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Introduction

The Numerical Renormalization Group, or NRG, in short, has come a long way
since its conception by Wilson in 1975. At that time, it was the first method
to successfully solve the Kondo model, explaining the appearance of the Kondo
effect in metals with magnetic impurities. After this preliminary success, another
twenty years passed until the interest in NRG soared again when technology became
advanced enough to fabricate devices on the nanoscale. In particular, quantum dots
present a set-up which is tunable over a wide range of parameters, thus providing a
new means to test quantum theories.

Transport through quantum dots can often be described by so-called impurity
models, for which NRG remains the premier tool. Recent developments, e.g.
obtaining a complete set of basis states [1], have drastically increased the precision
of NRG, though computing time remains a limiting factor. It has been known for
a long time [2] that certain Hamiltonians allow for a significant reduction of the
run time by exploitation of symmetries. In this thesis, we tackle the problem of
implementing NRG in a way that can take into account arbitrary unitary symmetries.
Emphasis is put on SU(N) symmetries, which would allow some multi-channel
Kondo models to be treated efficiently for the first time.

The mathematical tool on which our approach is based is the Wigner-Eckart
theorem, which simplifies the calculation of matrix elements of the Hamiltonian
[3, 4]. This theorem, in turn, relies heavily on Clebsch-Gordan coefficients, which
are familiar to physicists in the context of angular momentum coupling. In this
context, the direct product of two irreducible representations (irreps) of the SU(2)
group is decomposed into a direct sum of irreps. SU(3) Clebsch-Gordan coefficients
arise, for example, in the context of QCD, and the Clebsch-Gordan coefficients for
the group SU(N), for general N , are useful for the numerical treatment of models
with SU(N) symmetry.

For explicit calculations with models having SU(N) symmetry, explicit tables of
SU(N) Clebsch-Gordan coefficients are needed. Their calculation is a problem of
the applied theory of representations of Lie groups that has been solved, in principle,
long ago [5]. However, the relevant literature requires a rather detailed knowledge of
the theory of Lie groups, going beyond that conveyed in the standard education of
most physicists. And even with the requisite background, it is a nontrivial task to
devise (and implement on a computer) an efficient algorithm for producing explicit
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iv Introduction

tables of SU(N) Clebsch-Gordan coefficients for arbitrary N .
A major goal of this thesis is to present such an algorithm in a formulation

accessible to physicists. We summarize the relevant facts from the representation
theory of SU(N) groups and explain how they can be combined into an efficient
algorithm for calculating SU(N) Clebsch-Gordan coefficients for arbitrary N . Since
we need only ingredients that have already been proven in the mathematics literature,
we refrain from reproducing any proofs. In fact, all of the needed ingredients can
be found in textbooks on representation theory of Lie groups. Nevertheless, we are
not aware of a text that assembles these ingredients in a concise way accessible to a
physics readership, as we endeavor to do below.

We begin in Chapter 1 by giving a gentle introduction to symmetries of the
Hamiltonian. Having put symmetries in a formal setting, we proceed to the idea of
matrix representations, which naturally arise in the context of symmetries. After
explaining how symmetries help to classify states and operators, we finish by stating
the Wigner-Eckart theorem, our main tool for exploiting symmetries.

In Chapter 2, we concisely review the calculation of SU(2) Clebsch-Gordan
coefficients, well-known from the quantum mechanical theory of angular momentum.
In doing so, we choose a strategy that can be readily generalized to the case of
SU(N).

The latter, of course, requires more general schemes for labeling the generators of
the corresponding Lie algebra, its irreps and the states in each irrep. Such schemes
are presented at the beginning of Chapter 3, followed by a statement of the desired
algorithm.

Further on, we treat NRG in Chapter 4. Instead of following the original
derivation, we introduce NRG with a strong focus on algorithmics and quickly
traverse to the details of implementing symmetries in NRG.

We finish in Chapter 5 by summarizing our results and giving a brief overview of
the projects to come.
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Chapter 1

Symmetries and representations

Let A be an Hermitian operator that commutes with the Hamiltonian, [H,A] = 0.
If |a� and |a�� are eigenstates with A |a� = a |a� and A |a�� = a

� |a��, we immediately
obtain

(a− a
�) �a�|H |a� = 0. (1.1)

In other words, the matrix elements of the Hamiltonian between states with different
quantum numbers a and a

� vanish. Within a suitable choice of basis, the Hamiltonian
can be written as a block-diagonal matrix which has one block for each eigenvalue
of A:

H =





H
(a)

H
(a�)

. . .





. (1.2)

This simple fact allows us to save a lot of work because we can diagonalize each
block individually instead of the whole Hamiltonian at once.

In the subsequent sections, we will review how this idea can be developed to a
powerful method for exploiting symmetries based on the Wigner-Eckart theorem.

1.1 Symmetries

1.1.1 The symmetry group of the Hamiltonian

The set of all invertible operators (not necessarily Hermitian) which commute with
the Hamiltonian forms a group, the so-called symmetry group of the Hamiltonian
[6, p. 13]. The four group axioms are easily seen to hold true:

• The composition of operators is associative.

1



2 Chapter 1 Symmetries and representations

• The identity operator belongs to this set.

• Inverse elements exist by definition.

• If A and B are operators from this set, their composition also commutes with
the Hamiltonian: [H,AB] = 0.

As an aside, we note [H,A] = 0 can also be written as A
−1

HA = H because
any operator A belonging to this group is invertible. That is, the Hamiltonian is
invariant under conjugation by A, from which it might be easier to see that it is
also invariant with respect to AB.

Let us start with the most trivial example: The identity operator commutes with
an arbitrary Hamiltonian and constitutes a group with one element. Every state is
an eigenstate of the identity operator with eigenvalue 1, so, in analogy to Eq. (1.2),
the Hamiltonian can be written as

H =




H

(1)




. (1.3)

Of course, this does not illustrate the advantages of exploiting symmetries. A
better-known example is a particle in a central potential,

H =
P

2

2m
+ V (|r|), (1.4)

which is invariant under spatial rotations. The symmetry group then includes the
rotation operators, which are of the form exp(−iL · ω), where L = (Lx, Ly, Lz) are
the orbital angular momentum operators, and ω is a vector specifying the angle and
the axis of rotation. The blocks in the Hamiltonian can be labeled by two numbers
l and m, where l = 0, 1, . . . and m = −l, . . . , l, and the matrix elements H

(l,m)
nn� in
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each block, H
(l,m), are distinguished by an additional quantum number, n:

H =





H
(0,0)

H
(1,1)

H
(1,0)

H
(1,−1)

. . .





. (1.5)

Note that the rotation operators do not constitute the full symmetry group, which
actually is the Lorentz group [7, p. 479]. However, any identification of a subgroup
of the symmetry group takes us a step forward. We call a subgroup of the symmetry
group a symmetry, in short.

1.1.2 Unitary symmetries

The symmetry of the central potential (Eq. (1.4)) is our first example of a unitary
symmetry, which is a symmetry the elements of which are unitary. This is the case
for the central potential because the Hermitian transpose of an operator of the form
exp(−iL · ω) is its inverse, exp(iL · ω).

More precisely, the group of spatial rotations is isomorphic to the group SO(3),
the group of orthogonal 3×3 matrices with unit determinant [6, p. 6]. However, if we
were not dealing with orbital angular momentum, but general angular momentum
operators J = (Jx, Jy, Jz) which also admit half-integer eigenvalues, the symmetry
group would be isomorphic to SU(2) [7, p. 441]. As the special unitary groups
SU(N) play a central role in this thesis, we give their explicit definition here:

SU(N) =
�

U ∈ CN×N

��� U
†
U = 1,detU = 1

�
. (1.6)

That is, SU(N) is the group of unitary N ×N matrices with unit determinant.
We would like to stress that, when we speak of SU(N) being a symmetry of the

Hamiltonian, we actually mean that one of the subgroups of the symmetry group
of the Hamiltonian is isomorphic to SU(N). However, which operators acting on
the quantum states form this group has yet to be specified.
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1.1.3 Generators of symmetries

To every Lie group, there exists an associated Lie algebra [7, p. 386]. For SU(N),
this is the Lie algebra su(N), denoted by lower-case letters, which comprises the
traceless anti-Hermitian N ×N matrices:

su(N) =
�

A ∈ CN×N

��� A
† = −A, trA = 0

�
. (1.7)

Frequently, we are rather going to use the generators of SU(N), which are traceless
Hermitian N ×N matrices. If σ is a generator of SU(N), then iσ is an element of
su(N), and vice versa.

When trying to find a unitary symmetry of the Hamiltonian, it is usually easier
to look for a set of operators corresponding to generators of a unitary group instead
of the group itself. For this set, it is sufficient to fulfill the same commutation
relations as their corresponding generators. The connection to the group is made
via the exponential function, i.e. if σ is a generator of SU(N), we have

iσ ∈ su(N) ⇐⇒ exp(iσ) ∈ SU(N). (1.8)

However, this equivalence only holds for SU(N), not arbitrary Lie groups [7, p. 390].
Let us finish this section with a well-known example. The Pauli matrices,

σx =
�

0 1
1 0

�
, σy =

�
0 −i

i 0

�
, σz =

�
1 0
0 −1

�
, (1.9)

form a basis for the generators of SU(2). Note that the generators constitute a
real vector space, as complex linear combinations of the Pauli matrices are not
necessarily anti-Hermitian. They have the following commutation relations:

[σk, σl] = 2i
�

m∈{x,y,z}

�klmσm. (1.10)

On the other hand, the operators Jx, Jy, and Jz obey, up to a constant, the same
commutation relations:

[Jk, Jl] = i

�

m∈{x,y,z}

�klmJm. (1.11)

So, if the latter operators commute with the Hamiltonian, we immediately obtain
an SU(2) rotational symmetry.
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1.2 Representations

1.2.1 Definition

The idea behind a group representation is to find a matrix for every element of
a group, so we can use ordinary matrix multiplication instead of the possibly
complicated group multiplication rules while retaining the structure of the group.
These matrices then form a group themselves, which canonically acts on Cn (or Rn)
column vectors via matrix multiplication [6, p. 69]. However, we prefer to take the
other way round in defining group representations.

We define a group representation Γ to be a homomorphism from a group G to
the automorphism group Aut(H) of a vector space H,

Γ : G → Aut(H). (1.12)

The automorphism group Aut(H) consists of all invertible linear operators acting
on H and is at the same time an algebra. To qualify as a group homomorphism, Γ
must have the property that, if g and g

� are elements of G, then

Γ(g�g) = Γ(g�)Γ(g). (1.13)

This equation ensures that it does not matter whether we multiply two group
elements before or after applying Γ and thus preserves the structure of the group.

The matrices representing the elements of G are obtained as soon as we choose
an orthonormal basis {|n�} of H. For a given group element g, the matrix element
between two basis states |n� and |n�� is given by �n�|Γ(g) |n�. We will frequently
refer to Γ as a matrix when the choice of basis does not matter, even though it is a
mapping function in the proper sense.

Note that, in analogy to using generators instead of the symmetry group itself,
we can also define a representation of a Lie algebra as a homomorphism from an
algebra A to the automorphism algebra of a vector space H:

Γ : A→ Aut(H). (1.14)

Here, an algebra homomorphism has to fulfill the following rules for a scalar λ ∈ C

and any two elements a, b ∈ A [7, p. 405]:

Γ(λa + b) = λΓ(a) + Γ(b),
Γ([a, b]) = [Γ(a),Γ(b)].

(1.15)

1.2.2 Representation vocabulary

Let us briefly review various concepts arising in the representation theory of groups:
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• The carrier space is the vector space denoted by H above. In the context of
quantum mechanics, we take a quantum state space as H, but, in principle,
this could be any vector space.

• The dimension of a representation is the dimension of the carrier space,
which is also the size of the matrices which represent group elements. A
finite-dimensional representation simply has a finite-dimensional carrier space.
In this thesis, we will only consider finite-dimensional representations.

• A representation is called unitary if the matrices representing group elements
are unitary. This applies to all representations we are interested in, as well.

• An injective representation is called faithful. We will deal with faithful as well
as non-faithful representations, usually without specifying the difference.

• Two representations are equivalent if there exists a choice of basis in each
carrier space such that the matrices representing group elements are the same.
We do not distinguish between equivalent representations, i.e. when we speak
of a representation, we implicitly refer to all equivalent representations as
well. For example, all faithful representations on the same carrier space are
equivalent.

1.2.3 Irreducible representations

It is desirable to classify all representations of a group. In principle, this is
accomplished by finding all irreducible representations of the group, or irreps, in
short, which are building blocks for all other representations.

Before we come to the definition of an irrep, we first need to introduce the idea
of an invariant subspace: This is a subspace H� ⊂ H of the carrier space H of a
representation Γ that is mapped onto itself by all group elements, i.e. Γ(g) |n� ⊂ H�

for all g ∈ G and |n� ∈ H�. Clearly, H itself and the subspace consisting of the null
vector are examples, but we are rather interested in non-trivial subspaces.

If we can slice H into two or more invariant subspaces (disjoint up to the null
vector), the representation Γ is called reducible. Equivalently, all matrices Γ(g)
representing group elements can be made block-diagonal by a suitable choice of
basis, where each invariant subspace results in another block, denoted, say, by Γk,
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in the matrix:

Γ(g) =





Γ1(g)

Γ2(g)

. . .





. (1.16)

Then, each invariant subspace constitutes the carrier space of another representation,
say Γk, the matrices Γk(g) of which are given by the block corresponding to this
subspace. Such a block-diagonal representation is also called the sum representation
of the representations given by the blocks.

In contrast, if the carrier space does not possess any invariant subspaces, or
equivalently, if no choice of basis makes the matrices Γ(g) block-diagonal all at
once, we call the representation Γ irreducible. Whenever we encounter a reducible
representation, our goal is to decompose it into its irreducible constituents.

1.2.4 Classification of states by symmetries

As the symmetry group of the Hamiltonian is a subgroup of the automorphism
group Aut(H) of the Hilbert space, we easily obtain representations of the symmetry
group: The trivial embedding of the symmetry group into Aut(H) serves well as the
function Γ. This is why symmetries in quantum systems are intrinsically entwined
with representation theory. The key idea is not to use the Hamiltonian to obtain
representations of its symmetry group, but instead to do the opposite, namely, using
representation theory to gain insight into the properties of the Hamiltonian and its
eigenstates.

In most cases, this representation of the symmetry group is reducible, as sketched
in Eq. (1.16), otherwise we would end up in the same situation as in Eq. (1.3). In
the case of a reducible representation, each state that is a member of an invariant
subspace of the symmetry group can be labeled by a representation label, denoting
which block of the matrix representations they belong to, and an internal label,
specifying how a state transforms under the action of the symmetry group. However,
these two labels do not uniquely specify a state: There still might remain some
degeneracy, in which case additional labels still are needed.

Let us illustrate this idea by an example: For the hydrogen atom, states are
labeled by |nlm�, where l is a representation label, m is an internal label, and n

is an additional label. The representation and internal labels specify how angular
momentum operators, e.g. Lx, act on a state,

Lx |nlm� =
�

m�

�lm
�
|Lx|lm� |nlm

�
� , (1.17)
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where �lm�|Lx|lm� is a matrix element of the representation of the angular momen-
tum operators specified by l. In principle, it would be more appropriate to write the
matrix element �lm�|Lx|lm� as �m�|Γl(Lx)|m� because it is a matrix element of a
matrix representation, but the former notation is common in the physics literature.

We would like to say few words about multiplets : Often, a set of states with equal
energy, distinguished by different representation and internal labels, is referred to
as a multiplet. We are rather going to refer to a multiplet as a set of states with the
same representation label, distinguished by their internal label. In particular, if the
states of such a multiplet are eigenstates of the Hamiltonian but the Hamiltonian
breaks the corresponding symmetry, they will not be degenerate. Where this
might lead to confusion, we will explicitly speak of energy multiplets or symmetry
multiplets, respectively. For example, in atomic physics, degenerate s- and p-orbitals
of a given shell are often referred to as a multiplet; we shall call this an energy
multiplet. In contrast, for given n and l, the set of states {|nlm� , m = −l, . . . , l},
will be called a symmetry multiplet, whose degeneracy is lifted, e.g. by an applied
magnetic field that breaks rotational symmetry.

1.2.5 Labeling of states by eigenvalues of Casimir operators

Naturally, we would like to know which kind of representation and internal labels
are necessary to describe the transformation properties of a state when we have
identified a symmetry of the Hamiltonian. As sketched at the beginning of this
chapter, these labels can be taken to be eigenvalues of operators belonging to the
symmetry group. However, although each symmetry operator commutes with the
Hamiltonian, they do not necessarily commute with each other. So, a state cannot
simultaneously be an eigenstate of all symmetry operators.

Therefore, we seek a maximal set of commuting operators, e.g., for SU(2), these
are commonly taken to be Jz and J2. Another example is given by the operator
A of Eq. (1.1). In general, this set of operators consists of the Casimir operators
[7, p. 592]. Let us assume that we can find M Casimir operators, denoted by
Ci, i = 1, . . . ,M , which all commute with the Hamiltonian and with each other.
Then, a basis of the state space is given by the normalized simultaneous eigenstates
of the Casimir operators, i.e. we label the basis states by |n, c1, . . . , cM � such that

Ci |n, c1, . . . , cM � = ci |n, c1, . . . , cM � , (1.18)

where n is an additional label distinguishing states having the same set of Casimir
eigenvalues from each other. In the case of multiple, say M , Casimir operators,
Eq. (1.1) should then be rewritten as

�n
�
, c
�
1, . . . , c

�
M |H|n, c1, . . . , cM � = δc

�
1c1

· · · δc
�
M cM

H
(c1,...,cM )
n�n (1.19)
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j = 0 (1)
j = 1 (−J+/

√
2, Jz, J−/

√
2)

j = 2 (J2
+/2,−JzJ+, (3J

2
z − 1)/

√
6, JzJ−, J

2
−/2)

Table 1.1. Irreducible tensor operators arising in the decomposi-
tion of the space of operators acting on the states |j = 1, m�. The
components of an operator transforming as the irrep j is noted a
tuple, (T j

j
, T

j

j−1, . . . , T
j

−j
)..

Note that the set of Casimir eigenvalues includes internal as well as representation
labels. As a consequence, only a subset of all Casimir operators are a multiple of
the identity on an irreducible carrier space, and the eigenvalues of these Casimir
operators can be used to specify the corresponding representation.

Finally, the eigenvalues of Casimir operators are not the only way to label states.
For SU(2), we use j as a representation label, instead of the proper eigenvalue
j(j + 1). For SU(N), we will even depart from taking numbers as symmetry labels,
using graphical objects such as Young diagrams instead.

1.2.6 Classification of operators by symmetries

In the same way as representations of symmetries help us to classify quantum states,
they also serve to classify operators acting on those states. For this purpose, we
need a representation of the symmetry group the carrier space of which is the space
End(H), the space of linear operators (not necessarily invertible) acting on H. By
definition, the image Γ(A) of an operator A in this representation acts on another
operator B as follows [6, p. 112]:

Γ(A)B = A
−1

BA. (1.20)

That is, A is mapped onto an operator that acts on operators by conjugating them
by A. This representation again allows us to slice the space of operators into
invariant subspaces. A basis {T j

m} of such an invariant space is called an irreducible
tensor operator, where j denotes a symmetry irrep. The dimension of this irrep is
called the rank of the tensor operator.

For example, the state space which transforms as the j = 1 irrep of SU(2) is
three-dimensional, so the space of linear operators acting on this state space has
32 = 9 dimensions. The representation given by Eq. (1.20) on this operator space
is reducible and decomposes into a one-dimensional (j = 0), a three-dimensional
(j = 1), and a five-dimensional (j = 2) representation [8, p. 242]. The respective
irreducible tensor operators are shown in Table 1.1.
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The most prominent example of an irreducible tensor operator is the Hamiltonian
itself. As the Hamiltonian commutes with all symmetry operators, the matrix
Γ(A) in Eq. (1.21) must be the identity matrix. That is, Γ is the trivial irrep
of the symmetry group, which maps each group element to the identity and is
one-dimensional. An operator which transforms as this irrep is called a scalar
operator.

Let us give a characterization of irreducible tensor operators which is much more
convenient. Let {T j

m} be an irreducible tensor operator, where j denotes the irrep
according to which the tensor operator T transforms and m indexes the components
of the tensor operator. As an irreducible tensor operator constitutes an invariant
subspace, conjugation of a given T

j
m by an operator of the symmetry group results

in a linear combination of the full set {T j
m},

AT
j

mA
−1 =

�

m�

Γj

m�m(A)T j

m� , (1.21)

where Γj

m�m is called the matrix element of the irrep Γj between T
j

m� and T
j
m [6,

p. 112]. Instead of taking this equation as a definition for the matrix elements of Γj ,
we can as well take Eq. (1.21) as a definition of a tensor operator when the matrix
elements Γj

m�m have already been specified.
In general, the task of finding irreducible tensor operators is nontrivial. However,

from already known tensor operators, we can construct new ones by reducing their
product in terms in the same way as a product representation. We will address this
issue briefly in Sec. 4.6.

1.2.7 Product representations

Before we finally approach the Wigner-Eckart theorem, we need to introduce the
notion of product representations and of Clebsch-Gordan coefficients.

Given any two representations Γp : G → Aut(Hp) and Γq : G → Aut(Hq), we
can form their product representation by taking the tensor product Hp ⊗ Hq of
their carrier spaces. We denote this new representation by Γp⊗q. The group
elements then are mapped to the tensor product Γp(g) ⊗ Γq(g) of the respective
operators. Furthermore, if {|np�} and {|nq�} are bases of Hp and Hq, respectively,
the representation matrices of the product representation in the basis given by all
tensor products {|np ⊗ nq�} are obtained by taking the Kronecker product of the
representation matrices of Γp and Γq, denoted by Γp(g)⊗ Γq(g) as well.

There is an important difference between product representations of Lie groups
and of Lie algebras: In the case of an algebra, we also take the tensor product of
the carrier spaces for a product representation, but the algebra elements (or the
generators) have to be mapped to Γp(g) ⊗ 1+ 1 ⊗ Γq(g) for Eq. (1.8) still to be
applicable.
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Except in special cases, product representations are reducible, even if their
composing factors are irreducible. One of the major goals of representation theory
is to give rules for decomposing a product representation into a sum representation,
i.e. finding the irreps occurring in the decomposition of a product representation,
the so-called Clebsch-Gordan series. For SU(2), this yields the well-known result,

j1 ⊗ j2 = j1 + j2 ⊕ j1 + j2 − 1⊕ · · ·⊕ |j1 − j2|. (1.22)

Note that, on the right-hand side, each irrep appears only once, a special property
of SU(2) that does not hold in general. The number of occurrences of a given irrep
in such a decomposition is called its outer multiplicity.

The entries of a matrix C which performs the block-diagonalization of a product
representation [6, p. 100],

C
−1(Γp(g)⊗ Γq(g))C =

�

k

n
k

pqΓ
k
, (1.23)

where k runs over the Clebsch-Gordan series of this product representation and
n

k
pq is the outer multiplicity of Γk, are called Clebsch-Gordan coefficients. The

matrix C is usually chosen to be unitary and real [6, p. 104], which is possible
through a suitable choice of the phases of the basis for the sum representation. The
Clebsch-Gordan coefficients coincide for representations of the Lie group SU(N)
and of the Lie algebra su(N) because, for each representation of su(N), Eq. (1.8)
leads to a representation of SU(N) on the same carrier space, and Clebsch-Gordan
coefficients are a property of the carrier space rather than of the matrices of a
representation.

Clebsch-Gordan coefficients are well-known from angular momentum, where
they normally are introduced as the overlap between states in a orthonormal basis
{|j1m1; j2m2�} and states in another orthonormal basis {|jm�}. A basis state from
one basis can then be expanded in the another basis [8, p. 208],

|jm� =
�

m1,m2

�j1m1; j2m2|jm� |j1m1; j2m2� . (1.24)

However, this notation is equivalent to the multiplication by the matrix C, written
element-wise.

1.2.8 The Wigner-Eckart Theorem

The Wigner-Eckart theorem is the main tool for exploiting symmetries, relating
individual matrix elements of irreducible tensor operators to each other.

Let |n1j1m1� and |n2j2m2� be states of the carrier spaces of irreps Γj1 and Γj2 of
the symmetry group, respectively, i.e. j1 and j2 are representation labels, m1 and
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m2 are internal labels, and n1 and n2 are additional labels. Furthermore, let T
j
m be

an operator belonging to an irreducible tensor operator transforming as the irrep
Γj , i.e. the matrices on the right-hand side of Eq. (1.21) belong to Γj . The matrix
element of T

j
m between |n1j1m1� and |n2j2m2� then can be written as [6, p. 113]

�n1j1m1|T
j

m |n2j2m2� =
n

j1
j,j2�

α=1

�j2m2; jm|j1m1α�
∗
�n1j1||T

j
||n2j2�α , (1.25)

where �j2m2; jm|j1m1α� is the Clebsch-Gordan coefficient of a state |j1m1� ap-
pearing in the decomposition of the coupling of representations Γj2 and Γj , and α

indexes the various occurrences of Γj1 in this decomposition, up to n
j1
j,j2

, the outer
multiplicity. (Note: The need to keep track of outer multiplicities does not apply
to SU(2), which is why this issue does not arise in standard quantum mechanics
textbooks.) The quantity �n1j1||T

j ||n2j2�α is a so-called reduced matrix element,
which is a number no longer depending on the internal labels. It can be computed
by [6, p. 311]

�n1j1||T
j
||n2j2�α =

1
dj1

�

m1

�

m

�

m2

�j2m2; jm|j1m1α� �n1j1m1|T
j

m|n2j2m2� ,

(1.26)
where dj1 is the dimension of the carrier space of Γj1 , and the sums run over all states
of the respective irrep. Formula (1.26) can be obtained by multiplying Eq. (1.25)
by �j2m2; jm|j�1m

�
1α

�� and summing over m2 and m. The resulting formula still
contains m1 as a free variable. To avoid accidently choosing m1 such that the
Clebsch-Gordan coefficient vanishes and the formula reduces to zero on both sides,
we also sum over m1 and divide by the number of terms in this sum, dj1 . We finally
exploit the following completeness relation for Clebsch-Gordan coefficients:

�

m2

�

m

�j
��
1m

��
1α

��
|j2m2; jm� �j2m2; jm|j

�
1m

�
1α

�
� = δj

�
1j
��
1
δm

�
1m

��
1
δα

�
1α

��
1
. (1.27)

Let us turn to the interpretation of this theorem: Eq. (1.25) states that the matrix
elements of an irreducible tensor operator between states of different irreps depend
only on a restricted set of numbers, the reduced matrix elements. Their form is
determined by dynamics (i.e. by the representation labels and additional labels,
which are usually governed by the Hamiltonian of the problem). The precise form of
the full matrix elements, beyond their dependence on the reduced matrix elements,
is of a geometrical nature (i.e. determined purely by relevant representations of the
symmetry group) and related to the reduced matrix elements via Clebsch-Gordan
coefficients. In other words, this geometrical dependence can be factored out of the
matrix elements. As soon as we know enough matrix elements of an irreducible
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tensor operator to calculate the reduced matrix elements, the remaining matrix
elements are determined by the Wigner-Eckart theorem.

Another considerable consequence concerns the diagonalization of the Hamiltonian.
Eq. (1.1) follows directly from Eq. (1.25), because the Hamiltonian is a scalar
operator of its symmetry group, implying that it cannot have matrix elements
between two states with different symmetry labels. However, the Wigner-Eckart
theorem goes a step further: Instead of keeping a matrix block for each pair
of a representation label and an internal label, a single block referring to the
representation label suffices. For example, returning to the SU(2) example of
Eq. (1.5), we can represent the Hamiltonian in a block-diagonal form,

H =





H
(0)

H
(1)

H
(2)

. . .





, (1.28)

in which each block H
(l) contains as elements only the reduced matrix elements,

H
(l)
nn� = �nl||H||n�l�. Then we can diagonalize each block separately and reconstruct

the full Hamiltonian afterwards, again by using the Wigner-Eckart theorem. This
is much more efficient than using the form (1.5) because the latter contains many
more blocks (since they carry labels l and m). (Alternatively, if one would use
blocks labeled by l only, but without exploiting the Wigner-Eckart theorem, the
blocks would be much larger, since the matrix elements H

(l)
nm,n�m� would have to be

labeled by a double index, n and m.)
By now, it should be clear that the use of symmetries can greatly speed up the

process of diagonalizing a given Hamiltonian. Since this requires explicit knowledge
of the Clebsch-Gordan coefficients, the major part of this thesis will be devoted to
devising an algorithm for computing them explicitly for SU(N).





Chapter 2

Review of SU(2) Clebsch-Gordan
coefficients

The material presented in this chapter is standard. A modern treatment can be
found in [8], while the classic textbooks are those by [9] and [10].

2.1 Angular momentum operators and matrix elements

The angular momentum operators J = (Jx, Jy, Jz), which fulfill the commutation
relations of Eq. (1.11), can be viewed as generators of SU(2). Moreover, we treat
the operators J± = Jx ± iJy and J2 = J

2
x + J

2
y + J

2
z in the same manner, though

they are not real linear combinations of the former, and thus formally are not
generators of SU(2). The J2 operator is an example of a Casimir operator and, as
such, commutes with all other angular momentum operators, [J2

,J ] = 0. But the
method for computing Clebsch-Gordan coefficients we are going to describe does
not depend on J2, so we are going to refer to it only occasionally.

On the other hand, the operators J+, Jz, and J− are linearly independent
and allow recovering Jx, Jy, and Jz by taking the appropriate complex linear
combinations. Thus, we adopt as an equivalent definition of the generators of SU(2)
the commutation relations

[Jz, J±] = ±J±, (2.1)
[J+, J−] = 2Jz. (2.2)

We label the basis states on which they act by |j,m�, where j is a non-negative
half-integer, and m can assume the values j, j − 1, . . . ,−j. The |j,m� states are
eigenstates of the Jz and J2 operators, and the matrix elements of these are given
by (� = 1)

�j
�
m
�
|J2

|jm� = j(j + 1) δj�j δm�m, (2.3)
�j
�
m
�
|Jz |jm� = m δj�j δm�m. (2.4)

15
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m

210−1−2

J− J+

Figure 2.1. Depiction of the internal labels of the j = 2 irrep
of SU(2) on the x-axis. The J− operator shifts a state to the left
while the J+ operator shifts to the right. The states with m = −2
and m = 2 are annihilated by J− and J+, respectively.

The set of states {|j,m�} with fixed j forms the carrier space of a 2j +1-dimensional
SU(2) representation, i.e. j is a representation label while m is an internal label.
Remarkably, the representations labeled by j are irreducible and they are the only
irreps of SU(2), up to equivalence [6, p. 441].

The matrix elements of J± are obtained by a few simple considerations [8, p. 191].
First, we note that JzJ± |jm� = (m ± 1) J± |jm�, provided that m �= ±j. Then,
we evaluate the norm of J± |jm� by the use of �jm|J

†
±J± |jm� = �jm| (J2

− J
2
z ∓

Jz) |jm�. By choosing the matrix elements to be real and positive, we obtain

�j
�
m
�
|J± |jm� =

�
(j ±m + 1)(j ∓m) δj�j δm�,m±1. (2.5)

The operators J± are called ladder operators or raising and lowering operators for
their effect of raising or lowering the internal label m of a state |jm� by one unit,
as shown in Fig. 2.1.

2.2 General method for computing SU(2) Clebsch-Gordan
coefficients

2.2.1 SU(2) product representations

Let us plunge right into the problem of decomposing SU(2) product represen-
tations. In a quantum physics context, this is rather known as the coupling of
angular momenta, which is why we will sometimes speak of “coupling” irreducible
representations.

Starting from two angular momentum representations, i.e. a set of states |j1m1�

and operators J1z and J1± acting on them, plus a set of states |j2m2� and the
corresponding operators J2z and J2±, we form the tensor product of the spaces
spanned by the two sets of states. This product space is, in turn, spanned by all
tensor products of the form |j1m1� ⊗ |j2m2�, which we will denote by |j1m1; j2m2�,
in short. Furthermore, we define total angular momentum operators Jz = J1z ⊗

1+ 1⊗ J2z and J± = J1± ⊗ 1+ 1⊗ J2±.
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The total angular momentum operators fulfill the same commutation relations
as in Eq. (1.11) [8, p. 207]. They thus give rise to another representation of the
SU(2) generators on the carrier space spanned by the states |j1m1; j2m2�, which is
the product representation j1 ⊗ j2 of the SU(2) irreps labeled by j1 and j2. Let Γj1

and Γj2 be the matrices of any of the operators Jz or J± in the irreps j1 and j2,
respectively, then the matrix Γj1⊗j2 is given by

Γj1⊗j2 = Γj1 ⊗ 1+ 1⊗ Γj2 , (2.6)

where ⊗ denotes the Kronecker product of two matrices. As noted in Sec. 1.2.7, the
product representation Γj1⊗j2 is, in general, reducible, and we seek to decompose it
into its irreducible constituents.

Therefore, our first goal is to find all irreps occurring in the decomposition of
Γj1⊗j2 , the so-called Clebsch-Gordan series. Although we have anticipated the result
in Eq. (1.22), we are going to derive the Clebsch-Gordan series of SU(2) in detail.

Our second goal is to compute the matrix C of Clebsch-Gordan coefficients, as in
Eq. (1.23), which block-diagonalizes the product representation,

C
†Γj1⊗j2C =





Γj1+j2

Γj1+j2−1

. . .

Γ|j1−j2|





. (2.7)

We will call each representation appearing on the right-hand side a target irrep.
Recall that we label states of an SU(2) irrep carrier space by |jm�, so the block-

diagonalization can as well be written as a basis transformation of the carrier
space,

|jm� =
�

m1,m2

�j1m1; j2m2|jm� |j1m1; j2m2� , (2.8)

which is the expression we are going to work with, rather than Eq. (2.7).

2.2.2 Selection rule

As an important stepping stone, we observe that a Clebsch-Gordan coefficient
�j1m1; j2m2|jm� vanishes unless

m1 + m2 = m. (2.9)
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This follows from bracketing both sides of Jz = J1z + J2z by �j1m1; j2m2| and |jm�

[8, p. 208].
As a consequence, only relatively few Clebsch-Gordan coefficients are non-zero,

and thus, the matrix C of Eq. (2.7) is sparsely populated. Moreover, we can drop
one of the sums in Eq. (2.8) by eliminating m1 or m2 through this selection rule.

2.2.3 Highest-weight states

For each SU(2) irrep j, the state |jj� is called the highest-weight state, since

J+ |jj� = 0. (2.10)

When expanding the highest-weight state of a target irrep of a product representation
decomposition in terms of the old basis states |j1m1; j2m2�, this property remains
valid, i.e.

J+

�

m�

cm� |j1, m1; j2, j −m
�
� = 0, (2.11)

where cm� are the expansion coefficients, and the sum runs over all values for which
max{−j1, j − j2} ≤ m1 ≤ min{j1, j + j2}. By letting J+ = J1+ + J2+ act on the
states |j1, m

�; j2, j −m
�� in Eq. 2.11 and multiplying by �j1, m

�� + 1; j2, j −m
��| from

the left, we obtain
�

(j1 −m��)(j1 + m�� + 1)cm��

+
�

(j2 − j + m�� + 1)(j2 + j −m��)cm��+1 = 0, (2.12)

which is a system of linear equations in the Clebsch-Gordan coefficients cm�� of the
state |jj�. Actually, this system is bidiagonal and can be rewritten as a recursion
relation,

cm�� = −

�
(j2 − j + m�� + 1)(j2 + j −m��)

(j1 −m��)(j1 + m�� + 1)
cm��+1, (2.13)

and thus leaves only one degree of freedom, e.g. the coefficent cj . To ultimately
determine the Clebsch-Gordan coefficients, we take into account the normalization
condition �

m�

|cm� |
2 = 1, (2.14)

which must hold for any state, and choose the Clebsch-Gordan coefficients to be
real. Still, certain sign conventions have to be specified [8, p. 211], but anyone is
fine as long as we stick to it consistently.

The system of linear equations given in Eq. (2.12) provides a possibility to
calculate an initial set of Clebsch-Gordan coefficients as well as to figure out which
irreps j occur in the decomposition of an SU(2) product representation, namely
those for which Eq. (2.12) has a solution.
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m2

m1
m

=
−3

m
=

0
m

=
3

m
=
−2

m
=

2

m
=
−1

m
=

1

Figure 2.2. m1-m2-plane for the case j1 = 2, j2 = 1. Points with
fixed total m are encircled, with solid or dashed lines if m ≥ |j1−j2|

or m < |j1 − j2|, respectively. Horizontal and vertical arrows
indicate the action of J1+ and J2+, respectively.

2.2.4 Clebsch-Gordan series of SU(2)

Evidently, the selection rule Eq. (2.9) prohibits states with m > j1 + j2, so only
irreps with j ≤ j1 + j2 can appear in a decomposition. We can convince ourselves
that the irrep j = j1 + j2 does indeed occur because there exists only one state with
m = j1 + j2, namely |j1j1; j2j2�, so we have

|j1 + j2, j1 + j2� = |j1j1; j2j2� . (2.15)

As soon as we find the highest-weight state of any irrep in terms of the old basis
states, we are guaranteed that this irrep occurs in the decomposition [7, p. 612]
because the highest-weight state must belong to an invariant subspace of the product
representation carrier space, and we can always find the other basis states of this
invariant subspace by applying the lowering operator J− to the highest-weight state.

In general, we can visualize the construction of a highest-weight state as in Fig. 2.2.
For a trial target irrep j, we seek a linear combination of the states |j1m1; j2m2�

with m1 + m2 = j which is annihilated by the J+ operator, as in Eq. (2.11). In
Fig. 2.2, this corresponds to taking a linear combination of the states located on
the diagonal m = j. The operators J1+ and J2+ map each state |j1m1; j2m2�

to its horizontal and vertical neighbor, respectively, so the linear combination of
states with m1 + m2 = j is mapped to a linear combination of the states with
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m1 + m2 = j + 1. For example, the set of states with m = 1 is mapped to the set
of states with m = 2, as indicated by the arrows in Fig. 2.2.

For the linear combination of the diagonal m = j + 1, which is obtained by
applying the J+ to the linear combination of the diagonal m = j, to vanish, the
prefactor of each linearly independent state must be zero, which is expressed by
Eq. (2.12). For a single state on the m = j + 1 diagonal, this can be accomplished
if it can be reached in two different ways from the m = j diagonal, which can be
made to cancel by appropriate choice of the coefficients of the linear combination
(leading to Eq. (2.13)). However, if any state on the m = j + 1 diagonal can be
reached in only one way, it is no longer possible to compensate this contribution by
modifying another prefactor.

In consequence, Eq. (2.12) has a non-trivial solution if and only if the diagonal
m = j is longer than the diagonal m = j +1 in the picture corresponding to Fig. 2.2.
This is the case for the diagonals encircled by solid lines in Fig. 2.2. It is not hard
to geometrically figure out for which diagonals, and thereby for which values of j,
we can find a highest-weight state, namely for

j = j1 + j2, j1 + j2 − 1, . . . , |j1 − j2|, (2.16)

which is the same result as in Eq. (1.22).

2.2.5 Simple reducibility

In principle, it would be possible that the linear system given in Eq. (2.12) has
more than one non-trivial solution, and thus, an SU(2) irrep would occur more than
once in a decomposition. Let us give two short arguments why this is not the case.

As mentioned in Sec. 2.2.3, the system of linear equations in Eq. (2.12) is
bidiagonal and, as such, has a single degree of freedom. Thus, there cannot exist
two independent solutions. Another illustrative reasoning is the check of dimensions
[8, p. 209]: The dimensions of the irreps occurring in a decomposition must add up
to the product of the dimensions of the two factors of the product representation,
i.e.

j1+j2�

j=j1−j2

(2j + 1) = (2j1 + 1)(2j2 + 1). (2.17)

The fact that each irrep j appears only once, also called simple reducibility is a
particular feature of SU(2). For SU(3) and above, this will no longer be valid.

2.2.6 Calculation of SU(2) Clebsch-Gordan coefficients

After solving Eq. (2.12) for the Clebsch-Gordan coefficients of the state |jj�, we
are almost done. The Clebsch-Gordan coefficients of a state |jm� are obtained by
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acting with J− on both sides of the expansion of |jj� in the old basis states,

|jj� =
�

m�

cm� |j1, m
�; j2, j −m

�
� . (2.18)

Care has to be taken to divide by the prefactors introduced by J−, though they are
the same on both sides. In particular, a state |jm� is reached from |jj� by

|jm� =

�
(j + m)!

(j −m)!(2j)!
(J−)j−m

|jj� . (2.19)

Combining Eqs. (2.18) and (2.19), [8, p. 211] gives a simple recursion relation for
the Clebsch-Gordan coefficients of a target irrep j, which can be used for explicit
calculations, once the Clebsch-Gordan coefficients of the highest-weight state have
been found:

�
(j ∓m)(j ±m + 1) �j1m1; j2m2|j,m± 1�

=
�

(j1 ∓m1 + 1)(j1 ±m1) �j1, m1 ∓ 1; j2m2|jm��
(j2 ∓m2 + 1)(j2 ±m2) �j1m1; j2, m2 ∓ 1|jm� (2.20)

SU(N) Clebsch-Gordan coefficients can be obtained by following essentially the
same strategy, of first determining the highest-weight states explicitly and then
systematically applying lowering operators. However, more elaborate schemes for
labeling the generators of the groups, its irreps and the states in each irrep need to
be developed. It turns out that this can be done very conveniently using graphical
tools such as Young diagrams, Young tableaux and Gelfand-Tsetlin patterns, which
will be introduced in the next chapter.

2.3 Alternative methods for obtaining SU(2)
Clebsch-Gordan coefficients

Due to the fact that SU(2) is simply reducible, several more elegant methods for
calculating SU(2) Clebsch-Gordan coefficients are known, of which we are going
to present two. Note, though, that the method we have described in the previous
section generalizes most easily to SU(N).
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j m j(j + 1) j(j + 1) + m

0 0 0 0
1/2 −1/2 3/4 1/4
1/2 1/2 3/4 5/4
1 −1 2 1
1 0 2 2
1 1 2 3
...

...
...

...

Table 2.1. Eigenvalues of the first few states |jm� with respect
to the operator J2 + Jz. Each state can be uniquely identified by
its eigenvalue, which is displayed in the rightmost column.

2.3.1 Closed formula

Several authors have given closed formulas for SU(2) Clebsch-Gordan coefficients
[7, p. 458], e.g.

�j1m1; j2m2|jm� = ((2j + 1)(j1 + j2 − j)!(j1 − j2 + j)!(j − j1 + j2)!)
1
2

× ((j1 + m1)!(j1 −m1)!(j2 + m2)!(j2 −m2)!(j + m)!(j −m)!)
1
2

×

�

m�

(−1)m
��

m
�!(j1 + j2 − j −m

�)!(j1 −m1 −m
�)!(j2 + m2 −m

�)!

× (j − j2 + m1 + m
�)!(j − j1 + m2 + m

�)!(j1 + j2 + j + 1)!
�− 1

2 (2.21)

While this formula is convenient for computing isolated Clebsch-Gordan coefficients,
it will be computationally more expensive than other approaches when the full set
of Clebsch-Gordan coefficients of a product representation decomposition is needed.

2.3.2 Diagonalization of Casimir operators

For a short implementation in computer algebra systems, it is convenient to diago-
nalize [11]

J2 + Jz = (J2
1 + J1z)⊗ 1+ 1⊗ (J2

2 + J2z). (2.22)

Each state |jm� has a unique eigenvalue with respect to this operator, as shown in
Table 2.1. This allows states with equal m in a product representation decomposition
to be distinguished from each other, and each such state to be unambiguously
assigned to the irrep labeled by the corresponding j. The matrix which diagonalizes
this operator in the product representation is exactly the desired matrix of Clebsch-
Gordan coefficients.



Chapter 3

Computation of SU(N) Clebsch-Gordan
coefficients

Constructing an algorithm to calculate arbitrary SU(N) Clebsch-Gordan coeffi-
cients proved harder than anticipated. While a lot of introductory literature on
representation theory is available, from a mathematical point of view [12, 13, 14] as
well as written by physicists [15, 16, 6, 7], few books explicitly treat the calculation
of SU(N) Clebsch-Gordan coefficients, and even fewer do so from an algorithmical
perspective.

Above all, we benefited from the book by Lichtenberg [17], which diligently
uses Young tableaux for the representation theory of SU(N). For Gelfand-Tsetlin
patterns, the review paper by Louck [5] and Ch. 10 of the book by Barut and
Ra̧czka [18] have been the most helpful resources. Finally, there is a rather new
book by Louck [19] which seems promising.

3.1 The Lie algebra su(N)

Let E
pq be the single-entry matrices, i.e. E

pq
rs = δprδqs. One possible choice of basis

of su(N) is given by i(Ekl + E
lk) (1 ≤ k < l ≤ n), (Ekl − E

lk) (1 ≤ k < l ≤ n),
and i(Ekk − E

k+1,k+1) (1 ≤ k < n) (note the analogy to the Pauli matrices). We
immediately allow complex linear combinations, thus losing anti-Hermiticity. Now
define:

J
(k)
z =

1
2
(Ekk

− E
k+1,k+1) (1 ≤ k < n), (3.1)

J
(k)
+ = E

k,k+1 (1 ≤ k < n), (3.2)

J
(k)
− = E

k+1,k (1 ≤ k < n). (3.3)

For fixed k, these fulfill familiar-looking commutation relations:
�
J

(k)
z , J

(k)
±

�
= ±J

k

±, (3.4)
�
J

(k)
+ , J

(k)
−

�
= 2J

(k)
z . (3.5)

23
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Assuredly, the operator J
(k)
± are raising and lowering operators, in analogy to J±

known from SU(2) [17, ch. 5] [7, ch. 13].
In principle, we can obtain other commutators by plugging in explicit expressions

for the matrices given above, but do not need them. Furthermore, it is sufficient to
focus on J

(k)
z and J

(k)
± instead of a full basis because, from these, we can recover a

complete anti-Hermitian basis by the use of

E
pq = [J (p−1)

− , [J (p−2)
− , . . . [J (q+1)

− , J
(q)
− ]] . . .] (p > q), (3.6)

E
pq = [J (p)

+ , [J (p+1)
+ , . . . [J (q−2)

+ , J
(q−1)
+ ]] . . .] (p < q). (3.7)

We could even go as far as taking take Eqs. (3.4) to (3.7) as an abstract definition
of su(N). But in any case, knowing that the operators J

(k)
z and J

(k)
± exist and how

they act on quantum states is sufficient for our purposes.

3.2 Young tableaux techniques

3.2.1 Labeling of irreps by Young diagrams

Before we proceed any further, we first need a scheme to label states in analogy to
|j,m� in the context of angular momentum. Recall that j is a representation label
and uniquely identifies an irrep of SU(2). So we start by finding a labeling scheme
for the irreps of SU(N). It turns out that we can label each irrep of SU(N) by a
Young diagram with at most N rows [17, ch. 7] [7, ch. 16.7]. A Young diagram is
an arrangement of boxes in rows and columns, such that:

1. There is a single, contiguous cluster of boxes.

2. The left borders of all rows are aligned.

3. Each row is not longer than the one above.

Note that the empty Young diagram consisting of no boxes is a valid Young diagram.
For the purpose of describing an SU(N) irrep, we additionally require:

4. There are at most N rows.

5. Columns with N boxes can be dropped, i.e. we identify diagrams which differ
only by such columns.

Some SU(3) examples are shown in Fig. 3.1. A further example is given by the Young
diagrams specifying SU(2) irreps: The irrep specified by total angular momentum j

corresponds to a Young diagram with 2j boxes in a single row.
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Figure 3.1. Examples of Young diagrams of SU(3) irreps. As
we can delete columns with 3 boxes, the last example is effectively
equal to the first one.

1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

1 3
3

2 2
3

2 3
3

Figure 3.2. Set of all of valid SU(3) Young tableaux which have
the shape .

As before, a given Young diagram does not uniquely identify a carrier space.
Instead, the Young diagram indicates that its elements transform in a certain way
under the action of the SU(N) generators. Yet we often identify irreps with Young
diagrams, leaving the actual carrier space to be inferred from the context.

3.2.2 Labeling of states by Young tableaux

Now that we know the generalization of the representation label j of SU(2) to SU(N),
we also need a labeling scheme for the elements of a carrier space, corresponding
to a generalization of the internal label m of SU(2) irreps. This is accomplished
by semi-standard Young tableaux [17, ch. 7], to be called, in short, Young tableaux
below. A Young tableau is a Young diagram the boxes of which are filled according
to the following rules:

1. Each box contains a single integer between 1 and N , inclusive.

2. The numbers in each row of boxes are weakly increasing from left to right (i.e.
each number is equal to or larger than the one to its left).

3. The numbers in each column are strictly increasing from top to bottom (i.e.
each number is strictly larger than the one above it).

For example, all eight Young tableaux for the diagram with respect to SU(3)
are shown in Fig. 3.2. As another example, let us give the correspondence between
states |jm� of an SU(2) irrep and Young tableaux: |jm� corresponds to a Young
tableau with 2j boxes in a single row, of which the leftmost j + m boxes contain a
one and the remaining j −m boxes contain a two.

Note that the dimension of a carrier space labeled by a Young diagram is given
by the number of valid Young tableaux with the same shape as the Young diagram.
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(empty) 1

3

3

6

6

8

10

10

15

15

Table 3.1. Young diagrams corresponding to the smallest SU(3)
irreps, along with their dimension.

3.2.3 Dimension of irreps

There exists a convenient way of calculating the dimension of an irrep given by
a Young diagram [17, p. 112]. Let us consider the diagram as an SU(3)
representation. First, put into each each box the number N plus the number of
boxes in the same row to the left minus the number of boxes in the same column
above:

3 4 5 6
2 3

(3.8)

Take the product of all these numbers, which is 2160 in this case. Then, start again
and put into each box the number of boxes in the same row to the right plus the
number of boxes in the same column below plus one:

5 4 2 1
2 1

(3.9)

Again, take the product which is 80 this time. The dimension is given by the former
product divided by the latter, which is 27 in this case. As another example: The
diagram stands for an 8-dimensional SU(3) irrep, but also for a 20-dimensional
SU(4) irrep. The Young diagrams corresponding to the ten smallest SU(3) irreps
are shown in Table 3.1.

3.2.4 Irrep product decomposition

When coupling two irreducible representations, the question arises which kind of
irreps occur in their decomposition into a direct sum. The answer to this question
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can be found using an easily stated but hard to prove method [20, 21].
Start with the two Young diagrams representing the two irreps to be coupled and

call these the first and second diagram, respectively. The method involves writing
down all possible Young tableaux for the second diagram, and using each of these
to construct, starting from the first Young diagram, a new Young diagram. The set
of all valid Young diagrams so produced represents the desired set of all irreps in
the decomposition of the direct product. Specifically, this is done as follows:

1. Draw all admissible Young tableaux for the second diagram by filling the
latter with numbers between 1 and N , inclusive, while respecting the rules
for Young tableaux (weakly increasing rows, strictly increasing columns).

2. For each of these tableaux (to be called the current Young tableau below),
construct a corresponding Young diagram, which we shall call the trial diagram,
in the following manner:

a) Start the trial diagram as a fresh copy of the first diagram.
b) Step through the boxes of the current Young tableau from right to left,

from top to bottom (in the so-called Arabic reading order).
c) If the box encountered at a given step contains the number k, add a box

at the right end of row k of the trial diagram.
d) If this produces a trial diagram that is no longer a valid Young diagram

(having a row longer than the one above), discard it and start anew with
the next Young tableau.

e) If, however, a valid Young diagram is constructed during each step, the
final Young diagram obtained after the last step represents an irrep
occurring in the decomposition of the direct product.

3. The set of all trial diagrams which have not been discarded represents the
desired set of all irreps in the decomposition of the direct product. If the outer
multiplicity of a particular target irrep is greater than one, it will appear as
many times in the set of trial diagrams.

We would like to emphasize that, after each step during the construction of the trial
diagram, the latter has to be a valid Young diagram. Furthermore, this algorithm
delivers the same result with the first and second diagram interchanged, so it
requires less effort to put the smaller diagram (in the sense of the dimension of the
corresponding irrep) second.

Let us illustrate the whole procedure with a simple SU(3) example, the decompo-
sition of ⊗ . Table 3.2 lists all Young tableaux for the second diagram and their
corresponding trial diagrams. The Young diagrams in the rightmost column are
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Young tableau Construction steps of trial diagram Final diagram

1
2

1
3

2
3 ✚

✚
✚

✚





discarded

Table 3.2. Steps during the SU(3) decomposition of ⊗ .

those which appear in the decomposition. Usually, we write this as an equation:

⊗ = ⊕ (3.10)

Note that we could drop the first column in the last term of Eq. 3.10, but if we
retain it, all Young diagrams on the right-hand side retain the same number of
boxes.

As the dimension of a product representation is the product of the dimensions of
its factors, we can rewrite this equation in terms of dimensions:

6× 3 = 10 + 8 (3.11)

This provides a simple consistency check for the decomposition.
Note that the notations used above do not reveal which SU(N) the decomposition

is done. If we redo the previous decomposition with respect to SU(4) instead of
SU(3), we obtain an additional term compared to Eq. 3.10, as can be seen from
Table 3.3:

⊗ = ⊕ ⊕ (SU(4)) (3.12)

Dimension-wise, this reads:

20× 6 = 50 + 64 + 6 (3.13)

In general, we observe that, if we raise N , further terms may arise in the decompo-
sition of a SU(N) product representation.
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Young tableau Construction steps of trial diagram Final diagram

1
4

✓
✓

✓
✓

✓✓❙
❙

❙
❙

❙❙

discarded

2
4 ✚

✚
✚

✚





discarded

3
4

Table 3.3. Additional steps during the SU(4) decomposition of
⊗ (relative to Table 3.2).

Let us consider another SU(3) example, the decomposition of ⊗ , the
intermediate steps of which are shown in Table 3.4:

⊗ = ⊕ ⊕ ⊕ ⊕ ⊕ (3.14)

Here, one term on the right-hand side appears twice, implying its outer multiplicity
is 2, which is something that does not happen with SU(2). Recall that the decomposi-
tion of two coupled spins always leads to j1⊗j2 = (j1+j2)⊕(j1+j2−1)⊕· · ·⊕|j1−j2|,
where no term occurs more than once in the sum, implying each has outer multi-
plicity 1.

3.3 Gelfand-Tsetlin patterns

3.3.1 Correspondence to Young tableaux

The labeling of SU(N) irreps by Young diagrams and states by Young tableaux
can be combined into so-called Gelfand-Tsetlin patterns [5, 19]. A Gelfand-Tsetlin
pattern for SU(N) is a triangular arrangement of non-negative integer numbers in
N rows: 



m1N m2N . . . mNN

m1,N−1 . . . mN−1,N−1
. . . ...
m12 m22

m11




(3.15)
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Young tableau Construction steps of trial diagram Final diagram

1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

1 3
3

�
�

�
�❅

❅
❅

❅

discarded

2 2
3 ✚

✚
✚

✚





discarded

2 3
3

Table 3.4. Steps during the SU(3) decomposition of ⊗
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Row 1 Row 2 Row 3 Row 4



2







 3 2
2








3 2 1

3 2
2









4 3 1 0
3 2 1

3 2
2





1 1 1 1 2
2 2

1 1 2
2 2
3

1 1 2 4
2 2 4
3

Table 3.5. Conversion of a sample SU(4) Gelfand-Tsetlin pattern
to a Young tableau.

Since the convention of taking the second index as the row number, and labeling
the rows from bottom to top, is firmly established in the mathematics literature,
we shall adhere to it here, although most physicists will find it counterintuitive.

The entries are subject to the following restriction, the so-called betweenness
condition [18, p. 279]:

mkl ≥ mk,l−1 ≥ mk+1,l (1 ≤ k < l ≤ N) (3.16)

In other words, the numbers in every row must weakly decrease from left to right,
and the entry directly below two horizontal neighbors must lie between these.

Each Gelfand-Tsetlin pattern possesses a corresponding Young tableau, which
can be constructed as follows from its entries mkl: Start with an empty Young
tableau (no boxes at all), and proceed from the bottom to the top of the pattern
(from row 1 to row n), repeating the following steps:

1. For a given row of the pattern, say the l-th, its entries mkl (from left to right)
specify the number of boxes in the k-th row (from top to bottom) of some
Young diagram.

2. Expand the Young tableau constructed so far by adding empty boxes (at the
right of rows and the bottom of columns), until the shape of the latter Young
diagram is obtained, aligning their upper left corners.

3. Fill the newly added empty boxes with the number l of the current pattern
row.

So, the entry m11 gives the number of ones in the upper row of a Young tableau.
Another consequence is that the topmost row of a Gelfand-Tsetlin pattern alone
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Diagonal 1 Diagonal 2 Diagonal 3 Diagonal 4




4
3

3
2









4 3
3 2

3 2
2









4 3 1
3 2 1

3 2
2









4 3 1 0
3 2 1

3 2
2





1 1 2 4 1 1 2 4
2 2 4

1 1 2 4
2 2 4
3

1 1 2 4
2 2 4
3

Table 3.6. Alternative conversion of an SU(4) Gelfand-Tsetlin
pattern to a Young tableau.

fixes an irrep by specifying the number of boxes in the rows of the corresponding
Young diagram. The procedure should be clear after going through the example in
Table 3.5.

There is an alternative, completely equivalent way of constructing the Young
tableau corresponding to a Gelfand-Tsetlin pattern, whereby the entries mkl of the
k-th diagonal (from left to right) of the latter are used to construct the k-th row
(from top to bottom) of the former. Again, start with an empty Young tableau (no
boxes at all), but proceed along the diagonals of the pattern (entries with fixed first
index), from left to right (from diagonal 1 to diagonal n).

1. For a given diagonal (say the k-th), add a new, empty row (it will be the k-th
row) to the bottom of the Young tableau constructed up to now.

2. Proceed upward, from bottom to top, along the entries of this k-th diagonal.

3. For each new pattern entry encountered while proceeding upwards along the
diagonal (entry mkl will be found in row l of the pattern), add empty boxes at
the right of the k-th tableau row, to extend its length to the value of pattern
entry mkl.

4. Fill the newly added empty boxes in the Young tableau with the row number
l of the present pattern entry.

A short demonstration is given in Table 3.6. We prefer this method when adapting
the algorithm for decomposing a product representation to work on Gelfand-Tsetlin
patterns. Filling a tableau in Arabic reading order corresponds to filling a pattern
diagonal-wise, while adding a box to a diagram is simply done by increasing an
entry in the top row of a pattern.
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Generally, Gelfand-Tsetlin patterns lend themselves well to implementing on
a computer the methods described in this thesis. They can be represented by
much simpler data structures than Young tableaux. Another advantage is a simple
formula to compute the dimension d of an irrep [18, p. 283]:

d =
�

1≤k<l≤N

�
1 +

mkN −mlN

l − k

�
(3.17)

Note that this expression depends only on the top row of a pattern. This formula
gives the same result as the method described earlier involving Young diagrams.

3.3.2 Matrix elements of operators

We are now ready for explicit expressions for the action of the J
(k)
z and J

(k)
± operators

on states labeled by Gelfand-Tsetlin patterns [18, p. 280]. In this section, denote
by E

pq single-entry patterns, E
pq
rs = δprδqs. For purposes of notation, define an

element-wise addition and subtraction on patterns. Let M be a Gelfand-Tsetlin
pattern with entries mkl. The only possible non-zero matrix elements of J

(k)
− are,

for arbitrary 1 ≤ j ≤ k, given by:

�M − E
jk
|J

(k)
− |M�

=




−

k+1�
l=1

(ml,k+1 −mj,k + j − l + 1)
k−1�
l=1

(ml,k−1 −mj,k + j − l)

k�
l=1
l �=j

(ml,k −mj,k + j − l + 1)(ml,k −mj,k + j − l)





1
2

(3.18)

The term M −E
jk on the left-hand side might not be a valid pattern, but in this

case, the expression above vanishes anyway. Additionally, these matrix elements
are real.

As J
(k)
+ is the Hermitian transpose of J

(k)
− , we can obtain its matrix elements by

taking the complex conjugate of the preceding formula (1 ≤ j ≤ k) and carefully
replacing M by M + E

jk:

�M + E
jk
|J

(k)
+ |M�

=




−

k+1�
l=1

(ml,k+1 −mj,k + j − l)
k−1�
l=1

(ml,k−1 −mj,k + j − l − 1)

k�
l=1
l �=j

(ml,k −mj,k + j − l)(ml,k −mj,k + j − l − 1)





1
2

(3.19)
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Once again, this expression vanishes for invalid patterns M + E
jk, and all other

matrix elements which do not have this form are zero.
These formulae are a generalization of Eq. (2.5). What remains is the correspond-

ing expression for Eq. (2.4):

�M |J
(k)
z |M� =

k�

l=1

ml,k −
1
2

k+1�

l=1

ml,k+1 −
1
2

k−1�

l=1

ml,k−1 (3.20)

That is, J
(k)
z is diagonal, and states labeled by Gelfand-Tsetlin patterns are eigen-

states. Another way to obtain the last result, which might prove useful numerically,
would be to evaluate the commutator [J (k)

+ , J
(k)
− ] = 2J

(k)
z .

3.4 Weights

3.4.1 Weight diagrams

We define the weight of a Young tableau, which labels a state of an SU(N) irrep,
as a tuple (w1, . . . , wN ) where wj is the number of occurrences of j in the Young
tableau. For example, the weight of 1 1 1 3

2 3
is (3, 1, 2) with respect to SU(3) and

(3, 1, 2, 0) with respect to SU(4). In terms of Gelfand-Tsetlin patterns, wj is given
by the differences of row sums,

wj =
j�

i=1

mij −

j−1�

i=1

mi,j−1, (3.21)

where the second sum vanishes in the case j = 1.
In contrast, in the literature, the weight is often defined as an N − 1-tuple of the

eigenvalues of a state |M� with respect to J
(k)
z . That is, if J

(k)
z |M� = λk |M� for

1 ≤ k < n, the weight of |M� is (λ1, . . . ,λn−1). To avoid confusion of these differing
definitions, we shall call the latter the weight of a state. However, the definitions
are completely equivalent because the weight of a Young tableau determines the
weight of the corresponding state and vice versa.

The weight of a state can be visualized as a vector in N − 1-dimensional space.
Drawing all the weights of the states of an irrep into a single (N − 1)-dimensional
lattice is called a weight diagram. For SU(2), these simply consist of equidistant
marks on a line, e.g. the weight diagram of the spin 2 irrep is shown in Fig. 2.1.

The weight diagrams of SU(3) are two-dimensional. For example, the weights
of the irrep are shown in Fig. 3.3. The number of distinct states having the
same weight is called the inner multiplicity of the weight. The double circle around
the weight (0, 0) indicates that its inner multiplicity is 2. As a side note, some
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J
(2)
− J

(2)
−

J
(1)
−

J
(1)
−

J
(2)
−

J
(1)
−

J
(2)
−

J
(1)
−

λ1

λ2

1
2

1
2

−
1
2

−1

−1

1 1
2

1 3
3

1 2
2

2 2
3

1 1
3

1 3
2

−
1
2

1 2
3

1

1

2 3
3

Figure 3.3. SU(3) weight diagram of . Each dot represents a
state, and the circle around the weight (0,0) indicates that there
are two states with this weight. The arrows represent the action
of the J

(k)
− operators. (The operators J

(k)
+ could be represented

by arrows pointing in opposite directions to those of J
(k)
− .) J

(1)
−

acting on the state 1 1
3

as well as the operator J
(2)
− acting on the

state 1 2
2

generate linear combinations of the states 1 2
3

and 1 3
2

,
albeit different ones.

authors use different normalization conventions, so the weight diagrams become
more symmetric.

Fig. 3.3 also illustrates the action of the lowering operators J
(k)
− . For SU(2),

there is only one direction in which the ladder operators can shift, but for SU(3)
there are two directions, so there are two raising and two lowering operators.
Furthermore, it is interesting to note that the operator J

(1)
− acting on the state

1 1
3

and J
(2)
− acting on the state 1 2

2
generate two different linear combinations of

the states 1 2
3

and 1 3
2

, which are states with identical weight. For SU(N), this

generalizes to the following: J
(k)
± , when acting on a state whose Gelfand-Tsetlin

pattern has weight (w1, . . . , wN ), produces a linear combination of all states with
weight (w1, . . . , wk ± 1, wk+1∓ 1, . . . , wN ). However, if there are no states with this
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weight, the result will vanish.
For N > 3, the weight diagrams of SU(N) cannot easily be visualized because

the corresponding lattices are higher than 2-dimensional. Nevertheless, each of
the ladder operators J

(k)
± shifts in another of the N − 1 dimensions of the weight

diagram.

3.4.2 Selection rule

In analogy to SU(2), there also exists a selection rule for SU(N) Clebsch-Gordan
coefficients, namely the weight of a tensor product of two states is given by the
element-wise sum of the individual weights of the states,

(wM

1 , . . . , w
M

N−1) = (wM1
1 + w

M2
1 , . . . , w

M1
N−1 + w

M2
N−1), (3.22)

where (wM

1 , . . . , w
M

N−1) denotes the weight of the state |M� and so on. Consequently,
a Clebsch-Gordan coefficient between two coupled states |M1� and |M2� and a state
of a target irrep |M� vanishes unless the weights add up correctly.

3.4.3 Highest-weight states

As for SU(2), each SU(N) irrep has a unique highest-weight state, which is annihilated
by all J

(k)
+ operators for k = 1, . . . , N−1 simultaneously. The highest-weight state is

labeled by the Young tableau with the lowest possible entries, e.g. the highest-weight
state of the SU(3) irrep is labeled by 1 1

2
. In terms of Gelfand-Tsetlin patterns,

the pattern of the highest-weight state has the highest possible entries fulfilling the
betweenness condition, i.e. mkl = mk,N for l < N . The weight of the highest-weight
state always has unit inner multiplicity.

In the further process of decomposing a product representation, we want to find
the highest-weight states of each irrep occurring in the decomposition of the tensor
product basis. For this purpose, we first find by simple inspection all product states
which have the same weight as the highest-weight state of the target irrep. Let q

be the number of such states, and denote them by |Mp ⊗M
�
p�, with p ranging from

1 to q. Then we need to construct all linearly independent linear combinations of
these states,

|Hr� =
q�

p=1

c
r

p |Mp ⊗M
�
p� , (3.23)

that satisfy the defining condition for a highest-weight state, namely that they are
annihilated by all J

(k)
+ operators,

�
J

(k)
+ ⊗ 1+ 1⊗ J

(k)
+

�
|Hr� = 0 (k = 1, . . . , N − 1). (3.24)
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We can explicitly write down the action of the raising operator J
(k)
+ on the states

|Mp ⊗M
�
p� in this equation, using the matrix elements given in Eq. (3.19). This

might be inconvenient on paper, but it is no problem to have a computer do this.
In analogy to Eq. (2.11), we then obtain a linear system in the coefficients cp, which
are the Clebsch-Gordan coefficients of the highest-weight state of the target irrep.

3.4.4 Clebsch-Gordan coefficients with outer multiplicity

Let s denote the dimension of the null space of Eq. (3.24), i.e. the number of its
independent solutions |Hr�, r = 1, . . . , s. Then s gives the number of times the
target irrep occurs in the decomposition of the direct product, i.e. it is the outer
multiplicity of the target irrep. (It coincides with the outer multiplicity obtained
by the Young tableaux method of Sec. 3.2.4.) An outer multiplicity larger than 1
leads to an ambiguity among the Clebsch-Gordan coefficients of the highest-weight
states of target irreps of the same kind, as the set of highest-weight states is not
uniquely defined: a unitary transformation |Hr� →

�
r� Urr� |H

�
r� among this set

will produce a different (but equally acceptable) set of highest weight states. The
full set of Clebsch-Gordan coefficients of these target irreps will change accordingly.

We are not aware of a canonical resolution of this ambiguity, i.e. a way of
resolving it using group theoretical considerations (although we suspect that this
might be possible using Casimir operators). However, we suggest writing down the
independent solutions, (cr

1, . . . , c
r
q), where r = 1, . . . , s indexes the solutions and s

is the outer multiplicity, as a matrix,



c
1
1 · · · c

1
q

... . . . ...
c
s

1 · · · c
s
q



 , (3.25)

and bringing this matrix into reduced row echelon form by Gaussian elimination
[22]. The resulting matrix will be of the form





0 · · · 0 + 0 · · · 0 0 0 · · · 0 0 ∗ · · · ∗

0 · · · 0 0 0 · · · 0 + 0 · · · 0 0 ∗ · · · ∗

0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 ∗ · · · ∗

... . . . ...
...

... . . . ...
...

... . . . ...
...

... . . . ...
0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 ∗ · · · ∗

0 · · · 0 0 0 · · · 0 0 0 · · · 0 + ∗ · · · ∗





, (3.26)

where + and ∗ denote positive and arbitrary matrix elements, respectively. This
normal form is the same for all equivalent matrices. However, the resulting highest-
weight states might not be orthonormal, so a further orthogonalization process is
required. If carefully specified in which order this orthogonalization is done, the
resulting Clebsch-Gordan coefficients of the highest-weight states will be unique.
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3.5 Generating lower-weight states of an irrep

After we have generated the Clebsch-Gordan coefficients of the highest-weight
state of a particular target irrep, we can go on to calculating the Clebsch-Gordan
coefficients of the other states of this irrep. In general terms, this is accomplished
by repeatedly acting on both sides of Eq. (3.23) with the lowering operators J

(k)
− .

On the left hand side, we act on the kets by the matrix representing a given J
(k)
− in

target irrep, and on the right hand side we use the matrix representing J
(k)
− in the

product representation of the coupled carrier spaces.
Let us repeat how the lowering operators act on a state |M� labeled by a

given Gelfand-Tsetlin pattern (see Sec. 3.4.1). If (w1, . . . , wN ) is the weight of a
state M , then J

(k)
− |M� produces a linear combination of all states with weight

(w1, . . . , wk +1, wk+1−1, . . . , wN ). If there are no states with the latter weight, the
result vanishes. Because we cannot reach each state with a given weight from the
highest-weight state independently (only linear combinations of them), we cannot
determine the Clebsch-Gordan coefficients of the states with this weight indepently.
However, when there are multiple states with the same weight, say t of them, there
always are as many “parent states”, i.e. states which generate a linear combination
of those t states when acted upon by the proper lowering operator.

Thus, when we have determined the Clebsch-Gordan of a highest-weight state
|Hr�, we act on Eq. (3.23) by J

(1)
− , J

(2)
− , and so on to J

(N−1)
− . Each of the resulting

equations will determine the Clebsch-Gordan coefficients for a further state. Let
(wHr

1 , . . . , w
Hr
N

) stand for the weight of the Gelfand-Tsetlin pattern Hr. Then we
can, for example, act with J

(1)
− J

(2)
− as well as J

(2)
− J

(1)
− on Eq. (3.23), which results

in two equations for the states with weight (wHr
1 − 1, w

Hr
2 , w

Hr
3 + 1, w

Hr
4 , . . . , w

Hr
N

).
Remarkably, it turns out that there are never more states with identical weight
than we can obtain equations in their Clebsch-Gordan coefficients.

Formally, if there are t states, say |L1� , . . . , |Lt�, which have identical weight
(wL

1 , . . . , w
L

N
), and if there are u states |M1 ⊗M

�
1� , . . . , |Mu ⊗M

�
u� in the old basis

which also possess this weight, we always obtain at least t linearly independent
equations of the form

t�

t�=1

γ
v

t� |Lt�� =
u�

u�=1

c
v

u� |Mu ⊗M
�
u� (v = 1, . . . , t). (3.27)

Here, v enumerates the various equations, γt� are the coefficients of a linear com-
bination of the states |L1� , . . . , |Lt�, and c

v

u� are some coefficients which are not
Clebsch-Gordan coefficients yet. However, Eq. (3.27) presents a system of equations
which can be solved for the Clebsch-Gordan coefficients of the states |L1� , . . . , |Lt�.

Let us repeat that the system of equations (3.27) is obtained by acting with the
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lowering operators J
(k)
− on the corresponding equations for the states with weight

(wL

1 , . . . , w
L

k
−1, w

L

k+1+1, . . . , w
L

N
). In turn, the Clebsch-Gordan coefficients of these

states have to have been determined prior to that. In general, the Clebsch-Gordan
coefficients of a target irrep are determined weight by weight, starting from the
highest weight and sweeping over the whole weight diagram. In other words, we
obtain the Clebsch-Gordan coefficients of the lower-weight states in a cascade-like
manner: First the highest-weight state, then all states with a weight one level below
the highest weight, and so on.

3.6 Construction of all Clebsch-Gordan coefficients

3.6.1 Review of the algorithm

We now have all the ingredients necessary to compute the full set of SU(N) Clebsch-
Gordan coefficients, defined as the unitary matrix C which brings the matrices
of the generators on a tensor product space into block-diagonal form (Eq. (1.23)).
Starting from two Young diagrams, perform the following steps:

1. Generate explicit matrices Γ(J (k)
± ) for the raising and lowering operators in

the first and second irrep, using Eqs. (3.19) and (3.18). Take the appropriate
Kronecker products to find the matrices acting on the tensor product space.

2. Find the irreps appearing in the decomposition, using the method described
in sec. 3.2.4. For each target irrep, do the following:

a) Compute the highest weight of the target irrep and find all according
tensor product states |Mp ⊗M

�
p�, with p = 1, . . . , q, say, whose weight

agrees with this highest weight.
b) Find a maximal set of linearly independent linear combinations of the

latter,
|Hr� =

�

p

c
r

p |Mp ⊗M
�
p� , (3.28)

which are simultaneously annihilated by all raising operators, as described
in Eq. (3.24). The number s is the outer multiplicity of the target irrep
in the decomposition. Each such linear combination defines the highest-
weight state of one of the occurrences of the target irrep.

c) Act with all non-vanishing strings of lowering operators J
(k1)
− J

(k2)
− · · · on

both sides of Eq. (3.28), using the representation appropriate for the
target irrep on the left hand side, and the direct product representation
on the right hand side. Group the resulting equations by the weight
of the states occurring in each one, which must the same in a single
equation.
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d) For every weight of the target irrep, we now have a system of equations
as in Eq. (3.27). Weight by weight, starting from the highest-weight,
solve these systems of equations for the Clebsch-Gordan coefficients of
the lower-weight states of the target irrep.

The notion of weights allows us to compute the Clebsch-Gordan coefficients of the
lower-weight states in an efficient manner. For a given weight, there are only few
states in most cases, and we obtain a system of equations in their Clebsch-Gordan
coefficients independently from those of the states with different weights. Thus, it
is little work to solve for the Clebsch-Gordan coefficients of the states with a given
weight.

3.6.2 Consistency checks

We have undertaken the following checks, at least in a decent number of small cases,
to verify that our program correctly computes Clebsch-Gordan coefficients:

• For SU(2), the results coincide with the formulas given in Ch. 2, up to sign
conventions.

• For SU(3), some results are available in the relevant literature.

• The matrix of Clebsch-Gordan coefficients is unitary.

• The matrix of Clebsch-Gordan block-diagonalizes the representation matrices
of the generators of SU(N).

• The selection rule (3.22) is fulfilled.

The latter three properties are, of course, known to be true in general for Clebsch-
Gordan coefficients. For our program code, they have not been used as input in
constructing the code, but hold as properties of its output. These checks render us
confident that our code works properly.



Chapter 4

Symmetries in the Numerical
Renormalization Group

The Numerical Renormalization Group, or NRG, in short, was developed by Wilson
in 1975 to treat the Kondo problem in a nonperturbative fashion. For the purpose
of this thesis, we do not need the full machinery of NRG and thus refer to the
literature for a comprehensive description. Good introductions are given in the
original papers by Wilson [23, 24], the papers by Krishna-murthy [2, 25], and the
review by Bulla [26]. More recent developments include spectral sum-conserving
methods [27, 1], matrix product states approaches [28], and time-dependent NRG
[29]. Symmetries in NRG have been considered as early as in [2, App. B], but their
treatment in this thesis is mainly based on the work of Tóth et al. [3].

4.1 Structure of the Hamiltonian

The Hamiltonians to which we apply NRG share a particular form, namely that
of a half-infinite quantum chain, the so-called Wilson chain. For example, the
Hamiltonian of the single-impurity Anderson model, after the transformation to
the Wilson chain, is given by [2, Eq. (2.18)]

H = H̃imp + T0

�

m

�
f
†
0,m

dm + h.c.
�

+
∞�

k=1

Tk

�

m

�
f
†
k,m

fk−1,m + h.c.
�

,

(4.1)

where H̃imp is the local Hamiltonian of the impurity, d
†
m and f

†
k,m

are fermionic
creation operators at the impurity and the site k of the Wilson chain, respectively,
and T0 and Tk are coupling constants. The latter have the important property of
decaying exponentially along the chain, Tk ∝ Λ−k/2, where Λ > 1 is a so-called
discretization parameter, typically chosen between 1.5 and 3.

41
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H0,1 Hk,k+1Hk−1,kH1,2

H0 H1

H̃imp H̃0 H̃1 H̃2

Hk−1 Hk

H̃k−1 H̃k+1H̃k

Figure 4.1. Depiction of the Wilson chain. The square box
represents the impurity while the circles represent the sites of the
Wilson chain. The Hamiltonian includes only local terms (denoted
by H̃k) and nearest-neighbor hopping terms (denoted by Hk,k+1).

The most general form of the Hamiltonian relevant to us is [3, Eq. (2)]

H = H0 +
∞�

k=1

(Hk−1,k + H̃k), (4.2)

where H0 is a local term describing the impurity and its coupling to the bath,
Hk−1,k is a hopping term between sites k − 1 and k, and H̃k is a local term of
the site k of the Wilson chain. It is helpful to visualize this Hamiltonian as a
semi-infinite discrete chain with nearest-neighbor hopping, as shown in Fig. 4.1.
The Hamiltonian of Eq. (4.1) can be transformed to this form by taking

H0 = H̃imp + Timp,0

�

m

�
f
†
0,m

dm + h.c.
�

, (4.3)

Hk−1,k = Tk

�

m

�
f
†
k,m

fk−1,m + h.c.
�

, (4.4)

and H̃k = 0. The local term H̃k will not be present in most cases, but we still retain
it for the sake of generality.

4.2 Symmetries of the Hamiltonian

Typically, each Hk will be invariant with respect to some Abelian or non-Abelian
symmetry. For example, the generators �S of an SU(2) spin symmetry are given by
[3, Table 1]

�Sk = �Simp +
1
2

k�

k�=0

�

m,m�

f
†
k�,m�σm,m�fk�,m� , (4.5)
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where �σ are the Pauli matrices (Eq. (1.9)). The generator Cz of a U(1) charge
symmetry is given by

Cz =
1
2

k�

k�=0

�

m

(f †
k�,mfk�,m − 1). (4.6)

It is important to note that, to be able to group the states into symmetry multiplets
in each NRG iteration, the Hamiltonian Hk has to commute with these generators.

We will not explicitly consider multiple symmetries, such as SU(2)× SU(3), to
avoid bloated notation, but they can be taken into account by a straightforward
generalization of the approach sketched below. In fact, we only have to consider
the representation and internal labels as multi-indices, i.e. a single representation
label j has to be replaced by (j(a)

, j
(b)), and an internal label m has to be replaced

by a multi-index (m(a)
, m

(b)). Each part of such a multi-index, in turn, can
represent any symmetry-specific label, such as a Young diagram or a Gelfand-
Tsetlin pattern. Furthermore, a Clebsch-Gordan coefficient between states which
have multi-index symmetry labels, is given by the product of the individual Clebsch-
Gordan coefficients [3, after Eq. (11)], e.g.

�j
(a)
1 j

(b)
1 , m

(a)
1 m

(b)
1 ; j(a)

2 j
(b)
2 , m

(a)
2 m

(b)
2 |j

(a)
j
(b)

, m
(a)

m
(b)
�

= �j
(a)
1 m

(a)
1 ; j(a)

2 m
(a)
2 |j

(a)
m

(a)
� �j

(b)
1 m

(b)
1 ; j(b)

2 m
(b)
2 |j

(b)
m

(b)
� . (4.7)

4.3 Statement of the algorithm

We rewrite the Hamiltonian of Eq. (4.2) as a recursion relation for k ≥ 1 [3, Eq. (4)],

Hk = Hk−1 + Hk−1,k + H̃k (4.8)

The general idea of NRG is to construct Hk from Hk−1 and diagonalize it, succes-
sively for each k = 0, 1, 2, . . .. As the coupling between sites k − 1 and k decays
exponentially [2, Eq. (2.14)], the effective level spacing of Hk is of order Λ−k/2, in
other words, by considering ever longer chains, one resolves the eigenspectrum of the
system with ever smaller resolution. The eigenvalues of the rescaled Hamiltonian
H
�
k

= Λk/2(Hk−EG,k) (where EG,k is the ground state energy of Hk) converge once
the chain has become so long that the effective level spacing of Hk is smaller than
the smallest relevant energy scale of the problem. Thus, the iterative procedure can
be stopped once the chain has become sufficiently long, which typically happens for
chain lengths of order 60 to 80.

Another issue is that of the dimension of the state space of Hk, which grows
exponentially with the number of iterations. Therefore, after the diagonalization of
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Figure 4.2. Example of an energy flow diagram for the single-
impurity Anderson model. The energy spectrum of Hk is plotted
against k. Λ is an energy discretization constant. The convergence
of the energy spectrum is visible at later iterations.

Hk, we truncate the state space by keeping only a certain number of lowest-energy
states, usually on the order of 1 000. The set of states after diagonalization is thus
divided into discarded and kept states. The latter are also called block or old states.

The above steps have been standard in NRG since its original conception by
Wilson in 1975. Our goal in this thesis is to describe how to perform them while
respecting and exploiting arbitrary SU(N) symmetries of the Hamiltonian. All in
all, an NRG run consists of the following steps:

1. Diagonalize H0.

2. For each site of the Wilson chain, from k = 1 to the desired limit, repeat:

a) Sort the eigenstates of Hk−1 in order of increasing eigenenergies, measured
with respect to EG,k−1. The eigenstates will fall into symmetry multiplets,
each forming an irreducible representation of the symmetry group of
Hk−1.
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b) Discard the highest-lying multiplets to truncate the state space of Hk−1

to the desired size.
c) Transform the creation and annihilation operators f

†
k−1 and fk−1 into

the eigenbasis of Hk−1.
d) Enlarge the state space by taking the tensor product with the local states

of site k. The Hamiltonian Hk−1 is mapped to Hk−1 ⊗ 1, the creation
operators f

†
k−1 to f

†
k−1 ⊗ 1 and so on.

e) Transform the basis of the state space once again to obtain states with
“good” symmetry quantum numbers, i.e. decompose the product state
space into a sum of irreducible representations of the symmetry group.
The matrix describing this change of basis is composed of several Clebsch-
Gordan matrices. Now, also the local Hamiltonian H̃k, if present, and the
local creation annihilation operators f

†
k

and fk have to be transformed
into this new basis.

f) Construct the new Hamiltonian Hk via Eq. (4.8).
g) Diagonalize Hk.

An important outcome of an NRG run is the so-called energy flow diagram, on
which the lowest-lying few eigenenergies of the rescaled Hamiltonian H

�
k

are plotted
against the iteration number k. A typical example is shown in Fig. 4.2.

In the subsequent sections, we are going to discuss these steps with regard to the
use of symmetries. Symmetries allow us to greatly improve upon the truncation
scheme. By the use of the Wigner-Eckart theorem, we only maintain the reduced
matrix elements of the Hamiltonian instead of matrix elements between all kept
states. That effectively corresponds to keeping track of a single state per symmetry
multiplet, thereby increasing the number of kept states by the average dimension
of a multiplet, which is on the order of 5 to 10. Additionally, the diagonalization
takes less time because the state space is sliced into smaller blocks, which allows a
further increase in the number of kept states.

4.4 Reduced matrix elements of the initial Hamiltonian

As we would like to work only with reduced matrix elements throughout an NRG
run, we have to compute the reduced matrix elements of H0 at the beginning. This
will also serve as a general example of how to determine reduced matrix elements
of irreducible tensor operators.

We start by grouping the states of the Hilbert space into symmetry multiplets.
As an example, let us assume that every site in Fig. 4.1 has four basis states, |0�,
|↑�, |↓�, and |↑↓�, and that each Hk is invariant under spin rotations [3, Eq. (5)],
which is an SU(2) symmetry. Then the basis states span three invariant subspaces
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j = 0

|0⊗ 0�

|0⊗ ↑↓�

|↑↓ ⊗ 0�

|↑↓ ⊗ ↑↓�

(|↑ ⊗ ↓� − |↓ ⊗ ↑�)/
√

2

j = 1/2

|0⊗ ↑� , |0⊗ ↓�

|↑ ⊗ 0� , |↓ ⊗ 0�

|↑ ⊗ ↑↓� , |↓ ⊗ ↑↓�

|↑↓ ⊗ ↑� , |↑↓ ⊗ ↓�

j = 1 |↑ ⊗ ↑� , (|↑ ⊗ ↓�+ |↓ ⊗ ↑�)/
√

2, |↓ ⊗ ↓�

Table 4.1. SU(2) symmetry multiplets of the state space of H0.
These are found by coupling the multiplets of the impurity and of
the first site of the Wilson chain.

under the action of SU(2) generators, two singlets, |0� and |↑↓�, and a doublet,
{|↑� , |↓�}. However, the state space of H0 is spanned by the tensor products of two
of these states, one living on the impurity and one living on the first site of the
Wilson chain, so we have to couple all impurity states with all first-site states. The
resulting multiplets are shown in Table 4.1.

We see that there are five j = 0 multiplets, four j = 1/2 multiplets, and one j = 1
multiplet. The Hamiltonian can only have non-vanishing matrix elements between
multiplets of the same kind, so instead of 162 = 256 matrix elements for each pair
of states, we only need 52 + 42 + 12 = 42 reduced matrix elements. What remains,
is to evaluate the formula given in Eq. (1.26) for each reduced matrix element.

As the Hamiltonian is a scalar operator, this formula simplifies to

�n
�
j||H||nj� =

1
2j + 1

�

m�

�n
�
jm

�
|H|njm

�
� (4.9)

in the case of an SU(2) spin symmetry.
Let us give another brief example, an SU(3) color symmetry. We assume that

there are not two, but three species of fermions living on the Wilson chain, which
we call r, g, and b, instead of ↑ and ↓. The basis states of the local state space of
a single site are shown in Table 4.2. When the impurity and the first site of the
Wilson chain are coupled, the state space resolves into six singlets (corresponding
to an empty Young diagram), five multiplets of the type , five multiplets of the
type , two multiplets of the type , and one multiplet of the types and
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(empty)
|0�

|rgb�

| 1 � = |r� , | 2 � = |g� , | 3 � = |b�
����
1
2

�
= |rg� ,

����
1
3

�
= |rb� ,

����
2
3

�
= |gb�

Table 4.2. SU(3) symmetry multiplets of a local state space.
Irreps are labeled by Young diagrams, and states are labeled by
Young tableaux.

each. The reduction in the number of matrix elements is impressive: Instead of
the 642 = 4096 individual matrix elements of the initial Hamiltonian, we need only
62 + 2× 52 + 22 + 2× 12 = 92 reduced matrix elements.

4.5 Iterative construction of the Hamiltonian

After the reduced matrix elements of H0 have been found, and the initial diagonal-
ization has been done, the main loop of NRG starts. In each iteration, we construct
the Hamiltonian Hk via Eq. (4.8). Therefore, we need the reduced matrix elements
of Hk−1, Hk−1,k, and H̃k.

4.5.1 Construction of states with good quantum numbers

Let us recall the setting at this stage. The state space of Hk−1 is spanned by the
block states. Besides a representation label jk−1 and and internal label mk−1, we
only need one additional label nk−1 to identify each block state uniquely. Even
though we use further labels during the construction of the new states to resolve outer
multiplicity ambiguities, we eventually replace these with a single integer nk−1 label
by enumerating all states with given symmetry labels jk−1 and mk−1 sequentially.
This allows us to conveniently denote the block states as |nk−1, jk−1, mk−1�. Apart
from that, we assume that Hk−1 has been diagonalized in the previous iteration, i.e.

�n
�
k−1, j

�
k−1||Hk−1||nk−1, jk−1� = Enk−1,jk−1δj

�
k−1,jk−1

δn
�
k−1,nk−1

. (4.10)

Likewise, the state space of the local Hamiltonian H̃k is spanned by the local states
|ñk, j̃k, m̃k�, with a representation label j̃k, an internal label mk, and an additional
label nk, in analogy to the block states. The reduced matrix elements of H̃k are
obtained in the same way as for H0, i.e. by identifying the symmetry multiplets of
the local state space and evaluating Eq. (1.26).
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Although we denote representation and internal labels by single letters j and m,
respectively, we would like to point out that the j and m can be anything from the
familiar |jm� of angular momentum to, e.g., a multi-index composed of a mix of
Casimir operator eigenvalues and Young diagrams.

We then couple each block state multiplet with each local state multiplet and
switch over to a new basis |nk−1, jk−1, ñk, j̃k, j, m, α� with well-defined symmetry
quantum numbers j and m,

|nk−1, jk−1, ñk, j̃k, j, m, α�

=
�

mk−1,m̃k

�jk−1, mk−1; j̃k, m̃k|j,m, α� |nk−1, jk−1, mk−1; ñk, j̃k, m̃k� , (4.11)

where nk−1 and jk−1 designate the symmetry multiplet of the block states from
which |nk−1, jk−1, ñk, j̃k, j, m, α� is constructed, ñk and j̃k designate the corre-
sponding multiplet of the local states, and α distinguishes between several occur-
rences of the irrep labeled by j in the decomposition of jk−1 ⊗ j̃k. The coefficient
�jk−1, mk−1; j̃k, m̃k|j,m, α� appearing in Eq. (4.11) is a Clebsch-Gordan coefficient.

4.5.2 Reduced matrix elements of the new Hamiltonian

The reduced matrix elements of Hk−1 and H̃k in the new basis have a simple form
[3, Eqs. (17) and (18)], as they depend on either the block states or the local states:
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�
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�
k
, j̃
�
k
, j
�
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�
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= Enk−1,jk−1δn
�
k−1,nk−1

δj
�
k−1,jk−1

δñ
�
k,ñk

δ
j̃
�
k,j̃k

δj�,jδα�,α,
(4.12)
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�
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�
k
, j̃
�
k
, j
�
, α

�
||H̃k||nk−1, jk−1, ñk, j̃k, j, α�

= �ñ
�
k
, j̃
�
k
||H̃k||ñk, j̃k� δn

�
k−1,nk−1

δj
�
k−1,jk−1

δ
j̃
�
k,j̃k

δj�,jδα�,α.
(4.13)

The case of the reduced matrix elements of the hopping operator Hk−1,k is more
complicated. Let us assume that Hk−1,k can be written, apart from some prefactors,
as a sum over creation/annihilation operator combinations, where the sum runs
over the components of a creation operator multiplet [3, Eq. (19)],

Hk−1,k =
�

m

�
f
†
k,m

fk−1,m + h.c.
�

. (4.14)

Here, the creation operators {f †
k,m

} at site k form an irreducible tensor operator of
rank N , the number of fermion species. The annihilation operators {fk−1,m} form
an irreducible tensor operator as well. We can obtain (see App. B) an expression for
the reduced matrix elements of Hk−1,k which only depends on previously determined
quantities (note that Hk−1,k is, as part of the Hamiltonian, a scalar operator, and
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thus the reduced matrix elements of Hk−1,k do not depend on an outer multiplicity
index, in contrast to Eq. (1.26)):
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. (4.15)

Here, jf is the representation label of the irreducible tensor operators {fk−1,m} and
{fk,m}. This formula is a slight generalization of Eq. (20) from [3] as it takes into
account outer multiplicities, which do not occur within SU(2).

4.5.3 Diagonalization and relabeling

After determining the reduced matrix elements of Hk−1, H̃k, and Hk−1,k, the
construction of the Hamiltonian Hk is complete, and we proceed to diagonalize Hk.
Before we turn to the next NRG iteration, we sort states by their representation
label jk and assign each state for a given jk a unique integer nk. However, states
with different representation label jk may have the same label nk. Instead of
|nk−1, jk−1, ñk, j̃k, j, m, α�, we relabel the states of the diagonal basis by |nk, jk, mk�.
This relabeling establishes the prerequisites to start the next iteration at Eq. (4.10),
i.e.

�n
�
k
, j
�
k
||Hk||nk, jk� = Enk,jkδj

�
k,jk

δn
�
k,nk

. (4.16)

4.6 Creation operator multiplets

As seen in the previous section, our approach to symmetries in NRG relies on
dealing with irreducible tensor operators. If we would like to keep track of an
arbitrary operator during the NRG iterations, we first have to find all components
of the irreducible tensor operator this particular operator belongs to, so we can
compute its reduced matrix elements. Unfortunately, the identification of irreducible
tensor operators is not a trivial task, and we do not know of a general method, at
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present. However, we give some preliminary remarks which should help to construct
arbitrary irreducible tensor operators.

In particular, the creation operators {f †
m}, m = 1, . . . , N, form an SU(N) irre-

ducible tensor operator, transforming as the irrep labeled by the Young diagram
, a single box. In contrast, the annihilation operators {fm}, m = 1, . . . , N,, form

an irreducible tensor operator which transforms as the irrep labeled by the Young
diagram consisting of a single column with N − 1 boxes.

As a handwaving argument, the creation operator create a single fermion when
applied to the vacuum state |0�, which transforms into another species (or linear
combination thereof) of fermions under the action of SU(N) generators. This in turn
corresponds to some other creation operator (or linear combination thereof) applied
to the vacuum, so the creation operators must form an invariant operator subspace,
which is precisely the definition of an irreducible tensor operator. Analogously,
applying the annihilation operators to a fully occupied state leads to states with one
fermion species missing, which transform into each other under SU(N) rotations.
So, the annihilation operators also form a rank-N irreducible tensor operator.

Moreover, the operator
�

m
f
†
mfm is a scalar under symmetry group transfor-

mations, which results from coupling the creation operator multiplet with the
annihilation operator multiplet. The only N -dimensional irreps of SU(N) are given
by the Young diagrams with a single box and with N − 1 boxes in a column, so
the creation and annihilation operators have to transform as one of these irreps.
Furthermore, a singlet only occurs in the decomposition of the product of the
single-box diagram with the N − 1-box diagram, but not in the product of the
single-box diagram with itself, and not in the product of the N − 1-box diagram
with itself.

More rigorously [30], consider the N -dimensional irrep of SU(N), and let T
a

mm� be
the matrix elements of its generators. Then we can define a corresponding operator,
in second quantized language, as follows:

T
a =

�

mm�

T
a

mm�f
†
mfm� . (4.17)

Then, the commutator of an annihilation operator fm with T
a is given by

[fm, T
a] =

�

m�,m��

T
a

m�m�� [fm, f
†
m�fm�� ] =

�

m��

T
a

mm��fm�� . (4.18)

In the case of an infinitesimal SU(N) rotation, the rotation operator has the form

U = 1− i

�

a

T
a
ωa, (4.19)

where ωa are the infinitesimal angles of rotation. We then have

U
†
fmU = fm − i

�

a

ωa[fm, T
a] =

�

m�

Umm�fm� , (4.20)
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with Umm� = 1− i
�

a
T

a

mm�ωa, which is the definition an irreducible tensor operator
of Eq. (1.21).

From there, we can establish further irreducible tensor operators by coupling the
creation and annihilation operator multiplets and decomposing this product. This
is done in full analogy to decomposing a product representation, the only difference
being that the the carrier space is a space of operators.





Chapter 5

Conclusions and Outlook

Although the original goal of writing a working NRG code which is able to exploit
arbitrary SU(N) symmetries has not yet been fully implemented (due to time
constraints), we have overcome the major hurdles on the way. A program which
can compute any set of SU(N) Clebsch-Gordan coefficients has been developed
in the course of this thesis. Meanwhile, our collaborators in Budapest, Gergely
Zaránd and Pascu Moca are in the process of extending their NRG code, which has
been laid out in a flexible fashion from the beginning, to take into account outer
multiplicity labels, which do not occur with SU(2).

The outer multiplicity problem is one of the main differences between SU(2) and
general SU(N) and requires fundamental changes in the treatment of symmetry
multiplets in the Budapest NRG code. Apart from that, the only jigsaw piece which
is missing is the set-up of a suitable model, which involves manually grouping local
states of the Wilson chain into symmetry multiplets. However, part of this work
has already been broached in Sec. 4.6. Thus, first numerical results can be expected
within the next few weeks.

Besides, the development of a code for computing SU(N) Clebsch-Gordan coeffi-
cients will hopefully prove useful in other projects, too, as quantum impurity models
are not the only models which possess SU(N) symmetries. For example, already in
the near vicinity of NRG, namely in the context of DMRG, non-Abelian symmetries
stir interest [4]. Eventually, we might release the Clebsch-Gordan coefficient code
as a self-contained package.

After the proof of principle will have been accomplished, physical challenges
are lingering. Multi-channel Kondo models have already found applications in
describing magnetic impurities in simple metals [31], for example. Our collaborator
P. Moca has indicated that there exists an application of a SU(4) model to carbon
nanotubes.

Additionally, some questions of rather technical nature have arisen in the course
of this thesis:

• Research faster algorithms for the computation of Clebsch-Gordan coefficients.
This would allow computing them on demand and could lead to significant
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memory savings. [32] might provide a good starting point. A distant goal
would be to establish algebraic formulas for Clebsch-Gordan coefficients.

• Find a canonical way to resolve the outer multiplicity problem. The attempts
we have been able to track down include embedding SU(N) into a larger
group, e.g. U(2N), and using further operators in addition to the Casimir
operators to distinguish between irreps.

• Further develop the construction of irreducible tensor operators in the con-
text of NRG. It would be convenient to have irreducible tensor operators
automatically constructed by a computer.

• Write a massively parallel implementation of NRG. As symmetries cut the
Hamiltonian into small blocks which can be diagonalized independently, the
run time of a such an implementation should scale well with the number
of processors. However, once in each iteration, all processor have to be
synchronized.

• Find out if there exists an easier way than Eq. (4.15) to obtain the reduced
matrix elements of the hopping terms Hk−1,k in NRG. This might be possible
by using some completeness relation for the Clebsch-Gordan coefficients.
For example, [4] claims to completely have factored out Clebsch-Gordan
coefficients of DMRG with non-Abelian symmetries. As DMRG as well as
NRG generate matrix product states, this might also be feasible for NRG.

• Formulate non-Abelian symmetries in the language of matrix product states
[28]. This a project we will attack in the medium term.

Last, but not least, it would be desirable to have the formulation of SU(N) repre-
sentation theory presented in this thesis be integrated into the curricula of physics
students as a natural extension of quantum angular momentum. Let us hope that
exploiting unitary symmetries will become as common as factoring out the angular
dependence of the hydrogen atom.



Appendix A

Mapping of irreps and states onto the
natural numbers

For numerical codes dealing with Young diagrams, it is useful to identify each Young
diagram by a unique number. To this end, we need a one-to-one mapping between
the set of all SU(N) Young diagrams (for given N) and the set of nonnegative
integers. We shall construct such a mapping by devising an ordering rule for Young
diagrams, using this rule to arrange all possible diagrams in a list of increasing
order, and labeling each diagram by its position in this list.

Similarly, we would like to map Young tableaux (or equivalently, Gelfand-Tsetlin
patterns) to matrix indices, so we also need a one-to-one mapping between the set
of all tableaux with the shape of a given diagram and the integers from 1 to the
dimension of the irrep labeled by said diagram. Therefore, we also define an order
on Gelfand-Tsetlin patterns of a given irrep and proceed analogously.

A.1 Identifying Young diagrams with a single number

For Young diagrams, we choose the following ordering rule (formalized below): the
“smaller” of two Young diagrams is taken to be the one with the smaller number
of boxes in the topmost row; in case of a tie, strike out rows (one by one, starting
from the top down) and recompare, until the tie is broken. Table A.1 shows the
first few Young diagrams of SU(4), arranged in increasing order.

We adopt throughout the convention for SU(N) Young diagrams that columns
with N boxes will be dropped (Sec. 3.2.1, rule 5), such that each diagram contains
at most N − 1 rows. Each such diagram can be characterized by sequence of N − 1
integers (b1, . . . , bN−1) satisfying bk ≥ bk+1, where bk ≥ 0 specifies the number of
boxes in row k. Given two Young diagrams, Y ({bk}) and Y

�({b�
k
}), we assign the

order Y
�
< Y if and only if, for the smallest index (say l) for which b

�
l
�= bl, we have

b
�
l
< bl.
Using this ordering rule, all possible SU(N) Young diagrams can be arranged in

a list of increasing order and uniquely labeled by a nonnegative integer, say M(Y ),
giving its position in this list. To determine M(Y ) for a given diagram Y , we simply
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M(Y ) Young diagram Y (b1, b2, b3)
0 (empty) (0, 0, 0)
1 (1, 0, 0)

2 (1, 1, 0)

3 (1, 1, 1)

4 (2, 0, 0)

5 (2, 1, 0)

6 (2, 1, 1)

7 (2, 2, 0)

8 (2, 2, 1)

9 (2, 2, 2)

10 (3, 0, 0)

11 (3, 1, 0)

12 (3, 1, 1)

13 (3, 2, 0)

14 (3, 2, 1)

Table A.1. The first few Young diagrams of SU(4) (excluding
diagrams containing columns of length 4), arranged in increasing
order. In the right column, corresponding sequences of row lengths
(b1, b2, b3), where bk gives the number of boxes in row k, are shown.
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101 2 3 4 5 6 7 8 9

Figure A.1. Example of a item-drawing outcome and the corre-
sponding Young diagram. The shaded circles denote drawn items,
which, in turn, determine the “step positions” in the Young dia-
gram. Here, (d1, d2, d3) = (3, 7, 9) and (b1, b2, b3) = (6, 5, 2).

count the number of smaller diagrams Y
�: this number is given by the number (say

J1(Y )) of all diagrams Y
� having less boxes in the first row than Y (b�1 < b1), plus

the number of all Y
�s with an equal number of boxes in the first row, but less boxes

in the second row (b�1 = b1 and b
�
2 < b2), etc. Thus,

M(Y ) =
N−1�

l=1

Jl(Y ) , (A.1)

where Jl(Y ) is the number of diagrams having b
�
k

= bk for all k < l, and b
�
l
< bl.

To calculate Jl(Y ), we have to consider the combinatorial problem of counting
the number of Youngs diagrams with a given number of rows (say r) and with a
given maximum number of boxes in the top row (say m). However, this number is
the same as the number of ways to draw r items out of a collection of r + m items,
and thus is given by

�
r+m

r

�
. This analogy can be seen as follows: Let us denote the

items by the integers 1, . . . , r + m and the drawn items by r integers (d1, . . . , dr),
where d1 < d2 < · · · < dr. For this specific outcome, we construct a corresponding
Young diagram (b1, . . . , bN−1) by the rule bk = dr+1−k − (r + 1− k) (see Fig. A.1).

Thus, we have

Jl(Y ) =
�

N − l + bl − 1
N − l

�
, (A.2)

and, consequently,

M(Y ) =
N−1�

l=1

�
N − l + bl − 1

N − l

�
. (A.3)
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Figure A.2. Example of the ordering of all Gelfand-Tsetlin pat-
terns with top row (2, 0, 0).

A.2 Mapping of Gelfand-Tsetlin patterns to matrix indices

In analogy to the ordering we have defined on Young diagrams, we introduce an
ordering on the set of Gelfand-Tsetlin patterns of a given irrep (i.e. given top row
of the pattern). Let G({mk,l}) and G

�({m�
k,l
}) (where 1 ≤ k ≤ l ≤ N) denote two

patterns with mk,N = m
�
k,N

for k = 1, . . . , N . Furthermore, let (p, q) denote the
“largest” index for which mp,q �= m

�
p,q, i.e. mk,l = m

�
k,l

for l > q and for l = q but
k < p. We then define G

�
< G if and only if m

�
p,q > mp,q. An example of this

ordering is given in Fig. A.2.
We map each Gelfand-Tsetlin pattern G to a nonnegative integer H(G) by

counting the number of smaller Gelfand-Tsetlin patterns, i.e.

H(G) = #{G
�
|G
�
< G}+ 1 . (A.4)

This number can be determined by generating the pattern (say G̃({m̃k,l})) located
directly in front of G in the list of all patterns in increasing order, the pattern
preceding G̃, and so on, until we arrive at the head of this list. To construct
the predecessor of the pattern G, we start by finding the “smallest” index (r, s)
such that mr,s can be increased without violating the betweenness condition (see
Eq. (3.16)), i.e. mk,l = mk,l+1 for l < s and for l = s but k > r. We then set

m̃k,l =






mk,l for l > s and for l = s but k < r

1 + mk,l for (k, l) = (r, s)
mk+1,l+1 for l < s and for l = s but k > r .

(A.5)

The number H(G) is, of course, the number of times we can repeat the process of
constructing a preceding pattern.



Appendix B

Derivation of Eq. (4.15)

We start from the reduced matrix element and expand it in terms of ordinary matrix
elements (Eq. (1.26)). As Hk−1,k is a scalar operator, this reduced matrix element
does not carry an outer multiplicity label, and the Clebsch-Gordan coefficient in
Eq. (1.26) immediately reduces to Kronecker deltas. So, we obtain
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Then, we expand the bra and the ket which sandwich Hk−1,k in terms of the coupled
basis states (i.e. tensor products of block and local states). This is done by applying
Eq. (4.11) twice:
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At this point, we insert Eq. (4.14) for Hk−1,k and pull apart the coupled basis states,
as f

†
k−1,m

and fk−1,m act only on block states, and f
†
k,m

and fk,m act only on local
states. Moreover, we take the complex conjugate of the matrix elements of the
creation operators so that only annihilation operators remain:
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(B.3)

What remains is to express the ordinary matrix elements in terms of reduced matrix
elements by virtue of Eq. (1.25):
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Here, jf is the representation label of the irreducible tensor operators fk−1 and
fk, which have components fk−1,m and fk,m, respectively. Now, we are done; the
right-hand side depends only on reduced matrix elements of fk−1 and fk and some
Clebsch-Gordan coefficients, which all are known quantities.



Appendix C

Program code for computing SU(N)
Clebsch-Gordan coefficients

The following source code is a MATLAB implementation of the ideas presented in
Ch. 3.

C.1 Enumerating irreps

The following function returns the index of an irrep, as App. A.1. For example
irrep_index([3 1 0]) returns “7”.

1 function r e s u l t = i r r e p i nd e x ( i r r e p )
r e s u l t = 0 ;
aux sum = 0 ;
for k = 1 : length ( i r r e p ) − 1

aux sum = aux sum + i r r e p (k ) − i r r e p (k + 1 ) ;
6 i f aux sum > 0

r e s u l t = r e s u l t + nchoosek (k + aux sum − 1 , k ) ;
end

end
end

C.2 Mapping Gelfand-Tsetlin patterns to matrix indices

The following function returns the matrix index of a Gelfand-Tsetlin pattern. Takes
as a call parameter a two-dimensional array a(k, l), which corresponds to the entry
mkl of the pattern. For example, pattern_index([[0 0 2]; [0 0 0]; [0 0 0]])
returns 6 because this is the sixth pattern in Fig. (A.2).

function r e s u l t = pat t e rn index ( pattern )
r e s u l t = 1 ;

n = s ize ( pattern , 1 ) ;
5 while t rue

c o l = 1 ;

61
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row = 1 ;
while row < n && pattern ( co l , row ) == pattern ( co l , row + 1)

c o l = co l − 1 ;
10 i f c o l == 0

row = row + 1 ;
c o l = row ;

end
end

15

i f row >= n
break

end

20 pattern ( co l , row ) = pattern ( co l , row ) + 1 ;

while t rue
c o l = co l + 1 ;
i f c o l > row

25 row = row − 1 ;
c o l = 1 ;

end
i f row == 0

break
30 end

pattern ( co l , row ) = pattern ( c o l + 1 , row + 1 ) ;
end

r e s u l t = r e s u l t + 1 ;
35 end

end

C.3 Dimension of an irrep

Returns the dimension of an irrep. For example, the call irrep_dimension([3 1 0])
returns “15”, the dimension of the SU(3) irrep . Straightforward implementation
of Eq. (3.17).

function r e s u l t = i r r ep d imens i on ( i r r e p )
r e s u l t = 1 ;
for k = 2 : length ( i r r e p )

4 for l = 1 : k − 1
r e s u l t = r e s u l t ∗ ( ( i r r e p ( l ) − l ) − ( i r r e p (k ) − k ) ) / (k − l ) ;

end
end
r e s u l t = int32 ( r e s u l t ) ;

9 end
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C.4 Matrix element of lowering operator

A one-to-one implementation of Eq. (3.18). Called internally by lowering_operator.

1 function r e s u l t = lower ing op matr ix e l ement ( pattern , co l , row )
r e s u l t = 1 ;

row = row + 1 ;
for k = 1 : row

6 r e s u l t = r e s u l t ∗ ( ( pattern (k , row ) − k ) . . .
− ( pattern ( co l , row − 1) − c o l ) + 1 ) ;

end

for k = 1 : row − 2
11 r e s u l t = r e s u l t ∗ ( ( pattern (k , row − 2) − k ) . . .

− ( pattern ( co l , row − 1) − c o l ) ) ;
end

for k = 1 : row − 1
16 i f k == co l

cont inue
end
r e s u l t = r e s u l t / ( ( ( pattern (k , row − 1) − k ) . . .

− ( pattern ( co l , row − 1) − c o l ) + 1) . . .
21 ∗ ( ( pattern (k , row − 1) − k ) . . .

− ( pattern ( co l , row − 1) − c o l ) ) ) ;
end

r e s u l t = sqrt(− r e s u l t ) ;
26 end

C.5 Construction of the lowering operator matrix

Returns the matrix representation of a lowering operator. For example,
lowering_operator([2 1 0], 2) returns the matrix representation of J

(2)
− in the

SU(3) irrep .

function r e s u l t = lowe r i ng ope ra t o r ( i r r ep , ope ra to r index )
n = length ( i r r e p ) ;
work ing pattern = zeros (n ) ;

4 work ing pattern ( : , n ) = reshape ( i r r ep , 1 , n ) ;
dimension = i r r ep d imens i on ( i r r e p ) ;
r e s u l t = zeros ( dimension ) ;

function g e n e r a t e a l l p a t t e r n s ( co l , row )
9 i f c o l > row

co l = 1 ;
row = row − 1 ;

end
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14 i f row == 0
r e s u l t c o l = pat t e rn index ( work ing pattern ) ;
for k = 1 : ope ra to r index

i f work ing pattern (k , ope ra to r index ) − 1 . . .
>= work ing pattern (k + 1 , ope ra to r index + 1) . . .

19 && (k == opera to r index . . .
| | work ing pattern (k , ope ra to r index ) − 1 . . .

>= work ing pattern (k , ope ra to r index − 1) )
work ing pattern (k , ope ra to r index ) = . . .

work ing pattern (k , ope ra to r index ) − 1 ;
24 r e su l t r ow = pat t e rn index ( work ing pattern ) ;

work ing pattern (k , ope ra to r index ) = . . .
work ing pattern (k , ope ra to r index ) + 1 ;

r e s u l t ( r e su l t row , r e s u l t c o l ) = . . .
l ower ing op matr ix e l ement ( working pattern , . . .

29 k , ope ra to r index ) ;
end

end
return

end
34

for k = work ing pattern ( c o l +1, row+1): work ing pattern ( co l , row+1)
work ing pattern ( co l , row ) = k ;
g e n e r a t e a l l p a t t e r n s ( c o l + 1 , row ) ;

end
39 end

g e n e r a t e a l l p a t t e r n s (1 , n − 1 ) ;
end

C.6 Weight vector

Returns the weight of a state. Parameters are the set of lowering operators, and
the index of the desired state. Called internally by clebsch_matrix.

function r e s u l t = we ight vec to r ( l owe r ing ope ra to r s , index )
dimension = s ize ( l owe r ing ope ra to r s , 1 ) ;

3 n = 1 + s ize ( l owe r ing ope ra to r s , 2) / dimension ;
r e s u l t = zeros (1 , n − 1 ) ;

for k = 1 : n − 1
r e s u l t ( k ) = sum( l owe r i ng ope r a t o r s ( : , . . .

8 dimension ∗ ( k − 1) + index ) . ˆ 2 ) . . .
− sum( l owe r i ng ope r a t o r s ( index , . . .

dimension ∗ ( k − 1) + 1 : dimension ∗ k ) . ˆ 2 ) ;
end

end
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C.7 Clebsch-Gordan coefficients of the highest-weight state

Returns the Clebsch-gordan coefficients of a highest-weight state with a given
weight. Implementation of the linear system of Eq. (3.24). Called internally by
clebsch_matrix.

function r e s u l t = h i g h e s t w e i g h t s t a t e s ( l owe r ing ope ra to r s , g iven we ight )
dimension = s ize ( l owe r ing ope ra to r s , 1 ) ;

3 n = s ize ( l owe r ing ope ra to r s , 2) / dimension ;
i s good = true ( dimension , 1 ) ;

for k = 1 : dimension
i f norm( we ight vec to r ( l owe r ing ope ra to r s , k ) − g iven we ight ) > 1e−3

8 i s g ood (k ) = f a l s e ;
end

end

i d e n t i t y = eye ( dimension ) ;
13 r e s u l t = i d en t i t y ( : , i s g ood ) . . .

∗ null ( l owe r ing ope ra to r s ’ ∗ i d e n t i t y ( : , i s g ood ) ) ;
end

C.8 Decomposition of a product representation

Returns the product representation decomposition, as in Sec. 3.2.4. Call as
decompose_product([2 1 0], [2 1 0]) to obtain the result of Eq. (3.14).

function r e s u l t = decompose product ( i r r ep1 , i r r e p 2 ) ;
n = length ( i r r e p 1 ) ;
nr o f d i rect summands = 0 ;
r e s u l t = zeros (n , min( i r r ep d imens i on ( i r r e p 1 ) , i r r ep d imens i on ( i r r e p 2 ) ) ) ;

5

work ing pattern = zeros (n ) ;
work ing pattern ( : , n ) = reshape ( i r r ep1 , n , 1 ) ;
r e s u l t i n g p a t t e r n = reshape ( i r r ep2 , n , 1 ) ;

10 function f i l l w o r k i n g p a t t e r n ( co l , row )
i f c o l > n

nr o f d i rect summands = nr o f d i rect summands + 1 ;
r e s u l t ( : , nr o f d i rect summands ) = r e s u l t i n g p a t t e r n ;
return

15 end

i f c o l > row
r e s u l t i n g p a t t e r n ( c o l ) = r e s u l t i n g p a t t e r n ( c o l ) . . .

+ work ing pattern ( co l , c o l ) ;
20 f i l l w o r k i n g p a t t e r n ( c o l + 1 , n − 1 ) ;

r e s u l t i n g p a t t e r n ( c o l ) = r e s u l t i n g p a t t e r n ( c o l ) . . .
− work ing pattern ( co l , c o l ) ;

return ;
end
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25

l ow e r l im i t = max(0 , work ing pattern ( co l , row + 1) . . .
− r e s u l t i n g p a t t e r n ( row ) . . .
+ r e s u l t i n g p a t t e r n ( row + 1 ) ) ;

i f row == n − 1
30 l ow e r l im i t = max( l owe r l im i t , work ing pattern ( c o l + 1 , row + 1 ) ) ;

end

uppe r l im i t = work ing pattern ( co l , row + 1 ) ;
i f c o l > 1

35 uppe r l im i t = min( upper l im i t , work ing pattern ( c o l − 1 , row − 1 ) ) ;
end
i f row > 1 && co l == row

uppe r l im i t = min( upper l im i t , r e s u l t i n g p a t t e r n ( row − 1) . . .
− r e s u l t i n g p a t t e r n ( row ) ) ;

40 end

for k = l owe r l im i t : uppe r l im i t
work ing pattern ( co l , row ) = k ;
r e s u l t i n g p a t t e r n ( row + 1) = r e s u l t i n g p a t t e r n ( row + 1) . . .

45 + ( work ing pattern ( co l , row + 1) − k ) ;
f i l l w o r k i n g p a t t e r n ( co l , row − 1 ) ;
r e s u l t i n g p a t t e r n ( row + 1) = r e s u l t i n g p a t t e r n ( row + 1) . . .

− ( work ing pattern ( co l , row + 1) − k ) ;
end

50 end

f i l l w o r k i n g p a t t e r n (1 , n − 1 ) ;
r e s u l t = r e s u l t ( : , 1 : nr o f d i rect summands ) ;

end

C.9 Calculation of the matrix of Clebsch-Gordan
coefficients

Return the full matrix of Clebsch-Gordan coefficients. For example,
clebsch_matrix([1 0], [1 0]) return the Clebsch-Gordan coefficients of the
coupling of two one-half spins.

1 function r e s u l t = c l eb s ch mat r i x ( i r r ep1 , i r r e p 2 )
dimension1 = i r r ep d imens i on ( i r r e p 1 ) ;
dimension2 = i r r ep d imens i on ( i r r e p 2 ) ;
disp ( sprintf ( ’ Coupled r ep r e s en t a t i on has dim %d ∗ %d = %d . ’ , . . .

dimension1 , dimension2 , dimension1 ∗ dimension2 ) ) ;
6

r e s u l t = zeros ( dimension1 ∗ dimension2 ) ;
n = length ( i r r e p 1 ) ;

o l d l owe r i n g op e r a t o r s = c e l l (n − 1 , 1 ) ;
11 for k = 1 : n − 1

o l d l owe r i n g op e r a t o r s {k} = kron ( l owe r i ng ope ra t o r ( i r r ep1 , k ) , . . .
eye ( dimension2 ) ) . . .

+ kron (eye ( dimension1 ) , . . .
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l owe r i ng ope ra t o r ( i r r ep2 , k ) ) ;
16 end

dimension sum = 0 ;
new lower ing ope ra to r s = c e l l (n − 1 , 1 ) ;
for direct summand = unique ( decompose product ( i r r ep1 , i r r e p 2 ) ’ , ’ rows ’ ) ’

21 th i s d imens i on = i r r ep d imens i on ( direct summand ) ;

for k = 1 : n − 1
new lower ing ope ra to r s {k} = lowe r i ng ope ra t o r ( direct summand , k ) ;

end
26

for w = h i gh e s t w e i g h t s t a t e s ( [ o l d l owe r i n g op e r a t o r s { : } ] , . . .
we i gh t vec to r ( [ new lower ing ope ra to r s { : } ] , 1 ) )

disp ( sprintf ( ’Found i r r e p with dim %d . ’ , th i s d imens i on ) ) ;

31 o l d s t a t e s = zeros ( dimension1 ∗ dimension2 , th i s d imens i on ) ;
o l d s t a t e s ( : , 1) = w;
new state s = zeros ( th i s d imens i on ) ;
new state s (1 , 1) = 1 ;

36 done s t a t e s = int32 ( 0 ) ;
have s t a t e s = int32 ( 1 ) ;
while have s t a t e s < th i s d imens i on

done s t a t e s = done s t a t e s + 1 ;
for k = 1 : n − 1

41 new state s ( : , h av e s t a t e s + 1) = . . .
new lower ing ope ra to r s {k} ∗ . . .
new state s ( : , done s t a t e s ) ;

new norm = norm( new state s ( : , h av e s t a t e s + 1 ) ) ;
46 i f new norm > 1e−4 && rank ( new state s ) > have s t a t e s

have s t a t e s = have s t a t e s + 1 ;
new state s ( : , h av e s t a t e s ) = . . .

new state s ( : , h av e s t a t e s ) . / new norm ;
o l d s t a t e s ( : , h av e s t a t e s ) = . . .

51 o l d l owe r i n g op e r a t o r s {k} . . .
∗ o l d s t a t e s ( : , d one s t a t e s ) ;

old norm = norm( o l d s t a t e s ( : , h av e s t a t e s ) ) ;
o l d s t a t e s ( : , h av e s t a t e s ) = . . .

o l d s t a t e s ( : , h av e s t a t e s ) . / old norm ;
56 end

i f have s t a t e s >= th i s d imens i on
break

end
61 end

end

r e s u l t ( : , dimension sum + 1 : dimension sum + th i s d imens i on ) = . . .
( new states ’ \ o l d s t a t e s ’ ) ’ ;

66 dimension sum = dimension sum + th i s d imens i on ;
end

end
end
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