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Interaction mediated asymmetries of the quantized–Hall–effect
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Experimental and theoretical investigations on the integer quantized–Hall–effect in gate defined
narrow Hall–bars are presented. At low electron mobility the classical (high temperature) Hall–
resistance line RH(B) cuts through the center of all Hall–plateaus. In contrast, for our high mobility
samples the intersection point, at even filling factors ν = 2, 4, . . . , is clearly shifted towards larger
magnetic fields B. This asymmetry is in good agreement with predictions of the screening theory, i. e.
taking Coulomb–interaction into account. The observed effect is directly related to the formation
of incompressible strips in the Hall–bar. The spin–split plateau at ν = 1 is found to be almost
symmetric regardless of the mobility. We explain this within the so-called effective g–model.
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The integer quantized–Hall–effect (IQHE) can be ob-
served when a two dimensional electron system (2DES)
at low temperature is subjected to a strong magnetic field
B normal to the plane of the 2DES. The relevance of the
IQHE stems from its universal features. Most prominent
are the precise values RH = h/Ne2 (with Planck’s con-
stant h, the elementary charge e, and a natural number
N = 1, 2, . . . ) the quantized Hall–resistance takes on the
Hall–plateaus while at the same time the longitudinal re-
sistance RL vanishes [1]. These main–characteristics of
the IQHE are well established in experiments as well as
within single–particle theories [1, 2, 3]. However, these
conventional theories do not provide a full understand-
ing of all features observed in magneto–resistance ex-
periments. A comprehensive model needs to take into
acount the Coulomb–interaction between charge carriers
[4], which is a subject of ongoing investigations [5, 6].

In the classical (high temperature) limit the Hall–
resistance RH(B) resembles a straight line described by
RH(B) = h/ν0(B)e2 with ν0(B) being the filling fac-
tor averaged across the Hall–bar width. The local filling
factor is defined as ν(B, x) = ns(x, B)/nφ(x, B), where
ns and nφ ∝ B are the local number densities of elec-
trons and magnetic flux quanta in the 2DES. In most ex-
periments reported, the Hall–plateaus of RH(B) extend
symmetrically in respect to integer values of ν0 ≡ N =
1, 2, . . . . In other words the classical Hall–line RH(B)
cuts through the center of each plateau [7]. Excep-
tions from such symmetric plateaus have been observed
on etched narrow Hall–bars in the limit of low mobil-
ity [8, 9]. The experimental results reported in Ref. [9]
have been described within single particle theories [2, 3]
making additional assumptions about the disorder po-
tential, namely by comparison of the electron diffusion
length and the sample width [9]. In earlier experiments
asymmetric plateaus were attributed to interactions [8].

We present investigations on the IQHE as a function of

mobility and temperature employing narrow Hall–bars.
Our devices are electrostatically defined by top gates,
allowing for very smooth edges of the Hall–bar. The
Hall–plateaus at even filling factors develop a pronounced
asymmetry while temperature is decreased. This asym-
metry is observed only at high mobilities, where the elec-
tron mean–free path (lmfp) exceeds the Hall–bar width.
Hence, we can exclude disorder as the origin in contrast
to Ref. [9]. Considering the Coulomb–interaction be-
tween electrons our results are qualitatively explained us-
ing self–consistent (SC) calculations [10, 11]. The model
predicts an interaction–induced asymmetric density of
states (DOS) for charge carriers within the Landau–levels
[12].

The experiments presented here are performed on two
similar GaAs/AlGaAs–heterostructures both containing
a 2DES 110 nm below the surface. The low temperature
charge carrier densities and mobilities of the two wafers
are ns1 # 2.8 × 1015 m−2, ns2 # 1.8 × 1015 m−2, µ1 #

140 m2/Vs (lmfp ≈ 12µm), and µ2 # 300 m2/Vs (lmfp ≈

21µm). A typical gate layout processed by electron beam
lithography is displayed in the inset to Fig. 1a. All gates
of a sample are biased with the same negative voltage
to locally deplete the 2DES beneath the gates and thus
define the Hall–bar. Measurements of the Hall–resistance
RH are carried out using the contacts 1–3 (or 2–4) as
voltage probes. Likewise contacts 1–2 (or 3–4) serve to
measure the longitudinal resistance RL.

Fig. 1a displays RH as a function of 1/ν0 (∝ B) in the
ν0 # 2 range for temperatures between 1.6 K ≤ T ≤ 10 K
measured on the higher mobility wafer at a Hall–bar
width of W = 3 µm. At T = 10K we find the classi-
cally expected straight line and, as the temperature is de-
creased, the Hall–plateau at ν0 = 2 develops. Noticeably,
the plateau grows stronger on the low magnetic field side
(ν0 > 2), ultimately resulting in an asymmetric plateau
at low temperatures. Fig. 1b displays RH(1/ν0) in the
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FIG. 1: (color online) (a) Measured Hall–resistance of the
higher mobility wafer at a Hall–bar width W = 3 µm for sev-
eral temperatures as a function of the averaged reciprocal
filling factor at the ν0 = 2–plateaus. Inset: Scanning electron
micrograph of the gate layout. Metal gates are light gray.
Ohmic contacts source and drain carry the current while 1–4
are voltage probes. (b) Hall–resistances in the limit of high
and low temperatures of the higher mobility wafer (H) at
W = 10µm and W = 3 µm and of the lower mobility wafer
(L) at W = 3µm.

region of the ν0 # 2 plateau measured on both wafers
for W = 10 µm and W = 3 µm at temperatures T ! 2 K
as well as T " 10 K. For the lower mobility wafer the
classical high temperature line cuts roughly through the
center of the plateau as expected in single particle mod-
els [2, 3]. In contrast, for the higher mobility we again
find asymmetric plateaus. This behavior is likewise for
larger even filling–factors (not shown). The main exper-
imental observations can be summarized as follows: i) In
the limit of high mobility Hall–plateaus in narrow gate
defined bars are asymmetric in respect to the classical
RH–line. ii) As the mobility is reduced the conventional
symmetric plateaus are recovered. This makes disorder
unlikely as possible origin of the observed asymmetry.
Instead, we consider the Coulomb–interaction between
electrons. In the following a SC model is briefly intro-
duced [10]. We start from the single particle Hamiltonian
but then explicitly include Coulomb interaction.

Consider an electron with charge e, effective mass m∗,
and momentum p moving in a time–independent poten-
tial Vext(r), generated by the top–gates as well as ionized
donors and other defects. In a magnetic field B oriented
perpendicular to the 2DES described by the vector po-
tential A(r) (in an appropriate gauge) the Hamilton op-
erator reads

H =
(p − eA(r))2

2m∗
+ Vext(r) + Ve−e(r) + σg∗µBB . (1)

The potential Ve−e(r) accounts for Coulomb–interactions

between electrons with spin σ = ±1/2, where g∗ is the
Lande–g–factor and µB Bohr’s magneton. We assume i)
translational invariance in the y–direction along the Hall–
bar [13], ii) that all charge carriers reside on the z = 0
plane [4], iii) that disorder induces a mobility dependent
short range broadening of the DOS, D(E), with scatter-
ing parameter Γ [10], and iv) that the electrostatic po-
tential varies weakly on the scale of the magnetic length
lB =

√

!/eB. Assumptions i) and ii) allow to reduce
the position vector to the lateral coordinate across the
Hall–bar (r = (x, y, z) → (x, y0, 0) → x). We replace the
actual wave functions of the electrons with delta func-
tions and apply the Thomas–Fermi–approximation [14]
neglecting the spin degree of freedom (g∗ = 0) resulting
in the carrier density

ns(x) =

∫

dED(E)
[

e
E−µ(x)

kBT + 1
]−1

. (2)

To obtain local conductivities we perform a spatial aver-
aging over the Fermi wavelength (∼ 33 nm) simulating
the finite extent of the wave functions, thus, relaxing the
strict locality of our model. The electrochemical poten-
tial µ(x) = µ∗

eq − V (x) is composed of the equilibrium
chemical potential µ∗

eq and the total potential energy,
containing both the Coulomb interaction between elec-
trons and the external potential defining the Hall–bar

V (x) = Vext(x) + Ve−e(x) =

2e2

κ

∫ d

−d

[n0 − ns(x̃)]K(x, x̃)dx̃, (3)

expressed via a Kernel K(x, x̃) [10] such that V (−d) =
V (d) = 0 (at the Hall–bar boundaries). Here 2d < W is
the reduced sample width, taking into account the lateral
depletion beneath the top–gates, κ is the average dielec-
tric constant, and n0 the constant (and homogeneous)
effective donor number density. Eqs. 2 and 3 complete
our SC problem, which we solve iteratively to obtain elec-
trostatic quantities, such as the local electric field E(x).

Assuming a constant current I =
∫ d

−d
jy(x, y)dx along

the Hall–bar, that is in y direction, the local current den-
sity j(x) results from Ohm’s law

∇µ(x)/e ≡ E(x) = ρ̂(x)j(x), (4)

where the resistivity tensor ρ̂(x) is obtained from the
DOS [10, 14] and taking into account short–range poten-
tial fluctuations [11]. From ∇·j(x) = 0 and ∇×E(x) = 0

and utilizing the translational invariance one obtains

jx = 0, Ey(x) = E0
y ≡ I/

∫ d

−d
dx

ρL(x) ,

jy(x) = E0
y/ρL(x), Ex(x) = E0

yρH(x)/ρL(x),

(5)

where ρL(x) and ρH(x) are the diagonal and off-diagonal
entries of the resistivity tensor, respectively, and E0

y is a
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FIG. 2: (color online) (a) Calculated Hall-resistance for a
high mobility (H) and W = 3 µm plotted for several tem-
peratures as a function of the reciprocal center filling fac-
tor 1/ν(x = 0). The shaded region (yellow) corresponds to
the calculated spatial distribution of the IS with ν(B, x) = 2
across the Hall–bar (rhs axis 0 ≤ x ≤ W ) (b) Hall–resistances
as in Fig. 1b but calculated assuming that the biased gates
result in an edge depletion of W/2 − d = 80nm. The donor
density is taken to be 4×1015 m−2, resulting in realistic Fermi
energies of EF = 11.9 meV (13.4 meV) for W = 3 µm (10 µm).

constant electric field oriented in the y–direction. For a
given current eq. 5 leads to the global resistances

RH =
VH

I
=

E0
y

I

∫ d

−d

dx
ρH(x)

ρL(x)
, RL =

2dE0
y

I
, (6)

where the electron temperature enters via eq. 2.
Fig. 2a presents RH(B) of a Hall–bar of width W =

3 µm calculated in the limit of high mobility (assuming
a mean–free path large compared to 2d ! W ) as a func-
tion of a magnetic field perpendicular to the 2DES for
several temperatures 2 K ≤ T ≤ 24 K. Within an in-
compressible strip (IS) the carrier density ns(B, x) and,
thus, the local filling factor ν(B, x) are constant. In Fig.
2a the IS with ν(B, x) = 2 is highlighted depicted by
a shaded region (yellow). Here we display the bare IS
neglecting broadening of the adjacent compressible re-
gions caused by temperature or the quantum mechanical
extension of the electron wave functions. At its high
magnetic field end (bulk region) the IS is extended over
most of the sample–width. As the B–field is reduced
the IS splits into two edge channels. Let us first con-
sider the low temperature limit of the local resistivity
tensor. Away from the IS (white background in Fig. 2a)
the compressible 2DES behaves like a metal with finite
diagonal elements ρL and ρH taking a value close to its
classical (high temperature) limit. However, within an
IS backscattering is absent, hence ρL(ν = N) = 0 and
and ρH(ν = N) = h

Ne2 takes its quantized value. Ac-
cordingly, whenever somewhere across the Hall–bar an

IS exists E0
y = 0, and eq. 6 yields RL = 0 and a Hall–

plateau with RH = ρH(ν = N) = h
Ne2 . The calculated

temperature dependence RH(T ) shown in Fig. 2a is a
consequence of the broadening of the Fermi–distribution
function with increasing temperature. Simply speaking,
a broader Fermi–distribution results in a wider transi-
tion between compressible and incompressible regions,
melting an IS from its edges. Hence, with increasing
temperature an IS and the according Hall–plateau dis-
appear first where the bare IS is narrow, hence on its
low–magnetic field side (compare Fig. 2a). On the other
hand the large (bulk) region of an IS at its high mag-
netic field end withstands much higher temperatures. As
a direct consequence, the intersection point of the clas-
sical (high temperature) RH–line with a Hall–plateau is
determined by the widest part of an IS.

Fig. 2b displays calculated RH–curves as a function
of 1/ν0 for the same two Hall–bar widths as the ac-
tually measured devices have (compare Fig. 1). For
the wider sample the two cases of a mean–free path
much larger (high mobility limit) or smaller (low mo-
bility limit) than the bar–width are presented. Long–
range potential fluctuations originating from charged im-
purities and resulting in a finite mobility, are simu-
lated by modulating the external potential Vext(x) →

Vext(x) + Vmod cos(mpπx/d), where mp defines the mo-
bility [11]. For the low mobility limit we chose the pe-
riod 2d/mpπ = 1200 nm and a strong modulation of
Vmod # EF/5 [11]. The result are disorder broadened ISs
existing of bulk–regions extending more symmetrically in
both magnetic field directions around the integer filling
factors ν0 = N . Consequently, for a low mobility also the
Hall–plateaus are almost symmetrically extended in re-
spect to the intersection point with the classical RH–line,
being independent on mobility.

The SC calculations presented in Fig. 2 show excellent
qualitative agreement with the measured data displayed
in Fig. 1. Our analysis indicates that the asymmetric
Hall–plateaus measured in the limit of high mobility and
narrow gate–defined Hall–bars, can be explained by the
interaction between charge carriers resulting in the for-
mation of ISs. At high mobility the Hall–resistance is
quantized as long as there exists an IS wide compared
to the Fermi wave length. The long extension of the
measured Hall–plateaus to the low–field side of the in-
tersection with the classical Hall–line allows us to con-
clude, that in narrow Hall–bars with high mobility and
smooth (gate defined) edges the edge potential profile
rather than disorder dominates the IQHE. When de-
creasing the mobility our measurements and calculations
show a transition to symmetric Hall–plateaus, indicating
that in this case disorder extends the large bulk–region
of the ISs in both field directions resulting in symmet-
ric plateaus. Our numerical calculations suggest that
the period 2d/mpπ defines the long range length scale of
the disorder potential and, thus, compared to the sam-
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FIG. 3: (color online) (a) Spatial distribution of the ISs with
ν(B, x) = 1 (dark, blue) and ν(B,x) = 2 (shaded region, yel-
low) as a function of 1/ν(x = 0), calculated in the effective
g–factor model. Also shown are RH– and RL–curves calcu-
lated in the high mobility limit for T = 1.6 K and W = 3 µm.
(b) Measured RH(1/ν0) and RL(1/ν0) for the higher mobility
wafer and W = 3µm. The widest extensions of the ISs are
marked by arrows.

ple width is a measure of the mobility, suggesting a low
mobility for 1/mpπ + 1.

It is known that exchange–correlation effects cause a
spin–split DOS usually expressed in a strongly enhanced
effective g–factor g∗ [15]. This enhancement is expected
to be even aggravated within ISs. We include the spin
degree of freedom in our model in a phenomenological
manner described in Ref. [16]. While the exact value of
g∗ is not a determining parameter for our calculations,
only a large enough gap of the DOS ∆EZ , kBT results
in the formation of spin–split ISs. Fig. 3a presents the
calculated spacial distributions of the bare ISs with ν = 1
(dark, blue) and ν = 2 (light, yellow) together with RH

and RL as a function of 1/ν0. The corresponding mea-
sured RH(1/ν0) and RL(1/ν0) curves (for the higher mo-
bility) are displayed in Fig. 3b. To calculate RL in the
high mobility limit we used a phenomenological model
proposed by Gerhardts and Gross [17]. An IS vanishes
whenever the adjacent compressible regions overlap, that
is either when the quantum mechanical wavelength of the
electrons exceed its widths or when the thermal energy
∼ kBT exceeds the local potential drop. The latter is
given by g∗µBB for ν = 1 or !ωc−g∗µBB for even filling
factors. Where an IS exists RL = 0 (and RH = const).
In our specific case the two ISs do not coexist at any
magnetic field value. The IS at ν = 1 is more strongly
developed and its bulk region extended over a larger B–
field interval compared to the IS at ν = 2. Arrows in
Fig. 3 indicate the 1/ν–values where the ISs are widest,
i. e. where the classical Hall–line intersects with the Hall–
plateau. Clearly, the stronger developed IS at ν = 1 re-

sults in a more symmetric Hall–plateau compared to the
even filling factor ν = 2. Showing excellent agreement,
the same qualitative behavior is observed in the measured
data in Fig. 3b.

In conclusion, we have investigated the IQHE on gate
defined narrow Hall–bars at various mobilities and tem-
peratures. At high mobilities and low temperatures we
observe asymmetric Hall–plateaus in respect to the inter-
section point with the classical Hall–resistance line. Our
experimental findings are in excellent agreement with
predictions of the screening theory of the IQHE. In con-
trast to the asymmetric plateaus at even filling factors
the measured spin-split plateau at ν = 1 is almost sym-
metric. This is approved by model calculations within
the effective g–factor model.
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[3] M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986).
[4] D. B. Chklovskii, B. I. Shklovskii, and L. I. Glazman,

Phys. Rev. B 46, 4026 (1992).
[5] R. R. Gerhartds, Phys. Stat. Sol.b 245, 378 (2008).
[6] S. Arslan, E. Cicek, D. Eksi, S. Aktas, A. Weichsel-

baum, and A. Siddiki, Phys. Rev. B 78, 125423 (2008),
0803.3543.

[7] J. Matthews and M. E. Cage, J. Res. Natl. Inst. Stand.
Technol. 110, 497 (2005).

[8] H. Z. Zheng, K. K. Choi, D. C. Tsui, and G. Weimann,
Physical Review Letters 55, 1144 (1985).

[9] R. J. Haug, K. V. Klitzing, and K. Ploog, Phys. Rev. B
35, 5933 (1987).

[10] A. Siddiki and R. R. Gerhardts, Phys. Rev. B 70, 195335
(2004).

[11] A. Siddiki and R. R. Gerhardts, Int. J. of Mod. Phys. B
21, 1362 (2007).

[12] R. J. Haug, R. R. Gerhardts, K. V. Klitzing, and
K. Ploog, Physical Review Letters 59, 1349 (1987).

[13] K. Lier and R. R. Gerhardts, Phys. Rev. B 50, 7757
(1994).
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