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1+y4/2+ȳ2/2
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Abstract xi

The transport properties of a one dimensional disordered system of interacting spin-
polarized electrons is studied using a bosonized field theory. In contrast to other approaches in
that field [3], [2], a fully bosonized action on the Keldysh contour is used to calculate disorder
averaged observables. After a brief introduction to Fermi and Luttinger liquids, we review
bosonization, the Keldysh technique and disorder effects in mesoscopic systems. We calculate
the first order correction to the clean conductivity in the disorder strength in order to develop
a diagrammatic technique for a bosonized system on the Keldysh contour. Furthermore, the
dissipative part of the self energy of the retarded plasmonic Green’s function is calculated via
equations of motion in the high temperature regime. Corrections to the Drude conductivity
of order ε = 1−K (weak interactions) and ωβ (high temperature) are calculated representing
the terms beyond the saddle point approximation.
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0.1 Introduction 1

0.1 Introduction

Three decades ago Abrahams, Anderson, Licciardello and Ramakrishnan proposed a Scaling
Theory of Localization [1], indicating that in disordered systems in less than three dimensions
all states are localized. In this localized regime electron wave functions are pinned by disorder
with an exponentially small overlap between each other. Thus, disorder has a very strong
influence on one dimensional systems, rendering metallic transport behaviour impossible.

Explicit calculations in one dimensional disordered systems have

Figure 1: Mott conduc-
tivity. See [5]

shown that the conductivity vanishes like σ(ω) ∼ ω2 [ln(ω)]2 in the
limit ω → 0 [4]. The so called Mott-conductivity is depicted in Fig.
(1).
Hence the theory of transport of non-interacting particles in a dis-
ordered one dimensional potential is quite well understood.
On the other hand, interactions among electrons alter a clean one-
dimensional electron system drastically compared to higher dimen-
sions. Instead of weakly interacting fermionic quasiparticles, one-
dimensional systems exhibit collective bosonic excitations such as
spin and charge density waves. The differences between the well-
known Fermi liquid, which is applicable to three- and two-dimensional
systems, and Luttinger liquids is discussed in section (1.1). Since the Fermi surface is topo-
logically disconnected in 1D, it is convenient to describe low energy physics in terms of right-
and left-moving particles with a linear dispersion relation. This is essentially the famous
Tomonaga-Luttinger liquid model where in addition, finite range interactions are assumed.
Powerful analytical tools like bosonization [11] and functional bosonization [26], [25] have
been developed to solve it. They will be briefly introduced in section (2.2) of the first chap-
ter. The Luttinger liquid model describes a whole range of interacting 1D systems. They
are all characterized by two parameters: K which ranges from strong repulsive interactions
K < 1, to non-interacting systems K = 1 and to attractive ones K > 1. The other parameter
is the plasmon velocity u.
Consequently, disorder and interactions alone have a strong influence on the nature of one-
dimensional electron systems. In particular, an interesting situation will arise if both are
present. They may drive a one-dimensional system into different directions. This case has
also been studied in the literature, e.g. [7], [2], and it will be the context of our work. A
renormalization group analysis [7] has shown that at zero temperature there is a delocal-
ized regime, far in the attractive (superconducting) region (K > 3/2) as well as a localized
regime where disorder becomes relevant. At finite temperatures mesoscopic quantum inter-
ference effects such as weak localization become less pronounced due to dephasing by inelastic
electron-electron interactions. Whether this mechanism is strong enough to release electrons
from their localized states was studied in [2], [3] and will be discussed at the end of chapter
two.
Regarding transport behaviour, I.V.Gornyi, A.D.Mirlin and D.G.Polyakov (GMP) [2] found
that there is a temperature regime where a weakly interacting disordered Luttinger liquid
behaves like a Fermi liquid. Although their functional bosonization approach seems to be
a useful tool for those problems at weak interactions, it has still left some open questions
concerning the disorder influence on the interaction propagators, which we are going to ad-
dress in chapter three. However, we use full bosonization to analyze the conductivity for
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weak disorder and weak interactions. According to [2], full bosonization is often inconvenient
since it is hardly possible to relate the bosonic diagrams to those used for mesoscopic electron
systems in higher dimension, such as Diffuson and Cooperon. On the other hand, we are able
to include disorder from the very beginning in the action of interacting electrons by a random
potential. In [2] disorder is included at two points: for electron propagators and interaction
propagators separately, assuming that there are no relevant correlations between these two
types of impurities. This may be a weak point. In a nutshell, for weak interactions and high
temperatures, i.e. 1 � Tτ , but still much lower than the Fermi energy, the system shows
Drude like transport behaviour.
Our theory can be relevant for the following experimental realizations of one dimensional
systems:

The two most prominent examples are quan-

Figure 2: Device for transport measurements
of a long V-groove quantum wire. Inset: cross-
sectional TEM image. The quantum wire is
located at the bottom of the V groove. See [13]

tum wires fabricated in GaAs/AlGaAs heterostruc-
tures, see Fig. (2) and single wall metallic car-
bon nanotubes. Luttinger liquid behaviour has
been proven in both systems [13], [19]. In weakly
disordered quantum wires an interaction param-
eter of K ≈ 0.66 was found. Here, disorder stems
from lithographical imperfections which cause in-
terface roughness and thus potential fluctuations
along the axis of the wire [13]. Carbon nanotubes
are wrapped single layers of graphite sheets their
Luttinger parameter was found to be K ≈ 0.28
[19].



Chapter 1

Concepts in Many-Body Physics

1.1 Fermi liquid vs. Luttinger liquid

Before we discuss properties of interacting one dimensional systems we briefly summarize the
concepts of many-body physics in the context of interaction effects in higher dimensions. We
start with free fermions since they provide the most simple and familiar system. From the
basics of quantum statistics we know that non-interacting electrons obey the Fermi-Dirac
distribution. At zero temperature the occupation with respect to momentum is just a step
function as depicted in Fig.(1.1). All states up to the Fermi energy εF are occupied. Extra
electrons cannot be added into that Fermi sea due to the Pauli principle. Furthermore the
probability to find a state at momentum ~k and frequency ω, the spectral function, is a delta
function

A(~k, ω) = δ(ω − (ε(~k)− µ)) (1.1)

That is a consequence of the trivial time evolution eiξ(~k)t which does not decay in time since
ξ(~k) is an eigenenergy of the system.

Now what happens if we turn on interactions? Surprisingly in three dimensions interac-
tions change not much. There is still the concept of single-particle excitations as well as a
Fermi sphere. Solving the Schroedinger equation of that complicated and strongly-coupled
electron system is certainly not feasible and one should employ the many-body formalism
instead. Fortunately there is the quasi-particle picture of Landau’s Fermi liquid theory which
provides also an intuitive understanding of the physical mechanisms.
In principle, the quasi particles are electrons/holes dressed by a cloud of particle-hole exci-
tations. These quasi particles only survive near to the Fermi sphere. Moreover they are not
exact eigenstates of the Hamiltonian. Hence they decay with time τk. This is described by
the spectral function in figure(1.1) which is now a broadened Lorentzian peak with width
1/τk and area Z < 1. Z denotes the fraction of particles which are in the quasi-particle state.
Moreover Z appears in the occupation distribution of the interacting bare electrons at T = 0.
It gives the height of the discontinuous step, Fig.(1.1). Since the quasi particles are living
near the Fermi edge their energy can be expressed as εk = kF

k−kF
m∗ + εF with renormalized

mass m∗ that is different from the bare electron mass m. kF is the Fermi momentum.
The lifetime τk always exceeds the period of oscillation of the excitation 1/(εk − εF ) meaning
that the quasi-particles become better defined near the Fermi-level. This can be seen by a
simple phase space argument due to Migdal [27]. We consider the setting in figure (1.1) with
a quasi-particle at |~k1| > kF (filled circle). It scatters with an other quasi-particle with mo-
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Figure 1.1: a) The electron distribution function n(ε) at zero temperature. In the non-
interacting case it is a step function. Even in the interacting case, there is a jump of size
Z < 1. b) Spectral function of an interacting electron gas. The area under the curve equals
Z. c) Part of the Fermi sphere. Two quasi-particles scatter out of their initial states depicted
by filled circles. This can happen only within a shell of width δ = ε(~k1)− εF .

mentum ~k2 (the other filled circle). Due to energy and momentum conservation and the Pauli
principle the resulting states at ~k3 and ~k4 (open circles) lie in a shell of thickness δ = |~k1|−kF
around the Fermi-sphere.
The decay time τk is the inverse of the decay rate of state ~k. Since a quasi particle will be
scattered out of state ~k by a collision with other quasi-particles, the scattering amplitude is
proportional to the volume of the shell ∝ 4πk2

F (|~k1| − kF ). The probability is the square of
it, hence

1
τk
∝ (|~k1| − kF )2 ∼ (εk − εF )2 (1.2)

Thus, near the Fermi surface the decay time Eq.(1.2) is bigger than the period of oscillation
1/(εk − εF ) of the excitation:

τk � |εk − εF |−1 (1.3)

This means that these quasi-particles are well defined near the Fermi surface.
In total the picture of single particle excitations is still present in the interacting case. As
we will see later this is not the case in one dimension. Landau’s Fermi-liquid is good at not
to high temperatures1 and can even be used for strong coupling. So either very very strong
interactions or some instabilities are needed in order to leave that framework.
So far we discussed single particle properties of free and interacting systems in higher dimen-
sions which are not present in one dimension. In addition to these single particle excitations
there are also collective excitations such as density waves.

1∼ 1− 100K since the Fermi energy is around 105K. [5]
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Since in one dimension electron interactions are strong, collectivism is a ubiquitous feature
of one dimensional systems. The naive picture that a single electron has to push all the other
electrons further to be able to move works pretty well in that sense. According to that
picture, any individual excitation should become a collective one in 1D. In higher dimensions
(d ≥ 2) the Fermi surface is a connected object. An electron which is excited from slightly
below the Fermi sphere to slightly above it represents a particle-hole excitation with zero
energy εk(q) = ξ(k + q) − ξ(k) ≈ 0. In picture Fig.(1.2) there is a particle-hole excitation
drawn. This particle-hole excitation has a momentum q. Although the excitation’s energy
is zero there are various possibilities for the momentum q. See Fig.(1.2). This leads to
a continuum of possible particle-hole excitations, which makes them not very well defined
’particles’. In one dimension our Fermi sphere is disconnected. Thus the momentum states
of the same energy εF just represent two distinct points at ±kF . For small momenta q ∼ 0
our particle-hole excitations do become well defined quasi-particles. Since there are only two
possibilities for q when εk(q) = 0, q = 0 and q = 2kF , we get a different diagram in Fig.(1.2)
for 1D. Consequently, at q = 0 particle-hole excitations are bosonic quasi particles with linear
dispersion relation ε(q) = vF q. This is already a good hint for a theory in 1D which is
formulated in terms of bosonic degrees of freedom. These degrees of freedom are charge and
spin density waves.

Figure 1.2: a) particle-hole excitations in dimension d ≥ 2. b) particle-hole excitations in
1D. For small q these excitations have a well defined energy-momentum relation.

A more quantitative analysis using many - body theory and linear response [31] will show
that one dimensional systems have a critical behaviour. From statistical mechanics it is
known that there are no phase transitions into an ordered state in one dimension. Quantum
fluctuations will emphasize this statement even more.
A diverging susceptibility χ is usually an indication of a phase transition. For example, there
is the Cooper instability in the theory of superconductors where the pair susceptibility χpp
diverges. It means that it is favorable to create Cooper pairs and the ordered state is the
superconducting state. Besides the particle-particle susceptibility χpp there is also a particle-
hole susceptibility χph and in one dimensional electron systems χph is always diverging. The
ordered state would correspond to some order in the density, a charge density wave or spin
density wave. The instabilities in χpp and χph want to push the 1D system into different
ordered states, without being able to order completely. In this sense one expects the system
to behave critically.
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1.2 Operator bosonization

Bosonization stands for rewriting correlation functions of a fermionic model in terms of bosonic
degrees of freedom. We will see that this is possible in an effective low-energy theory in one
dimension. For the moment we restrict ourselves to spinless Fermions2. The goal is to be
able to diagonalize the full Hamiltonian with interactions.
The general Hamiltonian of an interacting electron gas in second quantized formulation is:

H =
1

2m

∫
dx∂xψ†(x)∂xψ(x) +

1
2

∫
dx
∫

dx′ψ†(x)ψ†(x′)V (x− x′)ψ(x′)ψ(x) (1.4)

ψ†, ψ are the electron creation and annihilation operators, V (x − x′) is the bare electron-
electron interaction potential. In higher dimensions it is in general impossible to diagonalize
this Hamiltonian. However in the following we will show that we can solve practically any
Hamiltonian that describes a one dimensional system of interacting electrons.

Phenomenological bosonization

In the last section it was mentioned that in one dimension the fundamental excitations are
collective ones. A collective excitation is for example a charge-density wave and it is charac-
terized by the particle density:

ρ(x) =
N∑
i=1

δ(x− xi) (1.5)

The next step is to define a labelling field or a cumulative particle-number field φl(x). At the
position of the j-th particle the labelling field is φl(xj) = j · 2π. Moreover it is an increasing
monotonic function of x. Furthermore by using the following property of the Dirac delta

δ(f(x)) =
∑

zeros(f)

1
|f ′(x)|

δ(x− xi) (1.6)

we can rewrite the density in terms of the labelling field.

ρ(x) =
∑
n

|∇φl(x)|δ(φl(x)− 2πn) =
∇φl(x)

2π

∑
p

eipφl(x) (1.7)

If ρ0 is the average particle density in the system then ρ−1
0 = d is the average distance between

two neighbouring particles. Hence φl(x) = 2πρ0x would represent a perfect lattice.
In order to look at deviations from this perfect lattice we introduce another field φ(x) by

φl(x) = 2πρ0x− 2φ(x) (1.8)

and hence

ρ(x) =
[
ρ0 −

1
π
∇φ(x)

]∑
p

ei2p(πρ0x−φ(x)) (1.9)

2just think about a quantum wire with spin-polarized electrons (due to a magnetic field)
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In a low energy approximation we neglect the higher harmonic terms and only take p = 0.
Thus the low energy particle density is:

ρ(x) ≈ ρ0 −
1
π
∇φ(x) (1.10)

What is an intuitive physical interpretation of the field φ? To answer this question we add a
particle at point x0 and integrate the density of excitations up to x0.∫ x>x0

−∞
(ρ(x′)− ρ0)dx′ = − 1

π
[φ(x)− φ(−∞)] (1.11)

Quantized steps in φ are a measure of the total charge added to the system. Moreover a
kink in φ(x) at x0 is a delta-like peak in ∇φ(x) at x0 which means that at x0 there is an
extra particle since ρ(x0)− ρ0 6= 0. Solitonic kink excitations in φ(x) define in that way the
number of quasi-particles in the system. This classical discussion will help us at least to have
an intuitive understanding of bosonization and the boson field φ(x) which we will encounter
throughout the whole text. In the rest of the section we will follow a constructive procedure3.

Constructive approach to Boson operators

Particle-hole excitations are bosonic since they consist of two fermions: electrons and holes.
Moreover, as discussed above, they are well defined quasi particles for small momenta q, Fig.
(1.2). A superposition of particle-hole excitations yields the density operator.

ρ†(q) =
∑
k

c†k+qck (1.12)

Consequently, a theory expressed in terms of ρ operators turns the cumbersome four fermion
interaction vertex into a simple quadratic one.

Hint =
1

2Ω

∑
q

V (q)ρ(q)ρ†(q) (1.13)

This relation is important since we are able to take into account the full interactions just
by changing the basis. However, an exact diagonalization of H in terms of particle-hole
excitations makes sense as long as they are well defined quasi particles, i.e. they have a well
defined energy momentum relation ε(q) ∼ q.
On the other hand in general we have

εk(q) = ξ(k + q)− ξ(k) (1.14)

Hence εk(q) will depend on k for a parabolic dispersion relation ξ(k) = (k2/2m − µ) of the
electrons. However, for a linear dispersion relation particle-hole excitations have a well defined
momentum:

εk(q) = vF (k + q)− vFk = vF q (1.15)

3see chapter2 in [5] or [11]
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Since the Fermi sphere is represented just by two points at ±pF , it makes sense to linearize
the spectrum and obtain a right and a left mover branch. We rewrite the electronic field
operator in the following way:

ψphys(x) =

√
2π
L

∑
p

eipxcp

=

√
2π
L

∑
k>−pF

e−i(pF +k)x c−pF−k︸ ︷︷ ︸
=:cL,k

+ei(k+pF )x ck+pF︸ ︷︷ ︸
=:cR,k

 (1.16)

In figure (1.3) this construction is shown schematically. Neglecting large momenta k in Eq.
(1.16), we describe electrons only around the Fermi points. Furthermore, we seperate the fast

Figure 1.3: Schematic representation of the bosonization construction. Electrons with a quadratic
dispersion relation and momentum p are decomposed into right and left movers with momentum
k := |p| − kF .

oscillations at the Fermi momentum pF from the slow ones by introducing slowly oscillating
electron fields for left and right moving particles:

ψphys(x) = e−ipF xψL(x) + eipF xψR(x) (1.17)

After linearizing the spectrum around the Fermi points, the noninteracting part of the Hamil-
tonian, Eq. (1.4), becomes

H0 =
∑
k

[
vF (−k − kF )c†L,kcL,k + vF (k − kF )c†R,kcR,k

]
(1.18)

The particle-hole excitations are now everywhere well defined quasiparticles with an energy
given in (1.15). Equation (1.18) is a Dirac Hamiltonian for massless fermions. We decomposed
the electrons with the originally quadratic dispersion relation into two species of electrons with
a linear dispersion relation. States are extended to energies ε = −∞. Furthermore, we assume
that these states are filled up to the Fermi energy εF .
This is a dangerous construction and one may expect that singularities and ill defined expres-
sions will appear at some points in calculations. To avoid these problems we consider normal
ordered versions of operators. Normal ordering is denoted by points on the left and right of
the operators, for example:

: ρ(q) :=
∑
k

: c†k+qck : (1.19)
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A normal ordered product of operators : AB : puts all destruction operators to the right of
all creation operators. This is equivalent to subtracting the average value in the vacuum [5].

: AB := AB − 〈0|AB|0〉 (1.20)

Here the vacuum is the Fermi sea. The action of the fermionic creation and annihilation
operators upon that vacuum is

c†kη|0〉 = 0 in the filled sea k < 0 (1.21)
ckη|0〉 = 0 for empty states k > 0 (1.22)

Thus it depends on the momentum index k whether c†k and ck actually act as creation or
annihilation operators. As an example for normal ordering let us consider the following
product of operators: (k′ < 0, k < 0)

: c†kck′ := −ck′c†k = c†kck′ − δkk′ (1.23)

This is consistent with equation (1.20) since δkk′ = 〈0|c†kck′ |0〉.
In order to rewrite the problem in terms of bosons we still have to check whether the density
operator ρ(x) = ψ†(x)ψ(x) is indeed a bosonic one. Consequently, we have to check if bosonic
commutation relations are fulfilled. Since ρ(x) is real the Fourier transform of the density
fulfills ρ†(q) = ρ(−q). In the following we only consider density operators of the low energy
electron fields: ρR/L = ψ†R/L(x)ψR/L(x). Moreover the density operator can destroy the
vacuum state:

ρ†L(p > 0)|0〉 =
∑

k(: c
†
L,k+pcL,k : +〈0|c†L,k+pcL,k|0〉) = 0

ρ†R(p < 0)|0〉 = 0
(1.24)

[
ρ†r(p), ρ

†
r(−p′)

]
=
∑

k,q

[
c†r,k+pcr,k, c

†
r,q−p′cr,q

]
=
∑

k,q

(
c†r,k+pcr,qδk,q−p′ − c†r,q−p′cr,kδk+p,q

)
=
∑

q

(
c†r,q+p−p′cr,q − c†r,q−p′cr,q−p

) (1.25)

Where r = R/L denotes right and left movers.
To get a well defined result out of the last line in equation (1.25) we have to use the normal
ordering relation.[

ρ†r(p), ρ
†
r(−p′)

]
=

∑
q

(
: c†r,q+p−p′cr,q : − : c†r,q−p′cr,q−p :

)
+
∑

q

(
〈0|c†r,q+p−p′cr,q|0〉 − 〈0|c

†
r,q−p′cr,q−p|0〉

) (1.26)

Due to normal ordering we can safely perform a change of variables q → q+p in the first term
on the right hand side. Thus the right hand side of the first line vanishes. The expressions
between the vacuum states in the second line of (1.26) can only be nonzero if p = p′. They
give 〈0|c†r,kcr,k|0〉 = 1 if the state is occupied and otherwise zero. During the calculation
we always assumed the momentum k to be quantized. In a system of size L with periodic
boundary conditions k = 2πn/L where n ∈ Z. Hence the commutator is basically a difference
between occupation numbers: nR,k − nR,k−p = pL

2π for right movers and nL,k − nL,k−p = −pL
2π

for left movers. Thus: [
ρ†R(p), ρ†R(−p′)

]
= −δp,p′

pL

2π
(1.27)



10 1. Concepts in Many-Body Physics

[
ρ†L(p), ρ†L(−p′)

]
= δp,p′

pL

2π
(1.28)

The commutator is zero for density operators of different chiralities R,L [5]4.
Equation (1.27) says that the density operators ρ(p) obey Bose commutation relations up to
a normalization factor. Based on the ρ-operators, we can define operators bq, b

†
q which fulfill

bosonic canonical commutation relations

b†q =
(

2π
L|q|

)1/2 (
θ(q)ρ†R(q) + θ(−q)ρ†L(q)

)
= b†R,q + b†L,q

bq =
(

2π
L|q|

)1/2 (
θ(q)ρ†R(−q) + θ(−q)ρ†L(−q)

)
= bR,q + bL,q

(1.29)

Where θ(q) is a theta step function which is unity for q > 0 and zero otherwise.
These operators are creation and annihilation operators of particle hole excitations. Moreover
bq and b†q preserve the total particle number.

The Hamiltonian in terms of the b, b† operators can be constructed from the commutator
of b, b† with the Hamiltonian H0.

[bq,H0] = vF qbq0[
b†q,H0

]
= vF qb

†
q0

(1.30)

These two equations completely define the Hamiltonian in terms of the b, b† operators [5]p.34.

H0 =
∑
q 6=0

vF |q|b†qbq +
πvF
L

∑
r

N̂2
r (1.31)

So far we found a notation in terms of bosonic operators for H0 which is diagonal. Or in other
words, we found that the kinetic energy term of H which is quadratic in Fermion operators
can be transformed to a term quadratic in Boson operators that means quartic in Fermion
operators. This will be helpful when we include the interaction term which is also quartic in
Fermion operators. However, at first we show that every fermionic operator can be expressed
in the bosonic operator basis. To obtain a direct mapping between Fermion operators ψ and
Boson operators bq we evaluate their commutator.

[br,q, ψr′(x)] = 1√
Ω

(
2π
L|q|

)1/2∑
k,k′

[
c†r,k−qcr,k, e

−ik′xcr′,k′
]

= −δr,r′ 1√
Ω

(
2π
L|q|

)1/2
eiqx

∑
k e

−ikxcr,k

= −
(

2π
L|q|

)1/2
ψr(x)

(1.32)

Since br,q is an annihilation operator of the vacuum |0〉 we can derive from this expression
that ψr(x)|0〉 is an eigenstate of br,q with eigenvalue −

√
2π/L|q|exp(iqx). An eigenstate of a

boson annihilation operator directly brings us to the notion of a coherent state |λ〉.
A coherent state |λ〉 is defined by br,q|λ〉 = λ|λ〉. The state |λ〉 on the other hand can be
expressed in terms of a superposition of number states |n〉 which represent states with n bosons
respectively. In our system we would call |n〉 the state with n particle-hole excitations. The

4 [5] p.32
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vacuum state with zero particle-hole excitations coincides with the Fermi ground state |0〉,
br,q|0〉 = 0. The coherent state can be expressed in terms of |0〉 and b†r,q.

|λ〉 = eλb
†
r,q |0〉 (1.33)

Now we are able to identify the Fermion operator ψr(x) with the Boson operator b†r,q.
Since we showed in Eq. (1.32) that br,qψr(x)|0〉 ∝ ψr(x)|0〉 we can write:

ψr(x) ∼ e
P

q λq(x)b†r,q (1.34)

The problem that on the left hand side of equation (1.34) we have a Fermion operator whereas
on the right hand side there is a Boson can be solved by introducing so called Klein factors
Ur, U

†
r which contain the fermionic nature but no space-time dependences. See [11] for a more

rigorous derivation of constructive bosonization. This mapping makes bosonization an exact
operator identity. Moreover the two Hilbertspaces Ffermion = span{{nk,r}, nk,r ∈ 0, 1} and
Fboson = span{{Nr,mq,r}, Nr ∈ Z,mq,r ∈ N+} are both complete and equivalent5.
The exact mapping [5] is:

ψR/L(x) = UR/L lim
α→0

1√
2πα

ei±(kF−π/L)xe−i(±φ(x)−θ(x)) (1.35)

Note that, although the limit α→ 0 is explicitly mentioned, α has to be finite in the relation
above in order to avoid singularities. It can be shown ( [5] p.45) that if an interaction of finite
range ξint is present, we can safely take the limit α→ 0 without any singularities. Thus ξint
plays the role of α. However it is technically simpler to assume pointlike interactions and
let α be of the order of the lattice spacing. Moreover α proposes a UV cutoff in our theory
reflecting a finite bandwidth 1/α.
The bosonic operators φ and θ are defined as6

φ(x) = −(N̂R + N̂L)πxL − iπ
L

∑
p6=0

1
pe
−α|p|/2−ipx

(
ρ†R(p) + ρ†L(p)

)
θ(x) = +(N̂R − N̂L)πxL + iπ

L

∑
p6=0

1
pe
−α|p|/2−ipx

(
ρ†R(p)− ρ†L(p)

) (1.36)

Let us examine the commutation relations between the new bosonic fields φ and θ. The
operators φ, θ in terms of b, b† are

φ(x) = −(N̂R + N̂L)πxL − iπ
L

∑
p

(
L|p|
2π

)1/2
1
pe
−α|p|/2−ipx

(
b†p + bp

)
θ(x) = (N̂R − N̂L)πxL + iπ

L

∑
p

(
L|p|
2π

)1/2
1
|p|e

−α|p|/2−ipx
(
b†p − bp

) (1.37)

We want to write the Hamiltonian which is quadratic in b, b† in terms of φ, θ. Hence it is
important that φ and θ are canonically conjugate operators. The commutator between φ and
θ is

[φ(x), θ(y)] =
∑

p6=0
π
Lpe

ip(y−x)−α|p|

→ i
∫∞
0

dp
p sin(p(y − x))eα|p|

(1.38)

5 [11] Appendix B
6See [5] p.35
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In the limit α→ 0 the integral yields sign(y − x)× π/2 and we are left with

[φ(x), θ(y)] = i
π

2
sign(y − x) (1.39)

This is certainly not the outcome of a commutator of two canonical conjugate fields. If we
take the derivative with respect to y we will get a delta function on the right hand side.[

φ(x),
1
π
∇θ(y)

]
= iδ(y − x) (1.40)

Consequently, Π(x) = 1
π∇θ(x) is the canonically conjugate to the φ field. Now we are able to

rewrite the Hamiltonian in (1.31) in terms of φ and Π fields.

H0 =
1
2π

∫
dxvF

[
(πΠ(x))2 + (∇φ(x))2

]
(1.41)

Furthermore the derivatives of these fields can be related to the density operators

∇φ(x) = −π [ρR(x) + ρL(x)]
∇θ(x) = π [ρR(x)− ρL(x)]

(1.42)

From these equations we can see that ∇θ(x) is the difference between left and right movers.
Whereas from Eq. (1.9) and (1.42) we see that, since ρR/L describes only the density of right
and left movers and not of 2kF terms like: exp(i2kF )ψ†RψL, ∇φ(x) is related to the q ∼ 0
part of the density fluctuations at point x [5].

Equation (1.41) is a very important result since it allows us to rewrite a Hamiltonian
quadratic in Fermion operators in terms of an operator being proportional to four Fermion
operators. We only used the fact that the Fermi sphere is disconnected in one dimensions
which makes particle-hole excitations well defined quasiparticles in a certain regime. We fo-
cused on that regime and linearized the spectrum at the two Fermi points. This allows one
to consider four Fermion interaction terms without difficulties.

Diagonalizing Hamiltonians with interactions

We consider an interaction Hamiltonian of the general form

Hint =
∫
dxdyV (y − x)ρ(x)ρ(y) (1.43)

For the following discussion we assume the interaction to be q independent which means we
consider a short-range interaction potential.
In one dimension there are three different types of interaction processes, combined, they are
known under the term g-ology. Figure (1.4) shows the three different types of interactions. g4
is a forward scattering event since it couples two Fermions on the same side of the Fermi sphere.
g2 couples Fermions with different chiralities of the Fermi sphere. However, g2 processes
preserve the direction of movement of each Fermion. That means after the interaction a right
or left mover stays a right or left mover. Finally, g1 processes are backscattering processes
because they change the direction of motion of the Fermions. For a spinless system g1 and
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Figure 1.4: Three different low-energy scattering processes that occur in one dimensional systems [5].
Full and dotted lines represent right and left movers. Here the spin is omitted so g2 and g1 processes
are indistinguishable.

g2 processes are the same due to the indistinguishability in quantum mechanics. That will
simplify the whole problem a lot. Therefore, from now on g1 processes are omitted.
With the help of equation (1.42) we can rewrite the four Fermion interaction.
Let us write down the g4 processes in terms of bosonic fields for right movers and for left
movers:

g4
2

∫
dxψ†R(x)ψR(x)︸ ︷︷ ︸

ρR(x)

ψ†R(x)ψR(x)︸ ︷︷ ︸
ρR(x)

=
g4
2

1
(2π)2

∫
dx(∇φ−∇θ)2 (1.44)

g4
2

∫
dxψ†L(x)ψL(x)︸ ︷︷ ︸

ρL(x)

ψ†L(x)ψL(x)︸ ︷︷ ︸
ρL(x)

=
g4
2

1
(2π)2

∫
dx(∇φ+∇θ)2 (1.45)

Summing up Eq. (1.44) and (1.45) we obtain:

g4
(2π)2

∫
dx
[
(∇φ)2 + (∇θ)2

]
(1.46)

This contribution can be easily included in our noninteracting Hamiltonian (1.41) by simply
adding the constant g4/π to vF . Thus g4 processes only change the velocity of the excitations.
The g2 process is

g2
∫
dxψ†R(x)ψR(x)ψ†L(x)ψL(x) = g2

∫
dxρR(x)ρL(x)

= g2
(2π)2

∫
dx(∇φ−∇θ)(∇φ+∇θ)

= g2
(2π)2

∫
dx
[
(∇φ)2 − (∇θ)2

] (1.47)

If we include these two interaction terms in the Hamiltonian H0 we get

H =
1
2π

∫
dx
[
uK(πΠ(x))2 +

u

K
(∇φ(x))2

]
(1.48)

Where we have introduced two independent parameters, the velocity u

u = vF
√

(1 + y4/2)2 − (y2/2)2 (1.49)
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and the dimensionless Luttinger parameter K

K =
(

1 + y4/2− y2/2
1 + y4/2 + y2/2

)1/2

(1.50)

yi = gi/(πvF ) is a dimensionless coupling constant. For repulsive interactions g2, g4 > 0 the
Luttinger interaction parameter is K < 1. For a non interacting system K = 1, and quite
generally for an attractive system g2, g4 < 0: K > 1.

Physical properties of the Luttinger liquid model

In order to discuss the physical consequences, we have to consider the following correlation
functions for zero temperatures, see [5] appendix C:

〈[φ(x, τ)− φ(0)]2〉 = K · F1(x, τ)

〈[θ(x, τ)− θ(0)]2〉 =
1
K
F1(x, τ)

F1(x, τ) =
1
2

ln
[
x2 + (u|τ |+ α)2

α2

]
(1.51)

τ = it is the imaginary time.
In the first section the critical behaviour of the particle-particle and particle-hole susceptibility
of an interacting one dimensional system was mentioned. In the following, we examine this
situation more quantitatively. The full density operator is:

ρ(x, τ) = ψ†physψphys = ρR + ρL +
(
ei2kFψ†LψR + h.c.

)
= − 1

π
∇φ(x, τ) +

1
2πα

[
ei2kF xe−i2φ(x,τ) + h.c.

]
(1.52)

The density-density correlation function is, see [5] p.44:

〈ρ(x, τ)ρ(0)〉 =
K

2π2

(uτ + α · sign(τ))2 − x2

x2 + (uτ + α · sign(τ))2
+

2
(2πα)2

cos(2kFx)

(
α√

x2 + (u|τ |+ α)2

)2K

(1.53)
The second term is a non-universal power law with an interaction dependent exponent. This
term is responsible for Luttinger liquid behaviour. From the exponent of the power law term
it can be seen that the correlation will decay faster when interactions are attractive, K > 1.
The Fourier transformed expression of (1.53), the so called susceptibility, diverges indicating
that there is a tendency to order into a phase where the density is periodically modulated
with a wave vector 2kF . This charge modulation is called charge density wave.
For a classical field φ the density would be:

ρ(x) =
1
πα

cos(2kFx− 2φ) (1.54)

φ plays the role of the phase of the charge-density wave (CDW). For a perfect wave φ orders
and thus would be constant. This certainly minimizes the φ part of the Hamiltonian (1.41)
but since Π is the canonical conjugate field it would have large fluctuations and in total the
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Hamiltonian, Eq. (1.41), is not minimized by this configuration.
Furthermore we are going to analyze the correlation function of the pairing operator:

OSC(x, τ) = ψ†(x, τ)ψ†(x, τ) (1.55)

The corresponding correlation function at temperature T = 0 is:

〈OSC(x, τ)O†
SC(0)〉 ≈ 1

(πα)2

(
α√

x2 + (u|τ |+ α)2

) 2
K

(1.56)

Equation (1.56) describes superconducting fluctuations. From the exponent of this correla-
tion function it can be seen that superconducting fluctuations are stronger in an attractive
interacting system K > 1 where the system tends do order into a superconducting state.
Thus superconducting fluctuations and density fluctuations are dual in this sense. However,
due to the fact that a one dimensional system has no symmetry broken phase, a perfect order
is always destroyed by quantum fluctuations.
The ”phase diagram” of spinless Luttinger liquids is shown in Fig. (1.5).

Figure 1.5: Phase diagram of the dominant behaviour of a Luttinger liquid. For K < 1 the system
tends to order into a CDW. For attractive interactions K > 1 superconducting behaviour is dominant.

1.3 Functional bosonization

The approach we used so far to diagonalize the Hamiltonian of a one dimensional interacting
electron system was an operator based approach. In this part we will show that there is
another way to solve one dimensional systems with interaction by using a functional integral
approach. It is a very short way to obtain a formulation of an interacting fermionic system in
terms of bosons and it is commonly known as functional bosonization. In the following we are
going to use the imaginary time Matsubara formalism and functional integrals to compute
expectation values. τ denotes the imaginary time.
Our starting point is the general Hamiltonian (1.4) of an interacting electron gas. We derive
the general action S of an interacting electron system via a Legendre transformation from
the Hamiltonian:

S = Ĥ −
∫

dx
∫

dτψ(x, τ)ψ̇(x, τ) (1.57)

Thus the action is:

S[ψ, ψ̄] = S0 + Sint =
∫

dxdτψ̄(x, τ) [∂τ + ξ]ψ(x, τ)

+
1
2

∫
dxdx′dτψ̄(x, τ)ψ̄(x′, τ)V0(x− x′)ψ(x′, τ)ψ(x, τ) (1.58)
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Where ξ = − 1
2m∂

2
x − µ and µ is the chemical potential and ψ, ψ̄ are fermion field and

conjugate fermion field respectively7. Due to the Matsubara periodicity: ψ(β + τ) = −ψ(τ)
all τ -integrations are running from 0 to β.
The thermal imaginary time ordered Green’s function reads:

G(x− x′, τ − τ ′) = 〈Tτψ(x, τ)ψ†(x′, τ ′)〉 (1.59)

It can be calculated from the action by computing the following expectation value:

G(x− x′, τ − τ ′) =
∫
D[ψ, ψ̄]ψ(x, τ)ψ̄(x′, τ ′)e−S[ψ,ψ̄]∫

D[ψ, ψ̄] exp(−S[ψ, ψ̄])
(1.60)

Quadratic terms in S[ψ, ψ̄] lead to analytically exact answers. Therefore we decouple Sint
into a quadratic in ψ term. This decoupling is performed via a Hubbard-Stratonovich trans-
formation by introducing an auxiliary field ϕ that is conjugated to the electron density ψ†ψ.
The following relation is easily proven by integrating out the ϕ field:

e−
1
2
ψ̄ψ̄′V0ψ′ψ =

1
Zϕ

∫
D[ϕ]e−

1
2
ϕV −1

0 ϕ+iϕψ̄ψ (1.61)

where

ψ̄ψ̄′V0ψ
′ψ =

∫
dxdx′dτψ̄(x, τ)ψ̄(x′, τ)V (x− x′)ψ(x′, τ)ψ(x, τ) (1.62)

ϕV −1
0 ϕ :=

∫
dxdx′dτϕ(x, τ)V −1

0 (x− x′)ϕ(x′, τ) (1.63)

ϕψ̄ψ :=
∫

dxdτϕ(x, τ)ψ̄(x, τ)ψ(x, τ) (1.64)

Zϕ =
∫
D[φ] exp

(
−1

2
ϕV −1

0 ϕ

)
(1.65)

Note that the Hubbard-Stratonovich field ϕ is different from the Boson field φ in the full
bosonization technique. Later we will identify ϕ with the propagator of the screened Coulomb
field. Now the full action of the system is quadratic in Fermion fields:

S[ψ, ψ̄, ϕ] =
1
2
ϕV −1

0 ϕ′ +
∫

dxdτψ̄(x, τ) [∂τ + ξ − iϕ(x, τ)]ψ(x, τ) (1.66)

The second term can be integrated out which yields a functional determinant. The Determi-
nant can be rewritten as the exponential of the Trace of a logarithm, see [8] p.252.∫

D[ψ, ψ̄]e−
R

dxdτψ̄[∂τ+ξ̂−iϕ]ψ = Det
[
∂τ + ξ̂ − iϕ

]
= exp (Tr ln [∂τ + ξ − iϕ]) (1.67)

In this way the Green’s function (1.60) can be written in the following form:

G(x− x′, τ − τ ′) =
1

D[ϕ]e−S[ϕ]

∫
D[ϕ]G0(x− x′, τ − τ ′, [ϕ])eS[ϕ] (1.68)

7ψ and ψ̄ are anticommutating fields
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Where G0(x−x′, τ − τ ′, [ϕ]) is the Green’s function of a non-interacting system in an external
potential iϕ:

G0(x− x′, τ − τ ′, [ϕ]) =
∫
D[ψ, ψ̄]ψ(x, τ)ψ̄(x′, τ ′)e−

R
ψ̄[∂τ+ξ−iϕ]ψ (1.69)

The full action (1.66) is now written entirely in terms of the Boson field ϕ.

S[ϕ] =
1
2
ϕV −1

0 ϕ− Tr ln [∂τ + ξ − iϕ] (1.70)

The Green’s function G0 in equation (1.68) is explicitly dependent on the field ϕ. It is the
Green’s function of free Fermions in an external potential ϕ(x, τ).
So far the derivation was completely general and not fixed to one dimensions.
As we have seen above, Eq. (1.17), in one dimensional systems we are able to decompose the
Fermion field into fast and slow modes and express it in terms of left and right movers. We
linearize the spectrum:

ξR/L = ±ivF∂x (1.71)

We insert this spectrum in equation (1.70) and obtain:

S[ϕ] =
1
2
ϕV −1

0 ϕ− Tr ln
(
∂τ − ivF∂x − iϕ 0

0 ∂τ + ivF∂x − iϕ

)
(1.72)

Now we calculate G0, Eq. (1.69). G0,R/L satisfies the following equation:

(∂τ ∓ ivF∂x − iϕ(x, τ))G0,R/L(x− x′, τ − τ ′; [ϕ]) = δ(x− x′)δ(τ − τ ′) (1.73)

The solution can formally be written in the following way

G0,R(x− x′, τ − τ ′; [ϕ]) = gR(x− x′, τ − τ ′)eiθR(x,τ)−iθR(x′,τ ′) (1.74)

G0,L(x− x′, τ − τ ′; [ϕ]) = gL(x− x′, τ − τ ′)eiθL(x,τ)−iθL(x′,τ ′) (1.75)

The field θ(x, τ) has to fulfill the following equation:

(∂τ − ivF∂x)θR(x, τ) = ϕ(x, τ) (1.76)
(∂τ + ivF∂x)θL(x, τ) = ϕ(x, τ) (1.77)

The free Green’s function gR/L can be obtained from the following Fourier transformation:

gR/L(x, τ) =
∑
kn

e−iknx
∑
ωn

e−iωnτ 1
iωn ∓ vFk

gR/L(x, τ) = ± i

2vFβ
1

sinh
(
π
β

(
x
vF
± iτ

)) (1.78)

Here kn = 2π(n− 1/2)/L and ωn = 2πn/β, n is an integer. It can be shown [25] that:

Tr ln(∂τ ± ivF∂x − iϕ(x, τ)) = Tr ln(∂τ ± ivF∂x) +
1
2
ϕπR/Lϕ (1.79)
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Where πR/L is the polarization operator for right and left movers:

πR =
1
2π

q

qvF − iΩn
(1.80)

πL =
1
2π

q

qvF + iΩn
(1.81)

That means that the random phase approximation (RPA) becomes exact in one dimen-
sional systems with linearized spectrum. Finally, we are able to calculate the Green’s function
of a one dimensional system with interactions.

〈G0,µ(x, τ ; [ϕ])〉Sϕ = gµ(x, τ)e−Bµ,µ(x,τ) (1.82)

where
Bµν(x, τ) =

1
2
〈[θµ(x, τ)− θν(0, 0)]2〉

=
1
β

∑
Ω

∫
dq
2π

[
eiqx−iΩτ − 1

]
(iΩn ∓ vF q)(iΩn ∓ vF q)

Vµν(q,Ω) (1.83)

µ, ν = R,L and BLL(x, τ) = BRR(−x, τ) and BLR(x, τ) = BRL(x, τ).

VRR =
[
g4 + (g2

4 − g2
2)

1
2πvF

qvF
iΩn + qvF

]
Ω2
n + q2v2

F

Ω2
n + q2u2

(1.84)

VRL = g2
Ω2
n + q2v2

F

Ω2
n + q2u2

(1.85)

Furthermore we obtained the same Plasmon velocity u as in (1.49):

u = vF

√(
1 +

g4
2πvF

)2

−
(

g2
2πvF

)2

The result of equation (1.83) is:

BRR(x, τ) = − ln ηR(x, τ)− (1−K)2

4K
L(x, τ) (1.86)

BRL(x, τ) = −(1−K2)
4K

L(x, τ) (1.87)

where

L(x, τ) = ln
(πα/β)2

sinh
[
π
β

(
x
u + iτ

)]
sinh

[
π
u − iτ

] (1.88)

ηR/L(x, τ) =
vF
u

sinh
[
π
β

(
x
vF
± iτ

)]
sinh

[
π
β

(
x
u ± iτ

)] (1.89)

The role of ηR/L is to replace the Fermi velocity vF in the free electron propagator (1.78) by the
Plasmon velocity u. Thus it directly shows the velocity renormalization due to interactions.
As we will see later, the functional bosonization technique is sometimes more convenient since
the fundamental object is still the electron Green’s function. Moreover, the electron Green’s
function clearly decomposes into the free Green’s function times a phase that accounts for
interactions. Therefore, it is a more transparent approach when we want to compare one
dimensional effects with mesoscopic effects in higher dimension, such as weak localization.
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1.4 Keldysh formalism

The Keldysh formalism is like its imaginary time counterpart, the Matsubara technique, a
method to evaluate thermal and quantum expectation values of observables with quantum
field theory tools. Both techniques are well-known but Matsubara calculations seemed to be
more convenient for systems in equilibrium since the Keldysh approach requires twice the
number of degrees of freedom. On the other hand it is only possible to use the Matsubara
method close to the linear response regime whereas the Keldysh technique can be extended
beyond it. Since non-equilibrium physics has become more important the Keldysh technique
became more famous. Unlike the Matsubara approach, the Keldysh technique is formulated
in real time and hence, an analytic continuation in the end of the calculation is not necessary.
But there are even more advantages in equilibrium which outweigh the extra effort due to
the doubled amount of fields. In disordered systems for example one can evaluate observables
with respect to a specific disorder configuration as well as impurity averaged expectation
values of observables. The latter case means, we have to evaluate an observable, like the
conductivity, for a specific disorder pattern and average over all possible configurations of the
impurities. This is needed for observables in nano structures which behave self-averaging, i.e.
they are composed of many similar but statistically independent parts. Technically it is quite
hard to perform the disorder average after the thermal/quantum average due to normalization
factors and one would like to do it the other way round. Three methods: supersymmetry,
Keldysh and replicated field theory have been invented to be able to average over the impu-
rity configurations first. In the Keldysh technique this problem is solved since by definition
this normalization factor is unity. A detailed discussion of the advantages of the Keldysh
technique in disordered systems is given in the next chapter.
In the following we are going to construct the Keldysh formalism.

A major problem of the many body theory is that in general we do not know the eigenstates
of the full interacting system. However we need them in order to calculate expectation values
of observables. The idea of adiabatic switching on of interactions was invented to be able to
average over known eigenstates of the noninteracting system. It means that the system starts
at time −∞ with no interactions and then the interaction strength is slowly increased to the
required value at time t where the observable is measured. Let us consider the expectation
value for some observable Ô(t).

〈Ô(t)〉 =
Tr[Ôρ(t)]
Tr[ρ(t)]

(1.90)

The noninteracting ground state at t = −∞ evolves to the ground state of the interacting
system |GS〉 = Ût,−∞|0〉 at time t, see Fig. (1.6). Here Ût,−∞ is the time evolution operator
that takes a state at t = −∞ and moves it to time t. The observable Ô is measured at time
t.

〈GS|Ô|GS〉 = 〈0|Û−∞,tÔÛt,−∞|0〉 (1.91)

This construction involves a time contour similar to Fig. (1.6,a), which goes from −∞ to
t and back to −∞. In the so called T = 0 method of quantum field theory a simpler time
contour is used, see Fig. (1.6,b). Here one averages over initial and final states at t = ±∞.
This is done by a small manipulation of Eq. (1.91). Due to the Gell-Mann-Low theorem, [18]
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Figure 1.6: The solid line is the time contour on which the system evolves. The dotted line represents
the strength of the interactions in the system. At t = −∞ the system is always non-interacting. The
observable O(t) is evaluated at time t where full interactions are present. To construct the free action
we discretize time steps of length δt

p.91, we can do the following replacement:

〈0|Û−∞,0 = e−iϕ〈0|Û∞,−∞Û−∞,0 =
〈0|Û∞,0

〈0|Û∞,−∞|0〉
(1.92)

Thus the system collects a phase factor eiϕ = 〈0|Û∞,−∞|0〉 during the evolution from t = −∞
to ∞. Moreover interactions are adiabatically decreased by going to t = ∞. Thus, in the
T = 0 method Eq. (1.91) becomes:

〈GS|Ô|GS〉 = 〈0|Û∞,−∞Û−∞,tÔÛt,−∞|0〉/eiϕ = 〈0|Û∞,tÔÛt,−∞|0〉/eiϕ (1.93)

In the language of perturbation theory the normalization factor eiϕ represents a sum of all
disconnected diagrams. In the following we consider an alternative construction of expectation
values known as the Keldysh technique. Let us rewrite equation (1.90):

〈Ô(t)〉 =
Tr[Û−∞,tÔÛt,−∞ρ̂(−∞)]

Tr[ρ̂(t)]
(1.94)

The density matrix at time t can be obtained from the initial density matrix
ρ̂(t) = Ût,−∞ρ̂(−∞)[Ût,−∞]†. In other words, in order to get the expectation value we insert
the initial distribution of states ρ̂(−∞), let the system evolve from −∞ to time t, measure
the observable and go back to −∞. However it is convenient to go from t further up to ∞
and then back to −∞ like it is depicted in figure (1.6).

〈Ô(t)〉 =
Tr[Û−∞,∞Û∞,tÔÛt,−∞ρ̂(−∞)]

Tr[ρ̂(−∞)]
(1.95)

Here the observable Ô is inserted at time t on the forward contour. However, Ô can be
inserted on the backward contour as well since Ût,∞Û∞,t = 1.
The closed Keldysh contour is shown in figure (1.6). We denote the time evolution operator
which moves the state along the whole Keldysh contour C by
ÛC = Û−∞,∞Û∞,−∞ = 1.
Furthermore the partition sum is

Z =
Tr[ÛC ρ̂(−∞)]
Tr[ρ̂(−∞)]

= 1 (1.96)
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Equation (1.96) is fulfilled as long as all external fields are exactly the same on the forward
and backward branches, as will be shown in the next subsection. Moreover Eq. (1.96) is the
reason why the Keldysh approach is useful for disordered systems. However, we postpone the
applications to disordered systems to the next chapter, section (2.1).
In the next section the functional field approach to many body physics is constructed.

1.4.1 Bosonic action in the Keldysh technique

In the following subsection we will explicitly construct an action of free Bosons in discretized
time. After that, the continuum limit is taken.
In order to evaluate the partition sum Z = Tr[ÛC ρ̂]/Tr[ρ̂] we divide the Keldysh contour C
in 2(N − 1) small time steps of length δt as it is shown in figure (1.6). Since the time contour
is closed the first and last point coincide t1 = t2N = −∞ . Moreover there is no physical
difference between time tN and tN+1, since tN = tN+1 = ∞. Hence there is no evolution from
tN till tN+1.
At each time step ti we insert the resolution of unity in the coherent state basis [12], [8]8:

1̂ =
∫∫

d(Reφi)d(Imφi)
π

e−|φi|2 |φi〉〈φi| (1.97)

The numerator in the partition sum (1.96) becomes:

Tr[ÛC ρ̂] =
∫
〈φ2N |Û−δt |φ2N−1〉 · 〈φ2N−1|Û−δt |φ2N−2〉 · . . . · 〈φN+1|1̂|φN 〉 · . . .

. . . · 〈φ2|Ûδt |φ1〉〈φ1|ρ̂|φ2N 〉 (1.98)

Where the time evolution operator on the Keldysh contour ÛC is split into a product of
evolution operators Û±δt . Between each time step we inserted equation (1.98) and thus we
have to integrate over all φ-fields at intermediate time steps.
Since coherent states are eigenstates of the bosonic annihilation operator b,
b|φj〉 = φj |φj〉 we obtain the following relation in the limit δt → 0:

〈φj+1|Û±δt |φj〉 = 〈φj+1|e∓iĤ(b†,b)δt |φ2N−1〉 ≈ 〈φj+1|φj〉e∓iĤ(φ̄j+1,φj)δt (1.99)

where Ĥ(b†, b) is a normally-ordered Hamiltonian expressed in the Boson fields b†, b. Further-
more, we use the following property of coherent states: 〈φj+1|φj〉 = eφ̄j+1φj

Let us consider a simple example of a Hamiltonian: H0 = ωb†b. Therefore 〈φ1|ρ̂|φ2N 〉 in
equation (1.98) becomes:

〈φ1|e−β(ω−µ)b†b|φ2N 〉 = eφ̄1φ2Nρ(ω) (1.100)

where ρ(ω) = exp(−β(ω − µ)).
Furthermore, equations (1.99) and (1.100) will be inserted in Eq. (1.98). Thus, we obtain the
partition sum Z = Tr[ÛC ρ̂]/Tr[ρ̂]:

Z =
1

Tr[ρ̂]

∫∫ 2N∏
j=1

[
d(Reφj)d(Imφj)

π

]
exp

i 2N∑
j,j′=1

φ̄jG
−1
jj′φj′

 (1.101)

8chapter 4
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Since we work in a discretized framework the inverse propagator G−1
jj′ is a 2N × 2N matrix.

To underline the structure of the inverse propagator we consider a three time step example,
i.e. N = 3.

iG−1
jj′ =



−1 ρ(ω)
1− iωδt −1

1− iωδt −1
1 −1

1 + iωδt −1
1 + iωδt −1

 (1.102)

To show that the partition sum is indeed unity we integrate out the φ fields in equation
(1.101) by using the result of a Gaussian integration in higher dimensions

∫∞
−∞ dNxe−x

†Ax =√
πN/det(A). Hence equation (1.101) reduces to:

Z =
Det−1[iĜ−1]

Tr[ρ̂]
= 1 (1.103)

Based on the matrix in equation (1.102) the determinant can be calculated explicitly

Det[iĜ−1] = (−1)2N − ρ(ω)(1− (iωδt)2)N−1 ≈ 1− ρ(ω)e(ωδt)
2(N−1) → 1− ρ(ω) (1.104)

This approximation is valid for δt → 0, N →∞ and Nδt → const. Moreover Tr[ρ̂] in equation
(1.101) is:

Tr[ρ̂] =
∞∑
n=0

e−β(ω−µ)n =
1

1− ρ(ω)
(1.105)

According to (1.102) the action in equation (1.101) can also be rewritten in the following
form:

S[φ̄, φ] =
2N∑
j=2

[
iφ̄j

φj − φj−1

δtj
− ωφ̄jφj−1

]
δtj + iφ̄1 [φ1 − ρ(ω)φ2N ] (1.106)

where δtj = ±δt depending on the fields being on the upper or lower branch of the Keldysh
contour.
For further calculations it is necessary to derive Green’s functions. For the 2-point function
we have to calculate the following expectation value:

〈φjφ̄j′〉 =
∫
D[φ̄φ]φjφ̄j′exp

i 2N∑
j,j′=1

φ̄jG
−1
jj′φj′

 = iGjj′ (1.107)

We remind that Z = 1 and thus in contrast to the Matsubara formalism there is no normal-
ization factor. The next step will be the calculation of the inverse of iG−1

jj′ of equation (1.102).
For the N = 3 example we get:

iGjj′ =
1

1− ρ



1 ρeh ρe2h ρe2h ρeh ρ
e−h 1 ρeh ρeh ρ ρe−h

e−2h e−h 1 ρ ρe−h ρe−2h

e−2h e−h 1 1 ρe−h ρe−2h

e−h 1 eh eh 1 ρe−h

1 eh e2h e2h eh 1

 (1.108)
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We can divide the matrix in (1.108) according to the position of the time arguments j, j′ on
the upper (+) and lower branch (−) in four different sectors. The corresponding correlation
functions are

〈φj+φ̄j′−〉 = iG<jj′ = nB · exp[−(j − j′)h] (1.109)

〈φj−φ̄j′+〉 = iG>jj′ = (nB + 1) · exp[−(j − j′)h] (1.110)

〈φj+φ̄j′+〉 = iGTjj′ =
1
2
δjj′ + θ(j − j′)iG>jj′ + θ(j′ − j)iG<jj′ (1.111)

〈φj−φ̄j′−〉 = iG̃T̃jj′ =
1
2
δjj′ + θ(j′ − j)iG>jj′ + θ(j − j′)iG<jj′ (1.112)

Here nB is the Bose-Einstein distribution function: ρ/(1− ρ) = 1/(exp[−β(ω − µ)]− 1).
The fields of the lesser Green’s function G<jj′ are ordered such that the field with the later
time argument j′ is on the right of the field with the earlier time argument9 j and vice versa
for iG>jj′ . G

T
jj′ is the time ordered Green’s function which means that it will place the field

of the later time argument to the left. G̃T̃jj′ is the anti time ordered Green’s function and it
places the field with the earlier time argument to the left. The θ step function in equations
(1.109) to (1.112) is defined such that θ(0) = 1/2 and θ(j) + θ(−j) = 1.
The matrix in equation (1.108) of the example (N = 3) can be characterized in the following
way:

iGjj′ =

(
iGTjj′ iG<jj′

iG>jj′ iG̃T̃jj′

)
(1.113)

In Eq. (1.108) Gjj′ is a matrix in discretized time indices j, which are taken from the
interval [0, . . . , 2N ]. Equations (1.109) to (1.112) suggest a more compact notation where
Gjj′ is written as a 2× 2 matrix as it is done in Eq. (1.113). The entries are now the Green’s
functions defined above and the indices j, j′ are running from 0 → N . The four components of
Eq. (1.113) define the so called Keldysh space. From equation (1.109) to (1.112) it is obvious
that not all four components of the matrix (1.113) are independent. There is a relation
between them:

GTjj′ + G̃T̃jj′ −G<jj′ −G>jj′ = −iδjj′ (1.114)

⇒ GTjj′ − G̃T̃jj′ = sign(j − j′)(G>jj′ −G<jj′) (1.115)

It is convenient to perform a rotation in the 2×2 Keldysh space such that one entry is always
zero by definition. Let’s define the following linear transformation in Keldysh space:

φclj = φj+ + φj− φqj = φj+ − φj−;

φj+ = 1
2

(
φclj + φqj

)
; φj− = 1

2

(
φclj − φqj

) (1.116)

This transformation may seem asymmetric, and it is indeed not the standard convention used
in [12]. However, for later calculations of disordered systems it is more convenient.

9Note that j′ is on the (-) backward contour
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For the time being we just take that transformation as a definition and apply it to the matrix
in equation (1.113): (

φcl
φq

)
=
(

1 1
1 −1

)
·
(
φ+

φ−

)
Thus:

1
4

(
1 1
1 −1

)
·

(
iGTjj′ iG<jj′

iG>jj′ iG̃T̃jj′

)
·
(

1 1
1 −1

)
=
(
iGKjj′ iGRjj′
iGAjj′

1
4δjj′

)
(1.117)

Here we introduced three new Green’s functions and for the lower right entry we used relation
(1.114). Throughout the whole text we will use these three Greens functions, they are the
basic objects in the Keldysh technique.

GRjj′ = −i〈φclj φ̄
q
j′〉 = θ(j − j′)2

(
G>jj′ −G<jj′

)
= −iθ(j − j′)e−(j−j′)h (1.118)

GAjj′ = −i〈φqj φ̄
cl
jj′〉 = θ(j′ − j)2

(
G<jj′ −G>jj′

)
= iθ(j′ − j)e−(j−j′)h (1.119)

GKjj′ = −i〈φclj φ̄clj′〉 = −iδjj′ + 2G>jj′ +G<jj′ = −iδjj′ − i2(2nB + 1)e−(j−j′)h (1.120)

Due to the θ-function the retarded and advanced Green’s functions are lower and upper trian-
gular matrices in time indices j,j’. Hence if two retarded/advanced matrices are multiplied one
obtains again a lower/upper triangular matrix. This conservation of retardation reflects the
important property that causality is preserved when multiplying two retarded propagators.
Moreover, since (G<)† = −G> the Green’s functions, Eq.(1.118) and (1.119), are related by
transposition of the time arguments j,j’:

GA =
(
GR
)†

(1.121)

The Keldysh Green’s function is anti-Hermitian:

GK = −
(
GK
)†

(1.122)

As argued above the continuum limit is given by the conditions δt → 0, N → ∞ while
Nδt → const. Furthermore tj = j · δt and −(j − j′)h = −iω(t − t′). As concerns the δjj′ in
equation (1.117), we choose it to be zero in the continuum limit. This is a consistent choice
for two reasons. Firstly all important physical observables are given by off-diagonal elements,
even observables like the particle occupation number: 〈nB(t)〉 = i limε→0G

T (t, t′ = t + ε)
which corresponds to 〈nB(tj)〉 = iGTjj+1 = iG<jj+1. Secondly, due to matrix multiplication of
several Green’s functions in perturbation series, the intermediate expressions contain multiple
sums10 of the form: δ2t

∑
j,j′ δjj′G

R/A/K
j′j → δ2tN → 0. This is the case for example in more

complex diagrams which consist of many Green’s functions [12].
All calculations in discretized time are really necessary in order to keep all factors which
are important for convergence of the expression in the continuum limit. If we encounter
uncertainties in an expression given in continuous time we can resolve it by going to discretized
time.
To conclude, the Green’s functions in the continuum limit are:

− i〈φα(t)φ̄β(t′)〉 = Dαβ(t, t′) =
(
DK(t, t′) DR(t, t′)
DA(t, t′) 0

)
(1.123)

10or multiple integrals since
P

j δt→
R

dt
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The Fourier transformed elements are given by:

DR(ε) = (ε− ω + iδ)−1 (1.124)
DA(ε) = (ε− ω − iδ)−1 (1.125)

DK(ε) = −2πi[2nB(ε) + 1]δ(ε− ω) (1.126)

〈φq(t)φ̄q(t′)〉 = 0 is a fundamental property in the Keldysh technique.
Note that the retarded and advanced Green’s functions contain only information about

the spectrum, they are independent of the occupation number. The Keldysh component
introduces the occupation of the states into the theory. This seperation is good if we are not
too far from equilibrium. In thermal equilibrium we can relate the Keldysh component to the
retarded and advanced parts which results from the fluctuation dissipation theorem.

DK(ε) =
[
DR(ε)−DA(ε)

]
coth

( ε

2T

)
(1.127)

In general the Keldysh Green’s function is given by the retarded, advanced and the Her-
mitian matrix F (t, t′) = F †(t, t′) which is the distribution function f(τ, ε) after a Wigner
transformation11.

DK
t,t′ = DR

t,t′′ ◦ Ft′′,t′ − Ft,t′′ ◦DA
t′′,t′ (1.128)

The circles ◦ denote an integral over times t′′ for discretized time it would be the usual matrix
product. As a result the action in the continuum is given by:

S[φcl, φq] =
∫∫ ∞

−∞
dtdt′(φ̄cl, φ̄q)t

(
0 (D−1)A

(D−1)R (D−1)K

)
t,t′

(
φcl
φq

)
t′

(1.129)

where
[D−1]R(A) = [DR(A)]−1 = ε− ω ± iδ → δt,t′(i∂t − ω ± iδ) (1.130)

[D−1]K = [DR]−1 ◦ F − F ◦ [DA]−1 (1.131)

So far we discussed the non-interacting case. Now we are going to include vertices which
are not quadratic in the fields like a φ4-term. Then the problem is in general no longer
analytically solvable and one has to employ approximations like perturbation theory instead.
In the following we want to show that Z = 1 in a perturbation series. Suppose we add an
additional φ4-term Hint to the quadratic Hamiltonian H0 = ωb†b, this yields the following
action:

Hint = λb†b†bb⇒ Sint =
∫
CK

dtλφ̄φ̄φφ (1.132)

Here, λ is the coupling constant. It could play the role of a charging energy in quantum dots.
Usually it is more convenient to use the action than the Hamiltonian of a quantum system
in quantum field theory. Instead of explicitly constructing the Green’s function structure
in discretized time we use a common recipe12 to go from an action of fields φ given on the
Keldysh contour to an action in terms of φcl, φq. Thus the action in Eq. (1.132) becomes:

Sint = λ

∫ ∞

−∞
dt
[
φ̄clφ̄q (φclφcl + φqφq) + c.c.

]
. (1.133)

11The Wigner transformation of a function F (t, t′) is defined as [12],p.17 f(ρ, τ) :=
R
F

“
ρ+ t̃

2
, ρ− t̃

2

”
eiτ t̃

12 [12] section 3, p.12
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Figure 1.7: 1) The four possible Green’s functions in Keldysh space. Classical φcl and quantum
fields φq are represented by black and grey lines respectively. As mentioned in the text, the definition
of these fields are such that the quantum-quantum correlator 〈φqφq〉 is zero. 2) Interaction vertices
Sint ∼ φ̄φ̄φφ. 3) SV couples source fields V to the bosonic fields.

The interaction terms are depicted in figure (1.7,2). In figure (1.8,1) it is shown, up to the
first order, that the property Z = 1 still holds in a perturbation expansion since disconnected
diagrams vanish.
For calculating expectation values in the functional fields formalism, it is convenient to intro-
duce source fields V which are coupled to the φ fields. Furthermore we rewrite the correlation
functions as functional derivatives with respect to the source fields. Then we are able to cal-
culate correlation functions by taking functional derivatives of the partition sum with respect
to the source field V . As an example of that procedure imagine we add a source action to
our quadratic action S0 =

∫
dtωφ̄φ:

SV =
∫

(φV + φ̄V̄ )dt (1.134)

The partition function is

Z[V, V̄ ] =
∫
D[φ, φ̄]eiS0+iSV (1.135)

It can be easily seen that we can use the partition function as a generating function for
correlation functions, for example:

〈φφ̄〉 =
δ2

δV̄ δV
Z[V, V̄ ]|V̄=0 (1.136)

If the source field V preserves forward-backward symmetry on the Keldysh contour then
Z = 1, as shown in Fig. (1.8,2) up to first order in SV .

In conclusion, all important properties of the Keldysh approach to quantum field theory
have been discussed. In the next chapters we are going to apply this tool to one dimensional
systems with disorder.
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Figure 1.8: 1) Vanishing first order correction in Sint to the partition function Z0. This is an example
showing that in perturbation theory the fundamental property, that the partition function is Z = 1,
is preserved. 2) As long as we do not explicitly break the forward-backward symmetry, i.e. Vq = 0,
the first order correction in Vcl is zero, since 〈SV 〉 ∼ GA(t, t) +GR(t, t) = 0.

1.5 Transport in 1D systems

The main object of our considerations will be the frequency dependent Drude conductivity
σD. The conductivity is the proportionality coefficient between the electric current density
ej(x, t) and the applied electromagnetic field E(t) = E0e

−i(ω+iδ)t: ej(x, t) = σE(t). In the
noninteracting case the expansion of σD in powers of the inverse scattering time τ reads

σ(ω) =
σ0

1 + i/(ωτ)
≈ σ0

(
1− i

ωτ
+ . . .

)
(1.137)

where σ0 = e2

~π
ivF
ω+iδ is the conductivity of a clean system and δ is an infinitesimal. For one

dimensional interacting systems σ can be calculated within the linear response theory [5]. We
start with the expectation value of the electric current density ej(x, t).

From linear response theory [18](p.185) we know that

〈ej(xj , tf )〉 = −D ·A(xf , tf ) + i

∫ tf

−∞
dti

∫
dxi〈[ej(xf , tf ), ej(xi, ti)]〉A(xi, ti) (1.138)

Where [. . . , . . .] is the commutator.
D = e2uK/π~ denotes the diamagnetic term which can be derived from the Hamiltonian
when electric fields are included through minimal coupling of a vector potential A to the
momentum. In the Hamiltonian of the bosonized system (1.48) the field Π(x, t) plays the role
of the momentum. Hence, the common procedure: Π(x, t) → Π(x, t) − e

π~A (with an extra
factor due to the definition of Π) introduces electromagnetic fields. The diamagnetic term is
obtained by derivating the Hamiltonian two times with respect to A.

D = − ∂2H
∂A∂A

=
e2uK

π~
(1.139)
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Let us rewrite the second term of equation (1.138) in a more convenient form for the Keldysh
technique.

〈ej(xf , tf )〉 = −D ·A(xf , tf ) + i

∫
dxi

∫
CK

dti〈ej(xf , tf )ej(xi, ti)〉A(xi, ti) (1.140)

CK denotes the Keldysh contour which starts from −∞, then goes to tf and finally back to
−∞.
We need an expression for the current in terms of the Boson fields.
The continuity equation relates the electric current density ej(x, t) to the charge density
eρ(x, t).

∂teρ(x, t) = −∇ej(x, t) (1.141)

Furthermore we use the relation from the bosonization section between the density ρ(x, t)
and the Boson field φ(x, t):

ρ(x) = − 1
π
∇φ(x). (1.142)

If we insert (1.142) into (1.141) we get.

∇
(
− e
π
∂tφ(x) + ej(x, t)

)
= 0 (1.143)

The expression in brackets has to be constant and we choose this constant to be zero:

ej(x, t) =
e

π
∂tφ(x, t). (1.144)

In order to get the time evolution of the electric current operator we solve the Heisenberg
equation of motion13

∂tej(x, t) = i/~[H, ej(x, t)] =
i

~

[
H, e

π
∂tφ(x, t)

]
(1.145)

Since Π and φ are canonically conjugate fields

[φ(x),Π(y)] = iδ(x− y) (1.146)

we get

∂tej(x, t) =
uKe

~
∂tΠ(x, t) (1.147)

⇒ ej(x, t) =
e

~
(uK)Π(x, t) (1.148)

To summarize, the electric current can be identified with the Π(x, t) field from the bosonized
quadratic Hamiltonian. However, it is more convenient to work with the action in the language
of Feynman path integrals. The quadratic action of the bosonized model is:

SΠ,φ =
∫ ∞

−∞
dt

∫
dx

[
Π(x, t)∂tφ(x, t)− 1

2π

(
uK(πΠ(x, t))2 +

u

K
(∂xφ(x, t))2

)]
(1.149)

If we define this action on the Keldysh contour CK we get14 for the first term∫
CK

Π∂tφ→
∫ ∞

−∞
dt

1
2

(Πcl∂tφq + Πq∂tφcl) (1.150)

13H = 1
2π

R
dx[uK(πΠ(x))2 + u

K
(∂φ(x))2], units [Π] =

√
J · s/m, [φ] =

√
J · s

14some of the steps in the calculation are made in Appendix A.1
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Using (1.148), we can calculate the retarded current-current correlation function in (1.140).
In the following we focus on the part of equation (1.140) with the current-current correlation
function. As we will see, it contains a term that exactly cancels the diamagnetic term D ·A.

i

∫
dxi

∫
CK

dti〈ej(xf , tf )ej(xi, ti)〉A(xi, ti) (1.151)

= i

(
euK

~

)2 ∫
dxi

∫
CK

dti〈Π(xf , tf )Π(xi, ti)〉A(xi, ti) (1.152)

Where we used Eq. (1.148) for the current.
Now we rewrite the contour integral in a normal one using ±-fields on the forward and
backward contour, see section (1.4).∫
CK

dti〈Π(xf , tf )Π(xi, ti)〉 =
∫ tf

−∞
dti〈Π+(xf , tf )Π+(xi, ti)〉+

∫ −∞

tf

dti〈Π+(xf , tf )Π−(xi, ti)〉

(1.153)
Note that the observation time tf belongs to the upper contour. However, it does not change
the final result (1.158) if we had put tf on the lower and write Π−(xf , tf ) instead15. The
correlation functions in equation (1.153) are essentially the bigger D> and lesser D< Green’s
functions of Π-fields. Therefore, equation (1.153) can be simplified:∫ ∞

−∞
dtiθ(tf − ti)

(
iD>

Π(xf − xi, tf − ti)− iD<
Π(xf − xi, tf − ti)

)
(1.154)

As long as 〈Πq(xf , tf )Πq(xi, ti)〉 = 0, equation (1.154) is equal to the retarded Green’s func-
tion:

1
2

∫ ∞

−∞
dti〈Πcl(xf , tf )Πq(xi, ti)〉A(xi, ti) (1.155)

The θ(tf − ti) function is already incorporated in the retarded correlation function. So far
we did not care about the time structure of A(xi, ti) since it is simply a classical field in the
Keldysh formalism.

Note that SΠ,φ (1.150) contains terms Π · ∂tφ we can obtain the correlator of Π fields by
taking functional derivatives with respect to ∂tφ.

〈Πcl(x, t)Πq(x′, t′)〉 = 4
(

~
i

)2 δ2

δ(∂tφq(x, t))δ(∂t′φcl(x′, t′))
Z[Πcl,Πq, φcl, φq] (1.156)

Furthermore we integrate out the Π fields in (1.149) and obtain the non-interacting action S0

which will be extensively used below.

S0 =
1
4

∫
d(x, t)

∫
d(x′, t′)(φcl, φq)x,t

(
0 D−1

A

D−1
R (D−1)K

)(
φcl
φq

)
x′,t′

(1.157)

Where D−1
R/A = 1

uKπ (−∂2
t + ∂2

x)δ(x − x′)δ(t − t′). The partition function Z with the action
introduced in equation (1.156) is not changed by the partial trace over Π fields. After tracing
out Π, we obtained a quadratic term in ∂tφ in the action. Hence a functional derivative

15This statement is true as long as 〈Πq(x, t)Πq(x
′, t′)〉〉 = 0. It is shown in the following subsection that this

is indeed the case.
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with respect to ∂tφcl/q in (1.156) now yields ∂tφ fields instead of Πcl/q-fields. Evaluating
(1.156) using the action (1.157) gives the following expression for the retarded current-current
correlation function i

2

∫
dti
∫
dxi〈Πcl(xf , tf )Πq(xi, ti)〉A(xi, ti):

e2uK

π~
A(xf , tf ) + i

e2

2~2π2

∫ ∞

−∞
dti

∫
dxi〈∂tfφcl(xf , tf )∂tiφq(xi, ti)〉A(xi, ti) (1.158)

It is easy to see that the first term in (1.158) cancels the diamagnetic part D = e2uK/π~ in
equation (1.138). Moreover we can deconvolute the second term in (1.158) into a product by
using Fourier representations.

〈ej(xf , tf )〉 =
∫
dk

2π

∫
dω

2π
ei(kxf−ωtf )〈ej̃(k, ω)〉 (1.159)

The second term in (1.158) becomes

e2

2~2π2

∫
dk

2π

∫
dω

2π

∫
dq

2π

∫
dν

2π
ei(kxf−ωtf )ω〈φcl(k, ω)φ∗q(−q,−ν)〉E−ν (1.160)

Where we used the Fourier transformed electric field Eν instead of the vector potential
A(q, ν) = Eν/iν. The final result for the Fourier transformed electric current density is:

〈ej̃(k, ω)〉 =
e2

2~2π2

∫
dq

2π

∫
dν

2π
ω〈φcl(k, ω)φ∗q(−q,−ν)〉E−ν (1.161)

1.6 Clean conductivity

As a first example let us calculate the conductivity of a clean system. The conductivity
σ(k, ω) can be calculated by dividing the Fourier transformed current (1.161) by the electric
field Eω.

We will use the retarded correlation function in energy-momentum representation which
are derived in appendix A:

〈φcl(k, ω)φ∗q(−q,−ν)〉 = 2~i
πuK

(ω + iδ)2 − u2k2
δk,−qδω,−ν (1.162)

Inserting Eq. (1.162) into Eq. (1.161), we obtain the result for the zeroth order of the
conductivity16:

σ(ω) =
e2

π~
iuK

ω + iδ
= σ0(ω) (1.163)

16leading order of the expansion of the Drude conductivity in 1/τ , see Eq. (1.137)
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2.1 Review of known results in disordered systems

The clean Luttinger liquid, which we considered so far, is often not a sufficient description of
real one dimensional nano devices. Dislocations, vacancies and magnetic or charged impurities
for example, may be sources of disorder.
In the following we do not examine the origin of the external random potential V (r). Instead
we impose some general properties of the disorder field V (r). First of all we consider static
impurities which do not have any internal degrees of freedom which could be excited in a
scattering event. Consequently, there are only elastic scattering processes possible and hence
there is no loss of phase coherence of the electrons. In the following we use two important
parameters. The coherence length Lφ describes the length scale on which the phase of the
electrons is not randomized during propagation. Secondly, the mean free path l is the average
length between two successive scattering events. It is very important to stress that static
disorder does not explain a finite phase coherence length Lφ and that Lφ and the mean free
path l are fundamentally different parameters. Reasons for a destruction of phase coherence
are mechanisms like inelastic electron - electron (e-e) scattering or coupling to phonons.
In figure (2.1) there are three examples of possible disorder models1.

Figure 2.1: Illustration of the various types of disorder models: a) The Anderson model is a tight
binding model where the on-site energies εi are randomly distributed in an interval −W < εi < W,∀i.
b) The Gaussian white noise model and c) the localized impurity model.

The localized impurity model

This is the most intuitive and straight forward realization of disorder. It is depicted in figure
(2.1,c). Here, impurities are randomly distributed on positions Ri. The disorder potential
reads:

V (r) =
N∑
i=1

v(r−Rj)

Here N is the number of impurities in the considered volume Ω. In the thermodynamic limit
N →∞ and Ω →∞ the impurity density stays constant ni = N

Ω .

1see [6]
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The Gaussian model

The Gaussian model is described in terms of a continuous, but random disorder field V (r).
This is the type of disorder model which is employed in the following sections. We assume
that our physical observables vary on a much larger length scale than the distance between
impurities. In that case we always have to take into account a whole ensemble of impurities
that act on an observable in an area where the observable does not vary. The central limit
theorem then guarantees, for a large range of single impurity distributions, the Gaussian
character of the continuous disorder field V (r).
The mean value and variance are given in the following equations.

V (r) = 0 (2.1)
V (r)V (r′) = ∆(r− r′) (2.2)

Here the line over the random potential means an average with respect to a probability
density P[V (r)]. The disorder average can be described in terms of a functional integral over
all possible disorder realizations. The probability of a specific random potential is:

P[V (r)]D[V (r)] =
1
N
e−

1
2

RR
drdr′V (r)∆−1(r−r′)V (r′)D[V (r)] (2.3)

Here, N is a normalization factor: N =
∫
P[V (r)]D[V (r)].

A simple and often convenient choice for the variance is ∆(r − r′) = Ddis · δ(r − r′), where
the disorder potential at a position r is not correlated with any other point r′. Here Ddis

denotes the disorder strength. Therefore we assume that the characteristic decay length of the
correlation function of disorder potentials happens on a much smaller length scale compared
to the wavelength of the electrons.
In figure (2.1,b) the Gaussian white-noise model is depicted.
In the Hamiltonian we account for the disorder field in the usual manner:

Hdis =
∫
dxV (x)ψ†(x)ψ(x) (2.4)

ψ† and ψ are the electron creation and annihilation operators respectively.
Note that in the limit of many weakly interacting impurities, that means v(r) → 0 and
ni →∞, the localized impurity model and the Gaussian model become equivalent. Moreover,
assuming the scattering potential to be smooth on the momentum shell we set the Fourier
component of v(q) constant, vk,k′ ≈ V0 and get the following relation2: Ddis = niv

2
0.

Disorder average

Every observable that is calculated with respect to the disorder Hamiltonian will depend on
the specific realizations of the scattering potential V (r). However, at not too low tempera-
tures and large enough samples, the phase coherence Lφ is much smaller than the sample size
L. Hence it is possible that self averaging of observables occurs [10] p.211. It is also possible
to think of an ensemble of similar samples which are measured or a sample which is measured
several times. Between each measurement it is heated up such that the position of the im-
purities change from one measurement to another. In the end the mean of all measurement

2See [6] p.41.
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outcomes is taken.
Consequently, a disorder average over all possible disorder realizations makes sense for certain
experimental situations.
In the following we are going to take two subsequent averages, a disorder average and an
average over thermal and quantum fluctuations.
Let us briefly discuss the technical implications of taking two subsequent averages. In the
last chapter two finite temperature techniques have been mentioned. Namely the real time
Keldysh and the imaginary time Matsubara technique.
The Matsubara technique requires the partition function: Z =

∫
D[φ]e−SV (φ) as a normaliza-

tion factor, when averaging an observable Ô over thermal and quantum fluctuations of the
fields φ(x, τ).

〈Ô〉V =
∫
D[φ]Ô(φ)e−SV (φ)∫
D[φ]e−SV (φ)

(2.5)

Here SV (φ) = S0(φ) +
∫
dxdτV (x)F [φ(x)] contains a coupling to a specific realization of the

external disorder potential V (r). F (φ) is an arbitrary analytic function of the fields. The
next step is to average over all possible random potentials V .

〈Ô〉 =
∫
D[V ]〈Ô(φ)〉V P[V ]∫

D[V ]P[V ]
(2.6)

Without the normalization factor in the denominator of Eq. (2.5) it would be easy to inter-
change the averages in Eq. (2.6) and perform the disorder average at first.
In order to get rid of the denominator one can basically choose between three techniques.
The first one to mention is a supersymmetric ansatz. But since it applies mainly to non-
interacting theories it is not helpful for a description of strongly correlated one dimen-
sional electron systems. The second one is the Keldysh formalism where the denominator
Z =

∫
D[φ]e−SV (φ) = 1 is one by construction, see section (1.4). This type of theory is used

later, but for the moment we will have a look at the replica technique which is often used in
the context of the imaginary time formalism.
Although being mathematically a little bit sloppy the replica trick is conceptually simple.
At first, note that the role of the denominator of equation (2.5) is to cancel disconnected
diagrams [8]. Expectation values of fields φ can be generated by taking functional derivatives
with respect to source fields J from the logarithm of the action:

δ

δJ
lnZ

∣∣∣
J=0

=
1
Z

∫
D[φ]φe−S(φ) = 〈φ〉 (2.7)

Here the source field J is coupled to φ by the following term in the action:
∫∫

dxdτJφ.
If we find a relation where the logarithm of the partition function lnZ can be expressed
by a monomial of the partition function: ZR, there will be no normalization factor since a
functional derivative of ZR does not produce a factor 1/Z anymore. When R is very small
the following relation is a good approximation

zR = eR ln z ≈ 1 +R ln z (2.8)

On the other hand we can use this to rewrite the logarithm:

ln z = lim
R→0

1
R

(
zR − 1

)
(2.9)
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Furthermore we neglect −1 in the brackets. When R is an integer it is simple to interpret the
following partition sum as a theory with R different fields φα.

ZR =
∫ R∏

α=1

e
PR

α=1 S(φα) (2.10)

Now we are able to interchange the disorder average with the thermal and quantum average.
The disorder average is performed with respect to the probability measure P[V (r)]D[V (r)]
from above:

1∫
P[V (r)]D[V (r)]

∫
D[V (r)]P[V (r)]e−

PR
α=1

R
dxdτV (x)·F [φ] = e

PR
α,β Sdis(φα,φβ) (2.11)

where Sdis(φα, φβ) = Ddis
2

∫
dx
∫
dτdτ ′F [φα(x, τ)]F [φβ(x, τ ′)].

A problem of this construction is that f(R) = ZR

R is well defined only on integer values of R.
An analytic continuation of the result to R = 0 need not exist. Moreover we have a model
with an arbitrary number of fields φα, which can be a source of difficulties. Note that the
Keldysh approach elegantly avoids all these uncertainties which is one of the reasons why we
are going to use it in later sections.
The general recipe 3 for disorder averaged quantities in the replica theory is to calculate the
following expression:

Ô = lim
R→0

1
R

R∑
α=1

〈O(φα)〉Srepl
(2.12)

Srepl is the replicated action after the disorder average.

2.1.1 Drude conductivity and Diffuson in a non-interacting system

In this subsection the disorder averaged single-particle Green’s function of a non-interacting
system is calculated. We have already introduced the mean free path l which characterizes
transport of particles through a disordered medium. l is the average distance travelled by an
electron between two scattering events. The mean free path gives rise to a characteristic time
τ = l/v, the collision time. v is the group velocity of the electron wave. Although the energy
is conserved during a scattering event the momentum of the scattered particle changes and
hence a plane wave |k〉 has only a finite lifetime τ . The collision time τ can be estimated
from the lifetime τk of a plane wave |k〉 by using Fermi’s golden rule:

1
τ

= 2π
∑
k′

|〈k|V |k′〉|2δ(εk − εk′) (2.13)

Here V denotes the Gaussian disorder field. In the beginning of this section we have introduced
the Gaussian white-noise model with variance given by V (r)V (r′) = Ddisδ(r − r′) and zero
mean value. Performing the disorder average in Fermi’s golden rule, equation (2.13) we have
to insert the relation Ω|〈k|V |k′〉|2 = Ddis. Where Ω is the volume of the system and Ddis is
the disorder strength. Hence the average lifetime of a state with energy εk is given by:

1
τ

= 2π
ν(εk)

Ω
Ddis (2.14)

3see [8]
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Here we introduced the density of states at energy εk: ν(εk) :=
∑

k′ δ(εk − εk′). In order to
describe the evolution of a plane wave through disordered media we need to disorder average
the single-particle Green’s function G(ω,k). The diagrammatic expansion of the Green’s
function is given in figure (2.2): The corresponding formula is:

Figure 2.2: Diagrammatic expansion of the single particle Green’s function G(ω,k) in a disordered
medium with a specific random field V (r). The dotted line represents a scattering event, the solid line
on the right hand side is the electron Green’s function G0 of a clean system.

G(ri, rf , t) = G0(ri, rf , t) +
∫
G0(ri, r, t)V (r)G0(r, rf , t)dr + . . .

= G0(ri, rf , t) +
∫
G0(ri, r, t)V (r)G(r, rf , t)dr (2.15)

This is known as the Dyson equation.
After performing the disorder average: V (r) = 0, V (r)V (r′) = Ddisδ(r − r′) we get the
following diagrammatic expansion, see Fig (2.3).

Figure 2.3: Diagrammatic expansion of the full disorder averaged single particle Green’s function
G(ω,k) in a disordered medium.

Disorder averaging is represented by a connection of two dotted lines.
We reformulate the diagrammatic expansion (2.15) in energy-momentum space:

G(ω,k) = G0(ω,k) +G0(ω,k)Σ(ω,k)G(ω,k) (2.16)

Where Σ(ω,k) denotes the self energy, that means the sum of all irreducible diagrams
without external links:

Σ(ω,k) =

(2.17)

Now we solve the Dyson equation (2.16) and write the full disordered Green’s function in
terms of the self energy.

G(iωn,k) =
G0(iωn,k)

1−G0(iωn,k)Σ(iωn,k)
=

1
iωn − ξ(k)− Σ(iωn,k)

(2.18)

Where we used G−1
0 (iωn,k) = iωn− ξ(k). iωn is a Matsubara frequency. Note that we arrive

at the corresponding retarded expression by putting iωn → ω+ iδ, where δ is an infinitesimal.



2.1 Review of known results in disordered systems 37

It can be shown4 that in dimensions higher than one all crossing diagrams are smaller by a
factor of 1/kF l than the non-crossing diagrams. Thus in two and three dimensions the third
diagram on the right hand side of equation (2.17) is much smaller compared to the second
one. For the remaining part of this section we exclude the discussion about disorder effects
in 1D and postpone it to the section about disorder in Luttinger liquid.
We are mainly interested in the imaginary part of the self energy since the real part ReΣ
yields only a renormalization of the energy ε(k). Furthermore we only account for the non-
crossing diagrams and neglect contributions from the crossed ones. This is known as the Born
approximation [10](p.220). As a further approximation we calculate the self energy by taking
into account only the first diagram of (2.17).

Σ(iωn,k) ≈ ni
∑
k′

|Vk−k′ |2
1

iωn − ξk′
≈ v2

0niν(εk)
∫

dz
1

iωn − z
(2.19)

Here we used that the scattering potential Vk−k′ is smooth on the Fermi momentum shell
and thus: v0 ≈ Vk−k′ .
Performing the integral in Eq. (2.19) and using Eq. (2.14) we obtain the self energy:

Σ(iωn,k) = −i · sign(ωn)
1
2τ

(2.20)

Finally, we get the following expression for the disorder averaged single particle Green’s
function:

G(iωn,k) =
1

iωn − ξ(k) + sign(ωn) i
2τ

(2.21)

We get the retarded Green’s function from the Matsubara Green’s function by performing
the analytic continuation: iωn → ω + iδ.
To conclude, the discussion of the single particle Green’s function, we give the retarded
Green’s function in energy-momentum and space-energy representation [6].

GR(ε,k) =
1

ε− ξ(k) + i
2τ

(2.22)

GR(r, r′, ε) = GR0 (r, r′, ε)e−
|r−r′|

2l (2.23)

Equation (2.23) shows that correlations are decaying on a length scale of the order of the
mean free path. In the last chapter we already introduced the Kubo formula for calculating
the current density, Eq. (1.138). In contrast to equation (1.144), the current operator, written
in terms of electron fields ψ̂, ψ̂† is given by:

ĵ(r, t) =
e

2mi
(∇r −∇r′) ψ̂†(r′, t)ψ̂(r, t)

∣∣∣
r′=r

(2.24)

Thus, the current-current correlation function in Eq. (1.138) yields a four Fermion correla-
tion function. Using Wick’s theorem the four Fermion correlation function can be expressed
as a product of two Green’s functions. Diagrammatically, the product of two Green’s func-
tions corresponds to a bubble, see Fig. (2.4). The expansion of the conductivity in terms
of diagrams is given in figure (2.4). Furthermore this product of Green’s functions has to

4 [10] p. 223
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be disorder averaged. In general the disorder average over a product of Green’s functions
G0(p)G0(p′) is different from the product of two averaged Green’s functions G0(p) ·G0(p′).
We remind that the product GR(r, r′, ε)GA(r′, r, ε−ω) represents the probability of quantum
diffusion P (r, r′, ω) which is the probability for a wave packet to travel from r to r′ [6]. The
so called Drude-Boltzmann approximation is to approximate the average of the product of
two Green’s functions by the product of two averaged Green’s functions:

GR(r, r′, ε)GA(r′, r, ε− ω) ≈ GR(r, r′, ε) ·GA(r′, r, ε− ω) (2.25)

Since the right hand side of (2.25) corresponds to an empty bubble of two disorder averaged
Green’s functions, this approximation neglects diagrams where upper and lower Green’s func-
tions of the bubble are connected by an impurity line, such as the second bubble in Fig (2.4).
There are also higher order diagrams in impurity lines possible. These diagrams are called
particle-hole ladder diagrams, see Fig. (2.5,c).
Although Eq. (2.25) seems to be a crude approximation, it can be shown, [6] p.277, that for
isotropic impurity scattering the contribution of the particle-hole ladder to the current van-
ishes. The physical picture behind this cancellation is that a scattered electron has completely
lost its memory about the direction of the current as long as the impurity has an isotropic
scattering potential. Hence higher correlations of scattering events do not contribute.

Figure 2.4: Classical contributions to the conductivity. The solid line is the disorder averaged
Green’s function G(p), the dashed line is a scattering event. The empty bubble on the right hand side
represents the Drude-Boltzmann approximation of incoherent collisions. The second bubble is the first
order contribution in the disorder strength Ddis. It contributes to the so called particle-hole ladder.

The particle-hole ladder diagrams, Fig (2.5), are called Diffuson contribution and they
do matter in a calculation of the density-density correlation function. In figure (2.5 b) the
meaning of the Diffuson contribution is shown in terms of propagating particles and holes. The
ladder approximation corresponds to the weak disorder limit kl� 1 [6](p.102). Moreover it is
an important contribution to the probability P (r, r′, ω) which we mentioned above. Together
with the empty bubble the Diffuson yields the classical contributions. The first two Green’s
functions |GR(r, r1)|2 = GR(r, r1)GA(r1, r) are the probability for a particle to propagate
from r to r1 without any scattering event, [6] p.96. The evolution of the wave packet from r1

to r2 is described by Γ(r1, r2) in the diagrammatic language. The vertex function Γ takes into
account all possible ways to get from r1 to r2 with an arbitrary number of scattering events.
Furthermore, the probability to go from point r2 to r′ is computed by Green’s functions in
the same way as from r to r1. Finally we integrate over all possible points r1 and r2. The
computation of the vertex function is depicted in (2.5 c). Γ can be evaluated self consistently
by the so called Bethe-Salpeter equation which is a Dyson equation for vertex functions. It
can be shown that after a large number of collisions, i.e. t� τ , the vertex function fulfills a
classical diffusion equation [6](4.5).
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Figure 2.5: Diffuson contribution. a) the diagrammatic representation of the Diffuson contribution
to the pair bubble is shown in terms of disorder averaged Green’s functions G and the vertex function
Γ. The corresponding intuitive picture of propagating particles and holes is depicted in b). Solid lines
represent GR and dashed lines describe GA. The structure of the vertex function Γ is shown in c).
The diagrams that contribute to Γ are called particle-hole ladder diagrams.

2.1.2 Weak localization

The last section was about classical contributions to the conductivity. However, at low tem-
peratures the coherence length Lφ becomes longer and thus interference effects become more
important. If the coherence length is bigger than the mean free path, two electron wave
functions that scatter on several impurities will interfere. Note that at low temperatures
dephasing occurs mostly via inelastic electron-electron collisions since all other degrees of
freedom that may constitute sources of dephasing, like phonons are frozen out. Since the
electron-electron scattering time behaves like ∼ 1/Tα one expects that the dephasing time5

is τφ ∝ 1/Tα, where α > 0. However, some of the interference effects vanish in samples
where the sample size L is much larger than the coherence length. In that case, we can divide
the sample into many small subsystems with a subsystem size comparable to the coherence
length. When observables like the conductivity are calculated we have to average over these
subsystems. Since an electron cannot propagate from one subsystem to the other coherently,
interference effects vanish due to averaging over the subsystems. In order to see coherence ef-
fects in larger samples, we have to consider an interference mechanism which does not depend
on the impurity positions. Such an interference effect will be introduced in the following by
a short example, see [10](p.299).
Consider two plane waves, for example light rays with amplitudes t1 and t2 and phases φ1

and φ2. These two light rays meet at a certain position on a screen. The intensity at this
point on the screen is given by the square of the absolute value of the superposition t1 + t2:

|t1 + t2|2 = |t1|2 + |t2|2 + 2|t1t2| cos(φ1 − φ2)︸ ︷︷ ︸
interference−term

(2.26)

The cosine term which depends on the phase difference is responsible for interference effects.
Suppose that two waves interfere and each wave has travelled exactly the same path as
the other but in the reversed direction. They will interfere constructively since their phase
difference is zero. As long as the path length is smaller than the coherence length it does
not matter how many scattering events occurred on that path. However, the picture in figure

5For experimental evidence see [9], Fig(8.6), p.229



40 2. Disordered Luttinger Liquids

(2.6,b) shows that, if there is a big difference in the initial and end point, r and r′, the dashed
path may collect a much larger phase when going from r to the first impurity and from the
last impurity to r′. Thus the phase difference need not to vanish. Of course φ1−φ2 is always
zero when r = r′. Hence we expect an enhanced probability to return to the same point.
Since an enhanced probability means that electrons tend to localize at their starting point
the term weak localization is used for that phenomenon.

Figure 2.6: The mechanism behind weak localization. a) An electron collects a certain phase
on its way from one impurity to the other. b) A path and its time reversed path constitute an
interference effect that is independent of the impurity positions and thus survives self averaging over
many subsystems.

Since a magnetic field breaks time reversal invariance, the time reversed path collects a
different phase and the weak localization effect becomes less pronounced as magnetic fields
increase. In contrast to two dimensions and quasi one dimensional systems, weak localization
is not a strong effect in three dimensions, which is related to the fact that random walks are
transient in three and higher dimensions compared to one and two where they are recurrent.
In a strict one dimensional system already weak disorder pins the electron wave functions as
mentioned in the introduction. Consequently, if there is no dephasing, quantum interference
effects won’t be a small correction any more and a diffusive regime is absent. However, in the
next section we are going to see that an interacting one dimensional system behaves quite
different and the term weak localization becomes applicable in one dimension [2].

The weak localization correction

The weak localization correction can be calculated using the many-body formalism. In princi-
ple this contribution is hidden in a full expansion of the pair bubble in orders of the disorder
strength Ddis. Keeping the physical mechanisms from above in mind, we will explain the
diagrammatic representation of the weak localization effect.
Let us consider a two dimensional sample and an electron path which is scattered twice. On
the right picture of figure (2.6) one can see that we need at least two scattering events in
order to have a time reversed path with equal final and initial points. The single particle
Green’s function that describes this process is:

GR(2)(r, r′, t) := GR0 (r,R1, t)v0GR0 (R1,R2, t)v0GR0 (R2, r′, t) (2.27)

R1,R2 are the positions of the impurities, v0 is the disorder potential and GR0 is the retarded
Green’s function of a clean system.
In order to calculate the probability we need the absolute square of this expression.

P̃ (r, r′, t) ∼ GR0 (r,R1)v0GR0 (R1,R2)v0GR0 (R2, r′)×
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×GA0 (R1, r′)v0GA0 (R2,R1)v0GA0 (r,R2) (2.28)

Here we can interpret the first and the second line as time reversed pairs. Note that in the
product of the retarded Green’s function we start at the initial point r and scatter at R1

whereas in the product of the advanced Green’s functions the last scattering event is at R1.
When this is drawn as a diagram we arrive exactly at the maximally crossed impurity-pair
bubbles, see Fig. (2.7). In the last subsection we neglected these contributions by arguing
that they are small compared to the Drude conductivity.
The weak localization correction can be calculated in a similar way as the Diffuson from the
last subsection by dividing it into three parts. At first, we account for the probability to
go from the initial point r to the first scattering event. Then, this probability is multiplied
by the vertex correction which is responsible for an arbitrary number of scattering events.
Finally, we need the probability to go from the last scattering event to the final point r′. The
significant difference to the classical contributions is technically hidden in the vertex correc-
tion.
As shown in figure (2.7) we can unfold the maximally crossed diagram and get a ladder like
series of diagrams shown in (c). Contrary to the particle-hole ladder of the Diffuson con-
tribution, the Green’s functions now describe propagation in the same direction. For this
reason the particle-particle ladder is called Cooperon similar to particle-particle correlations
of Cooper pairs. The Cooperon is denoted by C.
The Cooperon can be formulated in a so called Bethe-Salpeter equation (2.7,c). The corre-
sponding algebraic expression is:

C(Q, iωn + iεn, iωn) =
∫

dp
(2π)d

v0G(Q− p, iωn + iεn)G(p, iωn)v0

+
∫

dp
(2π)d

C(Q, iωn + iεn, iωn)v0G(Q− p, iωn + iεn)G(p, iεn) (2.29)

G is the impurity averaged Matsubara Green’s function, Eq. (2.21). Since the Cooperon de-
pends only on Q and elastic impurity scattering conserves energy, the Bethe-Salpeter equation
can easily be solved:

C(Q, iωn + iεn, iωn) =
v0ζ(Q)

1− ζ(Q)
(2.30)

Where we used the following short cut notation:

ζ(Q) = v0

∫
dp

(2π)d
G(Q− p, iωn + iεn)G(p, iεn) (2.31)

The Matsubara Green’s functions can be expressed as a retarded and advanced Green’s func-
tion by using the following analytic continuation (T → 0).

iωn + iεn → ε+ ω + iδ iεn → ε− iδ

δ is an infinitesimal.
Using the analytic continuation in (2.31) and considering the DC-limit: ω, ε→ 0 we get:

ζ(Q) = V0

∫
dp

(2π)d
1

−ξ(Q− p) + i/2τ
· 1
−ξ(p)− i/2τ

(2.32)
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For Q = 0 we obtain ζ(Q = 0) = 1 and thus the Cooperon diverges. Consequently, the main
contribution of the weak localization correction comes from small momenta Q. An expansion
of ζ(Q) for small momenta yields the following expression6.

ζ(Q) ≈ 1−DdiffτQ2 (2.33)

Where Ddiff = v2
F τ/d is the diffusion constant, d is the dimension.

Furthermore we insert (2.33) into equation (2.30) and obtain the Cooperon vertex correction:

C(Q, 0, 0) =
V0(1−DdiffτQ2)

DdiffτQ2
(2.34)

Thus, the relevant contribution of the Cooperon is a 1/Q2 term.
To conclude, the weak localization correction is [10] p.306:

δσWL = −e
2

π

(
kF
m

)2 2τ
d

∫
Q<l−1

dQ
(2π)d

1
DQ2

(2.35)

The magnitude of the weak localization effect is given by the Q-integral and thus δσWL

depends on the dimension of the system. Furthermore the Q-integral is cut by the inverse
mean free path l−1 since the physical mechanism of the weak localization effect happens on
length scales larger than the average distance between two impurities. For three dimension
the integral is perfectly regular. For one and two dimensions this integral has an infra-red
divergence. The infra-red divergence indicates that we consider this effect on arbitrary large
length scales which is certainly not true. In the beginning of this section we have noted
that the electrons have a certain coherence length Lφ which is due to dephasing mechanisms.
Thus, the lower cut-off of the momentum integral is the coherence length.

C(Q, 0, 0) =
V0

τ

1
Ddiff/L

2
φ +DdiffQ2

(2.36)

Finally, the weak localization correction of the conductivity is, [6] p.282:

−(Lφ − l), 1D
δσWL ∝ − ln

(
Lφ

l

)
, 2D

−
(

1
l −

1
Lφ

)
, 3D

(2.37)

Note that 1D in Eq. (2.37) should be understood as quasi one dimensional. A quasi one
dimensional system describes a three dimensional wire which is so narrow that effectively
only one dimensional diffusion is possible. The diameter of the wire is large compared to the
Fermi wave length λF of an electron. That means quantum effects due to the boundaries are
not important. Strictly one dimensional systems without interactions do not have a diffusive
regime. In the introduction it was mentioned that arbitrary weak disorder immediately lo-
calizes the charge carriers. In the next sections we analyze the behaviour of one dimensional
disordered systems with interactions.

6See [10] p.305 for a detailed calculation
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Figure 2.7: a) Maximally crossed diagrams represent the weak localization correction. b) The
constructive interference between electrons of time-reversed pairs of paths are responsible for the
enhanced probability to remain at point r. c) Bethe Salpeter equation for the Cooperon. In contrast
to the Diffuson, the Green’s functions in the ladder point in the same direction.

2.1.3 Disorder in Luttinger liquids

In one dimensional systems the general disorder term in the Hamiltonian, Eq. (2.4) can be
simplified. We assume the disorder strengthDdis to be much smaller than the Fermi energy. In
that case one can basically distinguish between two different scattering mechanisms. Forward
scattering η(x) with a momentum transfer of q ∼ 0, and backward scattering ξ(x) which
changes the momentum by −2kF .
The two components η and ξ can be related to the general disorder field V (x) by its Fourier
coefficients:

η(x) =
1
L

∑
q∼0

Vqe
iqx

ξ(x) =
1
L

∑
q∼−2kF

Vqe
iqx (2.38)

Note that for η(x) the Fourier phase factor is practically 1 and thus η is a real field in contrast
to ξ(x), which is in general a complex field.
In the section about bosonization we decomposed the Fermion field ψ into right and left
movers as well as fast and slow oscillations.

ψ(x) = e−i2kF xψL(x) + ei2kF xψR(x)

We use the slowly varying chiral fields ψL/R(x) to couple them to the scattering potentials η,
ξ. The fast oscillating phase factors of the backscattering term are absorbed in ξ. Thus the
disorder part of the Hamiltonian, Eq. (2.4) becomes:

Hdis =
∫

dxη(x)
[
ψ̄R(x)ψR(x) + ψ̄L(x)ψL(x)

]
+
∫

dx
[
ξ(x)ψ̄L(x)ψR(x) + ξ∗(x)ψ̄R(x)ψL(x)

]
(2.39)
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The disorder fields are uncorrelated since η and ξ are independent random variables. This
can easily be seen from the Fourier coefficients of the original disorder field V (x). They are
delta correlated: VqV ∗

q′ = Ddisδq,q′ , and thus η and ξ are uncorrelated:

η(x)ξ(x′) = 0

Moreover, from V (x)V (x′) = Ddisδ(x−x′) we can derive the following relations of the disorder
fields:

η(x)η(x′) = Dfδ(x− x′)

ξ(x)ξ(x′) = 0
ξ(x)ξ∗(x′) = Dbδ(x− x′) (2.40)

Df , Db denote the disorder strength of forward and backward scattering potentials respec-
tively. From equation (1.42) of the section about bosonization we have seen how to relate the
Boson field φ(x) to the density of left and right movers ρL/R = ψ̄L/RψL/R

7. Moreover the
relations for ψ(x) are:

ψR(x) = UR lim
α→0

1√
2πα

ei(kF− π
L

)xe−i(φ(x)−θ(x)) (2.41)

ψL(x) = UL lim
α→0

1√
2πα

e−i(kF + π
L

)xei(φ(x)+θ(x)) (2.42)

Inserting these relations into equation (2.39), the full Hamiltonian of the system reads:

H = H0 +Hforward +Hbackward

=
1
2π

∫
dx
[
uK(πΠ(x))2 +

u

K
(∇φ(x))2

]
−
∫

dxη(x)
[

1
π
∇φ
]

+
∫

dx
ξ∗(x)
2πα

ei2φ(x) + h.c. (2.43)

Here H0 is the Hamiltonian of the clean interacting system, Eq. (1.48) and Hdis = Hforward+
Hbackward.
From the expression of the transport time τtrans in the Boltzmann equation we know that
forward scattering does not affect transport, see [10] p.275. It is instructive to analyze the
role of η(x) while keeping the Boltzmann result in mind.
The fact that η(x) does not affect the transport behaviour can be easily seen after applying
the following gauge transformation in Eq. (2.43):

φ̃(x) = φ− K

u

∫ x

dyη(y) (2.44)

Transforming φ in that way, Hforward vanishes but the transformation has generated an
additional factor in the back scattering term Hbackward.

Hbackward =
∫

dx
ξ∗(x)ei

2K
u

R x dyη(y)

2πα
ei2φ̃(x) + h.c.

7− 1
π
∇φ(x) = ρL(x) + ρR(x)
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However this is not a problem since we can introduce a random field ξ̃(x) = ξ(x)e−i
2K
u

R x dyη(y).
For ξ̃(x), relation (2.40) remains valid and the distribution of ξ̃(x) is still gaussian.
We have seen8 that the current is related to the time derivative of the Boson field j ∼ ∂tφ.
The transformation in (2.44) introduces only a shift in space and therefore the additional term
drops out after derivating with respect to the time. Hence the transformation, Eq. (2.44)
does not change the current. As expected, the conductivity, which is calculated from the
current-current correlation function, is not affected by forward scattering.
Nevertheless, forward scattering has influence on correlation functions like 〈ψ̄ψ〉 which decays
exponentially with the forward disorder strength Df

9.
Henceforth, we write ξ̃ and φ̃ without tilde and assume always that forward scattering is
gauged out.
The action of the disordered Luttinger liquid reads:

S = S0 + Sbackward

=
1

2πL

∫
dx
∫ β

0
dτ
[

1
u

(∂τφ(x, τ))2 + u (∂xφ(x, τ))2
]

+
∫

dx
∫ β

0
dτ
[
ξ∗(x)
2πα

ei2φ(x) + h.c.

]
(2.45)

Using the replica technique we are able to perform the disorder average at first. We use the
Debye-Waller relation10:

〈eSbackward〉dis = e−
1
2
〈S2

backward〉dis

Thus we obtain the following effective disorder action in the imaginary time Matsubara for-
malism11:

SMatsubara
D = − Db

(2πα)2

n∑
a,b=1

∫
dxdτdτ ′ cos(2φa(x, τ)− 2φb(x, τ ′)) (2.46)

Here τ is the imaginary time coordinate and not the scattering time.

2.1.4 Giamarchi-Schulz RG & phase diagram of disordered
Luttinger liquids

In the following we are going to analyze the interplay between interactions and disorder,
[5](chapter 9), and [7]. The renormalization group (RG) is a procedure to study the low
energy physics of a model by successively integrating out the high energy degrees of freedom.
This partial summation is done in a way that preserves the partition function and thus the
thermodynamic behaviour remains unchanged. The low energy model can be quite different
from the microscopic model from which one has started. The transition from the initial
microscopic model to the effective low energy model is described in terms of a flow of coupling
constants in a space of all possible couplings. The goal is to obtain physical properties directly
from the flow. In order to perform the average over high energy modes we have to decompose
the fields into fast and slow modes. Moreover we introduce a momentum cut off Λ which

8See section (1.5)
9See [5] chapter 9.2

10 〈. . .〉dis indicates the disorder average
11For a detailed derivation see [5], chapter 9.



46 2. Disordered Luttinger Liquids

corresponds to the smallest length scale in the system. For example the lattice spacing
might play such a role. Here the parameter α is the smallest length scale. Fast modes are
characterized by momenta and frequencies between Λ′ and Λ, where Λ′ < Λ.

Λ′ < |k| < Λ
Λ′ < |ωn|/u < Λ (2.47)

Slow modes have momenta smaller than Λ′ and frequencies ωn smaller than Λ′u.

|k| < Λ′

|ωn|/u < Λ′ (2.48)

However, it will turn out that a circle in (k, ωn/u)-space is more suited for calculations than
the square defined by Eq. (2.48). Thus momenta and frequencies for slow modes are restricted
in the following way: √

k2 + (ωn/u)2 < Λ′ (2.49)

For fast modes, there is the following relation:

Λ′ <
√
k2 + (ωn/u)2 < Λ (2.50)

In the following we use the disorder averaged action Eq. (2.46). Thus, in this subsection τ
denotes the imaginary time and 1/γ is the transport scattering time.

φ(x, τ) = φ>(x, τ) + φ<(x, τ) (2.51)

where

φ>(x, τ) =
1
β

∫
dk
2π

∑
ωn

ei(kx−ωnτ)φ(k, ωn)θ(Λ− q)θ(q − Λ′)

φ<(x, τ) =
1
β

∫
dk
2π

∑
ωn

ei(kx−ωnτ)φ(k, ωn)θ(Λ′ − q)

q :=
√
k2 + (ωn/u)2 (2.52)

Using this decomposition one can divide the quadratic action into high energy and low energy
components:

S0 = S>0 + S<0 (2.53)

where the quadratic part in Fourier space reads:

S0 =
1

2πuK
1
β

∫
dk
2π

∑
ωn

(
ω2
n + u2k2

)
φ∗(k, ωn)φ(k, ωn)

and S>0 , S<0 on the right hand side of (2.53) can be obtained from restricting the momentum-
energy summation in S0. To derive the RG equations we also have to introduce a cut-off that
restricts the double time integral in Eq. (2.46): u|τ − τ ′| ≥ α. However, if we simply restrict
this integral, then SMatsubara

D will no longer describes elastic impurity scattering. Hence for
consistency it is necessary to keep also the part where u|τ − τ ′| ≤ α. In that case τ ≈ τ ′ and
the two fold integration over τ , τ ′ of the second term simplifies:

Db

∫∫
dτdτ ′ ≈ Db

∫∫
u|τ−τ ′|≥α

dτdτ ′ +
2α
u
·Db

∫
dτ (2.54)
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The full action of the system is:

S = S0 −
Db

(2πα)2

n∑
a,b=1

∫
dx
∫∫

u|τ−τ ′|≥α
dτdτ ′ cos(2φa(x, τ)− 2φb(x, τ ′))

− 2α
u
· Db

(2πα)2

n∑
a,b=1

∫
dx
∫

dτ cos(2φa(x, τ)− 2φb(x, τ + ∆τ)) (2.55)

Here, ∆τ < α/u. From now on we drop the replica indices since we only want to expand up
to the first order in Db. At this order the expression is diagonal in replica space and it is not
necessary to consider them explicitly. The cosine of the last term in (2.55) can be expanded
up to quadratic order in the difference of the fields: φa(x, τ)−φb(x, τ + ∆τ). Thus that term
describes electron-electron back scattering processes [5]. In the Bosonization section we saw
that for a spinless Luttinger liquid backscattering, or g1-processes, cannot be distinguished
from g2- forward scattering processes12. Thus the quadratic part of the last term in (2.55) is
included into g2 processes and hence gives rise to a renormalization of g2 [7]:

g2 → ḡ2 = g2 −
2αDb

u
= g2 − uπD̄b (2.56)

As a result the last term in (2.55) is taken into account by a renormalized K̄ and ū which
are now governed by interactions and disorder. Now we are able to perform the Wilson RG
procedure of integrating out the fast modes. Furthermore we take into account disorder effects
in a leading order approximation in the disorder strength Db.

Z
Z0

=
1
Z0

∫
D[φ>, φ<]e−S

>
0 −S

<
0

[
1− Db

(2πα)2

∫
dx
∫∫

u|τ−τ ′|≥α
dτdτ ′ cos(2φ(x, τ)− 2φ(x, τ ′))

]
(2.57)

We average over the fast oscillating modes to get an effective action of the slow modes:

Z
Z0

=
1
Z0

∫
D[φ<]e−S

<
0

[
1− Db

(2πα)2

∫
dx
∫∫

u|τ−τ ′|≥α
dτdτ ′ cos(2φ<(x, τ)− 2φ<(x, τ ′))e

−2〈[φ>(x,τ)−φ>(x,τ ′)]2〉
S>
0

]
(2.58)

and we reexponentiate Eq. (2.58) to get the result of the first loop of the RG:

Z
Z0

=
1
Z0

∫
D[φ<]e

−S<
0 −

Db
(2πα)2

R
dx

RR
u|τ−τ ′|≥α dτdτ ′ cos 2(φ<(x,τ)−φ<(x,τ ′))e

−2〈[φ>(x,τ)−φ>(x,τ ′)]2〉
S>
0

(2.59)

12see figure (1.4) where the various electron-electron scattering processes are characterized.
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The action of (2.59) is similar to the original action (2.55). However, here we only have slow
fields, that means now the energy cut-off is smaller: Λ′ instead of Λ. In order to compare this
action with the original one we have to rescale the system by:

dx = Λ
Λ′dx̃ dτ = Λ

Λ′dτ̃ (2.60)

The effective action is similar to the original one but the disorder strength Db is renormalized:

D̃b = Db ·
(

Λ
Λ′

)3

e
−2〈[φ>−φ′>]2〉

S>
0 (2.61)

The correlation function in the exponent for β →∞, L→∞ is:

−2〈
[
φ>(x, τ)− φ>(x, τ ′)

]2〉S>
0

=

= −2
∫

dωn
2π

∫
dp
2π

[2− 2 cos(qx− ωt)]
πuK

ω2
n + u2p2

θ(Λ−Q)θ(Q− Λ′)

≥ −4πK
∫

κ

2π

∫
dωn
2π

1
ω2
n + κ2

θ(Λ−Q)θ(Q− Λ′)

= −2K
∫ Λ

Λ′
dq

1
q

= −2K ln
(

Λ
Λ′

)
(2.62)

where Q =
√
p2 + (ωn/u)2.

Thus the renormalized disorder strength (2.61) becomes :

D̃b(Λ′) = Db(Λ) ·
(

Λ
Λ′

)3−2K

(2.63)

From this expression we are able to derive the flow equation of the disorder strength. We
parametrize the cut-off by Λ(l) = Λ0e

−l and assume that the other cut-off Λ′ differs infinites-
imally from Λ. Hence Λ′(l + dl) = Λ0e

−l−dl, and the flow equation reads:

dD̄b

dl
= (3− 2K)D̄b (2.64)

where D̄b = 2α
πu2Db.

The other flow equations are calculated in a similar way, [5] Appendix E1. They are:

dK̄
dl

= −K̄
2

2
D̄b (2.65)

dū
dl

= − ūK̄
2
D̄b (2.66)

These flow equations describe the behaviour of a spinless disordered Luttinger liquid. The
corresponding phase diagram is given in figure (2.8).
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Figure 2.8: Phase diagram and flow of a spinless disordered Luttinger liquid in terms of the renor-

malized parameter D̄b and K̄. D̄b = 2α
πu2Db. K̄ =

(
1+y4/2−ȳ2/2
1+y4/2+ȳ2/2

)1/2

, where y4 = g4/(πvF ) and
ȳ2 = ḡ2/(πvF )

The phase diagram in Fig. (2.8) shows a localization-delocalization transition. However
in Fig. (2.8) it looks like initially weak interactions K̄ ∼ 1 become strong under the flow.
Of course this is not the case and the reason for a decreasing K̄ is the increasing disorder
strength D̄b.
In order to get the flow equations in terms of the old parameters we have to insert K̄ =
K −KD̄b/2; equation (2.65) becomes:

dK
dl

=
3
2
K(1−K)D̄b +O(D̄2

b ) (2.67)

Furthermore we are interested in weak interactions K = 1 − ε, ε � 1. The flow equations
(2.64) and (2.65) read:

dε
dl

= −3ε
D̄b

2
+O(D̄2

b ) (2.68)

dD̄b

dl
= (1 + 2ε)D̄b (2.69)

The flow diagram is shown in figure (2.9). Around K = 1 where interactions are weak, the
system flows torwards stronger and stronger disorder strength.
This flow indicates that the inelastic interactions are reduced by disorder, [5] p. 287. Obviously,

Figure 2.9: Phase diagram in terms of the real interaction constant K and the disorder strength
D̄b.

disorder does not produce inelastic interactions, cf. Fig. (2.8). The flow pattern is now in
agreement with the physical picture that the interaction effects become less relevant in the
localized phase due to the exponentially small overlap of the individual wave functions.
To conclude this section we discuss the transport scattering time of disordered Luttinger liq-
uids.
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At higher temperatures, where the thermal length LT = u/T is smaller than the mean free
path l, the impurities are independently renormalized by Friedel oscillations [2]. The sin-
gle impurity problem was studied in [16], [17]. It was found that the renormalized linear
conductance Gcond is:

Gcond(T ) =
e2

2π~
T0(T · α)2ε

R0 + T0(T · α)2ε
(2.70)

Thus, the scattering time13 1/γ becomes temperature dependent:

1
γ(T )

=
1
γ0

(T · α)2ε (2.71)

where ε = 1−K � 1.

13Since τ denotes the imaginary time in this subsection, 1/γ is the scattering time
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2.2 Transport in disordered Luttinger liquids

As mentioned in the introduction, the DC conductivity of a non interacting one dimensional
disordered system is zero due to Anderson localization. At finite frequencies ω the conduc-
tivity increases and is described by the Berezinskii-Mott conductivity [4]. The RG analysis in
the last section has shown that for repulsive interactions disorder is relevant and the system
flows to the localized strong coupling regime. This is the pinned charge density wave (CDW)
phase14.
In subsection (2.1.2) we have seen that a finite temperature leads to dephasing due to inelastic
electron-electron scattering. Dephasing limits the magnitude of quantum interference effects
like weak localization. Thus we expect that dephasing effects weaken Anderson localization in
one-dimensional systems. Note that the thermal length LT = u/T and the coherence length
Lφ are in general different parameters. Thus it is in general not sufficient to use LT to argue
whether localization is strong or not. In order to estimate the influence of dephasing on the
transport behaviour we have to evaluate the weak localization (WL) correction [2].
Since we have to use τ for the imaginary time in this chapter, the transport scattering time
τtr =: 1/γ will be denoted by γ in order to avoid confusions.
In the following we analyze the answer obtained by I.V. Gornyi, A.D. Mirlin and D.G.
Polyakov (GMP) [2]. They used a functional bosonization approach to calculate the WL
correction and the relevant dephasing rate τ−1

φ . They conclude, that the transport behaviour
at high temperatures15 is close to the Drude conductivity. All further quantum corrections
are small. According to GMP [2], it is possible that one dimensional disordered systems with
interactions exhibit a transport behaviour similar to mesoscopic systems in higher dimen-
sions.
In order to compare our full bosonization approach of subsequent sections, we will briefly
show the main steps of the calculation of [2], part VII.

2.2.1 Weak localization and dephasing in 1D

We start with the basics of diagrammatic techniques for functional bosonization. A right
moving electron which propagates from 1 = {x1, τ1} to 2 = {x2, τ2} is described by the
following expression, see Eq. (1.68), (1.74):

GR(1, 2) = 〈gR(x2 − x1, τ2 − τ1; [ϕ])ei[θR(2)−θR(1)]〉Sϕ (2.72)

The corresponding diagrammatic expression is depicted in figure (2.10). The functional
bosonization technique separates the free electron propagation from interactions. As noted in
the bosonization part, interactions are exactly taken into account in the functional bosoniza-
tion formulation. Now we include an external backscattering potential ξ(x2) at position x2.
The corresponding Green’s function reads:

G(x3, x1, τ3 − τ1) =
∫ β

0
dτ2

∫
dx2ξ(x2)gR(x2 − x1, τ2 − τ1)gL(x3 − x2, τ3 − τ2)·

· 〈ei[θR(2)−θR(1)+θL(3)−θL(2)]〉Sϕ (2.73)

Figure (2.11) shows the diagrammatic representation of Eq. (2.73)
14 [5] chapter 9
15i.e. the thermal length LT is smaller than the mean free path l
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Figure 2.10: Diagrammatic representation of the Green’s function of a right mover. The solid line
represents the free Green’s function gR(1, 2), the wavy line the interaction factors exp(iθ). a) Green’s
function before averaging with respect to Sϕ. b) After averaging the total Green’s function G with
respect to the interacting system.

Figure 2.11: Diagrammatic representation of the Green’s function G(x3, x1, τ3 − τ1) in Eq. (2.73)

The Sϕ− average of the exponential of θ-fields describes all possible pairings of the wavy
lines.

〈ei[θR(2)−θR(1)+θL(3)−θL(2)]〉Sϕ = e−BRR(x2−x1,τ2−τ1)+BRL(x2−x1,τ2−τ1)·

· e−BLL(x3−x2,τ3−τ2)−BRL(x3−x2,τ3−τ2)−BRL(x3−x1,τ3−τ1) (2.74)

Note that BRL(0, 0) = 0.
The correlation functions Bµν(x′ − x, τ ′ − τ); µ, ν = R/L will appear very often in this
subsection, they read [2]:

Bµν(x, τ) = 〈[θµ(0, 0)− θµ(x, τ)]θν(0, 0)〉Sϕ

BR,R/L(x, τ) =
1
β

∑
Ωn

∫
dq
2π

eiqx−iΩnτ − 1
(iΩn − qvF )(iΩn ∓ qvF )

VRν(iΩn, q) (2.75)

BLL(x, τ) = BRR(−x, τ) and BRL(x, τ) = BLR(x, τ).
This calculation can be extended to arbitrarily many impurities. Consequently, we are able
to take into account interactions exactly and disorder perturbatively.
To summarize, the Feynman rules for Luttinger liquids in the presence of an external backscat-
tering potential are:

• a free Green’s functions: gR/L(x, τ) is represented by solid line

• at vertices there are wavy lines that account for interactions

• a backscattering vertex at x′ is given by (see Fig. (2.11) and Eq. (2.73)):

ξ(x′)ei[θR/L(x′)−θL/R(x′)]

• To calculate the diagram, one has to:
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– take into account all possible pairings of the interaction lines

– sum over internal coordinates.

In section (2.1.2) we have seen that quantum corrections to the conductivity (WL) are
represented by maximally crossed diagrams.
It can be shown that the two-impurity non-Drude diagrams vanish to leading order in (εF τ)−1,
see [2]. Consequently, the next possible diagram that contributes to the Cooperon is the three-
impurity bubble shown in figure (2.12).

Figure 2.12: Minimal Cooperon. The Cooperon disorder impurity lines (green) couple to the solid
electron lines of the Cooperon. The inset shows the disorder renormalization in the interaction propa-
gators. The Plasmon disorder impurity lines (red) indicate the disorder renormalization of the bubbles.

In the regime of strong dephasing τφγ � 1 the three impurity Cooperon is the leading
contribution to the WL correction. All higher order terms in impurity scattering are sub-
leading corrections in parameters τφγ � 1. According to the Feynman rules, each of the six
impurity vertices should be dressed by the interaction factors.
Let us analyze the effect of disorder on interactions, namely we have to average the RPA
bubbles, see [2]. The assumption is that the Cooperon impurities and the Plasmon impurities
are uncorrelated, as indicated in Fig. (2.12). The bubbles are averaged independently, which
means that no impurity line connects two different bubbles. The independent averaging of the
RPA bubbles and the Cooperon over disorder is justified if the characteristic energy transfer
ω ∼ 1/τφ � γ (see p.14 of [2]).
The disorder renormalization of the pair bubbles introduces damping in the interaction propa-
gators Vµν . Due to Eq. (2.74), damping is also introduced in the interaction factors Bµν of the
Green’s functions. The disorder renormalized interaction propagators read (see A21/22 of [2]):

VRR(ω, q) = − g2
2

2πvF

q2v2
F − qvFω − iω γ2

q2u2 − ω2 − iω(γ + δγ)
(2.76)

VRL(ω, q) = g2
q2v2

F − ω2 − iω
(
γ + δγ

2

)
q2u2 + ω2 − iω(γ + δγ)

(2.77)

where δγ = −γg2/2πvF . Both propagators, Eq. (2.77) and (2.76), contain dissipative terms
proportional to iωγ.
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Note that, disorder is introduced at two points, as backscattering vertices of electrons and
as a disorder renormalized RPA. This is indicated by Plasmon disorder and Cooperon disorder
lines in figure (2.12). There is no rigorous proof that these impurities are independent.
A derivation from first principles, i.e. from a backscattering term in the fermionic action, is
highly desirable. Later we use such an approach in the full bosonization framework where
disorder is included from the beginning. The disadvantage is that we are not able to formulate
convenient mesoscopic diagrams like Diffusons and Cooperons in a straightforward way.

Let’s now discuss the weak localization correction ∆σWL. In figure (2.13) all diagrams
that contain three impurities are shown. The second and the third diagram together give
the same contribution c3 as the first diagram [2]. Hence we only need to discuss the three-
impurity Cooperon diagram.

Figure 2.13: Diagrams that contribute to leading order in τφ · γ to the weak localization correction

The interaction factor is responsible for dephasing and the renormalization of impurities:

exp(−SC) = 〈exp [i(θf − θb)]〉S[ϕ] (2.78)

θf,b are the phases accumulated by an electron propagating along the forward and backward
paths.

θf = θR(1)− θL(1)− θR(2) + θL(2) + θR(3)− θL(3) (2.79)
θb = θR(1̄)− θL(1̄)− θR(2̄) + θL(2̄) + θR(3̄)− θL(3̄) (2.80)

The coordinates 1, 2, . . . denote the space and imaginary time variable, e.g. 1 = {x1, τ1}.
Averaging with respect to Sϕ yields all possible pairings between the θ-fields. Therefore, we
have a sum of Bµν(xi − xj , τi − τj).
The result of that calculation will be the dephasing action SC . We skip further calculations
and jump to the discussion of the result:

δσWL = −1
4
σD

(τφ
τ

)2
ln

τ

τφ
(2.81)

where
1
τφ

= ε

√
πT

τ

The behaviour of the conductivity of one dimensional disordered systems with weak interac-
tions, ε = 1−K � 1, is shown in figure (2.14).
The expression of the weak localization correction (2.81) gives rise to an energy scale T1:

T1 =
1
ε2τ

(2.82)
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For T < T1 localization effects become strong and the DC conductivity vanishes: σDC → 0.
At temperatures T > T1/ε which are much higher than T1 the behaviour of the conductivity
becomes similar to the conductivity of conventional mesoscopic systems in higher dimensions.
In the following chapters we analyze this high temperature regime using an alternative ap-
proach to disordered Luttinger liquids.

Figure 2.14: Schematic behaviour of the conductivity. The dotted line indicates the Drude conduc-
tivity, which is temperature dependent due to the renormalized scattering time. Moreover there is a
localization transition in the space of many-body states, see [14], [15], indicated by the vertical dotted
line.
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Chapter 3

Keldysh Formalism in Disordered
Luttinger liquids
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In the following chapters a full bosonization approach to disordered Luttinger liquids is
presented. In contrast to chapter two, we are going to use the Keldysh technique to calculate
disorder averaged quantities. We remind that the advantage of the Keldysh technique in
disordered systems is that quantum average and disorder average can be interchanged since
the partition function is unity Z = 1.
In section (3.1) we derive the disorder averaged action of disordered Luttinger liquids. The
action is used in section (3.2) to calculate the first order correction in the disorder strength
Db to the conductivity. This correction was already obtained in [23] and [32]. Based on
this calculation we are able to derive important selection rules which are used in further
calculations.

3.1 The disorder averaged action

In section (2.1.3) we discussed the back scattering term of the imaginary time action, Eq.
(2.45). The disorder action on the Keldysh contour has the following form:

Sdis =
∫
CK

dt

∫
dx
(
ξ(x)ψ̄L(x)ψR(x) + ξ∗(x)ψ̄R(x)ψL(x)

)
=
∫ ∞

−∞
dt

∫
dxξ(x)[ψ̄L+ψR+(x)− ψ̄L−ψR−(x)] +

ξ∗(x)[ψ̄R+ψL+(x)− ψ̄R−ψL−(x)] (3.1)

The disorder average will generate an effective electron interaction1.
Using the Debye-Waller relation 〈eiSdis〉dis = e−

1
2
〈S2

dis〉dis = eiSD one can perform the disorder
average:

SD =
Db

2i

∫
dtdt′dx

(
[ψ̄L+ψR+ − ψ̄L−ψR−](x, t)[ψ̄R+ψL+ − ψ̄R−ψL−](x, t′) + h.c.

)
(3.2)

where Db is the disorder strength.
Now we apply the bosonization identity. Bosonization is a well defined procedure on the
Keldysh contour. If a Fermion is on the + line then also the corresponding Boson fields
have this subscript and vice versa on the backward time contour. Since the Klein factors
UR/L commute with the Hamiltonian H, Eq. (2.43), they have no time dependence and stay
constant on the Keldysh contour no matter if we are going forward or backward in time. The
bosonization identities read:

ψR±(x) = UR± lim
α→0

1√
2πα

ei(kF− π
L

)xe−i(φ±(x)−θ±(x)) (3.3)

ψL±(x) = UL± lim
α→0

1√
2πα

e−i(kF + π
L

)xei(φ±(x)+θ±(x)) (3.4)

We insert the bosonization identities in Eq. (3.2) and get the effective disorder action similar
to the sine-Gordon type but non-local in time.

SD =
Db

i(πα)2

∫ ∞

−∞
dtdt′dx cos

[
(φcl(x, t)− φcl(x, t′))

]
· sin (φq(x, t)) · sin

(
φq(x, t′)

)
(3.5)

Thus we obtained the action that describes disordered Luttinger liquids. It is given by:
S = S0 + SD, where S0 is given in Eq. (1.157) and SD in Eq. (3.5).

1see chapter 6 of [8]
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3.2 First order correction in disorder strength to the clean
conductivity

It is not feasible to calculate the retarded Green’s function 〈φclφ∗q〉S exactly since the effective
disorder action SD, Eq. (3.5), is a product of sine and cosine of the fields. The retarded
Green’s function, however, is necessary to calculate the conductivity, see Eq. (1.161). Never-
theless, one can calculate the conductivity σ perturbatively assuming weak disorder. Thus,
we expand the retarded Green’s function in the disorder strength Db:

〈φcl(k, ω)φ∗q(−q,−ν)〉S=S0+SD
= 〈φcl(k, ω)φ∗q(−q,−ν)〉S0+〈φcl(k, ω)φ∗q(−q,−ν)iSD〉S0+O(D2

b )
(3.6)

The leading term of Eq. (3.6) has been evaluated in Eq. (1.162).
The expansion of the Drude conductivity of a non-interacting system in powers of 1/ωτ has
been shown in Eq. (1.137). Here τ denotes the transport scattering time. In the same
sense we expand in Db, calculate the first order correction in disorder strength to the clean
conductivity and relate τ and Db at the end of the calculation by comparing it with the
non-interacting limit. We expand the conductivity in Db:

σ(ω)|k=0 ≈ σ0 + σ1 (3.7)

where σ0 = ie2uK/π~(ω + iδ) and

σ1(ω)|k=0 =
e2

2π2~2

∫
dq

2π

∫
dν

2π
ω〈φcl(k, ω)φ∗q(−q,−ν)iSD〉S0 (3.8)

The disorder action SD is given in (3.5). However, we rewrite it into a form which is convenient
for taking expectation values:

SD =
Db

i(2πα)2

∫ ∞

−∞
dtdt′dx

[
ei(φcl−φ′cl+φq−φ′q) + ei(φcl−φ′cl−φq+φ′q)

−ei(φcl−φ′cl+φq+φ′q) − ei(φcl−φ′cl−φq−φ′q)
]

(3.9)

Equation (3.5) has actually eight exponential factors, two for each cosine/sine respectively.
But we reduced their number in Eq. (3.9) by taking into account all the complex conjugate
terms by a factor of two. To relate the four exponentials of Eq. (3.9) to the box diagrams2

which will be used in the calculation of Eq. (3.8), we write Eq. (3.9) in a diagrammatic way:

SD =
Db

i(2πα)2

∫∫
dtdt′dx

(3.10)
Here the diagrammatic representation is only schematical and not an identity since the

box diagrams are used to represent correlation functions in this work.
Throughout the text the shorthand notation φ = φ(x, t) and φ′ = φ(x, t′) is often used.
Here it is important to note that since φq ∼ φ+−φ− electric neutrality3 is fulfilled in all four

2see appendix A.3
3Since the Boson fields are notoriously divergent, e.g. 〈exp(iφ)〉 = exp(−〈φφ〉/2) = 0, the expectation value

〈ei
P

j(Ajφ+(rj)+Bjφ−(rj))〉 6= 0 if and only if
P

j Aj = 0 and as well for Bj . This is called electric neutrality.
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factors of (3.9).
Together with the results from the appendices we have all tools to calculate

〈φcl(k, ω)φ∗q(−q,−ν)iSD〉S0 (3.11)

The mixture of fields and exponential of fields in (3.8) can be evaluated by exponentiating
the fields at first and then evaluate the expectation value. As an example how to perform
this trick explicitly we use the third diagram in Eq. (3.10). At first we exponentiate the two
fields φcl(k, ω) and φ∗q(−q,−ν):

〈φclφ∗qei(φcl−φ′cl−φq+φ′q)〉S0 =

= limI1,I2→0 ∂
2
I2,I1

〈exp(i[I1φcl − I2φ
∗
q +

(
φcl − φ′cl − φq + φ′q

)
])〉

(3.12)

and apply the Debye Waller relation before taking the derivatives and the limits. Thus (3.12)
becomes:

−〈φ∗q
(
φcl − φ′cl − φq + φ′q

)
〉 · 〈φcl

(
φcl − φ′cl − φq + φ′q

)
〉e−

1
2
〈[...]2〉

+ 〈φclφ∗q〉e−
1
2
〈[...]2〉 (3.13)

with 〈[. . .]2〉 = 〈[φcl − φ′cl − φq + φ′q]
2〉.

The second term is a disconnected diagram. It can be shown in fermionic language without
interactions that the last term basically corresponds to a clean pair bubble times a closed
loop diagram with one impurity line, Fig (3.1). Note that the structure in (3.13) is the same
for the other exponentials of iSD. Only the signs in front of the fields change.

3.2.1 Cancellation of vacuum diagrams

In the introduction about the Keldysh technique it was shown that the partition function Z
is unity and that this property is not altered by perturbation theory. To show that this is the
case, at least up to first order in Db, we expand the partition function: Z = 1+〈iSD〉+O(D2

b ).
Since the leading term is already unity all other powers of iSD have to be zero:

〈iSD〉 =
Db

(2πα)2

∫∫
dtdt′dx

(
〈ei(φcl−φ′cl+φq−φ′q)〉+ 〈ei(φcl−φ′cl−φq+φ′q)〉

−〈ei(φcl−φ′cl+φq+φ′q)〉 − 〈ei(φcl−φ′cl−φq−φ′q)〉
)

(3.14)

The results for various correlation functions are given in the appendix. Since all terms have
the exp(−〈(φcl − φ′cl)

2〉) in common we can factorize them out and consider the different
phase factors alone. These phase factors correspond to correlation functions of the type:
exp(〈φclφ′q〉). Thus equation (3.14) is equal to zero.

〈iSD〉S0 ∼ eiπK + e−iπK − e−iπK·sign(t−t′) − eiπK·sign(t−t′) = 0 (3.15)

The corresponding diagrammatic representation is shown in figure (3.1, 2). The cancelation
eliminates the vacuum diagrams which we have encountered in equation (3.13).
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Figure 3.1: 1) Disconnected closed vacuum loop diagram in fermionic language which appears
in the first order of perturbation theory O(Db) of the conductivity. The closed diagram with the
impurity line (dotted line) is disconnected from the pair-bubble which would represent the zeroth
order approximation if it was taken alone. The solid lines denote electron Green’s functions in Keldysh
space. 2) Diagrammatic representation of disconnected vacuum terms in bosonization (see Eq.(3.13)).
Here, the φcl − φq-line above the boxes is not connected to the disorder potential. The φcl − φq-line
corresponds to the bubble in 1) if K=1.

3.2.2 Causality principle in Keldysh calculation

From the theory of free fermions in disordered systems we know that the Drude conductivity
has no explicit temperature dependence. However, there are four terms in equation (3.13)
that contain a Keldysh Green’s function4:

〈φ∗qφcl〉 · 〈φclφcl〉; 〈φ∗qφ′cl〉 · 〈φclφ′cl〉;
〈φ∗qφ′cl〉 · 〈φclφcl〉; 〈φ∗qφcl〉 · 〈φclφ′cl〉

(3.16)

Since Keldysh Green’s functions, eq.(1.127), are a combination of retarded and advanced
Green’s functions, retardation can be in general violated if such terms are present. However,
this would be wrong since the conductivity is calculated by retarded expressions. Moreover,
Keldysh Green’s functions have a factor coth(ωβ/2) these terms introduce a temperature
dependence which does not vanish when the Luttinger parameter K is set to unity5. Hence
these terms are expected to vanish.
Let us define:

K(t− t′) = −1
2
〈
[
φcl(x, t)− φcl(x, t′)

]2〉S0+SD
(3.17)

4each of the other four terms are basically a product of two retarded correlation function:

〈φ∗qφcl〉〈φclφq〉; 〈φ∗qφ′cl〉〈φclφ
′
q〉; 〈φ∗qφ′cl〉〈φclφq〉; 〈φ∗qφq〉〈φclφ

′
q〉

5K = 1 corresponds to the limit where no interactions are present
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and
F (t− t′) :=

Db

(2πα)2
eK(t−t′) (3.18)

Furthermore we expand 〈iSD〉 and denote the four terms that are not proportional to DK by
R.

〈φclφ∗qiSD〉S̄ = R+
∫
dt′
∫
dt

∫
dxF (t− t′) ·

[
(3.19)

(
eiπK + e−iπK − e−iπKsign(t−t′) − eiπKsign(t−t′)

)
×

The four different phase factors in the second line of (3.19) come from the four exponentials
of the action. The diagrams correspond to a product of two correlation functions, e.g. 〈φ∗qφcl〉·
〈φclφcl〉 . The external fields are represented by a dotted line (φ∗q(−q,−ν)) and solid line
(φcl(k, ω)). They are coupled to one of the four fields of the exponential which is represented
by a box. It is easy to see that the second line yields zero and hence terms that are proportional
to DK do not contribute.

This is an important result since it also eliminates the quantum-quantum correlation
function

〈φqφ∗qiSD〉 = 0 (3.20)

Since two external quantum fields can only couple to the classical fields6 of the box one can
easily verify this by replacing the solid line by a dotted line in the diagrams of Eq. (3.19).
To conclude, we showed that the disconnected diagrams and the diagrams that contain a
Keldysh Green’s function vanish. Moreover, the cancellation of the terms proportional to
Keldysh Green’s functions preserves retardation in our calculation.

6〈φq(x, t)φq(x
′, t′)〉 = 0
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3.2.3 Retarded terms of the conductivity

So far we have shown which terms do not give a contribution to the perturbation series. Now
let us calculate the remaining parts that will give a contribution to the first order correction
in Db to the clean conductivity. Here, all diagrams denote two retarded Green’s functions7,
as indicated in Eq.(3.23).

〈φcl(k, ω)φ∗q(−q,−ν)iSD〉S̄ = −
∫
dt′
∫
dt

∫
dxF (t− t′) ·

[

+eiπK×

+e−iπK×

+e−iπKsign(t−t′)×

+eiπKsign(t−t′)×

(3.21)

Since F (t − t′) = F (t′ − t) we can simplify Eq. (3.21) by changing the time integration
variables t ↔ t′. Namely, the diagrams of the second row are equivalent to the diagrams in
the first row and the diagrams of the fourth row are equivalent to the diagrams in the third
row.

= −
∫
dt

∫
dt′
∫
dxF (t− t′) sin (πK) i8θ(t− t′)×

(3.22)

where

〈φq(ti)φcl(t)〉〈φcl(tf )φq(t)〉− 〈φq(ti)φcl(t′)〉〈φcl(tf )φq(t)〉 =

(3.23)

7The fields which are written on the first box of each row indicate the origin of the signs in front of each
box-diagram. The overall minus sign in Eq. (3.21) is due to the derivative ∂2

I2,I1 taken in Eq.(3.12)
Note that the exponentials with a sign-function in the exponent have an extra minus sign in the action SD
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We remind that the conductivity is given by8

σ(ω, k = 0)Eω =
e2

2~2π2

∫
dq

2π

∫
dν

2π
ω〈φcl(k, ω)φ∗q(−q,−ν)〉S0+SD

E−ν (3.24)

Our goal is to approximate the correlation function in (3.24) up to the first order in the
effective disorder action SD.

〈φcl(k, ω)φ∗q(−q,−ν)〉S0+SD
≈ 〈φcl(k, ω)φ∗q(−q,−ν)〉S0︸ ︷︷ ︸

→σ0

+ 〈φcl(k, ω)φ∗q(−q,−ν)iSD〉S0︸ ︷︷ ︸
→σ1

(3.25)

The second term on the right hand side was evaluated in Eq. (3.21). Moreover we define:

F̄ (t− t′) =
e2

2~2π2
i · sin(πK)F (t− t′) (3.26)

The result of equation (3.21) ×e2/2~2π2 is:

e2

2~2π2
〈φcl(k, ω)φ∗q(−q,−ν)iSD〉 =

−8
∫∫

dtdt′dxF̄ (t− t′)θ(t− t′) · (〈φ∗q(−q,−ν)φcl(x, t)〉〈φcl(k, ω)φq(x, t)〉)

+ 8
∫∫

dtdt′dxF̄ (t− t′)θ(t− t′) · (〈φ∗q(−q,−ν)φcl(x, t′)〉〈φcl(k, ω)φq(x, t)〉) (3.27)

Furthermore we insert the retarded Green’s function in energy-momentum representation9

into the Fourier transformed current:

j̃(ω, k) = σ(ω, k)Eω =

=
∫∫

dtdt′dx

∫
dq

2π

∫
dν

2π
32 · F̄ (t− t′)θ(t− t′)ω

[
e−i(k+q)xeiωteiνt − e−i(k+q)xeiωteiνt

′
]

×DR(k, ω)DR(−q,−ν)E−ν (3.28)

We transform to center of mass and relative times:

T = t+t′

2 t̃ = t− t′

t = T + t̃
2 t′ = T − t̃

2

(3.29)

Equation (3.28) becomes
j̃(ω, k) =∫

dT dt̃dx
∫

dq

2π

∫
dν

2π
32F̄ (t̃)θ(t̃)ωei[(T + t̃

2
)(ω+ν)]

[
1− e−iνt̃

]
DR(k, ω)DR(−q,−ν)E−νe−i(k+q)x

(3.30)

8see equation (1.160)
9Note that: 〈φcl(k, ω)φ∗q(k, ω)〉 = 2iDR(k, ω)



3.2 First order correction in disorder strength to the clean conductivity 65

We perform the x -integral and get a δ-function
∫

dx exp(−i(k + q)x) = 2πδ(k + q). Fur-
thermore we integrate over the q-variable and get the condition q = −k. By repeating the
same procedure with the T - and ν-integration we get the condition ν = −ω. Equation (3.30)
becomes:

j̃(ω, k) =
∫
dt̃32F̄ (t̃)θ(t̃)ω

(
1− eiωt̃

) (
DR(k, ω)

)2
Eω (3.31)

By dividing by the electric field Eω we get the conductivity

σ1(ω)|k=0 =
2
~

( e
π

)2
Db

iπ2K2

(ω + iδ)3β3

(
πα

βu

)2K−2

β · 2 sin(πK)
∫ ∞

0
dt

1− eiωt

sinh2K(πβ t)︸ ︷︷ ︸
=:I

(3.32)

First order in Db result

In order to discuss equation (3.32) we need to simplify it further. The remaining integral is:

I(K,ωβ) = 2 sin(πK)
∫ ∞

0
dt

1− eiωβt

sinh2K(πt)
(3.33)

Note that the integral Eq. (3.33) is regular forK < 1. Moreover the integrand is exponentially
small at large times. This integral can be solved by an analytic continuation of the following
expression (See 4.131, 1. and 2. in [20]):

∫ ∞

0
eiax sinhν(gx)e−bxdx =

Γ(ν + 1)
2ν+1g

·
Γ
[
b−νg−ia

2g

]
Γ
[
b+νg−ia

2g + 1
] (3.34)

The conditions given in [20] are: Reν > −1,Reg > 0, |Re(gν)| < Reβ.
The factor exp(−bx) guarantees convergence of the integral for large times. In Eq. (3.34) we
have to assume that 0 < K < 0.5. Hence the hyperbolic sine is an exponentially small factor
at large times and we can analytically continue Eq. (3.34) to β = 0 and effectively forget
about the third condition. In this way we get:

− 2
sin(πK)

β

∫ ∞

0

eiωt

sinh2K(πTt)
dt = −22KΓ(1− 2K)

sin(πK)
π

Γ
[
K − i ω

2πT

]
Γ
[
1−K − i ω

2πT

] (3.35)

and
2
sin(πK)

β

∫ ∞

0

1
sinh2K(πTt)

dt = 22K Γ(1− 2K)
(Γ(1−K))2

(3.36)

where we used:
sin(πK)

π
=

1
Γ(K)Γ(1−K)

Equation (3.35) and (3.36) hold for 0 < K < 0.5. If we subtract Eq. (3.35) from (3.36), it
will be the result of the integration in Eq. (3.33) which holds for 0 < K < 1. Due to the
prefactor: sin(πK) the answer can be analytically continued to K = 1:

I(K,ω/T ) = 22KΓ[1− 2K]

(
1

Γ2[1−K]
− sin(πK)

π

Γ
[
K − i ω

2πT

]
Γ
[
1−K − i ω

2πT

]) (3.37)
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This is also the result which was found in [32] and [23] using the Matsubara technique.

We analyze the limit of small ωβ and no interactions:

lim
ωβ→0

lim
K→1

I(K,ω/T ) = − iωβ
π

(3.38)

Thus in the case without interactions the first order correction becomes:

σ1(ω)|k=0 =
e2

π~
2Db

(ω + iδ)2
= −σ0 ×

2iDb

uω
(3.39)

where σ0 = e2

~π
iu

ω+iδ .
When this is compared with the expansion in 1/τ of the Drude conductivity we get the
following relation for Db:

Db =
u

2τ
(3.40)

It is interesting to compare the steps that led to the integral (3.37) in equation (3.32) with
the Matsubara formalism. We remind that the effective disorder action in the Matsubara
technique is:

Sα1,α2

D−Matsubara = − Db

(2πα)2

∫
dx

∫ β

0
dτdτ ′ cos

(
2[φα1(x, τ)− φα2(x, τ

′)]
)

(3.41)

Where τ is the imaginary time (τ = it) and α1,2 are the replica indices. Using this action one
obtains for the first order correction to the clean conductivity the following expression [32].

σ1 = −2
~

( e
π

)2
Db

(πK)2

βω3
n

(
πα

βu

)2K−2 1
β

∫ β

0
dτ

1− cos(ωnτ)
sin2K(πTτ)︸ ︷︷ ︸
=:I

(3.42)

To compare (3.42) with (3.32) the integral over the imaginary time τ has to be evaluated by
using the Cauchy integral theorem [21]. The integrand of I in equation (3.42) diverges for
τ = β · n, n ∈ Z on the real line of the complex τ plane. Due to the Cauchy integral theorem
we get zero when we integrate over the closed line in Fig. (3.2). For exp(iωnτ) we use the
contour in the upper half plane, for exp(−iωnτ) we use the contour in the lower half plane.
At first we go from 0 to β (segment 1: J1 = I), secondly we go from β to β + i∞ (segment 2
J2), then we go from β + i∞ to i∞ (segment 3 J3) and finally from i∞ to 0. It is easy to see
that segment 3 is zero J3 = 0 and segment 1 is the original integral. Hence we can express
the integral over τ by two integrals over τ = it, (J4) and τ = it+ β, (J2):∫ β

0
dτ

1− cos(ωnτ)
sin2K(πTτ)

= J1 = −J2 − J4 (3.43)

In segment 4 τ = it the denominator of (3.42) becomes
sin2K(πτ/β) = [i sinh(πt/β)]2K = eiπK [sinh(πt/β)]2K .
In segment 2 τ = it+ β the denominator of (3.42) becomes
sin2K(πτ/β) = [−i sinh(πt/β)]2K = e−iπK [sinh(πt/β)]2K .
Hence when J2 and J4 are added then I becomes:

I =
2
β

sin(πK)
∫ ∞

0
dt

1− eωnt

sinh2K(πt/β)
; iωn → ω + iδ (3.44)
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Figure 3.2: Integration contour in the complex τ -plane. The same contour is drawn in the lower half
plane as a dotted line. I = J1.

In the Keldysh method the four exponentials in equation (3.9) have been responsible for the
retardation θ(t) and for the phase factors which led to the sin(πK) factor.
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Chapter 4

High-Temperature Regime in One
Dimensional Systems
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In the previous chapter we used bosonization and the Keldysh formalism to derive the
disorder averaged action of disordered Luttinger liquids. As an example, we have calculated
the first order correction in Db to the clean conductivity. The result was already obtained
in [23], [32] using replica technique and Matsubara formalism. However, in contrast to the
replica technique we have a fixed amount of fields in the Keldysh formalism, namely φcl and
φq. Another advantage of the Keldysh technique is that we do not have to do an analytic
continuation in the end to obtain retarded correlation functions. Thus it may be more suited
for the following calculations.
In the following section we derive the saddle-point equations for φcl and φq of the disorder
averaged action1 S = S0 + SD. We use these equations to derive the semiclassical equation
of motion for the retarded Green’s function.
In the final section we go beyond the saddle-point approximation and calculate corrections in
the small parameters ε = 1−K and ωβ.

4.1 Equation of motion derivation of plasmon-dissipation

The goal of this section is to derive the equations of motions for the retarded Green’s function
of the boson fields of a one dimensional disordered system with interaction. This part was
done in collaboration with M. Kiselev [28].
We remind that the retarded Green’s function of a clean Luttinger liquid is:

DR(ω, k) =
1
2i
〈φcl(k, ω)φ∗q(k, ω)〉S0 =

πuK

(ω + iδ)2 − u2k2
(4.1)

The corresponding equation of motion, for example is:(
−∂2

t + u2∂2
x

)
DR(x, t) = πuKδ(t)δ(x) (4.2)

For a disordered Luttinger liquid we expect an additional self-energy term on the left hand
side of (4.2).
As shown in the section about transport quantities, the retarded Green’s function (4.1) leads
to the conductivity σ0 of a clean system:

σ0(ω) =
e2

π~
iuK

ω + iδ
(4.3)

According to [2], a weakly interacting 1D system shows Drude like behaviour in the high-
temperature regime. The Drude conductivity is:

σD(ω) =
e2

~π
iuK

ω + i
τ

=:
e2

~π2
· iω · D̄R(ω, k = 0) (4.4)

τ is the transport scattering time.
From the expression of the Drude conductivity we can guess the form of the retarded Green’s
function of a dissipative system:[

D̄R(ω, k)
]−1

=
1

uKπ

(
ω2 + i

ω

τ
− u2k2

)
=
[
DR(ω, k)

]−1
+ i

ω

uKπτ
(4.5)

1S0 is given in Eq. (1.157) and SD in Eq. (3.5)
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Consequently, the Green’s function of the disordered system D̄R has an additional iω/τ term
on the left hand side of the equations of motion (4.2) compared to the clean Green’s function
DR.
In the next section we show that D̄R can be calculated from a quadratic action. This allows
one to analyze corrections to the Drude behaviour.
In the following we derive the equations of motion and analyze necessary conditions for a
dissipative term of the form iω/τ . We have already derived the action of disordered Luttinger
liquids in the full bosonization approach:

S = S0 + SD (4.6)

where the action of the clean system is S0:

S0 =
1
4

∫∫
d(x, t)

∫∫
d(x′, t′) (φcl, φq)x′,t′

(
0 D−1

A

D−1
R (D−1)K

)(
φcl
φq

)
x,t

(4.7)

and the disorder part SD, which we obtained from averaging over the random backscattering
potential, is:

SD =
γ

i

∫ ∞

−∞
dtdt′dx cos

[
(φcl(x, t)− φcl(x, t′))

]
· sin (φq(x, t)) · sin

(
φq(x, t′)

)
(4.8)

where γ = Db
(πα)2

.
The saddle point equations for the fields that extremize the action S are:

δS

δφq
= 0 ⇒

1
2πuK

(
−∂2

t + u2∂2
x

)
φcl +

2γ
i

∫
dt′′ cos(φcl − φ′′cl) sinφ′′q cosφq +

1
2
D−1
K φq = 0 (4.9)

δS

δφcl
= 0 ⇒

1
2πuK

(
−∂2

t + u2∂2
x

)
φq −

2γ
i

∫
dt′′ sin(φcl − φ′′cl) sinφq sinφ′′q = 0 (4.10)

To derive an equation for the retarded Green’s function, we use the expectation value of
Eq.(4.9) multiplied by φq. Thus D−1

K φq in (4.9) vanishes since quantum fields are not corre-
lated. Hence we will not consider it anymore. We define the following operator L̂0 and its
Fourier transform L̂ω,q0 :

L̂0 = −∂2
t + u2∂2

x L̂ω,q0 = ω2 − u2q2 (4.11)

Thus the saddle point equations of a disordered Luttinger liquid have the following non-linear
form:

1
4πuK

L̂0φcl = −γ
i

∫
dt′ cos(φcl − φ′cl) sinφ′q cosφq (4.12)

1
4πuK

L̂0φq =
γ

i

∫
dt′ sin(φcl − φ′cl) sinφ′q sinφq (4.13)
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The retarded Green’s function in terms of bigger and lesser Green’s functions was given
in the introduction of the Keldysh technique:

DR(x, x′, t− t′) = θ(t− t′)
(
G>(x, x′, t− t′)−G<(x, x′, t− t′)

)
(4.14)

We remind, the bigger and lesser Green’s functions are given by correlation functions of Boson
fields on the Keldysh contour φ±

〈φ+(x, t)φ−(x′, t′)〉 = iG<(x, x′, t, t′) (4.15)
〈φ−(x, t)φ+(x′, t′)〉 = iG>(x, x′, t, t′) (4.16)

Note that there is the following relation between φcl, φq and φ+, φ−:

φcl = φ+ + φ− φ+ = 1
2(φcl + φq)

φq = φ+ − φ− φ− = 1
2(φcl − φq)

(4.17)

In order to derive the equation of motions for the retarded Green’s function we need to take
a second order derivative with respect to space x and time t.

∂2
xD

R(x, x′, t− t′) = iθ(t− t′)
(
〈∂2
xφ−(x, t)φ+(x′, t′)〉 − 〈∂2

xφ+(x, t)φ−(x′, t′)〉
)

(4.18)

The derivative with respect to the time is:

∂tD
R(x, x′, t− t′) = δ(t− t′)

(
G>(x, x′, t− t′)−G<(x, x′, t− t′)

)
+ iθ(t− t′)

(
〈∂tφ−(x, t)φ+(x′, t′)〉 − 〈∂tφ+(x, t)φ−(x′, t′)〉

)
(4.19)

The first term vanishes since the difference G> − G< is for t = t′ basically the commutator
[φ(t), φ(t)]. This commutator is zero at coinciding times , see [11] p.17 Eq. (49). The second
order derivative with respect to time is:

∂2
tD

R(x, x′, t− t′) = iδ(t− t′)
(
〈∂tφ−(x, t)φ+(x′, t′)〉 − 〈∂tφ+(x, t)φ−(x′, t′)〉

)
+iθ(t− t′)

(
〈∂2
t φ−(x, t)φ+(x′, t′)〉 − 〈∂2

t φ+(x, t)φ−(x′, t′)〉
)
(4.20)

Summing up (4.18) and (4.20) we obtain the equation of motion for the retarded Green’s
function:

L̂0D
R(x− x′, t− t′) = iθ(t− t′)

(
〈L̂0φ+(t)φ−(t′)〉 − 〈L̂0φ−(t)φ+(t′)〉

)
+πuKδ(t− t′)δ(x− x′) (4.21)

Where we used [∂zφ(z), φ(z′)] ∼ δ(z− z′), z = it+ ix (see [11] p.17 Eq. (47)) in the following
relation:

πuKδ(t− t′)δ(x− x′) = −iδ(t− t′)
(
〈∂tφ+(t)φ−(t′)〉 − 〈∂tφ−(t)φ+(t′)〉

)
(4.22)

The operator relations L̂0φ+, L̂0φ− can be found from the saddle point equations (4.9) and
(4.10) by applying the rotation in Keldysh space (4.17). Inserting the saddle point equations
and expressing everything in φcl, φq fields, we obtain the following equation of motion:

L̂0D
R(x− x′, t− t′) = πuKδ(t− t′)δ(x− x′)− θ(t− t′)2πuK(Σ(1) + Σ(2)) (4.23)
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where Σ(1) and Σ(2) are:

Σ(1) := −
∫

dt′′〈cosφq(x, t) sinφq(x, t′′) cos(φcl(x, t)− φcl(x, t′′))φq(x′, t′)〉S0 (4.24)

Σ(2) :=
∫

dt′′〈sinφq(x, t) sinφq(x, t′′) cos(φcl(x, t)− φcl(x, t′′))φcl(x′, t′)〉S0 (4.25)

These two terms describe the self energy of the retarded Green’s function. In the following
we rewrite it as L̂τ ·DR: (

L̂0 + L̂τ

)
DR = πuKδ(t− t′)δ(x− x′) (4.26)

We will focus on the imaginary part of Lτ = 2πuKγθ(t− t′)(Σ(1) + Σ(2)) because it describes
damping.

Self-energy of the retarded Green’s function

The self energy terms Eq. (4.24) and (4.25) can be treated in a similar way as it has been
done in the calculation of the first order correction to the Drude conductivity.
We rewrite the sine and cosines in Σ(1) in terms of exponentials:

Σ(1) :=
i

4

∫
dt′′

∑
a,a′′=±1

a′′ · 〈ei(aφq+a′′φ′′q +φcl−φcl)φ′q〉 (4.27)

We raise the φ′q into the exponent and evaluate the expectation value by using the Debye-
Waller relation.

Σ(1) := i

∫
dt′′

∑
a,a′′=±1

a′′
(
DR(x− x′, t− t′)−DR(x− x′, t′′ − t′)

)
×

× exp
(
−1

2
〈[φcl − φ′′cl + a · φq + a′′ · φ′′q ]2〉

)
(4.28)

Figure 4.1: Retarded time structure of Σ(1), Eq. (4.29). The solid line represents the retarded
Green’s function. The shaded box represents the exp(−〈(φcl − φ′′cl)

2〉/2) correlation function. [5]

The exponential of the correlation function is discussed in appendix A. Eq. (4.28) can be
written as:

Σ(1) := 2 sin(πK)
∫

dt′′
(
DR(x− x′, t− t′)−DR(x− x′, t′′ − t′)

)
θ(t− t′′)×

×

(
πα
βu

)2K

sinh2K
(
π
β (t− t′′)

) (4.29)
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The time structure of Eq. (4.29) is shown in figure (4.1). The first term in Eq. (4.29) in
brackets contains a θ(t − t′) function, which is due to the retarded Green’s function. The
second term contains a θ(t′′− t′) Green’s function. Thus, the time structure of both retarded
Green’s functions is compatible with the overall θ-function of L̂τ : θ(t− t′).
Repeating the same manipulations on Σ(2) we obtain:

Σ(2) := 2 sin(πK)
∫

dt′′
(
−DR(x′ − x, t′ − t)θ(t− t′′)−DR(x′ − x, t′ − t′′)θ(t′′ − t)

)
×

×

(
πα
βu

)2K

sinh2K
(
π
β (t− t′′)

) (4.30)

The time structure is shown in figure (4.2). Σ(2) is not compatible with the overall θ-function
of L̂τ : θ(t − t′), since the first retarded Green’s function in Eq. (4.30) is proportional to
θ(t′ − t) and the time structure of the second term is: t < t′′ < t′. In contrast to Σ(1), this
part contributes only to the advanced Green’s function whereas Σ(1) contributes only to the
retarded Green’s function.

Figure 4.2: Retarded time structure of Σ(2) equation (4.30). The solid line represents the retarded
Green’s function The shaded box represents the exp(−〈(φcl − φ′′cl)

2〉/2) correlation function. [5]

Finally, the equations of motion are reduced to:

L̂0D
R(x− x′, t− t′) = πuKδ(t− t′)δ(x− x′)− L̂τD

R(x− x′, t− t′)
= πuKδ(t− t′)δ(x− x′)− iθ(t− t′)2πuKγΣ(1) (4.31)

The Fourier transformation of the left hand side is straightforward and yields:

L̂0D
R(x− x′, t− t′) =

∫
dω
2π

∫
dq
2π
ei[q(x−x

′)−ω(t−t′)](ω2 − u2q2)D̃R(ω, q) (4.32)

The Fourier transform of the first term on the right hand side of Eq. (4.31) is also trivial,
it yields: πuK. Before we Fourier transform the second term on the right hand side of Eq.
(4.31) we define:

Σ(1)
1 = i4πuKγ sin(πK)DR(t− t′, x− x′)

∫
dt′′θ(t− t′′)

(
πα
βu

)2K

sinh2K
(
π
β (t− t′′)

) (4.33)

Σ(1)
2 = −i4πuKγ sin(πK)

∫
dt′′DR(t′′ − t′, x− x′)θ(t− t′′)

(
πα
βu

)2K

sinh2K
(
π
β (t− t′′)

) (4.34)
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f(ω) :=
∫ ∞

0
dt

eiωt
(
πα
βu

)2K

sinh2K
(
π
β (t− t′′)

) (4.35)

Note that: L̂τDR(x− x′, t− t′) = iθ(t− t′)2πuKγΣ(1) = Σ(1)
1 + Σ(1)

2 .
We Fourier transform Σ(1)

1 and rewrite (4.33) as follows:

Σ(1)
1 = i4πuKγ sin(πK)

∫
dt′′
∫∫

dω
2π

dq
2π
ei[q(x−x

′)−ω(t−t′)]D̃R(ω, q)
∫

dν
2π
e−iν(t−t

′′)f(ν)

= −4πuKγ sin(πK)
∫∫

dω
2π

dq
2π
ei[q(x−x

′)−ω(t−t′)]D̃R(ω, q)f(0) (4.36)

The Fourier transform of Σ(1)
2 is:

Σ(1)
2 = 4πuKγ sin(πK)

∫∫
dω
2π

dq
2π
ei[q(x−x

′)−ω(t−t′)]D̃R(ω, q)f(ω) (4.37)

Thus we obtained the Fourier transform of the self energy part L̂τ :

FFourier(L̂τ ) = 4πuK
Db

(πα)2
sin(πK) · [f(ω)− f(0)] (4.38)

Where we inserted the definition of γ = Db/(πα)2. We evaluated the function f(ω) of (4.35)
already in the last chapter (3.35). The result is:

f(ω) :=
(
πα

βu

)2K

· β · 22K−1 Γ[1− 2K]
π

Γ
[
K − iωβ2π

]
Γ
[
1−K − iωβ2π

] (4.39)

Thus equation (4.38) becomes:

FFourier(L̂τ ) =
8KDb sin(πK)

uβ
22K−2

(
πα

βu

)2K−2
 Γ

[
K − iωβ2π

]
Γ
[
1−K − iωβ2π

] − Γ [K]
Γ [1−K]

Γ[1− 2K]

(4.40)
For weak interactions ε = 1−K � 1 and high temperatures β → 0 we obtain2:

FFourier(L̂τ ) =
iω

τ
(4.41)

where we used: Db = u/2τ .
Finally we can formulate the Fourier transformed equation of motion in this parameter regime:(

ω2 − u2q2 +
iω

τ

)
DR(ω, q) = πuK (4.42)

Thus the retarded Green’s function has the expected form:

⇒ D̄R(ω, q) =
πuK

ω2 − u2q2 + iω
τ

(4.43)

2See section (3.2.3) for the limit.
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Equation (4.43) is rather the saddle-point approximation of the retarded Green’s function
since we obtained the equation of motion by using the saddle-point equations of the φcl- and
φq-fields. The fields which fulfill the saddle-point equation should minimize the action. Thus
it is reasonable to assume that the retarded Green’s function in (4.43) is the most relevant
contribution to the exact Green’s function.
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4.2 Corrections to the Drude conductivity beyond saddle-point
approximation

In section (2.2) we have remarked that it is not sufficient to analyze the transport behaviour of
disordered Luttinger liquids as done in [2]. The essential step, namely, to prove that including
disorder for interaction propagators and electrons can be done independently, was missing in
previous studies. We calculate corrections beyond the saddle point approximation from the
last section to fill this gap.
In the last section we have obtained the retarded Green’s function with the self energy of a
disordered Luttinger liquid in the saddle-point approximation, Eq. (4.43). As shown in Eq.
(4.4), the retarded Green’s function (4.43) immediately yields the Drude conductivity. In
the following we analyze the corrections to the Drude conductivity in the leading orders of
ε = 1−K, ωβ.

Let us construct a quadratic action which corresponds to the Green’s function (4.43). In
order to establish a connection to the clean Luttinger liquid action S0, we introduce a trial
action ∆S such that S̄ = S0 + ∆S.
A possible guess for the trial action ∆S is:

∆S ∼
∫
dk

2π
dω

2π
φ∗q(k, ω)i

ω

uKπτ
φcl(k, ω) (4.44)

Since D̄A(ω, k) = [D̄R(ω, k)]∗ we have to add the complex conjugate of (4.44).
Hence a reasonable choice for the trial action ∆S is:

∆S =
∫∫

dk

2π
dω

2π
(
φ∗cl, φ

∗
q

)
k,ω

(
0 − iω

4uKπτ
iω

4uKπτ ∆D−1
K

)(
φcl
φq

)
k,ω

(4.45)

It is not necessary to find the Keldysh component in the lower right of the matrix. Due to the
fluctuation-dissipation theorem we do know the full Keldysh Green’s function in equilibrium:

D̄K(ω, k) = coth
(
ωβ

2

)[
D̄R(ω, k)− D̄A(ω, k)

]
(4.46)

Henceforth, Green’s functions are taken with respect to the action S̄ = S0 + ∆S.
Let us write an identity and calculate correlation functions using ∆S as the quadratic action.

S = S0 + ∆S + SD −∆S = S̄ + (SD −∆S) (4.47)

The action S̄ immediately yields the Drude conductivity.
In order to discuss transport behaviour it is necessary to consider the conductivity.

σ(ω, k) =
e2

2~π2

∫
dq

2π
dν

2π
ω〈φcl(ω, k)φ∗q(−ν,−q)〉S0+SD

(4.48)

Using (4.47), the correlator in (4.48) can also be written in terms of S̄.

〈φcl(ω, k)φ∗q(−ν,−q)〉S0+SD
=
∫
D[φcl, φq]φcl(ω, k)φ∗q(−ν,−q)ei(S̄+SD−∆S) (4.49)
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We are going to explore the deviation of the Drude conductivity on a perturbative level in
SD−∆S. Since Db is related to τ by Db = u/2τ , see Eq. (3.40), an expansion of exp(SD−∆S)
in SD −∆S corresponds to an expansion in the small parameter 1/τ .

〈φcl(ω, k)φ∗q(−ν,−q)〉S̄ =
∫
D[φcl, φq]φcl(ω, k)φ∗q(−ν,−q)ei(S0+∆S)

·
(
1 + i(SD −∆S) +O

(
(SD −∆S)2

))
(4.50)

Assuming that the leading term is SD −∆S we have to proof that:

∆σ(ω) :=
e2

2~π2

∫
dq

2π
dν

2π
ω〈φcl(ω, k)φ∗q(−ν,−q)i(SD −∆S)〉S̄ (4.51)

is small in our range of paramters.
Let us define:

∆σ =: ∆σD + ∆σ∆ (4.52)

where

∆σD(ω) =
e2

2~π2

∫∫
dq
2π

dν
2π
〈φcl(ω, k)φ∗q(−ν,−q)iSD〉S̄ (4.53)

and

∆σ∆ =
e2

2~π2

∫
dq

2π

∫
dν

2π
ω〈φcl(ω, k)φ∗q(−ν,−q)(−i∆S)〉S̄ (4.54)

Let us start with ∆σD(ω). The disorder action SD is given in Eq. (3.5). Since the
correlation function in Eq. (4.53) has the same structure as Eq. (3.8) we can repeat most
of the steps done in section (3.2). The only difference is that correlation functions are now
taken with respect to S̄ and not S0. The following selection rules, established in chapter 3,
simplify our calculation:

• the quantum fields are not correlated: 〈φqφq〉 = 0

• the sum of terms that are proportional to 〈φclφcl〉 is zero, which reflects causality of the
retarded propagators.

• terms that are proportional to a product of two retarded Green’s functions and thus
preserve causality remain.

All calculations of the Green’s functions with respect to the dissipative action S̄ are shifted
to appendix B.
To simplify the notation in further calculations, we define:

F (t− t′) :=
Db

(2πα)2
eK(t−t′) (4.55)
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where
K(t− t′) = −1

2
〈
[
φcl(x, t)− φcl(x, t′)

]2〉S̄ (4.56)

We calculate the correlation function in Eq. (4.53):

〈φclφ∗qiSD〉S̄ = −
∫
dt′
∫
dt

∫
dxF (t− t′) ·

[
(4.57)

+e
iπKI0

“
t−t′
2τ

”»
θ(t−t′)e−

t−t′
2τ +θ(t′−t)e−

t′−t
2τ

–
×

+e
−iπKI0

“
t−t′
2τ

”»
θ(t−t′)e−

t−t′
2τ +θ(t′−t)e−

t′−t
2τ

–
×

+e
−iπKI0

“
t−t′
2τ

”»
θ(t−t′)e−

t−t′
2τ −θ(t′−t)e−

t′−t
2τ

–
×

+e
iπKI0

“
t−t′
2τ

”»
θ(t−t′)e−

t−t′
2τ −θ(t′−t)e−

t′−t
2τ

–
×

Here I0(x) = BesselI[0, x] is the modified

Bessel function of the first kind3. Since F (t− t′) = F (t′− t) we can change the time variables
t↔ t′ in Eq. (4.57). Thus, we get:

= −
∫
dt

∫
dt′
∫
dxF (t− t′) sin

(
πKe−

t−t′
2τ I0

(
− t− t′

2τ

))
i8×

The result of the SD-part is:

⇒
∫

dq

2π

∫
dν

2π
ω〈φcl(ω, k)φ∗q(−ν,−q)iSD〉S̄ =

= ω
8iDb

(πα)2
[
D̄R(ω, k)

]2 ∫ ∞

0
dt
(
1− eiωt

)
sin
(
πKe−t/(2τ)I0

(
t

2τ

))
· eK(t) (4.58)

Since I0(0) = 1, we reproduce the sin(πK) factor of our former result, Eq. (3.32) in the
limit of vanishing dissipation 1/τ = 0. Since4 Db = u/2τ we obtain the following correction
to the conductivity:

∆σD = s(ω, τ,K) · iu2

(πα)2

∫ ∞

0
dt
(
1− eiωt

)
sin
(
πKe−t/(2τ)I0

(
t

2τ

))
· eK(t) (4.59)

3See http://functions.wolfram.com
4Note that Db is the bare disorder strength.
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where

s(ω, τ,K) :=
2e2ω

~π2τu

[
D̄R(ω, k = 0)

]2
(4.60)

Now we also have to treat the ∆S, Eq. (4.54):∫
dq

2π

∫
dν

2π
ω〈φcl(ω, k)φ∗q(−ν,−q)(−i∆S)〉S̄ (4.61)

Furthermore we insert ∆S given in (4.45):∫∫
dq

2π
dν

2π
dk′

2π
dω′

2π
ω′ · ω

4uKπτ
〈φcl(ω, k)φ∗q(−ν,−q)

(
φ∗q(ω

′, k′)φcl(ω′, k′)− φ∗cl(ω
′, k′)φq(ω′, k′)

)
〉S̄

(4.62)
To evaluate the two 4-point correlation functions we have to use Wick’s theorem:

〈φcl(ω, k)φ∗q(−ν,−q)φ∗q(ω′, k′)φcl(ω′, k′)〉S̄

= 〈φcl(ω, k)φ∗q(−ν,−q)〉〈φ∗q(ω′, k′)φcl(ω′, k′)〉+〈φcl(ω, k)φ∗q(ω′, k′)〉〈φ∗q(−ν,−q)φcl(ω′, k′)〉 (4.63)

The same procedure has to be applied to the second term:

〈φcl(ω, k)φ∗q(−ν,−q)φ∗cl(ω′, k′)φq(ω′, k′)〉S̄

= 〈φcl(ω, k)φ∗q(−ν,−q)〉〈φ∗cl(ω′, k′)φq(ω′, k′)〉+〈φcl(ω, k)φq(ω′, k′)〉〈φ∗q(−ν,−q)φ∗cl(ω′, k′)〉 (4.64)

Note that we do not need to think about the Keldysh component from the lower left of the
matrix in (4.45) since it introduces two quantum fields φq in Eq. (4.61). Thus, such a term
would vanish after averaging with the other quantum field φ∗q , in (4.62), since Wick’s theorem
yields a correlator: 〈φqφq〉 = 0 in that case.
The first term of (4.63) cancels the first term of (4.64) when we insert equations (4.63) and
(4.64) in (4.62). In other words the lower Wick contractions of (4.63) and (4.64) cancel each
other. Inserting Eq. (4.63) and (4.64) into Eq. (4.54) and performing the q, ν- integrals
followed by the k′, ω′ integration, we obtain:

∆σ∆ = − e2

~π2

ω2

uKπτ
·
[
D̄R(ω, k)

]2
(4.65)

Now we can insert ∆σD, equation (4.59), and ∆σ∆ (4.65), into Eq. (4.51) and obtain an
explicit expression for the deviation from the Drude conductivity:

∆σ =
e2

2~π2

∫∫
dq

2π
dν

2π
ω〈φcl(ω, k)φ∗q(ω, k)i (SD −∆S)〉S̄

= s(ω, τ,K)
(

iu2

(πα)2

∫ ∞

0
dt(1− eiωt) sin

(
πKe−t/2τI0

(
t

2τ

))
eK(t) − ω

2Kπ

)
(4.66)

where K(t) is:

K(t) = −4uKπ
∫
dk

2π

∫
dω

2π
coth

(
ωβ

2

)
ω

1
τ (1− cos(ωt))

(ω2 − u2k2)2 + ω2

τ2

(4.67)
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We simplify the integral by defining new frequency and momentum variables:

κ = βuk Ω = ω · β (4.68)

Then equation (4.67) becomes:

K(t) = −4Kπ
∫
dκ

2π

∫
dΩ
2π

coth
(

Ω
2

)
[1− cos(Ωt/β)]

1
Ω
·

β
τ

(Ω− κ2

Ω )2 + β2

τ2

(4.69)

We take the limit β/τ → 0. Thus the leading term of the integrand reduces to a delta
function:

β/τ

x2 + (β/τ)2
→ πδ(x) (4.70)

For the moment we only consider the zeroth order term and assume that the first order term
in β/τ is regular. Thus, Eq.(4.69) reduces to:

K(t) = −K log

[(
βu

πα

)2

sinh2

(
π

β
t

)]
(4.71)

When Eq. (4.71) is inserted in the SD-part, Eq. (4.58), we obtain:

∆σD =
e2

2~π2

∫
dq

2π

∫
dν

2π
ω〈φclφ∗qiSD〉S̄ =

= s(ω, τ,K)i
(
πα

βu

)2K−2 1
β2

∫ ∞

0
dt
(
1− eiωt

) sin
(
πKe−t/(2τ)I0

(
t

2τ

))
sinh2K(πβ t)︸ ︷︷ ︸

J (ω,β,τ)

(4.72)

It is convenient to scale the time-variable t→ t′ = t/β:

J (ω, β/τ,K) =
1
β

∫ ∞

0
dt′
(
1− eiωβt

′
) sin

(
πKe−

t′
2

β
τ I0

(
t′

2
β
τ

))
sinh2K(πt′)

(4.73)

In this way β and τ are paired such that we obtain the small parameter β
τ . In the limit β

τ → 0
we obtain:

J (ω, β/τ → 0, 1− ε) =
sin(πK)

β

∫ ∞

0
dt′

1− eiωβt
′

sinh2K(πt′)

=
1
β

21−2εΓ[1− 2K]

 1
Γ2[1−K]

− sin(πK)
π

Γ
[
K − iωβ2π

]
Γ
[
1−K − iωβ2π

]

(4.74)
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Corrections in ε (weak interactions) and ωβ (high temperature):

Note that, the result of J was evaluated in the last chapter, Eq. (3.37). Let us put K = 1− ε
with 0 < ε� 1.

J (ω, β/τ → 0, 1− ε) =
1
β

21−2εΓ[2ε− 1]

(
1

Γ2[ε]
− sin(π(1− ε))

π

Γ
[
1− ε− i ω

2πT

]
Γ
[
ε− i ω

2πT

] )
(4.75)

Thus, Eq. (4.72) becomes:

∆σD =
2e2ω

~π2τu

[
D̄R(ω, k = 0)

]2
i

(
πα

βu

)−2ε

J (ω, β/τ → 0, 1− ε) (4.76)

The factor (πα/βu)−2ε represents the impurity renormalization, Eq. (2.71), of τ which we
did not take into account by using the bare disorder strength Db. Henceforth we absorb this
factor into τ and use the renormalized scattering time.
We analyze J in the limit βω � 1, ε� 1.

J (ω, β/τ → 0, 1− ε) =
1
β

(
−iωβ

2π
+ i(ln(2)− 2) · εωβ − π2

3
· ε(ωβ)2 +O

(
(ωβ)3, ωβε2

))
(4.77)

Furthermore, we expand Eq. (4.65) for ε� 1:

∆σ∆ = −s(ω, τ,K) · ω
2π
(
1 + ε+O(ε2)

)
(4.78)

After inserting Eq. (4.77) into Eq.(4.72) we sum up Eq. (4.78) and Eq. (4.72):

∆σ(ω) =
e2

~τ
u(

ω + i
τ

)2 · ( 1
2π

[1− ln(2)] · ε− π2

3
· ε · ωβ +O

(
(ωβ)2, ε2

))
(4.79)

Corrections in β/τ : weak interactions, high temperature and weak disorder:

So far we have not calculated all corrections in β/τ . Nevertheless, we can discuss their
influence on the result, Eq. (4.79).
We scale the time variable in Eq. (4.72): t→ t′ = t/β:

∆σD = s(ω, τ,K)i
(
πα

βu

)2K−2 1
β

∫ ∞

0
dt′
(
1− eiωβt

′
) sin

(
πKe−t

′β/(2τ)I0

(
t′β
2τ

))
sinh2K(πt′)

(4.80)

Eq. (4.80) contains two terms which we are going to expand in β/τ . The first one is:

sin
(
πKe−t

′β/2τBslI0

(
t′β

2τ

))
≈ sin(πK)− cos(πK)πK

t′

2
·
(
β

τ

)
+O

(
(β/τ)2

)
(4.81)

The first term in Eq. (4.81) has been evaluated above, see Eq. (4.79). The second term in
Eq. (4.81) yields the following β/τ correction term:

∆στ,1 := −s(ω, τ,K) ·K · β
τ
i cos(πK)

π

2

(
πα

βu

)2K−2 1
β

∫ ∞

0

1− eiωβt

sinh2K(πt)
· tdt (4.82)
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This correction is calculated in appendix B.2, it gives rise to the following correction terms:

∆στ,1 =
e2

~τ
u(

ω + i
τ

)2 · [−π3 1
ωτ

+ c · εβ
τ

+O
(
ε(ωβ)2

τ
,
ε2ωβ

τ

)]
(4.83)

where c is a constant5.
The other correction in β/τ is due to K(t), Eq. (4.69):

eK(βt) = eKK
(0)(t)+K·β

τ
K(1)(t)+O((β/τ)2)

= eKK
(0)(t) ·

(
1 +

(
β

τ

)
K · K(1)(t) +O

(
(β/τ)2

))
(4.84)

where

K(0)(t) := − log

[(
βu

πα

)2

sinh2 (πt)

]
(4.85)

K(1)(t) =
∂

∂(β/τ)
K(βt)

∣∣∣
β/τ=0

(4.86)

K(1)(t) has not yet been calculated. It contains the first derivative of the delta function, Eq.
(4.70).
To conclude, the corrections to the Drude conductivity, Eq. (4.79) and Eq. (4.83), are small
in the high temperature regime of a weakly interacting disordered Luttinger liquid. The
remaining corrections in β/τ , Eq. (4.84), will be considered elsewhere.

5c = π
3
(2 ln(2)− 2) + 6

π
ζ(3), ζ(3) = 1.202



84 4. High-Temperature Regime in One Dimensional Systems



Chapter 5

Conclusion



86 5. Conclusion

Conclusion & Outlook

We have studied transport of interacting spin-polarized electrons in a disordered one- di-
mensional system using full bosonization and the Keldysh formalism. We have developed a
diagrammatic technique in Keldysh formalism for this system using as an example the first
order correction to the clean conductivity in disorder strength for arbitrary repulsive interac-
tions and ω 6= 0 (ω is the frequency of the external field). The perturbation theory in disorder
strength can be extended to any order with an increasing complexity of combinatorics.
Furthermore, we have derived the semiclassical equation of motion for the retarded Green’s
function using a saddle point approximation and analyzed it in the high temperature regime.
We have shown that the retarded Green’s function which corresponds to the saddle point
approximation yields the Drude conductivity for weak interactions and high temperatures.
Finally, we have calculated interaction corrections to the Drude conductivity at high temper-
atures. We found that these corrections are small in agreement with the conclusions drawn
in [2].
So far, we have not calculated corrections to the Drude conductivity in β/τ (β is the inverse
temperature, τ is the transport time). However, these corrections would be interesting since
they would allow one to calculate interaction-induced corrections to the Berezinskii-Mott con-
ductivity [4].
For further work in this field one could extend the perturbation theory to the third order in
1/τ , to establish direct connections to the minimal Cooperon diagram which was considered
in [2]. Furthermore, an analysis of spin-effects or additional degrees of freedom like pseudo
spin, due to the two Dirac cones in the dispersion relation of carbon nanotubes would be in-
teresting. Since the Keldysh technique provides a framework for studying out-of-equilibrium
systems one could calculate the nonlinear response to an external bias cf. [24].



Appendix A

Calculation of the first order
correction to the Drude
conductivity

A.1 Keldysh correlation functions

In this section we calculate the correlation functions: DR retarded, DA advanced and DK

Keldysh. We start from the action that describes a one dimensional bosonized system1.

SΠ,φ =
∫ ∞

−∞
dt

∫
dx

[
Π(x, t)∂tφ(x, t)− 1

2π

(
uK(πΠ(x, t))2 +

u

K
(∂xφ(x, t))2

)]
(A.1)

We transform the time integral to an integral on the Keldysh contour CK . We introduce two
species of fields on forward and backward contours and we denote them by + on the forward
contour and by - on the backward contour. The first term in (A.1) with coupled Π and φ is
due to the Legendre transform of the Hamiltonian to the Lagrangian:∫

CK

dtΠ(x, t)∂tφ(x, t) →
∫ ∞

−∞
dt

1
2

(Πcl∂tφq + Πq∂tφcl) (A.2)

We use the following transformation rules for the fields:

φcl = φ+ + φ− φ+ = 1
2(φcl + φq)

φq = φ+ − φ− φ− = 1
2(φcl − φq)

The full action (A.1) on the Keldysh contour becomes:

i

~
SΠ,φ = −

∫ ∞

−∞
dt

∫
dx (Πcl,Πq)

(
0 i

2π~
Kuπ2

2
i

2π~
Kuπ2

2 0

)(
Πcl

Πq

)

+
∫ ∞

−∞

∫
dtdx

i

2~
(∂tφq, ∂tφcl)

(
Πcl

Πq

)
1The fields have the following units: [φ] =

√
Js and [Π] =

√
Js/m
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−
∫ ∞

−∞

∫
dtdx

iu

~4πK
∂xφcl∂xφq (A.3)

By integrating out the Π fields2 we get an action which depends on φ fields.∫
D[Πcl,Πq]eiSΠ,φ/~ = eiSφ/~ (A.4)

with

i

~
Sφ =

i

~
1
4

∫∫
d(x, t)

∫∫
d(x′, t′) (φcl, φq)x′,t′

(
0 D−1

A

D−1
R (D−1)K

)(
φcl
φq

)
x,t

(A.5)

The Keldysh component is needed for regularization, see the short presentation of the
Keldysh technique, section (1.3). All three components of the Green’s function read.

D−1
R/A =

−∂2
t + u2∂2

x

uKπ
δ(x− x′)δ(t− t′) (A.6)

(D−1)K = D−1
R ◦ F − F ◦D−1

A (A.7)

We remind that F is hermitian in time, space and Keldysh indices.
Eq. (A.5) yields the following correlation functions:

〈φcl(x, t)φq(x′, t′)〉 = i · 2 · ~DR(x, x′; t, t′) (A.8)
〈φq(x, t)φcl(x′, t′)〉 = i · 2 · ~DA(x, x′; t, t′) (A.9)
〈φcl(x, t)φcl(x′, t′)〉 = i · 2 · ~DK(x, x′; t, t′) (A.10)

Retarded and advanced Green’s function in the energy/momentum representation read:

~DR(k, ω) = ~
πKu

(ω + iδ)2 − u2k2
(A.11)

~DA(k, ω) = ~
πKu

(ω − iδ)2 − u2k2
(A.12)

One may notice that the relations in (A.8) - (A.10) are twice as big as in the usual convention
of the Keldysh rotation [12]. This is due to the different definition of the φcl and φq with a
factor of 1/2 in front instead of 1/

√
2. It is important that this does not influence physical

observables.

A.2 Exponentials of correlation functions I

In section (3.2) we need to evaluate exponentials of correlation functions like

e−
1
2
〈[φcl(x,t)−φcl(x,t

′)−φq(x,t)+φq(x,t′)]2〉S0 (A.13)

The correlation function 〈φqφq〉 is zero due to a fundamental relation in Keldysh space [12].
So the exponent is

− 1
2
〈
[
φcl(x, t)− φcl(x, t′)

]2〉+ 〈
[
φcl(x, t)− φcl(x, t′)

] [
φq(x, t)− φq(x, t′)

]
〉 (A.14)

2The integration routine is a functional extension of the finite dimensional formula:R
dN~xe~xT ·A~x+~bT ~x =

√
πNdet(A)e

1
4
~bT ·A−1~b
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Evaluation of the Keldysh Green’s function

We start with the first term.

K̄(t) := −1
2
〈
[
φcl(x, t)− φcl(x, t′)

]2〉
= −1

2

∫
dk

2π
dω

2π
2
[
1− cos[ω(t− t′)]

]
i2DK(k, ω) =

= −
∫
dk

2π
dω

2π
[
1− cos[ω(t− t′)]

]
coth

( ω
2T

)( 2πiuK
(ω + iδ)2 − u2k2

− 2πiuK
(ω − iδ)2 − u2k2

)
(A.15)

The ω - integral can be simplified with the Dirac relation.

1
x± iδ

= P 1
x
∓ iπδ(x)

1
x− iδ

− 1
x+ iδ

= 2iπδ(x) (A.16)

Hence the Keldysh Green’s can be written as

DK(q, ω) = coth
( ω

2T

) πuK
2uk

(−2iπδ(ω − uk) + 2iπδ(ω + uk)) (A.17)

If we insert this into equation (A.15) we get

K̄(t) = −
∫ ∞

−∞
dk
K

k
coth

(
uk

2T

)(
1− cos[uk(t− t′)]

)
(A.18)

This integral is ill-defined until we introduce a proper convergence factor exp(−α|k|). This
momentum cut-off corresponds to a finite bandwidth.
Moreover we split coth

(
x
2

)
= 2fB(x) + 1. Since the integrand is even under the change of

sign from k → −k we simply take twice the integral from 0 to ∞ and hence (A.18) becomes:

K̄(t) = −4K
∫ ∞

0
dk
e−αkfB

(
uk
T

)
(1− cos[uk(t− t′)])
k

− 2K
∫ ∞

0

dk

k
e−αk

(
1− cos[uk(t− t′)]

)
(A.19)

This integral can be found, for example in appendix C of [5]. I will just state the result.

K̄(t) = −K log

[(
βu

πα

)2

sinh2

(
π

β
(t− t′)

)]
(A.20)

Evaluation of the retarded Green’s function

The remaining part of (A.14) is:

〈[φcl − φ′cl][φq − φ′q]〉 (A.21)

It includes the retarded Green’s function at coinciding times:

〈φcl(x, t)φq(x, t)〉 = 2i
∫
dk

2π

∫
dω

2π
πuK

(ω + iδ)2 − u2k2
(A.22)
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Since the two poles are in the lower half plane we immediately see that the ω integral is zero.
On the other hand, if we would do the k integral first it is important to include a convergence
factor exp(−α|k|) before integrating. With that convergence factor the expression is equal to
zero.

〈φcl(x, t)φq(x, t)〉 = −2i
∫
dω

2π

∫
dz

2πu
πuKe−α|z|/u

(z − ω − iδ)(z + ω + iδ)
(A.23)

= πK

∫ ∞

−∞

dω

2π
e−α|z|/u

ω + iδ
= 0

Practically spoken, all retarded and advanced Green’s functions are zero when they are
taken at the same time. For the other retarded Green’s function we get:

iDR(t, t′) = i
Kπ

2
θ(t− t′) (A.24)

Moreover, the advanced Green’s function can be easily obtained from the relation DR(t, t′) =
DA(t′, t).
Note that, the retarded Green’s function at different times t 6= 0, t′ = 0 and different positions
x 6= 0, x′ = 0 is:

− i〈φcl(x, t)φq(0, 0)〉 = 2DR(t, x) = θ(t)πK (θ(x+ ut)− θ(x− ut)) (A.25)

Finally, we are able to evalute the second term of Eq. (A.14)

〈
[
φcl(x, t)− φcl(x, t′)

] [
φq(x, t)− φq(x, t′)

]
〉 = −iπK(θ(t− t′) + θ(t′ − t)) (A.26)

The two θ - functions in equation (A.26), −iπK(θ(t − t′) + θ(t′ − t)), yield unity in the
exponent. In total (A.26) is equal to iπK.
However the disorder action contains also terms such as:

ei(φcl(x,t)−φcl(x,t
′)+φq(x,t)+φq(x,t′)) (A.27)

Eq. (A.27) gives rise to: −iπK(θ(t − t′) − θ(t′ − t)) in the exponent. The difference in two
theta functions yields:

θ(t− t′)− θ(t′ − t) = sign(t− t′)

Exponentials of Correlation Functions, Results

The final result of the four exponentials of correlators is

e−
1
2
〈[φcl(x,t)−φcl(x,t

′)−φq(x,t)+φq(x,t′)]2〉 =

(
πα
βu

)2K
e−iπK

| sinh(πβ (t− t′))|2K
(A.28)

e−
1
2
〈[φcl(x,t)−φcl(x,t

′)+φq(x,t)−φq(x,t′)]2〉 =

(
πα
βu

)2K
eiπK

| sinh(πβ (t− t′))|2K
(A.29)

e−
1
2
〈[φcl(x,t)−φcl(x,t

′)+φq(x,t)+φq(x,t′)]2〉 =

(
πα
βu

)2K
e−iπK·sign(t−t′)

| sinh(πβ (t− t′))|2K
(A.30)

e−
1
2
〈[φcl(x,t)−φcl(x,t

′)−φq(x,t)−φq(x,t′)]2〉 =

(
πα
βu

)2K
eiπK·sign(t−t′)

| sinh(πβ (t− t′))|2K
(A.31)
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A.3 Diagrammatic representation

A key concept in quantum field theory are Feynman diagrams which allows one to keep track
of perturbation series on an intuitive level. Unfortunately, the kind of Feynman diagrams
usually encountered in quantum field theory, where lines represent particles and holes which
can be connected due to interactions, cannot be employed here. At first this is due to the
cosine and sine structure of the fields in the disorder part of the action. They do not provide a
simple vertex structure. Nevertheless, a diagrammatic representation can be helpful to make
calculations more transparent.

We find it convenient to represent each exponential appearing in the effective disorder
action, equation (3.9), by a box. As we have seen in appendix (A.2) the correlation function
of the exponentials read:

e−
1
2
〈[φcl(x,t)−φcl(x,t

′)±φq(x,t)±φq(x,t′)]2〉S0 =

(
πα
βu

)2K
N

| sinh(πβ (t− t′))|2K
(A.32)

where N is a phase factors: e±iπK or e±iπK·sign(t−t′).
We remind that 〈φqφ′q〉 and DR/A(t, t) are always zero. Hence there are no lines connecting
two φq-fields or fields at coinciding times:

〈ei(φcl−φ′cl−φq+φ′q)〉S0 =

(A.33)

In proceeding from equation (3.12) to (3.13) we exponentiated the fields in order to calculate
the correlation functions of fields times exponential of fields. In that way, we have coupled
the fields from the exponents of the effective disorder action to the external fields φcl(xi, ti)
and φq(xf , tf ). The diagrammatic representation takes these couplings into account by a
connection of the external lines to one of the four possible slots at the fields from the box:

〈φclφq〉〈φqφ′cl〉

(
πα
βu

)2K
e−iπK

| sinh(πβ (t− t′))|2K
=

Sometimes it is more convenient to exclude the factor e−
1
2
〈[φcl(x,t)−φcl(x,t

′)±φq(x,t)±φq(x,t′)]2〉:

〈φcl(xf , tf )φq(x, t)〉〈φq(xi, ti)φcl(x, t′)〉 =

It is mentioned in the text whether the first or the second convention is used for diagrams.
Note that in the second order of perturbation theory we do not have four but eight fields in

the exponent and integrals over four different times. The box is certainly no longer sufficient
and we would draw an octagon. However, some of the selection rules and the procedure of
connecting the external lines are still present.
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Appendix B

Dissipative Action & Corrections to
the Drude conductivity

B.1 Exponentials of correlation functions II

In this section we will evaluate expectation values of SD, see Eq. (3.5) with respect to the
dissipative action S̄.

Evaluation of the Keldysh Green’s function

K(t− t′) = −1
2
〈
[
φcl(x, t)− φcl(x, t′)

]2〉S̄ (B.1)

Based on the Fourier transformed Keldysh Green’s function we can evaluate this correlation
function.

K(t− t′) = −1
2

∫
dk

2π

∫
dω

2π
2 ·
[
1− cos[ω(t− t′)]

]
i · 2D̄K(k, ω) (B.2)

The Keldysh Green’s function in equilibrium is:

D̄K(k, ω) = coth
(
ωβ

2

)
·
[
D̄R(ω, k)− D̄A(ω, k)

]
(B.3)

But now the propagators are evaluated for a disordered system with dissipation:

D̄R(ω, k) =
πuK

ω2 + iωτ − u2k2
(B.4)

Substituting (B.1) into (B.1) we obtain:

K(t− t′) = −4πuK
∫
dk

2π

∫
dω

2π
coth

(
ωβ

2

)[
1− cos(ω(t− t′))

] ω
τ

(ω2 − u2k2)2 + ω2

τ2

(B.5)
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Evaluation of the retarded Green’s function

For the sake of simplicity we consider the retarded Green’s function at different times:

D̄R(t, t′) = − i
2
〈φcl(x, t)φq(x, t′)〉S̄ =

∫ ∞

−∞

dk

2π

∫ ∞

−∞

dq

2π
e−iω(t−t′)D̄R(ω, k) (B.6)

We insert the expression for D̄R(ω, k):

D̄R(t, t′) =
∫ ∞

−∞

dk

2π

∫ ∞

−∞

dω

2π
πuK

ω2 + iωτ − u2k2
e−iω(t−t′) (B.7)

The poles of the integrand have negative imaginary parts:

ω1,2 = − i

2τ
± 1

2

√
4u2k2 − 1

τ2
(B.8)

If t′ > t then D̄R = 0 as expected. Thus we have to close the contour in the lower half-plane.
This introduces a condition Im[ω] < 0 which means that t− t′ > 0.

D̄R(t, t′) = iuKθ(t− t′)e−
t−t′
2τ ·

∫ ∞

−∞
dk

sin
(

1
2

√
4u2k2 − 1

τ2 · (t− t′)
)

√
4u2k2 − 1

τ

(B.9)

We introduce the following notation:

a := t−t′
2τ > 0

x := uk · (t− t′)
(B.10)

D̄R(t, t′) = iKθ(t− t′)e−
t−t′
2τ ·

∫ ∞

0
dx

sin(
√
x2 − a2)√
x2 − a2

(B.11)

The calculation of the time representation of the retarded Green’s function is reduced to the
integral in (B.11)∫ ∞

0
dx

sin(
√
x2 − a2)√
x2 − a2

=
∫ a

0

sinh(
√
a2 − x2)√

a2 − x2
dx+

∫ ∞

a

sin(
√
x2 − a2)√
x2 − a2

dx

We substitute y′2 = a2 − x2 and y2 = x2 − a2:

=
∫ a

0

sinh(y′)√
a2 − y′2

dy′ +
∫ ∞

a

sin(y)√
a2 + y2

dy =
π

2
I0(a) (B.12)

see [20]. Thus, we have found the retarded Green’s function in the time representation:

D̄R(t, t′) = i
πK

2
θ(t− t′)e−

t−t′
2τ I0

(
t− t′

2τ

)
(B.13)

In the limit of vanishing dissipation: ImΣ = 1
τ → 0, equation (B.13) is equal to the retarded

Green’s function of the clean system.
Moreover, in Eq. (B.13) one can see that the correlation vanishes for large time differences

t− t′ � τ due to the finite scattering rate 1
τ .
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Evaluation of the retarded Green’s function at coinciding times

D̄R(t, t′) = − i
2
〈φcl(x, t)φq(x, t′)〉S̄ =

∫ ∞

−∞

dk

2π

∫ ∞

−∞
D̄R(ω, k) (B.14)

The poles ω1,2 = − i
2τ ±

√
u2k2 − 1

2τ2 are always in the lower complex ω half-plane. One
can close the ω-integral in the upper half-plane and prove that the whole expression is zero.
Note that, if we do the k-integral at first we will have to include a convergence factor e−αk.
Consequently, we will treat the retarded and advanced Green’s function as being zero at
coinciding times.

B.2 Evaluation of the β/τ correction ∆στ,1

We calculate corrections in β/τ which we obtained in Eq. (4.82), section (4.2).

∆στ,1 := −s(ω, τ,K) ·K · β
τ

cos(πK)
π

2
i

(
πα

βu

)2K−2 1
β

∫ ∞

0

1− eiωβt

sinh2K(πt)
· tdt (B.15)

where s(ω, τ,K) := 2e2ω
~π2τu

[
D̄R(ω, k = 0)

]2. Let us calculate the integral in Eq. (B.15).

I2(ωβ,K) :=
∫ ∞

0
dt

1− eiωβt

sinh2K(πt)
· t (B.16)

Eq. (B.16) is regular for t = 0 and K < 1. Moreover, the integrand is exponentially small for
large t and 0 < K.
Eq. (B.16) can be evaluated in a similar way as in the calculation of the first order correction
to the clean conductivity (3.34) - (3.37).
In section (3.2) we obtained Eq. (3.37) from an analytic continuation (b→ 0) of the following
integral [20]: ∫ ∞

0

(
1− eiax

)
sinhν(πx)e−bxdx = f(ν, 0, b)− f(ν, a, b) (B.17)

where

f(ν, a, b) =
Γ(ν + 1)
2ν+1π

·
Γ
[
b−νπ−ia

2π

]
Γ
[
b+νπ−ia

2π + 1
] (B.18)

Based on Eq. (B.17), we are going to derive the result of the integration in Eq. (B.16). We
take the derivative with respect to b in Eq. (B.17):(

− ∂

∂b

)∫ ∞

0

(
1− eiax

)
sinhν(πx)e−bxdx =

∫ ∞

0
x ·
(
1− eiax

)
sinhν(πx)e−bxdx (B.19)

This is equal to I(2) for a = ωβ/2π, ν = −2K and b = 0. Thus, we obtain the following
expression after taking the derivative of Eq.(B.18) with respect to b:

F (ν, a, b) :=
(
− ∂

∂b

)
f(ν, a, b)

=
Γ(ν + 1)
2ν+2π2

Γ
(
b−νπ−ia

2π

)
ψ
(
b−νπ−ia

2π

)
− Γ

(
b−νπ−ia

2π

)
ψ
(
b+νπ−ia

2π + 1
)

Γ
(
b+νπ−ia

2π + 1
) (B.20)
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We obtain the result of Eq. (B.16) by taking the derivative of the right hand side of Eq.
(B.17) with respect to b and analytically continue it: b → 0. The analytic continuation was
checked numerically.
Thus we obtain:

I2(ωβ,K) = F (ε, ωβ)− F (ε, 0) (B.21)

where

F (ε, ω) :=
Γ(2ε− 1)

22επ2

Γ
[
1− ε− iωβ2π

]
Γ
[
ε− iωβ2π

] (
ψ

(
1− ε− i

ωβ

2π

)
− ψ

(
ε− i

ωβ

2π

))
(B.22)

We expand I(2) in ε = 1−K � 1 and ωβ � 1:

I2(ωβ, 1− ε) =
i

3
− i

3

[
(2 ln(2)− 2) +

6
π2
ζ(3)

]
· εωβ +O

(
ε · (ωβ)2, (ωβ)2ε

)
(B.23)

where ζ(3) = 1.202.
We insert the expansion, Eq. (B.23), into Eq.(B.15) and obtain1:

∆στ,1 =
e2

~τ
u(

ω + i
τ

)2 · [−π3 1
ωτ

+ c · εβ
τ

+O
(
ε(ωβ)2

τ
,
ε2ωβ

τ

)]
(B.24)

where c = π
3 (2 ln(2)− 2) + 6

π ζ(3), ζ(3) = 1.202.

1Note that the factor (βu/πα)2ε is absorbed into the bare disorder strength Db = u/2τ of the disorder
action SD. All other τ -factors are renormalized. The renormalization of τ is given by Eq.(2.71).
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