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We obtain exact results for the transport through a resonant level model (noninteracting Anderson
impurity model) for rectangular voltage bias as a function of time. We study both the transient
behavior after switching on the tunneling at time t = 0 and the ensuing steady state behavior.
Explicit expressions are obtained for the ac-current in the linear response regime and beyond for
large voltage bias. Among other effects, we observe current ringing and PAT (photon assisted
tunneling) oscillations.

PACS numbers:

I. INTRODUCTION

The recent advances in nanotechnology created a lot
of interest in transport through correlated quantum im-
purities. While the linear response regime essentially
probes the ground state properties of the system, trans-
port beyond the linear response regime explores genuine
non-equilibrium quantum many-body phenomena. How-
ever, theoretical calculations beyond the linear response
regime are challenging since the steady state cannot be
constructed via a variational principle like equilibrium
states. Even for dc-bias only recently exact numerical
methods have been developed that permit such investiga-
tions for interacting systems, notably the time-dependent
numerical renormalization group [1], Monte Carlo meth-
ods [2, 3], and the time-dependent density matrix renor-
malization group [4, 5]. Some of the analytical meth-
ods that have been applied successfully are perturbative
Keldysh calculations [6], extensions of the renormaliza-
tion group [7, 8], flow equations [9], and generalizations
of NCA (non-crossing approximation) to non-equilibrium
[10, 11]. A comparative review of theoretical methods can
be found in Ref. [12]

For ac-bias beyond the linear response regime still
much less is known since, e.g., the numerical methods
cannot easily be generalized to time-dependent bias. In-
teresting ac-phenomena are for example the photon as-
sisted tunneling effect (PAT) [13] that has been observed
in experiments [14], or the ”current ringing” after a step-
like bias puls [15]. Non-equilibrium Green’s function
methods can be employed [15–17] when the correlation ef-
fects are not too strong. In the strongly correlated regime
of the Kondo model the non-crossing approximation was
found to be reliable [11, 18–20]. At a specific point of
the two-lead Kondo model it can be solved exactly [21],
which permits exact results for the current in the steady
state [22], after a rectangular pulse [23] or under sinu-
soidal bias [21]. Unfortunately, this special point is not
generic for a Kondo impurity that can be derived from
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an underlying Anderson impurity model, which is exper-
imentally the most relevant situation.

In this paper we study the response of a resonant level
model (noninteracting Anderson impurity model) under
rectangular ac voltage bias after switching on the tunnel-
ing at time t = 0. We derive exact analytical results for
the transient and steady-state current by diagonalizing
the Hamiltonian. This exact solution contains both dc-
and ac-bias in and beyond the linear response regime.
While dc-results and ac-results with sinusoidal bias have
been obtained previously in the literature [15], rectangu-
lar ac-driving beyond the linear regime seems not to have
been studied before. Besides being experimentally rele-
vant, our results are also helpful for exploring the various
crossovers in this important model and serve as an exact
benchmark for future work.

II. MODEL AND DIAGONALIZATION

The resonant level model coupled to two leads is de-
fined by the following Hamiltonian

H =
∑
kα

εkc
†
kαckα +

∑
kα

g√
2

(c†kαd+ h.c.),

where α = L,R denotes the leads. The spin index can
be omitted since the model is non-interacting and we
work with spinless fermions. All energies are measured
with respect to the single-particle energy of the impurity
orbital (εd ≡ 0). We take a wide band limit with a linear
dispersion relation, εk = kη, where η denotes the level
spacing and k an integer number. The hybridization is
defined by Γ = ρπg2 where ρ = 1/η. The impurity orbital
spectral function in equilibrium is then given by

ρd(ε) =
Γ

π(ε2 + Γ2)
(1)

Our strategy to obtain exact results is to first diagonal-
ize the discretized Hamiltonian and to then take the ther-
modynamic limit η → 0. We introduce the hybridized
basis cs =

∑
k

g
εs−εkBsck+ + Bsd. It is then straightfor-
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ward to diagonalize the Hamiltonian

H =
∑
k

εkc
†
k−ck− +

∑
s

εsc
†
scs, (2)

where ck± = 1√
2
(ckL ± ckR). The inverse transformation

is d =
∑
sBscs and ck+ =

∑
s

g
εs−εkBscs. The eigenval-

ues are determined as solutions of the equation

εs
g2

=
π

η
cot

πεs
η
. (3)

In the thermodynamic limit

B2
s =

g2

ε2s + Γ2
. (4)

From the diagonalization one also derives the following
set of equations ∑

s

B2
s = 1,

∑
s

g2B2
s

(εs − εk)2
= 1,

∑
s

B2
s

εs − εk
= 0,

∑
s

B2
s

(εs − εk)(εs − εk′)
= 0, k′ 6= k.

which will be important for calculating various summa-
tions below.

An ac voltage bias leads to time-dependent potentials
ua(t) in the leads and the Hamiltonian takes the form

H =
∑
kα

(εk − uα(t))c†kαckα +
∑
kα

g√
2

(c†kαd+ h.c.). (5)

We suppose that initially (at time t < 0) the left and right
lead chemical potential are the same, µL = µR = µ, the
hybridization is switched off and that there is no elec-
tron in the dot, nd = 0. At time t = 0 the hybridization
is switched on and a rectangular voltage bias with pe-
riod 2T (see Fig. 2) is applied: uR(t) = −uL(t) = V/2
for 2NT < t < (2N + 1)T and uR(t) = −uL(t) = −V/2
for (2N + 1)T < t < 2(N + 1)T .[24] µ therefore gives the
energy difference of the impurity orbital to the ”average”
Fermi energy of the leads for time t > 0 (Fig. 2).

The current operator is defined as

Iα = sαe
dNα
dt

=
igesα√

2

∑
k

(d†ckα − c†kαd), (6)

where Nα denotes the total number of electrons in lead α

and sL
def
= 1, sR

def
= −1.

In the first half period 2NT < t < (2N + 1)T the
Hamiltonian is

Ha =
∑
k

(εk +
V

2
)c†kLckL +

∑
k

(εk −
V

2
)c†kRckR

+
∑
kα

g√
2

(c†kαd+ h.c.). (7)

FIG. 1: A schematic diagram of our model: A step-like volt-
age bias is applied to the two leads coupled to the quantum
dot.

Because the dispersion relation is linear and k runs
from −∞ to ∞ (wide band limit), we can simply re-
label the fermion operators, ckα = c̃k+ sαV

2η ,α. The po-

tentials in the leads are eliminated by this transforma-
tion and the Hamiltonian can be diagonalized as be-

fore: Ha =
∑
s εsa

†
sas +

∑
k εka

†
k−ak−, where as =∑

k
gBs
εs−εk ak+ + Bsd and ak± = 1√

2
(ck− ρV2 ,L ± ck+ ρV

2 ,R).

Similarly, in the second half period (2N + 1)T < t <
2(N + 1)T the Hamiltonian is diagonalized as Hb =∑
s εsb

†
sbs+

∑
k εkb

†
k−bk−, where bs =

∑
k

gBs
εs−εk bk++Bsd

and bk± = 1√
2
(ck+ ρV

2 ,L ± ck− ρV2 ,R).

In the Heisenberg picture the current operator at time
t = 2NT+τ, τ ∈ [0, T ] (first half period) can be expressed
as

Iα(t) = (eiHaT eiHbT )NeiHaτIαe
−iHaτ (e−iHbT e−iHaT )N ,(8)

and in the second half period (t = (2N + 1)T + τ, τ ∈
[0, T ])

Iα(t) = (eiHaT eiHbT )NeiHaT eiHbτIα

×e−iHbτe−iHaT (e−iHbT e−iHaT )N . (9)

To find Iα(t) we first calculate the time evolution of the

single fermion operator d† and c†kα under Ha or Hb by

expressing d† and c†kα in the hybridized basis, next apply-
ing the diagonal time evolution and finally transforming
back to the original basis. The calculation is straightfor-
ward but one needs to pay attention when encountering
summations with respect to the eigenenergies εs. In the
thermodynamic limit the summation can be transformed
into an integral when there is no pole in the integrand,
e.g.,

∑
sB

2
se
−iεst =

∫
dεsρB

2
se
−iεst = e−Γt. If there are

poles in the integrand we first calculate the time deriva-
tive to get rid of the pole terms. Key formulas are

∑
s

B2
se
−iεst

εs − εk
=

e−iεkt − e−Γt

εk + iΓ
, (10)

∑
s

B2
se
−iεst

(εs − εk)2
= (

1

g2
+
−1− (iεk − Γ)t

(εk + iΓ)2
)e−iεkt

+
e−Γt

(εk + iΓ)2
. (11)
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By using these two formulas we get

eiH(a,b)T d†e−iH(a,b)T = e−ΓT d† +
∑
kα

g√
2
W

(a,b)
kα c†kα(12)

eiH(a,b)T c†kαe
−iH(a,b)T =

g√
2
W

(a,b)
kα d†

+
∑
k′α′

(
g2(W

(a,b)
kα −W (a,b)

k′α′ )

2(ε
(a,b)
kα − ε(a,b)k′α′ )

+ δα,α′δk,k′e
iε

(a,b)
kα T )c†k′α′ ,

(13)

where W
(a,b)
kα (T ) = eiε

(a,b)
kα

T−e−ΓT

ε
(a,b)
kα −iΓ

, εakL = εbkR = εk + V/2

and εakR = εbkL = εk−V/2. Employing this formula twice
gives the evolution over a full period:

eiHaT eiHbT d†e−iHbT e−iHaT = e−2ΓT d† +
∑
kα

g√
2
Da
kαc
†
kα,

eiHaT eiHbT c†kαe
−iHbT e−iHaT =

g√
2
Db
kαd
† +

∑
k′α′

(Kk′α′,kα + δk,k′δα,α′e
2iεkT )c†k′α′ , (14)

where

D
(a,b)
kα = eiε

(a,b)
kα TW

(b,a)
kα + e−ΓTW

(a,b)
kα ,

Kk′α′,kα = eiε
a
k′α′T

g2(W b
k′α′ −W b

kα)

2(εbk′α′ − εbkα)
+ eiε

b
kαT

g2(W a
k′α′ −W a

kα)

2(εak′α′ − εakα)
+
g2

2
W a
k′α′W

b
kα. (15)

We perform the summation over k by transforming it
into an integral and then employing the residue theorem.

Applying the above formula recursively N times yields

(eiHaT eiHbT )Nd†(e−iHbT e−iHaT )N = e−2NΓT d† +
∑
kα

g√
2
Da
kαγN (k)c†kα,

(eiHaT eiHbT )Nc†kα(e−iHbT e−iHaT )N =
∑
kα

g√
2
Db
kαγN (k)d† +

∑
k′α′

(αN (k′, k)Kk′α′,kα

+δk,k′δα,α′e
2NiεkT +

g2

2
βN (k′, k)Da

k′α′D
b
kα)c†k′α′ , (16)

where α0 = β0 = γ0 = 0 and the recursion relations are

αN+1(k′, k) = αN (k′, k)e2iεk′T + e2NiεkT ,

βN+1(k′, k) = βN (k′, k)e2iεk′T + γN (k),

γN+1(k) = γN (k)e−2ΓT + e2NiεkT .

It is easy to find

αN =
e2NiεkT − e2Niεk′T

e2iεkT − e2iεk′T
(17)

γN =
e2NiεkT − e−2NΓT

e2iεkT − e−2ΓT
(18)

In the first half period the current evaluates to

Iα(t) = sα
eΓ

h

∫
dεknk(

∑
α′

Γ|ξ(1)
kα′ |

2

−2Im(ξ
(1)
kα e
−2NiεkT−iεakατ )). (19)

where ξ
(1)
kα = Da

kαγN (k)e−Γτ + e2NiεkTW a
kα(τ). nk is the

Fermi-Dirac distribution function. In the sequel we will
always specialize to the zero temperature case (nk = 1
for k < 0, nk = 0 for k ≥ 0). In the second half period
the current evaluates to

Iα(t) = sα
eΓ

h

∫
dεknk(

∑
α′

Γ|ξ(2)
kα′ |

2

−2Im(ξ
(2)
kα e
−2NiεkT−iεakαT−iε

b
kατ )) (20)
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where ξ
(2)
kα = Da

kαγN (k)e−Γ(T+τ) + e2NiεkT (W a
kαe
−Γτ +

eiε
a
kαTW b

kα(τ)). To simplify notation in lengthy expres-
sions we will frequently employ Γ as the unit of energy
and current, and 1/Γ as the unit of time. In the final re-
sults we always reintroduce all dimensionful parameters.

III. BUILDUP OF THE STEADY STATE

There is a transient time regime after the coupling of
the dot to the leads is switched on at time t = 0 before a
steady state has built up. Initially, the left lead current
is opposite to the right one and the initially empty dot
is being charged. We will see that these transient effects
decay exponentially (proportional to e−Γt) to the steady
state.

Let us explicitly look at the two limits of period T →
∞ (dc bias) and T → 0 (very fast driving). For T → ∞
one finds from Eq. (19)

Iα(t) = sα
e

h

∫
dεknk(

∑
α′

1 + e−2t − eiεakα′ t−t − e−iεakα′ t−t

(εakα′)
2 + 1

−2Im[
1− e−iεakαt−t

εakα − i
]). (21)

The steady limit (t→∞) is

I =
eΓ

h

∫
dε(n(ε+

eV

2
)− n(ε− eV

2
))

Γ

ε2 + Γ2
(22)

which of course coincides with the well-known result for
the stationary dc-current [15], e.g. for zero temperature

I =
2eΓ

h
arctan

(
eV

2Γ

)
. (23)

In the fast driving limit T → 0 we keep t = 2NT
invariant and let N → ∞. According to the Trotter
formula, the evolution then becomes equivalent to zero
voltage bias [25], limT→0(eiHaT eiHbT )N = ei(Ha+Hb)TN .
We find

Iα(t) = sα
2eΓe−t

h

∫
dεn(ε)

e−t − cos εt− ε sin εt

ε2 + 1
. (24)

In Fig. 2 we show the transient currents in the left and
right lead for different periods T when µ = 0. The cur-
rent oscillations are suppressed when the frequency goes
to infinity. The I(t)-curves gradually change from the dc
limit to the high frequency limit described by Eq. (24)
when the period T decreases. In the fast driving limit
the left and right currents are opposite to each other and
both decay to zero with increasing time.

IV. STEADY STATE BEHAVIOR

When the time is much larger than 1/Γ, the current
reaches its steady state behavior. By taking N →∞ we

-2
0
2 T=0

-2
0
2

C
ur

re
nt

 (
eΓ

/h
)

T=0.5/Γ

-2
0
2

0 0.5 1 1.5 2 2.5 3

Time t (1/Γ)

T=∞

FIG. 2: Time-dependent current for different switching pe-
riods T of the ac voltage bias (top: infinitely fast driving,
middle: intermediate fast driving, bottom: dc case). Zero
temperature and ac voltage bias V = Γ in all graphs. The
full lines denote the left lead current, the dashed lines the
right lead current. The hybridization is switched on at time
t = 0. Notice the discontinuous onset of the current at t = 0,
which is due to the wide band limit for the conduction band
(a detailed discussion can be found in Ref. [26]).

find this steady state limit given by

Iα(τ) = sα
eΓ

h

∫
dεknk(|ξ̃kL|2 + |ξ̃kR|2 − 2Imξ̃kα), (25)

where 0 ≤ τ ≤ T . In the first half period we have

ξ̃kα =
1

εakα − i
+
sαV (e2iεT−iεakατ−τ − eiεakα(T−τ)−T−τ )

(e2iεT − e−2T )(εakα − i)(εbkα − i)
,

(26)

and in the second half period

ξ̃kα =
1

εbkα − i
+
sαV (eiε

b
kα(T−τ)−T−τ − e2iεT−iεbkατ−τ )

(e2iεT − e−2T )(εakα − i)(εbkα − i)
.

(27)

From Eqs. (26) and (27) one immediately verifies that
the steady state current satisfies Iα(τ) = −Iᾱ(τ + T ) as
expected intuitively, where ᾱ denotes the opposite lead.

A. Linear response regime

In the linear response regime of small voltage bias a
sinusoidal signal drives a sinusoidal current with the same
frequency, and signals with different frequencies can be
superimposed linearly. Therefore we can factorize the
rectangular signal into a series of sinusoidal components
and find the frequency-dependent complex admittance of
the system.
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FIG. 3: The linear admittance of a resonant level model for
various level positions µ (energy of the dot level with respect
to the Fermi energy in the leads) at zero temperature. The
top graph shows the absolute value of the admittance, the
bottom one its phase.

In the linear response regime the left lead current is
equal to the right lead one and can be expressed as

lim
V→0

I(τ)

V
=
e2

h

∫
dεn(ε)T (ε), (28)

where

T (ε) =
2εΓ3

(ε2 + Γ2)2
− Im[

2Γ2eiεT−iετ−τ

(eiεT + e−T )(ε− iΓ)2
]. (29)

We Fourier transform both the ac-voltage signal and

the current. We define I(ωn) =
∫ 2T

0
dteiωntI(t) =

2
∫ T

0
dτeiωnτI(τ), where we use the property I(τ + T ) =

−I(τ), and V (ωn) =
∫ 2T

0
dteiωntV (t). Here ωn = nπ

T
and n is an odd number. The voltage bias is −V
for 0 ≤ t ≤ T and V for T ≤ t ≤ 2T , leading to
V (ωn) = 4V

iωn
. By adjusting T the frequency ωn can be

an arbitrary real number, and the linear response admit-
tance G(ω) = I(ω)/V (ω) at zero temperature is given
by

G(ω) =
e2

h

(
arccot−ω−µΓ − arccotω−µΓ

2ω/Γ
− iΓ

4ω
ln

(µ2 + Γ2)2

((µ+ ω)2 + Γ2)((µ− ω)2 + Γ2)

)
, (30)

where µ denotes the position of the dot level with re-
spect to the average Fermi energy of the leads, see Fig. 1.
Eq. (30) agrees with previous ac-calculations in the lin-
ear response regime, see Ref. [27]. Fig. 3 depicts G(ω)
for different level positions µ. The admittance goes to
zero for fast driving, ω → ∞. For ω → 0 one recovers

the well-known dc-conductance G = e2

h
Γ2

µ2+Γ2 . For asym-

metric dot positions the resonance peak is around ω = µ,
showing the PAT (photon assisted tunneling) effect [14]:
When the frequency of the ac-signal is equal to the en-
ergy difference of the dot level from the Fermi energy in
the leads, electrons in the leads can absorb a photon and
jump into the dot. Notice from Fig. 3 that the symmetric
dot always acts like an inductor as already explained in
Ref. [27]. For asymmetric dots there is a crossover from
capacitive to inductive behavior around ω = µ [27].

B. Beyond the linear response regime

For a voltage bias beyond the linear response regime it
is impossible to calculate G(ω) by performing a Fourier
transformation since the different frequency components
interact with each other nonlinearly. Therefore we now
depict the behavior of the current I(t) as a function of
time t during one full period in the steady state situ-

ation. Due to the nonlinearities we need to discuss this
separately for different driving periods T . We will always
take zero temperature in the sequel, the generalization to
nonzero temperature is straightforward.

We first look at fast driving, T � Γ−1. For the sym-
metric situation the I − t curve becomes triangled: The
current decreases from maximum to minimum in the first
half period, and then increases from minimum to maxi-
mum in the second half period, see Fig. 4. In the oppo-
site slow driving limit T � Γ−1, the I − t curve becomes
rectangled. The saturated current in each half period
is simply given by the corresponding steady dc-current
(23). For intermediate driving speed, T ∼ Γ−1, we ob-
serve ringing oscillations [15] of the current with period
4π/V (see Fig. 5).

For asymmetric dot positions µ 6= 0 the current also
has characteristics of PAT and ringing, which are, how-
ever, not easily visible in a plot like Fig. 6. Clear sig-
natures can be found in the the differential conductance
with respect to the gate voltage, which we denote as gate
differential conductance Ggate to distinguish it from the
usual definition of differential conductance with respect
to the voltage bias between the leads. We define

Ggate
α (ε, τ)

def
=

dIα(τ)

dµ
|µ=ε (31)

and the current can then be expressed as Iα(τ) =
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FIG. 4: The steady state current in one period for fast driv-
ing (here T = 0.1/Γ and zero temperature) in a symmetric
resonant level model (µ = 0). The left figure depicts the cur-
rent I (units eΓ/h) in the nonlinear regime, and the right
figure shows I/V (units e2/h) for smaller voltage bias (linear
response regime). Because the driving period is shorter than
the time required to establish stationarity in one period, the
time-dependent current looks triangular.

FIG. 5: The steady state current in one period for inter-
mediate driving (here T = 1/Γ and zero temperature) in a
symmetric resonant level model (µ = 0). The left figure de-
picts the current I (units eΓ/h) in the nonlinear regime, and
the right figure shows I/V (units e2/h) for smaller voltage
bias (linear response regime). The oscillations of the current
with period 4π/V (”current ringing” [15]) are clearly visible
for large bias.

∫ µ
−∞ dεGgate

α (ε, τ).

Figs. 7 and 8 shows Ggate in the first half period
(Ggate in the second half period follows via Ggate

2nd (ε) =

Ggate
1st (−ε)). In the linear response regime we find a pair

of bright PAT lines at ε = ±π/T (see Fig. 7). In the
regime far from equilibrium, high order PAT lines at
ε = nπ/T (|n| ≥ 2) can be observed (see Fig. 8), indicat-
ing multiple photon assisted tunneling processes. These
PAT lines combine and are replaced by a pair of bright
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FIG. 6: The steady state current in one period for inter-
mediate driving (here T = 1/Γ and zero temperature) in an
asymmetric resonant level model (µ = 5Γ). The left figure de-
picts the current I (units eΓ/h) in the nonlinear regime, and
the right figure shows I/V (units e2/h) for smaller voltage
bias (linear response regime). The crossover from capacitive
to inductive response (compare Fig. 3) leads to a complicated
behavior of the current in the first half period.

FIG. 7: The gate differential conductance Ggate
L (ε, τ) (units

e2/h) in the linear response regime (V = 0.2Γ and zero
temperature) for period T = 0.2/Γ in the left figure and
T = 0.6/Γ in the right figure. The pair of bright lines sym-
metric to ε = 0 are the PAT lines at ε = ±π/T .

resonance lines at ε = ±V/2 when the period increases.
This demonstrates that ac transport for high frequencies
is dominated by photon assisted tunneling, and by reso-
nance tunneling for low frequencies.

V. CONCLUSIONS

We have investigated a resonant level model driven by
rectangular ac-bias in and beyond the linear response
regime. Even this simple model shows surprisingly rich
behavior in its transport properties. One can observe
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FIG. 8: The gate differential conductance Ggate
L (ε, τ) (units

e2/h) for large voltage bias (V = 20Γ) and zero temperature.
The top left figure shows fast driving (T = 0.2/Γ), T = 0.5/Γ
in the top right figure, intermediate driving (T = 1/Γ) bottom
left and slow driving (T = 5/Γ) bottom right. The y-axis
denotes the energy ranging from −20Γ to 20Γ. For fast driving
(T . 0.8/Γ) the higher-order PAT lines are clearly visible. For
slower driving (T & 0.8/Γ) the PAT lines away from ε = ±V/2
disappear with increasing T .

specific nonequilibrium effects like the buildup of the
steady state, current ringing and photon assisted tunnel-
ing, and the crossover to the well-studied limiting cases
of dc-bias and linear response regime. The results are
exact and based on an explicit diagonalization of the
Hamiltonian in the first and second half period of the
rectangular voltage bias driving. Within the flow equa-
tion framework, this approach can easily be generalized
to an interacting quantum impurity model exposed to
ac-driving beyond the linear regime. Much less is known
about such systems, which provides another motivation
for this work and will be studied in a subsequent publi-
cation.
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Phys. Rev. B 78, 235110 (2008).
[27] Y. Fu, S. C. Dudley, Phys. Rev. Lett. 70, 65 (1993).

http://arxiv.org/abs/1001.3773

	I Introduction
	II Model and diagonalization
	III Buildup of the steady state
	IV Steady state behavior
	A Linear response regime
	B Beyond the linear response regime

	V Conclusions
	 References

