation energy with
increasing N under strong coupling and allows us to infer the behavior of a system with larger
N , for which λ ∼ Ω is possible (λ ∝

√
N), but which would be numerically intractable. All

calculations are done for ω = Ω, and we have used 100 disorder configurations for each system
size to calculate mean values ��N,d

− � and standard deviations σN . Numerical experiments show
that restricting the photonic part of the Hilbert space to maximally seven photons provides a
good compromise between accuracy and numerical effort. We have also calculated the lowest
excitation energies �N− of the corresponding ordered systems (τk = 1 for all k), and we compare
our results with �

∞
− (for different α), the exact lowest excitation energy of an infinitely large

ordered system (Eq. (7) and Fig. 2(a) of the main text, there denoted simply by �−).
Figure S2 shows our main numerical results. We plot in black the excitation energies of

the homogeneous systems, �N− , for N = 3, 5, 7. The upper three black curves are calculated
according to the microscopic description of circuit QED, the lower ones according to the
standard description of circuit QED. In both cases, the frequency shift for given λ increases
with N . For comparison, we plot the corresponding analytically found excitation energies
for the infinitely large homogeneous system, �∞− |α=0.1 (dark red) and �

∞
− |α=1 (dark green).

The latter curve already appeared in Fig. 2(a) of the main text. Indeed, as N increases,
�
N
− approaches �∞− |α=0.1 (or �∞− |α=1) if calculated according to the standard (or microscopic)
description of circuit QED.

We plot further the averaged lowest excitation energies ��N,d
− � (dashed blue, dashed green,

and dashed magenta for N = 3, 5, 7, respectively), again both according to the microscopic
description (upper three curves) and according to the standard description (lower three curves).
The figure clearly demonstrates that the mean excitation energies of the disordered systems
are similar to the excitation energies of the homogeneous systems. The dashed lines for ��N,d

− �

gained from the standard description are hardly visible for λ/Ω � 0.5 as they coincide in the
resolution of Fig. S2 with the corresponding �

N
− -lines and are plotted underneath.

The solid colored curves enclosing the color-shaded regions represent ��N,d
− �±σN as calcu-

lated from the microscopic and the standard description of circuit QED. We use again blue,
green, and magenta for N = 3, 5, 7, respectively.

According to the microscopic description, the standard deviation does not appreciably
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Figure S2: Lowest excitation energies of (dis-)ordered circuit QED systems with varying number of
artificial atoms vs. coupling λ. The figure shows the predictions both of the standard description of
circuit QED and of a microscopic description that is compatible with the Thomas-Reiche-Kuhn sum
rule. Scales are in units of ω = Ω. Black lines: lowest excitation energies of ordered circuit QED
systems with N = 3, 5, 7 artificial atoms according to the microscopic description (upper three curves)
and according to the standard description (lower three curves). Blue, green, and magenta lines: results
for the corresponding disordered systems. Mean excitation energies are represented by dashed lines,
while the solid lines stand for the mean values plus and minus the standard deviation. Furthermore,
analytical results for a homogeneous system with N → ∞ according to the standard description (dark
red) and according to the microscopic description (dark green). The standard description predicts
precursors of the superradiant phase transition for the disordered finite-size systems. For couplings
that produce a quasi-degenerate ground state according to the standard description, the microscopic
description predicts a nonzero energy gap, irrespective of the presence of disorder in the atomic
parameters.

decrease with increasing λ. However, the standard deviation is small compared to the mean
lowest excitation energy ��

N,d
− � and decreases with N , σ3 > σ5 > σ7 for all λ. Disorder,

thus, does not have a significant effect on the lowest excitation energy of a circuit QED
system containing many artificial atoms according to the microscopic description. The lower
bound derived in the main text for the shifted resonator frequency of a homogeneous circuit
QED system undergoing a SPT according to the standard description will basically remain
unchanged if a small amount of disorder in the atomic parameters is admitted.

According to the standard description, the effect of disorder is strongly suppressed for
large λ. The lowest excitation energies of the disordered systems do not only coincide on
average with the excitation energies of the homogeneous systems, also the standard deviation
from the mean rapidly shrinks with λ andN . For instance, forN = 7 and λ/Ω = 1.5, we find by
means of the standard description �

7
−/Ω ≈ 10−5, ��7,d− �/Ω ≈ 10−5, and σ7/Ω ≈ 2× 10−6. This

means that the ground states of the systems become quasi-degenerate for strong coupling λ,
irrespective of the presence of disorder. Hence, in the standard description of circuit QED
precursors of the SPT are visible for finite-size disordered systems and get more pronounced
with increasing N . The effect of disorder is much weaker than the coupling-induced frequency
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shift and vanishes where the corresponding ordered systems become gapless. Consequently,
our estimate on the basis the standard description of how many artificial atoms are required
to see signatures of a SPT in a homogeneous circuit QED system with realistic parameters
(see main text) will not be affected by small fluctuations of the atomic parameters.

Taken together, our numerical results for the microscopic and the standard description
assure – as the central conclusion of this section – that the method for experimentally observing
the failure of the standard description of circuit QED systems that we have proposed in the
main text is insensitive to a small amount of disorder in the atomic parameters.
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Figure S3: Lowest excitation energies of (dis-)or-
dered circuit QED systems with varying number of
artificial atoms vs. coupling λ (in units of ω = Ω).
The figure shows the predictions the microscopic
description if the κ-term is neglected (α = 0). The
color code is the same as in Fig. S2. Further-
more, the analytical result for a homogeneous sys-
tem with N → ∞ if the κ-term is neglected (red).

We remark that we have done the same
analysis of (dis-)ordered finite-size circuit
QED systems as above on the basis of the
microscopic description but with α = 0 (Fig.
S3). This shows how the SPT emerges in a
(dis-)ordered circuit or cavity QED system
according to the microscopic picture if the
κ-term is disregarded (recall that the depen-
dence of λj on Ωj differs between standard
and microscopic description). One finds very
similar results as for the standard descrip-
tion of circuit QED: the mean lowest excita-
tion energies (dashed colored lines) converge
to those of the homogeneous systems (black
lines) as λ increases, the standard deviation
(solid colored lines, plotted relative to the
mean values) shrinks even faster than in the
standard description, and the (mean) exci-
tation energies approach �

∞
− |α=0 (red line) if

N is increased. The latter curve already ap-
peared in Fig. 2(a) of the main text. These
findings imply that if a SPT occurred in a
homogeneous system (this happened if α < 1
according to Eq. (2)), it would be not affected by some disorder in the atomic parameters, not
only according to the standard description but also according to the microscopic description
of circuit QED.

Finally, we numerically estimate the deviation of the prediction of the standard description
of circuit QED from the actual value for the lowest excitation energy of a circuit QED system
with only 10 artificial atoms but with very strong coupling. Suppose an artificial atom couples
with a strength λ/Ω = 0.1 to the resonator field. This has been already achieved with flux
qubits [5] and is referred to as “ultrastrong coupling”. Since we have seen that disorder plays
only a minor role for the lowest excitation energy of a circuit QED systems with N � 1,
we consider for simplicity a homogeneous system. We assume again ω = Ω, include up to
10 photons in our calculations, and obtain, by taking the

√
N -scaling of the coupling into

account, excitation energies of �10− |α=0.1/Ω ≈ 0.63 (corresponding to the standard description
with αcir = EJ/4EC = 0.1, cf. Eqs. (S37)) and �

10
− |α=1/Ω ≈ 0.74 (α = 1 corresponds to

the strongest frequency shift compatible with the TRK, i.e., to the microscopic description
of ideal two-level artificial atoms, cf. Eqs. (S37) and Eq. (9) of the main text). This means
that, if the coupling is ultrastrong, already for systems with ∼ 10 artificial atoms the standard
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description can be measurably inaccurate: in the case considered here, the actually measured
lowest excitation energy will be at least 17% greater than predicted by the standard description.
Measuring the excitation energy of such a system hence could be an alternative viable way to
experimentally verify our conclusions. Ultimately, these deliberations may give an improved
idea of the required system sizes and coupling strengths that render the mistakes made by the
standard description manifest.
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