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Since the experimental realization of Kondo physics in quantum dots, its far-from-equilibrium
properties have generated considerable theoretical interest. This is due to the interesting interplay
of non-equilibrium physics and correlation effects in this model, which has by now been analyzed us-
ing several new theoretical methods that generalize renormalization techniques to non-equilibrium
situations. While very good agreement between these methods has been found for the spin-1/2
Kondo model, it is desirable to have a better understanding of their applicability for more compli-
cated impurity models. In this paper the differences and commons between two such approaches,
namely the flow equation method out of equilibrium and the frequency-dependent poor man’s scal-
ing approach are presented for the non-equilibrium double quantum dot system. This will turn out
to be a particularly suitable testing ground while being experimentally interesting in its own right.
An outlook is given on the quantum critical behavior of the double quantum dot system and its
accessibility with the two methods.

PACS numbers: 05.10.Cc, 73.63.Kv, 72.10.Fk, 75.30.Hx, 72.15.Qm

Keywords: Kondo impurities, out of equilibrium scaling theories

I. INTRODUCTION

The recent advances in nanotechnology permit to
probe far-from-equilibrium transport properties of cor-
related electron systems. The paradigm for such exper-
iments is the realization of Kondo physics in Coulomb
blockade quantum dots1. This combination of non-
equilibrium with correlation effects is theoretically chal-
lenging and has led to considerable efforts to develop suit-
able theoretical tools. The key challenge is that beyond
linear response theory one does in general not know how
to systematically construct the steady current-carrying
state, except by following a difficult real time evolution
problem.

During the past five years new powerful methods, both
numerical and analytical, have been developed and used
for investigating non-equilibrium quantum many-body
problems. As analytical renormalization group methods
have played an enormous role in understanding corre-
lation physics in equilibrium, a number of these meth-
ods are directly based on renormalization ideas and carry
them over to non-equilibrium situations: the frequency-
dependent renormalization group2,3, the real time renor-
malization group4,5 and the flow equation method6–8.
While these methods show very good agreement for the
Kondo model, it is clearly desirable for future applica-
tions to understand their relation and respective advan-
tages in more detail.

In this paper we address this question for the
frequency-dependent renormalization group and the flow
equation method in the case of a more complicated quan-

tum impurity model, namely for a double-dot system in
the Kondo regime. In this system two Kondo dots are
coupled via a spin-spin interaction, which is a setup re-
lated to recent experiments9,10. In addition, this model
is particularly interesting in the present context for two
additional reasons: i) It is known to exhibit an inter-
esting quantum phase transition in equilibrium11 and
one expects non-equilibrium properties to be especially
important at quantum phase transitions. ii) Based on
the investigation of the non-equilibrium spin-1/2 Kondo
model, one knows that the decoherence generated by the
steady state current plays the key role in understanding
the far-from-equilibrium properties2,12. Now decoher-
ence enters via two seemingly very different mechanisms
in the frequency-dependent renormalization group and
the flow equation method. For the frequency-dependent
renormalization group one identifies suitable Korringa-
like decoherence rates that are then used to explicitly cut
off the renormalization flow2,13. On the other hand, in
the flow equation approach decoherence terms appear as
two-loop contributions in the scaling equations6,7. For
the conventional spin-1/2 Kondo system the different
renormalization-based approaches show very good quan-
titative agreement including line-shapes and Korringa
rates5,7,8.

The difference how decoherence enters highlights
the respective advantages of these approaches: the
frequency-dependent renormalization group (like real
time RG) has a straightforward diagrammatic represen-
tation, while the flow equation method treats both many-
particle coherence effects (like Kondo physics) and deco-
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herence on the same footing in the scaling equations. In
the following we will analyze how these differences man-
ifest themselves in the non-equilibrium double-dot sys-
tem. Previous studies of the non-equilibrium double-dot
system based on the frequency-dependent renormaliza-
tion group and non-equilibrium perturbation theory have
been published in Refs. 14,15.

This paper is organized as follows. In section II we
first introduce the Hamiltonian of the double quantum
dot system and discuss the various approximations used
in its derivation. Section III explains the flow equation
method and shows its application to the double dot sys-
tem. In section IV we then introduce the perturbative
renormalization group approach and discuss the scaling
equations for our system. After comparing the two meth-
ods in leading logarithmic order in section V, we discuss
generalizations of the two approaches in section VI which
include decoherence effects. At the end of section VI
we then compare the two approaches again and show
that the results at the decoherence scale are in very good
agreement, although the underlying methodologies are
quite different.

II. MODEL

The simplest model to illustrate the competition be-
tween a spin singlet and a Kondo singlet formation is
the two-impurity Kondo model. It has been studied in
detail Ref. 11 and gained new life with the progress in
nanotechnology and the possibility to study two single
quantum dots interacting with each other9,10,16.

Here we study the problem of two quantum dots where
two artificial impurities are attached to leads, in contrast
to the historical two-impurity model which contains two
impurities embedded in a metal11.

The double quantum dot (DQD) model describes two

spin-1/2 degrees of freedom denoted as ~SL and ~SR,
which are each Kondo coupled to conduction band elec-
trons with an additional mutual spin exchange interac-

tion Hex = K ~SL
~SR, which is assumed to be antiferro-

magnetic K > 0. The Hamiltonian of the system is given
by

H = Hleads +Hex +HKondo (1)

The conduction band electrons are described by

Hleads =
∑

j

∑

k,σ

ǫk,j : c
†
kjσckjσ , (2)

where the lead index j is specified later on, ǫk,j is the en-
ergy of the corresponding conduction band electron and

c†kjσ (ckjσ) are the corresponding creation (annihilation)
operators for a conduction electron with momentum k
and spin σ. The notation : . . . : denotes normal ordering
with respect to the non-interacting ground state.

The Kondo interaction with the leads is

HKondo =
∑

j

∑

k′k

JLj
k′k : ~SL~s(k′j)(kj) :

+
∑

j

∑

k′k

JRj
k′k : ~SR~s(k′j)(kj) : . (3)

where JLj
k′k (JRj

k′k) is the coupling of the left (right) quan-
tum dot spin to the spin density of the conduction band
electrons in the lead j

: ~s(k′j)(kj) : =
∑

σ′σ

1

2
~τσσ′ : c†k′jσ′ckjσ : (4)

and ~τ are the Pauli matrices of a spin-1/2.
In the two-impurity model the spin-spin interaction be-

tween the Kondo spins is mediated by the RKKY inter-
action18, i.e. for antiferromagnetic coupling generated by
two Kondo spin-flip interactions. The RKKY interaction
depends in sign and strength on the distance between
the two impurities and since it is an effective interac-
tion in J2 it is both retarded and small (at least every
reasonable theory should do so). Note that the RKKY
interaction in this case scales to the same degree as the
Kondo interaction in scaling theory.
On the contrary singlet-triplet states in quantum dots

can arise from other physical effects, for example from
exchange couplings and/or orbital degeneracies. There-
fore the effective spin-spin interaction between the Kondo
impurities can be tuned independently from the Kondo
interaction with the leads9.
For both methods we therefore include the spin ex-

change interaction in the unperturbed Hamiltonian

H0 =Hleads +Hex, (5)

and we treat the Kondo interaction HKondo as a small
perturbation. The eigenstates of the unperturbed double
dot spin system are singlet | 0, 0〉 with a total spin S = 0
and triplet states | 1,m〉 with a total spin of S = 1 where
m = {−1, 0, 1}. The perturbative RG focuses on the
flow of a generalized coupling function and the scaling
equation is derived by diagrammatic perturbation the-
ory in the vertex. In order to do the perturbation theory
a pseudo-particle representation for the spin operators
is introduced. In the flow equation method the scaling
equations are derived from infinitesimal unitary trans-
formations. These involve mainly the commutation rela-
tions of operators and therefore the spin can be treated
as an operator.

A. Pseudoparticle representation

In order to calculate diagrams in perturbation theory
and also in perturbative RG, we introduce the pseudo
particles d†γ which create a singlet or triplet state γ ∈
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{s, t−, t0, t+}. The spin exchange interaction Hamilto-
nian is thus diagonal in the pseudo particle operators,

Hex = −3

4
Kd†sds +

1

4
K

∑

γ

d†tγdtγ . (6)

The left and right spin (upper and lower sign, respec-
tively) can be represented by bond operators19:

Sz
L/R =

1

2
(d†t+dt+ − d†t−dt− ± d†sdt0 ± d†t0ds),

(7)

S+
L/R =

(

S−
L/R

)†
=

1

2
(d†t0dt− + d†t+dt0 ± d†sdt− ∓ d†t+ds).

(8)

The constraint

Q = d†sds + d†t+dt+ + d†t0dt0 + d†t−dt− = 1, (9)

is fulfilled by calculating the physical observable from the
expectation value

〈O〉Q=1 = lim
λ→∞

〈QO〉λ
〈Q〉λ

, (10)

where 〈. . .〉λ is the average over the Hamiltonian Hλ =
H+λQ where the constraint enters as a chemical poten-
tial which is set to infinity at the end of the calculation20.
It is convenient to introduce a matrix representation

of the Kondo spins in the bond operator notation by

defining a generalized Pauli matrix ~Tα leading to

~Sα =
∑

γ′γ

1

2
d†γ′

(

~Tα

)

γ′γ
dγ . (11)

In the case of the exchange coupled double quantum dot
system this generalized Pauli matrices are given by

~T z
L =







0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 −1






, ~T z

R =







0 0 −1 0
0 1 0 0
−1 0 0 0
0 0 0 −1






,

(12)

~T+
L =

(

~T−
L )† =







0 0 0 1
−1 0 1 0
0 0 0 1
0 0 0 0






, (13)

~T+
R =

(

~T−
R )† =







0 0 0 −1
1 0 1 0
0 0 0 1
0 0 0 0






. (14)

Note that the lower right 3x3 matrix, i.e. the triplet
states, represents the Pauli matrices for a spin-1.
Using this notation the interaction Hamiltonian (3) is

given in the general form

Hint =
∑

α,j=L,R

∑

γ′γ

∑

k′σ′;kσ

1

4
Jα,j
γ′γ

(

~Tα

)

γ′γ
~τσ′σ

× d†γ′dγ : c†k′jσ′ckjσ : (15)

During the renormalization we will find that the cou-

pling between triplet states Jttd
†
tmdtm′

flows differently
than for the spin couplings including a singlet-to-triplet

transition Jstd
†
tmds and Jtsd

†
sdtm .

B. Spin notation

If we do not introduce pseudoparticle states, but keep
the spin operator as a quantity, we find that transitions
between the eigenstates of the DQD are given by

(

~SL + ~SR

)

|S,m〉 → |S,m〉, (16)
(

(~SL − ~SR) + 2i(~SL × ~SR)
)

|0, 0〉 → |1,m〉, (17)
(

(~SL − ~SR)− 2i(~SL × ~SR)
)

|1,m〉 → |0, 0〉. (18)

Therefore we rewrite the Hamiltonian in Eq. (3) for
the flow equation treatment by

Hint =
∑

j=L,R

∑

k′k

J sum,j
k′k :

(

~SL + ~SR

)

~s(k′j)(kj) :

+
∑

j=L,R

∑

k′k

P j
k′k :

(

(~SL − ~SR) + 2i(~SL × ~SR)
)

~s(k′j)(kj) :

+
∑

j=L,R

∑

k′k

M j
k′k :

(

(~SL − ~SR)− 2i(~SL × ~SR)
)

~s(k′j)(kj) :,

(19)

where the couplings are defined by

J sum,j
k′k =

1

2

(

JL,j
k′k + JR,j

k′k

)

, (20)

P j
k′k =

1

2

(

1

2

(

JL,j
k′k − JR,j

k′k

)

+Qj
k′k

)

, (21)

M j
k′k =

1

2

(

1

2

(

JL,j
k′k − JR,j

k′k

)

−Qj
k′k

)

, (22)

The interaction Qj
k′k : 2i(~SL × ~SR)~s(k′j)(kj) : is per se

not present in the initial setup, but it turns out that the
system of equations does not close if it is not included.
This leads to the following initial conditions for a general
flow parameter B

JL,j
k′k (B = 0) = JL,j

k′k (23)

JR,j
k′k (B = 0) = JR,j

k′k (24)

Qj
k′k(B = 0) = 0 (25)

The following symmetry relations have to be fulfilled
during the flow due to the hermiticity of the Hamiltonian

J sum,j
k′k = J sum,j

kk′ , (26)

P j
k′k = M j

kk′ . (27)

The interaction P j
k′k refers to a scattering process in-

volving a singlet to triplet transition as indicated in
Eq. (17). The interaction M j

k′k is the hermitian con-

jugate of P j
k′k = (M j

k′k)
†.
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C. Discussion of the leads

In this paper we will concentrate on the case of two
exchange coupled quantum dots which are not coupled
symmetrically to a set of leads. We want to test the two
quantum dots independently and therefore we assume
that there are two leads attached to each quantum dot
such that transport can take place through each quantum
dot independently, see Fig. 1.

K

L

1

2

R

3

4

FIG. 1: Double Quantum Dot Setup: the residing electrons
with a spin degree of freedom on the left (L) and right (R)
quantum dot are coupled mutually by the exchange interac-
tion K. Two lead 1 and 2 (3 and 4) measure the current
through the left (right) quantum dot. The leads are coupled
to the quantum dots only by the Kondo spin exchange inter-
action. In the flow equation method we symmetrize the leads
1 and 2 (3 and 4) to one symmetric left (right) lead as denoted
by dashed lines.

A completely symmetric setup corresponds to two
Kondo impurities embedded in a metal, but in this case
the two impurities couple to the same position in the lead
and for example the RKKY interaction is not defined
properly. On the other hand for completely symmetric
coupling the initial conditions are J sum,j

k′k (B = 0) = J0
and P j

k′k(B = 0) = M j
k′k(B = 0) = 0. The singlet-triplet

transitions are not allowed in the beginning and never
created during the flow. Note that [(SL + SR)

2, H ] = 0
and thus the total spin is conserved. The flow yields the
physics of a non-degenerate singlet or a spin-1 coupled to
leads depending on the initial condition.
In order to make non-equilibrium electron transport

possible, two leads have to be put at different chemical
potential, µ1/2 = ±eVL/2 where 1 and 2 denote the two
leads attached to the left dot; similarly 3 and 4 for the
right two leads, µ3/4 = ±eVR/2. While we treat the
four leads independently in the pRG approach, we can
introduce a simplification due to symmetry arguments in
the flow equation calculation.
We focus now for a short while on the left dot and

leads 1 and 2. It has been shown17, that a quantum dot
is coupled only to the even mode of the two leads defined
as

cL =

√

rL
1 + rL

c1 +

√

1

1 + rL
c2 (28)

where rL = J11/J22 (rR = J33/J44) is the asymmetry
parameter. For simplicity we only discuss rL = rR = 1

in the numerics. Note that the extension to rα 6= 1 is
trivial. Therefore we have to take into account only 2
instead of 4 leads but with a double step-like occupation
function nα(ǫ)

nα(ǫ) =







0 if ǫ > eVα/2
rα/(1 + rα) if |ǫ| < eVα/2

1 if ǫ < −eVα/2
. (29)

where α = L,R denotes the left or right set of leads.
A non-zero voltage enters the calculation thus via the
normal ordering of the lead electrons, see Ref. 6. In the
following we assume that initially no cross-talk between
the left dot and the right leads and vice versa is present,
such that we can ”drive” and ”probe” the two quantum
dots independently by each their leads. This corresponds
to the initial conditions

JLR
k′k (B = 0) = JRL

k′k (B = 0) = 0 . (30)

Consequently the initial conditions read

JLL
k′k(B = 0) = JRR

k′k (B = 0) = 2J0 , (31)

⇒ J sum,L
k′k (B = 0) = J sum,R

k′k (B = 0) = J0 , (32)

PL
k′k(B = 0) = ML

k′k(B = 0) =
1

2
J0 , (33)

PR
k′k(B = 0) = MR

k′k(B = 0) = −1

2
J0 , (34)

where we assumed the symmetry that the left and right
coupling are equal to the fixed but arbitrary value J0.
Note that this model has been studied in detail by one of
the authors in Ref. 14 where the system showed a current
through the left dot even when voltage was applied on the
right side (transconductance effect) as discussed in more
detail at the end of this work.

III. FLOW EQUATIONS IN LOWEST ORDER

A. The method of flow equations

In a model with a clear separation of energy scales it
is often an advantage to focus on the low-energy physics
and find an effective representation for the high-energy
physics. In the poor man’s scaling approach as will also
be discussed in more detail in the next section, the scat-
tering processes containing energies at the large band
edges are integrated out. Their effective contribution is
put into a renormalized interaction and by further reduc-
ing the band cutoff one arrives at an effective model for
a low-energy band.
The separation of energy scales is also important in the

flow equation method. The philosophy here is again to
find an effective Hamiltonian which describes the same
physics as the original model but can be easily solved
like a quadratic Hamiltonian. As an example the kinetic

Hamiltonian ǫkσc
†
kσckσ is diagonal in the conduction elec-

tron momenta, whereas the interaction part proportional
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to : ~sk′k = 1
2c

†
k′σ′~τσ′σckσ connects electrons with different

momenta. In the matrix representation of the Hamilto-
nian H we separate the diagonal contributions, H0, from
the off-diagonal contributions Hint. The aim of the flow
equation method is to generate an effective H(B) start-
ing with some general flow parameter B = 0 and modify
H(B) accordingly such that H(B = ∞) is diagonal.
In the flow equation method we achieve this by in-

finitesimal unitary transformations21

d

dB
H(B) =

[

η(B), H(B)
]

. (35)

Note that this expression forces the generator η = −η†

to be anti-hermitian which is equivalent to claiming that
the transformation is unitary. The choice of the gener-
ator can be different from problem to problem, but the
canonical generator21

η(B) = [H0, Hint(B)] (36)

has proven to be a stable choice. The canonical generator
automatically fulfills η† = −η. Since it is the product of
two Hamiltonians it is proportional to energy2. Conse-
quently the flow parameter B is of the order of 1/energy2.
In contrast to the standard scaling theories this choice

of rescaling eliminates the outermost components in the
matrix Hamiltonian or in other words: scattering pro-
cesses involving an energy transfer of the order of the
frequency band-cutoff Λ are integrated out in the course
of the flow procedure, B = 1/Λ2. The final Hamiltonian
contains only energy-diagonal processes with a renormal-
ized energy. It is a clear advantage to keep information on
all energy scales, in particular for the non-equilibrium sit-
uation where scattering processes away from the ground
state play an important role.
For a more extended introduction to the flow equation

method we refer to Ref. 17. As a side remark we want to
mention that corrections from taking into account normal
ordering with respect to the interacting ground state are
of fourth order in the interaction7 and can thus safely be
neglected in our calculation to third order. A first appli-
cation of the flow equation method to coupled quantum
dots in equilibrium can be found in Ref. 22.

B. Flow equation for the double quantum dot

system

For the double quantum dot system studied in this
paper the generator η is chosen to be the canonical gen-
erator η = [H0, Hint] and given explicitly by

η =
∑

j=L,R

∑

k′k

ηsum,j
k′k : (~SL + ~SR)~s(k′j)(kj) : (37)

+
∑

j=L,R

∑

k′k

η
P/M,j
k′k :

(

(~SL − ~SR)± 2i(~SL × ~SR)
)

~s(k′j)(kj) :,

where

ηsum,j
k′k = (ǫk′ − ǫk)J

sum,j
k′k , (38)

ηPj
k′k = (ǫk′ − ǫk +K)P j

k′k, (39)

ηMj
k′k = (ǫk′ − ǫk −K)M j

k′k. (40)

As discussed before we can here observe that the coupling
P j
k′k orM j

k′k corresponds to a transition between a singlet
and triplet state with an energy cost of ±K, respectively.
Due to the construction of the canonical generator (∝

energy2) the flow parameter B is related to the tradi-
tional energy/frequency cutoff Λ by

B ∝ 1

Λ2
. (41)

Inserting the canonical generator η into the flow equa-
tion, Eq. (35), we find in lowest, linear order an expo-
nential behavior of the coupling functions. Thus we can

define an effective coupling J sum,j
k′k (B)

J sum,j
k′k (B) = e−B(ǫk′−ǫk)

2

J sum,j
k′k (B). (42)

and

P j
k′k(B) = e−B(ǫk′−ǫk+K)2 P j

k′k(B), (43)

M j
k′k(B) = P j

kk′ (B) = e−B(ǫk′−ǫk−K)2 P j
kk′ (B), (44)

The effective couplings J sum,j
k′k and P

j

k′k obey a scaling
equation with a scaling function β which has to be de-
termined from higher than linear order terms. The expo-
nential dependence though mirrors the physical picture of
the Kondo coupling: It is logarithmically divergent when
energy scattering processes with initial state k and final

state k′ are energy-degenerate, e.g. e−((ǫk′−ǫk)/Λ)2 = 1
for ǫk′ = ǫk, and away from the coherence conditions the
coupling functions are suppressed, see also Fig. 2 and cor-
responding discussion. In contrast to the single-impurity
Kondo model (without magnetic field), a divergent cou-

pling for P j
k′k representing the singlet-triplet transition

can only be expected when a scattering process in the
leads matches the energy of a transition inside the quan-
tum dot.
The full expression for the flow equation calculation

to second order in the interaction, the so-called one-loop
order, is given in the appendix. In Fig. 2 we show full nu-
merical calculations for these one-loop result in the case
of k′ = k and compare with the solution obtained by
the diagonal parametrization7,8. This is a by now well-
established approximation that allows some analytic in-
sight into the flow equations and simplifies the numerical
effort significantly.
In the diagonal parametrization we assume that the

important energy dependence ǫk (momentum k) is given

by the exponential decay e−B(ǫk′−ǫk+αK)2 and we can
approximate

e−B(ǫk′−ǫk+αK)2f(ǫk′ , ǫk) ≈ e−B(ǫk′−ǫk+αK)2f(ǫΣ),
(45)
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where α = {0,±1} and ǫΣ = (ǫk′ + ǫk)/2.
Starting from two energy arguments for the incoming

and outgoing conduction electron one energy is kept fixed
but arbitrary and the other is assumed to fulfill the equa-
tion ǫk′ − ǫk + αK = 0. For example for the coupling to

the total spin (~SL + ~SR) this yields:

J sum,j
k′k (B) = e−B(ǫk′−ǫk)

2

J sum,j
(k′+k)/2(B) (46)

where J sum,j
k (B) := J sum,j

k,k (B). (47)

In the diagonal parametrization for P j
k′k/M

j
k′k one has

to be cautious since the choice ǫk′ − ǫk = −K in P j
k′k is

not unique. The correct momentum dependence is only
recovered if we choose the diagonal parametrization as

P j
k′k(B) = e−B(ǫk′−ǫk+K)2 P j

(k′+k)/2(B). (48)

where P j
k (B) := P j

ǫk−K/2,ǫk+K/2(B) (49)

Note that in the definition of P j
k the average energy ǫΣ

is given by ǫΣ = (ǫk − K/2 + ǫk + K/2)/2 = ǫk. For

the coupling M j
k′k = P j

kk′ the assumption in Eq. (45),
i.e. ǫk′ −K/2 = ǫk +K/2, is automatically fulfilled and
in diagonal parametrization:

M j
k′k(B) = e−B(ǫk′−ǫk−K)2 P j

(k′+k)/2(B) (50)

since

P j
k (B) = M j

ǫk+K/2,ǫk−K/2(B) = P j
ǫk−K/2,ǫk+K/2(B).

(51)

Using the assumption in Eq. (45) which leads to the
diagonal parametrization we arrive at the one-loop flow
equations

d J sum,j
k (B)

dB
=

−
∑

q

(1 − 2n(qj))(ǫk − ǫq)e
−2B(ǫk−ǫq)

2(

J sum,j
(k+q)/2

)2

− 4
∑

q

(1− n(qj))(ǫk − ǫq +K)e−2B(ǫk−ǫq+K)2
(

P j
(k+q)/2

)2

+ 4
∑

q

n(qj)(ǫk − ǫq −K)e−2B(ǫk−ǫq−K)2
(

P j
(k+q)/2

)2

(52)

and

dP j
k (B)

dB
=

−
∑

q

(1 − n(qj)) (2(ǫk − ǫq −K/2)) e−2B(ǫk−ǫq−K/2)2

J sum,j
(k−K/2+q)/2 P j

(q+k+K/2)/2

+
∑

q

n(qj) (2(ǫk − ǫq +K/2)) e−B(ǫk−ǫq+K/2)2

P j
(k−K/2+q)/2 J sum,j

(q+k+K/2)/2 (53)

For details of the calculation we refer to the appendix A.
Note that M j

k′k is given immediately by the solution for

P j
k in the diagonal parametrization.
The one-loop order contains the integration over one

internal degree of freedom, the momentum q. Assum-
ing a constant density of states (DOS), N(0) = 1/(2Λ0),
of a flat band with bandwidth Λ0 around the Fermi en-
ergy, we transform the summation over momenta q to

an integral over the energy ǫq:
∑

q → N(0)
∫ Λ0

−Λ0
dǫq.

The DOS is absorbed into the dimensionless couplings
gsum,j
k′k = N(0)J sum,j

k′k and pjk′k = N(0)P j
k′k.

Predicting that the couplings will be only logarithmi-
cally dependent on the energy we assume that the energy
dependence is dominated by the exponential function and
simplify

f(x) exp(−2B(x− c)2) ≈ f(c) exp(−2B(x− c)2) (54)

Then the integration in Eqs. (52) and (53) is indepen-
dent of the energy argument of the coupling function.
Straightforwardly we find for example

∫

dǫq(1− 2n(qj))(ǫk − ǫq + αK)e−2B(ǫk−ǫq+αK)2

=− 1

2B
N(0)

[ rj
1 + rj

e−2B(ǫk−Vj/2+αK)2

+
1

1 + rj
e−2B(ǫk+Vj/2+αK)2

]

(55)

where we used the two-step Fermi function, Eq. (29), and
α as placeholder for the corresponding prefactor to K.
If we assume that the leads are symmetrically coupled
(asymmetry parameter rj = 1) we can write the flow
equations as

dgsum,j
k (B)

dB
=

1

2B

∑

ν=±1

1

2
e−2B(ǫk+νVj/2)

2
(

gsum,j
k

)2

+ 2
1

2B

∑

ν=±1

1

2
e−2B(ǫk+K+νVj/2)

2
(

pjk+K/2

)2

+ 2
1

2B

∑

ν=±1

1

2
e−2B(ǫk−K+νVj/2)

2
(

pjk−K/2

)2

(56)

and

d pjk(B)

dB
=

1

2B

∑

ν=±1

1

2
e−2B(ǫk−K/2+νVj/2)

2

gsum,j
k−K/2 p

j
k

+
1

2B

∑

ν=±1

1

2
e−2B(ǫk+K/2+νVj/2)

2

pjk g
sum,j
k+K/2

(57)

Note that here the term at ǫk = 0 is exponentially small

for B ≫ (Vj/2)
2 due to e−B(Vj/2)

2

(assuming K = 0).
Reducing the band cutoff Λ to 0 in a system with a large
applied voltage thus leads to a failure of the theory. If
the voltage is taken beyond the linear response regime
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FIG. 2: Flow of the coupling gsum,L

k′k
for ǫk′ = ǫk in the

numerical exact calculation (dashed lines) and for gsumk in
the diagonal parametrization (solid lines) versus energy ǫk
for three different values B = 1/Λ2 and Λ = K/3, K, 3K.
Further parameters of this plot are chosen K/2Λ0 = 0.05,
and g(Λ0) = 0.128 leading to TK = 0.01. Note that the flow
of K is neglected here.

it is necessary to study the frequency/energy-dependent
behavior of the coupling functions and the divergence at
the two new Fermi edges ǫk = ±Vj/2.

C. Discussion of results

Note that the left and right leads do not mix in
Eqs. (56) and (57) and therefore the left and right cou-
pling can be studied individually.

In Fig. 2 the flow of the coupling gsum,L
k′k is plotted

for ǫk = ǫk′ versus the energy ǫk for different values of
the flow parameter B while the voltage V is set to zero.
Since there is no cross-coupling the scaling behavior of

gsum,R
k′k is identical to gsum,L

k′k . The initial value of gsum,L
k′k

is energy-independent but very soon a frequency depen-
dence is produced, and for large enough B peaks at the
Fermi edge ǫk = 0 and at non-zero energy ǫk = ±K
are visible. Values away from ǫk = 0,±K are exponen-
tially suppressed. As obvious from Fig. 2 the diagonal

parametrization gsum,L
k reproduces the frequency depen-

dence of gsum,L
k′k perfectly and also the absolute value of

the coupling is in very good agreement. Thus we can
conclude from the numerical comparison in Fig. 2 that
the diagonal parametrization is a good approximation.

This has proven to be the case for most problems
studied previously in the context of non-equilibrium
Kondo models solved with the flow equation method7,8.
In the following we will also show that the diagonal
parametrization is equivalent to the non-equilibrium scal-
ing method by A. Rosch et al.2 and can thus also confirm
the accuracy and the validity of the assumptions in the
other approach.

For B ≪ min[1/K2, 1/ǫ2k, 1/V
2
j ] the scaling equation

for gsum,j
k and pjk are identical since the exponential

e−2B(ǫk+αK+νVj/2)
2 ≈ 1 does not cutoff the flow. Note

though, that the initial value of pjk(B0) = 1/2 gsum,j
k (B0).

Using B = 1/Λ2 where Λ is the frequency cutoff the flow
equation (56) thus simplifies to the well-known Kondo
coupling scaling function for a spin-1/2,

dg

d ln Λ
= −2g2 . (58)

This equation gives us a one-loop Kondo temperature of

TK = Λ0 e−1/2g(Λ0) . (59)

Thus we expect the flow equation (58) to diverge and
the lowest order to break down when B reaches the value
1/T 2

K. Nonzero temperature and current induced deco-
herence can remove this divergence as we will explain
later on. However, first we want to introduce the pertur-
bative RG approach in the next section.

IV. GENERALIZED PERTURBATIVE RG

The interaction of a Kondo problem has the general
structure

Hint =
∑

nσ,mσ′

γ,γ′

1

4

(

~Tα

)

γ′γ
~τσ′σJ

nσ,ωc;mσ′,ω′

c

γ,ωγ ;γ′,ωγ′
d†γ′dγc

†
mσ′cnσ,

(60)

where γ, γ′ refer to the eigenstates of the eigenstates of
the double quantum dot (singlet and triplet in this ex-
ample), m,n are the lead indices, σ, σ′ are spin up and
down states and ~τσ′σ refers to the Pauli spin matrix and
~Tγ′γ is a generalized Pauli matrix which has to be chosen
in accordance with the internal structure of the quantum
dot setup. The momentum dependence of the interaction
is neglected and thus we write the Kondo interaction in
terms of the momentum integrated conduction electron
operators, cnσ =

∑

k cnkσ .
This Hamiltonian can be furthermore described by a

general vertex

Vnσ,ωc;mσ′,ω′

c

γ,ωγ ;γ′,ωγ′
=

1

4
~τσ′σ

(

~Tα

)

γ′γ
N(0)J

nσ,ωc;mσ′,ω′

c

γ,ωγ ;γ′,ωγ′
. (61)

Note that the Hamiltonian necessarily has to be hermi-
tian and thus

Vnσ,ωc;mσ′,ω′

c

γ,ωγ ;γ′,ωγ′
= Vmσ′,ω′

c;nσ,ωc

γ′,ωγ′ ;γ,ωγ
(62)

if all couplings are real numbers.

A. General scaling equation

The idea of scaling has already been introduced. In-
stead of calculating a perturbative series of a physical
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quantity, we do a perturbation in the couplings of the in-
teraction. This provides us with results beyond standard
perturbation theory, which is known to fail in the Kondo
model.
One of the first scaling theories was introduced as

”poor man’s” scaling by P. W. Anderson in Ref. 23 and
generalized to non-equilibrium by A. Rosch et al.2. Im-
portantly, the physics of the problem at hand, i.e. the
expectation value of any physical observable, needs to be
invariant under scaling. Anderson studied the T-matrix
for the Kondo model and showed that a scattering into
a high-energy state can be absorbed into a lower-energy
setup by including the process to the bandedge Λ and
back into an effective interaction for a smaller bandwidth
Λ−dΛ. There are two contributions equivalent to a scat-
tering process to the upper band edge (electron = Cooper
contribution) and lower band edge (hole = Peierls con-
tribution)3. By successively reducing the band cutoff Λ
in infinitesimal steps dΛ we generate an effective inter-
action at low energy scales which is of the same form as
the original one but contains a renormalized Kondo cou-
pling J(Λ). The change is described by a scaling equa-
tion dJ(Λ)/dΛ and including only one virtual state at
the band edge is referred to as one-loop order. As the
poor man’s scaling is also perturbative, a truncation has
to be made and only certain renormalization diagrams
are taken into account.
In the traditional poor man’s scaling23 the band cut-

off is reduced to zero, Λ → 0. This is a problem in a
non-equilibrium situation as emphasized before because
energies beyond the ground state play an important role.
In Ref. 2 the approach from Anderson was generalized
to renormalize only one of the two band-cutoffs, e.g. the
outgoing energy ~ω′

c for a vertex while the incoming en-

ergy ~wc is fixed (but arbitrary). In this context the
Cooper and Peierls contribution to the scaling equation
have to be calculated in Keldysh notation and we find15

that the leading logarithmic contribution originates from
an integral of the form

∂

∂ ln Λ

Λ
∫

−Λ

dǫ
1

x− ǫ
tanh

( ǫ

2T

)

≈ − Λ

x− Λ
(63)

i.e. the real part of the quantum dot Green’s function
and the lesser part of the conduction electron Green’s
function including the sharp step of the Fermi function
at zero temperature. The external energy x can be the
exchange energy K, magnetic field h, chemical potential
µ or combinations of those.

In the perturbative RG method we approximate
Λ/(Λ− x) by Θ(Λ− |x|) since Λ/(Λ− x) ≈ 1 for Λ ≫ x
and Λ/(Λ − x) ≈ −Λ/x ≈ 0 for x ≫ Λ. At this point
we like to state that one major difference between the
two scaling method is the choice of the cutoff-function.

In the flow equation method the cutoff function e−Bx2

is valid in general and therefore we expect a better res-
olution in the proximity of the logarithmically enhanced
peaks. For further information on the pRG method we
refer the interested reader to Ref. 3 or 15.

In the general notation

Hint =
∑

γγ′

∑

nσ;mσ′

Vnσ,ωc;mσ′,ω′

c

γ,ωγ ;γ′,ωγ′
d†γ′dγc

†
mσ′cnσ, (64)

one can derive a scaling equation of the form

∂Vnσ,ωc;mσ′,ω′

c

γ,ωγ;γ′,ωγ′

∂ ln Λ
=

1

2

∑

λ=±1

∑

η,ν,s

(

Vνs;λΛ+µν ;mσ′,ω′

c

η,ωη;γ′,ωγ′
Θ|ωc+ωγ−µν−ǫη|Vnσ,ωc;νs,λΛ+µν

γ,ωγ ;η,ωη

− Vnσ,ωc;νs,λΛ+µν

η,ωη;γ′,ωγ′
Θ|ωγ′−ωc+µν−ǫη|V

νs,λΛ+µν ;mσ′,ω′

c
γ,ωγ ;η,ωη

)

, (65)

where we introduced the notation Θx = Θ(Λ − |x|).
Eq. (65) is the generalization of the equations given in
Ref. 2. A derivation can be found in Ref. 15. Every in-
going and outcoming leg of the vertex is assigned with a
frequency, ωc, ω

′
c and ωγ , ωγ′ for the conduction electron

and quantum dot pseudo fermions, respectively.

B. pRG for the Double Quantum Dot System

We now concentrate on the case of the double quan-
tum dot system where the general vertex is of the form

Eq. (61). Furthermore we assume that there is no ex-
ternal magnetic field applied and therefore the setup is
spatially invariant, i.e. the three triplet states t+, t0, t−
are degenerate. Like in the flow equation approach there
are thus only three vertices: a triplet-triplet transition
without energy cost/gain in the DQD, a singlet-triplet
and a triplet-singlet transition involving such a process.

The general vertex has four frequencies assigned to it,
where one frequency is fixed due to energy conservation,
which we impose on the vertex. The quantum dot is de-
scribed by pseudo-particles dγ which have to obey a con-
straint. In the following we set the energies ”on-shell”,
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e.g. the frequency of the incoming particle ωγ is given by
the eigenenergy of the state γ, i.e. ǫγ neglecting a finite
lifetime due to hybridization with the leads:

Vnσ,ωc;mσ′,ω′

c

γ,ωγ ;γ′,ωγ′
≈ Vnσ,ωc;mσ′,ω′

c

γ,ǫγ;γ′,ǫγ′
(66)

With the energy conservation the vertex thus only de-
pends on one frequency which is chosen to be the ingoing
frequency in the following

Vnσ,ωc;mσ′,ω′

c

γ,ǫγ ;γ′,ǫγ′
= Vnσ;mσ′

γγ′ (ωc). (67)

Evaluating now the product of Pauli matrices we ar-
rive at the three scaling equations for the dimensionless
Kondo couplings gnmγγ′ (ω) = N(0)Jnm

γγ′ (ω) for zero mag-
netic field

∂gnmts (ω)

∂ ln Λ
= −1

2

∑

ν

(2gνmts (ω)gnνtt (ω)Θω−µν

+2gnνts (ω)g
νm
tt (ω +K)Θω−µν+K) , (68)

∂gnmst (ω)

∂ ln Λ
= −1

2

∑

ν

(2gνmtt (ω −K)gnνst (ω)Θω−µν−K

+2gnνtt (ω)g
νm
st (ω)Θω−µν

) , (69)

∂gnmtt (ω)

∂ ln Λ
= −1

2

∑

ν

(gνmst (ω +K)gnνts (ω)Θω−µν+K

+gnνst (ω)g
νm
ts (ω −K)Θω−µν−K

+2gνmtt (ω)gnνtt (ω)Θω−µν
) . (70)

See reference 15 for the details of the derivation.
Note that in order to arrive at this scaling equations

the following approximations had to be made. First, the
cutoff is sent to 0 on the right hand side of Eq. (65).
Otherwise the imposed energy conservation assumed for
the left hand side is not fulfilled on the right hand side
and the RG equation is not self-consistent. Second, the
pseudo-fermions describing the quantum dots states are
assumed to be on-shell, Eq. (66). This step is not nec-
essary in the flow equation approach since the impurity
spin is kept as an operator without introducing pseudo
particles. Third, the energy conservation on the vertex
is enforced and thus we end up with only one energy in-
dex (which is chosen to be the ingoing energy). Fourth,
the approximations in Eqs. (45) and (54) are used in the
integration identical to the approximations used in the
flow equation method.
Note that the hermiticity of the Hamiltonian which

leads to pk′k = mkk′ corresponds to

gmn
st (ω) = gnmts (ω −K) (71)

in the perturbative scaling approach.
In order to be able to compare the two results we in-

troduce a new symmetrized coupling g̃nmst (ω) analogous

to the diagonal parametrization of pjk which is defined as

gnmst (ω) = 2g̃nmst (ω −K/2) , (72)

gnmts (ω) = 2g̃nmst (ω +K/2) , (73)

which thus fulfills the same initial condition as pjk

g̃nmst (ω)|Λ=Λ0
=

1

2
gnmst (ω +K/2)|Λ=Λ0

=
1

2
N(0)J0 (74)

and is peaked at ±K/2 instead of at 0,K and −K, 0
where gnmst and gnmts show resonant features.

With this new definition and inserting the approxima-
tions as mentioned above yields the scaling equations

∂g̃nmst (ω)

∂ ln Λ
= −

∑

ν

(

gνmtt (ω +K/2)g̃nνst (ω)Θω−µν−K/2

+gnνtt (ω −K/2)g̃νmst (ω)Θω−µν+K/2

)

, (75)

∂gnmtt (ω)

∂ ln Λ
= −

∑

ν

(2g̃νmst (ω +K/2)g̃nνst (ω +K/2)Θω−µν+K

+2g̃nνst (ω −K/2)g̃νmst (ω −K/2)Θω−µν−K

+gνmtt (ω)gnνtt (ω)Θω−µν
) (76)

In most applications a further convenient approximation
is used: in the frequency integral over all coupling func-
tions it is assumed that the main contribution arises from
the value at which the cutoff functions vanish. Thus the
set of equations reduces to a parametric set instead of a
continuous function.

∂g̃nmst (ω)

∂ ln Λ
= −

∑

ν

(

gνmtt (µν)g̃
nν
st (µν +K/2)Θω−µν−K/2

+gnνtt (µν)g̃
νm
st (µν −K/2)Θω−µν+K/2

)

, (77)

∂gnmtt (ω)

∂ ln Λ
= −

∑

ν

(2g̃νmst (µν −K/2)g̃nνst (µν −K/2)Θω−µν+K

+2g̃nνst (µν +K/2)g̃νmst (µν +K/2)Θω−µν−K

+gνmtt (µν)g
nν
tt (µν)Θω−µν

) (78)

We leave out this step while comparing the expressions
(75) and (76) directly with Eqs. (56) and (57) derived
with the flow equation method. However, the latter ap-
proximation is used in the numerical routines to acceler-
ate the calculation.

V. COMPARISON OF THE TWO METHODS

TO ONE-LOOP ORDER

In the following we will show that the two methods use
the same approximations and therefore are identical to
leading logarithmic order.

It is straightforward to see that the couplings in the
two different calculations are related by gtt(ω) ∼ gsumk
and g̃st(ω) ∼ pk, where the energy ǫk is to be identified
with the frequency (energy) ω (~ω).

We rewrite Eq. (56) and Eq. (76) to study in detail
the commons and differences of the pRG and the flow
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equation method.

∂gnmtt (ω)

∂ ln Λ
= −

∑

ν

(

gnνtt (ω)gνmtt (ω)Θω−µν

+ 2 g̃nνst (ω +K/2)g̃νmst (ω +K/2)Θω+K−µν

+ 2 g̃nνst (ω −K/2)g̃νmst (ω −K/2)Θω−K−µν

)

(79)

dgsum,j
k (B)

d ln(B−1/2)
= −1

2

∑

ν

((

gsum,j
k

)2

e−2B(ǫk−µν)
2

+ 2
(

pjk+K/2

)2

e−2B(ǫk+K−µν)
2

+ 2
(

pjk−K/2

)2

e−2B(ǫk−K−µν)
2
)

(80)

The flow parameter B is related to the frequency cutoff
by B = Λ−2 and µv = ±Vj/2. Therefore the equations
are actually identical down to the prefactors. The pref-
actor 1/2 in Eq. (80) stems from the even-odd combi-
nation of the leads where geven = (1 + r)gnm and thus
geven = 2gnm for r = 1.
Let us repeat the common approximation before we

embark on the differences. Both methods take into ac-
count only the leading logarithmic order by treating only
the lowest order diagrams which contribute to the scal-
ing. In the perturbative RG the pseudoparticle energies
are taken to be onshell which corresponds to treating
the spin operators without a bath. In both methods the
level of complexity is reduced by imposing energy conser-
vation on the vertex, i.e. the energy of the outgoing con-
duction electron is given by the energy of the incoming
electron diminished by eventual inelastic processes inside
the dot. Since both methods keep information on the
whole bandwidth and the renormalization reduces only
the bandwidth of the state that one scatters into, they
are destined to treat non-equilibrium physics on different
energy scales, i.e. when physics of more than the ground
state play a role.
The main difference are the two different cutoff func-

tions e−Bx2

= e−(x/Λ)2 versus Θx = Θ(Λ − |x|). The
step function is an approximation in the perturbative RG
whereas the exponential cutoff arises naturally in the flow
equation method approach. The form of the cutoff influ-
ences at most the lineshape in the proximity of logarith-
mically divergent couplings, see Fig. 3 and 4. Since these
are heavily influenced by higher-order renormalization,
their shape in leading logarithmic order is not reliable
anyway and only the flow at the corresponding energies
is described correctly. Note though, that for example in
the current or other physical observables, it is the aver-
age over a voltage window which enters, i.e. the integral
over the frequency-dependent couplings. Therefore this
difference can play a role when comparing result for the
non-equilibrium current.
Furthermore there is a summation over the lead in-

dices in the perturbative RG. In the flow equation calcu-
lation we used the symmetry that only the even chan-
nel of each lead is coupled to the dot and therefore

the lead index drops out. In general the model can
also be studied without doing the even-odd transfor-
mation7, e.g. to study models which are not equivalent
to the Anderson impurity model by the Schrieffer-Wolff
transformation. As explained in the introductory part,
e.g. the important transport part g12 between two leads
on the left side is given by the asymmetry parameter and
gL/R,L = (1+rL)g

L/R;22: gL/R;12 =
√
rL/(1+rL)g

L/R,L.
We concentrate for the comparison only on the symmet-
ric case rL = 1 and consequently find that gsumk = 2gtt(ω)
and pk = 2g̃st(ω).

The strength of the flow equation method is that the
diagonal parametrization is a convenient choice in order
to find analytical expressions, but not a necessary limi-
tation of the method. In practice the numerical cost lim-
its the evaluation of the flow equations to the diagonal
parametrization.

Nevertheless both methods are still bound to break
down due to the strong-coupling behavior of the Kondo
correlations. In the following we will explain how deco-
herence effects are included in the two different methods,
how they provide an additional cutoff and in the end
compare the two methods again.

VI. BEYOND ONE-LOOP

A. In perturbative RG

The Kondo problem at zero temperature is known not
to be solvable by perturbation theory. Even though the
renormalization schemes can improve the limit of validity
due to an appropriate summation of diagrams, the theory
still breaks down at the energy scale Λ = TK . However,
in equilibrium at finite temperature T & TK or in non-
equilibrium for sufficiently large voltage bias one expects
a well-behaved weak coupling expansion.

The seminal work of A. Rosch et al.2 on the non-
equilibrium Kondo model achieves this by including a
physically motivated cutoff given by the current-induced
noise in the system. Decoherence is unavoidably present
due to the non-zero steady current flow through the sys-
tem, which generates Johnson-Nyquist current noise. In
other words, the quantum dot states gain a finite lifetime
due to elastic or inelastic cotunneling processes with the
leads. Also decay rates due to external baths can play
a role. In general a non-zero decoherence rate Γ has to
be included in the retarded Green’s function. This leads
to a new scaling behavior since the leading logarithmic
diagrams changes as

Λ
∂

∂Λ

Λ
∫

−Λ

dǫ
x− ǫ

(x− ǫ)2 + Γ2
tanh

( ǫ

2T

)

(81)

≈ −Λ
x− Λ

(x− Λ)2 + Γ2
+ Λ

x+ Λ

(x+ Λ)2 + Γ2
. (82)
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Thus the cutoff has to be corrected to be

Θx = Θ(Λ−
√

x2 + Γ2) (83)

instead of just Θ(Λ − |x|). It was shown perturbatively
in Ref. 13 that in non-equilibrium selfenergy and vertex
correction become important to the same degree. Fur-
ther studies using different renormalization group meth-
ods confirmed the observation that the non-equilibrium
decoherence rate are determined by transport processes
and can be different to the thermodynamically expected
expressions.4,5,24–26

The statement that decoherence terms have to be in-
cluded is equivalent to the failure of the on-shell assump-
tion since the levels in the quantum dot are broadened
and thus the spin state on the quantum dot gains a finite
lifetime. To find the correct cutoff one has to calculate
the spin susceptibility and find the correct Lorentzian
shape.
In Fig. 3 we show the flow of the triplet-triplet coupling

gnmtt (ω) for n = m = 1 as a function of the frequency ω
and for different values of the cutoff Λ.

-0.2 -0.1 0 0.1 0.2
ω

0.025

0.03

0.035

0.04

g 1
1  tt

Λ=2V

Λ=V/100

FIG. 3: Poor man’s scaling including a frequency de-
pendence of the coupling for a Double Quantum Dot
system; g11tt = 0.025, N(0)K = 0.025, T ≈ 0,
N(0)(eVL) ≡ V = 0.1, N(0)(eVR) = 0; values of the cutoff
Λ/V = 2, 1, 1/2, 1/5, 1/10, 1/15, 1/25, 1/50, 1/100 where the
first (solid line) and the last value (dashed line) are marked
extra in the plot.

For a large cutoff Λ the coupling is a constant and does
not depend on the frequency of the scattered electrons.
As the cutoff is reduced a frequency dependence evolves
and the coupling continues to grow at the resonant energy
scales, i.e. at ω = ±V/2,±K ± V/2, while the flow does
not continue at other energy scales due to Θω. Once the
energy scale which is needed for a scattering process is
smaller than the bandwidth, no further processes can be
integrated out and it is expected that the flow should not
continue. Including the frequency dependence and the
frequency cutoff Θω in the poor man’s scaling equations

produces this behavior automatically, which is one of the
advantages of the pRG method.
Without the cutoff given by Γ the couplings at the

Fermi energies ω = ±V/2 are logarithmically divergent
and the poor man’s scaling approach breaks down. In-
cluding Γ in the cutoff function ΘΓ simulates the phys-
ical observation that similar to a non-zero temperature
T 6= 0 the infinite series of infinitesimal spin-flip excita-
tions around the Fermi edge is interrupted by a non-
coherent process. The flow of the coupling stops at
gtt ∝ 1/ ln(Γ/TK)14 assuming that Γ is the relevant cut-
off (which can otherwise also be proportional to T or
combinations of internal energies).
Note that the divergence of the coupling at the Fermi

edge is not necessarily equivalent to the breakdown of
the calculation. For example in the calculation of the
non-equilibrium current the average of the frequency-
dependent coupling over the whole voltage window needs
to be included where the divergent coupling is just a
boundary term26.

B. In the flow equation method

In the flow equation method, the generalization to
higher orders in the coupling function is straightforward
as has already been illustrated in Refs. 6–8.
In second order in the Kondo coupling J new interac-

tion terms are created. These can be compared to a 6-leg
vertices with two incoming and two outgoing conduction
electrons and one incoming and one outgoing spin state of
the quantum dot in the pseudo-fermion language. Con-
tributions to the flow of the four-leg Kondo interaction
vertices are generated by a product of one of the newly
generated vertices with the initial Kondo vertex. Note
that since two conduction electron lines are thus inte-
grated out, these terms are very similar to the self energy
and vertex corrections discussed in the previous section.
In contrast to the one-loop contribution, the two-loop

contribution includes an integration over two interme-
diate energies, i.e. an electron-hole pair like n(qv)(1 −
n(q′v)). This integration is taken over a window of
energies, e.g. voltage window or singlet-triplet transi-
tion window. Besides the standard two-loop term in
the β-function dg/d ln Λ = −2g2 + 2g3 for a spin-1 we
also expect to find contributions from g3V/Λ or g3K/Λ,
i.e. coupling3 × phase space. These arise naturally in the
calculation and can be identified as the cutoff rates given
by e.g. the Johnson-Nyquist current noise.

1. Discussion of the flow to second order

In the case of a double quantum dot system these newly
generated couplings are
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H
(2)
int =

∑

jv

∑

k′k;q′q

Ksum
k′k;q′qi :

(

~SL + ~SR

)

(

~s(k′j)(kj) × ~s(q′v)(qv)

)

:

+
∑

jv

∑

k′k;q′q

KP
k′k;q′qi :

(

(

~SL − ~SR

)

+ 2i
(

~SL × ~SR

)

)(

~s(k′j)(kj) × ~s(q′v)(qv)

)

:

+
∑

jv

∑

k′k;q′q

KM
k′k;q′qi :

(

(

~SL − ~SR

)

− 2i
(

~SL × ~SR

)

)(

~s(k′j)(kj) × ~s(q′v)(qv)

)

:

+
∑

jv

∑

k′k;q′q

KRKKY
k′k;q′q i2i

(

:
(

~SL × ~s(k′j)(kj)

)(

~SR × ~s(q′v)(qv)
)

+
(

~SR × ~s(k′j)(kj)

)(

~SL × ~s(q′v)(qv)
)

:
)

(84)

These interactions are not present in the initial flow

Ksum
k′k;q′q(B = 0) = 0 (85)

KP
k′k;q′q(B = 0) = 0 (86)

KM
k′k;q′q(B = 0) = 0 (87)

KRKKY
k′k;q′q (B = 0) = 0 (88)

They can be interpreted as an entanglement of the quan-
tum dot states with the spin states of the conduction
electrons. This can be seen by studying of the flow of
the coupling function where we find that the initial free

spin state (~SL+ ~SR) evolves into the entangled spin state

(~SL + ~SR) × ~s(q′v)(qv) for B → ∞. Correspondingly we
observe in the flow of the Hamiltonian that the coupling
Jk′k starts to decrease at an energy scale when Kk′k;q′q

starts to grow. The flow of Jk′k is reversed in the sense
that it does not diverge logarithmically but for B → ∞
we observe Jk′k → 0 while the values of the couplings in

H
(2)
int grow.
Note that also an RKKY-like interaction is created to

this order. All kinds of potential scattering contribu-
tions are neglected here, similar to the pRG calculation,
because they do not contribute in the wide band limit.
Since we study only antiferromagnetic coupling between
the two spins we can neglect the RKKY interaction in
the following. For a discussion of the flow of this cou-
pling we refer the interested reader to appendix B where
it is shown that the coupling K is similar to a magnetic
field in a spin-1/2 Kondo problem renormalized by the
coupling to the leads8. Note that the change of K is in-
cluded in the numerical results shown here if not stated
otherwise.
The rather complicated entanglement term

KRKKY
k′k;q′q i2i

(

:
(

~SL × ~s(k′j)(kj)

)(

~SR × ~s(q′v)(qv)
)

+
(

~SR × ~s(k′j)(kj)

)(

~SL × ~s(q′v)(qv)
)

:
)

=(−4)KRKKY
k′k;q′q :

(

~SL
~SR

)(

~s(k′j)(kj)~s(q′v)(qv)
)

:

+ 2KRKKY
k′k;q′q :

(

~SL~s(k′j)(kj)

)(

~SR~s(q′v)(qv)
)

:

+ 2KRKKY
k′k;q′q :

(

~SR~s(k′j)(kj)

)(

~SL~s(q′v)(qv)
)

: (89)

reproduces an RKKY-like interaction. Note that during

the flow ~SL
~SR → (~SL × ~s(k′j)(kj))(~SR × ~s(q′v)(qv)) and

therefore the additional term is effectively a rescaled ex-
change interaction. This term is not present for example
in the spin-1/2 model and special to the exchange cou-
pled quantum dot.

We now study systematically how the new terms in the
Hamiltonian decompose into the initial coupling terms.
A detailed expression can be found in the appendix C.
Here we write down only the final expression for the sym-
metric setup discussed throughout the paper. The flow of
the coupling gsum,j

k (B) in diagonal parametrization yields

d gsum,j
k (B)

dB
=

1

2B

1

2

∑

v=±

e−2B(ǫk+vVj/2)
2(

gsum,j
k

)2

+ 2
1

2B

1

2

∑

v=±

e−2B(ǫk+vVj/2+K)2
(

pjk+K/2

)2

+ 2
1

2B

1

2

∑

v=±

e−2B(ǫk+vVj/2−K)2
(

pjk−K/2

)2

− 1

4B

∑

v

gsum,j
k (B)

(

gsum,v
max (B)

)2

−
∑

v

f(0, Vv)g
sum,j
k (B)

(

gsum,v
max (B)

)2

−
( 1

4B
e−2BK2

+
K

4

√

π

2B
erf

(
√
2BK

))

×
∑

v

gsum,j
k (B)

(

2pvmax(B)
)2

−
∑

v

f(K,Vv) g
sum,j
k (B)

(

2pvmax(B)
)2

,

(90)
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and

d pjk(B)

dB
=

1

2B

1

2

∑

v=±

e−2B(ǫk+vVj/2−K/2)2gsum,j
k−K/2p

j
k

+
1

2B

1

2

∑

v=±

e−2B(ǫk+vVj/2+K/2)2pjkg
sum,j
k+K/2

− 1

4B

∑

v

pjk(B)
(

gsum,v
max (B)

)2

−
∑

v

f(0, Vv)p
j
k(B)

(

gsum,v
max (B)

)2

−
( 1

4B
e−2BK2

+
K

4

√

π

2B
erf

(
√
2BK

))

×
∑

v

pjk(B)
(

2pvmax(B)
)2

−
∑

v

f(K,Vv)p
j
k(B)

(

2pvmax(B)
)2

, (91)

where for rL = rR = 1

f(K,Vv) =
1

4B

1

4

(

e−2B(K−Vv)
2

+ e−2B(K+Vv)
2 − 2e−2BK2)

+
1

4

√

π

2B

1

4

[

(K − Vv)erf(
√
2B(K − Vv))

+ (K + Vv)erf(
√
2B(K + Vv))

− 2Kerf(
√
2BK)

]

, (92)

and in particular

f(0, Vv) =
1

4B

1

2

(

e−2BV 2
v − 1

)

+
1

8

√

π

2B
Vverf(

√
2B(Vv)) . (93)

Note that we assumed that the frequency dependence
is given dominantly by the exponential decay and there-
fore the couplings in the integration over the energy
window can be approximated by their most divergent
term, i.e. gsum,v

(q′+q)/2 ≈ gsum,v
max = gsum,v

0 if voltage Vv

is zero. For Vv = 0 there is no contribution from
f(0, 0) = f(K, 0) = 0. On the contrary for finite volt-
age and B ≫ V −2

v : f(0, Vv) ≈ 1
2B + Vv

2

√

π
2B → Vv

2

√

π
2B

since
√

π
2B ≫ 1

2B and f(0, Vv) provides the leading con-
tribution to the flow.

2. Two-loop results of the Double Quantum Dot system

In the equilibrium case, where the applied voltages
VL = VR = 0, the scaling equation for gsumk is given

by

d gsum,j
k (B)

dB
≈ 1

2B
e−2Bǫ2k

(

gsum,j
k

)2

+ 2
1

2B
e−2B(ǫk+K)2

(

pjk+K/2

)2

+ 2
1

2B
e−2B(ǫk−K)2

(

pjk−K/2

)2

− 1

4B

∑

v

gsum,j
k (B)

(

gsum,v
max (B)

)2

−
( 1

4B
e−2BK2

+
K

4

√

π

2B
erf

(
√
2BK

))

×
∑

v

gsum,j
k (B)

(

2pvmax(B)
)2

. (94)

Note that the scaling equation is of the form of a two-
loop calculation with an additional contribution pro-
portional to (K/

√
2B)erf(

√
2BK). For large values of

the argument in the error function we can approximate
erf(x) → sign(x). Therefore we find in the limit B → ∞
that this term is ∝ 1/

√
B > 1/B and thus this term

dominates the asymptotic flow. As discussed later on,
this provides a cutoff in the flow given by the singlet-
triplet exchange interaction K. This cutoff can prevent
the divergence of the elastic Kondo coupling gsumk by fa-
voring a singlet formation of the two dots instead of a
Kondo singlet with the leads if K is larger than a critical
value. This is a signature of the quantum phase transi-
tion in our system and will be discussed in more detail
in another publication27.
Furthermore we try to illustrate the effect of these de-

coherence terms in the two-loop calculation in the limit
Vj ≫ K and refer the reader to the explicit discussions
in the literature to non-equilibrium flow equations for
further reading17.
Note that we have to distinguish between the voltage

applied on the left side or right side since there is a sum-
mation over the left and right lead index in third order
in the coupling. For now we will assume VR = 0 and
only VL ≡ V 6= 0. In the current this can lead to the
interesting effect of a transconductance14 as discussed at
the end of this section.
For 2BV 2 ≫ 1 ≫ 2BK2 such that we can set

erf(
√
2BV ) ≈ 1 and neglect contributions from e−2BK2

we find the scaling equation

d gsum,j
k (B)

dB
≈ 1

2B

∑

α=±1

1

2
e−2B(ǫk+αV/2)2

(

gsum,j
k

)2

−
∑

v=L,R

[1

4

Vv

2

√

π

2B

]

gsum,j
k (B)

(

gsum,v
max (B)

)2

−
∑

v=L,R

[1

4

Vv

2

√

π

2B

]

gsum,j
k (B)

(

pvmax(B)
)2

(95)

In this limit the voltage V dominates the flow for B → ∞
and thus provides a cutoff scale for the flow.
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FIG. 4: Flow of gsum,L

k as a function of energy ǫk for different
values of the flow parameter B = (1/Λ2) where Λ chosen
identical to Fig. 3. Furthermore N(0)K = 0.025 N(0)(eV ) =
0.01, T ≈ 0 and g(B0) = 0.05. Same parameters as in Fig. 3

The actual decoherence rate has to be determined
studying the spin susceptibility of the system. Neverthe-
less, it has been shown e.g. for the spin-1/2 Kondo model7

that the rate Γ read off from the correlation function is
equivalent to the observed cutoff in the scaling equation.
In Fig. 4 we show (similar to Fig. 3) the flow of the

coupling gsum,j
k as a function of ǫk for different values of

the flow parameter B. As in the pRG calculation the
coupling is initially equal for all values of the energy and
a frequency dependence evolves slowly with increasing
values of B. Note the difference between the two calcu-
lations: in the flow equation method the two-loop con-
tribution leads to a decrease in the running couplings as
soon as the energy scale Γ is reached. At this stage the

higher order coupling terms in H
(2)
int start to grow and

the entangled spin state determines the physics. This is
seen as a decrease in the initial Kondo coupling gsum,j

k ,
whereas in the poor man’s scaling approach the flow is
just stopped at this scale and then stays constant.
It is still an open issue if the coupling exactly at

B = 1/Γ2 can be used if physical observables are calcu-
lated, and if the cutoff scheme motivated by a self energy
cutoff is valid to higher orders. For the parameter set
chosen in Fig. 4 the peak structure only evolves after the
absolute value of the coupling goes down. Otherwise the
overall behavior is very similar to the result using pRG
as shown in Fig. 3. A direct comparison of results of the
two methods can be found in the next subsection.

3. Transconductance

A non-zero transconductance is found in the double
quantum dot system14. If the ground state of the double
quantum dot system is given by the degenerate triplet
states (K < 0), we find a zero-bias resonance which
can be Kondo enhanced. On the other hand if the dou-
ble quantum dot system is in the non-degenerate singlet

ground state (K > 0), transport is blocked for voltages
below a threshold given by the exchange interaction K.
Once the applied voltage is larger than K, transport is
also allowed which includes the three triplet states and we
find an inelastic cotunneling step which is logarithmically
enhanced by the Kondo correlations. A non-equilibrium
occupation of the triplet becomes possible due to the
large applied voltage. For example for a large voltage
applied on the left side the linear response current on the
right side is not blocked but there is a non-zero signal.
This transconductance dIR/dVL was studied in detail by
one of the authors14,15.
The transfer of decoherence from one quantum dot to

another can also be seen in the flow equation method.
In contrast to one-loop order where only one virtual pro-
cess is allowed, there are two intermediate states which
contribute to two-loop order. Note that there is a sum-
mation over the lead index in Eq. (90). Therefore an
electron-hole pair created in e.g. the right lead due to a
finite voltage enters the scaling equation for the coupling
to the left leads.
The signatures of the transconductance can thus be

observed as a cutoff of the divergent coupling to the right
lead even when the voltage is only applied to the left
lead, see Fig. 5. Note that the decoherence scale though
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g
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2 p
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FIG. 5: Flow equation solution using the mean value of the
couplings gsum,R

mean and −2psum,R
mean to the right leads; solid lines

illustrate the flow for voltage VL = VR = 0. In this case the
singlet-triplet excitation energy K provides a cutoff scale in
gsum,j
mean. For a finite voltage applied to the left lead, i.e. TK =
0.005, N(0)K = 0.025, VR = 0 and N(0)(eVL) ≡ V = 0.05,
we show again gsum,R

mean and −2psum,R
mean (dashed lines). A decay

of the couplings sets in which is initiated by the decoherence
on the left side of the DQD. See discussion of the transcon-
ductance effect in the text. For comparison we also show that
the decoherence rate for gsum,L

mean and 2psum,L
mean (dotted lines) is

larger.

is larger than the decoherence on the right side. To study
the transition from a strong-coupling to a weak-coupling
problem, the calculation of either the transconductance
or another physical quantity is necessary. This is not the
focus of this paper. Here we concentrate on a comparison
between the flow equation method and pRG scaling. We
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have shown that they are identical to lowest order and by
Fig. 5 also that the flow equation method provides the
same physics as was found from previous studies of the
double quantum dot system using pRG14.

C. Comparison

As a further comparison we show the mean values of
the couplings in the two different calculations. The aver-

1000 2000 3000 4000 5000

B=1/Λ2
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0.05 g
sum

p
g

tt
g
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0 1 2

x/Λ

0

0.5

1

exp
theta

FIG. 6: Comparison of the averaged coupling functions in
pRG (solid lines: gtt=̂2[g11tt ]mean and gst=̂2[g̃11st ]mean) and
flow (dashed lines: gsum=̂gsum,L

mean and p=̂pLmean), same param-
eters as in Fig. 3 and 4. Inset: comparison of the different
cutoff functions, θx and exp(−(x/Λ)2)

aged quantities enter physical quantities like the current
and spin susceptibilities. They are defined as

gsum,j
mean =

1

Vj + 2K

∫ Vj/2+K

−Vj/2−K

dǫk gsum,j
k (96)

pjmean =
1

Vj +K

∫ Vj/2+K/2

−Vj/2−K/2

dǫk pjk (97)

and analogous for the mean values of gnmtt (ω) and g̃nmst (ω).
In Fig. 6 we show a comparison of the triplet-triplet

and singlet-triplet couplings versus the cutoff/flow pa-
rameter for the same set of parameters as discussed be-
fore. We observe that the couplings in both methods
start to grow logarithmically. The quantitative behavior
is slightly different due to the different cutoff schemes.
Note that the plotted variable is the averaged value over
a frequency/energy regime which thus includes the slopes
of the most divergent coherent couplings, compare Fig. 3
and 4. These are different due to either a cutoff of
e−(x/Λ)2 or Θ(Λ− x) as illustrated in the inset of Fig. 6.
Both methods are limited to weak-coupling and thus the
value of gsummean changes only by roughly 25 % and stays
well below the strong-coupling limit.
Note that we compare the two-loop flow equations with

the decoherence-cutoff corrected pRG. The philosophies
of the two different methods are obvious in Fig. 6. In

the pRG the flow continues to grow logarithmically and
as soon as the reduced band reaches the cutoff, the flow
stops and the coupling stays constant. This is the value
which is then inserted into the expression of physical ob-
servables like the current or the transconductance, etc.
In the flow equation method the decoherence enters dif-
ferently. As soon as the flow parameter B reaches 1/Γ2,
the initial couplings start to decay again. Once the de-
coherence scale is reached the Hamiltonian changes its
form, i.e. in the Kondo model the impurity spin is en-
tangled with the leads and therefore the newly generated

couplings in H
(2)
int start to grow and determine the dy-

namics of the system. For B → ∞ the Kondo coupling
would thus flow to 0 and the physical relevant value of
the Kondo coupling should be chosen as the maximum
before the value starts to decay.
The two decoherence scales of the two different meth-

ods for the example in Fig. 6 seem very different since
the pRG flow still continues while the couplings in the
flow equation methods already start to decay. This ob-
servation can be traced back to two reasons. First, it is
not obvious if B = 1/Λ2 is identically fulfilled or if there
is some prefactor involved which invalidates the direct
comparison. Second, as pointed out before an additional
cutoff is found in the flow equation method which is pro-
portional to the exchange interaction K and not given
by the noise fluctuations. This term is not found from
a Korringa-rate calculation in the pRG method. On the
other hand the term contains the physics of the quan-
tum phase transition in the double quantum dot system
since the Kondo coupling is expected to diverge only if a
Kondo singlet is built up with the conduction electrons
in the leads, and not if the quantum dot is locked in a
singlet configuration. Detailed study of the behavior of
this transition is the subject of a future publication27.
The best comparison which is thus possible between

the two methods is the frequency-dependent coupling
directly at the decoherence scale in the flow equation
method and for Λ → 0 in the pRG approach. This is
shown in Fig. 7. The parameters are chosen such that
the voltage is the determining cutoff scale and are iden-
tical to the parameters in all other figures. Note that we
only show the coupling in the lead where the voltage is
applied in contrast to the discussion of the transconduc-
tance. We can conclude that the flow equation method
and the pRG approach describe the same physics of de-
coherence contributions out of equilibrium.

VII. CONCLUSION AND OUTLOOK

In conclusion we have shown for the example of the
double quantum dot system that the flow equation
method6 and the poor man’s scaling approach to non-
equilibrium2 are equivalent to one-loop order. In both
methods we find that the coupling develops a frequency
dependence and that only at energies/frequencies where
coherent processes are possible a logarithmic divergence
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FIG. 7: Comparison of the coupling g11tt (ω) (g̃11ts (ω)) in the

pRG (solid lines) for Λ → 0 and gsum,L

k (pLk ) for the flow
equation (dashed lines) at the decoherence scale B = 1/Γ2.
Parameters are chosen to be the same as in the previous fig-
ures. Note that we compare a 2-loop calculation (flow equa-
tion) to an effective theory which mimics the effects of 2-loop
contributions.

of the coupling can be observed.
If the infinite series of coherent processes is broken by

decoherence, e.g. like in the presence of a not negligible
current, the divergence should be lifted. The two dif-
ferent methods use different approaches for this: while
the pRG approach includes a physically motivated cutoff
given by lifetime broadening and/or vertex corrections,
the flow equation method is continued to higher order,
i.e. two-loop, where a cutoff arises systematically.
The double quantum dot setup is interesting to study

since it is the simplest model which includes spin-
coherent inelastic scattering processes like the singlet-
to-triplet transition at the exchange energy K. The
triplet-triplet coupling diverges at the Fermi energy if the
triplets are degenerate, whereas the singlet is the non-
degenerate ground state if K > 0. The lifetime of the
ground state is infinite if there is no current applied and
thus the double quantum dot system is also a good case

study for the effect of decoherence due to a finite cur-
rent. If the current and therefore decoherence exceed a
threshold as discussed in detail in Ref. 14, this leads to
a non-equilibrium induced current through the exchange
coupled quantum dot even in the linear response regime.

A further aspect of the model is the quantum phase
transition inherent in a double quantum system due to
the competition between the exchange coupling induced
singlet ground state and the dynamic singlet state due
to the Kondo interaction with the leads. For two impu-
rities embedded in a metal a quantum phase transition
occurs for K ≈ 2.2TK, which is in a regime where the
poor man’s scaling approach breaks down. This quan-
tum phase transition can be studied in more detail in
the flow equation approach since i) the two-loop equation
(94) contains the competition between singlet formation
of the two dots vs. individual Kondo screening and ii) the
Kondo coupling decreases below the decoherence scale in
non-equilibrium. In order to do so a physical quantity
like the spin susceptibility will be studied in a different
publication27. Such a calculation is based on the key fea-
ture of the flow equation approach that decoherence and
interaction effects, e.g. the spin-spin interaction in the
double-dot system, are dealt with on the same footing.
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Appendix A: One-loop expressions

With the expression for η in Eq. (37) and inserting it
into the flow equation (35), we find the scaling equation
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d J sum,j
k′k (B)

dB
= −(ǫk′ − ǫk)

2J sum,j
k′k

− 1

2

∑

q

((1− n(qj)) − n(qj)) ((ǫk′ − ǫq)− (ǫq − ǫk))J
sum,j
k′q J sum,j

qk

−
∑

q

(1− n(qj)) ((ǫk′ − ǫq +K)− (ǫq − ǫk −K)) 2P j
k′qm

j
qk

+
∑

q

n(qj) ((ǫk′ − ǫq −K)− (ǫq − ǫk +K)) 2mj
k′qP

j
qk (A1)

dP j
k′k(B)

dB
= −(ǫk′ − ǫk +K)2P j

k′k

−
∑

q

(1− n(qj)) ((ǫk′ − ǫq)− (ǫq − ǫk +K))J sum,j
k′q P j

qk

+
∑

q

n(qj) ((ǫk′ − ǫq +K)− (ǫq − ǫk))P
j
k′qJ

sum,j
qk (A2)

With the diagonal parametrization as defined in the
main text we can write

d J sum,j
k (B)

dB
=

−
∑

q

(1 − 2n(qj))(ǫk − ǫq)e
−2B(ǫk−ǫq)

2(

J sum,j
(k+q)/2

)2

− 4
∑

q

(1− n(qj))(ǫk − ǫq +K)e−2B(ǫk−ǫq+K)2
(

P j
(k+q)/2

)2

+ 4
∑

q

n(qj)(ǫk − ǫq −K)e−2B(ǫk−ǫq−K)2
(

P j
(k+q)/2

)2

(A3)

dP j
k (B)

dB
=

−
∑

q

(1 − n(qj)) (2(ǫk − ǫq −K/2)) e−2B(ǫk−ǫq−K/2)2

× J sum,j
(k−K/2+q)/2P

j
(q+k+K/2)/2

+
∑

q

n(qj) (2(ǫk − ǫq +K/2)) e−B(ǫk−ǫq+K/2)2

× P j
(k−K/2+q)/2J

sum,j
(q+k+K/2)/2 (A4)

We assume the exponential dependence on the en-
ergy is stronger than the energy dependence of the cou-
pling function. Doing the integration assuming that

e−2B(x−c)2f(x) ≈ e−2B(x−c)2f(c) and neglecting contri-

butions from B0 = e−BΛ2
0 we find
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d gsum,j
k (B)

dB
≈ 1

2B

( rj
1 + rj

e−2B(ǫk−Vj/2)
2

+
1

1 + rj
e−2B(ǫk+Vj/2)

2
)

(

gsum,j
k

)2

+ 2
1

2B

( rj
1 + rj

e−2B(ǫk−Vj/2+K)2 +
rj

1 + rj
e−2B(ǫk−Vj/2+K)2

)

(

pjk+K/2

)2

+ 2
1

2B

( rj
1 + rj

e−2B(ǫk−Vj/2−K)2 +
1

1 + rj
e−2B(ǫk+Vj/2−K)2

)

(

pjk−K/2

)2
(A5)

d pjk(B)

dB
=

1

2B

( rj
1 + rj

e−2B(ǫk−Vj/2−K/2)2 +
1

1 + rj
e−2B(ǫk+Vj/2−K/2)2

)

gsum,j
k−K/2p

j
k

+
1

2B

( rj
1 + rj

e−2B(ǫk−Vj/2+K/2)2 +
1

1 + rj
e−2B(ǫk+Vj/2+K/2)2

)

pjkg
sum,j
k+K/2 (A6)

where we have now introduced the dimensionless cou-
plings gsum,j

k′k = N(0)J sum,j
k′k and pjk′k = N(0)P j

k′k. This
expression is for rj = 1 discussed in detail in the main
text.

Appendix B: Flow of the RKKY interaction

In second order in the Kondo coupling we also generate

an RKKY-like spin exchange interaction, IRKKY
~SL

~SR.
Together with the flow of IRKKY

d

dB
IRKKY =

∑

k′k

{

[n(k′j)− n(kj)]ηsum,j
k′k J sum,j

kk′

− [n(k′j)− n(kj)]

×
(

2 ηPj
k′kM

j
kk′ + 2 ηMj

k′kP
j
kk′

)

+ [n(kj)(1− n(k′j)) + n(k′j)(1− n(kj))]

×
(

4 ηPj
k′kM

j
kk′ − 4 ηMj

k′kP
j
kk′

)

}

(B1)

there is also a constant proportional to 3/4~2 generated
in the flow to second order.

d

dB
Econst =

3

4
~
2
∑

k′k

{

[n(k′j)− n(kj)]ηsum,j
k′k J sum,j

kk′

+ [n(k′j)− n(kj)]
(

2 ηPj
k′kM

j
kk′ + 2 ηMj

k′kP
j
kk′

)

}

(B2)

In the following we study only the case for zero voltages,
VL = VR = 0.

If we now insert the diagonal parametrization for the
couplings and do the energy integration assuming like
before that the energy dependence of the couplings can

be neglected. The integration over momentum yields

∫

dǫk′

∫

dǫk[n(kj)(1 − n(k′j))]

× (ǫk′ − ǫk + αK)e−2B(ǫk′−ǫk+αK)2

=

√
2π

16B3/2

(

1− erf(
√
2BαK)

)

∫

dǫk′

∫

dǫk[n(k
′j)(1− n(kj))]

× (ǫk′ − ǫk + αK)e−2B(ǫk′−ǫk+αK)2

= −
√
2π

16B3/2

(

1 + erf(
√
2BαK)

)

Utilizing these results we thus find

d

dB
IRKKY =

√
2π

8B3/2

{

[

1− 2erf(
√
2BK)

]

(2pjmax)
2 (B3)

− (gsum,j
max )2

}

(B4)

d

dB
Econst =

3

4
~
2

√
2π

8B3/2

{

− (gsum,j
max )2 − (2pjmax)

2
}

(B5)

where gsum,j
max and pjmax are the couplings at the most di-

vergent energy argument.

Note that for BK2 ≫ 1 where erf(
√
2BK) ≈ 1, the

following relation holds

3

4
~
2 dIRKKY

dB
− dEconst

dB
= 0 (B6)

i.e. the combination of the two newly generated couplings
stops to flow as soon as B has reached the energy scale
1/K2. Corrections to each of the couplings IRKKY and
Econst are given by a term proportional to B−3/2 which is
negligible small compared to the logarithmic divergence
for small values of B.
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Furthermore in the opposite limit BK2 ≪ 1

dIRKKY

dB

≈ −
√
2π

8B3/2

{

[

− 1 + 2
2√
π

√
2BK

]

(2pjmax)
2 + (gsum,j

max )2
}

≈ −K

B
(2pjmax)

2 (B7)

where we neglect the small term ∝ 1/B3/2.
Note that the frequency dependence of the coupling

functions is not developed in the limit BK2 ≫ 1 and
thus we find that the relation gsum,j

max = 2pjmax is fulfilled
during the flow. Thus for example the coupling gsum,j

max

fulfills the flow equation

dgsum,j
max

dB
=

1

B
(gsum,j

max )2 (B8)

⇒ gsum,j
max =

1

ln(BT 2
K)

(B9)

where TK is the Kondo temperature as defined in the
main text. In the following we assume that the initial
value K on the right hand side of the flow equation is
also subject of the flow and thus replace: K → IRKKY .
Consequently we have to solve the differential equation

d ln IRKKY ≈ −2
( 1

ln(BT 2
K)

)2

d lnB (B10)

where the factor of 2 originates from the summation over
the two lead indices j which is special to the chosen
model. The latter equation can be solved immediately
and yields

IRKKY (B) = K
(

1 +
1

ln(
√
BTK)

− 1

ln(
√
B0TK)

)

(B11)

where the initial value is given by IRKKY (B0) = K and
B0 = 1/Λ2

0. The above sketched calculation is only valid
for BK2 ≪ 1 but as we have also argued the flow for
BK2 ≫ 1 is negligible and thus we can write

IRKKY (B → ∞) ≈ K
(

1−
( 1

ln(K/TK)
− 1

ln(Λ0/TK)

))

(B12)

The calculation in this appendix illustrates that there
are terms which lead to a logarithmic correction of the
exchange energy gap. The renormalization of the quan-
tum dot energy levels is known and occurs for example as
the Knight shift for a spin-1/2 quantum dot in magnetic
field7.

Note that there is no further contribution to IRKKY

from the two-loop calculation.

Appendix C: two-loop

The new interaction terms in H
(2)
int as defined in Eq. (84) are generated due to two Kondo spin scattering processes

d(Ksum
k′k;q′q −Ksum

q′q;k′k)

dB
= −(ǫk′ − ǫk + ǫq′ − ǫq)

2(Ksum
k′k;q′q −Ksum

q′q;k′k)

+
(

(ǫk′ − ǫk)− (ǫq′ − ǫq)
)

J sum,j
k′k J sum,v

q′q

+ 2
(

(ǫk′ − ǫk +K)− (ǫq′ − ǫq −K)
)

P j
k′kM

v
q′q

+ 2
(

(ǫk′ − ǫk −K)− (ǫq′ − ǫq +K)
)

M j
k′kP

v
q′q (C1)

d(KP
k′k;q′q −KP

q′q;k′k)

dB
= −(ǫk′ − ǫk + ǫq′ − ǫq +K)2(KP

k′k;q′q −KP
q′q;k′k)

+
(

(ǫk′ − ǫk)− (ǫq′ − ǫq +K)
)

J sum,j
k′k P v

q′q

+
(

(ǫk′ − ǫk +K)− (ǫq′ − ǫq)
)

P j
k′kJ

sum,v
q′q (C2)

d(KM
k′k;q′q −KM

q′q;k′k)

dB
= −(ǫk′ − ǫk + ǫq′ − ǫq −K)2(KM

k′k;q′q −KM
q′q;k′k)

+
(

(ǫk′ − ǫk)− (ǫq′ − ǫq −K)
)

J sum,j
k′k Mv

q′q

+
(

(ǫk′ − ǫk −K)− (ǫq′ − ǫq)
)

M j
k′kJ

sum,v
q′q (C3)
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d(KRKKY
k′k;q′q +KRKKY

q′q;k′k )

dB
= −(ǫk′ − ǫk + ǫq′ − ǫq)

2(KRKKY
k′k;q′q +KRKKY

q′q;k′k )

− 2
(

(ǫk′ − ǫk +K)− (ǫq′ − ǫq −K)
)

P j
k′kM

v
q′q

+ 2
(

(ǫk′ − ǫk −K)− (ǫq′ − ǫq +K)
)

M j
k′kP

v
q′q (C4)

Exchange of summation indices provides us with a symmetry constraint

Ksum
k′k;q′q = −Ksum

q′q;k′k, (C5)

K
P/M
k′k;q′q = −K

P/M
q′q;k′k, (C6)

KRKKY
k′k;q′q = KRKKY

q′q;k′k . (C7)

In addition the hermiticity of the Hamiltonian has to be fulfilled and such there are some simplifying relations

Ksum
k′k;q′q = −Ksum

kk′;qq′ (C8)

K
P/M
k′k;q′q = −K

M/P
kk′;qq′ (C9)

KRKKY
k′k;q′q = KRKKY

kk′;qq′ (C10)

These relations are also fulfilled in the scaling equations.
The canonical generator η(2) = [H0, H

2
int] in second order of the Kondo coupling is explicitly given by

η
(2)
int =(ǫk′ − ǫk + ǫq′ − ǫq)K

sum
k′k;q′qi :

(

~SL + ~SR

)

(

~s(k′j)(kj) × ~s(q′v)(qv)

)

:

+ (ǫk′ − ǫk + ǫq′ − ǫq +K)KP
k′k;q′qi :

(

(

~SL − ~SR

)

+ 2i
(

~SL × ~SR

)

)(

~s(k′j)(kj) × ~s(q′v)(qv)

)

:

+ (ǫk′ − ǫk + ǫq′ − ǫq −K)KM
k′k;q′qi :

(

(

~SL − ~SR

)

− 2i
(

~SL × ~SR

)

)(

~s(k′j)(kj) × ~s(q′v)(qv)

)

:

+ (ǫk′ − ǫk + ǫq′ − ǫq)K
RKKY
k′k;q′q i2i :

(

~SL × ~s(k′j)(kj)

)(

~SR × ~s(q′v)(qv)
)

+
(

~SR × ~s(k′j)(kj)

)(

~SL × ~s(q′v)(qv)
)

:

(C11)

= ηsum(2) + ηP(2) + ηM(2) + ηRKKY
(2) (C12)

Note that both Ksum and KRKKY do not involve a singlet-triplet transition like KP/M .
From [η(2), H(1)] and [η(1), H(2)] we find the higher order contributions to the flow dH/dB and thus a scaling

equation for the coupling gsum,j
k′k to two-loop order

dgsum,j
k′k

dB
= . . .

+
1

2

∑

q′q

[n(q′v)(1− n(qv)) + n(qv)(1 − n(q′v))] (ǫk′ − ǫk + ǫq′ − ǫq − (ǫq − ǫq′)) (k
sum
k′k;q′q − ksumq′q;k′k)g

sum,v
qq′

+
1

2

∑

q′q

(n(q′v)− n(qv)) (ǫk′ − ǫk + ǫq′ − ǫq − (ǫq − ǫq′)) (k
RKKY
k′k;q′q + kRKKY

q′q;k′k )gsum,v
qq′

+ 2
∑

q′q

n(qv)(1 − n(q′v)) (ǫk′ − ǫk + ǫq′ − ǫq −K − (ǫq − ǫq′ +K)) (kMk′k;q′q − kMq′q;k′k)p
v
qq′

+ 2
∑

q′q

n(q′v)(1− n(qv)) (ǫk′ − ǫk + ǫq′ − ǫq +K − (ǫq − ǫq′ −K)) (kPk′k;q′q − kPq′q;k′k)m
v
qq′ (C13)

where kk′k;q′q = N(0)Kk′k;q′q and we neglected a contribution from

−2
∑

q′q

(n(q′v)− n(qv)) (ǫk′ − ǫk + ǫq′ − ǫq − (ǫq − ǫq′)) (k
RKKY
k′q;q′k + kRKKY

q′k;k′q )gsumqq′ : (~SL + ~SR)~s(k′j)(kj) : (C14)

It can be shown in the simplest limit that this term is proportional to B−3/2 and thus negligible compared to the
leading order B−1/2. In the more general cases it can be shown numerically that the contribution from kk′q;q′k does
not have an effect on the flow.
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Furthermore the expression for pjk′k yields

dpjk′k

dB
= . . .

+
∑

q′q

n(qv)(1 − n(q′v)) (ǫq′ − ǫq + ǫk′ − ǫk +K − (ǫq − ǫq′)) (k
P
k′k;q′q − kPq′q;k′k)g

sum,v
qq′

+
∑

q′q

n(q′v)(1 − n(qv)) (ǫq′ − ǫq + ǫk′ − ǫk − (ǫq − ǫq′ +K)) (ksumk′k;q′q − ksumq′q;k′k)p
v
qq′

−
∑

q′q

n(q′v)(1 − n(qv)) (ǫq′ − ǫq + ǫk′ − ǫk − (ǫq − ǫq′ +K)) (kRKKY
k′k;q′q + kRKKY

q′q;k′k )pvqq′ (C15)

where we neglect contributions from

−
∑

q′q

[n(q′v)(1− n(qv)) + n(qv)(1 − n(q′v))]
(

(ηRKKY
k′k;q′q + ηRKKY

q′q;k′k )P v
qq′ − (KRKKY

k′k;q′q +KRKKY
q′q;k′k )ηPqq′

)

(C16)

× : ((~SL − ~SR) + 2i(~SL × ~SR))~s(k′j)(kj) :

+ 2
∑

q′q

n(q′v)(1− n(qv))
(

(ηRKKY
k′q;q′k + ηRKKY

q′k;k′q )P v
qq′ − (KRKKY

k′q;q′k +KRKKY
q′k;k′q )ηPqq′

)

(C17)

× : ((~SL − ~SR) + 2i(~SL × ~SR))~s(k′j)(kj) : (C18)

This is a well-controlled approximation using the argument before that the terms proportional to k′q; q′k can be shown
numerically to be negligible small compared to the terms of type k′k; q′q. Additionally we can use the symmetry of
the system that pLk′k = −pRk′k and thus the first term in the latter equation cancels and can therefore be neglected.
Since we are not interested in the flow of the newly generated couplings, we integrate out the scaling equations for

them in order to find their B-dependence. We illustrate this procedure on Ksum
k′kq′q as an example:

(Ksum
k′k;q′q −Ksum

q′q;k′k)(B) = e−B(ǫk′−ǫk+ǫq′−ǫq)
2

B
∫

B0

dB′e+B′(ǫk′−ǫk+ǫq′−ǫq)
2

{

(

(ǫk′ − ǫk)− (ǫq′ − ǫq)
)

J sum,j
k′k (B′)J sum,v

q′q (B′)

+ 2
(

(ǫk′ − ǫk +K)− (ǫq′ − ǫq −K)
)

P j
k′k(B

′)Mv
q′q(B

′)

+ 2
(

(ǫk′ − ǫk −K)− (ǫq′ − ǫq +K)
)

M j
k′k(B

′)P v
q′q(B

′)
}

(C19)

In the following we apply the diagonal parametrization for the Kondo couplings and thus find

(Ksum
k′k;q′q −Ksum

q′q;k′k)(B) = e−B(ǫk′−ǫk+ǫq′−ǫq)
2

B
∫

B0

dB′e+B′(ǫk′−ǫk+ǫq′−ǫq)
2

{

(

(ǫk′ − ǫk)− (ǫq′ − ǫq)
)

e−B′(ǫk′−ǫk)
2

J sum,j
k (B′)e−B′(ǫq′−ǫq)

2

J sum,v
q (B′)

+ 2
(

(ǫk′ − ǫk +K)− (ǫq′ − ǫq −K)
)

e−B′(ǫk′−ǫk+K)2P j
k (B

′)e−B′(ǫq′−ǫq−K)2P v
q (B

′)

+ 2
(

(ǫk′ − ǫk −K)− (ǫq′ − ǫq +K)
)

e−B′(ǫk′−ǫk−K)2P j
k (B

′)e−B′(ǫq′−ǫq+K)2P v
q (B

′)
}

(C20)

In the calculation to one-loop order we found that the Kondo couplings depend logarithmically on the flow parameter
and thus have a much slower dependence than the exponential function in the latter expression. In the following we
therefore assume that we can replace the coupling by their averaged value in the interval from B0 to B. In general the
initial value B0 = 1/Λ2

0 should be chosen as the band cutoff in order to treat boundary terms. Since this is equivalent
to treating a different model with new boundary conditions we set in the following as also in the main text

B0 = 0 (C21)
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Using these two simplifications the integration is simple and can be done straightforwardly yielding

(Ksum
k′k;q′q −Ksum

q′q;k′k)(B) =
1

2B
e−B(ǫk′−ǫk+ǫq′−ǫq)

2

{ (ǫk′ − ǫk)− (ǫq′ − ǫq)

(ǫk′ − ǫk)(ǫq′ − ǫq)

(

e2B(ǫk′−ǫk)(ǫq′−ǫq) − 1
)

[ 1

B

B
∫

0

dB′J sum,j
k (B′)J sum,v

q (B′)
]

+ 2
(ǫk′ − ǫk +K)− (ǫq′ − ǫq −K)

(ǫk′ − ǫk +K)(ǫq′ − ǫq −K)

(

e2B(ǫk′−ǫk+K)(ǫq′−ǫq−K) − 1
)

[ 1

B

B
∫

0

dB′P j
k (B

′)P v
q (B

′)
]

+ 2
(ǫk′ − ǫk −K)− (ǫq′ − ǫq +K)

(ǫk′ − ǫk −K)(ǫq′ − ǫq +K)

(

e2B(ǫk′−ǫk−K)(ǫq′−ǫq+K) − 1
)

[ 1

B

B
∫

0

dB′P j
k (B

′)P v
q (B

′)
]}

(C22)

The same procedure is applied to the other coupling generated to two-loop order and these expressions are then
inserted in the flow equation for the Kondo coupling. In the following we write down only the result for the diagonal
parametrization where we assume e.g. in gsum,j

k that ǫk′ = ǫk. We find that the collected terms contributing to

dgsum,j
k /dB in two-loop order can be written by TL(q, q′) + TL(q′, q) where

TL(q, q′) =
1

2
B
∑

q′q

n(q′v)(1− n(qv))
(

− 2(ǫq′ − ǫq)
2
)

e−2B(ǫq′−ǫq)
2

[ 1

B

∫ B

B0

dB′gsum,j
k (B′)gsum,v

(q′+q)/2(B
′)
]

gsum,v
(q+q′)/2(B)

+ 2B
∑

q′q

n(q′v)(1− n(qv))
(

− 2(ǫq′ − ǫq +K)2
)

e−2B(ǫq′−ǫq+K)2

[ 1

B

∫ B

B0

dB′gsum,j
k (B′)pv(q′+q)/2(B

′)
]

pv(q+q′)/2(B)

+ 2
∑

q′q

[

n(q′v)(1 − n(qv))
]

e−2B(ǫq′−ǫq)
2 (ǫq′ − ǫq +K)2 −K2

K(ǫq′ − ǫq +K)

(

e2B(−K)(ǫq′−ǫq+K) − 1
)

[ 1

B

∫ B

B0

dB′pjk(B
′)pv(q′+q)/2(B

′)
]

gsum,v
(q+q′)/2(B)

+ 2
∑

q′q

[

n(q′v)(1 − n(qv))
]

e−2B(ǫq′−ǫq+K)2 K
2 − (ǫq′ − ǫq)

2

K(ǫq′ − ǫq)
(e2B(+K)(ǫq′−ǫq) − 1)

[ 1

B

∫ B

B0

dB′pjk(B
′)gsum,v

(q′+q)/2(B
′)
]

pv(q+q′)/2(B) (C23)

Note that TL(q, q′) = TL(q′, q). For the symmetric setup we are studying, only the first two terms are non-zero after
summation over the lead index (pLk = −pRk ) and the last two terms are thus neglected in the following. Otherwise the
last two terms are nasty whereas the first two terms can be summed over momentum straightforwardly.

Please note that the last two terms are of the same order than the first two terms if K = 0. In the expressions
which are discussed in the main text it is thus not valid to set K = 0, especially in the case when one wants to derive
the spin-1/2 limiting case where the cancellation of pLk = −pRk does not take place.
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In dp/dB the terms are less symmetric

d pjk(B)

dB
= one-loop

+B
∑

q′q

n(qv)(1 − n(q′v))
(

−2(ǫq′ − ǫq)
2
)

e−2B(ǫq′−ǫq)
2

[ 1

B

∫ B

B0

dB′pjk(B
′)gsum,v

(q′+q)/2(B
′)
]

gsum,v
(q+q′)/2

+ 4B
∑

q′q

n(q′v)(1 − n(qv))
(

− 2(ǫq′ − ǫq −K)2
)

e−2B(ǫq′−ǫq−K)2

[ 1

B

∫ B

B0

dB′pjk(B
′)pv(q′+q)/2(B

′)
]

pv(q+q′)/2

+
∑

q′q

n(q′v)(1− n(qv))e−2B(ǫq′−ǫq−K)2 (ǫq′ − ǫq)
2 −K2

K(ǫq′ − ǫq)

(

e2B(−K)(ǫq′−ǫq) − 1
)

[ 1

B

∫ B

B0

dB′gsum,j
k (B′)gsum,v

(q′+q)/2(B
′)
]

pv(q+q′)/2

+
∑

q′q

n(qv)(1 − n(q′v))e−2B(ǫq′−ǫq)
2 (ǫq′ − ǫq +K)2 −K2

K(ǫq′ − ǫq +K)

(

e2B(−K)(ǫq′−ǫq+K) − 1
)

[ 1

B

∫ B

B0

dB′gsum,j
k (B′)pv(q′+q)/2(B

′)
]

gsum,v
(q+q′)/2 (C24)

Note that we do not have q ↔ q′ symmetry! This is
somehow expected since pk′k is only symmetric under
exchange of k ↔ k′ and also K ↔ −K. The latter
symmetry is fulfilled in the scaling equation.
For the energy integration the following relation is use-

ful
∫

dǫq′

∫

dǫqn(qv)(1 − n(q′v)) (C25)

× (ǫq′ − ǫq + αK)2e−2B(ǫq′−ǫq+αK)2

=
(

1− 2rv
(1 + rv)2

)

F (αK) (C26)

+
rv

(1 + rv)2
(F (αK + eVv) + F (αK − eVv))

(C27)

where contributions from the band cutoff cancel out or
are exponentially small and

F (y) =
y

8B

√
π√
2B

erf
(√

2B y
)

+
1

2(2B)2
e−2By2

. (C28)

The explicit expression for dgsum,j
k /dB after integration

is given in the main text.
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d gsum,j
k (B)

dB
=

1

2B

( rj
1 + rj

e−2B(ǫk−Vj/2)
2

+
1

1 + rj
e−2B(ǫk+Vj/2)

2
)

(

gsum,j
k

)2

+ 2
1

2B

( rj
1 + rj

e−2B(ǫk−Vj/2+K)2 +
rj

1 + rj
e−2B(ǫk−Vj/2+K)2

)

(

pjk+K/2

)2

+ 2
1

2B

( rj
1 + rj

e−2B(ǫk−Vj/2−K)2 +
1

1 + rj
e−2B(ǫk+Vj/2−K)2

)

(

pjk−K/2

)2

−
∑

v

1

4B
gsum,j
k (B)

(

gsum,v
max (B)

)2

−
∑

v

g(0, rv, Vv)g
sum,j
k (B)

(

gsum,v
max (B)

)2

−
∑

v

( 1

4B
e−2BK2

+
K

4

√

π

2B
erf

(
√
2BK

))

gsum,j
k (B)

(

2pvmax(B)
)2

−
∑

v

g(K, rv, Vv) g
sum,j
k (B)

(

2pvmax(B)
)2

(C29)

and

d pjk(B)

dB
=

1

2B

( rj
1 + rj

e−2B(ǫk−Vj/2−K/2)2 +
1

1 + rj
e−2B(ǫk+Vj/2−K/2)2

)

gsum,j
k−K/2p

j
k

+
1

2B

( rj
1 + rj

e−2B(ǫk−Vj/2+K/2)2 +
1

1 + rj
e−2B(ǫk+Vj/2+K/2)2

)

pjkg
sum,j
k+K/2

−
∑

v

1

4B
pjk(B)

(

gsum,v
max (B)

)2

−
∑

v

g(0, rv, Vv)p
j
k(B)

(

gsum,v
max (B)

)2

−
∑

v

( 1

4B
e−2BK2

+
K

4

√

π

2B
erf

(
√
2BK

))

pjk(B)
(

2pvmax(B)
)2

−
∑

v

g(K, rv, Vv)p
j
k(B)

(

2pvmax(B)
)2

(C30)

where

g(K, r, V ) =
1

4B

r

(1 + r)2
(

e−2B(K−V )2 + e−2B(K+V )2 − 2e−2BK2)

+
1

4

√

π

2B

r

(1 + r)2
(

(K − V )erf(
√
2B(K − V )) + (K + V )erf(

√
2B(K + V ))− 2Kerf(

√
2BK)

)

(C31)

For r = 1 the function g(K,V ) corresponds to the function f(K,V ) in the main text.
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26 H. Schmidt, P. Wölfle, Ann. Phys. 19, 60-74 (2009).
27 P. Fritsch, V. Koerting, S. Kehrein, to be published.


