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Abstract
We develop a supersymmetric virial expansion for two-point correlation
functions of almost diagonal Gaussian random matrix ensembles (ADRMT)
of the orthogonal symmetry. These ensembles have multiple applications
in physics and can be used to study the universal properties of time-reversal
invariant disordered systems which are either insulators or close to the Anderson
localization transition. We derive a two-level contribution to the correlation
functions of the generic ADRMT and apply these results to the critical
(multifractal) power law banded ADRMT. Analytical results are compared
with numerical ones.

PACS numbers: 02.10.Yn, 71.23.−k, 71.23.An, 71.30.+h

1. Introduction

Random matrix theories (RMT) have proven to be useful mathematical models to study
quantum mechanical disordered or chaotic physical systems [1]. The Wigner–Dyson RMT
(WDRMT), which is characterized by independent Gaussian probability distributions of the
matrix elements with constant variances of the off-diagonal matrix entries, can be used to
describe the statistics of electrons in small disordered samples in the universal (metallic) limit,
as the supersymmetric σ -model obtained for the WDRMT is the same as that of electrons in a
metallic dot with infinite conductance [2, 3]. The ensembles in the WDRMT can be classified
by their symmetries, for example, the Gaussian orthogonal ensemble (GOE) consists of real
symmetric matrices and can be used to describe time-reversal invariant systems; the Gaussian
unitary ensemble (GUE) consists of Hermitian matrices with equal variances of the real and
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imaginary parts of the off-diagonal matrix elements and can be used to describe systems with
broken time-reversal symmetry [4].

Besides the universal metallic regime, physical applications require RMT models which
can be used in cases of either insulators or critical systems at (or close to) the Anderson
localization transition [5]. In such unconventional RMTs, the variance of the matrix elements
depends on their distance to the diagonal. For example, the power law banded RMT
(PLBRMT) is an unconventional RMT where the off-diagonal variances decrease as a power
law r−2α of their distance to the diagonal r outside of a band of width B [6]. For α = 1, the
PLBRMT exhibits multifractal eigenfunctions and critical level statistics, a behavior different
to the Poisson statistics of ideal insulators and the Wigner–Dyson statistics of ideal metals [5].
Numerical studies reveal an excellent agreement between different correlation functions of
the critical PLBRMT and of the Anderson model at the transition point [7–9]. The bandwidth
controls the fractality of the RMT eigenstates: their fractal dimensions are close to the space
dimension, d, if the bandwidth is large and are much smaller than d in the case of the almost
diagonal critical PLBRMT with small bandwidth. The latter regime of strong multifractality
is relevant for the Anderson model in high dimensions.

The methods which can be used for an analytical study of the PLBRMT depend on the
bandwidth. For large bandwidths, a field theoretical technique of the supersymmetric σ -
model can be applied [6]. In the opposite case of the almost diagonal PLBRMT with small
bandwidth, a complementary method, the supersymmetric virial expansion (VE), can be used.
The VE is a regular expansion of the correlation functions in a number of interacting energy
levels. In the supersymmetric version, it corresponds to the formal expansion in a number of
independent supermatrices with broken supersymmetry. It is the supersymmetric analogy to
the linked cluster expansion used to calculate thermodynamic quantities for classical imperfect
gases [10].

The VE has been initially developed on the formal basis of the Trotter formula and
a combinatorial analysis for a spectral form-factor of the generic case of almost diagonal
random matrices (ADRMT) from the GUE symmetry class [11]. It has then been extended
to calculate the density-of-states and the level compressibility [12, 13]. The supersymmetric
(SuSy) VE has been developed later for unitary ADRMTs [14]. It is free of the complicated
combinatorics and allows one to investigate not only the spectral statistics but also the statistics
of the eigenfunctions. Recently, the SuSy VE has been used to study the dynamical scaling in
multifractal systems [15].

To use the SuSy VE in the context of physical systems with time-reversal invariance, it is
necessary to modify it such that it is applicable to orthogonal ADRMTs. Many experimentally
relevant disordered quantum systems, e.g. cold quantum gases in a disordered optical lattice,
belong to this class of systems [16, 17]. This paper fills this gap in the theory of the
ADRMTs, namely, we extend the general formalism of the supersymmetric VE to orthogonal
ADRMTs.

We organize the paper as follows: basic definitions of the almost diagonal RMT and of
the two-point correlation functions are given in section 2; the supersymmetric representation
of the correlation functions and of the supersymmetric VE are explained in sections 3 and
4, respectively; a parametrization of supermatrices is given in section 5; generic results for
the leading terms of the VE are calculated in section 6 and are applied to study the local
density-of-states (LDOS) of the almost diagonal critical PLBRMT in section 7. To the best
of our knowledge, the LDOS–LDOS correlation function of the critical orthogonal PLBRMT
has never been calculated before. We compare the analytical results with the numerical ones
and conclude the paper with a brief discussion.
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2. Main definitions

We consider a Gaussian real symmetric ADRMT defined by the following statistics of matrix
entries:

〈Hij 〉 = 0,
〈
H 2

ii

〉
= 1,

〈
H 2

i $=j

〉
= B2F(|i − j |) ≡ bij & 1, (1)

where F(x) is a real decaying function and the small parameter B & 1 reflects that the
ensemble is almost diagonal. The matrices of the ensemble are of size N × N with N ( 1.
We introduce the retarded and advanced Green’s functions by

ĜR/A(E) ≡ 1

E − Ĥ ± iη
, η → +0, (2)

with Ĥ being an arbitrary matrix of the ensemble and we define the two-point Green’s function
at the band center E = 0 as

Gpq(ω) ≡ ĜR
pp

(ω

2

)
ĜA

qq

(
−ω

2

)
, (3)

using the matrix elements of the Green’s functions Ĝ
R/A
nn = 〈n|ĜR/A|n〉 (|n〉 with n = 1, . . . , N

is a canonical basis vector in the vector space of the RMT).
We will consider the disordered average two-point correlation functions, namely, the

spectral correlation function and the diagonal LDOS correlation function, which are defined
by

R2(ω) ≡ %2
N∑

i,j=1

〈〈
δ
(
Ei +

ω

2

)
δ
(
Ej − ω

2

)〉〉
(4)

and

C2(ω) ≡ %2
N∑

p=1

N∑

i,j=1

〈〈
|ψi (p)|2 |ψj (p)|2δ

(
Ei +

ω

2

)
δ
(
Ej − ω

2

)〉〉
. (5)

Here, % is the mean level spacing of the RMT; Ei,j are the eigenvalues of the random matrices;
〈〈ab〉〉 ≡ 〈ab〉 − 〈a〉〈b〉 and 〈· · ·〉 denotes the average over the ensemble of random matrices.
For orthogonal almost diagonal RMT, the mean level spacing is known to be [11]

%
∣∣
B&1 ≈ 1

N
(
√

2π + O(B2)). (6)

The spectral and the LDOS correlation functions can be expressed by the two-point Green’s
function:

R2(ω) = %2

2π2

N∑

p,q=1

Re[〈〈Gpq(ω)〉〉], (7)

C2(ω) = %2

2π2

N∑

p=1

Re[〈〈Gpp(ω)〉〉]. (8)

Thus, one needs 〈〈Gpq(ω)〉〉 to study the correlation functions (4, 5).
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3. Supersymmetric representation of the two-point Green’s function

The ensemble averaged two-point Green’s function can be obtained with the help of a
supersymmetric field theory [14]. Let us introduce 2N super vectors of the form

ψ
R/A
i ≡





S
R/A
i

χ
R/A
i(

S
R/A
i

)∗
(
χ

R/A
i

)∗




, (9)

(
ψ

R/A
i

)† ≡
((

S
R/A
i

)∗
,
(
χ

R/A
i

)∗
, S

R/A
i ,−χ

R/A
i

)
, (10)

where i = 1, . . . , N , S
R/A
i are commuting and χ

R/A
i are anti-commuting Grassmannian

variables and the indices R/A stand for the retarded/advanced sectors. We use the outer
product of these super vectors to define the supermatrices:

Qi ≡ 1
2

(
ψR

i ⊗
(
ψR

i

)† −ψR
i ⊗

(
ψA

i

)†

ψA
i ⊗

(
ψR

i

)† −ψA
i ⊗

(
ψA

i

)†

)

. (11)

These definitions allow one to write the ensemble averaged two-point Green’s function as

〈Gpq(ω)〉 =
∫

D{Q}RpAq

(
N∏

i=1

eS0[Qi ]

)


N∏

i $=j

eSp[Qi,Qj ]



 . (12)

Here,
∫

D{Q} ≡
∏N

i=1 D{Qi} is the measure of integration over the supermatrices Qi and Rp,
Aq are the symmetry-breaking factors between the commuting and anti-commuting variables
in the retarded and advanced sectors, respectively. They can be chosen as follows:

Rp = χR
p

(
χR

p

)∗
, Aq = χA

q

(
χA

q

)∗
. (13)

The action of the field integral is split into two parts: S0 depends on a single supermatrix,

S0[Qi] ≡ −1
2

(Str[Qi])2 + i
ω + iη

2
Str[*Qi], * ≡

(
1 0
0 −1

)
; (14)

Sp depends on the product of two supermatrices and is proportional to the off-diagonal
variances,

Sp[Qi,Qj ] ≡ −bij Str[QiQj ]. (15)

4. The virial expansion

The two-point Green’s function (12) of the ADRMT can be approximately calculated using
the virial expansion [11–14]. The basic concept of the VE is similar to the idea of resonant
level interactions which has been used in a semi-empirical renormalization group approach
[18, 19]: a small probability for energy levels of the ADRMT to interact in the energy space
allows one to develop a regular perturbative expansion in the number of interacting levels.
Each term in the VE reflects a contribution of a certain number of simultaneously interacting
levels. In contrast to the semi-empirical renormalization group approach, the VE is a regular
perturbative expansion, thus allowing an arbitrary number of resonant level interactions and a
controlled estimate of the contribution of the unused resonances to be included.

The mathematical expressions of the virial expansion can be obtained by rewriting the
term containing the off-diagonal variances in the superintegral (12)
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N∏

i $=j

eSp[Qi,Qj ] ≡ VD +
∞∑

m=2

V(m), (16)

VD = 1, V(2) =
N∑

i>j=1

(e2Sp[Qi,Qj ] − 1) (17)

and so on (see details in [14]).
The VE is similar to the cluster expansion in the classical gas theory [10]; however, the

SuSy representation of the resulting terms ensures that, in contrast to the cluster expansion in
the classical gas theory, no further reordering of the terms is necessary. Thus, VD corresponds
to the contributions of the diagonal part of the RMT, V(2) reflects the contributions of two-
level interactions and so on. Using equations (16)–(17), we can formally expand the averaged
two-point Green’s function:

〈Gpq〉 =
〈
GD

pq

〉
+

〈
G(2)

pq

〉
+ · · · .

After integrating out all supermatrices Qj which are neither included in the SuSy breaking
factor (j $= p, q) nor linked to this factor through V(m) functions [14], the first two terms of
the VE read

〈
GD

pq

〉
=

∫
D{Qp}D{Qq}RpAq eS0[Qp]+S0[Qq ], (18)

〈
G(2)

p $=q

〉
=

∫
D{Qp}D{Qq}RpAq(eS0[Qp]+S0[Qq ])(e2Sp[Qp,Qq ] − 1), (19)

〈
G(2)

pp

〉
=

N∑

n$=p

∫
D{Qp}D{Qn}RpAp(eS0[Qp]+S0[Qn])(e2Sp[Qp,Qn] − 1). (20)

5. Parametrization of the supermatrices

A convenient parametrization of the Q-matrices for the SuSy VE has been first suggested in
[20]. For each supermatrix, one introduces two positive variables λ

R/A
i ∈ [0,∞], two angles

φ
R/A
i ∈ [0, 2π ] and four anti-commuting Grassmann variables η

R/A
i ,

(
η

R/A
i

)∗ (i = 1, . . . , N )
in the following way:

S
R/A
i = λ

R/A
i

(
1 − 1

2

(
η

R/A
i

)∗
η

R/A
i

)
eiφR/A

i , χ
R/A
i = λ

R/A
i η

R/A
i eiφR/A

i . (21)

The integration measure in this parametrization is given by

D{Q} =
N∏

i=1

dλR
i dφR

i

(
dηR

i

)∗ dηR
i

πλR
i

dλA
i dφA

i

(
dηA

i

)∗ dηA
i

πλA
i

, (22)

and the single matrix part of the action reads

S0[Qi] = −1
2

((
λR

i

)2 −
(
λA

i

)2)2 + i
ω + iη

2

((
λR

i

)2 +
(
λA

i

)2)
. (23)

Using rotations in superspace, we can find a convenient representation of the two matrix part
of the action in the new variables (see appendix A for details):

Sp[Qi,Qj ] = −bij

(
λR

i λ
R
j cos

(
θR
ij

)(
1 − 1

2

(
αR

ij

)∗
αR

ij

)
− λA

i λ
A
j cos

(
θA
ij

)(
1 − 1

2

(
αA

ij

)∗
αA

ij

))2
,

(24)
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where α
R/A
ij ≡ η

R/A
i − η

R/A
j and

θ
R/A
ij ≡ φ

R/A
j − φ

R/A
i − i

2

((
η

R/A
i

)∗
η

R/A
j −

(
η

R/A
j

)∗
η

R/A
i

)
. (25)

As a direct consequence of the underlying symmetries of the ensembles, the supermatrices
defined in equation (11) are twice the size of the supermatrices which have been used for
the SuSy VE of the unitary ADRMT (cf equations (A.1), (A.2) [14]). Parametrizing the
supermatrices as defined in equation (21), this yields a different amount of effective variables
necessary for the integral representation of the two-point Green’s function; the two matrix
part of the action contains one effective angle in the case of the GUE (cf equation (A.10)
[14]), whereas for the GOE two effective angles (θR

ij and θA
ij in (24)) appear. For the further

calculations, we will use other commuting variables which allow one to simplify the single
matrix part of the action:

Ri ≡
(
λR

i

)2 −
(
λA

i

)2
, Si ≡

(
λR

i

)2 +
(
λA

i

)2; (26)

where −Si ! Ri ! Si , Si ∈ [0,∞]. The integration measure changes to

D{Q} =
N∏

i=1

dSi dRi dφR
i dφA

i

(
dηR

i

)∗ dηR
i

(
dηA

i

)∗ dηA
i

2π2
(
S2

i − R2
i

) . (27)

6. Generic results for the first two terms of the virial expansion

Integration of the superintegral in (18) and calculation of the diagonal contribution of the
product of single averaged Green’s functions 〈ĜR(ω/2)〉〈ĜA(−ω/2)〉 yield

〈〈
GD

p $=q(ω)
〉〉

= 0,
〈〈
GD

pp(ω)
〉〉 ∣∣

N(1 ≈ 2N i
s + iη

%

= 2πNδ(s) +
2N i
s

, (28)

where s = ω/%.
The superintegrals (19), (20) can be calculated using a saddle-point approach (cf

section 4.1 in [14]). Rescaling all Si and Ri variables with S̄i =
√

bpαSi , R̄i =
√

bpαRi ,
where α ∈ {n, q}, we obtain a large negative factor of order O(1/B2) in front of R2

i in the
single matrix part of the action:

S0[Qi] = − 1
2bpα

R̄2
i + i

ω + iη

2
√

bpα

S̄i , bpα & 1. (29)

This allows us to employ a saddle-point approach in the Ri:
∫ ∞

0
dS̄p,α

∫ S̄p,α

−S̄p,α

dR̄p,α

RpAαf (R̄p,α, S̄p,α)(
S̄2

p − R̄2
p

) (
S̄2
α − R̄2

α

)
(
e
− 1

2bpα
(R̄2

p+R̄2
α)+i ω+iη

2
√

bpα
(S̄p+S̄α))

≈ 2πbpα

( ∫ ∞

0
dS̄p,α

RpAαf (0, S̄p,α)

S̄2
pS̄2

α

(
e

i ω+iη
2
√

bpα
(S̄p+S̄α))

+ O(
√

bpα) + O

(
R̄t

S̄t

) )

,

where f (R̄p,α, S̄p,α) ≡ (e2Sp[Qp,Qn] − 1) and R̄t , S̄t are the typical values where the integrals
over R̄ and S̄ converge. Based on rough estimates, one obtains two requirements for the
validity of the saddle-point approximation [14]:

ω ! B & 1. (30)

However, the analytical results derived from the saddle-point approximation and the results of
the numerical diagonalization are in a very good agreement even in the regime ω 0 1; see an
example of the LDOS correlation function C(ω), equation (42): figure 1 of the present paper
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Figure 1. LDOS correlation function for the critical ADRMT with B = 0.06. Main panel:
comparison of the analytical results for the cases of GOE and GUE , N = 2000. Black solid lines
indicate a reference slope predicted by the two matrix approximation of the VE, equation (45).
Inset: comparison of the analytical and numerical results for the case of GOE, N = 10 000. Note
that the difference between the numerically and the analytically found slope in the intermediate
regime B% & ω & E0 is due to the accuracy of the two matrix approximation, see detailed
discussion in the main text.

(This figure is in colour only in the electronic version)

and figure 3 in the paper [7] in the cases of the orthogonal and the unitary critical ADRMT,
respectively. Corrections beyond the saddle-point approximation will be studied in details
elsewhere [21].

After using the saddle-point approximation, we can integrate out the angles, the
Grassmann variables and the remaining real variables. This yields

〈〈
G(2)

p $=q(ω)
〉〉

≈
∞∑

k=1

(−1)k

(
2
√

2bpq

i(ω + iη)

)2k
.2

(
k − 1

2

)
(2k − 1)(k − 1)

4.(k + 1)
, (31)

〈〈
G(2)

pp (ω)
〉〉

≈
N∑

n$=p

∞∑

k=1

(−1)k

(
2
√

2bpn

i(ω + iη)

)2k
.2

(
k − 1

2

)
(2k − 1)

4.(k)
. (32)

These power series can be summed up by using a Fourier transform of the physically relevant
real part of the two-point Green’s function:

Re[Gpq(t)] = 1
2%

∫ ∞

−∞
dω e−iωt (Gpq(ω) + G∗

pq(ω)). (33)
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After applying the Fourier transform to equations (31), (32), we find the two-point Green’s
function in the time domain:

Re
[〈〈
G(2)

p $=q(t)
〉〉]

= 2π2

%
bpq |t | e−bpq t2−η|t |I1(bpqt

2), (34)

Re
[〈〈
G(2)

pp (t)
〉〉]

= −2π2

%

N∑

n$=p

bpn|t | e−bpnt
2−η|t |I0(bpnt

2). (35)

The energy representation of the two-point Green’s function can be obtained by the inverse
Fourier transform. If ω $= 0 we find

Re
[〈〈
G(2)

p $=q(ω)
〉〉]

=
(π

2

) 3
2 |ω̄| e−ω̄2

(3I0(ω̄
2) + I1(ω̄

2)) − π, (36)

Re
[〈〈
G(2)

pp (ω)
〉〉]

=
N∑

n$=p

(π

2

) 3
2 |ω̄| e−ω̄2

(I0(ω̄
2) − I1(ω̄

2)); (37)

where ω̄ = ω/(4
√

bpα), and α = q and n in equations (36) and (37), respectively. These
are the generic results for the two matrix approximation of the two-point Green’s function for
ADRMTs of the GOE symmetry class.

7. Application to the critical PLBRMT

The critical PLBRMT is defined as follows:

〈Hij 〉 = 0,
〈
H 2

ii

〉
= 1,

〈
H 2

i $=j

〉
= 1

2
B2

B2 + |i − j |2

∣∣∣∣∣
B&1

≈ 1
2

B2

|i − j |2
. (38)

The ensemble (38) is named ‘critical’ because it shows multifractal behavior of the eigenstates
and critical level statistics at arbitrary B [6].

7.1. The spectral and the LDOS correlation functions

Inserting the variances (38) into equations (7), (8), (36) and (37), we obtain the spectral and
the LDOS correlation functions for the critical ADRMT of the orthogonal symmetry:

R2(ω) = 1
N2

N∑

n$=p=1

(
√

2π |ω̃||p − n| e−ω̃2|p−n|2I0(ω̃
2|p − n|2) − 1), (39)

C2(ω) = 1
2N2

N∑

n$=p=1

√
π

2
|ω̃||p − n| e−ω̃2|p−n|2(I0(ω̃

2|p − n|2) − I1(ω̃
2|p − n|2)), (40)

where ω̃ = ω/(
√

8B). Let us introduce a shifted (positive) spectral correlator:

R+
2 (ω) ≡ 1

N2

N∑

n$=p=1

√
2π |ω̃||p − n| e−ω̃2|p−n|2I0(ω̃

2|p − n|2), (41)

and scale the LDOS correlation function:

C(ω) ≡ C2(ω)

R+
2 (ω)

. (42)
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This scaling eliminates the level repulsion effect at ω < B%; therefore, C(ω) is convenient
to study the correlations of the eigenfunctions taken at the same space point and with a given
energy difference. The unitary case has been explored in [7]. The qualitative behavior of
C(ω) for the orthogonal case is similar to the unitary one, see figure 1. There are three regions
which reflect different physical phenomena:

(1) ω > E0 ∝ B: the energy difference is larger than the hopping band width of the ADRMT
which results in anticorrelations of the eigenstates and in a generic power law behavior
C(ω) ∝ ω−2 (see [7] for details).

(2) 0 < ω < B%: the energy separation is very small so that the behavior of C2 and R2

is governed by the level repulsion in the energy space; therefore, the ratio C = C2/R2

saturates to a constant. Note that the analytically obtained constant is a bit larger than the
numerically found value because of the reasons explained below.

(3) B% < ω < E0: this is the most interesting region where strong spatial correlations of the
fractal eigenstates must result in a scaling C(ω) ∝ ωµ , µ = d2/d − 1, d2 and d are the
second fractal dimension and the space dimension, respectively [22, 23]. This property is
especially nontrivial in the case of strong multifractality d2 & d (d = 1 for RMT) where
the fractal eigenstates are sparse, nevertheless, they are strongly correlated in space. The
fractal dimension d2 depends on the symmetry class and on the parameter B; for example,
the second fractal dimension for the critical ADRMT is equal to

GOE : d2 0
√

2B ; GUE : d2 0 πB/
√

2 (43)

(cf [24, 25]). Thus, the critical ADRMT corresponds to the case of the strong
multifractality. The parameter E0 can be referred to as ‘the upper cut-off of the
multifractality’. This energy scale also depends on the symmetry class and on the
parameter B; using equation (40) and results of the paper [7], one can show that the
upper cut-off of the multifractality for the critical ADRMT is equal to

GOE : E0 0
√
πB; GUE : E0 0

(π

2

) 3
2
B . (44)

If d2 is small, the leading term of the VE cannot distinguish the exponents µ = d2 − 1
and µ 0 −1. One has to take into account the interaction of a larger number of energy
levels to find the correct exponent [15]. That is why the analytical result (40) shows the
scaling

NC(B% < ω < E0) 0 E0

ω
, (45)

see figure 1, and the analytically calculated constant for C(ω < B%) is a bit larger as
compared with the numerically obtained value. As E0|GUE > E0|GOE, the GUE curve in
figure 1 is shifted upward compared to the GOE curve.

8. Conclusions

In this paper we have developed the supersymmetric virial expansion for the two-point
correlation functions of the almost diagonal Gaussian Random Matrix ensembles of the
orthogonal symmetry class. We have derived the generic results for the two matrix
approximation of the two-point Green’s function in the time (equations (34), (35)) and energy
(equations (36), (37)) representations. This contribution to the Green’s function results from
an interaction of two energy levels in the energy space and can be used to study the statistical
properties of time-reversal invariant disordered systems which are either insulators or close to
the point of the Anderson localization transition.

9
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To demonstrate how the method works, we have applied the generic results of the two
matrix approximation to the Gaussian orthogonal critical power law banded RMT with small
bandwidth, equation (38). We have obtained for this ensemble the spectral correlation function
(equation (39)) and the local-density-of-states correlation function (equations (40), (42)); the
latter has to the best of our knowledge not been derived before. A comparison of the analytically
obtained function C(ω) with the results of the direct numerical diagonalization shows an
excellent agreement at ω " B, see the inset in figure 1. In the region B% < ω < B, the two
matrix approximation yields qualitatively correct results: we find a scaling C(ω) ∝ ω−1 in this
parametrically large energy window; however, the exponent is different from the exponent of
the expected critical scaling C(ω) ∝ ωd2−1 [22]. This is because the second fractal dimension
is small in the case of the ADRMT, d2 ∼ B & 1 [24] and the leading term of the VE is unable
to distinguish exponents 1 − d2 and 1 [7]. One has to take into account the interaction of a
larger number of the energy levels to find the correct exponent [15]. We note that the scaling
relations obtained form the first term of the VE can be rewritten as follows: C(ω) 0 d2/(2s),
where s = ω/% is the dimensionless energy, and the values of d2 and % correspond to either
GOE or GUE, see equations (43)–(45) and the paper [11]. This gives a hint that even the
two matrix approximation for C(ω > B%) reflects multifractality of the critical eigenstates.
Multifractality and critical exponents of the critical ADRMT are beyond the scope of the
present paper and they will be described in detail in a forthcoming paper [15].

A Fourier transform of C(ω) yields the return probability for an initially localized wave
packet. Therefore, the results of section 7 might be relevant to study the fractal properties of
cold atoms in a disordered optical potential which does not break the time-reversal symmetry
[16, 17].

A generalization of the current results for the three matrix approximation is straightforward
(cf [14]). In the future, we plan to use a SuSy field theory, which is the starting point of the
perturbative VE (equation (12)), to obtain nonperturbative results accounting for the interaction
of all energy levels at least with an accuracy of the first loop of the Renormalization Group
procedure.
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Appendix A. Simplification of the two matrix part of the action

The supermatrices (11) written in the parametrization (21) can be diagonalized in each sector
by the following transformation:

D = σ−1U †QUσ−1, Q = UσDσU †. (A.1)

Here, U and U † are unitary block diagonal matrices:

U ≡





UR eiφR

0 0 0
0 U ∗

R e−iφR

0 0
0 0 UA eiφA

0
0 0 0 U ∗

A e−iφA





RA

, (A.2)
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UR/A ≡ U(ηR/A) ≡
((

1 − 1
2 (ηR/A)∗ηR/A

)
−(ηR/A)∗

ηR/A
(
1 + 1

2 (ηR/A)∗ηR/A
)
)

; (A.3)

σ is a symmetric orthogonal matrix:

σ ≡
(
σ ′ 0
0 σ ′

)
, σ ′ ≡





1√
2

0 1√
2

0

0 1 0 0
1√
2

0 − 1√
2

0

0 0 0 1




; (A.4)

and D is a matrix which is diagonal in each sector:

D ≡
(
λRλR −λRλA

λAλR −λAλA

)
⊗





1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



 . (A.5)

In this representation, R labels the retarded and A the advanced sectors of the supermatrix.
Each of the 4 × 4 submatrices of the sectors in equations (A.4), (A.5) contains bosonic and
fermionic sectors in a pattern determined by the outer product of the super vectors defined in
equation (10). The supertrace in the two matrix part of the action can be simplified by using
the invariance of the supertrace under cyclic permutations:

Str[QiQj ] = Str
[
UiσDiσU

†
i UjσDjσU

†
j

]
= Str

[
σU

†
j UiσDiσU

†
i UjσDj

]
, (A.6)

and the following property of 2 × 2 supermatrices (cf [26]):

U †(ηi )U(ηj ) = U(ηj − ηi ) e
1
2 (η∗

i ηj −η∗
j ηi ). (A.7)

This allows one to obtain equation (24).
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