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In this work we investigate the X-ray edge singularity problem realized in noninteracting quantum
dots. We analytically calculate the exponent of the singularity in the absorption spectrum near the
threshold and extend known analytical results to the whole parameter regime. Additionally, we
highlight the connections to work distributions and to the Loschmidt echo.
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Introduction. In condensed matter theory the X-ray-
edge singularity constitutes one of the most important
paradigms appearing in a variety of different contextes.
In the X-ray edge problem one probes the response of a
fermionic system, interacting or noninteracting, subject
to a sudden local perturbation. Its origin lies in the study
of X-ray spectra of simple metals where it was shown that
the absorption or emission of a photon corresponds to
the sudden switch on or off of a local potential scatterer
embedded in a noninteracting Fermi sea1–3. Since then
X-ray edge physics has been found in a variety of different
systems such as Luttinger liquids with impurity4, Ander-
son impurity and Kondo models5–9, resonant tunneling
current-voltage characteristics10, gapped systems11, de-
coherence in two level systems12 or work distributions for
weak local quenches13.

In this work we focus on the realization of the X-ray
edge problem in noninteracting quantum dots allowing to
study it in a controlled setup. The possibility to tune the
system parameters in quantum dots enables to vary the
relevant quantity in the X-ray edge problem, the phase
shift of the conduction band electrons. We analytically
calculate the absorption lineshape near the threshold of
a suitably initialized quantum dot at zero temperature
extending the known analytical results5,6 to the whole
parameter regime. This is an important generalization of
x-ray edge physics to an experimentally accessible setup
and it constitutes one of the very few examples that al-
low for exact solutions. We show that the absorption
spectrum can be identified with a work distribution14 for
a local quench in a resonant level model. This identi-
fication allows us to take a different point of view on
the problem offering nice interpretations of the results.
Moreover, we highlight the connection to the Loschmidt
echo that can be related to the Fourier transform of the
absorption spectrum13,15.

The paper is organized as follows. First, we introduce
the experimental setup that allows to mimic the X-ray
edge problem in quantum dots. Then we calculate the
absorption spectrum near the threshold by an associated
Riemann-Hilbert problem16. In the end we show the re-
sults and point out the relation to work distributions and
the Loschmidt echo.

Optical spectra of quantum dots. Below, we present a
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FIG. 1: (color online) Schematic picture of a quantum dot
coupled to a fermionic reservoir that allows to study x-ray
edge physics in absorption spectra of quantum dots. The
photon absorption of a suitably initialized quantum dot im-
plements a sudden switch on of the tunnel coupling between
dot and fermionic reservoir due to a capacitative coupling be-
tween the excited electron and the residual hole. For details
see text.

possible experimental realization of X-ray edge physics
in noninteracting quantum dots following the ideas of
Helmes et al.8 and Türeci et al.9. In Fig. 1 a schematic
picture of the setup is shown. Consider a narrow quan-
tum dot with a large splitting of the single-particle ener-
gies coupled to an electronic reservoir. In order to decou-
ple the two spin channels, a sufficiently large magnetic
field h is applied to the dot, large enough to overcome
the local Coulomb repulsion U between the spin-↑ and
spin-↓ electrons on the dot. Thus the problem separates
into two independent electronic species and we consider
without restriction a single channel of spinless fermions
in the following. By varying the back gate voltage Vg

the quantum dot can be tuned in such a way that the
topmost occupied level lies far below the Fermi surface,
(εF − εh)/∆ � 1, and the lowermost unoccupied level
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far above it, (εi − εF )/∆ � 1, provided the level split-
ting is large enough. Here, ∆ = πρ0V 2 denotes the level
broadening with ρ0 the density of states at the Fermi
level and V the hopping amplitude of electrons between
dot and reservoir. Thus, the lower level can be consid-
ered as occupied and the upper one as unoccupied. If
an incident laser beam with angular frequency ω excites
the electron from the lower level into the upper one, a
positively charged hole is left behind. We assume that
the quantum dot is designed such that the local capaci-
tative coupling Ueh between the excited electron and the
hole is strong shifting the upper level εi to lower energies
εf to the vicinity of the Fermi level of the conduction
band electrons, i.e., |εf − εF |/∆ � 1. The absorption of
a photon creates a local exciton. The localized hole not
only interacts with the dot electron, it also establishes
a local potential for the conduction band electrons. Us-
ing polarized laser light, it is possible to address just
one of the two spin channels such that our description
of a system of spinless fermions becomes directly rele-
vant. Assuming that the hole is stable such that it can
be considered as static, at least compared to the other
time scales in the problem, we can model this system by
the following initial (before absorption) and final (after
absorption) Hamiltonians:

Hi =
�

k

εk : c
†
kck : + εic

†
dcd,

Hf =
�

k

εk : c
†
kck : − g

�

kk�

: c†kck� : + εfc
†
dcd +

+V
�

k

�
c†kcd + c†dck

�
+∆E. (1)

The hole degree of freedom already has been integrated
out and is contained in a constant energy shift ∆E of the
final Hamiltonian. The operator c†k creates an electron
with wave vector k in the reservoir. The colons : . . . :
denote normal ordering with respect to the Fermi sea.
For convenience, we measure the single particle energies
relative to the Fermi level, i.e., εF = 0. The operator c†d
creates an electron on the upper level of the quantum dot
whose energy differs depending on if a photon has been
absorbed or not due to the local exciton energy.

The Hamiltonian in Eq. (1) without the potential scat-
tering term was introduced in the context of the X-ray
edge problem by Kotani and Toyozawa5,17 to describe
the X-ray spectra of metals with incomplete shells. They
solved the problem analytically in the vicinity of the
threshold for the case where the final local level lies far
above or below the Fermi energy. A similar problem at fi-
nite temperatures has been investigated in the context of
decoherence in charge qubits18. The combined influence
of a local potential scatterer and a virtual bound state
was first discussed by Kita et al.6 who solved the problem
analytically for the case where the final local level energy
lies above the Fermi level, i.e., εf > 0.

The aim of this work is to extend the known ana-
lytical zero temperature results to the whole parameter

regime with a general framework that can also be useful
in other contexts. This includes, for example, decoher-
ence in charge qubits coupled to a defect level18,19 or
absorption lineshapes of the Kondo exciton20.
Absorption spectrum. Assuming that the coupling be-

tween the system and the light field is small, one ob-
tains for the absorption spectrum A(ω), the rate at which
photons are absorbed, in second order of the coupling
(Fermi’s golden rule) at zero temperature

A(ω) = κ
�

n

���
�
en

���c†d
���ψ0

����
2
δ [ω − (en − egs)] . (2)

Here, |ψ0� denotes the ground state of the initial Hamilto-
nian with energy egs and |en� is a complete orthonormal
eigenbasis of the final Hamiltonian with corresponding
energies en. The constant prefactor κ contains the ex-
perimental details such as the intensity of the incident
laser beam and the system-light field coupling. Repre-
senting the δ-function by an integral over phase factors
one can relate A(ω) to a dynamical correlation function
G(t) via Fourier transformation

A(ω) = κ

�
dt

2π
ei(ω−εi)t G(t) (3)

with

G(t) = �0|eiHite−iHf t|0�. (4)

Here, |0� = c†d|ψ0� denotes a product state of the Fermi
sea for the conduction band electrons with a filled lo-
cal d orbital. In view of the X-ray edge problem, G(t)
is the equivalent to the core-hole Green’s function. The
dynamical correlation function G(t) in Eq. (4) is an im-
portant quantity also in other physical contexts. The
quantity L(t) = |G(t)|2 is the Loschmidt echo that al-
lows to quantify the irreversability of a system13,15, here
Hi, under a perturbation, here Hf −Hi. Moreover, G(t)
is the characteristic funtion of a work distribution P (ω)
for a quench from Hi to Hf where P (ω) = κ−1A(ω) is
the probability of having performed the work ω on the
system under this protocol14. The relation between ab-
sorption spectrum and work distribution has been worked
out recently21. This relation is evident from a physical
point of view. The absorbed photon provides its energy
ω to the system. This is equivalent to having performed
the work ω.
Analytic results for the dynamical correlation function

G(t) in the asymptotic long-time limit t → ∞ have been
obtained for the case where the final energy εf of the local
d level lies above the Fermi level, i.e., εf > 06. In the
case without potential scatterer, Kotani and Toyozawa5

calculated analytically the characteristic function G(t) in
the limit where the final local energy level lies far above
or below the Fermi level. In both systems, the long-time
behavior of the dynamical correlation function G(t) is
algebraic

G(t)
t→∞−→ (iηt)−γ , γ =

�
1− δ

π

�2

(5)
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with an exponent γ that only depends on the phase shift
δ of the conduction band electrons at the Fermi level in
presence of the local perturbation. The prefactor η of
dimension energy is a high-energy scale of the order of
the bandwidth. Due to the Friedel sum rule, δ/π is the
screening charge that determines the exponent according
to the rule of Hopfield22.

In the following, we will extend the known results to
the whole parameter regime including also the case where
εf ≤ 0. Although the problem is in principle quadratic,
the mathematical difficulty stems from the fact that in
contrast to the original X-ray edge problem an additional
dynamical degree of freedom, the local d level, is switched
on. Due to the quadratic nature of the problem, the final
and initial Hamiltonians are both bilinear in fermionic
operators, the characteristic function G(t), that is a ther-
mal expectation value of exponentials in Hi and Hf , can
be reduced to a single-particle problem. As has been
shown recently, functions such as G(t) can be represented
as determinants23,24

G(t) = detM, M = 1− f + fS, (6)

of matrices in the single-particle space. The matrix S
with matrix elements

Sll� = �|clŜc†l� |�, Ŝ = eiHite−iHf t, l, l� = k, d, (7)

where |� is the true vacuum without any fermion, is es-
sentially determined by the single-particle subspace of
the S-matrix Ŝ. Their matrix elements reduce to the re-
tarded Green’s functions of the final Hamiltonian up to
a phase. The initial state is encoded in the matrix f :

fdd = 1, fdk = fkd = 0, fkk� = δkk�θ(−k). (8)

It will be convenient to separate the dynamics of the
additional dynamical degree of freedom, the local d level,
from the dynamics of the conduction band electrons. For
that purpose, we write the matrix M in a block notation

M =

�
A B
C D

�
(9)

where

A = Mdd, Bk = Mdk, Ck = Mkd, Dkk� = Mkk� (10)

such that one obtains by use of an elementary property
of the determinant:

G(t) = detM = (A−BD−1C) detD. (11)

The matrix D now only includes reservoir states such
that detD can be calculated with techniques known from
the original X-ray edge problem. But the separation
of the reservoir and d level degrees of freedom comes
at the cost of finding the inverse D−1 of an infintely
large matrix. Using a technique by d’Ambrumenil and
Muzykantskii16, however, the evaluation of the determi-
nant of D is equivalent to finding its inverse D−1.

Auxiliary Riemann-Hilbert problem. The determinant
of D as well as its inverse D−1 can be calculated by solv-
ing an auxiliary Riemann-Hilbert problem16. For that
purpose, the determinant detD is first written as:

ln detD = Tr [ln(D)− f lnS] + Trf lnS (12)

where a term χ1 = Trf lnS has been added and sub-
tracted. The function χ1 = iδEt contributes a term
linear in t with δE the ground state energy difference
between initial and final Hamiltonian. In the following,
we will concentrate on the nontrivial contribution

χ2 = Tr [ln(1− f + fS)− f lnS] . (13)

Introducing a new set of matrices

s(λ) = exp(λ lnS) (14)

the logarithm appearing in the expression of χ2 can be
represented in terms of an integral over the new variable
λ:

χ2 =

� 1

0
dλ Tr

�
(1− f + fs)−1f − fs−1

� ds

dλ
. (15)

Thus, the problem of calculating the determinant has
been transformed into the problem of inverting the ma-
trix 1 − f + fs(λ) where for λ = 1 we have D =
1 − f + fs(1). This inversion of an infinitely large ma-
trix can be performed by solving an auxiliary Riemann-
Hilbert problem. For this mapping onto the Riemann-
Hilbert problem it is convient to pass over to a time rep-
resentation where the Fermi-Dirac distribution, for ex-
ample, takes the following form:16

f(τ, τ �) =
i

2π

1

τ − τ � + i0
(16)

It remains to determine the time representation of the
matrix s. As shown in Ref.16, the Wigner transform
S(τ, E) of Skk� can be related to the instantaneous scat-
tering matrix provided the scattering matrix or equiv-
alently the product ρ(E)T (E) of the density of states
ρ(E) and the T-matrix T (E) are only weakly depending
on energy. Then we have that

S(τ, E) =

�
dε ρ(ε)SE+ε/2,E−ε/2 e

−iετ

−→ 1− θ(τ)θ(t− τ)i2πρ(E)T (E) (17)

is either the identity matrix for τ /∈ [0, t] or the scattering
matrix for the conduction band electrons. For the long-
time dynamics t → ∞ we expect that only the low-energy
excitations near the Fermi level are important such that
we ignore the detailed dependence of the S-matrix on
energy and perform the following approximation for τ ∈
[0, t]:

S(τ, E) −→ S(τ, E = 0) = e2iδ. (18)
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Here, δ is the phase shift of the conduction band elec-
trons at the Fermi level. Thus, the approximated s(λ) is
diagonal in its time-representation

s(τ, τ �) = σδ(τ − τ �), σ = e2iλδ. (19)

The matrix 1−f+fs can be inverted by simply requiring

(1− f + fs)−1(1− f + fs) = 1. (20)

In the time representation this equation becomes a sin-
gular integral equation with a Cauchy Kernel due to the
singular nature of the Fermi-Dirac distribution. Such sin-
gular integral equations exhibit an exact solution via an
auxiliary Riemann-Hilbert problem26. Let Y (z), z ∈ C,
be an analytic function in the complex plane except along
the cut τ ∈ (0, t) where Y is supposed to fulfill the bound-
ary condition

Y+(τ) = σY−(τ). (21)

Here, Y+(τ) = Y (τ + i0) and Y−(τ) = Y (τ − i0). The
solution to this problem is unique provided Y (z) → 1 for
z → ∞:

Y (z) = exp

�
1

2πi

� t

0
dx

ln(σ)

x− z

�
. (22)

The knowledge of the funtion Y then allows to construct
the solution of inversion problem26

(1− f + fs)−1(τ, τ �) =

= δ(τ − τ �) + Y −1
+ (τ)f(τ, τ �) [Y−(τ

�)− Y+(τ
�)](23)

such that one obtains the following formula for χ2:16

χ2 =
i

2π

� 1

0
dλ

� t

0
dτ

dY −1
+ (τ)

dτ
Y+(τ)σ

−1 dσ

dλ
. (24)

For the calculation of χ2, it is necessary to introduce a
regularization scheme where the integral over τ is cut off
near the boundaries of integration according to 0 → iξ−1

0
and t → t + iξ−1

0 where ξ0 is an energy of the order of
the bandwidth. Using this regularization one obtains for
the asymptotic long-time behavior of detD:

detD
t→∞−→ eiδEt (iξ0t)

−(δ/π)2 (25)

From Eq. (23), we can deduce the inverted matrix D−1 =
(1 − f + fs(1))−1 and thus the long-time limit of the
generating function G(t) according to Eq. (11)

G(t)
t→∞−→ (iηt)−γ , γ = (1− δ/π)2. (26)

in agreement with the known result for the case εf >
εF in Eq. (5) and consistent with the Hopfield rule of
thumb22. Thus, the known asymptotic behavior extends
to the whole parameter regime as already shown in nu-
merous numerical calculations6,17,25. This result consti-
tutes one of the rare cases where it is possible to obtain
exact analytical solutions.
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FIG. 2: Absorption spectrum A(ω) as a function of the inci-
dent light frequency ω near the threshold frequency ωth for
different final energies εf of the quantum dot level. For sim-
plicity we restrict to the case g = 0 without potential scat-
terer. Here, ∆ = πρ0V

2 denotes the half width of the hy-
bridized level in the quantum dot with ρ0 the noninteracting
density of states at the Fermi level. The thick lines have been
obtained by NRG calculations27. The thin lines show the an-
alytic results that fit perfectly the exact NRG data in the
asymptotic low frequency regime.

Loschmidt echo. As already mentioned before, the
characteristic function G(t) is also related to the
Loschmidt echo13,15

L(t) = |G(t)|2 =
���0

��eiHite−iHf t
�� 0
���2 . (27)

The Loschmidt echo quantifies the stability of motion in
time of a system, in this case the Hamiltonian Hi, under
a perturbation Hf −Hi. Thus, for long times t Eq. (26)
states that, no matter how small the local perturbation
is, the time evolution of the state |0� with the final Hamil-
tonian drives the system into a subspace of the Hilbert
space that is orthogonal to the initial state. From the
Anderson orthogonality catastrophe28 it is known that
the ground state of the final Hamiltonian is contained in
this subspace. The system as a whole, however, does not
evolve into the ground state of the final Hamiltonian as
their overlap is constant in time.
Absorption lineshape. From Eq. (26), one can deduce

the behavior of the absorption lineshape near the thresh-
old analytically

A(ω)
ω→ωth∼ θ(ω − ωth) (ω − ωth)

γ−1 (28)

that shows the typical power-law singularity. The sin-
gularity is a consequence of the singular behavior of the
initial Fermi-Dirac distribution of the conduction band
electrons at zero temperature. At finite temperatures,
the singularity is cut off. In Fig. 2, NRG data for the
absorption spectrum is shown. For light frequencies ω
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in the vicinity of the threshold, the analytical power-law
results included as thin solid lines fit perfectly to the ex-
act NRG results. In view of the equivalence to a work
distribution, the existence of the threshold in the absorp-
tion spectrum is evident. In the beginning, the system
is prepared in the ground state of the initial Hamilto-
nian. The minimum energy, i.e., work, that has to be
provided to the system by switching on the coupling to
the resonant level is the ground state energy difference
between initial and final Hamiltonian. Thus, it is impos-
sible for a photon of energy less than the ground state
energy difference to be absorbed. The singular behavior
of the absorption spectrum shows that the dominant ex-
citations that are created by the absorption process are
low-energy excitations in the vicinity of the Fermi level.

Conclusions. In this work we have presented a general
framework that allows to determine analytically the sin-

gular threshold behavior of absorption spectra in quan-
tum dots at zero temperature. This establishes an impor-
tant generalization of x-ray edge physics to experimen-
tally accessible environments that can be used to observe
x-ray edge physics in a controlled setup. Moreover, we
highlighted the correspondence of the spectra to work
distributions and to the Loschmidt echo. The presented
framework might also be useful in other contexts such as
decoherence in charge qubits or the Kondo exciton.
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