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We exploit the common mathematical structure of the numerical renormalization group and the density-
matrix renormalization group, namely, matrix product states, to implement an efficient numerical treatment of
a two-lead multilevel Anderson impurity model. By adopting a starlike geometry, where each species !spin and
lead" of conduction electrons is described by its own Wilson chain, instead of using a single Wilson chain for
all species together, we achieve a very significant reduction in the numerical resources required to obtain
reliable results. We illustrate the power of this approach by calculating ground-state properties of a four-level
quantum dot coupled to two leads. The success of this proof-of-principle calculation suggests that the star
geometry constitutes a promising strategy for future calculations the ground-state properties of multiband
multilevel quantum impurity models. Moreover, we show that it is possible to find an “optimal” chain basis,
obtained via a unitary transformation !acting only on the index distinguishing different Wilson chains", in
which degrees of freedom on different Wilson chains become effectively decoupled from each other further out
on the Wilson chains. This basis turns out to also diagonalize the model’s chain-to-chain scattering matrix. We
demonstrate this for a spinless two-lead model, presenting DMRG results for the mutual information between
two sites located far apart on different Wilson chains, and NRG results with respect to the scattering matrix.
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I. INTRODUCTION

A very successful method for solving quantum impurity
models is Wilson’s numerical renormalization group !NRG"
!Refs. 1–3". Recently, it has been pointed out4 that the ap-
proximate eigenstates of the Hamiltonian produced by NRG
have the structure of matrix product states !MPSs".5 This
observation established a structural relation between NRG
and the density-matrix renormalization group !DMRG"
!Refs. 6–8" because the states produced by the latter likewise
have the form of MPS.9–13

This structural relation between NRG and DMRG has
opened up very interesting perspectives for combining ad-
vantageous features of both methods. In particular, the fact
that DMRG, in essence, is a method for variationally opti-
mizing MPSs !Refs. 9, 12, and 13" can be used to devise a
corresponding variational treatment of quantum impurity
models.4,14 This has the advantage that MPSs with much
richer more complex structures can be adopted than those
produced by standard NRG, entailing a much more efficient
use of numerical resources. Concretely, the dimension D of
the matrices from which the MPS is constructed can be re-
duced very significantly, typically by several orders of mag-
nitude. As a result, it becomes feasible to study complex
quantum impurity problems that would be very challenging
for standard NRG.

In this paper, we illustrate this idea by calculating ground-
state properties of a multilevel quantum dot coupled to two
spinful leads !Fig. 1". Standard NRG treats the latter as a
single quantum chain with 24 states per site !to account for
two spin and two lead degrees of freedom", for which one
typically needs D"4000 to achieve satisfactory results. In
contrast to the latter “single-chain geometry,” we adopt here
a MPS with a “star geometry,” involving four separate

chains, each with only two states per site, and variationally
optimize one chain after the other. This enables us to obtain
good results using matrices with D ranging between 16 and
36. This reduction in numerical memory resources relative to
standard NRG illustrates the increased numerical efficiency
alluded to above. Furthermore, we show that a numerically
optimal basis, involving rotated Wilson chains, can be found
by requiring that the new representation minimizes the mu-
tual information between different chains. This optimal basis
has an instructive physical interpretation: it is the basis in
which the chain-to-chain scattering matrix is diagonal.

This paper is structured as follows. In Sec. II we briefly
review why standard NRG produces MPSs with a single-
chain geometry and advocate the adoption of MPSs with an
alternative star geometry. In Sec. III, we describe how a star-
MPS representation of the ground state can be determined by
variationally minimizing its energy. In Sec. IV we present
proof-of-principle calculations of some ground-state proper-
ties and comparisons thereof to NRG results. Finally, Sec. V
illustrates how a numerically optimal basis for the chains can
be obtained by effectively minimizing the mutual informa-
tion between two sites of different chains.

II. MATRIX PRODUCT STATE ANSATZ

A. Model

We study a multilevel two-lead Anderson impurity model
described by the following Hamiltonian:
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FIG. 1. Quantum dot coupled to two leads.
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H = Hdot + Hint + Hleads + Hcoupling, !1"

where Hdot describes the eigenenergies of the m dot levels

Hdot = #
i=1

m

#
s=↑,↓

#isdis
† dis, !2"

Hint is the Coulomb interaction on the dot

Hint =
U

2 #
!i,s"!!j,s!"

dis
† disdjs!

† djs!, !3"

Hleads is the free lead Hamiltonian for Nl leads !$
=1, . . . ,Nl"

Hleads = #
k!$s

#k!ck!$s
† ck!$s, !4"

and Hcoupling is the coupling between the dot levels and the
leads

Hcoupling = #
ik!$s

Vi$!dis
† ck!$s + ck!$s

† dis" . !5"

At a late stage of this work we became aware of work of
Kashcheyevs et al.15 suggesting to perform a singular value
decomposition on Hcoupling which has the merit of decoupling
some levels from some leads. Applying this idea to our sys-
tem should also give some improvement in numerical effi-
ciency. In general, however, all the levels will remain to be
coupled to all leads. As we will show later, a more general
scheme than just a singular value decomposition is capable
of generating a new basis for the leads that will minimize the
coupling of the leads among themselves.

Following Wilson,1 we adopt a logarithmic discretization
of the conduction bands and tridiagonalize Hleads+Hcoupling.
As a result, the dot, represented by the “dot site,” is coupled
to the first sites of 2Nl separate “Wilson” chains, labeled by
!$ ,s"

Hcoupling = W#
i$s
$2%i$

&W
!f0$s

† dis + dis
† f0$s" , !6"

Hleads = W#
$s

1
2

!1 + '−1"

(#
n=0

L−1

'−n/2)n!fn$s
† f !n+1"$s + H.c." . !7"

Here )n= !1−'−n−1"!1−'−2n−1"−1/2!1−'−2n−3"−1/2 are coeffi-
cients of order 1, %i$=&*Vi$

2 the hybridization, * is the den-
sity of states, and 2W is the bandwidth of the conduction
bands of the leads centered at the Fermi edge. We set the
NRG discretization parameter '=2 throughout this paper.

The length L of the Wilson chain determines the energy res-
olution with which the lowest-lying eigenstates of the chain
are resolved. We typically choose L=60.

A standard NRG treatment of this model would combine
all four Wilson chains into a single one, whose sites are
labeled by a single site index k=0, . . . ,L %see Fig. 3!a"&.
Each site would represent a 22Nl-dimensional local state
space, consisting of the set of states '(+k)*, where the state
label +k takes on 22Nl different values. Then one proceeds to
diagonalize the Hamiltonian iteratively, as follows: suppose a
short Wilson chain up to and including site k−1 has been
diagonalized exactly, yielding a set of eigenstates (ik)
"span''(+1)* ! '(+2)* ! ¯ ! '(+k−1)**. Then one adds the
next site, k, to the chain, thereby enlarging the Hilbert space
by a factor of 22Nl, diagonalizes the Hamiltonian in this en-
larged space, and truncates by discarding all but the lowest D
eigenstates of the Hamiltonian. The latter can in general be
written as linear combinations of the following form !illus-
trated in Fig. 2":

(ik+1) = #
ik,+k

Aik,ik+1

%+k& (ik)(+k) . !8"

Iterating this procedure up to and including site L produces
eigenstates of the form

(iL+1) = Aik,ik+1

%+k& ¯ AiL,iL+1

%+L& (ik)(+k) ¯ (+L) , !9"

where sums over repeated indices are implied. Since such
states are completely characterized by sums over products of
matrices, they have come to be known as matrix product
states. The form of these MPS produced by NRG is analo-
gous to the state for a chain as shown in Fig. 4.

B. Star geometry

One limiting factor for the accuracy of the NRG approach
is that a certain amount of information is lost at each itera-
tion step due to truncation. In general, for a system with Nl
bands !in the two-lead case which we will investigate below,

. . . k

|σk〉

k−1

|ik+1〉|ik〉

. . .

chain site

FIG. 2. Iterative generation of matrix product states for a
chain.
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LSS size: 2m 2

LSS size: 22m 22Nl

FIG. 3. !a" Single chain geometry: a single Wilson chain of local
dimension 22Nl coupled to one dot site of local dimension 22m. !b"
Star geometry: 2Nl Wilson chains !here Nl=2 and $= l ,r", each
with local dimension 2, coupled to two dot sites of local dimension
2m.

|o0〉 = o0 A1

|σ1〉
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FIG. 4. Graphical representation of Eq. !10a".
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Nl=2", the dimension of the effective Hilbert space is en-
larged from D to D22Nl upon adding a new site to the Wilson
chain. Thus, the larger Nl, the more information is lost during
the subsequent truncation of the Hilbert space back to dimen-
sion D, and the less accurate the NRG treatment is expected
to be.

The main goal of the present paper is to illustrate that a
very significant improvement of efficiency can be obtained
as follows: instead of combining all 2Nl chains into a single
Wilson chain of local dimension 22Nl !“single-chain geom-
etry”", we shall treat them as separate chains, each with local
dimension 2 and each coupled to the same set of dot levels
%“star geometry,” see Fig. 3!b"&. Although the total number of
sites thereby increases from O!L" to O!NlL", the dimension
of the local state space per site is reduced from 22Nl to 2. We
find that, due to the latter fact, the dimension D of the con-
stituent matrices in the star-MPS can be chosen to be signifi-
cantly smaller than in the chain MPS.

The change from single-chain to star geometry, however,
necessitates a change in truncation strategy for the following
reason: in contrast to the single-chain geometry, where each
site represents a definite energy scale, in the star geometry a
given scale is represented by a set of 2Nl sites, one on each
of the star’s chains, i.e., at locations that are widely “sepa-
rated” from each other on the star. Therefore, a truncation
scheme based on energy scale separation, such as that used
by standard NRG, can no longer be applied. Instead, we shall
simply minimize4 the expectation value of the Hamiltonian
within the space of all MPSs with the same star structure.
This can be done efficiently by optimizing the matrices in the
star-MPS one site at a time, and sweeping through all sites
until convergence.

To be explicit, we construct our star-MPS for the two-lead
system as follows. In total 4=2Nl !Nl=2" Wilson chains are
connected to the dot. Each of these chains is very similar to
the NRG MPS from above, except that the local state space
!LSS" is only of dimension 2. To simplify the notation we
drop the labels $ and s whenever possible and incorporate
them into the site index k, which from now on will be taken
to uniquely determine a site in the whole star structure. +k
still labels the LSS at site k. With this every Wilson chain can
be represented as !see Fig. 4"

(o0) = Ao0o1

%+1& Ao1o2

%+2& ¯ AoL−1

%+L& (+1)(+2) ¯ (+L) !10a"

=+,
k=1

L

A%+k&-(+! ) , !10b"

where (+! )= (+1)(+2)¯ (+L). Here the label o stands for
“outer,” for reasons that will become clear below. We intro-

duce an intuitive graphical representation for these MPS. Ev-
ery A will be represented by a box and every index of A is
depicted by a line attached to the box. For matrix products or
other index summations the corresponding lines are con-
nected. Using this representation, a single chain can be de-
picted as in Fig. 4.

The fact that the Hamiltonian does not contain terms that
flip spin up to down or vice versa suggests representing the
dot state space by two separate sites, representing all dot
states having spin up or down, respectively %see Fig. 3!b"&.
Correspondingly, we also introduce two types of dot matri-
ces, A%+0↑& and A%+0↓&, which carry an extra index v that is
being summed over to link the spin up and down subsystems.
So we arrive at the starlike structure of Fig. 5 with two
linked dot matrices !one for each spin" and two leads !left
and right" attached to each:

(,) = +,
kl↑

A%+kl↑
&-

ol↑

Aol↑or↑v
%+! 0↑& +,

kr↑

A%+kr↑
&-

or↑
+,

kl↓

A%+kl↓
&-

ol↓

Aol↓or↓v
%+! 0↓&

(+,
kr↓

A%+kr↓
&-

or↓

(+! l↑)(+! 0↑)(+! r↑)(+! l↓)(+! 0↓)(+! r↓) . !11"

This starlike structure basically consists of two y-junctions,
as discussed by Guo and White,16 next to each other.

Hiding the explicit structure %Eq. !11"& of the MPS as
illustrated in Fig. 5, we can write a state symbolically as

(,) = +,
k

A%+k&-(+! ) . !12"

We call Eq. !12" the global representation of (,).
An important point to note is that this system is still ef-

fectively one dimensional, in the sense that if we cut out a
given site, the system breaks apart into two !or three in case
of a dot site" disjoint parts. We shall call the one containing
the dot sites the “inner” part, the other one the outer part. As
a consequence, it is possible to also give a “local” descrip-
tion of (,) of the form

(,) = Aik,ok

%+k& (ik)(+k)(ok) , !13"

where '(+k)* represents the LSS of the chosen site, '(ik)* is an
orthonormal set of states representing the inner state space
!ISS", namely, the inner part of the star with respect to the
chosen site k, and '(ok)* is an orthonormal set of states rep-
resenting the outer state space !OSS", namely, the outer part
of the star.

|ψ〉 =
∏

k
A

[σk]
l!

|σl!〉

A0!

|σ0!〉

∏
k
A

[σk]
r!

|σr!〉

ol! or!

v
∏

k
A

[σk]
l"

|σl"〉

A0"

|σ0"〉

∏
k
A

[σk]
r"

|σr"〉

ol" or"

spin up part spin down part

FIG. 5. MPS representation for a quantum dot coupled to two spinful leads. The lead chains are combined to big boxes for clarity. The
indices of the dot matrices are labeled explicitly.
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III. VARIATIONAL SITE OPTIMIZATION SCHEME

We will use the MPS of Fig. 5 as an ansatz for the ground
state of our system. In order to find the ground state we need
to calculate the MPS (,) that minimizes the energy E
= .,(H(,) with the constraint of keeping the norm of (,)
constant.4 Using - as Langrange multiplier ensuring normal-
ization we arrive at the following minimization problem:

min
(,)

!.,(H(,) − -.,(,)" . !14"

The key idea of the variational MPS optimization is to opti-
mize every single A-matrix of (,) separately until the
ground-state energy has converged. Therefore we insert the
local MPS description from Eq. !13" into Eq. !14" and obtain

min
Ak

!Ai!o!
%+k!&"H!i!+k!o!",!i+ko"Aio

%+k& − -Aio
%+k&"Aio

%+k&" , !15"

where H!i!o!+k!",!io+k" are the Hamilton matrix elements in the
current effective bases

H!i!+k!o!",!i+ko" = .o!(.+k!(.i!(H(i)(+k)(o) . !16"

By setting the derivative of Eq. !15" with respect to the ma-
trix elements of Ak

" to zero and replacing - by Eo, we obtain
the following eigenvalue equation for Ak:

H!i!+k!o!",!i+ko"Aio
%+k& = E0Ai!o!

%+k!&. !17"

The eigenvector with the smallest eigenvalue is the solution
to our minimization problem. So after having solved this
eigenvalue problem for the current site k we replace Ak with
the newly found eigenvector and move on to the next site in
order to optimize that Ak!. We repeat the whole process
!sweeping" until the ground-state energy has converged !see
below".

By following this procedure we succeed to divide a very
high dimensional minimization problem into manageable
smaller units. For general problems this can be a very bad
approach as one can get stuck in a local minimum during the
optimization. However, it has proven to work reliably when
the site-site coupling varies smoothly and monotonously. In
our case the Hamiltonian has only nearest-neighbor interac-
tions and there are no long-range correlations in the system.
As a result, the system reliably converges without getting
stuck in local minima.

A. Updating the A matrices and changing
the effective basis states

When updating A matrices during sweeping, one must
ensure that two conditions are satisfied. First, whenever we
use the local description of Eq. !13", we rely on the basis
states being orthonormal: .ok (+k!)=.ok,+k!

. This condition
translates to

#
+k!

A%+k!&A%+k!&† = 1 for k! / k , !18"

for all outer matrices with respect to site k. We will focus
here on the OSS basis, everything works completely analo-
gously for the ISS basis.

Second, we also want to create an effective basis that
spans a DMRG optimal Hilbert space, i.e., the states we keep
for an effective basis are to be the ones having the largest
weights in the density matrix of the current state !as de-
scribed below".

For definiteness, we consider an inward sweep and focus
on how to move the “current site” from k to k−1. We assume
that a new set of A matrices for site k has been obtained by
energy minimization. The question is how to ensure that both
above mentioned conditions are satisfied. As all the inner A
matrices of site k−1 have not changed since we optimized
site k−1 the last time when moving outwards, we only need
to create a new effective OSS basis (ok−1) for site k−1.

Starting from the density matrix in the local description of
site k,

*!k" = (,).,( = Aio
%+k&Ai!o!

%+k!&"(i).i!((+k).+k!((o).o!( , !19"

suppose one traces out the inner part of this system to obtain
reduced density matrix of the outer part and site k,

*red
!k" = tri *!k" = Aio

%+k&Aio!
%+k!&"(+k).+k!((o).o!( , !20"

which corresponds precisely to the outer part with respect to
site k−1.

Now employ the singular value decomposition !SVD" A
=USV† which exists for every rectangular matrix A. S is a
diagonal matrix containing the singular values ordered by
magnitude; U and V† are column and row unitary matrices,
respectively, and obey U†U=V†V=1. Combine (+k) and (ok)
to (lk)= (+k)(ok) and insert the SVD for Ail=UimSmj!V†" jl

*red
!k" = AilAil!

" (lk).lk!( = Vj!l!Sl!mSmlVjl
† (lk).lk!( = #

j
* j

!k"(jk).jk( .

!21"

The second line follows since S2 is diagonal, and we
wrote * j

!k"=Sjj
2 and (jk)=Vjl

† (lk). We see that the SVD auto-
matically diagonalizes the reduced density matrix with the
states ordered according to their weight.

So all we actually have to do for moving the actual site
from k to k−1 is to calculate the SVD of the newly opti-
mized Ak=USV†. We then replace Ak→ Ãk=V† and Ak−1

→ Ãk−1=Ak−1US as illustrated by Fig. 6. By doing so we do
not change the total state, since the product

Ak−1Ak = Ãk−1Ãk !22"

remains unchanged. Thus we create an effective orthonormal
OSS basis,

(ok−1) = Ãok−1ok

%+k& (+k)(ok) , !23"

which at the same time is DMRG optimal.
The so-called site optimization procedure outlined above,

where we optimize the A matrices directly, is equivalent to
one-site finite-size DMRG.

The relation between the singular values and the weights
of the reduced density matrix can be used to optimize our
choice for the dimensions of the respective effective Hilbert
spaces: instead of using the same dimensions for all A ma-
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trices in the system, which turns out to be inefficient for
inhomogeneous ones like ours, we adopt as truncation crite-
rion the demand that the minimum value of S2 at a given site
is to be smaller than some threshold wmin !in our case typi-
cally taken as 10−6". After calculating the singular values, we
choose the matrix dimensions Dk at the corresponding bond
k !between site k and its neighbor in the direction of the dot"
according to the following recipe. We choose Dk large
enough to ensure that the minimal singular value smin!k" ful-
fills smin

2 !k"0wmin, but subject to this constraint choose Dk to
be as small as possible, in order to minimize computational
resources.

It is instructive to also explore the relation between Dk
and the bond entropy Sk of site k, which can be computed
from the reduced density matrix *red

!k" at site k according to

Sk = − tr!*red
!k" ln *red

!k" " . !24"

The entropy Sk is a measure for the entanglement between
the traced out part of the system and the part kept in the
description of *red

!k" . Thus, large Sk implies large Dk, which
turns out to be roughly proportional to eSk. The dimensions
Dk resulting from the above criterion for the singular values
smin!k" together with the exponentiated bond entropy eSk as-
sociated with the reduced density matrix at bond k are shown

in Fig. 7. This figure shows, first, that a larger dimension is
required near the dot and, second, that eSk !times a constant"
is a rather good indicator of the required dimension Dk. For
the limiting case of a reduced density matrix *red

!k" with uni-
form weights * j!k"= 1

Dk
∀ j" %1,Dk&, the exponentiated

bond entropy then gives eSk =Dk. Thus, Dk is a upper bound
to eSk.17 The dip at k=0 for the bond between the two spin
subsystems !dimension Dv" is due to the fact that there is
only a density-density interaction along this bond but no par-
ticle exchange. For our system we found that it is sufficient
to have dimensions of 36 or less near the dot.

B. Sweeping sequence

In principle the order in which we optimize the single
matrices during a sweep is not important. However, it is both
convenient and more efficient to move only to a neighboring
site !and not further" for the next optimization step. In this
way we need to change the actual site only by one in order to
get the desired new local description. Having our MPS an-
satz structure in mind, this requirement immediately suggests
a particular order of sweeping, shown in Fig. 8. Starting from
the far end of any chain we move in toward the dot matrix
and then out again along another chain. We repeat this until
we have covered the whole system. Sweeping that way !solid

Ak−1 Ak = Ak−1 US V † = Ãk−1 Ãk

FIG. 6. Procedure for moving the actual site from k to k−1. The matrices that are not orthonormalized in any direction are printed with
gray background. The gray lines within the boxes indicate whether the row or column vectors are orthonormal !with the local level associated
with row or column, respectively".
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∏
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FIG. 7. !Color online" The solid line shows
the dimension Dk needed at bond k of the spin up
chain to satisfy wmin=10−6 for the reduced den-
sity matrix at each bond !negative k correspond
to the left chain". The dashed line displays the
exponentiated bond entropy eSk multiplied by 4.5
to visually match the Dk,min curve for large k.
Here k=0 corresponds to the “vertical” bond
between the two spin subsystems. The two insets
show spectra of reduced density matrices at dif-
ferent bonds k indicated by the vertical dashed
lines of the main plot. The data shown in this
figure has been obtained from the ground state
of the four-level model shown in Fig. 10 with
#=−1.7U. In general, the maximum dimen-
sion needed depends strongly on the model
parameters.
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blue line in Fig. 8" we optimize the two dot matrices three
times but all the other sites only twice. If one wants to opti-
mize all sites twice during a sweep one can once skip the
optimization step at the dot sites as indicated by the dashed
blue line.

As the dot matrices are by far the biggest in the system,
optimizing them takes much longer than optimizing any of
the chain matrices. Thus by skipping the dot optimization
step once, we can reduce the computational time needed for
a single sweep. However, since the dot optimization step also
has the biggest effect for improving our MPS ansatz, skip-
ping its optimization once has to be compensated by per-
forming more sweeps to achieve as good convergence of the
ground state as in the case where we perform three optimi-
zations at the dot matrices. We compared both approaches
for our model and found no significant differences in the
overall performance.

We stop the sweeping when the MPS has converged. To
probe the convergence we compare the MPSs before and
after sweep N, (,N−1), and (,N). If the change in overlap,

1 − (.,N−1(,N)( 1 # , !25"

is smaller than a certain threshold, we stop the sweeping. We
typically use #=10−3 and need 10–15 sweeps. This depends
crucially on the system parameters, though, and in some
cases we need to perform up to 25 sweeps.

C. Numerical costs

The most computational effort is needed for solving the
eigenvalue problem %Eq. !17"& for the minimal eigenvector.
We use the Lanczos method for solving Eq. !17", which is an
iterative method and requires the calculation of H(,) in the
local picture once for every iteration. As we cannot influence
the number of Lanczos iterations in our implementation, we
will only investigate the costs of calculating H(,), which are
given by the costs of the matrix-matrix multiplication
#io+k

H!i!o!+k!",!io+k"Aio
%+k&. The costs of a matrix-matrix multi-

plication is given by the size of the outcome times the di-
mension of the index being summed over. H!i!o!+k!",!io+k" splits
up into a sum of different terms, such as !ck

†"+k!+k
! !ck+1"o!o,

each consisting of a direct tensor product of operators living
in the ISS, OSS or LSS. Thus the product H(,) can be split
up into smaller matrix products. By looking at the structure
of the Hamiltonian !1", one recognizes that there will be no

terms containing tensor products of operators from the ISS
and OSS, since they would correspond to next-nearest-
neighbor terms, but tensor products with one operator from
the LSS and the other one from the ISS or OSS. These terms
lead to multiplications over an index of length Dd, being the
product of the dimensions of the ISS and LSS. If the current
site is the dot site, the size of the resulting matrix is D2Dvdm

and thus the costs for a single multiplication H(,) at a dot
site is given by

Cdot = O!D2DvdmDd" = O!D3Dvdm+1" . !26"

In case of a chain site instead of a dot site exactly the same
reasoning applies and because of the smaller matrix size the
costs reduce to O!D3d2". From Eq. !26" we see that optimiz-
ing the dot sites is the most expensive step in the optimiza-
tion and scales particularly unfavorably when the number of
dot levels m is increased.

D. Bond optimization

As an alternative to the site optimization scheme dis-
cussed above, we can begin to move the current site as in
Fig. 6 to obtain Ak−1!US"V†, where Ak=USV†. At this step
we can represent the overall state as (,)= !US"ikok−1

(ik)(ok−1).
Now we perform the optimization on B=US in complete
analogy to the site optimization and obtain a new B̃. Then
Ak−1 is replaced by Ãk−1=Ak−1B̃ which results in a state with
the actual site k−1. We call this process “bond optimization”
as the matrix we actually optimize is somehow located at the
bond between two original sites.

One can easily see that the costs for calculating
H!i!o!",!io"Bio are O!D3" and thus independent of the number
of dot levels. Considering only the costs for a single sweep
the bond optimization scheme will be considerable faster
than site optimization, which is especially expensive at the
dot sites. This advantage, however, is compromised to some
extent by the slower convergence of the bond optimization
due to the optimization taking place within in a much smaller
effective Hilbert space. This makes more sweeps necessary
and also enforces a lower threshold in Eq. !25" as conver-
gence criterion. It turned out to be very difficult to judge the
convergence of the bond optimization scheme based on Eq.
!25" especially if one starts from a state not too different
from the actual ground state because in such cases the con-
vergence can be really slow and one might wrongly consider
the state already converged.

However, one might try to avoid unnecessary site optimi-
zations at the beginning of the sweeping and use cheap bond
optimizations instead and switch after several sweeps to the
site optimization scheme to make use of the better conver-
gence properties.

IV. RESULTS FOR LOCAL OCCUPATIONS

We used the approach described above to calculate the
ground state and level occupancies of a spinful multilevel
quantum dot coupled to two leads. Throughout this part we
fix the Coulomb interaction U=0.2W, 2W being the band-
width, and use the convention W=1.

∏
k
A

[σk]
l!

A0!

∏
k
A

[σk]
r!

∏
k
A

[σk]
l"

A0"

∏
k
A

[σk]
r"

FIG. 8. !Color online" Sweeping sequence. For clarity we place
the spin up and spin down parts on top of each other to emphasize
the starlike structure. The solid blue line depicts the standard
sweeping sequence.
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The results shown below demonstrate that it is possible to
calculate local ground-state quantities of a complex quantum
dot efficiently using this approach. Already with calculating
the occupation of the dot levels it is possible to investigate
the stability diagram of small quantum dots.18 Under certain
conditions, local occupancies can be related to phase shifts,
which in turn can be used to calculate the conductance
through a quantum dot.19

First we consider the simpler case of a spinless two-level
model with level positions #1,2=#23 /2, coupled symmetri-
cally to two leads. NRG works very reliable for this kind of
impurity model. The lower of the two levels is assumed to
couple significantly stronger to the leads. We calculated the
occupation, ni= .di

†di), of both levels as a function of #, using
both our MPS approach and NRG. In Fig. 9 we show the
occupation of both levels as we sweep the gate potential by
shifting the levels from below toward the Fermi edge of the
leads and then further above. At the beginning of this process
mainly the lower level starts to empty. This is due to the
much bigger couplings %2 of the lower level compared to the
upper level and results in an occupation inversion situation
where the energetically higher level has higher occupation
than the lower level. A second consequence of the small
couplings %1 is the sharp transition of the occupation of the
upper level from almost filled to almost empty. Once the
upper level is almost empty the dot system may gain energy
by increasing the occupation of the lower level without hav-
ing to pay Coulomb energy. This leads to the nonmonotonic
occupation of the lower level, known as charge oscillation.
See Sindel et al.20 for a more detailed discussion. The results
for the level occupation of the simple spinless model as
shown in Fig. 9, demonstrate excellent agreement between
both NRG and DMRG calculations. The relative difference
of the ground-state energies obtained by NRG and MPS was
on average 10−5.

We demonstrate the power of the MPS approach by con-
sidering a spinful four-level dot coupled asymmetrically to
two leads, a system sufficiently complex that its treatment by
NRG is a highly challenging task. We therefore have no
NRG reference data for this system and present only DMRG
results. For every dot level we calculate the occupation nis

= .dis
† dis) as a function of gate voltage, as shown in Fig. 10.

This calculation is solely performed within the site optimi-
zation scheme. We kept the effective dimensions for all A
matrices describing the leads the same compared to the two-
level plot, only the LSS size at the dot matrices was in-
creased, thus demanding more computational time for the
optimization at the dot.

For the four-level system we chose random values for the
level couplings % varying over two orders of magnitude.
Moreover, as the couplings have been chosen asymmetric,
one cannot simplify the model by decoupling certain linear
combinations of the leads, while keeping the remaining rel-
evant degrees of freedom. The occupation of the individual
levels shows very rich behavior. By sweeping the gate po-
tential similar to the spinless case above, we find the sharpest
transition for the second level !n2↑ ,n2↓". The couplings of
this level are one magnitude smaller than all other couplings
causing this sharp transition and associated with it charge
oscillations in all the other levels.

V. ROTATION TO OPTIMAL BASIS OF WILSON CHAINS

As described above the use of a star-shaped MPS works
well for local quantities. However, one might ask the ques-
tion whether introducing such a geometry causes a loss of
longer-ranged correlations between different chains. To be
able to assess this question we consider two sites in different
chains c!c!, both at distance k from the dot. The mutual
information17 I*

cc!!k" contained between these two sites is
given by

I*
cc!!k" = S*red

c !k" + S*red
c! !k" − S*red

cc!!k", !27"

with the entropy S

S* = − tr!* ln *" . !28"

Here *red
c !k" is the reduced one-site density matrix obtained

by tracing out the entire system except for site k in chain c.
Likewise *red

cc!!k" is the reduced two-site density matrix, ob-
tained by tracing out all sites except two, situated at a dis-
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FIG. 9. !Color online" Dot level occupation
for a spinless two-level system, with #1,2
=#23 /2, level spacing 3=0.1U and couplings
%1l=%1r=0.005U, %2l=%2r=30%1l. This param-
eter set was used in Sindel et al. !Ref. 20" N
= 1

2 !n1+n2" is half the total dot occupation. Note
that the sign in %i$ just serves as an indication of
the sign of the related hopping matrix element
Vi$ in the Hamiltonian.
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tance k from the dot in two different chains, c and c!. I*
cc!!k"

is a measure for how much information the sites contain
about each other. As a consequence, a decaying I*

cc!!k" as a
function of distance k indicates that chains c and c! effec-
tively decouple.

For simplicity and to make a comparison with NRG fea-
sible, we restrict ourselves to the spinless case, e.g., we only
look at the spin-up part of the original four-level system,
however with different couplings compared to the param-
eters used for Fig. 10. As NRG treats both the left and right
lead in a combined single chain we can, nevertheless, study
the effect of “unfolding” the two parts of the NRG chain.

If we calculate I*
l,r for this spinless two-lead Hamiltonian

as it stands, the correlations between two sites on opposite
sides of the dot but at equal distance from it are found to
decay only very weekly with k %Fig. 11!a", dot-dashed line&.
This illustrates, on the one hand, that our MPS ansatz does
successfully capture correlations between sites representing
comparable energy scales, in spite of the fact that in the star
geometry they lie “far” from each other !namely on different
chains". On the other hand, it also raises the question
whether one can choose a !numerically" better suited basis
for the leads that effectively does decouple different chains
far from the dot. Since in that case the correlations would
intrinsically decay with distance from the dot, less numerical
resources would be required to capture all correlations accu-
rately.

Indeed, we shall show that it is possible to choose such an
optimal basis by making a suitably chosen unitary transfor-
mation which rotates the lead degrees of freedom into each
other in an “optimal” way to be described below. When the
leads are first rotated by a certain optimal angle of rotation
4opt !defined precisely below" and I*

l,r is calculated in this
rotated basis, then I*

l,r is found to decay rapidly with k, see
solid line in Fig. 11!a".

We begin with the observation that the labeling of the
unfolded chains with $= l ,r is arbitrary. We can choose any
linear combination of l and r as new basis, e.g., for symmet-
ric couplings to the dot it is well known that with the sym-

metric and antisymmetric combination only the symmetric
lead couples to the dot while the antisymmetric lead is com-
pletely decoupled. To be specific, we can introduce a unitary
transformation acting on the original lead states specified in
the Hamiltonian

f̃5n+ = U5$f$n+ !29"

independent of the site n and spin +, acting only on the lead
index $. For systems with time-reversal symmetry, the uni-
tary matrix is always chosen real. So in our case, for Nl
=2 U=U!4" is a real two-dimensional matrix and can be
thought of as a planar rotation parametrized by a single angle
4. The optimal basis for DMRG treatment would have mini-
mal correlations between the rotated chains. The angle of
rotation 4 can be restricted to 4" %0,& /2& as we choose to
ignore the particular order and relative sign of the new basis
vectors. In order to find the optimal angle it is sufficient to
look at the reduced two-site density matrix *red

l,r !k". As the
Hamiltonian !1" preserves particle number, this density ma-
trix is a 4(4 matrix in block form: a 1(1 block for both the
zero-particle and two-particle sectors and a 2(2 block for
the one-particle sector.

Finite off-diagonal elements of this 2(2 block show that
both sites are effectively correlated with each other. How-
ever, by diagonalizing this block of *red

l,r !k" via a real unitary
matrix U we immediately obtain a rotated lead basis accord-
ing to Eq. !29". So the angle of rotation 4opt can be found by
diagonalizing *red

l,r !k". It is most desirable to decouple the far
ends of the chains best, so we choose 4=4!k=L", where
U%4!k=L"& diagonalizes *red

l,r !k=L".
By applying the transformation U!4" to the Hamiltonian

!1" only the tunneling elements to and from the dot levels are
changed

Ṽ5i+ = U!4opt"5$V$i+. !30"

This way, we have obtained a new lead basis for our Hamil-
tonian that is better suited for the DMRG calculations, as
long ranging correlations are suppressed in this basis. As we
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FIG. 10. !Color online" Dot
level occupation for a spinful
four-level system. We parametrize
the dot level energies as #is=#
+#i2B /2 for s= ↑ ,↓, where
B represents the applied magnetic
field with B=0.2U and # a
gate voltage, with
#i= !−0.1,−0.03,0.07,0.1"U. The
coupling of the dot levels are
chosen asymmetrically %ir=si%il
with si= !1,−1,−1,1" and %il
= !0.5,0.02,1 ,0.7"0.2U.
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benefit already from a rotation in the leads even if the angle
is only close !but not equal" to the optimal choice 4opt, it is
feasible to start with a small system !of only, say, 14 sites per
Wilson chain" in order to obtain an approximate value for
4opt; the latter can then be used to rotate the leads of a bigger
system, from which a better determination of the optimal
angle can be extracted.

In Fig. 12 we show the optimal angle of rotation 4opt for a
spinless four-level system. We compare with NRG calcula-
tions where we diagonalize the T-matrix

T$5 = lim
6→0+

%V̂†Ĝdot!6"V̂&$5, !31"

where Ĝdot is the local retarded Green’s-function matrix cal-
culated by standard NRG techniques21 and V̂ is the tunneling
matrix from the Hamiltonian. The angle extracted from the
diagonalization of the T matrix %i.e., from requiring that
U!4"TU†!4" be diagonal& is shown as a solid line in panel

!a". Remarkably, this line agrees quantitatively with the 4opt
values found by DMRG. This shows that the angle of rota-
tion that minimizes correlations between the two rotated
leads has a clear physical interpretation: it also diagonalizes
the scattering matrix, a result that is intuitively very reason-
able. We note, though, that this fact cannot be used to deter-
mine 4opt before doing the DMRG calculation, as with the
knowledge of the scattering matrix we would have already
solved the system. Nevertheless, shorter systems can already
give a clean indication of the angle that decouples the chains.

In Fig. 11 we demonstrate that by rotating the leads to the
new optimal basis as suggested above it is possible, indeed,
to ensure that lead degrees of freedom on different !rotated"
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FIG. 11. !Color online" !a" Mutual information I*
l,r between two

sites situated in different leads but at equal distances k from the
dot, for a spinless four-level, two-lead model with dot levels #i /U
= !−0.1,−0.03,0.07,0.1"+#, #=−2U fixed, couplings %ir= !0.3,
−0.02,−1,0.2" and %il= !0.5,0.08,1 ,0.7" and '=3. The dashed line
shows I*

l,r for the system with the leads in the original basis of Eq.
!1", whereas the solid line shows I*

l,r after the leads have been ro-
tated by the !fixed k independent" optimal angle 4opt obtained from
Fig. 12!a". !b" Exponentiated bond entropy eSk along the right chain
of the system both prior !dashed line" and after !solid line" the
rotation with 4opt, indicating an effective reduction in the required
matrix dimension Dk close to the impurity for the rotated system by
about 1

2 for the same numerical accuracy.
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FIG. 12. !Color online" Optimal basis for the leads of a spinless
four-level, two-lead system !same parameters as for Fig. 11, but
with varying #". !a" Optimal angle of rotation 4opt for the leads
obtained by diagonalizing *red

l,r !k=L" for the DMRG calculation !red
symbols" in comparison with angle that diagonalizes the scattering
matrix calculated with NRG !blue line". 4opt is defined mod & /2.
!b" Dot level occupation. N= 1

4#i=1
4 ni is the rescaled total dot occu-

pation. Rapid changes in the angle 4opt coincide with rapid shifting
of dot-level occupations. !c" Truncation error !accumulated dis-
carded density-matrix eigenvalues" of the DMRG calculation con-
sidering two neighboring sites at a time for a rotated and nonrotated
system. We typically used 20 sweeps for the DMRG calculations.
The truncation error is significantly reduced for the rotated system
except for the points where 4opt actually shows rather rapid transi-
tions through 4opt=0 itself. At these points the leads are already
decoupled from the outset.
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Wilson chains become effectively decoupled from each other
further out on the chains. Also the bond entropy Sk is re-
duced. If the leads are rotated into the optimal basis the
mutual information drops quickly along the chains %see Fig.
12!a"&, and the truncation error is significantly smaller %see
Fig. 12!c"&, thus making numerical treatment less demand-
ing. Note that rapid changes in the angle 4opt coincide with
rapid shifting of dot-level occupations %see Fig. 12!b"&.

VI. SUMMARY

Using the DMRG approach gives us the possibility to
choose a more flexible MPS geometry compared to NRG.
While in NRG one is bound to a simultaneous treatment of a
single combined Wilson chain due to the requirement of en-
ergy scale separation, this restriction can be lifted in a
DMRG treatment. In our case of a two-lead Anderson model
we modeled each spin and each lead by a Wilson chain on its
own treated separately from each other. Thus we achieved a
significant reduction in both the dimension of the LSS and
the dimension D of the ISS and OSS at each site. The Hilbert
space of one site in the single chain geometry is equivalent to
the direct product of the Hilbert spaces of the 4=2Nl corre-
sponding sites of each chain. So in order to map a star ge-
ometry description into an equivalent single chain descrip-
tion, in the sense that the effective Hilbert spaces at every
site have the same dimension, the dimension D! of the single
chain A matrices would scale exponentially with the number
of leads, D!/D2Nl, as a consequence of the tensor product of
the 2Nl smaller star geometry A matrices. Thus, adopting the
star geometry reduces the numerical costs for treating the
leads by D/D!1/2Nl. Although this strategy has the conse-
quence that the cost of treating the dot site increases signifi-
cantly %see Eq. !26"&, for all cases studied in this paper the
latter effect is far outweighed by the decrease in costs for
treating the leads. Indeed we found that dimensions D136
suffice for getting an accurate description of the system !note
that when translated into a single chain this would result in a
huge effective dimension of D!/D4=1.7(106".

Due to the fact that the Anderson Hamiltonian under con-
sideration features only a density-density interaction term at
the dot between electrons with different spin, the dot matri-
ces can be conveniently split into two sets, one for each spin,

yielding another gain in efficiency. As it turns out, the dimen-
sion Dv connecting to two sets of dot matrices can be chosen
significantly smaller than D !cf. Fig. 7". In addition an opti-
mal basis !in terms of numerical efficiency" for representing
the leads has been determined, which minimizes correlations
between different Wilson chains and in which, it turns out,
the scattering matrix becomes diagonal. Moreover, the
DMRG sweeping procedure allows the dimensions D of the
MPS matrices in the system to be adjusted very flexibly.
Indeed, in our case it was possible to reduce the matrix di-
mensions along the chain away from the dot considerably.
The combination of all these resource-saving features makes
it feasible to calculate the ground-state properties of generic
complex quantum impurity models using only relatively
moderate numerical resources.

The calculation of dynamical quantities like local spectral
functions is, in principle, also possible for the star geometry,
for example, by suitably modifying the approach of Ref. 4 to
the present geometry. However, we expect that the increased
computational costs of DMRG relative to NRG for calculat-
ing dynamical quantities would in this case likely offset the
advantages of the star geometry.

In closing, we would like to make the following com-
ment: while we expect that a rotation to an optimal basis as
described above should be applicable to a large class of im-
purity models, there may be cases where it does not work. In
particular, we suspect that this might be the case for some
models showing non-Fermi-liquid behavior, such as the two-
channel spin-1

2 Kondo model, where overscreening of the
impurity is likely to lead to strong mutual correlations be-
tween all Wilson chains. A quantitative analysis of this prob-
lem using the present star geometry approach is beyond the
scope of the present investigation but would be an interesting
subject for future study.
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