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Meinen Eltern

Siegfried und Brigitte





Percy Bysshe Shelley
(1792 – 1822)

Invocation

Rarely, rarely comest thou,
Spirit of Delight!
Wherefore hast thou left me now
Many a day and night?
Many a weary night and day
‘Tis since thou art fled away.

How shall ever one like me
Win thee back again?
With the joyous and the free
Thou wilt scoff at pain.
Spirit false! thou hast forgot
All but those who need thee not.

As a lizard with the shade
Of a trembling leaf,
Thou with sorrow art dismay‘d;
Even the sighs of grief
Reproach thee, that thou art not near,
And reproach thou wilt not hear.

Let me set my mournful ditty
To a merry measure; –
Thou wilt never come for pity,
Thou wilt come for pleasure: –
Pity thou wilt cut away
Those cruel wings, and thou wilt stay.

I love all that thou lovest,
Spirit of Delight!
The fresh Earth in new leaves drest
And the starry night;
Autumn evening, and the morn
When the golden mists are born.

I love snow and all the forms
Of the radiant frost;
I love waves, and winds, and storms,
Everything almost
Which is Nature‘s, and may be
Untainted by man‘s misery.

I love tranquil solitude,
And such society
As is quiet, wise, and good;
Between thee and me
What diff‘rence? but thou dost possess
The things I seek, nor love them less.

I love Love - though he has wings,
And like light can flee,
But above all other things,
Spirit, I love thee -
Thou art love and life! O come!
Make once more my heart thy home!
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Abstract
The study of the interplay between interaction-induced correlations and nonequilibrium ini-
tial conditions in many-body systems has recently attracted a lot of attention. New ex-
perimental techniques provide high control over many-body systems and systematic access to
their nonequilibrium regime: Detailed geometries in heterostructures allow for nonequilibrium
transport measurements in correlated systems, pump-probe experiments for time-resolved
study of many-body relaxation in molecules and solids and ultracold atom gases loaded onto
optical lattices for high control of system parameters in real time. In all of these fields of
research the nonequilibrium properties of a Fermi liquid can be relevant. A first approach to
their understanding is the main content of this thesis.
At the beginning I will first collect a variety of nonequilibrium phenomena and introduce
to basic questions and concepts for their study (cf. chapter 1). Then Landau’s theory of a
Fermi liquid (2), the Hubbard model (3), time evolution in quantum mechanics (5), related
experiments (4), and the flow equation method (8) are reviewed.
The key observation of this thesis, namely a characteristic mismatch of expectation values in
equilibrium and nonequilibrium, is first illustrated for the squeezed oscillator (6). For this
one-particle model Hamiltonian the perturbative approach can be compared with the exact
solution and it is seen that the mismatch holds even beyond perturbation theory. Afterwards,
these observations are generalized to a larger class of one-particle models (7).
Then the nonequilibrium behavior of a Fermi liquid is examined by analyzing the Fermi liquid
phase of the Hubbard model in more than one dimension. After a sudden switch-on of a weak
two-particle interaction to the noninteracting Fermi gas the relaxation of the many-body
system is observed. For this purpose, the flow equation transformation is implemented for
the Hubbard Hamiltonian (9). This technique applies a continuous sequence of infinitesimal
transformations which are defined to make the Hamiltonian approximately diagonal in energy.
Its unitary character implies the transformation of all observables which turns out to be a
major merit of this approach (10). Then the discussion of the momentum distribution function
and of the kinetic energy displays a three-step relaxation behavior of the Fermi liquid from
the initial perturbation until thermalization is reached (11). Firstly, the sudden switch inserts
excitation energy into the system which drives the following dynamics. Then a rapid initial
build-up of correlations is caused by initial dephasing and leads to the establishment of a
quasiparticle picture. By that the system enters into a quasi-stationary state which can be
long-lasting for weak interaction. This state shows prethermalization of the kinetic energy
which already has relaxed to its final values. However, the momentum distribution still
resembles a zero temperature Fermi liquid. Its later relaxation on a second time scale is
caused by a residual two-particle interaction which allows for scattering processes and can be
described by a quantum Boltzmann equation. The physical origin of this delayed relaxation
can be traced back to an interplay of translational invariance of the Hubbard model and
the Pauli principle for fermions; together they restrict the phase space for scattering events.
Comparing with similar work I conjecture on the generic nature of the findings made for the
quenched Fermi liquid in other many-body systems (12).
Finally I point out to the potential relevance of the delayed relaxation for the observation of
further nonequilibrium phenomena, for instance in BCS systems (13). In order to extend the
study of sudden switching to arbitrary switching processes the calculation is repeated using
the Keldysh perturbation theory (14). First evaluations for a linear increase of the interaction
strength are given. Extensions of this work are suggested (15) and motivate further research.
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Chapter 1

The world beyond equilibrium

Nonequilibrium phenomena are ubiquitous in virtually all aspects of all-day life as well as of
scientific research, and they can boast themselves with a great reputation: While nonequilib-
rium processes, starting with nuclear reactions deep inside the sun, radiative energy transport
towards earth, the induced convectional transport by atmospheric winds or oceanic currents,
the build-up of complex organic structures in living cells or the collective and reactive behav-
ior of human societies (including all functions of their technologies) are essential to sustain
all life, their missing has to be imagined as a completely equilibrated world, free of any dy-
namics beyond that of quantum or thermal fluctuations and aptly described as heat death.
Therefore it should not surprise that scientific research reaches out to study nonequilibrium
phenomena. Up to now, their behavior has been and is continuously addressed in a multitude
of publications steming from many branches in the physical, chemical, biological, economical,
and social sciences as well as engineering, reaching from the structures of the universe down
to the behavior of elementary particles.
Similarly omnipresent are many-particle systems, even when restricting to the domain of the
physical sciences. From the constituents of nuclear matter, via large molecules to macro-
scopic systems of liquids or crystals — all of them combine a large number of elementary
degrees of freedom. The resulting collective properties of the condensed particles can be fun-
damentally different from their individual behavior: While valence electrons are fairly well
bound to individual atoms of a metal, they delocalize in a metallic crystal. There they form
a quasi-free gas of crystal electrons which is responsible for characteristic properties like the
electric resistance, heat conductance or optical reflectivity. Moreover, in a many-particle sys-
tem correlations between particles can exist. For noninteracting particles strong correlations
already originate from quantum statistics. For instance, particles which obey the Fermi-Dirac
statistics (fermions) are severely constrained by the Pauli exclusion principle which forbids
the multiple occupation of a quantum state and leads to the description of a Fermi surface
in momentum space. Moreover, interacting particles are additionally correlated because of
interaction effects. Depending on the kind and strength of the interactions this implies that
the elementary degrees of freedom are different from those of a system of noninteracting par-
ticles. Generically, this difference may be large. For zero temperature fermions, however, one
has to relate the newly generated correlations to those induced by the Pauli principle. Since
the later implies a huge degeneracy of the Fermi system, in many cases interaction effects
due to various interactions create generic correlations which can be described in the rather
universal language of Landau’s Fermi liquid theory.

5



6 1 The world beyond equilibrium

Therefore it is a natural question to combine these two aspects and address the nonequilib-
rium behavior of a generic weakly interacting fermionic many-particle system, namely the
nonequilibrium Fermi liquid.

1.1 Fundamental concepts of nonequilibrium physics

The first challenge when addressing nonequilibrium physics is the ample field of very different
phenomena carrying this label. Limiting onself, for the first, to current research in classical
physics, one finds as versatile examples as nonlinear dynamics of complex systems in classical
mechanics [1], turbulences in hydrodynamical systems and pattern formation [2], diffusive
heat transport [3–5], the amorphous ground state of materials like glasses [6], and many
more.
They share the common feature that they are not explained by the sole reference to the
(equilibrium) ground state properties of a suitable theory. Instead, excited states become
important. While a system in (one of) its ground state(s) is, typically, dynamically invariant,
excited states may introduce a nontrivial time dependence. Hence I ground a first classification
of nonequilibrium phenomena on the rôle which time plays in three different scenarios. Each
of them originated from its own branch of research and will serve to illustrate one aspect of
nonequilibrium systems which will become influential – in a more or less direct way – in the
understanding of a nonequilibrium Fermi liquid.

1.1.1 Transport

Thermodynamic understanding of transport

Transport is an effective thermodynamic concept on the level of macroscopic quantities. While
equilibrium thermodynamics can be grounded on extremal principles for thermodynamic po-
tentials, transport theory discusses open systems which are subjected to both the proliferation
of a transportable extensive quantity like energy, matter, charge, etc. and a sustained gra-
dient of an intensive parameter like temperature, a chemical or electrical potential, etc. The
emerging transport is described by a transport equation which links the flux of the extensive
quantity (a temporal derivative) to a spatial derivative of the intensive parameter. An electric
current, for instance, is linked to its causal origin, an electric voltage. The conventional ther-
modynamic description of transport assumes that the transport equation is a linear relation
with a constant coefficient. Historically important examples are Fourier’s law, Fick’s law and
Ohm’s law for dissipative heat, particle and electric transport, respectively. For convenience,
I illustrate only the commonly discussed regime of steady state transport for which fluxes do
not depend on time.

Statistical understanding of transport

In 1896 Ludwig Boltzmann presented in his Lectures on Gas Theory [7] a statistical interpre-
tation of thermodynamics based on a probabilistic theory of microscopic motion. The under-
lying statistical concept of equipartition in phase space, subject only to a weighting measure
given by the Boltzmann factor and otherwise justified by the principle of maximal ignorance
of presumably equal states, was seen as the driving motor of all equilibration processes, in-
cluding transport. This was first studied for dilute gases which became the paradigmatic
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model for describing the tendency of dynamical but globally imbalanced systems to achieve
equipartition in many fields of physics. In condensed matter systems, transport is typically
discussed for gas-like quasiparticle systems like (crystal) electrons (to describe electric cur-
rents) or the bosonic gas of phonons (heat transport) [8]. Recent research has widened the
view on further transport mechanisms like active transport, e.g. in biological systems or to
simulate traffic flows. A paradigmatic model for such active transport processes, the ’totally
asymmetric simple exclusion process (TASEP)’ counts among the most studied models of
nonequilibrium phenomena [9].

Linear response and the fluctuation-dissipation theorem

Discussing transport in terms of microscopic models, however, does not always allow to derive
linear transport equations. Simple models like the harmonic crystal exhibit ballistic instead of
diffusive heat transport; there an internal temperature cannot be defined and, consequently,
a description based on temperature gradients and transport coefficients is not adequate [10].
The relation between microscopic dynamics and macroscopic transport laws, particularly in
the case of low dimensions, remains a current field of research [3–5]. It mirrors the fundamental
question of thermalization of excited closed systems which I discuss in section (1.4.4).
The microscopic discussion of transport often starts with the approximation that, to first
order, external forces cause the same dynamics of a system as elongations by internal fluc-
tuations. Whenever the effect of external forces can be expressed in terms of a perturbative
interaction1, the linear response of the system (described by a response function) can be
related to the equilibrium thermal fluctuations. This important result of linear response the-
ory, now known as the famous fluctuation-dissipation theorem [13, 14], has reduced linear
approximations to nonequilibrium problems to equilibrium properties [15]. This has shifted
the notion of ’nonequilibrium’ in the case of transport to the study of nonlinear response to
external forces.
A second approach to steady state transport is by the Boltzmann equation. I will give a
thorough introduction to it in section 1.4.5.
I finally briefly note that macroscopic transport in the steady state regime cannot be observed
on ideal periodic lattices where electrons, when subjected to a constant external force, undergo
Bloch oscillations such that no net transport occurs in the absence of any relaxation process
[16, 17].

1.1.2 Metastable states of glasses and spin glasses: avoided relaxation

A second scenario is devoted to many phenomena which are characterized by metastable
configurations of excited states. Examples can be as diverse as particular points in phase
space of a mechanical motion, metastable chemical substances, energetically disadvantaged
structures of large molecules or crystal phases, or radioactive isotopes. As the metastable
state corresponds to a local but not global minimum in the free energy landscape, relaxation
is hindered by an energy barrier. An analogous idea of inhibitors to nonequilibrium relaxation
will be a central element of my interpretation of the nonequilibrium behavior of the Fermi
liquid in chapter (11).

1As M. Michel points out in his very inspiring thesis [11], Luttinger [12] raises doubts whether this is
justified for heat transport since there is no Hamiltonian which describes a temperature gradient.
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From a nonequilibrium point of view, glasses [6] and spin glasses [18] are particularly inter-
esting although meanwhile some equilibrium approaches to glassy materials have appeared
(see, for instance, [19]). Produced by a temperature quench, i.e. a sudden supercooling of a
liquid, these systems are, macroscopically, comparable to solids but, microscopically, isotropic
and without long-range order, like a liquid. Since the microscopic structure does not corre-
spond to the macroscopic ground state of a crystallized system at the lower temperature, it
is regarded as a nonequilibrium configuration. Two time scales appear and can be linked to
a separable motional behavior of the particles in a glass: Fast vibrational motions resemble
the thermal fluctuations of a particle in a solid, while there is a slow structural relaxation
caused by a dispersive particle wandering like in a liquid [20]. The second (slow) time scale
relates to aging phenomena which can occur on extremely long time intervals; again this is
considered as being caused by a trapping in local minima of a free energy potential landscape
and constitutes a metastable state. Moreover, one can relate the two-fold particle motion
to the spectrum of fluctuation modes which, at high frequency, already resemble closely an
equilibrated thermal distribution. At low frequencies, however, characteristic nonequilibrium
becomes most relevant. In chapter (11) I will develop a similar picture for a Fermi liquid
and observe nonequilibrium signatures of its momentum distribution particularly within the
low-frequency momentum modes around the Fermi surface.

1.1.3 Time dependent nonequilibrium phenomena

Yet most generic are time dependent nonequilibrium phenomena. Those who believe in recent
big-bang cosmology may credit them with the existence of all the material world we know
and claim that their history is just a tiny bit younger than the history of the universe itself.
While the initial state of the universe is assumed as an equilibrium state, characterized by
extremely high densities and temperatures (and consequently high reaction rates) which would
immediately cancel out any imbalances, nonequilibrium conditions were born by the successive
rapid expansion of the universe: energy and particle density became more diluted, particle
interactions got weaker, equilibration processes less efficient and thus the growing universe
lost its ability to respond immediately to its own dynamics. A new time scale related to its
internal equilibration emerged, fell behind the time scale of its dynamical expansion and so a
first nonequilibrium episode was entered.
As its most prominent effect, the nucleosythesis can be explained as a consequence of the
competition between the expansion rate of the universe, equilibration processes and tempera-
ture dependent production rates [21]. A rapid cooling of the universe was decisive for creating
a nonequilibrium distribution of nucleons with an excess of neutrons. Since their equilibra-
tion with respect to the weak interaction occurred on a much longer time scale, neutrons
did not decay but could be captured by protons and light nuclei to form heavier and stable
compounds.
Although this example can be counted among scientific folklore, it illustrates the dramatic
influence nonequilibrium initial conditions may have on the later dynamics. Hence for a
time dependent nonequilibrium system both the transient behavior and the long-time limit
of its evolution are relevant questions. In section (1.4.4) I will discuss recent approaches for
quantum systems to answer the second question without answering the first one, referring only
to the initial nonequilibrium conditions. While for a deterministic theory which includes all
aspects of the evolution the initial conditions already do determinate the final state, both for
the universe and for the nonequilibrium Fermi liquid the interesting behavior lies in between.
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This motivates my study of the time evolution of some of its observables.

1.2 Definition of a quantum quench

1.2.1 Nonequilibrium initial conditions

In general a system in nonequilibrium is described by two pieces of information: Firstly,
the Hamiltonian contains the full dynamics of an arbitrary state at an arbitrary time. In
equilibrium, the Hamiltonian is often already sufficient to discuss the main properties of the
system. In nonequilibrium, however, initial conditions have to be specified which describe the
deviation of the system from its equilibrium ground state.
In transport problems, where typically stationary nonequilibrium situations are discussed,
nonequilibrium initial conditions are given by externally enforced and maintained gradients,
e.g. a gradient of temperature, of the electrical potential or of the chemical potential.
However, if time dependent nonequilibrium problems are studied, the initial conditions are
set by an initial state which is defined at a certain point in time (say t0 = 0). In order to
make for a nonequilibrium problem these states must represent (highly) excited states of the
system. Unfortunately, it is difficult to make highly excited many-body states explicit, in
particular when correlated systems are discussed. A quench is a simple procedure to bypass
this difficulty.

1.2.2 Nonequilibrium initialization of a system by a quantum quench

The simplest way to find an excited state of a system is to use the ground state of a different
system (which, certainly, must not agree with the ground state of the earlier system). Then the
initial condition can be linked to another Hamiltonian. This motivates the concept of quantum
quench: There an initial Hamiltonian H(t = 0−) is suddenly promoted to the new Hamiltonian
H(t = 0+) by external influence while the state of the system remains, for the first, unchanged.
This situation is particularly simple if the initial Hamiltonian represents a noninteracting
model and under the quench a perturbation is suddenly ’switched on’. Then the quench
initializes an interacting system in the ground state of the noninteracting system. Since the
noninteracting ground state can be, in many cases, written down rather straightforwardly
this is a convenient setup for dynamical calculations. After the quench the former ground
state (which is unchanged) represents an excited state with respect to the later Hamiltonian.
Hence, a quench is a convenient way to initialize a many-body system in a nonequilibrium
initial condition. For instance, the ionization process in the X-ray edge problem (cf. the next
section) constitutes a sudden local perturbation of a many-particle system. In the following,
however, the technical term ”quench” may be reserved for the sudden change in a global (and
not local) parameter of the system2.

1.2.3 Treatment of quench problems by Hamiltonian diagonalization

In the main part of this thesis I only consider a quench of a static interaction. The sudden
switch-on is modeled by the Heaviside step function Θ(t).

H(t) = H0 + Θ(t)Hint (1.1)
2Nonetheless, local quantum quenches have been examined in some cases, see e.g. [22].
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Figure 1.1: Typical energy level relations during a quantum quench. The initial state |Ψ�
equals the ground state of the Hamiltonian H0, denoted by |Ω0� (left hand side). The state
|Ψ� remains unchanged under the quench; however, its energy is now given with respect to
the changed Hamiltonian H by EΨ,H = �Ψ|H |Ψ�. For comparison, the ground state of the
quenched Hamiltonian |Ω� is sketched; in general its energy differs from that of |Ω0�. The
excitation energy EEXC after the quench is indicated.

This implies that the quench problem is not a truly time dependent problem but can be
represented as a time independent Hamiltonian with a particular initial condition. In this
sense quench scenarios resemble the exact one-particle solution of the X-ray absorption and
emission problem in metals by P. Nozières and C. T. de Dominicis [23] (see the discussion of
the X-ray problem in section 1.3.1 at the beginning of the following page).
The observation that any time dependence can be attributed to initial conditions is important
since it sets the technical frame for the main part of this thesis: For a time independent
Hamiltonian, the eigenbasis representation is privileged as there the time evolution of the
eigenstates decouples. Therefore diagonalization, i.e. transforming into an (approximate)
eigenbasis representation, is advantageous; in this thesis it even is the decisive step of studying
the time evolution of the system that follows the quantum quench. This diagonalization is
performed for one-particle systems in chapter 6 and 7 as well as for the quenched Fermi liquid
in chapter 9.

1.2.4 Energetic implications of a quench

At the time of the quench, the system is open for the exchange of energy with an unspecified
environment that enforces the quench. Moreover, the state of the system |Ψ�, once the ground
state of the initial Hamiltonian |Ω0�, has to be re-interpreted as an excited state with respect
to the ground state of the quenched Hamiltonian |Ω�. Both aspects together allow to draw
the generic energy level diagram of a quantum quench (see Fig. 1.1).
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1.3 Nonequilibrium phenomena in correlated many-body quan-
tum systems

1.3.1 The X-ray edge problem

One of the earliest examples for sudden time-dependent manipulations of many-body systems
is known as the X-ray edge problem which has been extensively studied in the late 1960ies [23–
26] and reviewed, for example, in [27]. By X-ray scattering an electron is excited from a deep
level and a localized deep hole is created. It serves as a suddenly switched on but transient
scattering center for conduction electrons which react according to two competing many-
body effects: the Anderson orthogonality catastrophe [28] reduces the overlap of the ionized
and non-ionized ground state and suppresses the absorption process; on the other hand the
additional charge transferred into the conduction band gives rise to a many-body enhancement
[29]. Together, they account for a characteristic resonance in the X-ray absorption or emission
spectra near the Fermi level threshold. Long readjustment times of the electrons at the Fermi
surface to the changed environment are its physical origin [25]. Recombination finally switches
off the scattering potential.
Since it turned out to be tractable by many different approaches, the description of the X-ray
absorption and emission problem stimulated the development of new techniques to analyze the
many-body response of an electron gas to a temporary defect, i.e. to a time dependent scatter-
ing potential. Firstly, this potential was understood as a many-body interaction and treated
diagrammatically by means of Abrikosov’s many-body perturbation theory. A summation of
parquet diagrams allowed to reproduce the X-ray resonance [25]. An extended self-consistent
formulation followed [26], as well as an explanation based on an early bosonization approach
[30]. The already mentioned interpretation of the problem as a one-particle scattering poten-
tial [23] which is switched on by the radiative creation of the hole and remains constant until
its recombination can be read as an early exhibition of a quantum quench scenario. There the
time dependence of the potential can be fully included into initial (and final) conditions of
the evolution. Pointing out and comparing to the later discussion of an interaction quench in
a Fermi liquid, which constitutes the key part of this thesis, a difference has to be mentioned:
In the X-ray edge problem a quantum quench is performed only locally (i.e. at the position
of the static hole a local potential is switched on and off), while in the case of a Fermi liquid,
which is modeled on a lattice, the two-particle interaction is changed on every lattice site.
I briefly mention that later a special nonequilibrium version of the X-ray problem was investi-
gated. It is characterized by the presence of two Fermi seas with different chemical potentials.
Such research was stimulated by the observation that the different approaches mentioned
above, which all lead to equivalent predictions in the equilibrium case (i.e. in the presence of
only a single Fermi sea), provide different answers when applied to the nonequilibrium X-ray
edge problem [31–33]. The study of the nonequilibrium X-ray problem in mesoscopic systems
has been a recent interest in this field of research [34–36].

1.3.2 Nonequilibrium dynamics of spin systems

Motivated by the idea to test approaches and approximations applied in nonequilibrium sta-
tistical mechanics in a nontrivial but exactly solvable model system Barouch et al. discussed
the nonequilibrium behavior of the quantum mechanical XY-model in 1970 [37]. Then it took
several decades until new interest in the examination of interacting model systems in nonequi-
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librium came up. In the 1990ies, the discussion of spin glasses fostered a revival of studies
about the real-time dynamics of nonequilibrium quantum spin systems for understanding
their aging phenomena [38, 39]; for the Ising spin chain long-range correlations were found
following the front of a coherent spin signal [40]. Interest in the nonequilibrium properties of
paradigmatic spin models [41] focussed on their response to driven quantum phase transitions
at quantum critical points by either a sudden switch of model parameters, i.e. by a quan-
tum quench [42–45] or by a dynamical approach towards a phase transition [46–49]. While
in quantum phase transitions quantum fluctuations become important and may vitiate the
validity of approximative approaches (like mean-field theory or perturbative expansions, c.f.
[41]), quantum critical points often exhibit symmetries which allow for a mapping to exactly
solvable models. Those serve as theoretical laboratories to study in many-body systems two
nonequilibrium effects which I will briefly discuss here.

1.3.3 Kibble-Zurek mechanism

For many second-order and continuous phase transitions driven non-adiabatically through
a critical point the production of topological defects can be observed or has been predicted.
Examples are phase transitions in 4He and 3He [50–52], nematic liquid crystals [53–55], super-
conductors [56, 57] and ultracold atoms in optical lattices [58, 59]. The underlying mechanism
was formulated by Kibble and Zurek [60, 61] and is grounded on the paradigmatic Landau-
Ginzburg theory for equilibrium phase transitions. There the free energy (a thermodynamic
quantity) is expanded in (even) powers of the order parameter and the phase transition is
signaled by a symmetry breaking [62]. Nonequilibrium conditions, i.e. driving, enter by mak-
ing the control parameter of the transition time dependent; typically this is the relative value
of, e.g. temperature or pressure, with respect to their values at the critical point. In the
Kibble-Zurek framework the control parameter is linearly approaching the phase transition
in time [63]; hence the timescale of the driving is controlled by the (fixed) rate at which the
control parameter is changed. Simultaneously, the correlation length of the system increases
(it diverges at the critical point) and its response to the parameter change slows down until a
second time-scale, the relaxation time, diverges at the critical point, too. As soon as the time
scale of the driving becomes comparable to the relaxation time, the order parameter looses its
ability to adjust to the imposed changes, the correlation length is frozen in, and a nonequilib-
rium regime is entered. In the Kibble-Zurek picture, this sets the initial configuration for the
following nonequilibrium dynamics. The freezing of the correlation length implies that the
order parameter cannot completely relax but stable topological defects remain, distributed
on a scale set by the frozen correlation length3. This result has motivated the suggestion
to explain the mass distribution of the universe or the inhomogeneities of the cosmic mi-
crowave background as originating from topological defects caused by nonequilibrium phase
transitions in an early era of its existence [63].
The Kibble-Zurek mechanism illustrates that nonequilibrium driving of a system can lead
to a permanent locking of features which are present in the initial configuration (that one

3I repeat this for a recent example [59]: If the temperature of a bosonic gas is lowered towards the transition
temperature of the Bose-Einstein condensation, regions with an extension set by the scale of a finite correlation
length exhibit independently of each other phase coherence. Thus the phase of the wavefunction – an order
parameter of the transformation– is constant only within these regions. Finally, these regions merge to form
a single condensate with a continuously varying order parameter. The continuity requirement, however, can
lead to topological defects.
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when the nonequilibrium region is entered) and appear as defects in a later regime. Hence
relaxation of such a system to its new equilibrium ground state (or thermal ground state, if
conservation of excitation energy is expected) is generically prohibited by a memory of initial
conditions. Seen in the light of the discussion of chapter (1.4.4) it would be interesting to
discuss, for instance, the importance of integrability on the defect production.

1.3.4 Landau-Zener problem

While the Kibble-Zurek formalism addresses the non-adiabatic approach to a thermodynamic
phase transition, the non-adiabatic transition between the levels of a quantum mechanical,
coupled two-level system is known as the Landau-Zener problem [64–66]. One assumes that
the difference between the (bare) energy levels �i(B(t)) depends on a continuous parameter
B(t), which can be tuned in time. The coupling between the leads may be nonvanishing
and, for convenience, in all cases time independent. The Landau-Zener problem became
a paradigmatic example for the description of dynamical nuclear or atomic collisions, the
dynamics of chemical reactions, and the behavior of quantum systems in time dependent
external magnetic or electric fields [67–71].
In the adiabatic case, i.e. for arbitrary slow parameter variation, and due to the nonvanishing
coupling, the energy levels exhibit an avoided crossing with an energy gap ∆ of two times
the coupling strength. This means that the eigenvalues of the two-level system approach
each other up to this minimal distance in energy and then recede while the corresponding
eigenfunctions exchange their character. An initial ground state occupation always remains
in the lowest energy state (which, however, changes at the avoided crossing).
In the non-adiabatic case, the parameter variation is such that difference between the (bare)
energy levels depends linearly on time, i.e. there is a constant parameter velocity v =
| d

dt
(�1 − �2)|. For simplicity, time varies from −∞ to ∞. Now transitions into the ener-

getically excited state become possible. More precisely, there is a nonvanishing probability
that an initial ground state occupation remains in the former ground state even if its energy
is raised beyond that of a later ground state. Thus the Landau-Zener problem, again, is
an example that nonequilibrium conditions (here: driving) may prevent optimal relaxation
of a system. The differential transition probability into the new ground state is largest at
the (avoided) crossing of the energy levels since it depends on the energy difference between
the interacting states. Therefore, the parameter velocity enters exponentially into the exact
solution of the integrated transition probability P

P ∼ e−
π
2∆2

hv (1.2)

Note that the exponential dependence results from a nontrivial quantum interference of con-
tributions arising from the approach to and the recession from the avoided crossing.
The Landau-Zener formula (1.2) holds analogously for non-adiabatic transitions in multiple
level crossings [72, 73] and the Landau-Zener problem has recently found a revival in the
discussion of driven many-particle systems [74–76]. Other works presented a close link between
Landau-Zener physics and the Kibble-Zurek mechanism: the transition from the initial ground
state to the final ground state can be compared with a phase transition such that the Landau-
Zener problem can be restated as a quantum analogue for the Kibble-Zurek mechanism. Then
the inverse of the energy gap between the states of the two-level system at a particular point
of time in a Landau-Zener transition represents the relaxation time in the Kibble-Zurek
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mechanism and the occupation of the excited state is a measure for the created topological
defects. In such a simple model, the dependence of their density on the parameter velocity
(quench rate) agrees with Kibble-Zurek predictions [77]. Regarded from the opposite point
of view, driving the exactly solvable quantum Ising model through its critical point can be
described as a sequence of Landau-Zener transitions for suitably defined quasiparticles [47].
For the sweep through the critical point of an anisotropic XY chain a multi-particle Landau-
Zener approach has been developed [48]. A Jordan-Wigner fermionization of the spin model
allows to reduce to a Landau-Zener problem in each fermionic momentum mode separately.
Then the crossover scale from adiabatic to non-adiabatic behavior, i.e. the minimal velocity
for non-adiabaticity, becomes momentum dependent. Similarly, a characteristic crossover
momentum can be defined which corresponds to the correlation length (i.e. domain size) at
that momentum value. The exactly calculated correlation functions decrease exponentially
and monotonically for fast sweep speed, crossing over to oscillatory behavior at slower speed.

1.3.5 Nonequilibrium dynamics of BCS systems

While the nonequilibrium examination of spin systems pioneered in the field of nontrivial
time-dependentent phase transitions, the discussion of the nonequilibrium behavior of BCS
systems subjected to a quantum quench focussed on the time behavior of the order parameter
[78–82].
BCS theory [83] has been introduced in 1957 as an effective model for superconductivity
in many-particle systems; an attractive pairwise interaction between constituent fermions
gives rise to a Fermi liquid instability towards the formation of bound Cooper pairs. Their
anomalous expectation value acts as the order parameter of the superconductivity phase
transition; by a mean field calculation, it can be identified with an energy gap ∆ in the
one-particle spectrum. In nonequilibrium, the dynamics of the order parameter following a
quantum quench either exhibits persistent oscillations or a decay towards a constant steady
state value, depending on the initial state before the quench [81]. This is because the BCS
mean-field dynamics is integrable, thus the initial conditions are memorized by the state of
the system and the properties of the order parameter are frozen for all later times. Therefore,
a classification scheme allows to predict the long time behavior directly from the initial state
without solving the equations of motion.
Similar observations have been made studying the BCS to BEC crossover in fermionic con-
densates. A quantum quench is implemented by a sudden shift in the position of a Feshbach
resonance. Depending on the initial state, the quench triggers coherent oscillations in the
order parameter and oscillatory ’hole burning’ in the momentum distribution [84], or it does
not [85].

1.3.6 Nonequilibrium dynamics of lattice systems

It is convenient to study many-particle systems on the restricted geometry of a particular
lattice. For a variety of models, the nonequilibrium properties of interacting lattice parti-
cles have been examined using quantum quenches. Examples in one dimension include a
generalization of BCS theory, the Richardson model [86], 1D hard-core bosons [87–89], the
Bose-Hubbard model [90], the quantum sine-Gordon model [91, 92], the Luttinger liquid
[93, 94], and strongly correlated spinless fermions [95].
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In more than one dimensions, only few results are available, e.g. for the Falicov-Kimball
model [96] or in optical (super-)lattices [97].

1.4 Questions and concepts in time-dependent nonequilibrium
many-particle systems

From the abundance of example systems for which quantum quenches have been studied some
general questions and approaches can be distilled. They form a conceptual framework which
underlies my further discussions.

1.4.1 Time scales

In a time dependent many-particle problem various time scales may be present. Since the
sudden parameter change in a quantum quench does not introduce an independent time
scale related to the switching procedure itself (no ’ramp-up’ time), all time regimes originate
from the intrinsic energy scales of the discussed model, e.g. interactions and couplings, a
bandwidth, etc. Naturally, scales related to the quenched parameter, to a possible energy or
momentum intake, etc. should be most important. Nonetheless, the nonequilibrium dynamics
of a model system following a quantum quench may be interesting on further time scales and
a separation of different time regimes may occur. Then, for instance, transient behavior can
be distinguished from the long-time limit.

Questions addressed to transient behavior

Typically, transient behavior of a time dependent system refers to its early evolution after
a perturbation has been applied but before a periodic state or a (meta-)stable steady state
is reached. It often depicts the dynamics of (highly) excited states which, whenever no
restrictions are in place, relaxes. Consequently, questions may address the kind and the
time scale of this relaxation process, the characterization of possible intermediate states, the
underlying physical processes which generate the early dynamics, possible restrictions to their
dynamics, a dependence on the details of the quench and, in particular, a memory of the initial
conditions.

Questions addressed to the long-time limit

Due to accumulating errors, approximate calculations of time dependent quantities often
become less reliable with increasing time. This may complicate the evaluation of the long-
term behavior of quenched systems. In particular, many established numerical techniques
suffer from this constraint. If, however, an approach to long time scales is possible, one
may ask if the limiting state exhibits periodic variations (e.g. ’collapse and revival’), or if
it is a steady state. For a steady state, the question of quantum thermalization (see below)
becomes relevant, including the issues of a potential memory of initial conditions, a suitable
classification of the initial states (e.g. in terms of a nonequilibrium ’phase diagram’ [90]), the
applicability of generalized statistical ensembles [88], etc.
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1.4.2 Time evolution and integrability

The time evolution of any classical or quantum mechanical system can be described by a set
of coupled equations of motion. For given initial conditions, they represent a deterministic
and complete description of the state of the system at any point in time.

Classical systems

Integrability, however, implies more than the practicality of having found an analytical, closed
solution for these equations of motions. Let us consider a classical Hamiltonian system
H(pi, qi) which does not explicitly depend on time. Then integrability can be defined as
canonical integrability, arising when a canonical transformation exists which allows to rep-
resent the Hamiltonian in action-angle variables H(Ai, φi) [98]. Then the action variables
represent invariant frequencies of the motion and a set of as many smooth, functionally inde-
pendent conserved integrals of motion exists as there are degrees of freedom. These conserved
quantities incorporate a precise and lasting memory of the initial conditions which is, for in-
stance, robust against time averaging over the trajectory of the motion. They constrain the
dynamics of an integrable system: its phase space is foliated into invariant submanifolds (so-
called ’tori’) and the motions on them is quasi-periodic. Hence, integrable systems are not
ergodic (see below).

Quantum mechanical systems

In quantum mechanics, time evolution is always a linear operation generated by the Hamilto-
nian and acting on the Hilbert space of quantum mechanical states. Unfortunately, quantum
integrability is less well-defined than classical integrability4. This can be motivated by not-
ing that all physically allowed Hamiltonians can be –in principle– diagonalized. Again, let
me restrict to time independent Hamiltonians for which diagonalization is a meaningful ap-
proach. The diagonal representation of the Hamiltonian in terms of dynamically decoupled
eigenmodes shows that there always exists a set of conserved quantities. This is obvious for
the occupation numbers of all eigenmodes. Corresponding good quantum numbers, i.e. the
expectation values of the eigenmodes with respect to a complete set of commuting observ-
ables, are time invariants. In consequence, quantum time evolution can always be described
as a pure dephasing of eigenmodes with constant mode occupation. Hence, generic differ-
ences (which hold for arbitrary initial states) between integrable and nonintegrable models
can be expected to show up in the spectral distribution of eigenvalues. Studies on quantum
chaos have suggested universal characteristics in the statistical distribution of eigenenergies
as a criterion to differ between integrable and chaotic (nonintegrable) systems. The Bohigas,
Giannoni and Schmidt conjecture [101], which is based on numerical calculations, postulates
that whenever the nearest-neighbor spacing distribution of the quantum eigenenergies obeys
a Wigner-Dyson distribution for the Gaussian orthogonal or unitary ensemble, chaotic be-
havior is observed. On the other hand, Poissonian statistics indicates integrability. Under
the assumptions of this conjecture, generic integrability in quantum systems appears to be a
spectral property of the model. In 2004 the ’semiclassical core’ of a proof based on linking

4Although formal correspondence between classical and related quantum models has been engaged and
action-angle operators have been suggested, a fully satisfying link between classical integrability and quantum
integrability has not been reached (c.f., for instance, [99, 100]).



1.4 Questions and concepts in time-dependent nonequilibrium many-particle systems 17

classical chaos to universal level statistics of corresponding quantum systems was given [102]
and the Bohigas, Giannoni and Schmidt conjecture put onto solid grounds [103].
Particular situations like the time evolution of different initial states of a fixed model system
can be analyzed by looking at the overlap matrix elements of the initial state and Hamiltonian
eigenstates [86] or elements of the density matrix containing equivalent information [104].
Such approaches may also be suited for Hamiltonians which are integrable only within some
limited parameter regimes but are nonintegrable otherwise.
Examples for integrable condensed matter model systems solved by Bethe ansatz techniques
include the spin-1/2 quantum spin chain [105], the fermionic Hubbard model in one dimension
[106], the Kondo model [107], the single impurity Anderson model [108], or the Richardson
model [109].
The Bose-Hubbard model in one dimension, for which a Wigner-Dyson distribution of eigenen-
ergies has been observed in some parameter regime [110], or the fermionic Hubbard model
in more than one dimension, however, are examples for nonintegrable quantum many-body
model systems.

1.4.3 Ergodicity and thermalization in classical systems

Although the analysis of classical systems is not part of this thesis, it is instructive to discuss
the background of the thermalization debate as it developed historically. While some concep-
tual ideas outreach into a similar debate for quantum systems, the reader may be reminded
that a close and direct correspondence does not always hold.

Deterministic vs. probabilistic theories

The great scenery of physical descriptions can be divided into two hemispheres: On the one
hand, deterministic dynamical theories like Newton’s mechanics or quantum mechanics aim
at the derivation of precise evolution equations which allow to develop the state of a system
at any time from some initial conditions. Knowing the later already determines the behavior
of the system completely. On the other hand, probabilistic theories like classical or quan-
tum statistical mechanics establish results by applying statistical methods to ensembles of
systems which are in microscopically different configurations but show the same behavior of
macroscopic observables. Both approaches are fundamentally different. While deterministic
dynamics is time reversible, statistical descriptions do not keep memory on particular mi-
croscopic configurations. This apparent conflict is one of the main roots of many difficulties
whenever relations between probabilistic and deterministic theories are discussed.

Classical ergodicity, Boltzmann hypothesis and thermalization

For classical physics, it was Boltzmann and Maxwell who tried to bridge this gap and to set
up a dynamical foundation of statistical mechanics almost 150 years ago. A cornerstone of
this approach is Boltzmann’s ergodic hypothesis [111] which assumes the coincidence of a
statistical and a dynamical description of a system by the equivalence of two averages taken
for an arbitrary observable O({qi(t), pi(t)}):

�
N�

i=1

�
dqidpi

�
µ({qi, pi})O({qi(t), pi(t)}) != lim

T→∞

1
T

�
t0+T

t0

dt O({qi(t), pi(t)}) (1.3)
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Firstly, the statistical (thermal) average of this observable with respect to an ensemble of phase
space configurations taken at a fixed point in time. Only those configurations which are in
consistence with trivial constants of the motion (those which correspond to thermodynamic
parameters, e.g. energy) contribute. This constrains the statistical average effectively to an
energy hypersurface in phase space where the normalized probability measure µ is nonzero.
Secondly, the time-averaged value of the observable as it is obtained from the solution of
its equations of motion, is restricted by the same constants of the motion. It is assumed
that it coincides for almost all macroscopically equivalent initial conditions. If Boltzmann’s
hypothesis holds a system is called ergodic.
The question of thermalization of a system is closely related to ergodicity but stronger moti-
vated from a dynamical point of view. It asks whether the dynamical evolution of a system
from a particular initial point in phase space onwards finally approaches a state which re-
sembles a statistical thermal state. For all practical purposes, this can be expected since
unavoidable couplings of a system to a thermal environment finally cause equilibration at an
external temperature. Discussed for the theoretical concept of a closed system with many
degrees of freedom, however, it focusses on the necessary loss of time reversibility. Time
averaging the deterministic dynamics like in (1.3) is a possible way but only meaningful if the
related averaging time T is not too large with respect to the intrinsic time scales of the dy-
namics. (Obviously, a slowly varying sequence of various microscopic states does not appear
as a thermal state.)
Obviously, integrable systems are neither ergodic nor do they thermalize since their motion
is restricted to submanifolds of the phase space only. While Boltzmann assumed that small
perturbations would always render an integrable system ergodic, later observations exposed
that this may not always be the case. Thus contrary to Boltzmann’s intuition nonergodic
behavior is the stable behavior of a certain class of physical systems.

Fermi-Pasta-Ulam problem

While the non-ergodicity of integrable systems was a matter of debate already in the 19th
century, studies of nonintegrable models had to wait for the availability of sufficiently pow-
erful computing facilities in the early 1950s. Then Fermi, Pasta and Ulam together with
Mary Tsingou numerically integrated the equations of motions for a one-dimensional chain
of classical oscillators subject to a weak (α = 1/4) anharmonic perturbation defined by the
Hamiltonian

H =
1
2
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α
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β
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and initialized in the unperturbed ground state mode only. Surprisingly, they could not find
the expected approach to thermal equilibrium with equipartition of energy onto all degrees
of freedom. Instead, an almost complete revival of the initial state was reached after a time
much shorter than the Poincare recurrence time of the system. This observation entered the
scientific literature as the Fermi-Pasta-Ulam problem (FPU) and from their seminal preprint
[112] an ample field of research into the long-time dynamical behavior of nonlinear systems
developed [113]. Nonetheless the FPU remained the benchmark problem for the discussion
of ergodicity and thermalization in classical and in quantum systems and continues to fuel
ample consecutive research [114].
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Dynamics of the Fermi-Pasta-Ulam problem. Since the dynamics of the classical
Fermi-Pasta-Ulam problem is in great analogy with the main results of this thesis for a quan-
tum many-body system its key features are briefly presented. In the beginning, the energy of
the ground state is partially transferred to a small number of modes with shorter wavelengths.
They are excited one after another as, for weak interaction strength α � 1 and a linear dis-
persion relation ωi ≈ πi/N = iω1, acoustic resonance conditions hold approximately between
the oscillator modes. Since these excitations happen on a short time scale they are referred to
as ’secular avalanche’ [115]. However, if the energy content of the initial state is not too large
this cascade of energy transfers stops at a critical mode when the resonance condition is not
matched any more. Therefore, instead of instant equipartition of energy (i.e. thermalization)
a quasi-steady state is reached. Its energy spectrum is exponentially localized in the long
wavelength modes, the time for its buildup sets the first time scale of the FPU dynamics.
Following the lines of a similar analysis for the nonlinear Klein-Gordon equation [116], the
metastable character of this state has been first proposed in analogy with the behavior of
glasses [117]. Later a further phase of the FPU dynamics which leads to equipartition of
energy has been numerically confirmed. This gives rise to a second relaxation time scale in
the FPU problem. While it is commonly assumed that both time scales are well-separated
for small excitation energies but merge for energies larger than a critical value, the scaling of
the second time scale with the excitation energy or the strength of the nonlinearity in (1.4)
is still subject to an intensive debate [118]. Therefore it is only noted that already an early
work observed numerically that the equilibration time scale – however in a somewhat special
case – could be described by a power law dependence on the strength of the nonlinearity with
an exponent close to −4 [119]. This would directly relate to the observations made for the
Hubbard model, a many-body quantum model, which are discussed in this thesis.

Stabilization of a transient state by closeness to an integrable model. The obser-
vation of a transient state which exists on a long time scale has been related to the closeness
of the FPU Hamiltonian (1.4) to other Hamiltonians H which are integrable. Early and influ-
ential studies by Kruskal and Zabuski applied such integrable approximations and linked the
FPU problem, for instance, to the completely integrable Korteweg-deVries (KdV) equation
[113]. Its solution space contains solitons which are, in one dimension, localized excitations5.
Since they are stable solutions they already represent the long-time limit of a KdV-based
dynamics and are approximations to the quasi-steady state of the FPU problem.
Recently, another integrable model, the Toda chain model, has been used by Antonio Ponno
and collaborators to motivate a three-step dynamics of the FPU problem [115, 120]. The
rapid initial resonant energy transfer and the buildup of a quasi-steady state form the first
two steps are well-described by the Toda chain model. Since the later is integrable, its long-
time dynamics corresponds to the transient state of the FPU. The thermalization of the FPU
dynamics on a third scale has been only observed in numerical simulations and can never be
deduced from the integrable model.
However, the idea that the dynamics of closely related integrable models relates to the initial
phase(s) of the dynamics of the nonintegrable model forms a general concept for a real-time
analysis of almost integrable quantum systems. Then the difference between the integrable

5In dimensions two and three there can be plain wave solitons, i.e. wave packets which do not disperse.
Similar wave phenomena have been observed already in the 17th century as non-dispersive water waves in the
straight channels of the Netherlands.
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Hamiltonian H and the nonintegrable Hamiltonian H appears as a residual interaction be-
tween the ”action variables” or ”quasiparticles”, i.e. between the diagonalized degrees of
freedom of the integrable model, and causes a further dynamics. The integrable and the
nonintegrable model are closely related to each other if this residual interaction is weak and,
therefore, the residual dynamics becomes important only on long time scales.

Mathematical approach to ergodic theory

This approach is backed by substantial mathematical research and ergodic theory became an
established field of mathematical physics. Discussion of nonanalytic structures in phase space
led to important observations, starting with the Kolmogorov-Arnol’d-Moser (KAM)-theorem
on the influence of nonintegrable perturbations to integrable Hamiltonians. It revealed the
particularities of perturbative expansions which approximate dynamics on a nowhere dense
subset of phase space carrying almost the full measure of phase space [113]. For a wide range
of initial conditions (the Kolmogorov set) this implies dynamical stability and motivates the
notion of a ’nearly integrable’ system. Outside of this set the action variables are subjected
to a drift caused by the perturbation of the integrable model. It is of order one on a very long
but finite time scale. This behavior, known as Arnol’d diffusion [121], leads to delocalization
of an orbit in phase space on a long diffusion time scale. Therefore, thermalization of almost
integrable models is possible.
The question of ergodicity of a model, however, remains an unsolved problem. A related
result by Markus and Meyer [122] claims that a certain class of infinitely differentiable, but
generic Hamiltonian systems is neither ergodic nor completely integrable. This encourages to
think of Hamiltonian systems as being integrable for some initial conditions but nonintegrable
for others, both with nonvanishing measure in phase space.

1.4.4 Thermalization debate in quantum systems

While in classical physics thermalization is regarded as a consequence of nonlinearities in the
equations of motion, time evolution of a quantum system is governed by the linear Schrödinger
equation. The state space of classical mechanics and the Hilbert space of quantum mechanical
states are disparate and further differences will be pointed out later on. Therefore it is
plausible to conjecture that different mechanisms may lead to thermalization in the classical
and in the quantum case. Here I will illustrate recent work for open quantum systems [123–
127] which supports this conjecture. For closed quantum systems, however, a similar analysis
has not been performed so far and less general descriptions applicable to the thermalization
of (particular) observables will be used.

Ergodicity and quantum mechanics

In equation (1.3) ergodicity was defined for classical systems as the coincidence of a statistical
and a time-averaged mean value of a physical quantity (an observable). A direct translation
of this definition to the quantum case, however, would not be meaningful.
An almost trivial objection is that considering only the dynamics of single quantum mechan-
ical states or single observables is meaningless since only the behavior of expectation values
corresponds to reality. Hence, ergodicity cannot be directly discussed in the quantum mechan-
ical state space, the Hilbert space. Although in a Schrödinger picture quantum mechanical
time evolution maps, analogous to the classical equations of motion, an initial state onto a



1.4 Questions and concepts in time-dependent nonequilibrium many-particle systems 21

time-parametrized orbit of states, any directly applied long-time average would project this
orbit onto the ground state(s) of the system6.
A more adequate approach towards the time evolution of arbitrary expectation values of
a quantum system is by reference to its statistical operator ρ̂. It contains the complete
information on an arbitrary state of a quantum system and allows to calculate expectation
values of arbitrary observables A as �A� = Tr(ρ̂A). A density operator description allows to
discriminate coherent from incoherent superposition of states: The earlier ones, pure quantum
states, are elements of the Hilbert space and are characterized by Tr[ρ̂2

P
] ≡ 1. On the other

hand, quantum statistically defined thermal states are constructed as an incoherent mixture
of weighted pure states such that Tr[ρ̂2

M
] < 1.

This discrimination pinpoints the fundamental disagreement between deterministic Schrödinger
evolution and a quantum statistical description: A system, once initialized in a pure quantum
state, remains pure at any later point in time7. Hence thermalization cannot be described as
a simple evolution from a pure state into a mixed state. Nonetheless, the expectation is that
– at least under some conditions – the unitary evolution of an interacting but nonintegrable
quantum many-body system may transfer the ’information’ on constraints which are imposed
by an initial state into complicated and practically not accessible many-particle correlations
such that the commonly discussed one- or few-particle correlations appear as thermal quan-
tities. In the following scenarios which concretize this expectation will be discussed.

Thermalization of subsystems

Different approaches have been chosen to discuss thermalization in closed and in open quan-
tum systems. The later are typically modeled by studying local subsystems of larger, closed
systems (up to the entire universe) or bipartite systems. There one part of the closed system
is singled out and called the ’system’ which is of physical interest. This system is coupled
to the complementary degrees of freedom which act effectively as a decohering environment
and are labeled the bath. Hence the Hamiltonian H of the total system is split into three
parts: the Hamiltonian of the considered (sub-) system HS , that one of the bath HB and
of the interaction Hint. For the subsystem a reduced density operator can be obtained by
tracing out all states related to the bath in the density matrix of the total system ρ̂S = TrB ρ̂.
The coupling to the bath allows for local thermalization of the reduced density matrix of
the subsystem or of local observables [123, 128–131]. Some authors report that the actually
observed or avoided relaxation still depends on the spectral properties of the full quantum
system [132, 133]. This backs a relation between the aspect of local thermalization and the

6The projection of a time dependent state onto the zero energy (ground) state(s) of the Hamiltonian by time
averaging can be easily seen by applying the time evolution operator U(t0+T, t0) in an eigenstate representation
of the time-evolved state where |M� are eigenstates of the Hamiltonian and �M the corresponding eigenenergies:

lim
T→∞

1
T

Z
t0+T

t0

U(t0 + T, t0) |Ψ(t0)� = lim
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1
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e
i�M T |M� �M |Ψ(t0)� = |0� �0|Ψ(t0)�

Certainly, this does not lead to any relevant observation.
7This is a straightforward consequence of the cyclic property of the trace: 1 ≡ Tr[ρ̂2

P ] =
Tr[U†(t, t0)ρ̂

2
PU(t, t0)]. Note that this argument is not applicable for expectation values of arbitrary observables

�O� = tr[U†(t, t0)ρ̂PU(t, t0)O].
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integrability of quantum systems as discussed in (1.4.2).

Canonical typicality

Another recent line of research examines the typical behavior of individual wavefunctions
Ψ of the total system H. It is grounded on the prerequisite that the dimension of the
subspace of the Hilbert space which represents the bath degrees of freedom exceeds that one
which represents the considered system significantly. Then the reduced density matrix of the
considered system ρΨ

S
is for almost all wave functions arbitrary close to the canonical density

matrix ρβ = 1

Z
exp(−βHS) of a thermal state with inverse temperature β = 1/kBT and

partition function Z = Tr exp(−βHS). This statement follows as an application of the law of
large numbers to the many dimensions of a many-particle Hilbert space. It opens the way to
understand thermalization in quantum systems independently of any explicit randomness in
the initial conditions, particularities of time evolution or averaging procedures [125–127, 134].
Contrary to classical systems, the prediction of canonical behavior of the considered system
follows from the structure of the Hilbert space alone. This implies the generic nature of
the result. A statistical treatment of initial conditions (or quantum states in general) is
only needed to define the notion of a typical wave function: Each normalized wave function
which is compatible with global constraints of the total system (e.g. energy) represents a
microstate of its statistical micro-canonical description; a priori, all microstates are assumed
to be equally probable, following an earlier suggestion by Schrödinger [135].
Similar observations have been made by Gemmer et al. who calculated different phase space
volumes of the Hilbert space directly [124]. Firstly, they restricted the full Hilbert space to
appropriate hypersurfaces which account for external constraints like a fixed total energy.
Then they found typicality in a large dominant region of (typical) wavefunctions. They
assumed exponentially large degeneracy for energy eigenstates and the divisibility of the bath
into substructures with an approximately equal density of state. The later assumption allowed
to conclude on the main (generic) features of the spectral density of the full system by applying
a large number argument which led, finally, to the derivation of the Boltzmann distribution
for the energies of the considered system. Hence they proposed that thermodynamics can be
understood as an emergent behavior of composite quantum systems.

Time evolution of individual observables

A different approach dispenses from a full analysis of a quantum system or subsystem as
it is expressed in the (reduced) density operator. Instead, only the evolution of particular
observables is discussed. Thermalization, then, is regarded as a particular property of ther-
modynamically relevant observables for which it is expected. Choosing such an observable O
allows to describe its time evolution from an initial state |Ψ(t0)� as a consequence of a mis-
match of two systems of eigenvectors8: The one of the Hamiltonian {|M, α�}M,α (the index
notation separates energy (M) from other (α) quantum numbers explicitly) and the one of
the observable under consideration {|j�}j . The corresponding eigenvalues of the Hamiltonian

8I remark that an understanding of thermalization as a mismatch of eigenmodes is implicitly already present
in the early Fermi-Pasta-Ulam problem [112]: Based on a perturbative approach the unperturbed system of
noninteracting harmonic oscillators defines the energy eigenmodes of the system; while their modal energies
remain unchanged, the effect of a weak interaction is seen only in a redistribution of the occupation between
different modes.
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and the observable may be denoted by �M and Oj , respectively. Then time evolution of its
initial state expectation value can be written as

O(t) = �Ψ(t0)| U†(t, t0)OU(t, t0) |Ψ(t0)�
=

�

M,M �,α,α�,j

�Ψ(t0)| U†(t, t0) |M, α� �M, α| O |j� �j| U(t, t0)
��M �, α�

� �
M �, α�|Ψ(t0)

�

=
�

M,M �,α,α�,j

Oje
i(�M−�

M� )(t−t0) �Ψ(t0)|M,α� �M,α|j�
�
j|M �, α�

� �
M �, α�|Ψ(t0)

�

From the matrix elements, one easily reads off the ingredients of any later evolution: The time
invariant eigenmode occupation numbers of the initial state �Ψ(t0)|M�, the eigenvalues of the
observable Oj , the constant overlap matrix elements between the eigenbasis representations of
the Hamiltonian and the observable, �M |j�, and a dephasing of the Hamiltonian eigenmodes
with time. For short times, a perturbative analysis of the overlap matrix elements encapsulates
the most relevant physics, as will be shown in chapter (7). Moreover, whenever a long-time
limit is meaningful,

O = lim
t→∞

O(t, t0) =
�

M,α,α�,j

Oj �Ψ(t0)|M,α� �M,α|j�
�
j|M, α�

� �
M,α�|Ψ(t0)

�
(1.5)

ND=
�

M,j

Oj |�Ψ(t0)|M�|2 |�M |j�|2 (nondegenerate case) (1.6)

one observes that the features of a possible later steady state must have been present already
from the very beginning in the constant matrix elements or eigenvalues.

Thermalization. Let us first discuss observables which thermalize in a given model system.
As thermalization should hold generically for a large class of initial conditions, it can either
be found in a statistical distribution of the eigenvalues Oj or of the overlap matrix elements.
In the first case, it would be a characteristic feature of the particular observable, independent
of the model system under consideration; typical observables, however, do not represent a
statistical distribution of eigenvalues. For example, the momentum mode number operator
N =

�
k
c†
k
ck, which is already in its diagonal representation, has constant eigenvalues Nj = 1.

In the second case, one traces back the reason for thermalization to a mismatch between
the eigenmodes of the model Hamiltonian and the eigenvectors of the considered observable.
While thermal behavior arises from the incoherent summation of statistically distributed
overlap matrix elements, an initial quantum coherent state appears as their delicate coherent
superposition which dephases with time.
Discussed for the momentum mode number operator N this respells the eigenstate thermal-
ization hypothesis proposed by Deutsch [136] and Srednicki [137] which found new attention
recently [49, 138].

Eigenstate thermalization hypothesis. The eigenstate thermalization hypothesis is mo-
tivated by semiclassical understanding of quantum chaos, linking it to the chaotic behavior
of a formally corresponding classical system. Built on Berry’s conjecture [139] and its pre-
requisites, its fundamental assumption is that individual energy eigenstates of nonintegrable
systems with sufficiently high eigenenergies can be represented as Gaussian waves. Then the
corresponding ensemble of all individual energy eigenstates is Gaussian such that multi-point
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correlation functions decompose into products of two-point correlators. Similar factorization
properties have been repeatedly used as a definition of quantum chaos and a prerequisite of
thermalization [140].
The hypothesis then states that each of these energy eigenstates already contains the thermal
behavior of the momentum distribution function. Then the long-time average of O = N (1.5)
with respect to an initial energy eigenstate |Ψ(t0)� = |M0� equals the microcanonical average
at a mean energy given by the corresponding eigenenergy �M0 .

�

j

Nj |�M0 |j�|2 = �N�(�M0) (1.7)

In [138] it was conjectured that the eigenstate thermalization hypothesis should hold for any
few-body observable in an energy eigenstate of the Hamiltonian of a large interacting many-
body system. Obviously, the idea of eigenstate mismatch requires a significant difference in the
structural complexity of the Hamiltonian and the observable and the eigenstate thermalization
hypothesis will not hold for observables similar to the Hamiltonian itself. Further research into
the necessary structural relation between observables and Hamiltonians would be interesting.
It is another open question how the relaxation of observables relates in detail to the spectral
criterion of quantum integrability. A plausible argument may read that for (nonintegrable)
Hamiltonians which exhibit level repulsion, i.e. are characterized by a Wigner-Dyson distribu-
tion of nearest neighbor energy level spacings, energy degeneracies are less important. Then
the loss of initial quantum coherence under time evolution is more effective (1.5). Moreover,
insights into the generic differences between the eigenfuctions of integrable and nonintegrable
Hamiltonians beyond the Gaussian wave criterion of Berry’s conjecture could shed more light
on the actual prerequisites for thermalization.

Outlook: Relaxation to non-thermal steady states. To conclude this rough overview
over the current state of the thermalization debate for quantum systems a short outlook –
not relevant for the main statements of this thesis – to the relaxation of integrable systems
is given. Assumed that such a system approaches a long time steady state, it is commonly
stated, in regression to classical analogues, that the relaxation of expectation values in an
integrable system were restricted because of additional conserved integrals of motion. Arising
from an exact integration of the equations of motion they would prevent a wipe-out of initial
conditions. Hence, thermalization with respect to a conventional Gibbs ensemble can no
longer be expected.
Instead, it was suggested that the long-term steady state can be reproduced by a statistical
description based on a generalization [141] of the conventional Gibbs ensemble [89]. Additional
constraints of the motion are included as constraints for the maximization of entropy, leading
to additional Lagrangian multipliers. Results on explicit model systems [89, 93, 96] agree
with this approach and its prerequisites and limitations have been discussed [87, 129].
Similar ideas based on a operational implementation of additional constraints by a complete
set of commuting observables has led to the formulation of a generic ergodic theorem for
arbitrary finite-dimensional quantum systems [142]. There it is claimed that the equilibrium
state arising from time averaging unitary evolution always equals the statistical average with
respect to a particularly defined grand canonical density operator.
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1.4.5 (Quantum) Boltzmann equation

In 1872, Ludwig Boltzmann introduced heuristically, following his splendid intuition, an ef-
fective description for the relaxation of the distribution function for particles in a dilute gas
from an initial nonequilibrium condition to a thermal state [143]. It distills the time irre-
versible dynamics of the macroscopic momentum distribution function from a time-reversible
microscopic scattering theory by linking the macroscopic drift D[n(r,p, t)] (a differential oper-
ator) of the distribution n(r,p, t) to a microscopic collision integral I[n(r,p, t)]. The resulting
integro-partial differential equation9 is now known as the Boltzmann equation and serves until
today as the basis of the kinetic theory of gases.

D[n(r,p, t)] = I[n(r,p, t)] (1.8)

Naturally, this link includes all conceptual difficulties which have been already discussed above
for thermalization. On the one hand, they pose great challenges to a mathematical rigorous
derivation of the Boltzmann equation in physically meaningful regimes [140, 145–147]. On the
other hand, the Boltzmann equation can be regarded as a prototype of reduced descriptions
taking into account only partial information about the underlying microscopic theory [144].
Despite its complicated structure, the Boltzmann equation represents the simplest commonly
accepted description of equilibration and its predictions are backed by ample numerical and
experimental evidence. For both reasons, it received remarkable attention by physicists as
well as by mathematicians.
Here a first introduction to its classical derivation will be followed by motivating an analogue
approach for quantum systems.

Motivation of the Boltzmann equation for a dilute classical gas

Drift of distribution function. Motivating the Boltzmann equation, one starts with writ-
ing down the evolution of a distribution in phase space when a system is driven by (velocity-
independent) external forces, ignoring processes caused by internal damping. Assuming bal-
listic, Newtonian evolution of all hard-core particles one compares two equal representations
of a very general particle distribution

n(r,p, t) = n(r− p
m

dt,p− Fdt, t− dt) (1.9)

Taylor expanding with respect to dt defines the differential drift operator

D n(r,p, t) :=
�

∂

∂t
+

p
m
·∇r + F ·∇p

�
n(r,p, t) = 0 (1.10)

Note that this is an evolution equation for a momentum distribution, depending on a single
macroscopic position and momentum variable only. Here it is for the limiting case of a vanish-
ing collision integral. It should not be mistaken as Liouville’s theorem which states a vanish-
ing divergence for the microscopic many-particle phase space probability P (�ri,pi�i=1...N , t),
a much more detailed object.

9Strictly speaking, the Boltzmann equation is even an integro-partial differential functional equation since
the momentum distribution enters the collision integral as a functional of the transformation mapping, under
the scattering process, initial coordinates onto final coordinates [144].
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Microscopic theory. However, a typical approach to a microscopic derivation of the Boltz-
mann equation starts with Liouville’s theorem, subjecting the probability distribution to
coarse-graining procedures and decomposing it into a hierarchy of higher order correlation
functions. This allows to compute corrections to the macroscopic drift which depend on the
microscopic model considered. Under the assumptions made in Boltzmann’s Stoßzahlansatz
the leading one can be denoted as an intuitive collision integral. An instructive presentation
for a gas of hard-core particles can be found in [144].

Stoßzahlansatz. The main requirement for the applicability of Boltzmann’s equation is
the vanishing of strong particle correlations both locally and in time. This is known as
Boltzmann’s Stoßzahlansatz and can be expressed by a factorization property of higher order
correlation functions into products of the one-particle correlation function, e.g.

P (2)(r1,p1, r2,p2, t) = n(r1,p1, t)n(r2,p2, t) (1.11)

Alternative but similar ansätze have been used, e.g. demanding restricted quasi-freeness of
the scattering particles [140]. They are assumed to hold in the thermodynamic limit of large
particle numbers10 and in nonequilibrium. So scattering events do not correlate particles
which each other. Moreover, subsequent scattering events are considered as independent.
This demand wipes out all temporal memory effects and renders the Boltzmann equation a
Markovian approximation to the full Schrödinger dynamics of the momentum distribution.
This implies that a Boltzmann description can only be justified when nonlocalities in time
are not influential. In particular, this means that for rapid transient relaxation phenomena,
e.g. those responding to a sudden perturbation, a more refined approach is required.

Collision integral. The collision integral contains all details of the microscopic dynamics
and depends in its details on the discussed microscopic model. Each scattering process is
defined by a transition between different momentum states caused by particle interactions
and characterized by a scattering amplitude (probability) and a phase space factor. Because
of the particle accounting conducted by a distribution function scattering-in (gain) and in-
verted scattering-out (loss) processes appear in pairs. Typically, only lowest order scattering
processes are considered. This approximation is justified by assuming low densities; nonethe-
less, the collision integral cannot be understood as a strict first order correction in a density
expansion [148]. In most cases, the lowest order processes are two-particle scattering. If
these, however, are suppressed for some dynamical reason, multi-particle scattering has to be
included11. A comprehensible presentation of Boltzmann’s two-particle scattering model can
be found in [150]. There the functional dependence on the scattering coordinates is included
in the angle between ingoing and outgoing momenta ω and the scattering cross section σ(ω);
with the relative velocity of the ingoing particles |p− p2| /m, the classical Boltzmann collision
integral reads

I[n(r,p, t)] =
�

dωdp2

|p− p2|
m

σ(ω)
�
n(r,p�, t)n(r,p��, t)− n(r,p, t)n(r,p2, t)

�
(1.12)

10The thermodynamic limit for a model of gas particles is taken as N →∞ and R →∞ such that the total
surface of all particles NR

2 with radius R remains constant.
11A prominent example is Peierls’ kinetic theory for lattice vibrations [149] which reverts to third order

phonon scattering.
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Application of the (quantum) Boltzmann equation to condensed matter systems

H. A. Lorentz is credited with the first application of the Boltzmann equation to study
the kinetics of classical condensed matter systems in 1905 [151]. Based on the incorrect
Drude model of a classical free electron gas, his work led to various wrong predictions [152].
Nonetheless, it marked the road for further improvements.
From a modern point of view, the subsequent development of a quantum theory of solids
can be understood as a continuous progression to extract those degrees of freedom which
are least correlated among each other. Nonetheless, on every step of this scientific journey a
residual interaction between those degrees of freedom remained, giving rise to further particle
scattering. Consequently, a Boltzmann equation approach always suggested itself. Hence,
tracing the history of the application of the Boltzmann equation to solids is a suitable way
to coequally sketch the theoretical grounds on which this thesis rests.

Arnold Sommerfeld and Fermi degeneracy in metals. The first venturer of this en-
deavor was Arnold Sommerfeld. In his famous theory of metals [153], published in 1927, he
discussed consequences of the Pauli principle for crystal electrons. First of all this is their high
degeneracy caused by the Fermi quantum statistics which imposes strong (statistical) corre-
lations between the electrons12. A noninteracting Fermi gas described by the Fermi-Dirac
distribution where �k is the energy related to the k-momentum mode, T the temperature and
kB the Boltzmann constant,

n(�k) =
1

1 + e(�k−µ)/kBT
(1.13)

is said to be fully degenerate at zero temperature; there the distribution equals the Heaviside
step function with a discontinuity of size one at the chemical potential µ, forming a sharp
Fermi surface in momentum space. It separates occupied from unoccupied states of a one-
particle many-electron model. Its radius, the Fermi momentum kF , only depends on the
particle density ρ. In three dimensions, it reads kF = (3π2ρ)1/3. A crossover from a degenerate
Fermi gas to a classical gas occurs with increasing temperature. It is characterized by a
smearing-out of the sharp Fermi surface and is relevant on a temperature scale set by the
Fermi degeneracy temperature, TF = µ0/kB. For a metal, Sommerfeld estimated it to roughly
36,000 degrees, which means that at room temperature (300K) the electronic system is almost
fully degenerate. In semimetals (TF ≈ 100K), semiconductors (TF ≈ 3K) or in optical lattices
(TF ≈ 330nK [154]) much lower degeneracies appear.
Sommerfeld’s application of the Boltzmann equation to the degenerate Fermi gas followed, as
he quotes, explicitly the lines of Lorentz, only replacing the Maxwell-Boltzmann distribution of
a classical gas by the Fermi-Dirac distribution. This constituted the first use of the Boltzmann
equation to describe the evolution of quantum systems.

Felix Bloch and the fortunes of periodicity. The next important step was taken by Felix
Bloch [152, 155], showing that in a perfectly regular lattice potential there is no scattering
between Bloch states of electrons. These many-particle states of delocalized electrons reflect
the underlying periodicity of the lattice and can be understood as solutions of a self-consistent

12Arnold Sommerfeld’s (published!) shrewd illustration of the Pauli principle as the ’Wohnungsamt für
Elektronen’ (housing office for electrons) may allow to conclude on his wit and sense of humor. Unfortunately,
due to a original misprint in the table of contents [stating incorrectly page 825 instead of 855] of the journal’s
annual volume 1927 and unchecked copying for many decades, a wrong quotation of his work [153] is widespread.
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response of the electron gas. Hence Bloch states already include partly correlations imposed by
electron-electron (Coulomb) interaction. They form bands with limited band width. However,
there is a residual interaction between Bloch states due to scattering at lattice defects. For
these scattering processes, Bloch wrote down a quantum Boltzmann equation, including the
collision integral for electron-phonon scattering.

Lew Davidowitsch Landau and the way towards Fermi liquid theory. Yet Bloch’s
picture is not sufficient to describe all electron-electron interactions in a many-body system
and strong electron-electron interactions are remaining. Again, they are responsible for large
particle correlations in systems which, therefore, should be understood as fermionic quantum
liquids. A way to treat these interactions is Landau’s theory of a Fermi liquid [156–158]
which will be reviewed in greater detail in (2); here only key points are mentioned. I.M.
Khalatnikov, a college of Landau at the academy of sciences of the USSR, reports: [159]
”It is interesting to note, that the Boltzmann kinetic equation happened to be the starting
point for the construction of the Fermi liquid theory.” As he explains, difficulties with the
conservation of momentum when applying the quantum Boltzmann equation to elementary
excitations could only be solved assuming that the energy of the system is only a functional of
the distribution function [156]. This observation became the first cornerstone of Fermi liquid
theory. Now Landau developed a picture of quasiparticles; while most of the correlations
between the original electrons could be absorbed into their definition, a weak residual inter-
action remained. Consequently, Landau was able to describe their dynamics by means of a
Boltzmann equation [157]. The collision integral for the degenerate Fermi gas of these weakly
interacting quasiparticles is constructed following Fermi’s golden rule, assuming a two-particle
symmetric scattering potential W

I[n(r,p, t)] = −
�

p�,p1,p�1

ω(p,p1,p�,p�1)
�
n(r,p, t)n(r,p1, t)[1− n(r,p�, t)][1− n(r,p�1, t)]

−[1− n(r,p, t)][1− n(r,p1, t)]n(r,p�, t)n(r,p�1, t)
�

(1.14)

where the scattering probability ω can be calculated using Feynman rules: In lowest order, the
H-shaped Feynman diagram has to be evaluated for anti-symmetrized two-particle electronic
states. Expressed in a one-particle picture, they read |p,p1� = [|p� |p1� − |p1� |p�]/

√
2 and

give rise to a phase coherent superposition of one-particle scattering matrix elements even in
a golden rule argument

ω(p,p1,p�,p�1) =
���p,p1|W

��p�p�1
���2 2π

� δ(�p + �p1 − �p� − �p�1)δ
p+p1

p�+p�1

=
2π

�

���[�p| �p1|]W
���p�

� ��p�1
��
− [�p| �p1|]W

���p�1
� ��p�

����2
�

δ
�p+�p1
�p�−�p�1

δp+p1

p�+p�1

Energy and momentum conservation apply. The phase space factor reflects out- and in-
scattering events (with respect to the external momentum mode p). They correspond to a
loss and gain of occupation in the external (p) momentum mode, respectively, and define the
global sign of the scattering integral.



Chapter 2

Landau’s theory of a Fermi liquid

In the last section, Landau’s theory of a Fermi liquid [156–158] has been frankly motivated
as a frame developed for a generalization of the original Boltzmann description to strongly
interacting fermionic liquids. This may be historically justified but, of course, does not merely
meet the great success of this theory which became a benchmarking effective description for
the study of many equilibrium properties of (normal) interacting Fermi systems. Its almost
universal character is owed to the fact that many interactions modify but do not completely
lift Fermi degeneracy1. The exceptional rôle of the Fermi surface remains unbroken and these
modifications can be, in good approximation, generically discussed in terms of elementary
excitations; in particular, reference to other details of the quantum mechanical ground state
of a particular interacting model is not required. This allowed Landau to establish a most
intuitive and simple picture of quasiparticles. While on the one hand it provides a funda-
mentally new understanding of many-body systems, on the other it smoothly relates to and
explains the astonishing success of the (incorrect) free electron model of early condensed mat-
ter theory. Furthermore, since prior views could easily be adapted to the new theory, Fermi
liquid theory became a widespread and popular explanation of interacting Fermi systems and
deeply influenced the thinking of physicists in many fields of research. While its description
of liquid 3He is paradigmatic and its application to the electron gas in solids original, it has
also been successfully applied, for instance, to nuclear matter.
Following the reviews by Baym and Pines [160, 161], Fermi liquid theory can be discussed on
two levels: Originally it has been designed as an effective macroscopic theory, discussing the
expansion of an energy functional in terms of a distribution function. This gives access to
some thermodynamic observables, describing them in terms of Landau (input) parameters.
Later, its microscopic origins have been explored and Landau parameters have been derived
from microscopic models.

2.1 Concept and prerequisite: Adiabatic connection between
interacting and noninteracting degrees of freedom

The main requirement of Landau’s phenomenological theory of a Fermi liquid is an implicit
constraint on the nature of the interaction. It assumes that the interacting theory can be

1For example, in real metals the Fermi surface is distorted with respect to that one of o free electron gas,
but its continuing existence ensures Fermi degeneracy. However, for interactions which lead to the emergence
of bound states, pair formation or other so-called Fermi liquid instabilities, Landau’s theory is not applicable.

29
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developed in a Gedankenexperiment from a noninteracting model of free particles by switching
on the interaction adiabatically, i.e. continuously and arbitrary slow in time. Tracing the
eigenstates of the noninteracting system under this procedure it is, furthermore, assumed that
the ground state of the interacting model evolves from the noninteracting ground state and
no level crossings appear for the low energy excited states. Then a one-to-one correspondence
between the eigenstates of the noninteracting system and and the adiabatically evolved states
of the interacting system holds. Except for the ground state, the later states are in general
not the eigenstates of the interacting system. However, they form a distinguished set of states
since they can be labeled by the same quantum numbers used to describe the noninteracting
system; this allows for a meaningful comparison between states of the interacting and of
the noninteracting system. Their occupations are called quasiparticles, and due to their
generation they inherit many properties of noninteracting particles which I label the physical
or elementary particles, i.e. the näıve constituents of many-body system.
The modern reader may be reminded that the concept of adiabatic connectivity is older than
all explicitly formulated renormalization group ideas and provides its own conceptual frame
for analyzing interacting many-body systems. Moreover, it is not based on perturbative
arguments. Originally introduced to establish Fermi liquid theory, its key point of linking
complicated interacting to simple noninteracting Hamiltonians has been elevated to a ”basic
notion of condensed matter physics” by Anderson [162]. It became relevant for other fields of
research, for instance in density functional theory [163] or, recently, for linking spin systems
and band insulators [164, 165].
For this thesis it is important to notice that the concept of adiabatic connection compares two
Hamilton operators. If it is proven in equilibrium by studying an adiabatic link between all
eigenenergies, it holds as an operator property both in equilibrium and for any nonequilibrium
dynamics. If, however, adiabatic connectivity has only been assumed or observed for low
energy eigenstates (as it is often the case in physical models), the nonequilibrium dynamics
may include highly excited states for which this reduced notion of adiabatic connection does
not hold; then the equilibrium and the nonequilibrium behavior of the model may show
significantly different physics.
However, such an adiabatic connection is not possible for all interactions conceivable; when-
ever the interacting ground state is topologically different from the noninteracting one because
of, for instance, a phase transition, the opening of a gap in the energy spectrum or similar
reasons it cannot be taken for granted (but may hold accidentally). The most prominent
example of a Fermi liquid instability is the BCS theory of superconductivity.

2.2 Macroscopic approach to Fermi liquid theory

2.2.1 The momentum distribution for interacting and noninteracting cases

Before entering a presentation of Landau’s approach and to foster intuition the momentum
distribution np in the case of noninteracting and interacting Fermions may be compared. In
both cases, it provides a one-particle picture of the many-body system.
For the noninteracting case, the features of the Fermi-Dirac distribution have already been
mentioned. It describes the occupation of one-particle momentum modes. Hence in a mi-
croscopic fermionic theory the distribution can only take the discrete values 0 and 1 and is
indexed by the (identifying) quantum number of the momentum mode. In a macroscopic ap-
proach, however, a suitable averaging over (energetically) close momentum modes allows to
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write it as a continuous function. Then momentum labels loose their original rôle of quantum
numbers and, if a separation of different momentum orientations is not relevant, it is sufficient
to consider the momentum distribution as a function of energy n(��p�) =: n(�p).
At zero temperature and no interactions, it is given by a Heaviside step function with a
discontinuity of size one at the Fermi energy. Interaction effects modify this momentum
distribution in the same way as one-particle excitations would do: occupation from states
inside is shuffled to states outside of the Fermi surface of the noninteracting gas, leaving
excited electrons (|p| > kF ) and holes (|p| < kF ). Since this process is most effective around
the Fermi energy, it leads to the emergence of tapered tails of the distribution which cause a
reduction of the discontinuity at the Fermi energy. Its remaining size is called the quasiparticle
residue Z and serves as a measure for the strength of interaction effects.
In a microscopic picture, considering interaction effects as a shift of occupation often comes
along with an implicit perturbative view: While the noninteracting Hamiltonian is thought
to define invariant momentum modes (”physical particles”) which remain unchanged by the
interaction, the redistribution of occupation appears as a leading perturbation effect due to a
weak interaction (since a strong perturbation would change the elementary modes and with it
the character of the assumed ”particles”). This, for example, is the point of view taken in the
Fermi-Pasta-Ulam problem. The macroscopic approach of Landau’s theory, understanding
the momentum distribution as a continuous function, avoids this perturbative notion.
Instead, it uses the departure of the interacting momentum distribution function np from the
noninteracting one n(0)

p , the continuous function

δnp = np − n(0)

p (2.1)

as an expansion parameter.

2.2.2 Expansion of the free energy functional

The expansion of the free energy functional F [np] = E[np]−µN [np] in powers of this deviation
lies the foundation of Landau’s phenomenological theory of a Fermi liquid. Discussing this
form of the free energy, which is the thermodynamic potential of a variant of the grand
canonical ensemble, includes fluctuations of the particle number at a chemical potential µ =
�F

2 which I fix at the Fermi energy µ = �F . The total difference in the number of particles
follows trivially from counting N−N0 =

�
p δnp. Moreover I define the first order and second

order functional derivatives

�p =
δE[np]
δ(δnp)

and fpp� =
δ2F [np]

δ(δnp)δ(δnp�)
(2.2)

By definition, f is symmetric in �p and �p� and known as a (potentially large) set of Landau
parameters. Then the expansion reads

F [np]− F0 =
�

p

(�p − µ)δnp +
1
2

�

pp�

fpp�δnpδnp� +O(δn3) (2.3)

It is assumed that Fermi degeneracy largely persist in the case of interactions, i.e.
�

p δnp/N �
1. Then the one-particle energy difference �p − µ ∼ δnp is also small of order δnp wherever

2Working at zero temperature, the thermodynamic definition µ = ∂E/∂N |T − T∂S/∂N |T obviously sim-
plifies. Pressure and volume variations are not considered.
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δnp� is significantly different from zero. Hence, both terms in (2.3) are, effectively, second
order in δnp and of equal importance! Rewriting them jointly as

F [np]− F0 =
�

p



�p − µ +
1
2

�

p�

fpp�δnp�



 δnp +O(δn3) (2.4)

This looks like a leading order expansion in the excitations δnp with a renormalized one-
particle energy

�̃p = �p − µ +
1
2

�

p�

fpp�δnp� (2.5)

2.2.3 Quasiparticle picture

Landau recognized that a quasiparticle description provides a consistent interpretation of
these relations. The free energy (2.3) to second order in δnp appears as the sum over free
excitations with a renormalized energy which allows to understand these excitations as excited
quasiparticles. Their energy (2.5) includes interactions with other excited quasiparticles;
the interaction strength is described by the Landau parameters fpp� . These can be either
calculated from microscopic models or represent experimental input parameters.
Landau quasiparticles are ambivalent objects. In terms of physical fermions they are com-
posite many-particle objects, but they are neither true eigenstates of the interacting system.
Nonetheless they represent, to second order in δnp, approximately noninteracting degrees of
freedom. Therefore they inherit many properties of the free Fermi gas: Firstly, this is the
fermionic statistics. Quasiparticles are noninteracting fermions, the volume of their Fermi sea
does not differ from that of the physical particles [166], around the Fermi surface the den-
sity of states is linear and their momentum distribution function equals that of free fermions
n(0)

p = n(0)(�̃p). Consequently, since quantum numbers correspond, they carry the same mo-
mentum, spin, and, in charged systems, also the same charge as physical fermions. On the
other hand, they have different quasiparticle energies given by (2.5) and a different effective
mass (which can be related to the Landau parameters). Moreover, since the expansion of
the free energy functional has been truncated, a residual interaction between quasiparticles
remains; the later leads to a quasiparticle dynamics described by a Boltzmann equation.

2.2.4 Boltzmann dynamics of the momentum distribution

As already mentioned, the kinetic equation of the quasiparticles is given by a Boltzmann
equation. This is a plausible approach since the main part of the particle-particle interaction
has been absorbed into their definition, and the residual one can be assumed to be weak.
Hence the macroscopic drift of the quasiparticle momentum distribution is linked to the
microscopic scattering integral for free fermions (1.14) with appropriately modified scattering
amplitudes. However, the true quasiparticle interactions are unknown. For some limiting
cases, their scattering amplitudes can be linked to Landau parameters, i.e. to equilibrium
properties like the compressibility (sound velocity) and the spin susceptibility (see below).
Conceptually, this is close to the motivation of the fluctuation-dissipation theorem. These
approximations for the quasiparticle scattering amplitudes, which are valid for some particular
scattering momenta, are usually used as parametrizations for the unknown true momentum
dependent scattering amplitudes.
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Since the momentum dependence of the scattering amplitudes is ignored anyway, the main
focus in Fermi liquid theory lies on generic phase space arguments in quasiparticle scattering.
These arguments do not require to specify detailed features of the quasiparticles but only
refer to Fermi degeneracy. Although a golden rule approach to scattering is perturbative,
correlations imposed by the Pauli principle easily outweigh other interaction effects.
Since its phase space factor vanishes for the equilibrium Maxwell-Boltzmann distribution at
any temperature, there is no contribution based on scattering to the evolution of the distribu-
tion function in equilibrium. Boltzmann dynamics only becomes relevant for nonequilibrium
quasiparticle distributions.

2.2.5 Range of validity of the quasiparticle picture

Moreover, the residual interaction between the quasiparticles implies their finite lifetime.
This leads to a final breakdown of the quasiparticle picture. Since quasiparticles are no
eigenstates of the interacting system such a decay is obvious. Let quasiparticles be described
by their creation operators q†

k
acting on a ground state |Ψ0� and eigenstates analogously by

a†
k
. Expanding a time evolving quasiparticle state q†

k
(t) =

�
k� Mkk�a

†

k�e
i�

k� t in terms of true
eigenstates of the system and restricting to the leading order time evolution shows a dephasing
of its various components. However, eigenstate dephasing does not affect the evolution of the
ground state momentum distribution:

�Ψ0| q†k(t)qk(t) |Ψ0� =
�

k�k��

Mkk�Mk��ke
i(�

k�−�
k�� )t �Ψ0| a†k�ak�� |Ψ0� =

�

k�

|Mkk� |2 = const(t)

(2.6)
This observation is mirrored in the effective treatment provided by Fermi liquid theory:
Describing the evolution of the momentum distribution by a Boltzmann equation including
the full scattering integral, ’gain’ and ’loss’ terms of a scattering picture perfectly match in
equilibrium. This depicts a kind of dynamical balance of equal in- and out-scattering into a
particular momentum mode; its net occupation remains unchanged, and so does the number
of quasiparticles. This defines thermal equilibrium of stable net occupations. Concluding,
what is seen as coherence from a quantum point of view translates into a balance argument
in the effective Boltzmann treatment.
For calculating the lifetime of individual particles, the conventional way is to reduce the drift
term in the Boltzmann equation according to the relaxation time (τ) approximation. The
relaxation time is no longer thought of as the relaxation of the momentum distribution but as
the lifetime of a single particle. Furthermore, the scattering integral is re-interpreted and no
balancing of in- and out-scattering is considered. The loss process is discussed independent
of any gains, depicting the decay of an individual quasiparticle into two quasiparticles and
one quasihole.

1
τp

= − I[n(r,p, t)]
n(r,p, t)

����
loss

=
�

p�,p1,p�1

ω(p,p1,p�,p�1)n(r,p1, t)[1−n(r,p�, t)][1−n(r,p�1, t)] (2.7)

The scattering matrix element is assumed constant; then the phase space summation can be
evaluated [167] and results in

τp ∼ 1/(�p − �F )2.

The diverging lifetime indicates that around the Fermi energy quasiparticles are stable. The
lifetime of quasiparticles is inversely related to their spectral width which vanishes at the
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Fermi surface. There quasiparticles are arbitrary close to the real eigenstates of the interacting
Fermi system (the only truly time independent states). Since quasiparticle stability follows
from a phase space argument it is obvious that the Pauli principle and Fermi degeneracy are
responsible for the suppression of decay processes. This is the origin of the generic nature of
Landau’s description.
Away from the Fermi surface, however, Landau’s theory is ill-defined. An adiabatic switching-
on of the interaction in time is required as a prerequisite to ensure the quasiparticle picture
but quasiparticles themselves decay on a finite time scale. Thus the range of applicability
of Landau’s theory depends on intrinsic details of the model. First, a limiting time scale
for adiabaticity has to be estimated on which a more rapid switching-on procedure does not
lead to excitations from the ground state. Then it can be compared with τp which defines
a ’window of applicability’ around the Fermi surface. For systems with a discrete energy
spectrum the energy difference between the ground and the excited state sets such a scale.
Yet for systems with a continuous energy spectrum around the Fermi surface, such a scale
does not exist. It is an interesting question to define adiabaticity for continuous systems. In
this work I will suggest a route on which a possible criterion could be examined.

2.2.6 Thermodynamic properties of a Fermi liquid

Before ending the discussion of Fermi liquid theory as a macroscopic framework a short outlook
to its main successes is justified. Contrary to many other approaches discussing interacting
systems this is not an analysis of the interacting ground state. Since in the quasiparticle
picture the ground state is represented approximately by a featureless ground state of free
quasiparticles and since the details of the adiabatic procedure remain unspecified, a precise
mapping between both ground states is not possible. While this should be seen as a virtue
of Landau’s approach, allowing for very generic conclusions, Fermi liquid theory is not suited
for exploring details of interacting ground states.
Its main merit, however, lies in the calculation of thermodynamic properties like the specific
heat, the compressibility or the spin susceptibility at low temperature. Each of these quan-
tities is governed by the physics of low-energy excitations, i.e. departures from the unknown
interacting ground state. These departures are most adequately described as a free gas of
excited quasiparticles. Hence the thermodynamic properties of the Fermi liquid at low tem-
peratures resemble those of a noninteracting Fermi gas which are only modified by a limited
set of effective parameters. These results explain why simple models assuming free electrons
described reasonably well real metals.
For simple reference some thermodynamic properties of a Fermi liquid are quoted and com-
pared here [160, 161]. Only the specific heat, which is linear in the temperature T , will be
relevant for this thesis. Since the chemical potential of a Fermi liquid µ = −(∂F/∂n)T only
varies with T 2 the specific heat at constant volume and under constant pressure coincide to
first order in T .
Typically, these relations are used to fix the Landau parameters by measurable quantities.

2.3 Microscopic foundation of Fermi liquid theory

Fermi liquid theory has been introduced as a framework based on a rather unspecific functional
expansion of the free energy. It provides a description of interacting fermions depending
on unspecified Landau parameters; their calculation depends on details of the underlying
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Quantity Definitions Fermi liquid w.r.t free Fermi gas

Specific heat cV =
�

∂E

∂T

�
N

= m
∗

3�3 kF k2

B
T larger by m∗/m

= T

N

�
∂S

∂T

�
V

= π
2

2
nkB

T

TF

Compressibility κ = 1

V

�
∂V

∂P

�
= 1

n2
N

1+F
s

0
stiffer (F s

0
> 0)

= 1

n2
∂n

∂µ

Spin susceptibility χ = 1

V

dM

dH
= �2

4

γ
2
N

1+F
a

0
enhanced (F a

0
< 0)

Table 2.1: Some paradigmatic properties of a Fermi liquid for later reference. Here V de-
notes the volume, S the entropy, P the pressure, TF the Fermi temperature, kF the Fermi
momentum, kB the Boltzmann constant, µ the chemical potential, M the magnetization, H

the magnetic field, F (s/a)

0
the (anti-)symmetrized Landau parameter (cf [160]), and γ the

gyromagnetic ratio.

quantum theory and is usually performed in a perturbational way based on a Greens functions
approach [168]. This restricts to the regime of small expansion parameters, i.e. usually to
small interaction strength. From the exact spectral (Lehmann) representation of the Fourier
transformed zero-temperature one-particle Greens function (η >→ 0)

G(k, ω) L=
�

n



 |
�
ΨN+1

n

�� c†k |Ψ0�|
2

ω − (EN+1
n − E0) + iη

+
|
�
ΨN−1

n

�� ck |Ψ0�|2

ω + (EN−1
n − E0)− iη



 (2.8)

with En and |Ψn� being the exact eigenenergies and eigenstates of the N ± 1 particle system,
one reads off that poles in the Greens function correspond to the excitation spectrum of
the interacting many-particle problem and the related residues to the overlap of interacting
eigenstates with a one-particle (one-hole) excitation from the initial state |Ψ0�. Both features
can be extracted from the self-energy Σ(k,ω) which contains all interaction effects and can
be read off from the Dyson representation of the Greens function [169]

G(k, ω) D=
1

ω − �k − Σ(k, ω) + iη sgn(ω)
(2.9)

Comparing with the Greens function for noninteracting fermions (Σ ≡ 0) it provides an
implicit definition of the quasiparticle dispersion relation

�̃k := �k + Σ(k, �̃k) = �k + �(Σ(k, �̃k)) + i�(Σ(k, �̃k)) (2.10)

The real part of the self-energy describes the renormalization of the quasiparticle energies, the
imaginary part their spectral width. From the quasiparticle dispersion relation one determines
the Fermi surface of the interacting system as the set of momenta FS={k|µ = �̃k+�(Σ(k, µ))}
[166]. A Taylor expansion of the self-energy around the pole ω = �̃k exposes the related
quasiparticle residue Zk

Zk = Res(�̃k) =
1

1− ∂

∂ω
Σ(k,ω)|ω=�̃k

(2.11)
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Special rôle of the quasiparticle residue. This quasiparticle residue is the microscopic
observable which is most relevant for this work. Taken at the Fermi surface, it is simply
referred to as the Z-factor; it corresponds to the renormalization factor for the wave func-
tion in a RG approach to interacting models. But first of all, it serves as an indicator for
quasiparticle behavior in an interacting theory as it measures the overlap between the ’bare’
particle states and the exact low-energy eigenstate excitations of the interacting system. A
nonvanishing value implies that the one-to-one correspondence of free fermions and quasipar-
ticles persists. A vanishing Z-factor, however, would indicate that the exact excitations of the
interacting system do not show any similarities with the noninteracting degrees of freedom.
Such a behavior can be observed in other theories, like the composition of bare quarks to
–fundamentally different– nucleons, or for one-dimensional interacting fermions. In the later
case, the geometric constraint to one dimension makes individual fermion motion impossible.
Instead, only collective excitations can occur. Hence, a fermionic quasiparticle picture fails
and instead of a Fermi liquid a Luttinger liquid is observed, characterized by the vanishing
of a sharp Fermi surface and a bosonic statistics of the low-energy collective excitations.

Signatures of the quasiparticle residue. As a renormalization factor, the quasiparticle
residue enters many parameters. For instance, the effective mass can be extracted from
k/m∗

k
= d�̃k/dk which is motivated by the dispersion relation for free fermions �k = k2/2m.

d�̃k

dk
=

d�k

dk
+

∂Σ(k, �̃k)
∂k

+
∂Σ(k, �̃k)

∂�̃k

d�̃k

dk
=⇒ k

m∗
≈ Z

�
d�k

dk
+

∂Σ(k, �k)
∂k

�
(2.12)

More insight into the rôle of the quasiparticle residue is provided by the one-particle spectral
function A(�k, ω) = − 1

π
�(GR(k, ω)) and in particular by the momentum distribution function

which can be obtained from it by integration: n(�k) =
�

µ

−∞
dω A(�k, ω). The later is a

conveniently accessible observable and exhibits the quasiparticle residue as the size of its
discontinuity at the chemical potential, i.e. n(µ− 0)− n(µ + 0) = Z.

The quasiparticle residue as a signature of a Fermi liquid While the above relations
provide an exact framework for a microscopic study of Fermi liquid theory, the calculation of
the self-energy for explicit models requires typically its perturbative expansion.
For a Fermi liquid, however, characteristic frequency dependencies at small positive frequen-
cies hold for its real and imaginary part [170]:

�(Σ(k, ω))
ω→0+−→

�
1− 1

Zk

�
ω < 0, �(Σ(k, ω))

ω→0+−→ −γω2 < 0 (2.13)

Moreover it is known that both real and imaginary part are smooth functions in ω [171] and
that ω → 0 describes the only zero point of �(Σ(k,ω)). This is why discontinuous behavior
is expected only at the Fermi surface. This becomes more clear when one studies the spectral
shape of a quasiparticle: Around the Fermi energy the spectral function A can be decomposed
into a coherent quasiparticle contribution of weight Zk and an incoherent background [171]

A(�k, ω → 0) = Zkδ(ω − Zk�k) + Ainc(�k, ω → 0) (2.14)

At the Fermi energy, the spectral weight of quasiparticles amounts to the quasiparticle residue
and is sharply peaked around the quasiparticle energy. Further away the quasiparticles acquire
a nonvanishing spectral width, corresponding to a finite lifetime.
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The sharp spectral distribution of quasiparticles at the Fermi energy translates directly into
the discontinuity of the momentum distribution which is the most characteristic feature of
the momentum distribution function of a zero temperature Fermi liquid. Its size is given by
the quasiparticle residue and its deviation from the noninteracting value (Z = 1) is a rough
measure for the interaction strength between the fermions of the liquid.
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Chapter 3

Hubbard model

Modeling real interacting many-body systems poses a great challenge to physicists. While
the nature of the elementary constituent particles and their interactions are well-known,
emergent phenomena originating from their interplay are difficult to predict. To keep the
complexity of these problems manageable and to gain insight into the fundamental principles
and consequences of collective behavior often bold approximations and a far-going reduction-
ism are required. Doing so for the problem of electrons in real crystalized materials leads to
the Hubbard model for interacting fermions [172]. It is an exemplary minimal model which
nonetheless captures surprisingly rich physical behavior.

3.1 Definition of the Hubbard model

Starting from the picture of a crystal as a regular lattice of equal atoms, one assumes that
each atom contributes exactly one electron into a delocalized electron gas. The remaining
positive ions form a periodic electrostatic potential for these itinerant electrons. The electrons
occupy Bloch states of momentum k and energy �k, which inherit the same periodicity as the
underlying lattice structure [155]. While this implies their delocalization across the whole
crystal, their spatial probability distribution remains peaked around the lattice sites. This
motivates restricting the occupation of electrons to discrete points on an arbitrary mathe-
matical point lattice Γ with |Γ| lattice sites. This is the first fundamental abstraction of the
Hubbard model.

Local point of view on delocalized electrons. The abstraction to a point lattice
strengthens a local view on itinerant electrons and suggests to develop their properties from
those of an individual lattice site; hybridization of local one-particle states of isolated single
sites lead to the many-particle states of the entire lattice. In the Hubbard model, each lattice
site can be occupied by up to two spin – 1/2 – fermions. Due to the Pauli principle this
implies a local state space of dimension four1. Without fermion interaction, all local states
are degenerate in energy; hence their hybridization leads to a single band of energies, consti-
tuting the Hubbard model as a one-band model with bandwidth D and total occupation N .
Appropriate local fermionic creation and annihilation operators c(†)

jσ carrying a site (j) and a

1Note the following configurations of the four-dimensional local state space: zero occupation, the spin up
or spin-down configuration of single occupancy and the antisymmetric combination of two antiparallel spins
(double occupation).
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spin (σ =↑, ↓) index are defined. Vector notion for the indices is only used for special illustra-
tion but generally suppressed. Delocalization of electrons is ensured by quantum mechanical
coherence across the lattice, captured by the overlap matrix elements tij of the electronic
wavefunction at two lattice sites i and j. In the handy, most popular but sometimes mislead-
ing local picture this coherence shows up as quantum coherent hopping processes of ’localized
particles’ between lattice sites with an amplitude given by the hopping matrix element tij ;
in the conventional Hubbard model, t is assumed real, constant for nearest neighbor hopping
tij = t and zero otherwise. Hopping to more distant sites is by a coherent sequence of nearest
neighbor hopping processes involving intermediate sites and of higher order in t. Working
in a grand canonical ensemble defined by the chemical potential µ includes fluctuations of
the particle number; it corresponds to the average filling factor of the lattice N/ |Γ| (between
zero and two electrons per lattice site) and couples to the local spin dependent occupation
numbers nj,σ = c(†)

jσ
cjσ. Most relevant is the case of half filling where, on average, every site is

occupied with one fermion and half the Hubbard band is occupied. Throughout this thesis I
restrict to the case of half filling only. The kinetic term of the Hubbard model on a real-space
lattice then reads

HHM

kin
= −t

�

�i,j�σ

c†
iσ

cjσ − µ
�

j

(nj↑ + nj↓)
FT=

�

k∈K,σ∈{↑,↓}

(�k − µ) c†
kσ

ckσ (3.1)

Applying a Fourier transformation c†
kσ

= 1
√

N

�
j e

ik·jc†jσ it can be easily rewritten in momen-
tum space. The dispersion relation �k depends on the details of the lattice. For instance, for
a square lattice in d dimensions it reads

�k = −2t
�

i=1..d

cos(ki) (3.2)

where ki is the ith component of the vector k. For this work, however, the specification of a
particular lattice is not necessary. The allowed momenta are restricted to agree with a limited
bandwidth K = {k ∈ Rd : �(k) ∈ [−D,D]}.

Local on-site Coulomb interaction. The second fundamental abstraction of the Hubbard
model concerns the interaction of electrons. Although the bare Coulomb interaction is long-
ranged, in many-particle systems of itinerant electrons metallic screening effects shield it to
a much more localized effective potential. The Hubbard model simplifies this physics and
assumes a strictly local two-particle on-site repulsion U of electrons dwelling on the same
lattice site2. There is no interaction between electrons on different sites. Regarding the local
state space discussed above, it can be effective only between electrons of different spin; this
motivates the choice of the interaction as proportional to the local spin dependent occupations
H̃HM

int
∼ nj↑nj↓. To make the energy gain and loss in the case of half filling (i.e. on average

half an electron of each spin species dwells on every lattice site) more explicit3 it is defined

2For the discussion of Fermi liquid behavior (and hence for this work) this is a sufficient approximation.
For other phases of the Hubbard model (v. i.) which exhibit strong fermionic localization there is no good
justification for it beyond achieving simplicity.

3Adding particles or reducing particles (i.e. adding holes) increases the interaction energy, but imbalancing
spin occupation reduces it. This is the reason why in the regime of strong interactions the Hubbard model
shows correlation induced magnetism which, however, is not relevant in the Fermi liquid phase.
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in a slightly modified way.

HHM

int = U
�

j

�
nj↑ −

1
2

� �
nj↓ −

1
2

�
(3.3)

This local variant of the Coulomb repulsion lifts the energy degeneracy of the local state,
increasing the energy of the doubly occupied site [↑↓]i by U . Consequently, the mobility of
the lattice fermions is reduced as, in an imaginative saying, ’hopping onto singly occupied sites
becomes energetically less favorable’. Its Fourier transform of the two-particle interaction is
constant on all matrix elements in momentum space, obviously nondiagonal and momentum
conserving.

HHM

int

FT=
U

N

�

k1�k1k2�k2

c†
k1�↑

ck1↑c
†

k2�↓
ck2↓δ(k1� + k2� − k1 − k2)−

U(N↑ + N↓)
2

+
U

4
(3.4)

Hubbard Hamiltonian. Summing the kinetic and the interaction term, the Hubbard
model H = HHM

kin
+ HHM

int
[172] depicts in a simple way the competition between delocalizing

effects of the kinetic energy and localizing effects of two-particle interactions in many-body
systems for different filling factors of the lattice. Depending on the strength of the interaction,
this gives rise to a large variety of phenomena characterizing different phases of the Hubbard
model. Therefore it became the paradigmatic minimal model of the physics of correlations
and its rôle has been compared to that of the Ising model for spin systems. In the case when
particle-hole symmetry applies, i.e. on a bipartite lattice and for half filling, only even orders
appear in a perturbative expansion with respect to the interaction strength. This implies
that the attractive and repulsive Hubbard model coincide.

3.2 Properties of the Hubbard model

In equilibrium and depending on the dimensionality as well as the underlying lattice structure
many properties of the Hubbard model have been extensively studied and a great variety
of different methods has been used. Introducing lecture notes [173], reviews focussing on
particular aspects like mathematically rigorous analysis [174], its ferromagnetism [175], the
Mott-Hubbard transition [176, 177], its treatment in the limit of infinite dimensions [178, 179]
or edited volumes of reprinted papers [180, 181] are available and may serve for further
reference.

Mott-Hubbard transition. The complicated phase diagram of the Hubbard model is not
addressed in this work. However, its most characteristic transition, the Mott-Hubbard phase
transition, has been studied extensively. Since it reflects ideally the competition between
localizing and delocalizing effects of a repulsive interaction and because it has become a
paradigmatic example in modern experiments, a short detour seems appropriate. At low
temperatures and for small repulsive interactions the Hubbard model exhibits a Fermi liquid
phase; there fermions are delocalized such that conductivity is finite. Fluctuations of the
fermions between different lattice sites are strong such that their number on a particular
lattice site is stochastically distributed following Poissonian statistics with the mean value
equalling the filling factor. If the later is an integer number (for fermions: one), increasing
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the interaction beyond a critical value Uc leads to an electronic phase transition towards a
Mott insulator state. Fluctuations are frozen out and the mobility of electrons is strongly
restricted – they become largely localized. In the limit of infinite U a simplified picture holds,
stating that each site is equally occupied with exactly as many fermions as is demanded for
by the filling factor. A gap opens in the energy spectrum. While the conductivity vanishes,
the compressibility shows an increased stiffness. For fermions, this transition only happens at
half filling, i.e. for a filling factor one [182]. The same transition, however, can be observed
in the bosonic version of the Hubbard model, replacing fermions by bosons. Then higher
filling factors become possible and, for sufficiently strong interaction, the transition occurs
repeatedly with increasing chemical potential.

Hubbard model in various dimensions. For the Hubbard model in one dimension, Lieb
and Wu have presented an exact solution in 1968 based on Bethe ansatz methods [106, 183].
This dimension shows untypical behavior: As in one dimension no Fermi liquid exists, the
regime of low interaction is a Luttinger liquid. Moreover, there is no Mott transition in the
one dimensional Hubbard model.
In higher dimensions than one, no exact solutions are known and the model is believed to be
nonintegrable. Particular interest exists in the phase diagram of the Hubbard model in two
dimensions since this has been linked to high-Tc superconductivity in cuprates [184]. Again,
this is beyond the interest of this thesis.
Simplifications arise in the limit of infinite dimensions when a local approximation of the self
energy becomes exact [171, 185–187]. This is the scenario of dynamical mean field theory
(DMFT) [178, 179] where the momentum dependence of the self-energy is neglected while
the frequency dependence is retained; this allows for the inclusion of dynamical aspects into
a mean-field theory.

Symmetries of the Hubbard model. For the interaction (3.3) the Hubbard Hamiltonian
on a bipartite lattice4 is particle-hole symmetric in the following sense [188]: Under the
transformation P which is defined by its action on the operators and implements particle-
hole symmetry within a single spin species.

cx↓

c†
x↓

cx↑

c†
x↑






P→






(−1)xc†
x↓

(−1)xcx↓

cx↑

c†
x↑

=⇒
U
tij
N̄↓





P→






−U
t∗
ji

|Γ|− N̄↓

(3.5)

For real and symmetric hopping matrix elements, which are commonly assumed, the kinetic
energy remains invariant. The total number of down spins N↓ changes into its complement.
In the case of half filling N = N↑+N↓ = |Γ| this is another invariant. However, an attractive
interaction is mapped onto a repulsive one and vice versa.
Hence, if one assumes particle-hole symmetry for physical reasons, the Hubbard dynamics
must be the same for repulsive and attractive interactions. This implies that under the
assumptions of a bipartite lattice and at half filling perturbative expansions of dynamical
quantities, e.g. of the Greens function, contain only even powers of the interaction.

4A lattice is called bipartite if its graph Γ = ΓA ∪ ΓB consists of two disjoint subgraphs ΓA and ΓB such
that there is no bond connecting two points x, y ∈ ΓA or x, y ∈ ΓB .
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Studying Fermi liquid properties on the Hubbard model. In this work the Hubbard
model solely serves as a quantum implementation of a Fermi liquid. Naturally, this restricts
to dimensions larger than one. There a Fermi liquid regime exists for weak on-site interaction
strength.
No particular lattice structure will be chosen here. However, the thermodynamic limit is
taken, promoting the number of lattice sites to infinity. Translation invariance is assumed on
the lattice. Nesting of the Fermi surface can occur on some lattice geometries. Then parallel
segments of the Fermi surface lead to an enhancement of scattering for certain momentum
vectors, giving rise to nesting instabilities. In order to discuss generic properties of a Fermi
liquid, these lattices are excluded from the observations here.
For convenience, explicit calculations (e.g. of the momentum distribution) are performed on
a hypercubic lattice in the limit of infinite dimensions. Then the components ki of a generic
momentum vector k can be assumed random numbers. So are their contributions cos(ki) to
the dispersion (3.2). Then the central limit theorem is applicable and a Gaussian density of
states is obtained [173].

ρ(�) = exp
�
−(�/t∗)2/2

�
/
√

2πt∗ (3.6)

t∗ is linked to the hopping matrix element by dimensional scaling t −→ t
∗

√
2d

to retain a non-
trivial relation between the kinetic and the interaction energy in all dimensions [173]. Using
this Gaussian density of states allows to reduce d-dimensional summations in momentum
space to one-dimensional energy integrations which, certainly, implies a dramatic reduction
of the required numerical resources.
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Chapter 4

Experimental motivation

Many parameters in condensed matter systems like lattice constants of particular crystals,
values of effective interaction potentials or the large particle number have long been considered
as input parameters fixed by nature and beyond the control of experimentalists. Hence,
nonequilibrium physics stimulated by their variation seemed to be a highly academic idea.
The advent of new technology during the last two decades has changed this dramatically. Two
lines of research which both emerged from advances in quantum optics are presented here.
For both of them, the fascination of a technological breakthrough beyond former technical
barriers was engraved into their naming: ultra-fast and ultra-cold.

4.1 Ultrafast spectroscopy of condensed matter systems

One of them is ultrafast spectroscopy of solids [189, 190]. In pump-probe experiments a first
laser pulse excites the electron gas of a solid and photogenerates an electron-hole plasma.
After some delay time tD a second pulse is used to detect the time evolved state of the
system. Pulse durations of less than 10 fs have been reached in experiments and are much
shorter than the dephasing or energy relaxation times. Hence a sequence of probings at
different delay times allows to follow its transient quantum dynamics directly in the time
domain.

4.1.1 Ultrafast spectroscopy for semiconductors

Experiments have been conducted, for example, in semiconductors like GaAs [191, 192].
There the complex dielectric function �q(ω, tD) was studied in an extremely early stage of the
dynamics and its frequency dependence extracted by a third pulse measurement. A retarded
buildup of Coulomb screening in the plasma and the formation of dressed quasiparticles has
been observed. Before screening becomes effective the plasma consists of independent particles
interacting via the bare Coulomb interaction. The onset of Coulomb screening corresponds
to the time scale of the plasma frequency (in GaAs this is 2π/ωpl = 70 fs). This should not
surprise since the later is the period of the collective electronic oscillation and, consequently,
the characteristic frequency related to collective behavior. Then, with increasing time higher-
order correlations develop [195].
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4.1.2 Ultrafast spectroscopy for metals

These works complement and exceed earlier examinations for metals which were obtained
from an indirect linewidth analysis of resonances in photoemission or, later, with time-resolved
two-photon photoemission spectroscopy. They aimed at the determination of the frequency
and temperature dependence of the electronic scattering length (or scattering time) which
enter fundamental properties like electric or thermal conductivity. These methods have been
largely applied, for instance to study properties of surfaces [196]. Like in semiconductors,
unscreened Coulomb interactions have been predicted for metals at very short times after an
initial excitation [197] and transient excitonic states in metals have been expected in an early
time regime [198]. However, since the plasma frequency in metals is very high and corresponds
to an ”attosecond” time scale 2π/ωpl = 0.1 fs, the direct observation of retardation effects in
metals and the onset of Coulomb screening is still beyond the reach of experimental technology
[193, 199, 200]. Nonetheless, a ’proof of principle’ suggests that relaxation properties in metals
can be studied by attosecond spectroscopy [194].

4.1.3 Discussion of the observed time scales

In Fig. 4.1 the time scales observed in the relaxation of an optically excited semiconductor are
compared with analogous scales of a metal. In both cases one expects a delay before collective
Coulomb screening effects become effective on the scale of the plasma frequency. Afterwards,
dephasing effects of electrons and, on a larger time scale, electron-electron interactions are the
origin of further relaxation behavior. For any experimental system one expects thermalization
due to two- or many-particle scattering processes.
This picture of a delayed build-up of correlations indicates that Markovian kinetic equations
like the Boltzmann equation are not appropriate to describe short-time processes [201, 202].
Instead, a full solution of quantum mechanical time evolution, e.g. in terms of nonequilibrium
Keldysh Greens functions [201], is needed on an early stage of the dynamics. Only after
an initial relaxation regime has been accomplished and many-particle effects have become
effective, an approximate treatment of time evolution based on a Markovian kinetic equation
becomes justified.
The discussion of a nonequilibrium Fermi liquid in this thesis will proceed in a closely related
way. This is because an interaction quench and an exciting laser pulse lead to comparable
excited initial configurations: For the first, solving the Schrödinger dynamics on a short time
scale will allow to establish a quasiparticle picture even under nonequilibrium conditions. In
a second step, the dynamics of the nonequilibrium quasiparticle distribution function will be
described by a quantum Boltzmann equation. Since the Boltzmann equation conserves the
kinetic quasiparticle energy, a prior energy relaxation by conversion of potential Coulomb
energy into kinetic energy of quasiparticles must be accomplished before a kinetic description
can be applied.

4.2 Ultracold atoms on optical lattices

A second and much more prominent line of experimental and theoretical research was opened
by fast technological progress in the field of ultracold atoms. New cooling methods opened
the way to observe the behavior of bosonic and fermionic atoms at very low temperature.
There characteristic features originating from the quantum coherence of the particles and
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their quantum statistics are dominant: Bosons undergo a phase transition towards a Bose-
Einstein condensate (BEC) which has first been observed in 1995 [203, 204]. For fermions,
the Pauli exclusion principle leads to Fermi degeneracy which has been, to a lesser degree,
experimentally reached from 1999 onwards. Unfortunately, cooling of Fermions is very dif-
ficult, partly because of small system sizes. Since only a small numbers of atoms can be
confined into an experimental trap, the resulting many-fermion system is characterized by
a very low Fermi degeneracy temperature TF which sets the reference scale for temperature
measurements. Ambitious world leading experimentalists expect for 2009 to reach temper-
atures aroundT ≈ 0.05TF [205]. For ordinary metals with TK ≈ 36, 000K this still would
correspond to temperatures of –merely ultracold– 1800 K.
Obviously, it is not just low temperature which motivates such experiments. It is high control,
optical precision and long coherence times which makes these many-body systems exceptional.
Quantum coherence of 106 atoms allowed to study quantum effects for almost macroscopic
system sizes. Due to Feshbach resonances, the effective scattering length of individual atoms
can be tuned by a magnetic field in a large parameter regime; even transitions from attractive
to repulsive interaction is possible. In 1998, ultracold atoms confined by a harmonic trapping
potential have first been loaded [206] onto arrays of standing light waves known as optical
lattices [207]. There optical dipol forces localize the atoms in the minima or maxima of the
stationary and monochromatic electromagnetic potential. Then the easily tunable properties
of the light field determine the features of the many-body arrangement: The half wavelength
equals the lattice spacing, its strength both defines the separation between the different
lattice sites and influences the two-particle interaction. In particular, these parameters can
be easily made time dependent. The resulting pattern is strongly reminiscent of condensed
matter systems, modeling an artificial crystal. It can be approximately described by a one-
band Hubbard model. Its tunnel coupling t and the onsite interaction U directly relate to
the strength of the light field. Inspired by an old proposal of Feynman to model quantum
systems by other quantum systems [208] this motivated many experiments and proposals.
This research aims at the implementation of paradigmatic condensed matter models, which
were originally designed – like the Hubbard model – to describe electronic properties of
solids, in systems of ultracold atoms loaded on optical lattices. There the slow dynamics of
ultracold atoms facilitates, for instance, to follow the dynamics of excited states and to study
the nonequilibrium behavior of the modeled system. Details can be found in many reviews,
e.g. in [209, 210]. Here I will point out to some experiments which provide insight into
the nonequilibrium behavior and thermalization properties of many-body coherent quantum
systems.

Quench through the Mott transition of the Bose-Hubbard Hamiltonian

A series of seminal experiments was performed by M. Greiner in the group of I. Bloch and
T. Hänsch in 2002 [211, 212]: By a sudden quench in the strength of the optical potential
the Hubbard Hamiltonian is changed from the weakly interacting superfluid regime to the
strongly interacting Mott insulator regime. The first regime is characterized by phase co-
herence across a large number of lattice sites. However, in the second regime the particle
number is fixed locally such that phase coherence is lost. Time-of flight measurements of
the momentum distribution function reflect this difference in phase coherence. Only in the
superfluid regime coherent peak structures, similar to Bragg reflections, appear. Hence time-
of-flight measurements of the momentum distribution allow to compare the time evolved state
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of this many-body quantum system to its ground states in the superfluid or the Mott insulator
regime. ’Snapshots’ of the time evolution following the quench have been obtained and are
reprinted in Fig. 4.2. Initially, the characteristic coherent peak signatures of the superfluid
regime are clearly visible and reflect the superfluid initial conditions. Although the switch in
the Hamiltonian is nonadiabatically fast, the initial decay of superfluid correlations only occur
on a slower time scale which characterizes the response of the system. Then the Mott state is
reached where signatures of superfluid phase coherence are wiped out. The surprising obser-
vation, however, is the later revival of the superfluid phase coherence. Its observation parallels
the approximate reappearing of initial configurations in the classical Fermi-Pasta-Ulam prob-
lem or Rabi oscillation of occupations [213] for a fully coherent many-body quantum system.

In this experiment, a quench across a phase transition highlights a suppressed dephasing of
an excited many-body quantum system. A detailed explanation has been published [215]
but also a simple argument in real space following a Gutzwiller ansatz already illustrates the
origin of the revivals. There the initial superfluid state can be approximated by a product of
coherent local states. Represented in a Fock basis, their weights are distributed according to
a Poissonian distribution. Quenched into the Mott phase, however, the Hubbard Hamiltonian
can be well-approximated by its interaction term only; it factorizes in real space and on each
lattice site it is diagonal with respect to number states and a discrete set of eigenenergies
ω ∼ Un(n− 1). It generates the periodic time evolution of the initial state

|α� (t) = e−|α|
2
/2

�

n

αn

√
n!

e−iUn(n−1)t/� (4.1)

First it leads to a dephasing of the number states with respect to each other. However,
from the lowest frequency one reads off a revival period Tr ∼ h/U after which the initial
configuration is restored. Note that this time is independent of the lattice site such that it
equally holds for the many-particle system. Since the state itself is time periodic, so are all
expectation values like the momentum distribution. This description, however, approximates
both the initial state and the Hamiltonian. Corrections due to the nonvanishing kinetic
part of the Hamiltonian break the periodicity on a longer time scale which is, in first order
perturbation theory, given by t/U .
Here, collapse and revival are solely due to eigenmode dephasing caused by an (approximately)
integrable Hamiltonian with a discrete and bounded set of frequencies. This is a leading order
result, representing the free evolution of an excited (nonequilibrium) many-body quantum
state1. Collapse and revival occur on the same time scale and before thermalization processes
may become effective.

Nonrelaxation of hard-core bosons in one dimension

Another experiment by Kinoshita, Wenger and Weiss [216] has shown that the time scale
on which a many-particle system evolves freely can be made extremely large. A BEC of
87Rb atoms was constrained by a strong optical lattice into an array of one dimensional
isolated tubes. By a phase grating pulse applied to the tube the condensate was split into
a coherent superposition of a left- and a rightmoving wavepacket, i.e. a nonequilibrium

1Quenching through the Mott-Hubbard phase transition only serves to easily create a locally factorizing
initial state with a nontrivial particle distribution function on every site. Details of a phase transition are not
relevant.
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momentum distribution was created. Then the oscillation of the wavepackets in the harmonic
trap potential was studied which did not cease even after hundreds of oscillation cycles;
although dephasing, i.e. the loss of coherence among the condensed bosons occurred, the
initial momentum distribution did not relax. This has been explained by referring to the
integrability of one dimensional hard-core bosons [89, 217].

Superlattices

A very recent development of this branch of research lies in the modification of the opti-
cal lattice by superimposing two lattice structure with different periodicities. The resulting
patterns, named superlattices, allow to study more detailed model systems. If the two wave-
lengths are incommensurate or quasi-periodic, random potentials are mimicked [218]. For two
commensurate frequencies regular superlattices with two periods are feasible, representing lo-
cal double-well potentials [219]. Controlling the relative phase and intensity regular density
patterns can be created on the lattice. For instance, this allows to model magnetically or-
dered states and their dynamics [220–222]. These systems open the possibility, among many
others, to study the local relaxation of subsystems [223]. In this direction they complement
the global view on thermalization taken in this thesis.

Ultracold fermions

While many proposals highlight the relevance of experiments with ultracold fermions, for in-
stance to experimentally answer the questions related to the origin of high Tc-superconductivity
[224], the manipulation of ultracold fermions in optical lattices is technically more demand-
ing. The observation of a Fermi surface in ultracold atoms [225] was followed by measure-
ments of fermionic correlations [226] and the observation of superfluidity [227]. A study of
interaction-controlled transport by a quench in the trapping potential [228] prepared the re-
cent observation of the Mott-Hubbard transition in the repulsive fermionic Hubbard model
[229]. This rapid progress of experimental sophistication may give hope that the predictions
formulated in this thesis, although they are characteristic zero temperature effects, may be
experimentally traceable in the near future.

Metastable state of doubly occupied sites. Finishing this brief review, I point out to
a proposal by A. Rosch et al. suggesting the creation of a metastable state in the strongly
repulsive fermionic Hubbard model by a quench in the trapping potential [97]. Initialized in
a densely packed doubly occupied Mott phase, the sudden widening of the trapping potential
leads to a dilute gas of metastable doubly occupied sites diffusively spreading out into the
extended trap. This gas forms a Bose-Einstein condensate of superfluid doubly occupied sites.
Similar to the behavior of a Fermi liquid presented in this thesis (cf. 11.3), metastability
occurs because of a bottleneck in the relaxation dynamics of an excited state. However, the
conditions are somewhat inverted. In the proposal, the decay of excited doubly occupied
sites of the Hubbard model is prevented. As the on-site Coulomb interaction is assumed
large, their energy level lies far above of the limited bandwidth. Hence energy relaxation
into continuum band states is only possible by multi-particle scattering processes. These
are, however, exponentially suppressed. Consequentially, energy conservation restricts the
relaxation of the excited state.
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Chapter 5

Time evolution in quantum
mechanics

5.1 Schrödinger dynamics and Heisenberg picture

Following Schrödinger, the dynamics of a quantum system follows from a differential evolution
equation for its wave function Ψ(t) which describes the state of the system completely. This
evolution is driven by the energy conditions of the system which can be expressed as the
interplay between its generic energetic structure (formulated in terms of its Hamiltonian H)
and the current state of the system. The resulting evolution is described by the Schrödinger
equation

i� d

dt
Ψ(t) = HΨ(t) (5.1)

Integrating this differential equation formally allows to represent time evolution by an evolu-
tion operator

U(t, t0) = e
−i

R
t

t0
dt
�
H(t

�
)/� (5.2)

which maps initial states |Ψ(t0)� onto time evolved states |Ψ(t)� = U(t, t0) |Ψ(t0)�. From (5.2)
one reads easily off that for the evolution operator always holds U†(t, t0) = U(t0, t); moreover,
for not explicitly time dependent Hamiltonians the composition property U(t, t0)U(t0, t�) =
U(t, t�) is valid. Note that even time-evolved states and operators themselves do not corre-
spond to measurements in the empirical physical reality directly; only expectation values of
particular observables O, which are meaningfully chosen self-adjoint operators acting on the
state space, with respect to the quantum mechanical state of a system do.
For this reason, one has to demand for the invariance of an expectation value under a for-
mal redistribution of time dependence between observables and states �ΨS(t)| OS |ΨS(t)� =
�ΨH | OH(t) |ΨH�. This isometry allows to establish isomorphic representations usually re-
ferred to different pictures of time evolution:

• In the Schrödinger picture solely the states carry the time dependence of expectation
values; observables are time invariant and the time evolution operator acts on states
only.

• In the Heisenberg picture it is solely the operators. Due to the isometry the time
evolution operator in the Schrödinger picture (5.2) induces a superoperator Ũ(t, t0)
acting on operators O such that O(t) = Ũ(t, t0)O(t0) := U†(t, t0)OU(t, t0).
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• Splitting the time evolution carried by a ’free’ part of the Hamiltonian H0 and an
interacting part Hint and attributing the first to the operators and the second to the
states defines, as a mixed variant, the interaction picture representation [230].

Although all of these pictures are completely equivalent they allow for different technical
approaches to features of a quantum theory.

Heisenberg picture. For the aim of this thesis, the Heisenberg picture turns out to be
advantaged since there time evolution can be expressed as an algebraic (super-)operation
in operator space, namely as the commutation with the Hamilton operator. This allows to
rewrite (5.1) as an operator relation which holds independently of any basis representation

dOH(t)
dt

=
1
i� [OH(t), H] +

�
∂O(t)

∂t

�

expl

(5.3)

The index H denoting that operators are taken in a Heisenberg picture will be suppressed
furtheron; the partial time derivative is only relevant for explicitly time dependent operators.
Throughout the rest of this thesis all operators are understood as Heisenberg operators and
explicit time dependence is not considered.
For later reference the free time evolution of a creation operator with respect to the time
independent and noninteracting (kinetic) Hamiltonian H0 =

�
k
�kc

†

k
ck is given:

c†
k
(t) = ei�kt/�c†

k
(t = 0) (5.4)

While in general time evolution with respect to a generic Hamiltonian implies the mapping
of an operator onto an arbitrarily different one, the particular time evolution of a time inde-
pendent quadratic Hamiltonian (in terms of creation and annihilation operators) is particular
simple. For an interacting Hamiltonian, this motivates diagonalization strategies to represent
it as a quadratic Hamiltonian in appropriate degrees of freedom; then an exact computation of
time evolution is straightforward. For non-integrable interacting many-particle Hamiltonians
this is, however, not possible and approximate methods are needed.

5.2 Greens function formalism

A nonperturbative way to formulate and to analyze the dynamics of a many-body quantum
system is provided by the framework of Greens functions. As Greens function methods be-
came an indispensable tool in condensed matter theory, extensive introductions can be found
in any modern textbook [167–169, 231]. Their main merit is to decompose the dynamics of a
quantum theory in a hierarchy of correlation functions. The later are given as (thermal) av-
erages (denoted by �. . .�) of strings of Heisenberg operators ΨH . These operators incorporate
the dynamics generated by the Hamiltonian. In a many-body problem which is modeled by a
continuous quantum field theory, these are the field operators of the field theory. Commonly
discussed physical quantities like occupations or response functions can be obtained from the
Greens functions by taking appropriate limits.
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Definitions

Here I only state definitions for later reference. For fermions the lesser and the greater Greens
function are defined as

G<(x, t,σz, x
�, t�, σ�z) = +i

�
Ψ†

H
(x�, t�, σ�z)ΨH(x, t,σz)

�
(5.5)

G>(x, t,σz, x
�, t�, σ�z) = −i

�
ΨH(x, t,σz)Ψ†

H
(x�, t�, σ�z)

�
(5.6)

Then the time ordered Greens function G and the anti-time ordered Greens function G are
written as

G(x, t,σz, x
�, t�, σ�z) = −i

�
T ΨH(x, t,σz)Ψ†

H
(x�, t�, σ�z)

�
=

�
G<(x, t,σz, x�, t�, σ�z) t� > t
G>(x, t,σz, x�, t�, σ�z) t� < t

(5.7)

G(x, t,σz, x
�, t�, σ�z) = −i

�
T ΨH(x, t,σz)Ψ†

H
(x�, t�, σ�z)

�
=

�
G>(x, t,σz, x�, t�, σ�z) t� > t
G<(x, t,σz, x�, t�, σ�z) t� < t

(5.8)

where T and T denote time ordering and anti-time ordering of the subsequent operators. If
time evolution is made explicit by introducing the time evolution operator U the time ordered
Greens function reads

G(x, t,σz, x
�, t�, σ�z) = −i �Ω| T ΨH(x, t,σz)Ψ†

H
(x�, t�, σ�z) |Ω�

= −i �Ω| T U†(t, t0)Ψ(x, t,σz)U(t, t0)U†(t�, t0)Ψ†(x�, t�, σ�z)U(t�, t0) |Ω�
= −i �Ω| T U(t0, t)Ψ(x, t,σz)U(t, t�)Ψ†(x�, t�, σ�z)U(t�, t0) |Ω� (5.9)

This notation shows that in any picture different from the Heisenberg picture the Greens
function represents a (thermal) expectation value of a string of mixed field and evolution
operators taken at different times. In section (5.3.2) this will be the starting point both for
the introduction of a (contour) ordering relation of these operators and for a perturbative
expansion of the evolution operator.
Another alternative representation of Greens functions is commonly used for the discussion of
nonequilibrium problems, consisting of the retarded, advanced and Keldysh Greens function

GR(x, t,σz, x
�, t�, σ�z) = +Θ(t− t�)(G>(x, t,σz, x

�, t�, σ�z)−G<(x, t,σz, x
�, t�, σ�z)) (5.10)

GA(x, t,σz, x
�, t�, σ�z) = −Θ(t� − t)(G>(x, t,σz, x

�, t�, σ�z)−G<(x, t,σz, x
�, t�, σ�z)) (5.11)

GK(x, t,σz, x
�, t�, σ�z) = G>(x, t,σz, x

�, t�, σ�z) + G<(x, t,σz, x
�, t�, σ�z) (5.12)

While in equilibrium these three Greens functions are dependent functions, they are indepen-
dent objects in a nonequilibrium theory.

Equilibrium Fourier transformed Greens functions

In equilibrium, the Greens functions only depend on the relative time τ = t− t� and a Fourier
transform in time displays their energy dependence. Moreover, for translation invariant sys-
tems a momentum representation can be obtained by a spatial Fourier transform.

GK

σzσ�z
(q, �q) =

�
∞

−∞

d(t− t�)
�
∞

−∞

dd(x− x�)e−
i

� (q(x−x
�
)−�q(t−t

�
))GK(x, t,σz, x

�, t�, σ�z) (5.13)
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5.3 Time dependent perturbation theory

The most common analytic method to approach a time dependent interacting system is time
dependent perturbation theory. It can be applied in a variety of different ways. Each of them
represents a particular way to expand and to resum the time evolution operator in terms of
an infinite perturbation series. As the perturbation series is truncated, results from different
approaches may differ even at the same formal order of the expansion. Therefore the challenge
is to find the most appropriate but still technically manageable method.

5.3.1 Fermi’s golden rule

The simplest, most commonly applied and straightforward approach to time-dependent per-
turbation theory is given by Fermi’s golden rule. Its derivation is based on a Taylor-like series
expansion of the time evolution operator in the interaction picture,

UI(t, t0) = T exp
�
− i

�

�
t

0

dt�Hint(t)
�

where T denotes the time ordering operator [230]. In perturbation theory, the eigenstates
of the noninteracting Hamiltonian H0 form the frame of reference to study the evolution
of the occupation of quantum states. Initially, only a single eigenstate |i� with eigenenergy
Ei may be occupied. First order interaction effects are responsible for the possibility of
transitions from this single occupied initial state into an non-occupied eigenstate |n�; with
increasing time, these transition probabilities cause a redistribution of the occupation into
different eigenmodes of H0. For formerly unoccupied eigenmodes |n� with eigenenergy En the
time dependent amplitudes read in first order non-degenerate perturbation theory c(1)

n (t) =
−i

�
t

0
dt� exp(i(En − Ei)t/�) �n|Hint |n� /�. For a constant interaction which is switched on

at zero time this can be easily integrated; then the time dependent occupations indicate the
total (integrated) transition probability and depend on the energy distance of the initial and
the final state

|c(1)

n (t)|2 = 4 |�n|Hint |i�|2
sin2[(En − Ei)t/2�]

|En − Ei|2
(5.14)

Transitions are only possible if both a kinematic and a dynamic requirement are fulfilled:
Firstly, the interaction part of the Hamiltonian must couple the initial and final state. In
general, this leads to selection rules for allowed transitions. Secondly, the energy kernel im-
plements quantum uncertainty. For short times, transitions may violate energy conservation.
In a long-time limit, however, it approaches a delta function in energy

|c(1)

n (t →∞)|2 =
2π

� |�n|Hint |i�|2 δ(En − Ei) t (5.15)

Obviously, the validity of this expression is limited since the occupation would continuously
grow in time. Such an artificial behavior is characteristic for a secular term and indicates a
breakdown of first-order perturbation theory on a certain time scale.
In a golden rule argument, however, this vice is turned into a virtue and a transition rate is
defined as

Γ|i�→|n� = lim
t→∞

���c(1)

n (t)
���
2

t
=

2π

� |�n|Hint |i�|2 δ(En − Ei)
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Moreover, if a transition into a continuum of states is considered, the individual contribu-
tions are incoherently summed up, weighted by the density of states ρ(E) at the particular
energy [230]. This is a bold description of coherent quantum evolution but can be justified a
posteriori.

Γ|i�→{|n�}n
=

2π

� |�n|Hint |i�|2 ρ(En)|En≈Ei

Discussing microscopic scattering processes, instead of a density of states the phase space
factor related to the particular scattering process enters. For a nonequilibrium Fermi liquid
this phase space factor dramatically changes the time behavior.

5.3.2 Coherent perturbation theory with respect to the ground state

The effective treatment of time evolution by an incoherent summation of transition rates
neglects possible interference effects between different degrees of freedom. Therefore a correct
perturbative approximation of the quantum dynamics caused by an interacting many-body
Hamiltonian requires a more advanced field theoretical approach.
A proper way to set up time dependent perturbation theory with respect to the ground
state of an interacting quantum system is to construct the interacting quantum theory
from a corresponding noninteracting one. This is done by switching on the interaction
H int

H0
(t) = e−α|t|H̃ int

H0
(t) adiabatically in time, i.e. in the limit α → 0. This procedure en-

sures that there is a continuous evolution from the noninteracting ground state |Ω0� in the
far past to the interacting ground state |Ω� in the present. Then the time evolution operator
U(t, t0) links both ground states |Ω� = U(t,−∞) |Ω0�. In the far future, the interaction is
adiabatically switched off again, leading to |Ω� = U(t,∞) |Ω0� which is applied in the form
�Ω| = �Ω0| U†(t,∞). Hence the string of operators in (5.9) can be extended such that the ex-
pectation value is with respect to the noninteracting ground state only. For convenience, the
different segments of time evolution in (5.9) are denoted by a single evolution operator under
time ordering. This defines the action of the time ordering operator T onto the time-nonlocal
operator U(∞,−∞).
This arrangement is advantageous since, according to the Gell-Mann and Low theorem [232],
the evolution of the ground state under the adiabatic switching-on and switching off procedure
only accounts for a phase eiΦ = �Ω0| U(∞,−∞) |Ω0�; it can be easily divided out and hence
allows for a novel representation of the time-ordered Greens function (5.7) with respect to
the noninteracting ground state.

G(x, t,σz, x
�, t�, σ�z) = −i

�Ω0| T Ψ(x, t,σz)Ψ†(x�, t�, σ�z)U(∞,−∞) |Ω0�
�Ω0| U(∞,−∞) |Ω0�

(5.16)

The time-ordered operator product in the denominator motivates a pictorial representation
of lining up the field operators and time evolution on a linear and open time contour. Then
the expansion of the time evolution operator in an interaction picture leads to a perturbation
series in powers of the interaction.
This approach is explicitly designed to describe ground state properties of a system in equilib-
rium. In most cases the time dependent setup is considered as a mere ancillary technique to
establish a controlled and practically time independent perturbation expansion of quantum
field theory1. Since the Gell-Mann and Low theorem does not extend to excited states a
different and less simple route has to be taken in nonequilibrium situations.

1It is worth to point out that this is the origin of the dynamical character of Feynman’s perturbation theory
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5.3.3 Keldysh nonequilibrium perturbation theory and the problem of sec-
ular terms

The breakdown of the Gell-Mann and Low theorem for excited states implies that there is
no straightforward and simple procedure to connect an excited state in the far past to a
corresponding excited state in the far future (as there is for the ground state). This implies
that the linear ordering of operators on a timeline is not possible any more.

Contour ordering of operators

Instead, one has to go back to analyze (5.9) directly, now assuming that |Ω� is an arbitrary
initial state given at an initial time t0. Time evolution must be considered on a closed contour
which starts and ends at this initial state or initial time. The contour ordering operator Tc

represents an ordering procedure of its own kind which is unrelated to the linear time ordering
by T . Therefore, real times t are promoted to ’contour times’ τ which parametrize the contour.
While at some point of the string of operators in (5.9) time evolution is reversed, the contour
times continue monotonously2. This defines the contour ordered Greens function

GC(x, τ, σz, x
�, τ �, σ�z) = −i �Ω0| Tc U(τ0, τ)Ψ(x, τ,σz)U(τ, τ �)Ψ†(x�, τ �, σ�z)U(τ �, τ0) |Ω0�

= −i �Ω0| Tc Uc(t0, t0)Ψ(x, τ,σz)Ψ†(x�, τ �, σ�z) |Ω0� (5.17)

Again, the different sections of contour evolution can be formally rewritten as one evolution
operator with respect to a (non-vanishing!) contour integration Uc(t0, t0) = e−i

R
c
dτH(τ) under

the contour ordering operation.

Perturbative expansion

On this contour, a perturbative expansion of the time evolution operator in an interaction
picture representation is possible, leading to Keldysh perturbation theory [231]. Then the
perturbative expansion for the contour-ordered Greens function in powers of the interaction
Hint reads

GC(x, τ, σz, x
�, τ �, σ�z) = −i �Ω0| Tce

−i
R

c
dτH

int
H0Ψ(x, τ,σz)Ψ†(x�, τ �, σ�z) |Ω0�

= −i
�

n

1
n

�

c

dτ1 . . . dτn �Ω0| Tc H int

H0
(τ1) . . . H int

H0
(τn)Ψ(x, τ,σz)Ψ†(x�, τ �, σ�z) |Ω0� (5.18)

In analogy to ground state quantum field theory in real space Feynman rules can be formulated
for contour-ordered Greens functions and a diagrammatic language exists. The ’contour
time’ replaces physical time and internal integration at the vertices is performed as a contour
integration. Details depend on the particular interacting theory and can be found in [231].

which depicts static properties of a quantum field theory by their underlying quantum dynamical behavior.
Therefore, for example, the ’propagation of particles between interaction vertices’ has to be considered even
in perturbative treatments of equilibrium problems. This dynamical picture of quantum field theory became
a paradigm for the understanding of many of its properties, e.g. the quantum state of the vacuum.

2Note that a sequence of time ordered operators can be contour ordered (if all operators lie on the forward
path), anti-contour ordered (if all operators lie in the backward path) or not ordered at all (intermingled
distribution onto forward and backward path)
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Real-time formalism

However, as the contour ordering is a formal construct and its parameters, the ’contour
times’, are no intuitive physical quantities a real-time formalism for contour ordering has
been developed. There the ’contour times’ are split up into physical time t and a contour
index κ labeling the forward (κ = 1) and backward (κ = 2) path. Since the Greens function
(5.17) depends on two contour times it is mapped onto a 2× 2-matrix Keldysh matrix Greens
function Ĝκ,κ� in Keldysh space.

GC(x, τ, σz, x
�, τ �, σ�z) → Ĝ(x, t,σz, x

�, t�, σ�z) =
�

Ĝ11 Ĝ12

Ĝ21 Ĝ22

�
(x, t,σz, x

�, t�, σ�z) (5.19)

Representations in Keldysh space

Referring to the definitions in section (5.2) the components of the Keldysh matrix Greens
function can be directly related to ordinary Greens functions.

Ĝ(x, t,σz, x
�, t�, σ�z) =

�
G G<

G> G

�
(x, t,σz, x

�, t�, σ�z) (5.20)

Larkin - Ovchinnikov - representation

However, since this representation does not allow for a simple inversion of the matrix, Larkin
and Ovchinnikov introduced a rotation in Keldysh space which transform it into an upper
triangular matrix. Its components, again, refer to well-known ordinary Greens functions.

G(x, t,σz, x
�, t�, σ�z) = Lτ (3)Ĝ(x, t,σz, x

�, t�, σ�z)L
† =

�
GR GK

0 GA

�
(x, t,σz, x

�, t�, σ�z) (5.21)

where L = (1l− iτ (2))/
√

2 is an orthogonal transformation and {τ (i)}i=1,2,3 are the Pauli spin
matrices.
The Feynman rules found for the contour-ordered Greens function can be mapped directly
onto Keldysh space where propagators and vertices are 2 × 2- dimensional objects. Internal
integration over contour times τ is mapped onto a contraction of internal Keldysh indices and
integration over physical time t. I will establish Keldysh perturbation theory for the Hubbard
model in chapter (14).

Problem of secular terms

Here I briefly conclude with remarking that this technique, although it allows for the treatment
of excited states, only provides a perturbative treatment of the interaction-induced time
evolution. This leads naturally to the emergence of secular terms which are proportional both
to the interaction strength and to time in (5.18); they render a perturbative result unreliable
already on short time scales. Hence, while a Keldysh approach provides a faithful microscopic
and perturbative formulation of the dynamics of an interacting many-body quantum system
it does not improve on the problem of long-time reliability of low order results. Since the
aim of this thesis is to give a conclusive description of the short- and longtime evolution of
the quenched Hubbard model the question of avoiding secular terms is most relevant. An
excursion to perturbation theory in classical mechanics will illustrate answers.
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5.3.4 Canonical perturbation theory

Canonical perturbation theory in classical mechanic is a more ingenious variant of doing
classical perturbation theory. Instead of its direct brute-force application, first a canonical
transformation is applied to change to new coordinates which are closer to the eigenmodes of
the Hamilton function. A perturbation expansion of the remaining interaction term is then
performed in these new degrees of freedom. This leads to a rearrangement of the perturbation
expansion which appears as a renormalization of model parameters. By this way, secular terms
can be avoided.
A simple illustration of this approach has been published recently in [233] for a single harmonic
oscillator with frequency ω0 = 1, mass m = 1 and a weak anharmonic quartic perturbation
of strength g. Here, the key points are quoted.

H(q, p) = H0(q, p) + Hint(q), H0(q, p) =
p2

2m
+

mω2

0

2
q2, Hint(q) =

g

4
q4 (5.22)

Direct application of perturbation theory. In a direct application of perturbation the-
ory and for the initial conditions q(0) = 0 and p(0) = v + 3gv3/8 the well-known solution of
the harmonic oscillator q0(t) = v sin(ω0t) serves as a zeroth order approximation for the full,
perturbatively expanded solution q(t) = q0(t) + g q1(t) +O(g2). This allows for a first order
parametrization of the Hamilton equations of motion

q̇(t) =
∂H

∂p
= p(t) (5.23)

ṗ(t) = −∂H

∂q
= −ω2q(t) + gq3(t) PT= −ω2q(t) + gq3

0(t) (5.24)

Solving these differential equations for the leads to the explicit solution

q(t) =
3
8
v3 sin(t)− v3

8
�
sin(t) cos2(t) + 2 sin(t)− 3t cos(t)

�
(5.25)

A shift of the unperturbed frequency is indicated by the generation of a higher harmonics.
However, the calculation is reliable only on a short time scale as a secular term proportional
to time leads to the artefact of an continuously increasing amplitude of the oscillation.

Canonical perturbation theory. A less näıve way to a perturbative solution of the an-
harmonic oscillator starts with applying a canonical transformation (p, q) → (P,Q) [234]. It
is defined by a time independent generating functional F2(q, P ) which can be motivated from
(5.24). Since the interaction leads to a term gq3 in the equation of motion (5.24), a term
∼ Pq3 in F2 is plausible because of the transformation law (5.28). Symmetry in q and P
suggests another term ∼ P 3q and suitable coefficients can be determined a posteriori.

F2(q, P ) = qP + g

�
3
32

Pq3 +
5
32

P 3q

�
(5.26)

The transformation is then generated such that

p(t) =
∂F2(q, P )

∂q
= P (t) + g

9
32

P (t)q2(t) + g
5
32

P 3(t) (5.27)

Q(t) =
∂F2(q, P )

∂P
= q(t) + g

3
32

q3(t) + g
15
32

P 2(t)q(t) (5.28)
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Figure 5.1: This plot shows the dynamics of the coordinate q(t) of a harmonic oscillator
(ω = 1) which is perturbed by a weak anharmonicity (g = 1). The practically exact numerical
solution (blue) is well-approximated by canonical perturbation theory (yellow). Only slight
derivations from the exact frequency can be observed at large times. A direct application
of perturbation theory in leading order (black) is unconvincing. Secular terms lead to a
linear increase of the amplitude and the renormalization of the frequency is insufficient. For
comparison, the solution for the unperturbed harmonic oscillator is given (red).

Expressing the Hamiltonian (invariant as F2 is not explicitly time dependent) in terms of the
transformed coordinates and deriving the equations of motions

Q̇(t) =
∂H(P,Q)

∂P
=

�
1− 2g

3
8
H0(P,Q)

�
P (5.29)

Ṗ (t) = −∂H(P,Q)
∂Q

= −
�

1− 2g
3
8
H0(P,Q)

�
Q (5.30)

Now perturbation theory is applied by linearizing the equations of motion such that H0(P,Q)
is replaced by ω0. Then the equations of motion for P and Q are those of a harmonic
oscillator with a renormalized frequency ω̃ =

�
1− 2g 3

8
ω0

�
. Transforming back into the original

coordinates produces a second order result without secular terms

q(t) = sin(ω̃t)
�
v − 3

32
gv3

�
3 cos2(ω̃t) +

5
3

sin2(ω̃t)
��

+O(g2) (5.31)

p(t) = cos(ω̃t)
�
v +

3
32

gv3
�
cos2(ω̃t) + 5 sin2(ω̃t)

��
+O(g2) (5.32)

Now the effect of the anharmonicity is included in the renormalization of the frequency and
a fluctuation of the amplitude which, since periodic in time, remains small. Expanding the
leading oscillation in powers of g leads back to the secular term observed in (5.25). This great
improvement by canonical perturbation theory is visualized in figure (5.1).



62 5 Time evolution in quantum mechanics

5.3.5 Unitary perturbation theory

An equivalent idea of applying advanced perturbation theory to follow the time evolution of
an interacting quantum many-body system has been named unitary perturbation theory [235].
In the way it is presented here it applies to Hamiltonians which are not explicitly dependent on
time. Similar to the application of canonical transformations in the classical case, a unitary
forward transformation maps the Hamiltonian into an alternative basis representation in
which time evolution can be treated in a simpler way than in the original one. Typically,
this is the eigenbasis of the full Hamiltonian and the forward transformation implements its
diagonalization. Then the time dependent solution is mapped back into the original basis
by the inverse or backward transformation; this constitutes the solution for the variables of
physical interest.
Both the diagonalizing transformations and the time evolution can now be subjected to a
perturbative treatment. The main success of this method roots in the partial separation
of time dependence and interaction effects: A perturbative treatment of the diagonalizing
transformation leads to a renormalization of model parameters, including some part of the
interaction effects. Their absorption into more adequate degrees of freedom is independent of
time; any success achieved here reduces the relevance of secular terms. However, in the generic
case the perturbative implementation of a diagonalizing transformation does not lead to an
exact eigenbasis representations. Errors in the description of the eigenstates and their occupa-
tions unavoidably grow in time. Moreover, an approximate treatment of the diagonalization
corresponds to an only approximately diagonal Hamiltonian. Its remaining non-diagonal
contributions typically destroy the simplicity of time evolution, call for the application of
time-dependent perturbation theory and, by that, lead to the reappearance of secular terms.
Nonetheless it can be shown in many cases that a perturbative treatment of the diagonaliza-
tion is sufficient to shift these secular terms to higher orders of the perturbation series. This
drastically improves the time reliability of lower orders.
Diagonalizing transformations are unitary and act both on the Hamiltonian and on all observ-
ables. Contrary to most other renormalization schemes which construct an effective Hamilto-
nian describing the appropriate low energy physics of the problem but leave the form of the
observables invariant, unitary perturbation theory takes the opposite route: Since a transfor-
mation towards a diagonal Hamiltonian is intended, the form of the transformed Hamiltonian
is –at least in a perturbative meaning– constrained by this intention. Hence there is no par-
ticular interest in the renormalization of the Hamiltonian itself. It is present only indirectly
by defining the appropriate transformation. The transformation of the observables, however,
becomes the cornerstone of unitary perturbation theory. In the same way as the change to-
wards eigenstates of the full (interacting) Hamiltonian frees the Hamiltonian from explicit
interactions, a formerly simple one-particle observable (like the number operator) acquires a
nontrivial composite many-particle structure which makes interaction effects explicit. Next
to the original one-particle term many-particle contributions add up to form the representa-
tion of the transformed observable. This will be seen in great clarity later. Straightforward
time evolution with respect to an (approximately) energy diagonal Hamiltonian allows for an
independent evolution of these many-particle components; this is the origin of nontrivial dy-
namics which becomes visible when the backward transformation recombines the differently
evolved parts to a time dependent multi-particle observable in the original basis representa-
tion of the problem. See figure 5.2 for a sketch. In conclusion, unitary perturbation theory
is intended to describe correlation effects with respect to observables. Since all is done in
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Figure 5.2: The Heisenberg equation of motion for an observable O is solved by transforming
to the B = ∞ eigenbasis of the interacting Hamiltonian H (forward transformation), where
the time evolution can be computed easily. Time evolution introduces phase shifts, and there-
fore the form of the observable in the initial basis B = 0 (after a backward transformation)
changes as a function of time.

a Heisenberg picture, observables become the explicit carriers both of time evolution and of
correlation effects and change from the usually considered one-particle observables to non-
trivial time-dependent many-particle observables which represent a part of the interparticle
correlations. In a many-particle problem, this can improve perturbative approaches whenever
the transformation of a suitably chosen observables turns out to be tractable. Moreover, there
is a natural restriction to those interparticle correlations which are relevant for the dynamics
of the considered observable. This reduces the larger complexity of a interacting many-body
state which depends in general nontrivially on all many-particle correlations.
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Chapter 6

Unitary perturbation theory for the
squeezed oscillator

In the following chapter the application of unitary perturbation theory is illustrated for the
straightforward example of the squeezed oscillator. Since squeezing corresponds to a sudden
quench in the oscillator potential this provides a first opportunity to study the full quantum
dynamics of a model system. The simplicity of this one-particle problem allows to explicitly
compare different implementations of the diagonalizing transformation and their consequences
on the observed properties of the model.

6.1 Squeezed one-particle oscillator

The squeezed oscillator is a well-studied one-particle model system which found appreciation
in many branches of physics. For two decades researchers have discussed squeezed states of
the electromagnetic field which found interest because of their characteristic reduced fluctu-
ations in one field quadrature as compared to coherent states. This suppression of quantum
fluctuations in one variable out of a set of non-commuting variables below the threshold ob-
tained for a state of symmetrically distributed minimal uncertainty, i.e. a coherent state,
has motivated the naming: In this parameter the phase space portrait of the squeezed state
shows sharp details and appears ’squeezed’ when compared to that one of a coherent state
while fluctuations are inevitably increased in the others. The physical relevance of squeezed
states in optics is grounded on the fact that some interesting phenomena [236] are charac-
terized by oscillations with amplitudes below the width of the ground state wave function
of a quantum mechanical oscillator due to Heisenberg uncertainty. Examplary applications
may be improved signal-to-noise ratios beyond the quantum limit of coherent light or the
interferometric detection of the weak signatures of gravitational waves are still present in the
scientific debate.
It has been shown early by [237] that squeezed states cannot be generated adiabatically from
the ground state of a quantum mechanical oscillator but sudden changes have to be applied
to its parameters, e.g. its frequency or spring constant. Therefore, squeezed states represent
a first example of what is now, in the context of a many-body system, called a quench of a
quantum system.
In many-body theory, the squeezing operation comes under the name of a Bogoliubov trans-
formation. Recently, it was applied to study the behavior of a quenched Luttinger liquid
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in terms of bosonic degrees of freedom by Cazalilla [93]. The implementation of a Bogoli-
ubov transformation in (6.3) follows tightly his work. However, my focus is shifted towards
a comparison of perturbative and exact diagonalization methods which serves to illustrate
the structure of an analogous flow equation transformation. This is intended to foster the
understanding of later results for the Fermi liquid.

Hamiltonian. On the level of the Hamiltonian, squeezing is inferred by an instantly applied
change of the prefactor of the quadratic potential, namely the spring constant. Neglecting
a linear shift of the potential minimum and squeezing is reduced to a sudden switch in the
coupling constant g(t) = gΘ(t) of the quadratic particle non-conserving operators. With
� = ω0 = 1

H = H0 + Hint, H0 = a†a +
1
2
, Hint = g(t)

�
(a†)2 + a2

�
(6.1)

In the following a perturbative analysis of this quench is compared with an exact solution
based on the exact diagonalization of H. In both cases the occupation is calculated, i.e. the
expectation value of the number operator N̂ = c†c both in the equilibrium ground state of the
interacting Hamiltonian H and as a long-time limit of the dynamics of an initial state. The
interest is in a remarkable relation between the equilibrium result and the nonequilibrium
result which are described by the same functional dependence but variant prefactors. These
nontrivial prefactors will later play a key rôle and can already be appreciated in this simple
system.

6.2 Perturbative study of squeezing

It may be assumed that the coupling g is a small parameter and nondegenerate perturbation
theory can be applied to the interacting Hamiltonian. The perturbative approach is set up
in an operator language such that an obvious analogy to the flow equation method for the
Hubbard model (cf. chapter 9) holds. Firstly, the diagonalizing transformation is constructed
in a perturbative way, then the forward/backward scheme of unitary perturbation theory
(following Fig. 5.2) is applied.

Perturbative definition of the diagonalizing transformation

The first step is to implement a discrete unitary transformation which diagonalizes the Hamil-
tonian to leading order in g. The unitary transformation U(ϕ) = e−ηϕ is represented by its
generator η, i.e. by an anti-hermitian operator, and by a scalar angle variable ϕ. Then
the action of the transformation onto the Hamiltonian can be expanded according to the
Baker-Hausdorff-Cambell relation as

H̃ ≡ U †HU = eηϕHe−ηϕ ≈ (6.2)

H0 + Hint + ([η, H0] + [η, Hint]) ϕ +
1
2
[η, [η, H0]]ϕ2 + . . .

Demanding that to leading order the interaction term should vanish leads to an implicit
definition of the generator

ϕ[η, H0] = −Hint. (6.3)
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Note that it implies η ∼ O(g). It can be easily checked that the canonical generator defined
as the commutator of the noninteracting and the interacting part of the Hamiltonian fulfils
this implicit definition (6.3) if an angle ϕ = 1/4 is chosen:

η = [H0, Hint] = 2g
�
(a†)2 − a2

�
(6.4)

Transformed Hamiltonian

In a second step I consider the corrections beyond leading order in the (approximately)
diagonalized Hamiltonian which are, in general, second order in g.

H̃ = H0 + [η, Hint]ϕ +
1
2
[η, [η, H0]]ϕ2

= H0 − 16ϕg2H0 + 32ϕ2g2H0 +O(g3)
ϕ=1/4

= (1− 2g2)H0 +O(g3)

Thus the transformed Hamiltonian is described by a renormalized frequency ω = (1− 2g2)ω0.
This equation constitutes the discrete analogue of a flow equation for the Hamiltonian which
will be discussed later (cf. 9.3). Due to the particular simplicity of squeezing a harmonic
oscillator the second order correction can be fully absorbed in a renormalization of parameters.

Transformation of quantum mechanical observables

Similarly to its action onto the Hamiltonian the unitary transformation implies a transfor-
mation of all quantum mechanical observables which constitutes the third step of a unitary
diagonalization approach.

Õ = O + [η,O]ϕ +
1
2

[η, [η,O]]ϕ2 + . . . (6.5)

Making the transformation of creation and annihilation operators explicit up to second or-
der in g allows to represent the action of the diagonalization as a matrix T acting on two-
dimensional vector operators.

�
ã†

ã

�
=

�
1 + g2/2 −g
−g 1 + g2/2

� �
a†

a

�
=: T (2)(g)

�
a†

a

�
(6.6)

The three steps (6.2 - 6.2) establish a diagonal representation and are, altogether, referred to
as the forward transformation. This transformation of the observables can be easily inverted.
Up to second order in g the inverse of T , called the backward transformation, is given by
T−1(g) = T (−g).

Spin-off: The equilibrium occupation

I interrupt the calculation of the nonequilibrium occupation for a short detour in order to
evaluate the equilibrium one. To be more specific, the interest is in the occupation of the inter-
acting ground state with ’physical’ particles (i.e. particles which are defined by the eigenmodes
of the interaction-free Hamiltonian H0). Denoting the interacting ground state by |Ω� the
equilibrium occupation reads NEQU = �Ω| a†a |Ω� = �Ω| U†Ua†aU†U |Ω� = �Ω0| U†a†aU |Ω0�.
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This is unitarily equivalent to the evaluation of a transformed number operator with respect
to the noninteracting ground state |Ω0�. Fortunately, the transformation U which links both
representations is the inverse of the forward transformation. With the shorthand notation
na ≡ �Ω0| a†a |Ω0� up to second order in g NEQU reads

NEQU = �Ω0| ã†ã |Ω0� ≈
�

1 +
g2

2

�2

�Ω0| a†a |Ω0�+ g2 �Ω0| aa† |Ω0�

≈ (1 + 2g2)na + g2 (6.7)

Note that even in equilibrium, i.e. by an adiabatic switching-on of an interaction, the oc-
cupation of the oscillator measured in terms of the original ’particles’ is increased. In the
following this result will be compared with the nonequilibrium occupation obtained after
sudden squeezing.

Time evolution of transformed observables

I resume the calculation for the nonequilibrium case. The forward transformation has already
been completed in (6.2 - 6.2). In a fourth step the transformed observables are time evolved
for all positive times with respect to the transformed Hamiltonian. This, effectively, accounts
for the insertion of time dependent phase factors.

�
ã†(t)
ã(t)

�
=

�
eiHtã†e−iHt

eiHtãe−iHt

�
=

�
eiωtã†

e−iωtã

�

(6.6)

=
�

eiωt(1 + g2/2) −eiωtg
−e−iωtg e−iωt(1 + g2/2)

� �
a†

a

�

Backward transformation

Finally, the time-evolved observables are mapped back to the eigenbasis of the noninteracting
Hamiltonian, completing the scheme of Fig. 5.2. Up to second order in g I obtain

�
a†(t)
a(t)

�
= T−1(g)

�
ã†(t)
ã(t)

�
=

�
eiωt + 2ig2 sin(ωt) −2ig(1 + g2/2) sin(ωt)

2ig(1 + g2/2) sin(ωt) e−iωt − 2ig2 sin(ωt)

� �
a†

a

�

This constitutes a consistent perturbative solution of the Heisenberg equations of motion for
the operators a† and a.

Nonequilibrium occupation

In a final step the time dependent number operator is constructed from the time dependent
creation and annihilation operator in an obvious way. Since time evolution is unitary, the time
evolution of a product of operators is always the product of the time evolved operators which
can be easily checked by inserting unity 1l = U(t, t0)U †(t, t0). Evaluating the expectation
value of the number operator for the initial state |Ω0� leads to the nonequilibrium occupation

NNEQ(t) = �Ω0| a†(t)a(t) |Ω0� (6.8)

= 1 + 4g2(2 sin2(ωt))(�Ω0| a†a |Ω0�+
1
2
)
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The large time limit is obtained by time averaging which is defined for a time dependent
variable A(t) as A := limT→∞

1

T

�
T

0
dtA(t). Then N

NEQ = na + 4g2na + 2g2. Comparing
with (6.7), one finds with ∆N(t) := N(t)− na

∆NNEQ = 2 ∆NEQU +O(g3) ⇒ m
def=

∆NNEQ

∆NEQU

O(g
2
)

= 2 (6.9)

The ratio of the nonequilibrium and the equilibrium occupation, i.e. the mismatch m = 2,
constitutes the main result of this calculation. It states that even in a long-time limit the
nonequilibrium occupation does not approach the equilibrium one. The numerical value of
two can be considered as a consequence of applying two transformations, the forward and
the backward one, such that changes to the occupation due to interaction effects double. In
the following I will show that, although the numerical value gets corrections in order g3, the
mismatch of both occupations is retained for all orders of perturbation theory.

6.3 Exact (Bogoliubov) treatment of squeezing

In a second approach, I follow Cazalilla and implement the diagonalizing transformation
by means of a Bogoliubov transformation; the later can be found in many textbooks, e.g.
[213]. In condensed matter theory it is commonly used to treat interactions quadratic in
creation or annihilation operators. As already mentioned, my aim is to illustrate that the
prior perturbative approach exhibits, up to numerical details, the correct nonequilibrium
behavior of the system.
The exact diagonalization of the squeezing Hamiltonian (6.1) can be constructed from the
action of the (inverse) unitary squeezing operator

S(ξ) = e1/2ξ
∗
a
2−1/2ξ(a

†
)
2

(6.10)

where ξ = reiθ is an arbitrary complex number which will be specified later. Applying
the squeezing operator to the ground state generates squeezed states in analogy with the
displacement operator which maps the ground state onto coherent states. On the other hand,
applying its inverse is suitable to diagonalize the squeezing Hamiltonian.

Exact transformation of observables

I directly start with writing down the action of S(ξ) onto the creation operator and the
annihilation operator.

�
ã†

ã

�
= S†(ξ)

�
a†

a

�
S(ξ) =

=
�

cosh(r) −e−iθ sinh(r)
−eiθ sinh(r) cosh(r)

� �
a†

a

�
=: TF (ξ)

�
a†

a

�
(6.11)

Note that TF (ξ) is not a unitary matrix despite the fact that det(TF (ξ)) = 1.



70 6 Unitary perturbation theory for the squeezed oscillator

Exact Hamiltonian diagonalization

Inserting this transformation into the interacting Hamiltonian (6.1) results in a sum of four
terms:

H̃ = (ã†)2 ×
�
eiθ cosh(r) sinh(r) + g cosh2(r) + ge2iθ sinh2(r)

�
+ h.c. +

ã†ã ×
�
cosh2(r) + sinh2(r) + 4g cos(θ) cosh(r) sinh(r)

�
+

1l × [2 cos(θ) cosh(r) sinh(r)]

To achieve a diagonal Hamiltonian we demand that the terms quadratic in ã† and ã should
vanish. This fixes the free parameter ξ := reiθ = r. For small interactions |g| ≤ 1/2
real solutions with θ = 0 can be found. With sinh(2r) = 2 sinh(r) cosh(r), cosh(2r) =
sinh2(r) + cosh2(r) the real parameter r can be linked to the interaction

tanh(2r) = −2g

For small values of g � 1/2 the expansion arctanh(x) ∼ x for x � 1 implies that r ≈
−g. Then the nonperturbative Bogoliubov transformation coincides with the perturbative
approach in (6.2), with S(ξ(g) ≈ −g) = eη(g)ϕ

��
ϕ=1/4

. The diagonal Hamiltonian shows a
renormalized frequency ω = cosh(2r)+2g sinh(2r) compared to the original frequency ω0 = 1
in (6.1). For all values of g < 1/2 the renormalized frequency is positive and the Hamiltonian
is bounded from below. Its dependence on g is plotted in Fig. 6.1. In the limit of small g we
find for the renormalized frequency its perturbative value ω = (1− 2g2).

Exact equilibrium occupation

Again, I first calculate the expectation value of the equilibrium number operator, using
cosh2(r)− sinh2(r) = 1

NEQU = �Ω| a†a |Ω� = �Ω0| ã†ã |Ω0�
= cosh2(r) �Ω0| a†a |Ω0�+ sinh2(r) �Ω0| aa† |Ω0�

= na + 2 sinh2(r)
�

na +
1
2

�
(6.12)

Again, the perturbative limit for small g agrees with (6.7).

Exact nonequilibrium occupation

For the nonequilibrium occupation I solve the Heisenberg equations of motions for the creation
and annihilation operators in the (now exact) eigenbasis of the Hamiltonian. The forward
transformation of these operators is given by (6.11). Again, I complete the scheme in Fig. 5.2
and compute the time evolution of the transformed operators with respect to the diagonalized
Hamiltonian, i.e. with respect to the renormalized frequency ω. The final backward transfor-
mation is given by TB(r) = TF (−r). These three steps can be easily denoted as subsequent
matrix multiplications:
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�
a†(t)
a(t)

�
=

�
cosh(r) e−iθ sinh(r)

eiθ sinh(r) cosh(r)

� �
e−iωt 0

0 eiωt

� �
cosh(r) −e−iθ sinh(r)

−eiθ sinh(r) cosh(r)

� �
a†

a

�

=
�

e−iωt cosh2(r)− eiωt sinh2(r) i sin(ωt)e−iθ sinh(2r)
−i sin(ωt)eiθ sinh(2r) −

�
eiωt cosh2(r)− e−iωt sinh2(r)

�
� �

a†

a

�
(6.13)

=
�
cos(ωt)

�
1 0
0 −1

�
− i sin(ωt)

�
cosh(2r) −e−iθ sinh(2r)

eiθ sinh(2r) cosh(2r)

���
a†

a

�
(6.14)

Composing the number operator reads

NNEQ(t) = �Ω0| a†(t)a(t) |Ω0�
= �Ω0|

��
e−iωt cosh2(r)− eiωt sinh2(r)

�
a† + i sin(ωt)e−iθ sinh(2r)a

�
×

�
−i sin(ωt)eiθ sinh(2r)a† −

�
eiωt cosh2(r)− e−iωt sinh2(r)

�
a
�
|Ω0�

Only the particle number conserving terms ∼ a†a, aa† contribute and such that the nonequi-
librium occupation reads

NNEQ(t) = na +
�
2 sin2(ωt)

�
sinh2(2r)

�
na +

1
2

�
(6.15)

Again, the long time limit is taken as a time average. This implies that the renormalization
of the frequency does not affect the occupation at late times and may be neglected.

NNEQ = na + sinh2(2r)
�

na +
1
2

�
(6.16)

Nonperturbative relation between the equilibrium occupation and the nonequi-
librium occupation

Comparing (6.16) with (6.12) one observes that for the squeezing Hamiltonian the relation
between the equilibrium and nonequilibrium occupation is given by

m(r(g)) =
∆NNEQ

∆NEQU
=

sinh2(2r)
2 sinh2(r)

(6.17)

The precise numerical value of the ratio depends via r on the coupling strength g and is
plotted in Fig. 6.1. Note that it is increasing with growing interaction strength. A similar
growing behavior of m can be found from a numerical analysis of quenches within the Fermi
liquid phase of the Hubbard model. There it shows up as an excessive reduction of the
quasiparticle residue below the values predicted in a perturbative calculation (cf. Fig. 11.2 ).
Expanding sinh(r) ≈ r + r3/3! + O(r5) confirms that in the perturbative limit this relation
approaches a factor of two. The precise numeric value of the ratio, however, depends on the
coupling strength g.
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Figure 6.1: This plot illustrates the nonperturbative ratio m(r(g)) = sinh
2
(2r(g))

2 sinh
2
(r(g))

in (6.17)
of the nonequilibrium and the equilibrium correction to the noninteracting occupation due
to interaction effects. The real solution for the diagonalization transformation ξ(g) = r(g) is
valid only for g < 1/2. In the limit of small interaction the factor m = 2 is exact. Additionally
the renormalized frequency ω(g) of the diagonal Hamiltonian is shown (dashed line).



Chapter 7

Generic mismatch of equilibrium
and nonequilibrium expectation
values for one-particle systems

As the discussion of the squeezed oscillator has shown a perturbative approach to quenched
one-particle systems captures important features of their nonequilibrium occupation. First
of all this is the mismatch between an equilibrium and a nonequilibrium expectation value,
namely that of the occupation. In leading order perturbation theory the corresponding ratio
acquires a value of m = 2.
The following chapter intends to generalize this observation to a large class of weakly interact-
ing one-particle model systems and to more general observables. The statement is formulated
as a theorem proven in two ways to illustrate the origin of the mismatch and its relation to
unitary perturbation theory. The central point of the proof is a dephasing argument which
cannot näıvely be extended to the case of generic many-body systems. Therefore the following
statements are rigorously shown for one-particle systems only.

7.1 Prerequisites

Firstly the prerequisites for the following theorem are listed. Reference to them will also be
in the discussion of many-body systems in chapter 12.

Demands on the Hamiltonian

Let me consider nondegenerate quantum system with a discrete energy spectrum only and
let the Hamiltonian model a weak quantum quench. This implies that it can be split up into
a time-independent part H0 and a time dependent part which is coupled to the earlier by a
weak interaction strength g. The time dependence of a quantum quench is modeled by the
Heaviside function Θ(t), and the additionally switched on operator by Hint.

H = H0 + g Θ(t)Hint (7.1)

The ground state of H may be denoted by |Ω�, that one of H0 by |Ω0�. To avoid trivial cases
I assume that H0 and Hint do not commute. Moreover, it is assumed that nondegenerate
perturbation theory with respect to the noninteracting ground state is applicable.
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Demands on the observables

Furtheron, let O be a quantum mechanical observable which does not depend explicitly on
time and obeys the following relations:

�Ω0| O = O |Ω0� = 0 (7.2)
[O, H0] = 0 (7.3)

Then its time evolution in a Heisenberg picture O(t) is generated solely by the Hamiltonian
(7.1). Time evolution is studied from an arbitrary small negative time onwards.

Definitions and notation

(i) I define as the nonequilibrium expectation value of the observable O in the quenching
scenario the long-time limit of the time-averaged quantum mechanical expectation value
of the time evolved observable in the initial state (the noninteracting ground state). It
is denoted by the overlined observable.

O := lim
T→∞

1
T

�
T

0

dt �Ω0| O(t) |Ω0� (7.4)

(ii) The equilibrium expectation value of the observable O is defined by its quantum me-
chanical expectation value in the interacting ground state �Ω| O |Ω�.

(iii) The mismatch of the nonequilibrium and the equilibrium expectation value of the ob-
servable O in the quenching scenario is defined as their ratio

m :=
O

�Ω| O |Ω� (7.5)

7.2 Theorem

Then in perturbation theory up to second order the nonequilibrium expectation value equals
two times the equilibrium expectation value of the observable.

O O(g
2
)

= 2 �Ω| O |Ω� (7.6)

This is obviously equivalent to the statement m = 2 in second order perturbation theory.

7.3 Proof of the Theorem

I will give two proofs to this theorem. The first one is intended to motivate the physical
origins of the prerequisites by relating it to the more conventional picture of overlapping
eigenstates. This allows to conclude on its general relevance. The second proof of the theorem
is constructed in analogy to unitary perturbation theory and aims at a clearer understanding
of how this method displays the finding of a mismatch of nonequilibrium and equilibrium
expectation values.
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7.3.1 First proof of the theorem by analyzing overlap matrix elements

Eigenstate representation: Firstly, I introduce eigenbasis representations for the nonin-
teracting Hamiltonian H0 {|m�|m ∈ N0}, the interacting Hamiltonian {|M�|M ∈ N0} and

the observable {|j�| j ∈ N0} with the eigenvalues �0m
PT≈ �M (for m = M) and Oj , respectively.

The requirement (7.3) implies the existence of a common eigenbasis of the observable O and
the noninteracting Hamiltonian H0 such that I can assume pairwise coinciding eigenvectors
|m� = |j�. For clarity, however, I will keep a separate notation. The equilibrium ground state
expectation value is rewritten by inserting unity.

�Ω| O |Ω� =
�

j

Oj |�j |Ω�|2 (7.7)

An analogous evaluation of the time dependent expectation value by inserting unities, ex-
tracting time dependent phase factors and taking their time average leads to

�Ω0| e−iHtOeiHt |Ω0� =

= lim
T→∞

1
T

�
T

0

dt
�

MM �jj�

�Ω0| e−iHt |M� �M |j� �j| O
��j�

� �
j�

��M �
� �

M �
�� eiHt |Ω0�

= lim
T→∞

1
T

�
T

0

dt
�

MM �jj�

Oj�e
i(�

M�−�M )t �Ω0|M� �M |j�
�
j|j�

� �
j�

��M �
� �

M �|Ω0

�

Up to a relative phase, the interacting eigenstates |M� are invariant under time evolution.
Therefore, overlap matrix elements are discussed with respect to these states.

Dephasing. Now a dephasing argument is applied, reading off that only terms with van-
ishing phase factors contribute to the long-time average. This constrains �M � = �M . As
non-degeneracy of energy levels has been demanded, it implies that all contributions vanish
except those for coinciding quantum numbers M � = M .

�Ω0| e−iHtOeiHt |Ω0� =
�

Mj

Oj |�M |Ω0�|2 |�j |M�|2 (7.8)

The first set of matrix elements {�M |Ω0�}M describes a decomposition of the initial state in
terms of Hamiltonian eigenstates. This is a statement about the particular initial conditions
of the quench problem. Since I discuss a quench from the noninteracting Hamiltonian this is
a decomposition of the noninteracting ground state in terms of interacting eigenstates.
The second set of matrix elements {�j |M�}M,j encapsulates the overlap between the eigen-
basis of the observable and the eigenbasis of the Hamiltonian. Since (7.3) holds one can work
in the common eigenbasis of the observable and the noninteracting Hamiltonian. Then the
overlap between the eigenbasis of the interacting and of the noninteracting Hamiltonian is
discussed.

Perturbative evaluation of overlap matrix elements. In both cases the matrix ele-
ments can be evaluated by applying perturbation theory to the Hamiltonian H = H0 + Hint,
treating Hint as a small perturbation. Making this explicit to leading order reads

|�m |M�|2 PT=

�
1 for M = m��� �m|Hint|M�

(�
0
M
−�0m)

���
2

for M �= m
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As (7.2) implies O0 = 0 the direct overlap between the interacting and the noninteracting
ground state does not contribute to the sums in both (7.7) and (7.8); hence they are at least
second order in g. We compare the right hand side of both equations for any fixed value of j.
In the nonequilibrium case, second order contributions require a resonance condition for the
involved quantum numbers, M = j or M = 0.

|�M |Ω0�|2 × |�j |M�|2 PT=
�
|�J |Ω0�|2 × 1 for M = j =: J
1× |�j |Ω�|2 for M = 0

Because of the symmetry |�J |Ω0�|2 = |�j |Ω�|2 in leading order perturbation theory, both
contribute equally |�j |Ω�|2 to the sum over M . Then in second order perturbation theory
holds

�Ω0| e−iHtOeiHt |Ω0� = 2
�

j

Oj |�j |Ω�|2 = 2 �Ω| O |Ω�

and the theorem is proven.

Discussion of the first proof. The first proof highlights the important rôle of dephasing
arguments as well as the particular nature of the observable which is expressed by the demand
(7.3). Only the existence of a common eigenbasis allows for the application of perturbation
theory for the Hamiltonian to study overlap matrix elements of the eigenstates of the observ-
able with eigenstates of the total Hamiltonian. This observation emphasizes that a mismatch
between nonequilibrium and equilibrium expectation values can be also expected if H0 is not
a quadratic Hamiltonian. Then, however, suitable observables have to be found which may
be different from the occupation.

7.3.2 Second proof of the theorem by applying unitary perturbation theory

The second proof of the theorem is constructed in analogy to unitary perturbation theory
and aims at a clearer understanding of this approach and its particular merits. Hence I follow
the scheme presented in Fig. 5.2 and sketch the same steps of a calculation based on unitary
perturbation theory which will re-appear in the discussion of the quenched Fermi liquid.

Definition of a unitary transformation. Here a single unitary transformation U†
s = eηs

is defined by its anti-hermitian generator ηs = −η†s, demanding that its application to the
Hamiltonian disposes the interaction part of the Hamiltonian to first order of g. Expanding
its unitary action onto the Hamiltonian

H̃ = eηsHe−ηs = H0 + Hint + [ηs, H0]� �� �
O(g)

+ [ηs, Hint] +
1
2

[ηs, [ηs, H0 + Hint]] +O(g3) (7.9)

hence allows to read off an implicit definition of ηs by

[ηs, H0] =−Hint

which justifies the assumption ηs ∼ O(g) in (7.9). Then the transformed Hamiltonian equals
the free Hamiltonian up to second order corrections.
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Computation of the interacting ground state expectation value. In the following I
exploit a formal coincidence which holds for all systems with a nondegenerate single ground
state: For any such Hamiltonian, the diagonal representation of the interacting ground state
in terms of the diagonal degrees of freedom can be formally identified with the ground state
of the noninteracting Hamiltonian; thus they can be related by U†

s |Ω� = |Ω0� or, to leading
order, by |Ω� = (1 − ηs) |Ω0� + O(g2). As every Hamiltonian can be diagonalized, this does
not pose any further restrictions. Hence with (7.2)

�Ω| O |Ω� = �Ω0| U†
sOUs |Ω0�=− �Ω0| ηsOηs |Ω0�+O(g3) (7.10)

The simple diagonal representation of the interacting ground state motivates the application
of operator-based transformation schemes like the flow equation method in equilibrium since
correlation effects are, formally, fully transferred from the description of an interacting ground
state to the the particular form of transformed observables. Thus one can avoid to discuss
the full complexity of the interacting ground state and restrict to those correlation effects
which become actually relevant for a particular observable. The transformation U†

sOUs can
be performed in the most convenient way.

Real-time dynamics of the observable after the quench. For the evaluation of the
nonequilibrium expectation value O I start with the sequential application of three unitary
transformations. Firstly, at time t = 0 the observable is represented approximately in the
energy-diagonal eigenbasis of the Hamiltonian.

Õ(0) = O(0) + [ηs, O(0)] +
1
2

[ηs, [ηs,O(0)]] +O(g3) (7.11)

Now we apply unitary time evolution to the transformed observable with respect to H̃ =
H0 +O(g2). This is time-dependent perturbation theory to first order.

Õ(t) = e−iH0tÕ(0)eiH0t (7.12)

Then one inserts (7.11) into (7.12) and attributes the time dependence to the generator
ηs → ηs(t) = e−iH0tηs(0)eiH0t. This is possible because of (7.3) and ensures that (7.2) holds
for all times. Finally, the backward transformation ηB = −ηs(0) is applied.

O(t) = Õ(t)− [ηs(0), Õ(t)] +
1
2

[ηs(0), [ηs(0), Õ(t)]] + O(g3)

= O(0) + [ηs(t),O] +
1
2

[ηs(t), [ηs(t),O]]− [ηs(0),O]

− [ηs(0), [ηs(t),O]] +
1
2

[ηs(0), [ηs(t),O]] + O(g3) (7.13)

One evaluates the expectation value of O(t) in the initial state |Ω0�. Due to (7.2) many
contributions vanish.

�Ω0| O(t) |Ω0� =
�

2
�
−1

2

�
ηs(t)Oηs(t) + ηs(0)Oηs(t) +ηs(t)Oηs(0)− 2

�
1
2

�
ηs(0)Oηs(0)

�

Ω0

(7.14)
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Dephasing. Inserting unity 1l =
�

m
|m� �m| in terms of eigenstates of the noninteracting

Hamiltonian H0 shows that the second and the third term in (7.14) dephase and do not
contribute to the long time average:

�Ω0| ηs(0)Oηs(t) |Ω0� =
�

m

�Ω0| ηs(0)O |m� �m| e−iH0tηs(0)eiH0t |Ω0�

=
�

m

Omei(�m−�0)t �Ω0| ηs(0) |m� �m| ηs(0) |Ω0� (7.15)

For m = 0 equation (7.2) implies O0 = 0. As I have assumed a nondegenerate Hamiltonian
H0 one obtains

�Ω0| ηs(0)Oηs(t) |Ω0� = �Ω0| ηs(t)Oηs(0) |Ω0� = 0

On the other hand, making use of the commutation of H0 and O (7.3)

�Ω0| e−iH0tηse
iH0tOe−iH0tηse

iH0t |Ω0� = �Ω0| ηs(0)Oηs(0) |Ω0�

Consequently, one arrives at O = −2 �Ω0| ηs(0)Oηs(0) |Ω0�. With (7.10) the theorem is
proven.

Discussion of the second proof. The second proof explains the factor of two as the ac-
cumulation of equal second order corrections both from the forward and from the backward
transformation. The drop-out of transient or oscillatory behavior in (7.14) due to time averag-
ing is more explicit. This depicts the major merit of the transformation scheme: Fundamental
correlation-induced effects – as it is, for example, the difference between the interacting and
the noninteracting ground state– enter a perturbative study of time evolution performed in
an energy-diagonal representation already as time-independent offsets. That their influence
is stronger in nonequilibrium than in equilibrium can be seen directly.

7.4 Corollary to the Theorem regarding the kinetic energy of
quenched systems

In many systems the noninteracting part H0 of an interacting Hamiltonian H represents the
kinetic energy for which the following relation holds1:

ENEQ, KIN = 2EEQU,KIN

.

Proof: Define ENEQ, KIN(t) := �Ω0|H0(t) |Ω0� and apply the theorem for O = H0.

The above theorem explains the factor 2 in the ratio between nonequilibrium and equilibrium
expectation values as a rather general observation in systems with discrete energy spectra.
In the following I will show how this factor 2 appears for an interaction quench in a Fermi
liquid with continuous spectrum and what rôle it plays for the nonequilibrium dynamics.

1Note that the increase in the kinetic energy beyond its value for the interacting ground state, however,
does not necessarily indicate its thermal distribution. Only the later would describe heating effects.



Chapter 8

Flow equations

The cornerstone for the application of unitary perturbation theory to a quantum model is
the construction of a sufficient approximation of the diagonalizing transformation. For the
one-particle quenched oscillator it was possible to simply write down a single unitary transfor-
mation suited for this purpose and to show that a perturbative approach leads to consistent
results. Yet the diagonalization of many-partice systems is, in general, more intricate. In
some cases, exact diagonalization using e.g. Bethe ansatz or bosonization techniques is feasi-
ble. For other systems, the flow equation method provides a generic frame for an approximate
treatment.
Conceptually, it has been inspired by Jacobi’s method for the simple numerical solution of
coupled linear equations [238], which became an established and widely available tool for the
numerical diagonalization of matrices in the 20th century. Therefore, approaches comparable
with the flow equation technique appeared first in numerical mathematics [239–241] where
they are known as similarity transformations. In 1993 Glazek and Wilson [242, 243] applied it
to condensed matter problems, calling it Similarity renormalization scheme. Independently,
Wegner studied Flow equations for Hamiltonians [244]. As he is one of my scientific ancestors,
I will follow his way of formulating the method.
In the meantime, the flow equation technique has been applied to a great variety of many-
body systems both in equilibrium and nonequilibrium. An extensive list of model systems
and problems which have been tackled by the flow equation method can be found in [245] and
a comprehensive textbook review is available [246]. Quite recently, it has been successfully
applied to nonequilibrium problems [233, 235, 247, 248].

8.1 General introduction

The flow equation method rests on the grounds of many-body quantum theory. A band
model of one-particle states is described by the kinetic part of the Hamiltonian which is
diagonal in a momentum representation. The large (infinite) number of degrees of freedom
forms a continuous band of one-particle energies �k. Thus in the thermodynamic limit of
large particle number �k can be treated as a continuous parameter. Interactions impose
couplings between states at different energies and enter the Hamiltonian by Hint. They can
be understood as two-, few- and many-particle scattering processes which depict joint in-
and out- scattering from and into one-particle states; they are represented by interaction
matrix elements and characterized by the corresponding difference in one-particle energies
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∆� =
�

i=out
�i−

�
j=in

�j . If for a process ∆� = 0 holds the corresponding matrix element is
called energy diagonal.

8.1.1 Renormalization group ideas.

Although for systems at low temperature only low-energy properties are observed, high energy
interaction terms influence the low energy behavior and cannot be neglected. For instance, in
condensed matter problems on a regular lattice only lattice momenta within a Brillouin zone
are relevant. The explicit calculation of further modes is usually not needed and schemes have
been developed to include their influence on low energy observations by the joint modification
of low-energy coupling constants and the elimination of high energy modes. This can be done
continuously for a small shell of highest energy modes, typically by integrating those out in
a path integral or by a similar coarse-graining transformation. By this procedure automat-
ically different energy scales are separated and treated one after the other. The continuous
modification of the low energy parameters can be depicted as a flow in the parameter space of
all Hamiltonians with similar structure. All Hamiltonians represented by parameters on the
trajectory of the flow describe the same low energy physics. This is, in essence, the renormal-
ization group approach, which became a standard method for the treatment of many-body
systems and has been widely reviewed [249].

8.1.2 Philosophy of the flow equations.

Although it is influenced by renormalization group ideas the flow equation method follows a
different philosophy: While RG methods intend to reduce the complexity of a given Hamilto-
nian by constructing an effective Hamiltonian in a restricted low-energy sector of the original
Hilbert space which still describes the same low energy physics, the flow equation method does
not downsize the effective Hamiltonian at all. No modes are eliminated and, in principal, no
restriction to low energy behavior takes place. Instead, a continuous sequence of infinitesimal
unitary transformations is applied to redistribute the influence of interactions in a controlled
way onto the form of the considered observables. The flow equation transformation is set up
in such a way that its exact implementation would lead to a Hamiltonian which is precisely
diagonal in energy space. This implies that all interparticle correlations induced by energy
nondiagonal interaction processes, i.e. processes for which ∆� �= 0, are not longer described
by the Hamiltonian but by a composite form of formerly simple observables. Energy scale
separation holds with respect to the transfer energy ∆� in that sense that by the action of the
infinitesimal unitary transformations those interactions connecting states with largest energy
distance ∆� are erased first. Simultaneously, the value of the other Hamiltonian parameters
are renormalized. With the ongoing of the continuous transformation their change can be
described as a flow; it is parametrized by a scalar, nonnegative and monotonously growing
flow parameter B ∈ [0,∞[ which can be related to an energy scale ΛB = 1/

√
B. B = 0

describes the initial setup of the problem, B →∞ corresponds to the ”most diagonal” repre-
sentation which is achievable by the flow equation method. Contrary to an renormalization
group scheme the Hamiltonian flow itself is a rather meaningless object; it only specifies to
what extend a particular setup of the method actually reaches Hamiltonian diagonalization
and serves, in this sense, as a feature to control the method. Yet together with the flow of
related parameters in the observables it provides valuable insight into the energetic structure
of the model.
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8.1.3 Limited diagonalization of the flow equation method.

However, the flow equation transformation does not fully diagonalize the Hamiltonian with
respect to the many-particle Hilbert space. This is a disadvantage caused by technicalities
of the method. It implies that correlations imposed by energy diagonal processes are always
described by a many-body energy-diagonal Hamiltonian H̃ = H̃0 + H̃int. In the context of
unitary perturbation theory this requires a perturbative treatment of the time evolution gen-
erated by H̃int and diminishes the particular use of the transformation scheme. Therefore, a
flow equation implementation of the diagonalizing transformation leads to a remaining non-
trivial time evolution; its perturbative treatment may produce secular terms. Their relevance
and effects on the dynamics of a particular observable have to be individually discussed for
every observable.
This problem is most relevant for one-dimensional systems where a linear dispersion relation
is applicable. Then energy and momentum are equivalent; diagonalizing a Hamiltonian up to
energy diagonal terms then does not diagonalize in the momentum sector of the Hilbert space
and, consequently, does not provide a sufficient diagonalization. A näıve extension of the
method and the observations presented here for a Fermi liquid to a one-dimensional system
is therefore not possible.

8.2 Definition of the infinitesimal transformations

8.2.1 Setup of a differential flow equation for observables

Infinitesimal unitary transformations U(B0 +dB,B0) which map a system at one value of the
flow parameter B = B0 onto a differentially close other value B = B0 + dB can be generated
by a generator η(B0) which is an element of the corresponding Lie algebra. Hence it is linked
to an infinitesimal transformation via U(B0 + dB,B0) = exp[η(B0)dB].
In general, the generator does not commute with itself at different points of the flow, i.e.
[η(B), η(B�)] �= 0 for B �= B�. This requires to consider B-ordering (denoted by the ordering
operator TB) when a finite unitary transformation has to be constructed from infinitesimal
steps, in full analogy to time ordering in a perturbative approach to quantum time evolution.

U(B,B0) = TBe
R

B

B0
dB

�
η(B

�
) (8.1)

Because of the difficulties involved with B-ordering this explicit form of the transformation
will never be used. Instead, the differential action of the unitary transformation applied to a
particular observable O can be, to leading order in a Baker-Campbell-Haussdorff-expansion,
expressed as a differential equation

O(B0 +dB) = U†(B0 +dB,B0)O(B0)U(B0 +dB,B0) = O(B0)+dB[η(B0),O(B0)]+O(dB2)

In the infinitesimal limit dB → 0 this leads to the operator flow equation for an observable

dO(B)
dB

= [η(B),O(B)] (8.2)

This holds for all observables, including the Hamiltonian itself. The later, however, has a
distinguished rôle as it sets the decisive constraints for the diagonalization transformation.
However, since only the initial Hamiltonian and, to a lesser degree, the final, approximately
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energy-diagonal Hamiltonian are fixed boundary conditions there is a large degree of freedom
how the continuous sequence of infinitesimal unitary transformations is actually constructed.
This allows for the implementation of other desirable features like energy scale separation
or a flexible adaption of the method to particularities of a discussed observable. Energy
scale separation, for instance, implies that during the diagonalization process deeply inelastic
scattering processes (i.e. |∆�| � 0) are suppressed already at small values of the flow pa-
rameter. Successively, those with lower energy differences are treated while elastic scattering
processes (’energy-diagonal ones’) remain unchanged. This links the flow equation method to
the renormalization group and allows to study the renormalization flow of the Hamiltonian
parameters.

8.2.2 Canonical generator.

The definition of the generator of each infinitesimal unitary transformation for any real value of
the flow parameter between zero and infinity defines the full unitary transformation. Wegner
[244] showed that energy scale separation can be achieved by the canonical generator which
represents a differential form of equation (6.4).

η(B) = [H0(B), Hint(B)] (8.3)

It is obviously anti-hermitian since both the noninteracting Hamiltonian H0 and the full
Hamiltonian H are hermitian.

8.2.3 Intrinsic flexibility and fine-tuning of the method.

This definition, however, still does not exhaust the full flexibility of the method. Now the
decisive conceptual point lies in the split-up of the Hamiltonian into a noninteracting H0(B)1

which denote and an interacting part Hint(B) at any point of the flow. For values of B
different from the starting point B = 0 this is to a certain degree arbitrary and there is no
plausible argument to justify a particular choice a priori. Instead, one encounters a major
feature of the flow equation technique, namely the strong interdependence between initial
definitions, truncations of intermediate expressions and final results for the Hamiltonian and
other observables. This allows to systematically fine-tune the method for many particular
questions with respect to the particular energetic structure of the Hamiltonian and the nature
of the discussed observable. I think that much of the success of the flow equation method
is owed to this intrinsic flexibility. It may be reminiscent of a self-consistent or iterative
procedure which is effective both in a full numerical implementation of the method and in
analytical approximations. For instance, it is very typical to use the explicit behavior of a
nth order result of a flowing coupling constant as a parametrization for the computation of
its (n+1)th order correction.

8.3 Representations of observables and normal ordering.

A suitable approximate representation of observables connects the differential action of an
infinitesimal unitary transformation as defined by the flow equation (8.2) to the actual prop-
erties of the generated flow. Therefore, it is gained from an iterative behavior, starting with

1The notation H0(B) might be misleading. It does not refer to the evolution of the observable H0(B)
(which describes the kinetic energy) under the flow. See the following section for details.
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an initial ansatz, studying the flow of its components and the generation of higher order terms
due to the commutator in (8.2) and re-defining the initial ansatz according to the observations
made. This allows to identify the most relevant implications of a diagonalizing transformation
onto the observables.

8.3.1 Representations of flowing observables

In order to provide a frame for such a representation, a difference between physical observables
and operators linked to a physical statement made in the initial basis representation on the
one hand and a formal operator basis on the other hand must be made. The first class
includes, for instance, the number operator Nk (an observable), the Hamiltonian H (read
as an observable for the total energy) or the creation operator of a physical electron in the
momentum mode k, C†

k
(no observable). In this thesis these physically meaningful objects

are denoted by calligraphic letters. Although their physical meaning persists throughout the
different unitary representations, their representation depends on the flow parameter and –in
the context of unitary perturbation theory– on time; this is indicated by making a B- or time
dependence explicit, e.g. C†

k
(B; t).

On the other hand, a formal operator basis is introduced and denoted by formal operators
which do not explicitly flow. They are denoted by Latin letters and represent one-, two- and
many-particle operators in the language of second quantization Tr ∈ {c†

i
, cj , c

†

i
cj , . . .}. For

zero flow and zero time both representations match, i.e. Ck(B = 0, t = 0) = ck. Beyond that
point, scalar flowing coupling constants g(B; t) absorb the unitary and the time dynamics
of the discussed physically meaningful object. Their flow is discussed by the flow equation
method.

O(B; t) =
�

r∈N0

gr(B; t) :Tr: (8.4)

Note that the B-dependent representation may be very different from the initial representation
of a simple observable. While, typically, all but one of the flowing coupling constants gr vanish
at B = 0, higher order terms acquire nonzero weight under the flow. In most practical cases,
this cannot be dealt with exactly but requires truncations. These truncations can be made
systematically by perturbative arguments, discussing the dependence of the flowing coupling
constants on an expansion parameter.

8.3.2 Normal ordering and truncations

The representation of an observable according to (8.4) suggests an interpretation as a split-
up into one-, two- and many-particle contributions. Normal ordering the operators Tr with
respect to a particular state |ΨN � allows for a clear separation of these aspects. This can be
easily seen:

Wegner formular for normal ordering of operator products. Following Wegner [250],
normal ordering of higher products A(a)B(b) of elementary fermionic operators al, bl ∈ {c†l , cl}
can be recursively defined; one only assumes that Wick’s theorem holds, the ground state
correlators read Gkl = �akal� and the anticommutator relates to it via {ak, al} = Gkl + Glk.

:A(a): :B(b): = :e
P

Gkl
∂
2

∂a
k

∂b
l A(a)B(b):

����
b=a

(8.5)
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The operators ck and the derivatives ∂/∂ak are both Grassmannian, producing a minus sign
under interchange. In particular, ∂ak/∂al = δk

l
− ak∂/∂al.

Explicit example for common fermions. For fermions, only two correlators do not
vanish: nk = �c†

k
ck� and n−

k
= 1 − nk = �ckc

†

k
�. Expanding the exponential produces all

contractions according to Wicks theorem for known individual normal ordering of :A(a): and
:B(b):. Making this explicit shows that due to normal ordering all lower rank contractions
present in higher order operator products (e.g. by ’coincidences of indices’ between creation
and annihilation operators) are effectively removed; for instance,

:c†
1�c1c

†

2�c2: = c†
1�c1c

†

2�c2 − :c†
1�c1: δ2

�
2 n2 − :c†

2�c2: δ1
�

1 n1 + :c†
2�c1: δ1

�
2 n2

− :c†
1�c2: δ2

�
1 (1− n1)− δ1

�
2 δ2

�
1 n2(1− n1) + δ1

�
1 δ2

�
2 n1n2

Obviously, normal ordering extracts lower rank contractions from the ’bare’ two-particle term
such that only four-point correlations are retained in the normal ordered lhs. This illustrates
that with respect to the particular state |ΨN � (8.4) describes a hierarchy of strictly separated
one-, two- and many-body features.

Normal ordering and truncation. Although normal ordering only redistributes the ef-
fects of certain lower rank contractions, it becomes decisive in combination with truncations
of higher many-body terms in (8.4). There only the truncation of normal-ordered terms can
be justified since ’bare’ higher many-body contain a hidden contribution to lower many-body
processes. This feedback is made explicit by normal ordering and can be properly included
into a flow equation analysis. It is the source of couplings between the differential flow equa-
tions for the coupling constants which I will set up shortly; hence normal ordering is vital for
the flow equation method.

Normal ordering with respect to which state? Naturally, the question arises with
respect to what state |ΨN � normal ordering should be imposed. Since this is part of an
approximation scheme the best justification for whatever choice has been made is a posteriori.
For the analysis of a Fermi liquid which is presented here a pronounced perturbative point of
view is taken. For every step of the flow it is again grounded on the interplay of eigenmodes
defined by the noninteracting part of the Hamiltonian H0(B), a perturbative shift of their
occupation under the influence of Hint(B) and a (negligible) renormalization of the mode
frequencies �k(B). Since this view should be consistently reflected in the arrangement of any
perturbation series expansion, normal ordering with respect to the current ground state of
H0(B) is both technical simple and plausible. It ensures that all aspects of perturbation
theory are related to a single common reference state |ΨN (B)� = |Ω0(B)�. Under the flow,
this implies a constant re-adjustment of the normal ordering procedure. However, it can be
easily implemented since the ground state of a noninteracting Hamiltonian always corresponds
to a filled Fermi sea in suitable degrees of freedom. Hence the correlator remains invariant
nk(B) = �Ω0(B)| c†

k
ck |Ω0(B)� = nk(B = 0) = nk.

It may be pointed out that the successful application of the flow equation method to a
nonequilibrium Fermi liquid can be traced back to the joint simplicity of H0(B) = H0(B = 0)
and nk(B) = nk(B = 0).
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8.4 Continuous sequence of infinitesimal transformations

Inserting (8.4) into (8.2) allows to separate the flow equation for the observable into a
set of coupled differential equations for the flowing coupling constants. This requires that
the representation (8.4) already includes all terms which are generated by the commutator
[η(B),O(B)]. In practice, however, one constructs this representation by starting with the
initial form of the observable and adding all those terms to an ansatz (8.4) which are influen-
tial in the final result. Again, this may require an iterative procedure to achieve consistency
on a certain fixed order of perturbation theory.
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Part II

Quench of a Fermi liquid

87





Chapter 9

The flow equation transformation
for the Hubbard Hamiltonian

In the following chapter the flow equation method is applied to the Hubbard Hamiltonian.
The later is adapted appropriately, firstly by promoting the parameters in the Hamiltonian to
’flowing’, B- and momentum dependent variables and, secondly, by imposing normal ordering
with respect to the flowing ground state |ΨN (B)� = |Ω0(B)� of H0(B). Thus one particle
properties hidden in two-particle scattering terms are effectively reallocated to the kinetic
energy and a clear separation of one- and two-particle features in the Hamiltonian is achieved.
Translation invariance ensures that there is no potential scattering term like Pk�kc

†

k�σckσ; hence
the one-particle term is already energy diagonal. In the following only times after the quench
(t > 0) are considered.

H(t > 0;B) =
�

k∈K,σ∈{↑,↓}

�k(B) :c†
kσ

ckσ: +
�

1�12�2∈K

U1�2�12(B) :c†
1�↑c1↑c

†

2�↓c2↓: δ1
�
+2

�

1+2
(9.1)

9.1 Construction of the canonical generator

The construction of the canonical generator demands for a split-up of the Hamiltonian into
a noninteracting and an interacting part. In a first place it may be taken in the obvious way,
assuming that it holds for all values of B. This is, certainly, a plausible approximation at
the beginning of the flow, i.e. for small values of the flow parameter. Its validity throughout
the flow, however, must be justified a posteriori by studying the renormalization flow of the
Hamiltonian.

9.1.1 Implicit definition of the canonical generator

Inserting the kinetic and the interaction part of (9.1) into (8.3) makes the canonical generator
more explicit. With ∆�1�12�2(B) = �1�(B)− �1(B) + �2�(B)− �2(B) it reads

η(B) =
�

1�12�2

U1�12�2(B) ∆�1�12�2(B) :c†
1�↑c1↑c

†

2�↓c2↓: δ1
�
+2

�

1+2
(9.2)

This is still an implicit definition of the generator since the functional form of the flowing
interaction strength is not known explicitely. Hence an iterative approach to the correct and
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consistent definition of the generator is necessary. It starts with a first parametrization of the
flowing coupling constants in (9.2). In a second step the examination of the renormalization
flow of the Hamiltonian leads to an improved parametrization.

9.1.2 Leading order renormalization flow of the Hamiltonian

Parametrizing the canonical generator by the initial values �k(B) I= �k(B = 0) and U1�12�2(B) I=
U1�2�12(B = 0) = U defines the generator as a first order object in U . Then, to leading order,
the flow equation for the Hamiltonian

dH(B)
dB

= [η(B),H(B)] (9.3)

only describes a renormalization flow of the interaction. The eigenenergies are renormalized
only in second order of U .

dU1�12�2

dB

O(U)

= −U(∆�1�12�2)2 (9.4)

Its solution
U1�12�2(B) = U e−(∆�1�12�2)

2
B (9.5)

exhibits an exponential suppression with growing flow parameter and growing transfer energy
∆�. The exponential decay of off-diagonal matrix elements is a very generic and characteristic
trait of the flow equation method; it allows to relate the flow parameter to an energy scale
ΛE ∼ B−1/2 and can be compared to an intrinsically emergent cut-off function which becomes
effective for energy differences larger than that scale.
Beyond the cut-off behavior there is no significant first order renormalization flow of the
Hamiltonian. Since second order effects like the renormalizations of the eigenenergies or
second order corrections to the flowing interaction will not influence the final results it is safe
to discard all aspects of the Hamiltonian flow. This is a particular simplification which only
arises for the Hubbard model and does not hold in many other model systems.

9.1.3 Leading order parametrization of the canonical generator

With this parametrization the first-order implementation of the canonical generator can be
made explicit:

η(1)(B) = U
�

1�12�2∈K

∆�1�12�2 e−(∆�1�12�2)
2
B δ

k1�+k2�
k1+k2

:c†
1�↑c1↑c

†

2�↓c2↓: (9.6)

For the purpose of this work this defines a sufficient approximation to the diagonalizing
transformation.

9.2 Transformation of the creation operator

In the following the evolution of particular quantities is discussed, namely of the total kinetic
energy, the total interaction energy and the momentum distribution function. They are
expectation values with respect to the initial state |Ω0� of time-dependent observables given
in the Heisenberg picture. Hence all of them carry at least a trivial time dependence with
respect to the Hamiltonian. The interaction part of the Hamiltonian is, moreover, even
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explicitly time dependent. The corresponding observables are H0(t), Hint(t) and the number
operator of a fermionic quantum gas

Nk(t) =

�
C†

k
(t)Ck(t) : k > kF

1− C†
k
(t)Ck(t) : k ≤ kF

(9.7)

All of them can be composed from the creation operator C†
k↑

(B; t) for which the flow equation
transformation is established explicitly.

9.2.1 Constructing an ansatz for the creation operator

The initial condition of this operator C†
k↑

(B = 0; t = 0) = ck↑ describes the creation of a single
electron in a momentum mode k of the original basis representation of the problem. From it
the leading contributions to a general representation for different values of the flow parameter
can be constructed. This generation of higher order terms follows directly from applying the
commutator on the right hand side of

dC†
k↑

(B)
dB

= [η(B), C†
k↑

(B)] (9.8)

It shows that C†
k↑

acquires a composite multiparticle structure under the flow which mirrors
the dressing of an original electron by electron-hole excitations due to interaction effects.
After a first iteration, the ansatz

C†
k↑

(B) = hk↑(B) c†
k↑

(9.9a)

+
�

1�2�1

M1�2�1↑↓↓(B) δk+1

1�+2� :c†
1�↑c

†

2�↓c1↓: (9.9a)

+
�

1�2�1

M1�2�1↑↑↑(B) δk
�
+1

1�+2� :c†
1�↑c

†

2�↑c1↑: (9.9b)

can be established. All terms obey momentum and spin conservation. The first term includes
the continued features of the original fermionic particle, i.e. the coherent overlap of C†

k↑
(B)

with C†
k↑

(B = 0). Its flowing coupling constant hk↑(B) relates to the quasiparticle residue
via hkF

(B) =
�

Z(B). The two other terms are the leading representatives of an infinite
hierarchy of incoherent many-particle (dressing) processes. Since the Pauli principle fosters
dressing by particles with opposite spin, the second term will dominate over the third. This
can be read off from the set of differential flow equations for the flowing coupling constants
h(B) and M(B) and allows to neglect the later.

9.2.2 Flow equations for the creation operator

Inserting this ansatz into (9.8) leads to the differential flow equations for the flowing param-
eters h(B) and M(B). A consistent normal ordering of all newly generated terms is essential
and causal for the emergence of characteristic fermionic phase space factors like

Q122� = n1n2(1− n2�) + (1− n1)(1− n2)n2�
Def= Q(1)

122� + Q(2)

122�
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. The definitions of Q(1)

122� and Q(1)

122� refer to the first and second summand in Q(1)

122� . All three
phase space factors are symmetric under the interchange of the first two indices1.

∂hk↑(B)
∂B

= U
�

12�2

∆�k12�2 e−B(∆�
k12�2)

2
Q122� M122�↑↓↓(B) (9.10)

∂M5�6�5↑↑↑(B)
∂B

= −U
�

2�2

[n(2�)− n(2)] ∆�2�25�5 e−B(∆�2�25�5)
2
M6�22�↑↓↓(B) (9.11)

∂M5�6�5↑↓↓(B)
∂B

= U
�

1

h1↑(B) ∆�5�56�1 e−B(∆�5�56�1)
2

(9.12)

+ U
�

12�

�
n(1)− n(2�)

�
M16�2�↑↓↓(B) ∆�2�15�5 e−B(∆�2�15�5)

2

+ U
�

12

[1 + n(2)− n(1)] M125↑↓↓(B) ∆�5�16�2 e−B(∆�5�16�2)
2

+ U
�

1�1

�
M

15̃1�↑↑↑ −M
5̃�11�↑↑↑

� �
n(1�)− n(1)

�
∆�1�16�5 e−B(∆�1�16�5)

2

A perturbative expansion in U of the flowing parameters h(B) and M(B) allows to reduce
the complexity of the differential equations but depends on their initial conditions. Since the
differential equations are linear, a solution for general initial conditions can be achieved as
a linear superposition of solutions for independent initial configurations. Two cases can be
discussed:

(A) Fully coherent initialization of one fermion in the momentum mode k:
hi↑(B0) = δk

i
and M(B0) = 0 for all possible indices

(B) Fully incoherent initialization in the dressing state p�q�p ↑↓↓: hi(B0) = 0, M1�2�1↑↓↓(B0) =
δp
�

1�δ
q
�

2�δ
p

1
and M↑↑↑(B0) = 0 for all possible indices2

Case A: Perturbative analysis at the onset of the flow

I discuss iteratively the action of the differential flow equations at the onset of the flow. In a
first step, the flowing parameters h and M on the right hand side of the differential equations
can be parametrized by their initial conditions (A). Hence only the first term at the rhs of
(9.12) remains influential and is, due to its pre-factor, of order U . Consequently, M↑↓↓(B > 0)
is generated in first order of U . Re-inserted into (9.10) it accounts for a second order correction
to the flowing parameter h(B). This describes the leading changes to the quasiparticle residue.
Re-inserted into (9.11) and (9.12) it unfolds second order effects on flowing parameters of the
M type. Since those do not influence second order results on the momentum distribution
function (which will be shown later), this calculation can be, fortunately, dropped. Moreover,
the initial conditions (A) are the natural ones to study the behavior of physical fermions. As
they do not generate M↑↑↑ in relevant order, the ansatz for C†

k↑
can be restricted to (9.9a).

1Compared to previous definitions [251] the two symmetric indices in Q122� are denoted first and the
”exceptional” index is denoted last. Hence it holds Q122� = Q212� .

2To avoid confusion it is stressed that in the full context of the problem, this initial condition comes with
a pre-factor proportinal to U . Perturbative arguments always include it.
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This is a consequence of the Pauli principle which disadvantages dressing of a fermion with
excitations in the same spin state. Simplified flow equations read

∂hk↑(B)
∂B

= U
�

12�2

∆�k12�2 e−B(∆�
k12�2)

2
Q122� M122�↑↓↓ (9.13a)

∂M5�6�5↑↓↓(B)
∂B

= U
�

1

h1↑ ∆�5�56�1 e−B(∆�5�56�1)
2

(9.13b)

I stress that this analysis is based on an approximate parametrization of the flowing param-
eters. It requires that their magnitude under the flow is still sufficiently described by the
magnitude of their initial conditions. The following study will show that for the initial con-
ditions of a physical electron at the Fermi energy this remains the case throughout the flow
and that, then, non-perturbative effects do not arise.

Approximate analytical solution of the flow equations

I integrate the simplified flow equations (9.13) with respect to the flow parameter B. Similar
to the above analysis I iteratively develop the flowing parameters from their initial conditions
(A). I apply the same parametrization h1↑ = δk

1
and integrate (9.13b) from B0 = 0 to Bf = B.

M (A),FT

5�6�5↑↓↓(B) = U
1− e−B(∆�5�56�k)

2

∆�5�56�k
(9.14)

This serves as an improved parametrization in (9.13a) and allows to write down a formal
second order correction of hk↑.

h(A)

k↑
(B) = 1− U2

�
∞

−∞

ρ dE
(1− e−B(�k−E)

2)2

2 (�k − E)2
Ik(E) (9.15)

with a phase space factor

Ik(E) :=
�

1�2�1

Q1�2�1δ(E − �1� − �2� + �1)δ1
�
+2

�

1+k
(9.16)

Since the one-particle energies are restricted to a band with bandwidth 2D nonzero values
for Ik(E) can only be expected within an energy window E ∈ [−3D, 3D]. Hence the energy
integral in (9.15) can be restricted to this limited support.

Evaluation of the phase space factor

For a further understanding of the flow of h(A)

k↑
my focus is on the energy dependence of the

phase space factor Ik(E). Momentum conservation allows to eliminate the momentum index
1 = 1�+2�− k; I keep it as a dependent shorthand notation. I evaluate Ik(E) in energy space
assuming a constant density of states ρ

Ik(E) = ρ2

�
∞

−∞

d�1�
�
∞

−∞

d�2�Q(�1� , �2� , �1)δ(E − �1� − �2� + �1) (9.17)

and observe that, at zero temperature, the phase space factor Q(�1� , �2� , �2) vanishes for all
but two configurations of its energy arguments [246]: In both cases the limits of the energy
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Case Energies Phase space factors Constraint by delta function
�1� �2� �1 Q(1) Q(2) Q E = �1� − �1 + �2�

(a) > �F > �F < �F 0 1 1 E = + |�1� |+ |�2� |+ |�1| > 0
(b) < �F < �F > �F 1 0 1 E = − |�1� |− |�2� |− |�1| < 0

otherwise 0 0 0 not relevant

Table 9.1: Discussion of phase space factors at zero temperature

integrations in (9.17) can be restricted by an approximate evaluation of the delta function.
Its argument can be rewritten by considering the signs of the one-particle energies �i which is
done in the last column of the above table. From there one reads off that, since E is a sum of
either solely positive or solely negative summands, E forms an upper or lower bound on both
energy integrations individually. Then both cases (a) and (b) lead to the same approximate
expression for the phase space factor

Ik(E) = ρ2

�
E

�F

d�1�d�2� 1 = ρ2(E − �F )2 (9.18)

I finally remark that the phase space factor Q(�1� , �2� , �1) mirrors the particle-hole symmetry
of the Hubbard model. It implies that all odd powers of a perturbative expansion vanish
[171]. I will see in (10.3) that Q(�1� , �2� , �1) is, in particular, responsible for the suppression
of secular terms.

Analysis of the later flow of hk↑(B)

The approximation (9.18) allows to interpret the physical relevance of the formal result (9.15):
At the Fermi surface, i.e. for k = kF , and at zero temperature its quadratic divergence is
cancelled exactly by the phase space factor. This implies that the corrections to h(A)

kF ↑
remain

small in second order of U throughout the flow. Hence the parametrization h(A)

kF ↑
= 1 used

above is justified even beyond the onset of the flow and the approximate analytical solution
gives a correct description of the changes to the quasiparticle residue for all values of B.
Away from the Fermi surface, however, there is no such cancellation by a phase space factor.
Now the energy denominator indicates nonperturbative effects. Expanding the exponential
in (9.15) shows that the numerator smoothes the peaked energy structure on a B-dependent
scale such that a pole only emerges in the limit of infinite B. Nonetheless, the contribution
of an environment around �k �=kF

to the energy integral in (9.15) grows under the flow until
it infers a nonperturbative correction to h(A)

k �=kF ↑
. This implies a full decay of a particle into

incoherent excitations. The corresponding scales can be extracted from a first order expansion
in B3. Since this is only justified for B(�k − E)2 < 1 I continuously restrict the environment
[�k − 1/

√
B, �k + 1/

√
B] around the later pole. This is only meaningful for not too small

values of B such that 1/
√

B < D or B > 1/D2. This sets a lower limit to the flow parameter
whenever aspects of the flow are discussed. With ek = E− �k and (9.18), the correction term

3A similar analysis based on scaling out the B-dependence from the energy integral leads to the same scales
but requires a discussion of logarithmic and power-law divergences.
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in (9.15) reads

∆h(A)

k �=kF ↑
(B) ≈ −U2B2

ρ3

2

�
1/
√

B

−1/
√

B

dek (ek + �k − �F )2 e2

k
(9.19)

≈ −U2ρ3

�
2
5

1√
B

+
2
3
√

B(�k − �F )2
�

= −U2

D2

�
2
5

1
D

1√
B

+
2
3

√
B

D
(�k − �F )2

�

Since 1/
√

B < D the first summand within the brackets is always smaller than 2/5 and
vanishes for large values of B. Then the second term exhibits the decay scale

B∗ =
1

U4ρ6(�k − �F )4
or E∗ = U2ρ3(�k − �F )2 (9.20)

The quadratic energy dependence of E∗ resembles the characteristic finite lifetime of Landau
quasiparticles away from the Fermi surface τ ∼ (�k − �F )−2. Here it illustrates the com-
plete decay of a physical fermion. This implies that on a scale set by B∗ the straightforward
parametrization of h1↑ = δk

1
(see above) becomes unjustified and the analytical solution (9.15)

breaks down. Instead, a better solution of the differential flow equations would show a com-
plete transfer of the spectral weight from the one-particle to many-particle representations.
This allows to discuss the reliability of the solution: For particles in a perturbatively small
environment around the Fermi energy, i.e. �k − �kF

≈ U , the energy scale E∗ ∼ O(U4)
is beyond the resolution of a second order calculation. Hence the particle decay cannot be
observed on all accessible times. Therefore the extension of the approximate solution (9.14,
9.15) to an environment around the Fermi energy of radius U leads to a consistent second
order result. Equilibrium calculations have shown that the broadening of the momentum
distribution due to interaction effects is concentrated in this region [187, 252].
Outside of this environment, particles decay completely into incoherent multiparticle excita-
tions. This implies that, strictly speaking, the validity of (9.14) breaks down. Nonetheless, it
shows that under the flow the spectral width ΓM (B) of newly arising incoherent M -terms con-
tinuously decreases. This indicates that at the decay scale spectral weight is transferred from
coherent particles (with a sharp spectral distribution) primarily to excitations with ΓM ∼ E∗.
Since even far away from the Fermi energy this is perturbatively small in U2, the effects of this
small widening will not influence the shape of the momentum distribution function. Therefore
the solution (9.14, 9.15) allows for a calculation of the momentum distribution function on
all energies.

Composition of the number operator

Since the transformation for the creation operator of an electron around the Fermi energy
has been established in second order perturbation theory, the number operator Nk = C†

k
Ck

can be easily composed from the ansatz (9.9a). The momentum distribution is given by its
expectation value with respect to a filled Fermi sea of fermions |FS�. Their interpretation is
different in equilibrium and in nonequilibrium, suitable quasiparticles or physical electrons,
respectively. Normal ordering can always be considered as with respect to a filled Fermi sea
of the appropriate particles; possible corrections caused by a reinterpretation of the correlator
nk are beyond the accuracy of a second order calculation. This implies that only quadratic
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terms in h(B) and M(B) contribute:

Nk(B, t) = �FS| Nk(B, t) |FS�
= |hk(B, t)|2 nk +

�

1�2�1

n1�n2�(1− n1) |Mk

1�2�1↑↓↓(B, t)|2 δ1
�
+2

�

1+k
(9.21)

A possible time dependence has already been included for later reference.

9.2.3 Equilibrium momentum distribution

Similarly to the approach in [253] I observe that the flow equation transformation resembles in
many aspects a unitary implementation of Landau’s theory of a Fermi liquid. Although a strict
identification of the diagonal degrees of freedom obtained from the flow equation approach
with Landau quasiparticles is not possible, they motivate an analogous picture of flow equation
quasiparticles; like their Landau counterparts they are stable only at the Fermi energy and
subject to a residual quasiparticle interaction which is carried by the nonvanishing two-particle
component of the energy-diagonal Hamiltonian. Nonetheless, these quasiparticles absorb most
of the interaction effects into their definition such that the quasiparticle representation of the
interacting ground state is, in good approximation, the filled Fermi sea.
Hence the momentum distribution in equilibrium can be calculated in a similar way as the
equilibrium occupation of the squeezed oscillator (6.12) using (9.21), (9.14) and (9.15).

NEQU

k
= �Ω| C†

k
(B = 0)Ck(B = 0) |Ω� = �Ω0| C†k(B →∞)Ck(B →∞) |Ω0� =

= −U2

�
∞

−∞

dE
Jk(E;n)
(E − �k)2

(9.22)

where the phase space factor

Jk(E;n) =
�

1�2�1

δ1
�
+2

�

1+k
δ(�1�+�2�−�1−E)[nkn1(1−n1�)(1−n2�)−(1−nk)(1−n2)n1�n2� ] (9.23)

resembles the quasiparticle collision integral of a quantum Boltzmann equation [254]. I will
compare (9.22) with the time dependent momentum distribution after an interaction quench.



Chapter 10

Unitary perturbation theory for the
quenched Fermi liquid

In the previous chapter the flow equation transformation for the Hubbard Hamiltonian has
been established and the momentum distribution function in equilibrium has been calculated.
In the following the scheme of unitary perturbation theory is applied to the quenched Fermi
liquid. It delivers directly the time dependent ’creation’ operator in the initial representation
C†

k↑
(B = 0, t) which already depicts the time-resolved transition from pure fermions to com-

posite degrees of freedom (quasiparticles), i.e. the buildup of many-particle correlations. The
physical observable, however, is the momentum distribution function in nonequilibrium.

10.1 Time dependent fermion operator C†k↑(B = 0, t)

To make use of analogous notation, the time evolved operator C†
k↑

(B, t) may be represented
by the same operator ansatz as C†

k↑
(B, t = 0) (9.9a) but with modified coupling constants.

Each of the three main steps of the unitary transformation scheme, namely the forward
transformation, the time evolution and the backward transformation (c.f. Fig. 5.2) are unitary
transformations and, in particular, linear operations. Hence, on each step their impact can
be constructed in analogy to the action of the forward transformation, mapping the simple
initial conditions (A) and (B) in (9.2.2) onto new coefficients hUT

I
(B, t) and MUT

I
(B, t) where

UT ∈ {FT, T, BT} denotes the the forward transformation (FT; see 9.2.2), the backward
transformation (BT; see 10.1.2) and the time evolution (T; see 10.1.1) and I ∈ {A, B} the
initial condition. Finally, all these contributions are linearly superimposed and effective time-
dependent parameters h(0, t) and M(0, t) are constructed. Then the evolution of the fermion
operator can be given as

C†
k↑

(B = 0, t) = hk↑(0, t) c†
k↑

+
�

1�2�1

M1�2�1↑↓↓(0, t) δk+1

1�+2� :c†
1�↑c

†

2�↓c1↓: (10.1)

Fig. 10.1 illustrates some of the used notation. Although the fermion operator is no physical
observable, it is a useful object to make the buildup of particle correlations and dressing more
explicit.

97



98 10 Unitary perturbation theory for the quenched Fermi liquid

Figure 10.1: The above figure shows the decay of a fermionic particle Ck in nonequilibrium
with time. This decay can be formally attributed to a forward and backward transformation.
Additional particle decay due to an energy-diagonal residual interaction are not depicted here.

10.1.1 Time evolution

The construction of the parameters h(0, t) and M(0, t) directly includes the forward trans-
formation which was implemented in the past chapter. In a second step, the time evolution
of the creation operator in its energy-diagonal representation Ck↑(B →∞) is performed with
respect to the energy-diagonal Hamiltonian. Its leading part, the noninteracting Hamilonian,
generates a time evolution according to U(t, t0 = 0) = eiH0t which can be treated exactly.
Corrections arise due to the energy-diagonal interacting part of the Hamiltonian and cause
the appearance of secular terms. It will be shown in section (10.3) that they can be neglected
in a second order calculation. Hence the action of U onto the ansatz (9.9a)

C†
k↑

(B, t) = h(A),FT

k↑
(B) U†(t, 0)c†

k↑
U(t, 0)

+
�

1�2�1

M (A),FT

1�2�1↑↓↓(B) δk+1

1�+2� U
†(t, 0) :c†

1�↑c
†

2�↓c1↓:U(t, 0) (10.2)

is for B →∞ fully described by additional phase shifts accompaning the parameters h(A),FT

and M (A),FT .

hk↑(B →∞, t) =ei�kt h(A),FT

k�↑ (B →∞) (10.3a)

M1�2�1↑↓↓(B →∞, t) =ei(�1�+�2�−�1)t M (A),FT

1�2�1↑↓↓(B →∞) (10.3b)

10.1.2 Inverse transformation

The final step depicted in Fig. 5.2 is the backward mapping of the time-evolved observ-
ables into the original representation of physical fermions. It is implemented by the inverse
sequence of differential unitary transformations and simply achieved by interchanging the lim-
its of the B-integration in the forward transformation or, intuitively, by ’running the trans-
formation backwards’ [235]. This holds because the order of its infinitesimal constituents
remains unchanged and the non-commutativity of the generator at different points of the
flow [η(B), η(B�)] �= 0 does not become relevant. Yet the decay of a physical fermion under
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the forward transformation has generated nonvanishing incoherent contributions in order U ;
therefore different initial conditions for the backward transformation of Ck↑(B = ∞, t > 0)
apply. According to (9.2.2) a linear combination of the solutions for (A) and (B) leads to
a full solution at arbitrary initial conditions. Case (A) can directly be taken from (9.2.2)
with M (A),BT = −M (A),FT and invariant h(A). The discussion of case (B) is simplified by
noting that the pre-factor of its nonvanishing initial condition is proportional to U because of
the generation of this term under the forward transformation. I will consider this additional
power of U in a perturbative analysis of the relevant contributions but solve the differential
equations for the unweighted initial conditions of case (B).

Case B: Perturbative analysis and approximate solution

At the onset of the backward flow, i.e. for large values of the flow parameter (B0 = ∞), I
insert the weighted initial conditions of case (B) as a constant parametrization into the right
hand side of the flow equations (9.10-9.12). With M↑↓↓ ∼ O(U), hk↑(B) is generated by (9.10)
to second order in U ; hence, within a second order calculation, the parametrization hk↑ = 0
holds throughout the backward transformation. Consequently, corrections to M↑↓↓ are second
order in U , as well is the generation of M↑↑↑. Looking out at (10.5b) and back to (9.21) shows
that a second order result of the momentum distribution only requires the knowledge of M to
first order. This is a priori known by the weighted initial condition. Integrating (9.10) gives

h(B),BT

k↑
(B) = U Qp�q�p

e−B(∆�
p�pq�k)

2

∆�p�pq�k
(10.4a)

M (B),BT

1�2�1↑↓↓(B) = δp
�

1�δ
q
�

2�δ
p

1
(10.4b)

10.1.3 Composite transformation

I finish the computation of the time dependent creation operator by composing the forward
transformation (FT), the approximate time evolution and the backward transformation (BT)
and represent the joint result in terms of time dependent parameters hk↑(B = 0, t) and
M↑↓↓(B = 0, t). Fig. 10.1 gives a pictorial representation of these expressions.

hk↑(B = 0, t) = h(A),BT

k↑
ei�kt h(A),FT

k↑
+

�

p�q�p

h(B),BT

k↑
ei(�

p�+�
q�−�p)t M (A),FT

p�q�p↑↓↓ (10.5a)

Mk

1�2�1↑↓↓(B = 0, t) = M (A),BT

1�2�1↑↓↓ ei�kt h(A),FT

k↑
+

�

p�q�p

M (B),BT

p�q�p↑↓↓ ei(�
p�+�

q�−�p)tM (A),FT

p�q�p↑↓↓

(10.5b)

Inserting the results (9.14, 9.15, 10.3 and 10.4) into (10.5) makes the time evolution of the
operator C†

k↑
(B = 0, t) (cf. 10.1) explicit. As h is required in second order but M only to first

order this reads explicitly

hk↑(B = 0, t) = ei�kt

�
1− U2

�
ρdE

Ik(E)
(�k − E)2

�
+ U2

�
ρdE eiEt

Ik(E)
(�k − E)2

(10.6a)

Mk

1�2�1↑↓↓(B = 0, t) =
U

�1� + �2� − �1 − �k

�
−ei�kt + ei(�1�+�2�−�1)t

�
(10.6b)
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10.2 Nonequilibrium momentum distribution

From the time-dependent fermion operator the nonequilibrium time-dependent momentum
distribution function for the initial state |Ω0� can be constructed in analogy to the equilibrium
case (9.21).

NNEQ

k
(t) := �Ω0| Nk(B = 0, t) |Ω0� = nk − 4U2

�
3D

−3D

dE
sin2((E − �k)t/2)

(E − �k)2
Jk(E;n) (10.7)

For convenience, the correlation-induced time-dependent correction to the momentum distri-
bution is defined as

∆NNEQ

k
(t) = NNEQ

k
(t)− nk = −4U2

�
∞

−∞

dE
sin2

�
(�k−E)t

2

�

(�k − E)2
Jk(E;n) (10.8)

and the long-time limit of its time average is performed.

10.2.1 Comparison with a golden rule argument and long-time limit

This result invites for a comparison with the ’derivation’ of Fermis golden rule in section
(5.3.1): The modulus of the transition matrix element |�n|Hint |i�| seems to translate into
the constant U , the time-dependent energy kernel has a similar [sin(t∆E)/∆E]2 structure.
However, a phase space factor Jk(E;n) characteristic for fermionic many-particle systems ap-
pears. It describes the analogue to the selection rules which a constant matrix element cannot
provide; these turn out to be extremely restrictive and dramatically modify the behavior at
the Fermi surface.
Since JkF

(E;n) ∼ ρ3(E−�F )2 the phase space factor compensates for the energy denominator
in (10.8). Then the energy kernel does no longer represent a regularization of the Dirac delta
distribution. Instead, a plain sinusoidal time dependence remains. The long-time limit is no
longer given by a delta function but, effectively, by the time average limt→∞�sin2(αt)�t = 1/2.
For the correction to the momentum distribution around the Fermi surface, this means

∆NNEQ

k≈kF
:= lim

t→∞
�∆NNEQ

k≈kF
(t)�t = −2U2

�
3D

−3D

dE
Jk≈kF

(E;n)
(�k≈kF

− E)2
(9.22)

= 2 ∆NEQU

k≈kF
(10.9)

10.2.2 Plot of the time dependent momentum distribution function

To illustrate the initial dynamics of the momentum distribution it is helpful to plot equation
(10.8) as a function of energy �k for different points in time. Unfortunately, the internal
momentum summations present in the phase space factor Jk(E;n) may cause severe restric-
tions to a numerical evaluation. Moreover, any explicit evaluation requires the specification
of a particular lattice geometry. Since the aim of this work is not to draw attention to par-
ticularities of certain implementations of the Hubbard model in unconventional lattices but
to conclude on the generic behavior of a Fermi liquid by studying the Hubbard model the
simplest lattice geometry may be chosen.
For computational convenience a hypersquare lattice in the limit of infinite dimensions is
considered here. It is generally assumed as well as confirmed a posteriori that in this limit
the generic features of a Fermi liquid are retained. However, a dramatic simplification results
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Figure 10.2: (a)-(d): Time evolution of NNEQ(�) plotted around the Fermi energy for ρF U =
0.6. A fast reduction of the discontinuity and 1/t-oscillations can be observed. The arrow
in (d) indicates the size of the quasiparticle residue in the quasi-steady regime. In (e) the
universal curves for ∆Nk = Nk−nk are given for both equilibrium and for the nonequilibrium
quasi-steady state in the weak-coupling limit.

from the fact that in infinite dimensions momentum sums can be evaluated as energy integrals
over a Gaussian density of states given by (3.6). For lower dimensions than infinity this can
be understood in the spirit of a dynamical mean-field approximation.
For three time steps explicit results are depicted in Fig. 10.2.

10.2.3 Findings for the 2nd order nonequilibrium momentum distribution

The relation (10.9) contains the main observations of this thesis. Its physical origins and
implications will be discussed in detail in chapter (11). Here only statements are made to
give an overview of the relevant features.

• Since equation (10.8) is a second order perturbative result, it depicts the time evolu-
tion reliable on a time scale set by tPT ∼ 1/U2. This includes the initial buildup of
correlations. Plotting the time dependent momentum distribution for various times in
Fig. 10.2 shows that for small values of U within this time frame both a buildup phase
and a later (quasi-)steady regime can be observed. Since a nontrivial evolution of the
momentum distribution seems to cease already for times smaller than tPT this motivates
the discussion of a formal long-time limit of this second order result.
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• Comparing the modifications of the nonequilibrium momentum distribution function in
this formal long-time limit with the corresponding equilibrium result exhibits a decisive
factor of two in (??. Since the calculation is valid only around the Fermi surface,
the main conclusion is that the quasiparticle residue Z is characterized by a similar
mismatch: In a second order perturbative calculation, its reduction due to correlation
effects is doubled in nonequilibrium compared to the equilibrium result 1 − ZNEQ =
2(1 − ZEQU). Nonetheless, a nonvanishing quasiparticle residue indicates a picture of
Landau quasiparticles. A thorough discussion of these consequences can be found in
chapter (11).

• Equation (10.8) defines the momentum distribution function in the initial representa-
tion, i.e. for physical particles. However, it allows to conclude on the related momentum
distribution in a quasiparticle picture.

• Obviously, the phase space factor Jk≈kF
(E;n) depends on the correlator nk = �Ω0| c†kck |Ω0�.

This is a tricky point. On the one hand, this dependence originates largely from a con-
sistent application of the normal ordering prescription. According to its definition in
section (8.3.2) the correlator is frozen at its initial value. This seems to be plausible for
the flow equation transformation at zero time. On the other hand, however, a physical
interpretation of the phase space factor as the restriction of scattering processes due to
the Pauli principle suggests to replace the fixed correlator by the time evolved momen-
tum distribution. This would describe the opening of phase space because of correlation
effects. Then the relations (10.7) and (10.9) are considered as self-consistent equations
for a determination of Nk and ∆Nk, respectively.

10.3 Vanishing influence of leading secular terms

The main motivation for the application of unitary perturbation theory lies in the avoidance
of secular terms. Such terms may arise from a simultaneous expansion in both the interaction
and time and limit the trustworthiness of any result on rather short time scales. Unfortunately,
the flow equation transformation only diagonalizes the Hamiltonian in energy space. This
produces an energy diagonal two-particle interaction term in the final Hamiltonian H(B →
∞). In section (10.1.1) time evolution was discussed with respect to the noninteracting
Hamiltonian only. This equals a zeroth order approximation in U to the diagonal Hamiltonian
eiH(B→∞)t ≈ eiH0t. In higher orders, however, secular terms are generated. Here I will show
that these secular terms do not affect the second order momentum distribution.

10.3.1 Factorization of the noninteracting and the energy-diagonal inter-
acting dynamics

Up to second order the decomposition of the time evolution operator in the energy-diagonal
representation, i.e. for B →∞,

U†

H(∞)
(t, t0 = 0) = eiH(∞)t = eiH0(∞)teiHint(∞)tet

2
[H0(∞),Hint(∞)]/2 = eiH0(∞)teiHint(∞)t

= U†

Hint(∞)
(t, t0 = 0) U†

H0(∞)
(t, t0 = 0) (10.10)

is exact because in the energy-diagonal representation the generator vanishes due to its energy
prefactor in (9.2) and 0 = η(B → ∞) = [H0(∞), Hint(∞)]. The energy-diagonal interaction



10.3 Vanishing influence of leading secular terms 103

Hamiltonian can be easily constructed from the Hubbard interaction by restricting to diagonal
energies since the energy-diagonal interaction is not renormalized under the flow (cf. 9.5).

Hint(B →∞) = U
�

1�12�2

:c†
1�↑c1↑c

†

2�↓c2↓: δ(�1� + �2� − �1 − �2)δ1
�
+2

�

1+2
(10.11)

10.3.2 Discussion of individual secular terms in the energy-diagonal rep-
resentation

In the following I show by explicit calculation that up to second order in U the additional
time evolution by U†

Hint
imposed on the ’creation’ operator C†

k↑
(B, t), which is in the diagonal

basis represented by the ansatz (9.9a), does not influence the momentum distribution.
The further analysis is simplified by the observation that these correction terms (which, of
course, solely root in the time evolution of the creation operator) can be formally written as
time-dependent corrections to the forward transformation. This allows to straightforwardly
evaluate their contribution to the full time evolution of the momentum distribution function
by inserting corrections into (10.5) and (9.21):

Ansatz for diagonal time evolution Corrections to the time evolution of C†
k↑

(B →∞, t)
are considered by the following ansatz

U†

Hint
C†

k↑
(∞, t) UHint = h(A),FT

k↑
(∞)ei�kt U†

Hint
c†
k↑
UHint + (10.12)

�

1�2�1

M (A),FT

1�2�1↑↓↓(∞)ei(�1�+�2�−�1)t δk+1

1�+2� U
†

Hint
:c†

1�↑c
†

2�↓c1↓:UHint

Using the commutators given in the appendix (A) the leading order correction to the time
evolution is obtained from a Baker-Hausdorff expansion

U†

Hint
C†

k↑
(∞, t) UHint = C†

k↑
(∞, t) + it[Hint(∞), C†

k↑
(∞, t)]

− t2

2
[Hint(∞), [Hint(∞), C†

k↑
(∞, t)]] +O(t3) (10.13)

Linear secular terms. Firstly, the terms linear in time are discussed:

U†

Hint
c†
k↑
UHint − c†

k↑
= itU

�

1�12�2

δk

1 :c†
1�↑c

†

2�↓c2↓: δ(�1� + �2� − �1 − �2)δ1
�
+2

�

1+2
+O(U2)

(10.14a)

U†

Hint
:c†

5�↑c
†

6�↓c5↓:UHint − :c†
5�↑c

†

6�↓c5↓: = itU
�

1�12�2

δ(�1� + �2� − �1 − �2)δ1
�
+2

�

1+2

�
:c†

1�↑c
†

5�↑c1↑: (n2 − n5)δ6
�

2 δ2
�

5 (10.14b)

+ :c†
1�↑c

†

2�↓c5↓: (1− n1 − n2)δ5
�

1 δ6
�

2 (10.14c)

+ :c†
1�↑c

†

6�↓c2↓: (n1 − n5)δ2
�

5 δ5
�

1 (10.14d)

+ c†
1�↑Q122�δ

5
�

1 δ6
�

2

�
(10.14e)

Again, power counting in U reveals the relevance of the discussed terms for a second order
time evolution of the momentum distribution. Since h(A),FT

k↑
(∞) ∼ O(1) the secular term
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(10.14a) could be relevant for a second order calculation. Inserted into (10.12) it can be
written as

�

1�2�1

�
itUh(A),FT

k↑
(∞) δk+1

1�+2�δ(�1� + �2� − �1 − �k)
�
ei(�1�+�2�−�1)t :c†

1�↑c
†

2�↓c1↓: (10.15)

When comparing with the expression for the time evolution generated by the noninteracting
Hamiltonian in (10.1.1) it becomes clear that this secular term can be formally written as a
time dependent correction to the forward transformation

∆MFT

1�2�1 = it U h(A),FT

k↑
δ(�1� + �2� − �1 − �k)δ1+k

1�+2� (10.16)

This simplifies the further analysis. Power counting also applies to the other terms. Since the
incoherent terms are generated by the forward transformation in order U , these secular terms
are effectively of order tU2. To obtain a second order result for the momentum distribution
it is sufficient to calculate all final constants M(B = 0; t) to first order only. Hence these
secular terms will not modify the final M(B = 0; t) constants. However, the final one-particle
constant h(B = 0; t) has to be calculated to second order. Reviewing the perturbative analysis
for the initial condition (B) in (10.1.2) makes clear that the terms (10.14b-10.14d) could only
contribute to h in third order and can be neglected. However, the direct feedback onto the
single creation operator (10.14e) may lead to a relevant contribution; it can, again, be written
as a time-dependent correction to the forward transformation.

∆hFT

k↑ = it U
�

p�q�p

M (A),FT

p�q�p Qp�q�pδ
p+k

p�+q�δ(�p� + �q� − �p − �k)

(9.14)

= it U2

�
dE

Ik(E)
E − �k

δ(E − �k)
(9.18)

≡ 0 (10.17)

(10.17) vanishes at the Fermi surface because of the phase space evaluation presented in
(9.2.2).

Influence of linear secular terms on the fermionic creation operator. Since (10.18a)
vanishes in the same way as (10.17) the only linear secular term which contributes to the
creation operator is given by (10.18b)

∆hLST

k↑ (B = 0, t) =
�

p�q�p

h(B),BT

k↑
ei(�

p�+�
q�−�p)t ∆M (A),FT

p�q�p↑↓↓ = 0 (10.18a)

∆Mk; LST

1�2�1↑↓↓(B = 0, t) =
�

p�q�p

M (B),BT

p�q�p↑↓↓ ei(�
p�+�

q�−�p)t∆M (A),FT

p�q�p↑↓↓

= it ei(�1�+�2�−�1)t U h(A),FT

k↑
δ(�1� + �2� − �1 − �k)δ1+k

1�+2� (10.18b)

For the time evolved ’creation’ operator C†
k↑

(B = 0, t) this is a nonvanishing linear secular
term, i.e. proportional to Ut. It is strongly restricted by energy diagonality but cannot be
excluded a priori.

Vanishing influence of linear secular terms in one-particle objects. Although the
linear secular term (10.18b) does not vanish directly its second order correction to the one
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particle expectation value �C†
k
(t)Ck(t�)� is zero. This is because the phase space factor that

results from the contraction of higher order terms n1�n2�(1− n1) (cf. 9.21) can be evaluated
in analogy to (10.17). Together with energy diagonality which is contributed by the secular
term (10.18b) it leads to a vanishing of the considered expression. For example,

∆�C†
k
(t)Ck(t�)�O(U

2
)LST =

�

1�2�1

n1�n2�(1− n1)
�
∆Mk

1�2�1↑↓↓(t)∆Mk ∗

1�2�1↑↓↓(t
�) +

+
�
∆Mk

1�2�1↑↓↓(t)M
k ∗

1�2�1↑↓↓(t
�) + ∆Mk ∗

1�2�1↑↓↓(t
�)Mk

1�2�1↑↓↓(t)
��

∝≈
�

ρ dE
δ(E − �k)
E − �k

�

1�2�1

n1�n2�(1− n1)δ(�1� + �2� − �1 − E)δ1+k

1�+2�

∝≈
�

ρ dE
δ(E − �k)
E − �k

(E − �F )2 = 0 (10.19)

This sketchy but correct argument shows that energy diagonal linear secular terms do not
effect the momentum distribution function or one-particle correlation functions at the Fermi
energy. It is remarked that for the momentum distribution function, i.e. forNk(t) = C†

k
(t)Ck(t)

this correction vanishes because of symmetry even away from the Fermi surface.

Quadratic secular terms. Quadratic secular terms arise from the second order of the
Baker-Hausdorff expansion in (10.13) and are proportional to t2. Fortunately, there is no
quadratic secular term contributing to the momentum distribution. The only one conceivable
could result from the following sequence of transformations which generically enfolds a second
order feedback onto the coherent contribution c†

k
(B = 0; t) by

c†
k↑

(B = 0; t = 0) FT→
O(1)

c†
k↑

(B = ∞; t = 0) Hint−→
O(Ut)

:c†
1�↑c

†

2�↓c1↓:
Hint−→
O(Ut)

c†
k↑

(B = ∞; t) BT→
O(1)

c†
k
(B = 0; t)

The corresponding correction can be constructed from (10.17) and (10.16)
�

5�6�5

�
itUh(A),FT

k↑
(∞) δk+5

5�+6�δ(�5� + �6� − �5 − �k)
�
ei�kt×

×
�
itU

�

1�12�2

δ(�1� + �2� − �1 − �2)δ1
�
+2

�

1+2
Q122�δ

5
�

1 δ6
�

2

�
=

= −U2t2ei�kt h(A),FT

k↑
(∞)

�

12�2

δ(�1 + �2 − �5 − �k)δ(�1� + �2� − �1 − �2)Q122�

�����

1
�
=1+2−2

�

5=1+2−k

and vanishes like (10.17).
∆hU

2

k
∼ U2t2Ik(�k) = 0 (10.20)

Here I observe the suppression of secular terms due to the interplay of time evolution with
respect to an energy diagonal Hamiltonian and fermionic phase space factors. It occurs,
in most cases, already on the level of the transformation of the creation operator. This
illustrates the advantages of the chosen transformation scheme. One secular term, however,
only vanishes because of the particular structure of the transformed number operator.
I conclude that the time evaluation with respect to the noninteracting Hamiltonian H0 in
(10.1.1) is justified and that the second order long-time limit (10.9) is not modified by secular
corrections.



106 10 Unitary perturbation theory for the quenched Fermi liquid

Figure 10.3: Sketch of the total energy (full line), kinetic energy (broken line) and interaction
energy (dotted line) for the equilibrium (thin lines) and nonequilibrium (thick lines) case in
second order perturbation theory. Nonequilibrium energies are compared at the quenching
time and in the limit of infinite time. The bowed arrows indicate the corresponding energy
relaxation, the straight arrows the gain in kinetic energy (broken filling) which equals the
total excitation energy over the equilibrium ground state (full filling).

10.4 Nonequilibrium energy relaxation

The discussion of the momentum distribution function will be complemented by an analysis of
energetic aspects of the dynamics. Since both the full Hamiltonian H and the noninteracting
one H0 are hermitian, so is the interacting part Hint. In a Heisenberg picture, they represent
the time dependent observables for the total energy, the kinetic energy and the interaction
energy, respectively. Contrary to the resolution of single momentum modes by the momentum
distribution these observables are mode-averaged quantities only.
Although the total energy of a closed system is conserved, its partition onto kinetic energy
and interaction energy after the quench is time dependent.

ENEQ,INT(t) := U �Ω0|Hint(t) |Ω0� (10.21)

ENEQ,KIN(t) := U �Ω0|H0(t) |Ω0� =
�
∞

−∞

d�k �k Nk(t) (10.22)

The energy zero point is defined by the Fermi energy of the noninteracting Fermi gas �F =
= �Ω0|H0 |Ω0� ≡ 0. It agrees with the kinetic energy ENEQ,KIN(t = 0+) = 0 shortly after
the quench because the state of the system is not changed by the quench directly and the
time evolution of H0 with respect to H has not been effective. Moreover, as Hint is normal
ordered with respect to |Ω0�, also the interaction energy shortly after the quench vanishes
ENEQ,INT(t = 0+) = 0. This implies that the total energy before and after the quench remains
identically zero ENEQ = �Ω0|H |Ω0� := 0. However, since the ground state of the interacting
normal-ordered Hamiltonian is lower that that of the Fermi gas, the system is initialized in
an excited state.

10.4.1 Equilibrium energies

Therefore, the first interest and the point of reference of all later energy considerations is the
total energy of the equilibrium ground state of the interacting system. It can be calculated
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in perturbation theory with respect to the noninteracting Hamiltonian H0. For convenience
its eigenstates |m� (m ∈ N0 with |Ω0� = |0�) are assumed nondegenerate.

EEQU := �Ω|H |Ω� P.T.= �0|H0 |0�+ �0|Hint |0�� �� �
ENEQ=0

+
�

m�=0

|�0|Hint |m�|2

�0 − �m

� �� �
≈−EEXC

+O(U3) (10.23)

This allows to read off the excitation energy of the quenched quantum system above the
interacting ground state EEXC := ENEQ − EEQU = U2ρF α ≥ 0. It is positive, second order
in U and its precise value depends – due to the summation over all quantum numbers m –
on the lattice structure. I hide such details in a numerical prefactor α.
Further equilibrium energies can be calculated from the Feynman-Hellman theorem [255]. As
the norm of the interacting ground state is invariant (∗), it holds

∂EEQU(U)
∂U

(∗)
= �Ω(U)| ∂H(U)

∂U
|Ω(U)� (10.23)

= − 2
U

EEXC H= �Ω(U)| Hint

U
|Ω(U)� =

EEQU,INT

U
(10.24)

From (10.23) one knows
EEQU,INT = −2EEXC

and with (10.24) it follows from EEQU = EEQU,KIN + EEQU,INT that

EEQU,KIN = EEXC

.

10.4.2 Nonequilibrium energies

Next I calculate the nonequilibrium energies in the long-time limit of the second order calcu-
lation. As the Fermi energy is set to zero,

ENEQ,KIN =
�

d�k �k ∆NNEQ

k

(10.9)

= 2EEQU,KIN = 2EEXC (10.25)

and ENEQ,INT = −2EEXC. All energies are sketched in Fig. 10.3. Hence a second order
calculation shows that the excitation energy of the quench is fully converted into additional
kinetic energy such that ENEQ,KIN = EEQU,KIN + EEXC while ENEQ,INT = EEQU,INT. This is
a remarkable observation.
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Chapter 11

Discussion of the dynamics of a
quenched Fermi liquid

The results for the energies and the momentum distribution found in the previous chapter
are the foundation of the following analysis of the dynamics of a weakly quenched Fermi
liquid. They are observations gained from the study of particular observables. One may
object that they cannot catch all aspects of the full quantum dynamics of the Hubbard
model and a full treatment of the density operator would be more elusive. This objection
is true but fortunately unjustified since important physics can already be deduced from the
behavior of these simple observables. The focus on the momentum distribution mirrors the
approach taken in Landau’s Fermi liquid theory and the results confirm a posteriori that
this parallelism is appropriate. Moreover, despite all limitations this approach is capable of
unfolding the multi-step dynamics of the Hubbard model which can be explained by reference
to fundamental properties of many-particle fermionic systems.

11.1 Short-time quasiparticle buildup and nonequilibrium tran-
sient state

The first time regime is the one covered by the above second order perturbative calculation.
It extends on a time scale set by 0 < t � ρ−1

F
U−2. There the evolution of the time dependent

momentum distribution for physical fermions exhibits the build-up of multi-particle correla-
tions as well as the formation of a quasiparticle description in nonequilibrium. The validity
of second order perturbative results can be extended by the observation that corrections are
not relevant until a much longer time-scale is reached.

11.1.1 Buildup of a correlated many-particle state

The most pronounced feature of this regime is the shrinking of the Fermi surface discontinuity
of the momentum distribution to a finite, nonzero value. A numerical evaluation of the initial
behavior of the momentum distribution (Fig. 10.2 a-d) mirrors the fast reduction of the
quasiparticle residue from one to ZNEQ < 1. Although the sharp Fermi surface is broken up by
an interaction induced shift of occupation from states below the Fermi surface to states above,
the remaining discontinuity indicates the existence of elementary excitations. Moreover, no
heating effects (which would broaden the distribution at the Fermi energy such that the

109
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discontinuity would be completely lost) can be read off from the momentum distribution Thus
the later resembles the distribution of a zero temperature gas of correlated fermions. This
suggests that a Fermi liquid picture builds up from the excited initial state; then quasiparticles
are well-defined quantities around the Fermi surface. 1/t-oscillations accompany this process.

11.1.2 Nonequilibrium transient state

After the buildup phase has been accomplished, one observes a quasi-steady transient behav-
ior of the momentum distribution. This indicates that the dynamics of the corresponding
quantum state is dramatically slowed down within an intermediate time regime.

Time scale of the transient state

The related time scale tT ∼ ρF U−2 is linked to the order in perturbation theory on which
the features of the transient dynamics can be observed. Its signatures are extracted from
a second order calculation which can be, for times beyond the buildup phase, discussed in
a (formal) long time limit. For the Hubbard model this long time limit only describes a
transient behavior and not the physical long-time limit of the full dynamics. Since there are
no immediate changes to the state of the system for times t � ρ−1

F
U−2 the nonequilibrium

Fermi liquid-like state represents an intermediate quasi-steady regime of the dynamics; for
small values of the interaction U the transient regime can be long lasting.
Corrections to the second order result only appear in fourth order of the interaction because
the Hubbard model is particle-hole symmetric [171]. They set an upper bound for the
temporal extension of the transient regime. On even larger times their influence on the
further dynamics will lead to a different regime which can be related to thermalization.

Characteristics of the intermediate regime: Mismatch of the quasiparticle residue

In the intermediate time regime the momentum distribution shows the signatures of a zero
temperature Fermi liquid (Fig. 10.2 d). Obviously, such a transient state cannot be the ground
state of a Fermi liquid description since the excitation energy, which has been inserted by the
quench, is conserved; it prevents a relaxation towards a zero temperature Fermi liquid ground
state.
Deviations from the zero temperature ground state are also visible in the momentum distri-
bution but do not relate to any signatures of higher temperature. Instead, the most distin-
guished feature of the transient state is the ”mismatch” of its quasiparticle residue: Since the
correlation-induced reduction of the residue from the value one (for a noninteracting Fermi
gas) to the value for the interacting Fermi liquid is twice as strong in nonequilibrium than
in equilibrium (10.9), the mismatch incorporates and specifies the nonequilibrium character
of the transient state. This behavior is rooted in the combined influence of interaction and
nonequilibrium and therefore of particular physical interest.

Momentum distribution of particles and quasiparticles

For a further understanding it is helpful to change the point of view from the momentum
distribution of physical fermions (PF) to one of quasiparticles (QP). They agree with each
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other on the main features. However, since interaction effects are absorbed into the defini-
tion of the quasiparticles, the quasiparticle distribution exhibits less pronounced correlation-
induced signatures. In equilibrium they vanish completely and a zero temperature quasipar-
ticle distribution always equals a filled Fermi sea with a Fermi surface discontinuity of size
one NEQU;QP

k
= Θ(�F − �k).

In the nonequilibrium transient state, this absorption of interaction effects into the definition
of interacting degrees of freedom is not sufficient. Due to the increased correlation-dependend
reduction of the quasiparticle residue by a factor of two a mapping of the nonequilibrium mo-
mentum distribution for physical fermions into a quasiparticle representation will generate a
distribution with a reduced Fermi surface discontinuity. In second order perturbation the-
ory NNEQ,QP

k
= NEQU,PF

k
. The reduced discontinuity of the quasiparticle distribution now

describes the deviation from equilibrium. It is retained throughout the transient regime.

Energy relaxation and prethermalization

As observed from the momentum distribution, the full relaxation of momenta has been post-
poned to a later stage of the dynamics. This, however, is not the case for the total kinetic
energy which is an integrated quantity; hence, the behavior of single momentum modes is
averaged out. The second order calculation shows a complete transfer of the excitation en-
ergy from interaction energy to kinetic energy [cf. Fig. 10.3]. However, since the momen-
tum distribution still exhibits zero-temperature features, this cannot be related to heating.
The simultaneous relaxation of average energies and non-relaxation of other, mode-specific
expectation values shows a universal far-from-equilibrium phenomenon which is known as
prethermalization.

Split-up of two temperatures. Prethermalization can be expressed in terms of a split-up
of the notion of temperature: While systems in thermal equilibrium are characterized by a
universal temperature which is the same for all observables, in nonequilibrium an analogous
universal temperature does not exist. Instead, different temperatures may apply for different
observables. In the transient state, two temperatures are separated. One is related to the
kinetic energy and already refers to the final temperature of the relaxation process. However,
as the momentum distribution has not relaxed so far it relates to a second temperature, which
is zero.

Prethermalization in quantum field theories. Prethermalization has been first de-
scribed in nonequilibrium quantum field theories modeling, for instance, the early universe.
For a low-energy, chiral quark-meson model which was subjected to a sudden perturbation
Berges observed it studying the time evolution of quantum fields [256]. He found a multi-step
dynamics for the momentum mode occupations which is independent of the precise details
of the applied couplings. Rapid initial changes of the momentum distribution are followed
by oscillations which are damped on a short time scale tdamp. Afterwards, a quasi-stationary
still far-from-equilibrium state formed which showed no memories of the initial state any
more. In this time regime a constant ratio of pressure over energy density holds although
the momentum modes have not arrived at their final values. Therefore on a short time scale
related to the inverse of the mass scale m prethermalization is observed. It is not related to
scattering processes but caused by the dephasing of oscillating contributions to an integral
taken over momentum modes with a continuous frequency spectrum. Scattering processes,
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however, have been identified as the reason for later thermalization and become important
on the much larger equilibration time scale which follows the long transient regime.

11.2 Long-time behavior – Thermalization

The mentioned fourth order corrections to the flow equations calculation describe the char-
acteristic dynamics of a third time regime on a scale t ∼ ρ−3

F
U−4. They originate from two

sources: firstly from a more accurate implementation of the diagonalizing transformation.
These are corrections to the quasiparticle picture. Since Fermi liquid theory is exact only
strictly at the Fermi energy, they are expected in any microscopic foundation of Fermi liquid
theory. In this work they may, moreover, indicate a possible higher order difference between
two quasiparticle pictures, namely of the Landau quasiparticles on the one hand and the
energy-diagonal degrees of freedom of the flow equation approach on the other. Secondly,
the energy diagonal interaction Hamiltonian generates an additional time evolution which is
based on the influence of energy diagonal (i.e. elastic) scattering processes. Therefore fourth
order secular terms can be expected. The full calculation of these corrections is beyond the
scope of this work. Here only an effective treatment can be given which leaves many questions
open for a further analysis.

11.2.1 Self-consistent treatment of the momentum distribution

However, the existence of an additional dynamics can be already seen from a simple moti-
vation: One can read (10.7) as an implicit equation for the momentum distribution. Then
substituting ni = NNEQ

i
in the phase space factor Jk(E;n) leads to

NNEQ

k
(t) = nk − 4U2

�
3D

−3D

dE
sin2((E − �k)t/2)

(E − �k)2
Jk(E;n = NNEQ) (→ 10.7)

This self-consistent treatment induces an additional dynamics of the momentum distribution.
Since the initial buildup of correlations has redistributed momentum mode occupations such
that NNEQ

i
�= ni, the evaluation of the phase space factor for zero temperature as it was done

in section (9.2.2) is not exact any more. Hence, the denominator in (10.7) is not exactly
cancelled at the Fermi energy any more. These corrections, however, become relevant only
for higher orders of the perturbative expansion which correspond to longer time scales. Since
then the short-time regime has already ended the time dependent kernel in (10.7) can be
treated analogously to the derivation of Fermi’s golden rule in section (5.3.1), i.e. in a long
time limit for which limt→∞

sin
2
((E−�k)t/2)

(E−�k)2
= π

2
tδ(E − �k). There it motivates a differential

equation for the momentum distribution which is driven by a nonvanishing scattering integral
for elastic two-particle scattering processes.

dNNEQ

k
(t)

dt
≈ lim

�t�1�

NNEQ

k
(t)− nk

t
= −2πtU2Jk(E = �k;n = NNEQ) (11.1)

This suggests a quantum Boltzmann description of the residual dynamics. However, one
should not näıvely solve (11.1) since it represents only one among many fourth order correction
terms. It is only presented to indicate the direction of the following argument.
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11.2.2 Quantum Boltzmann equation

As it has been explained in the introduction a quantum Boltzmann description aims at the
residual dynamics of quasiparticles. This fits well to the scenario of the quenched Fermi liquid:
Since a quasiparticle picture has been established by a second order calculation, corrections
in fourth order can be treated as such an residual interaction.

Quasiparticle picture for later times

However, one has to ensure that the quasiparticle picture is pertained also for (much) later
times. This is a delicate prerequisite of any quantum Boltzmann approach but can be justified
in a small neighborhood around the Fermi energy. There scattering processes between quasi-
particles are suppressed by phase space arguments. Therefore the lifetime of quasiparticles is
extended on a time scale τk = (�k − �F )−2. Sufficiently close to the Fermi energy this scale
becomes large. If quasiparticle stability is required, say, on a time related to fourth order
perturbation theory in U , this can be safely assumed for an environment of |�k − �F | < ρU2

around the Fermi energy. Making statements only within this energy window, no decay
processes of quasiparticles need to be considered.

Application of the quantum Boltzmann equation

Instead of calculating the other fourth order correction terms to the dynamics of the momen-
tum distribution for physical fermions which would complement the self-consistency treatment
in (11.1) I perform all further analysis in a quasiparticle representation. This equals approxi-
mately working in the diagonal basis of the flow equations approach. According to the remark
made above the quasiparticle picture can be used to describe the subsequent dynamics of low
energy excitations around the Fermi energy even beyond the time regime of the quasi-steady
state. This is done by studying the time evolution of the momentum distribution which is ini-
tialized in the quasi-steady, transient state. Its quasiparticle momentum distribution can be
made explicit by the approximation NNEQ,QP

k
= NEQU,PF

k
which serves as an initial condition.

The effective kinetic equation which describes the residual interaction between Landau quasi-
particles is the quantum Boltzmann equation [254]. For a translationally invariant system it
can be written as

∂NQP

k
(t)

∂t
= −ρF U2 Jk(E = �k, N

QP(t)) . (11.2)

The characteristic features of the dynamics induced by the quantum Boltzmann equation can
be read off its right hand side which is commonly referred to as the collision integral [167].

Thermalization of the momentum distribution

Since inserting NQP:NEQ

k
into Jk(E = �k, n) allows nonzero phase space for scattering processes

in the vicinity of the Fermi surface, linearizing the phase space factor in the collision integral
shows that the initial quasiparticle distribution function starts to evolve on the time scale
t ∝ ρ−3

F
U−4. This implies that the quasi-steady fermionic distribution function depicted in

Fig. 10.2d) starts to decay on the same time scale. The further dynamics of the quasiparticle
momentum distribution function follows, again, from the collision integral. Since Jk(E =
�k, n) vanishes for Fermi-Dirac distributions (n = nFD) these are the stable fixed points of
(11.2) for a fixed total kinetic energy. Since around the Fermi surface the quasiparticle picture
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is retained on a long time scale the prediction of thermalization of the momentum distribution
can be concluded from the overall quantum dynamics of a Boltzmann equation on a lattice.
For nonequilibrium initial conditions with energies far below the Fermi energy it describes a
flow towards a thermal distribution which is its only attractive fixed point or, mathematically
speaking, its unique solution [147].
However, the fourth order corrections which motivate a quantum Boltzmann treatment on
a long time scale are present at all times. Hence they cause an obliteration of the Fermi
surface discontinuity already at the onset of the dynamics. For short times after the quench,
the momentum distribution still shows a steep descent; therefore its widening can be safely
neglected. Yet the assumption of a persistent quasiparticle picture for all later times may be
questioned. This is a general shortcoming of a quantum Boltzmann approach and is usually
accepted.

Final temperature

Moreover, the collision integral conserves the kinetic energy such that the evolution towards
a fixed point is constrained to an energy hypersurface in phase space. As the quantum
Boltzmann dynamics continues until it reaches a stable fixed point, thermalization of the
momentum distribution can be expected. This implies that the excitation energy, which has
relaxed into an excess of kinetic energy already at an earlier stage, is redistributed among
the momentum modes until a thermal distribution is achieved. The corresponding tempera-
ture Tth of the thermal momentum distribution follows directly from fitting its Sommerfeld
expansion [8] to the excitation energy. Equally, one relates the total kinetic energy to the
temperature via the specific heat CV of a Fermi liquid which depends linearly on temperature
(cf. table 2.2.6). This reads

ENEQ,KIN = 2EEXC = 2ρF αU2 = CV Tth ⇒ Tth =

�
6ρF α

m∗kF k2

B

U (11.3)

Quantum Boltzmann equation and the flow equation approach

In the following I will point out that a quantum Boltzmann description of a dynamics caused
by a residual interactions is a most natural extension of a flow equation implementation of
unitary perturbation theory. The matching point of both approaches are energy diagonal,
i.e. elastic scattering processes described by the interaction term in the Hamiltonian. On
the one hand, they remain untouched by a flow equation transformation such that an energy
diagonal interaction Hamiltonian generates a nontrivial time evolution. On the other hand,
only elastic two-quasiparticle scattering processes contribute to the scattering integral of the
quantum Boltzmann equation which is responsible for the further dynamics of the momentum
distribution. Since the flow equation transformation implements approximately Landau’s
quasiparticle mapping, connecting interacting physical fermions to diagonal degrees of freedom
which are described by the same quantum numbers as a gas of noninteracting fermions,
the nontrivial energy diagonal time evolution in the final representation of a flow equation
treatment and the quasiparticle scattering contribution to the evolution of the momentum
distribution can be approximately identified. Hence a quantum Boltzmann approach appears
as the most adequate extension of a real-time analysis based on the flow equation technique.
It stands in a historic line with prior treatments of residual interactions (c.f. 1.4.5).
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11.3 Physical origin of the observed dynamics

In the past section I have presented the separation of two time scales of the Hubbard dy-
namics. While interaction effects lead to a rapid establishment of a quasiparticle picture, the
equilibration of the momentum distribution, i.e. heating, is deferred to a much later time.

11.3.1 Delayed relaxation caused by Pauli principle and translation invari-
ance

This delayed relaxation is a consequence of two fundamental properties: Firstly, the Pauli
principle imposes characteristic phase space restrictions on a multiparticle fermionic system.
These are responsible for the generic appearance of particle-like low energy excitation physics
in a Fermi liquid and justify a meaningful analogy between the behaviour of the squeezed one-
particle oscillator and the many-body Hubbard model. Secondly, translational invariance
implies the conservation of lattice momenta. Hence there is no other way of momentum
relaxation than by momentum transfer in two-particle (or higher) scattering processes. In
combination, these two properties form a restrictive bottleneck for the relaxation dynamics.
Since the Pauli blocking of scattering is less effective in the regimes of higher temperatures
or larger excitation energies this is a zero temperature effect which is only visible for small
quenches of the interaction, i.e. for small energy intake.

11.3.2 Generalization to large class of interactions

The particular form of the interaction is less important. For the above calculations I have as-
sumed the applicability of perturbation theory in the interaction strength. Since only second
order and fourth order terms describe the evolution of the momentum distribution, there is no
difference between attractive and repulsive interactions; moreover, a generalization to nonlo-
cal interactions is easily possible by introducing momentum dependent matrix elements. The
main observation of a characteristic mismatch between the –interaction dependent– zero tem-
perature correlated equilibrium ground state of the momentum distribution and a similarly
shaped distribution in the intermediate regime of the nonequilibrium case persists. Hence I
expect similar nonequilibrium behaviour for a large class of weakly interacting and perturba-
tively approachable model systems independent of the exact nature and the particular form
of the interaction. This reflects the rather generic applicability of Fermi liquid theory to not
too strongly interacting systems in equilibrium.

11.4 Comparison of the Hubbard dynamics

The observations made in this thesis for the Hubbard model in more than one dimension agree
well with related results for the fermionic and bosonic Hubbard model in one dimension. An
overview is provided by Fig. 11.4.

11.4.1 Hubbard model in one dimension

An analogous analysis of the real-time dynamics following a quench in the forward scattering
has been performed for the Hubbard model in one dimension by Cazalilla [93]. In one dimen-
sion the Hubbard model is integrable and can be solved exactly by bosonization and a final
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Figure 11.1: State of the art of an analytic real-time analysis for the Hubbard model, dating
April 2009. The one dimensional cases are discussed and briefly compared in section 11.4.1
for fermions and section 11.4.2 for bosons. Numerical works based on a time dependent
density matrix renormalization group (t-DMRG) approach are also available for the one-
dimensional Bose-Hubbard model [257], for spinless fermions [258] and local relaxation in
superlattices [131]. While an initial buildup of correlations can be easily observed, long-time
predictions are constrained by limited numerical resources. Therefore, these results are not
fully conclusive. Most recently, calculations based on dynamical mean-field theory, which
becomes exact in the limit of infinite dimensions, have been presented [259] and are discussed
in section 11.5.
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Bogoliubov transformation within the bosonic degrees of freedom. Since in the later step the
treatment of the different bosonic momentum modes decouples the Bogoliubov transformation
equals the diagonalization of the quenched one-particle oscillator (cf. 6.3) for every pair of
modes (k, -k). Although the weakly interacting phase of the one-dimensional Hubbard model
is a Luttinger liquid instead of a Fermi liquid in higher dimensions, very similar observations
have been made.
First of all, an analogous mismatch between equilibrium and the nonequilibrium expectation
values has been found in the exponents of power-law decaying correlation functions. This
mismatch is the same as observed for the quenched oscillator in (6.17). Hence, in nonequilib-
rium a different decay of correlations holds than in equilibrium. Contrary to the observations
in the higher dimensional case, this result for the one-dimensional Hubbard model is exact.
Therefore there is no residual interaction between the degrees of freedom which could induce
a further dynamics. Seen from the perspective of the higher dimensional case, the integrable
dynamics of the one-dimensional Hubbard model is trapped in the transient state of the higher
dimensional one. The ’transient’ state already represents the physical long-time limit such
that there is no second time-scale in the relaxation dynamics. Hence there is no thermalization
in the one-dimensional case but it is observed in higher dimensions. This behavior illustrates
the particular rôle of one dimension where, due to a linear dispersion relation for fermions
around the Fermi surface, translational invariance both imposes momentum conservation and,
in consequence, energy diagonality.

Fermionic Hubbard model with long range hopping. The lacking of a second time
scale in the relaxation dynamics has equally been observed by M. Kollar and M. Eckstein
[260] in the one-dimensional fermionic Hubbard model with long range hopping. There the
non-local hopping matrix elements tmj decay proportionally to the inverse distance. Since
the model is integrable [261], relaxation to a thermal state is not expected a priori. However,
relaxation to steady states has been found studying the double occupation d(t). These states
coincide with the predictions of a generalized Gibbs ensemble based on correctly chosen
integrals of motion.

11.4.2 Bose-Hubbard model in one dimension

Motivated by experiments in optical superlattices, a similar approach to the dynamics of
the one-dimensional Bose-Hubbard model with an alternating one-particle potential has been
presented by Barthel et al. [223]. They map the Bose-Hubbard model at half filling by means
of a Schrieffer-Wolff transformation approximately to the ferromagnetic or antiferromagnetic
Heisenberg model (depending on the initial state). The later model is an effective model for
the low energy dynamics and is integrable by Bethe ansatz methods. However, Barthel et
al. solve it in a mean-field approximation. This two-step solution is in analogy to Cazalilla’s
treatment of the one-dimensional fermionic Hubbard model: an integrable model is reached
by means of bosonization or the Schrieffer-Wolff transformation, respectively. Then it is di-
agonalized either by a Bogoliubov transformation (see above) or, similarly, by a mean-field
treatment of Jordan-Wigner transformed spin operators in the case of the Heisenberg model.
However, contrary to the fermionic Hubbard model this is not exact for the Bose-Hubbard
model and a residual interaction is retained. This residual interaction resembles the residual
is partly caused by an approximate implementation of the Schrieffer-Wolff transformation.
However, partly it also roots in the projective nature of this transformation which reduces
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the Hilbert space of the Hubbard model in the limit of strong two-particle interaction to the
more restricted (effective) Hilbert space of the Heisenberg spin model. Hence, the Heisenberg
Hamiltonian generated by the Schrieffer-Wolff transformation is not exact and corresponds to
the truncated energy-diagonal Hamiltonian obtained after the flow equation transformation in
this thesis. Then the time evolution of particular observables is studied with respect to the ap-
proximately diagonalized Heisenberg Hamiltonian. Afterwards the backward transformation
of the time-evolved observables is implemented by the inverse Schrieffer-Wolff transformation
and the dynamics of nonequilibrium initial states is studied.
The dynamics of the integrable Heisenberg model is caused by dephasing of an initial state
and corresponds well to numerical calculations for the Bose-Hubbard model at short times.
The buildup of a stationary state in the Heisenberg model indicates a quasisteady state
of the Bose-Hubbard model. For the later thermalization can be expected due to residual
interactions. Since in Barthel’s work their strength can be tuned the temporal extension of
the quasi-steady state and, which is the same, the time delay of thermalization can be varied.
Here, the ’stabilization’ of a quasi-steady regime caused by a closeness of the nonintegrable
Hamiltonian to an integrable one can be quantified.

11.5 Numerical confirmation of the results

Recently, the results for the quenched Fermi liquid which were presented and explained in
this thesis have been numerically confirmed by M. Eckstein, M. Kollar, and P. Werner [259].
Using a nonequilibrium extension of dynamical mean field theory (DMFT) and assuming
a semicircle density of states they studied the evolution of the Fermi surface discontinuity
of the momentum distribution (i.e. the quasiparticle residue) and the double occupation
after various interaction quenches both within the Fermi liquid phase and beyond. A plot
from their recent preprint is reprinted in Fig. 11.2 and shows, for selected values of the
final interaction strength, the time dependence of the Fermi surface discontinuity (which
they denote by ∆n in discrepancy to my notation where ∆n represents the reduction of the
quasiparticle residue due to correlation effects). In the case of a weak quench (U = 0.5) they
observe the transient state on all numerically accessible times. This state is characterized
by a quasi-constant nonequilibrium value of the quasiparticle residue which complies exactly
with the calculations presented above. From the calculation of this thesis the onset of the
final relaxation to equilibrium is expected (assuming, however, a constant density of states)
on a much later time tth = ρ3

F
/U4. 1

For quenches to stronger interactions U > 1 the perturbative approach to a time-scale sepa-
ration of prethermalization (t � ρ−1

F
U−2) and thermalization (t ∝ ρ−3

F
U−4) does not hold any

more. Nonetheless, a transient state still appears during a shorter intermediate time regime.
This allows to observe a later further reduction of the quasiparticle residue which indicates
the second stage of the dynamics, namely the onset of thermalization. For intermediate val-
ues of the interaction quench (1 ≤ U ≤ 1.5) the quasiparticle residue in the transient state is
still very close to the perturbatively predicted value. For larger values of the interaction the
reduction of the Fermi edge discontinuity is increased. This corresponds to the findings for

1A hand-waving argument which transgresses the regime of strict validity of the perturbation calculation
and neglects particularities of the density of states suggests that thermalization should become observable on
a time scale sixteen times later than in the case of U = 1. Taking tth(U = 0.5) ≈ 3 from Fig. 11.2 this
would result in tth(U = 0.5) ≈ 50V

−1 where V
−1 is the time unit used by Eckstein, Kollar and Werner. This

illustrates the difficulty of finding long-term behavior in numerical approaches.
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Figure 11.2: The Fermi surface discontinuity ∆n(t) of the momentum distribution is plotted
with respect to time for different values of the interaction U . Horizontally dashed lines
correspond to its value in the intermediate transient state as calculated in this thesis. For small
quenches (U = 0.5, red line) the prethermalized regime extends beyond the longest calculated
time such that the delayed onset of thermalization cannot be observed. The separation of
two dynamical time scales and a well-defined regime of prethermalization is visible for values
of 1 ≤ U ≤ 2.5. For larger interaction strength no prethermalization is observed any more.
Reprinted from [259] with kind permission by M. Kollar.
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the exactly solved quenched oscillator where, similarly, the mismatch between the equilibrium
and nonequilibrium expectation value of the occupation is increased with growing interaction
g (cf. Fig. 6.1). Finally, for U � 3 no signatures of prethermalization have been found.



Chapter 12

Conjectures on the generic nature
of the mismatch for many-particle
systems

The analytical description of prethermalization in a Fermi liquid and its numerical confir-
mation raise the question on the generic nature of a delayed relaxation to equilibrium. For
one-particle systems, the generality of the mismatch of nonequilibrium and equilibrium ex-
pectation values has been proved in chapter 7. In the following chapter very recent similar
findings in many-particle systems are quoted. They support the formulation of a conjecture
on the generic nature of the mismatch between equilibrium and nonequilibrium expectation
values for particular observables in quenched many-particle quantum systems.

12.1 Similar observations in other many-particle systems

In the meantime, a similar real-time analysis following a quantum quench has been per-
formed for other many-body systems. For comparable quench scenarios which start from a
noninteracting configuration and quench within a weakly interacting regime the characteris-
tic mismatch of long-time averaged nonequilibrium and equilibrium expectation values has
equally been observed in other model systems and observables; corresponding perturbative
calculations reproduce a ratio given by the characteristic factor of two. This supports the
conjecture that the mismatch of equilibrium and nonequilibrium expectation values is a rather
generic observation even when many-body systems are considered.

12.1.1 Spin relaxation in the ferromagnetic Kondo model

A recent preprint by A. Hackl et al. [262] reports about a quantum quench for a Kondo
impurity in the ferromagnetic regime: There the coupling of the impurity spin with a band
of metal electrons J is switched on suddenly at zero time, assuming an initial polarization
of the impurity spin (Sz = 1/2). Then a real-time analysis of the subsequent spin dynamics
is performed, studying the nonequilibrium expectation value of the impurity magnetization
�Sz�. For comparison, this calculation has been obtained twice: analytically, using the flow
equations technique, but also with exact numerical (time dependent NRG) methods [262].
The respective results agree very well on all considered time scales. Comparing, up to leading

121
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order in the coupling J , the long-time limit of the nonequilibrium result �Sz(t → ∞)� with
the equilibrium value the above-mentioned characteristic mismatch of expectation values by
a factor of two is observed.

12.1.2 Interaction quench in the sine-Gordon model

The sine-Gordon model is an integrable 1+1 dimensional field-theory with a nontrivial phase
diagram and many relations to other model systems [263]. Therefore it turned into a paradig-
matic description of low-dimensional systems and their phase transitions, for instance the
Mott transition for one-dimensional bosons (see, e.g. [183, 264, 265]). Its Hamiltonian, ex-
pressed in terms of a bosonic field operator Φ(x) and its conjugate momentum operator Π(x),
for which canonical commutation relations1 hold, reads

H =
1
2

�
dx Π2(x) + (∂xΦ)2 + g(t) cos(βΦ(x)) (12.1)

where g(t) is typically taken as a constant. β2 and g span the equilibrium phase diagram of
the model. There is a Kosterlitz-Thoughless type phase transition line gKT (β2) which occurs,
in the limit of vanishing interaction, at β2

0
= 8π = g−1

KT
(0+). Beyond that line (β2 � β2

0
)

a renormalization group approach shows a flow towards the weak-coupling limit. In this
regime a quantum quench was performed and the successive dynamics of the momentum dis-
tribution was studied, in analogy to the treatment of the Fermi liquid, by J. Sabio and S.
Kehrein [266]2. According to the expectations for an integrable system they found no relax-
ation of the momentum distribution to a thermal state; instead, undamped oscillations were
seen. Nonetheless, the characteristic mismatch of the equilibrium and a long-time averaged
nonequilibrium expectation value with a perturbatively calculated ratio m = 2 (cp. definition
in equation 6.17) could be confirmed in this model, too. This observation is reminiscent of
the integrable Hubbard model (cf. 11.4.2) where integrability prevents a further relaxation,
too. Moreover, they report that a flow equation treatment is essential to obtain the above-
mentioned result for the nonequilibrium momentum distribution. This is different from my
findings for a Fermi liquid for which, as I will show in chapter 14, Keldysh perturbation theory
already provides a sufficient description.

12.2 Synopsis of the discussed findings

A synopsis of the mentioned findings suggests that the mismatch of equilibrium and nonequi-
librium expectation values in quench scenarios represents more than a freak of nature in
certain exotic quantum models. A strong point is made by the proof of a general theorem for
the one-body case (7.6). However, the proof cannot be näıvely extended to general many-body
systems. This is because the continuous energy spectra of many-body quantum systems in the

1Canonical commutation relations read: [Φ(x), Π(y)] = i�δ(x − y), all unrelated commutator relations
vanish

2Alternatively, a quench in the sine-Gordon field theory resembles a boundary field theory with an initial
condition. An exact solution for the boundary sine-Gordon problem with a spatial boundary is available [267]
and has been applied to study quantum impurity problems (cf. citations in [268]). Since in the boundary
sine-Gordon model space and time coordinates appear in a symmetric way this provides a solution for the
initial state boundary, too. This approach has been used to study the spectrum of collective excitations by
means of a quantum quench [91].
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thermodynamic limit prevent, similar to the case of energy degeneracy, the straightforward
application of the dephasing argument used in equation (7.8) or (7.15)3.
For the following considerations I assume that the prerequisites of the theorem (7.6) are met.
Then there is indication that the statement of the theorem holds beyond the limits set by the
given proof. Some aspects motivate that reasoning:

12.2.1 Conclusion on the behavior of integrable model systems

Integrable models are constrained by additional constants of motion such that thermalization
cannot be expected. According to the Bohigas, Giannoni and Schmidt conjecture [101] and
its later confirmations by other authors integrability influences the spectral properties of a
quantum model. In particular there is no ’energy level repulsion’ in corresponding random
matrix ensembles, i.e. small energy differences between neighboring eigenenergies of the total
Hamiltonian are not suppressed as it is the case for nonintegrable systems. This spectral
property of the Hamiltonian may delay or even restrict the complete dephasing of a typical4

initial state. Note that dephasing is, on the one hand, essential to observe a nontrivial initial
dynamics leading to a characteristic mismatch of equilibrium and nonequilibrium expectation
values; on the other hand, it is the only relaxation mechanism in an eigenstate representation
of a closed quantum system. Therefore the characteristic mismatch of nonequilibrium and
equilibrium expectation values should appear in the discussion of many integrable models.
Such an expectation is in agreement with the above-mentioned findings in integrable models as
discussed exemplary for the Hubbard model in one dimension [93] in section 11.4.1. Moreover,
since relaxation processes beyond eigenstate dephasing are not available, the mismatch of
equilibrium and nonequilibrium expectation values is retained for all times.

12.2.2 Conclusions on the behavior of nonintegrable model systems

A different view is taken on nonintegrable models, for which thermalization is commonly
expected, at least on a long time scale. In consequence, characteristic nonequilibrium expec-
tation values are expected to appear only as transient behavior on intermediate time scales.
The example of the quenched Fermi liquid shows that there the characteristic nonequilib-
rium regime results from initial dephasing. Then the separation of time scales allows the
observation of a transient state before other relaxation processes become important. This
behavior follows from phase space restrictions which constrain the system in an early stage
of the dynamics but are softened under the ongoing dynamics. This suggests the conclusion
that the observation of a mismatch of equilibrium and nonequilibrium expectation values in
nonintegrable systems requires the existence of almost-conserved constraints on further re-
laxation processes, e.g. by scattering. Such constraints can, for instance, originate from a
particular closeness of the nonintegrable model Hamiltonian to an integrable one; then these
almost conserved constraints may show up as ”faked” integrals of motion [256] in leading
order perturbation theory. Almost conserved constraints, however, are most efficient to re-
strict the evolution of a system if its energy is not too large. This limits the observation of a
prethermalized regime presumably to weak interaction quenches, as observed in [259].

3Note that for vanishing energy difference �n−�m → 0 in the exponential argument of relative phase factors
exp(i(�n − �m)t) dephasing would –at the best– occur on a diverging time scale.

4Here I use the notion typical for a state which can be represented by a linear combination of Hamiltonian
eigenstates with small coefficients, following roughly the idea of microcanonical typicality in a high-dimensional
Hilbert space (cp. [125]).
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12.3 Conjectures on the generic nature of the mismatch of
equilibrium and nonequilibrium expectation values in
many-body quantum systems

Therefore a summary of these findings and discussions suggests the formulation of the follow-
ing two conjectures:

Conjecture 1:

Let me assume the prerequisites of chapter 7.1 for the observable and for the definition of the
applied interaction quench which is, however, performed for a many-body quantum system.
Then I expect the observation of a mismatch of the equilibrium expectation value of such an
observable and its large-time average expectation value with respect to the time-evolved initial
state if additional exact or approximate restrictions on the dynamics exists which prevent or
delay the onset of relaxation processes other than initial dephasing.

Conjecture 2:

If the scenario of Conjecture 1 holds a leading order perturbative calculation of the mis-
match results in a ratio of the nonequilibrium and the equilibrium expectation value which
approaches, in the limit of weak perturbation, the value m = 2.

12.4 Call for debate

These conjectures suggest that exhibiting the characteristic mismatch of equilibrium and
nonequilibrium expectation values is a generic behavior which, therefore, should be visible
in many model systems. The requirement of additional constraints in quenching scenarios
is not exotic and has already been used to taylor (exotic) metastable states in quantum
many-particle systems. For instance, in the fermionic Hubbard model, implemented in opti-
cal lattices, energy conservation provides a bottleneck for the relaxation of doubly occupied
sites after a quench of the trapping potential; this allows to observe their Bose-Einstein con-
densation and superfluidity [97].
A natural next step would be to test these conjectures for a prototypical interacting quantum
field theory, for instance Φ4 theory. As prethermalization was originally observed in 1+1
dimensional and 3+1 dimensional quantum field theories [256] there is reasonable grounds for
the expectation that related findings can be made in other quantum field theories. Perhaps
it can even be proven that the conjectures describe the generic behavior of a quantum field
theory subjected to a quantum quench.
Finally, more research is encouraged to proof, specify, adjust, extend, restrict or falsify these
conjectures and to relate them to a larger picture of the nonequilibrium dynamics of correlated
many-body quantum systems. The author of these lines would be happy to engage in further
discussions and to read about progress made in this field.
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Chapter 13

Nonequilibrium physics of a system
with a Fermi-liquid instability

The findings presented in this thesis can be relevant for studies focussing on the nonequi-
librium physics of models with a Fermi liquid instability (FLI). Consider a quench from a
noninteracting Fermi gas into a phase which exhibits such an instability. In the subsequent
dynamics on a buildup time tFLI−B one expects both the buildup of the Fermi liquid insta-
bility and characteristic nonequilibrium physics related to it. Since non-perturbative weak
interaction instabilities are typically linked to exponentially small energy scales, tFLI−B will be
large such that characteristic features of the instability are not observable for short times after
the quench. In this regime, a perturbative calculation for the nonequilibrium Fermi liquid
applies approximately even in the presence of a nonperturbative instability. Quenching into a
FLI-phase then requires us to compare the timescales of the dynamics of the nonequilibrium
Fermi liquid with that of the instability.
If the FLI-phase is nonperturbative and distinguished by a gap in the energy spectrum, as it
is, for example, the superconducting phase of a Hubbard model with an attractive interaction,
an excitation beyond the energy gap is essential to observe any characteristic nonequilibrium
behavior. This excitation can be induced by a sudden interaction quench. As it has been
shown the inserted energy causes heating effects which may wipe out all signatures of the
FLI. However, the delayed onset of heating in a Fermi liquid can open a time window for the
observation of the nonequilibrium dynamics even in the FLI regime.
A popular example for such behavior is the BCS instability. Recently the study of its nonequi-
librium dynamics following a sudden quench in the BCS interaction has attracted a lot of
attention; depending on the precise conditions of the quench, for instance oscillatory be-
havior in the order parameter ∆BCS(t) has been found [81, 269, 270]. These studies only
focus on the behavior of the (nonlocal) BCS Hamiltonian which is an effective low energy
description of a superfluid. Since its dynamics is integrable a complete topological classifi-
cation of the behavior of all excited states could be given [81] and no heating is observed.
The actual experimental realization in optical lattices, however, only allows for a quench of
the local two-particle Hubbard interaction. Aside from the emergence of an effective BCS
interaction, the persistent influence of ordinary Fermi liquid behavior can be expected in
such systems. Then a quench simultaneously initializes the nonequilibrium dynamics of the
instability and heating effects. For a sudden quench heating dominates in agreement with
[270] (since Teff � ∆BCS = exp(−1/ |ρU |)) and makes the nonequilibrium BCS dynamics
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unobservable.
This is a first motivation for a more detailed analysis of the crossover between instantaneous
and adiabatic switching. Starting from the question of visibility of nonequilibrium BCS
behavior the aim of such an investigation would be to find a parameter regime for which the
ramp-up times are short enough to excite the superfluid (the ”nonadiabatic requirement”)
but long enough either to avoid overheating beyond the critical temperature of superfluidity
at all or to allow, at least, for a window where heating effects are deferred on a sufficiently
long time scale. A first analysis has been performed on the grounds of a golden rule argument
for the BCS case [270]. However, the applicability of a golden rule approach is not obvious.
Therefore, a more detailed analysis is required and will be outlined in the following.



Chapter 14

Keldysh approach to time
dependent switching processes

The analysis of BCS systems in nonequilibrium is a first motivation for a more detailed analysis
of the crossover between instantaneous and adiabatic switching. Starting from the question of
visibility of nonequilibrium BCS behavior the aim of such an investigation would be to find a
parameter regime for which the ramp-up times are short enough to excite the superfluid (the
”nonadiabatic requirement”) but long enough either to avoid overheating beyond the critical
temperature of superfluidity at all or to allow, at least, for a window where heating effects are
deferred on a sufficiently long time scale. A first analysis has been performed on the grounds
of a golden rule argument for the BCS case [270]. However, the applicability of the golden
rule is not obvious. Therefore, a more detailed analysis is desirable and will be outlined here.

14.1 Different requirements in the case of slow switching

In the case of non-instantaneous switching a nontrivial time dependence of the interaction
U(t) has to be considered. Firstly, this implies that the eigenbasis of the full Hamiltonian
becomes time dependent and that the time evolution of eigenvectors becomes more compli-
cated than just accumulating time dependent relative phase factors. Hence a straightforward
diagonalization of the Hamiltonian and a näıve application of unitary perturbation theory is
not obviously advantageous any more.
Therefore a first approach to the study of non-instantaneous switching processes is taken
in the original representation of the now time-dependent Hamiltonian and a diagonalization
of the Hamiltonian is not applied. Instead, perturbation theory is implemented directly
following the Keldysh technique [231]. Although the systematic reduction of secular terms
provided by a flow equation based implementation of unitary perturbation theory is not
achieved in Keldysh perturbation theory, this approach can be more easily generalized to
nontrivial switching procedures. Therefore the following calculation of the time evolution of
the momentum distribution after the interaction has been continuously ramped up allows to

(i) identify the relevance of secular terms for the time evolution of the momentum distri-
bution function under the Hubbard Hamiltonian in second order (e.g. in 14.4.2)

(ii) study the cross-over from instantaneous to adiabatic switching if a certain functional
dependence on a crossover parameter (e.g. the slope of a linear ramp) is assumed
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14.2 Second order nonequilibrium (Keldysh) perturbation the-
ory for the Hubbard model

In the following I apply the Keldysh formalism to the Hubbard model. Firstly, the link
between the momentum distribution and the Keldysh Greens function will be stated and
Feynman rules will be formulated for the Hubbard interaction. Then the problem will be
simplified by showing that only a single diagram contributes to a second order expansion.
Finally this diagramm is evaluated.

14.2.1 Momentum distribution function from Keldysh component Greens
function

In the following a diagrammatic expansion for the Larkin-Ovchinnikov representation of the
Keldysh Greens function G(x, t,σz, x�, t�, σ�z) is used. This gives direct access to the Keldysh
component Greens function GK which represents the momentum distribution

NNEQ(x, t) = −i
�

σz

GK(x, t,σz, x, t, σz) (14.1)

Hence a perturbative analysis of the Keldysh component Greens function GK is sufficient.
It can be implemented by mapping the Feynman rules found for the contour-ordered Greens
function onto Keldysh space, which results in modified prescriptions: Firstly, propagators and
vertices are 2 × 2- dimensional objects in Keldysh space. Internal integration over contour
times τ is mapped onto a contraction of internal Keldysh indices and integration over physical
time t.

14.2.2 Nonequilibrium Feynman rules for Hubbard interaction

For the study of the two-particle fermion-fermion interaction Feynman rules can be con-
structed from a Fermi-Bose interaction model. This corresponds to the fundamental view of
the Coulomb interaction between two charged fermions as an exchange interaction with the
photon as the exchange boson.
For the on-site and instantaneous two-particle interaction in the Hubbard model this exchange
is trivial. However, this approach has the advantage to avoid the explicit construction of the
two-particle Keldysh vertex (which is a tensor of rank four) and it illustrates the difference
of two aspects: A possibly time dependent Hubbard interaction represents nonetheless an
instantaneous microscopic interaction which is not retarded in a perturbative sense but de-
scribed by a trivially time dependent propagator. Yet the external time dependent variation
of the interaction strength promotes the vertices to time dependent functions.
Here I will present the Feynman rules in the Larkin-Ovchinnikov representation, again fol-
lowing [231]. Unfortunately, in this representation the absorption vertex γ and the emission
vertex γ̃ for the intermediate boson are not identical and have to be listed separately.
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Fermionic propagator: Gκκ�(x, t,σz, x�, t�, σ�z)
Boson propagator: Dκκ�(x, t,σz, x�, t�, σ�z) = δ(t− t�)δ(x− x�)δκ

�
κ δσ

�
z

σz

(on-site, instantaneous int.)

Bosonic absorption vertex: γκ

κ�κ��(t) =
�

γ1

κ�κ��

γ2

κ�κ��

�
=
√

U(t)
√

2

�
δκ�κ��

τ (1)

κ�κ��

�

Bosonic emission vertex: γ̃κ

κ�κ��(t) =
�

γ̃1

κ�κ��

γ̃2

κ�κ��

�
=
√

U(t)
√

2

�
τ (1)

κ�κ��

δκ�κ��

�

The definition of the vertices includes an external time dependence of the interaction U(t).
Note that they are 3-tensors in Keldysh space.

Polarization operator

An example for the particular application of Feynman rules in Keldysh space and for later
reference is the polarization (”bubble”) operator Π.

In the polarization operator both bosonic legs are truncated; in
a diagrammatic pictorial representation they only serve as an il-
lustration of the vertices. One vertex represents an absorption of
an boson, the other an emission. Therefore both vertices differ
according to the Feynman rules stated above.

For convenience, I introduce the shorthand notation i = {xi, ti, σz

i
} where i is an integer

number. To avoid confusion, this shorthand notation does not extend to Keldysh indices
which are generically denoted by Greek letters or by their explicit values (1 or 2).

Πκ3κ2(3, 2) =
�

η4η5ν4ν5

γ̃κ3
η5ν5

(t3)Gη5η4(3, 2)Gν5ν4(2, 3)γκ2
η4ν4

(t2) (14.2)

Performing the contractions of the Keldysh indices allows to represent the polarization opera-
tor as a 2×2 matrix. With (5.21) the components of the Keldysh Greens function correspond
to ordinary Greens functions.

Π(3, 2) =
�

U(t3)U(t2)
2




GR(3, 2)GK(2, 3) GA(3, 2)GR(2, 3) + GR(3, 2)GA(2, 3)

+GK(3, 2)GA(2, 3) +GK(3, 2)GK(2, 3)
0 GA(3, 2)GK(2, 3) + GK(3, 2)GR(2, 3)





(14.3)
This defines naturally the components ΠR = Π11, ΠK = Π12 and ΠA = Π22. In a real-time
formalism no internal integrations are performed in the polarization operator. Hence it only
serves as a suitable shorthand notation for combinations of Greens functions.

14.2.3 Discussion of vanishing diagrams

For the Hubbard model at half filling particle-hole symmetry is imposed for each individual
spin species separately. Applying this transformation maps an attractive two-particle inter-
action onto a repulsive one and vice versa. Since the dynamics must be invariant under the
transformation it is required that for the Greens function holds G(U) = G(−U). Hence only
even powers can appear in a perturbative expansion in U .
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The bare Hartree diagram is cancelled by a symmetric definition
of the Hubbard interaction in (3.3) and the renormalized Hartree
contributions vanish to all orders because of particle-hole symme-
try [171]. Fock diagrams do not contribute because the Hubbard
interaction acts only between fermions of different spin.

14.2.4 The ’setting sun’ diagram

There is only a single diagrammatic contribution to a second order perturbative expansion
of the contour-ordered Greens function. It has been affectionately linked to both the ’setting
sun’ and the ’London underground’.

Although the Hubbard interaction is effective only between differ-
ent spin species the degeneracy of the spin dependent Greens func-
tions allows to suppress spin variables. The ’setting sun’ diagram
for the fermion propagator has no symmetry factor. Therefore the
prefactor of the exponential expansion in (5.18) is not cancelled
and has to be explicitly considered 1/n = 1/2.

Hence the only relevant second order diagram to the Keldysh matrix Greens function can be
written using the polarization operator

G(2)

κ1κ1�
(1, 1�) =

1
2

�
dx2dx3dx4dx5

�
dt2dt3dt4dt5

�

κ2κ3κ4κ5η2η3ν2ν3

Gκ1η3(1, 3)γκ3
η3ν3

(t3)

×Dκ3κ5(3, 5)Πκ5κ4(5, 4)Dκ4κ2(4, 2)Gν3ν2(3, 2)γ̃κ2
ν2η2

(t2)Gη2κ1(2, 1�) (14.4)

The trivial internal integrations related to the bosonic propagator are eliminated.

G(2)

κ1κ1�
(1, 1�) =

1
2

�
dx2dx3

�
dt2dt3

�

κ2κ3η2η3ν2ν3

Gκ1η3(1, 3)γκ3
η3ν3

(t3)

×Πκ3κ2(3, 2)Gν3ν2(3, 2)γ̃κ2
ν2η2

(t2)Gη2κ1(2, 1�) (14.5)

Performing all further contractions over Keldysh indices leads to

G(2)

κ1κ1�
(1, 1�) =

1
2

�
dx2dx3

�
dt2dt3

�
U(t3)U(t2)

2�
Gκ11(1, 3)GR(3, 2)ΠR(3, 2)G2κ1(2, 1�)+ (14.6a)

Gκ11(1, 3)GK(3, 2)ΠR(3, 2)G1κ1(2, 1�)+ (14.6b)

Gκ12(1, 3)GA(3, 2)ΠR(3, 2)G1κ1(2, 1�)+ (14.6c)

Gκ11(1, 3)GA(3, 2)ΠA(3, 2)G2κ1(2, 1�)+ (14.6d)

Gκ12(1, 3)GR(3, 2)ΠA(3, 2)G1κ1(2, 1�)+ (14.6e)

Gκ12(1, 3)GK(3, 2)ΠA(3, 2)G2κ1(2, 1�)+ (14.6f)

Gκ11(1, 3)GR(3, 2)ΠK(3, 2)G1κ1(2, 1�)+ (14.6g)

Gκ11(1, 3)GK(3, 2)ΠK(3, 2)G2κ1(2, 1�)+ (14.6h)

Gκ12(1, 3)GA(3, 2)ΠK(3, 2)G2κ1(2, 1�)
�

(14.6i)
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On the right hand side G denotes the respective Greens function of the noninteracting system.
However, to avoid overnotation an appropriate superscript is suppressed.
From this the second order corrections to all components of the Keldysh matrix Greens
function can be extracted by specifying the remaining indices κ1 and κ�

1
. Here this is done only

for the Keldysh component GK which includes the information on the momentum distribution
function.

14.3 Explicit calculation of the second order correction to the
Keldysh component

In the following the second order correction to the Keldysh component Greens function is eval-
uated. With equation (14.1) this will allow to obtain a perturbative result for the momentum
distribution.

14.3.1 Noninteracting Greens functions and polarization operator

This starts from an explicit representation of the building blocks of a Keldysh calculation,
namely the noninteracting Greens functions and, for convenience, the first order polarization
operator. Both can be expressed as a superposition of plain waves.

GR(x1, t1, x2, t2) = −iΘ(t1 − t2)
�

k

eik(x1−x2)e−i�k(t1−t2) (14.7)

GA(x1, t1, x2, t2) = iΘ(t2 − t1)
�

k

eik(x1−x2)e−i�k(t1−t2) (14.8)

GK(x1, t1, x2, t2) = −i
�

k

(1− 2nk)eik(x1−x2)e−i�k(t1−t2) (14.9)

Then the first order result for the polarization operator reads explicitely

Π(3, 2) =
�

U(t3)U(t2)
2

2
�

pp�

�
Θ(t3 − t2)(np� − np) np� + np − 2np�np

0 −Θ(t2 − t3)(np� − np)

�
×

× ei(x3−x2)(p−p
�
)e−i(t3−t2)(�p−�

p� ) (14.10)

Note that for all noninteracting Greens functions and all components of the polarization
operator the same exponential dependencies on space and time occur. Moreover, under the
momentum sums there is a factorization of phase space factors and time dependence. This
allows for a separate discussion of both aspects.

14.3.2 Keldysh component Greens function

For an explicit calculation of the Keldysh component I set κ1 = 1 and κ1� = 2 in (14.6).
Inserting (14.7-14.10) into (14.6) shows that due to mismatching time restrictions imposed
by the involved Θ-functions terms (14.6c) and (14.6e) vanish. Hence only seven terms are
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retained:

G(2)

κ1κ1�
(1, 1�) =

1
2

�
dx2dx3

�
dt2dt3

�
U(t3)U(t2)

2

�

GR(1, 3)GR(3, 2)ΠR(3, 2)GA(2, 1�) + GR(1, 3)GA(3, 2)ΠA(3, 2)GA(2, 1�)+ (14.11.1+3)

GR(1, 3)GK(3, 2)ΠR(3, 2)GK(2, 1�) + GK(1, 3)GK(3, 2)ΠA(3, 2)GA(2, 1�)+ (14.11.2+4)

GR(1, 3)GR(3, 2)ΠK(3, 2)GK(2, 1�) + GK(1, 3)GA(3, 2)ΠK(3, 2)GA(2, 1�) (14.11.5+7)

GR(1, 3)GK(3, 2)ΠK(3, 2)GA(2, 1�)
�

(14.11.6)

For the evaluation of these terms it is helpful to note that

• All terms share the same five momentum summations and spatial dependence. Integrat-
ing out the internal positions leads to two momentum constraints which can be written
as δ(q3−q1)δ(p�−p−q2 +q1). While the first reduces the sum of five momentum indices
to four, the second imposes momentum conservation in two-particle scattering events.

• For all summands in (14.11) it holds that their time dependence only differs because of
different theta functions (Θ(t− t�)) present in the noninteracting Greens functions and
the components of Π. The oscillating time dependent phases always read eit2∆�e−it3∆�

with ∆� = �p − �p� + �q2 − �q1 . Each summand is characterized by a product of a time
kernel Ti(t1, t1� ,∆�, U) and a phase space factor Pi(np� , np, nq1 , nq2). It is helpful to
evaluate both kernels independently for each summand.

Then the Keldysh component Greens function can be written as

GK(2)(1, 1�) =
i

4

�

p�pq1q2

eiq1(x1−x1� )e−i�q1 (t1−t1� )×

×
�

i=1...7

Ti(t1, t1� ,∆�, U)Pi(np� , np, nq1 , nq2)δ(p
� − p− q2 + q1) (14.12)

Extraction of the phase space factors

From the definitions one reads easily off

P1(np� , np, nq1 , nq2) = P3(np� , np, nq1 , nq2) = −(np� − np) (14.13)
P2(np� , np, nq1 , nq2) = P4(np� , np, nq1 , nq2) = (1− 2nq1)(1− 2nq2)(np� − np) (14.14)
P5(np� , np, nq1 , nq2) = P7(np� , np, nq1 , nq2) = (1− 2nq1)[np� + np − 2np�np] (14.15)

P6(np� , np, nq1 , nq2) = −(1− 2nq2)[np� + np − 2np�np] (14.16)

For equal phase space factors the corresponding time kernels can be added. In the following
examples it will be observed that T1 + T3 = T2 + T4 = T5 + T7 = T6. Then all phase space
factors can be summed and generate a total phase space factor which describes correctly the
phase space restrictions of two-particle scattering processes for fermions.

P = P1 + P2 + P5 + P6 = −4[nq1np�(1− np)(1− nq2)− (1− nq1)(1− np�)npnq2 ] (14.17)
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14.3.3 Linear ramp up of a time dependent interaction

In the following I calculate the time kernels Ti(t1, t1� ,∆�, U) for a linearly switched on Hub-
bard interaction. The switch-on time or ramp-up time is denoted by T and the functional
dependence reads

U(t) = U






0 t ≤ 0
t/T 0 < t < T
1 t > T

In the following it is assumed that the dynamics is only discussed for times t1, t1� > T , i.e.
after the full interaction strength has been reached. Then integrating out the internal times
leads to

T1 + T3

U2
=

T2 + T4

U2
=

T5 + T7

U2
=

1
T 2

2(1− cos(∆�T ))
(∆�)4

(14.18)

+
1
T

i

(∆�)3
�
ei∆�(T−t1) − e−i∆�(T−t1� ) + ei∆�t1� − ei∆�t1

�

+
�

1
(∆�)2

+ i
t1� − t1

∆�

�

T6

U2
=

1
T 2

2(1− cos(∆�T ))
(∆�)4

(14.19)

+
1
T

i

(∆�)3
�
ei∆�(T−t1) − e−i∆�(T−t1� ) + ei∆�t1� − e−i∆�t1

�

+
1

(∆�)2
ei∆�(t1�−t1)

Obviously, this calculation has produced a secular term in (14.18) which is proportional to a
time difference. This term is not important for the further analysis.

14.4 Evaluation of the momentum distribution

The evaluation of the momentum distribution is simplified by the later observation that
secular terms are not important. Due to its definition only equal times t1� = t1 = t contribute
such that all secular terms proportional to an arbitrary power of the time difference t1�−t1 = 0
vanish.

NNEQ(x, t) = −i
�

σz

GK(x, t,σz, x, t, σz) (→ 14.1)

14.4.1 Result for a linear ramping of the interaction

Fortunately, in the case of ramping up the interaction linearly in time all secular terms which
appeared in the Keldysh component Greens function are with respect to the time difference
t1� − t1 and vanish for the momentum distribution. This is a particular result which roots
in the special simplicity of the number operator. Therefore, all time kernels T = Ti with
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i = 1 . . . 7 are equal.

∆NNEQ(x, t, T ) = −i
�

σz

GK(2)(x, t,σz, x, t, σz)

= −U2
�

q1

eiq1(x1−x1� )
�

q2p�p

δ(p� − p− q2 + q1) (14.20)

×
�
nq1np�(1− np)(1− nq2)− (1− nq1)(1− np�)npnq2

�

×
�

1
T 2

2(1− cos(∆� T ))
(∆�)4

+
1

(∆�)2
−

− 1
T

2
(∆�)3

�
sin(∆� T ) cos(∆� t) + sin(∆� t)(1− cos(∆� T ))

��

Then the momentum q1 ≡ k can be identified as the external momentum index of a momentum
space representation (which can be simply read off from the Fourier sum). Expanding the
right hand side with

�
dE δ(�p−�p�+�q2−E) and following the lines of (9.22) the phase space

integrations can be absorbed in a phase space factor which couples into a time dependent
kernel via a single energy E only.

∆NNEQ

k
(t, T ) = −U2

�
dE Jk(E;n)

�
1
T 2

2
�
1− cos((E − �k)T )

�

(E − �k)4
+

1
(E − �k)2

− (14.21)

− 2
T

sin((E − �k)T ) cos((E − �k)t) + sin((E − �k)t)
�
1− cos((E − �k)T )

�

(E − �k)3

�

14.4.2 No secular terms

Note that secular terms do not arise in the result (14.21). This is an interesting observation
which justifies the application of Keldysh perturbation theory for studying the time evolution
of the momentum distribution in second order of U which is ramped-up linearly. It is a
consequence of the combined simplicity of the number operator, the instantaneous nature of
the Hubbard interaction and of the linear ramping procedure.

14.4.3 Limiting cases for the linear ramping

For the correction to the momentum distribution two limiting cases can be easily discussed.

Adiabatic limit

The adiabatic limit is given by an arbitrary slow linear increase of the interaction strength
and corresponds to T → ∞. As only the T -independent term (E − �k)−2 contributes the
equilibrium result (9.22) is reproduced.

lim
T→∞

∆NNEQ

k
(t, T ) = −U2

�
dE Jk(E;n)

1
(E − �k)2

(14.22)

This is a truly stationary state.



14.4 Evaluation of the momentum distribution 137

Quench limit

The limit of a sudden switch-on of the interaction is obtained for T → 0. Replacing
1− cos((E − �k)T ) = 2 sin2((E − �k)T/2) the correction to the momentum distribution shows
a time dependence.

lim
T→0

∆NNEQ

k
(t, T ) = −U2

�
dE Jk(E;n)

2
�
1− cos((E − �k)t)

�

(E − �k)2
(14.23)

Again, this second order result agrees with the flow equation calculation (10.8). Consequently,
all features have already been discussed before. It exhibits a nontrivial temporal evolution
which describes the initial buildup of correlations as well as the decisive factor of two in the
long-time limit (cf section 10.2).

14.4.4 Comparison of the Keldysh and the flow equation approach to the
nonequilibrium momentum distribution function

The formal coincidence of the results obtained for the momentum distribution in a flow
equation treatment (10.8) and using Keldysh perturbation theory (14.23) is obvious. This
invites for some remarks:

• Firstly, it can be attributed to the particular simplicity of the number operator that the
full power of unitary perturbation theory, namely a systematic reduction of the number
and the relevance of secular terms in a time dependent perturbative approach, is not
required for the study of the momentum distribution function in the Hubbard model.
This can be seen best in the Keldysh approach to linear ramping: The time dependence
of the secular terms in (14.18) and (14.19) is with respect to relative time, and the
definition of the momentum distribution (14.1) picks out equal-time contributions to
the Keldysh component Greens function only.

• Secondly, it is noted that the flow equation method and Keldysh perturbation theory are
complementary techniques with different advantages for the study of time-dependent
problems in correlated many-body systems: The flow equation treatment provides a
sophisticated renormalization group approach to an interacting many-body system. It
allows to identify the particularly simple renormalization flow of the interaction strength
in the Hubbard Hamiltonian, which flows, in leading order, monotonously to the weak
coupling limit as shown in section 9.1.2. Moreover, the flow equation analysis of the cre-
ation operator provides a direct approach to the intrinsic energetic structure of the cor-
related many-particle system. It allows to follow the transformation of the initial degrees
of freedom, i.e. physical fermions, into new objects which are dressed with particle-hole
like excitations. Simultaneously, it exhibits the singular behavior of fermions around
the Fermi surface where this decay of the original particle is delayed or even prohibited.
This redraws Landau’s picture of quasiparticles which are stable degrees of freedom
at the Fermi energy and ensures that this picture extends to the case of a Fermi liq-
uid which has been initialized by a quench in a nonequilibrium state. Hence the flow
equation renormalization treatment of the quenched Hubbard model provides the justi-
fication for viewing the transient, prethermalized state of the dynamics in the light of a
Fermi liquid description. Moreover, it provides a tool to examine the limitations of this
approach and restricts the careful observer to statements around the Fermi energy since
only there the performed approximate solution of the flow equation can claim validity.
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• The merits of Keldysh perturbation theory are different. Like any perturbative approach
it assumes that the noninteracting degrees of freedom provide a good frame of reference
for the description of variations caused by a weak perturbation. In this sense it assumes
or naturally builds on results which can be only gained from an renormalization flow
treatment. Effects like the decay of quasiparticles would be, typically, visible only in
higher orders of the calculation. Hence it is plausible that a Keldysh approach should
follow, and not precede, a flow equation approach. As the flow equation treatment of an
interaction quench has established a quasiparticle picture and as an interaction quench
represents the strongest deviation from equilibrium among all switch-on procedures, the
crossover to adiabatic switching can now be safely discussed using simpler perturbative
approaches like Keldysh perturbation theory. Nonetheless the caveat remains in place
that all statements obtained from low order calculations are well-grounded only in a
neighborhood around the Fermi energy. Fortunately, this is the most interesting energy
regime of a Fermi system. For the case of linear ramping up the interaction, the par-
ticular simplicity of the internal Keldysh time integrations has been shown explicitely.
The resulting expression (14.21) will allow for a more detailed analysis of the crossover
behavior and the crossover scale in the switching dynamics. This will, however, be
published elsewhere.

14.4.5 Kinetic energy

Here I only continue with writing down the kinetic energy which can be calculated, cum grano
salis, by one additional integration. For arbitrary switching processes (T ) and arbitrary times
(t) it is given by

Ekin(t, T ) =
�

ρ d�k �k ∆NNEQ

k
(t, T ) (14.24)

= −U2ρ

�
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�
dE Jk(E;n)

�
1
T 2
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− 2
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This allows, in principle, to follow the buildup of the prethermalized state. Thermalization,
however, cannot be seen from this ’mode-averaged’ quantity.

Since 0 < Ekin(t, T ) and Ekin(t = 0, T ) = 0 one expects for all nontrivial switching-on
procedures the kinetic energy to be a growing function at least during an initial phase of the
dynamics. The same holds for the temperature TKE(t, T ) which is related to the kinetic energy.
It follows for a Fermi liquid from TKE(t, T ) = Ekin(t, T )/CV (TKE(t, T )) where CV (TKE(t, T ))
is the specific heat of a Fermi liquid. The later depends linearly on the temperature.
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14.4.6 Addressing nonequilibrium BCS behavior

Plotting the kinetic temperature TKE(t, T ) as a function of t and T allows to answer the
question whether nonequilibrium BCS physics can be straightforwardly observed in ramp-up
experiments. The minimal requirement that heating does not exceed the critical temperature
of superconductivity Tc, i.e. TKE(t, T ) < Tc, is accompanied by the demand that the ramp-up
procedure must be fast enough to excite nonequilibrium behavior. This can be expressed by
T < 1/∆BCS where ∆ is the BCS order parameter. Moreover, in order to detect nonequilib-
rium behavior which is, for instance, characterized by oscillations of the order parameter on
a frequency scale set by ∆BCS, the onset of heating must be deferred to a time t � 1/∆BCS.

Nonequilibrium BCS behavior already during prethermalization. If such a regime
exists and is sufficiently large, nonequilibrium physics can be easily observed by ramp-up
experiments, independent of the behavior of a nonequilibrium Fermi liquid. Then already
the slow build-up of the prethermalized state allows for a window where heating has not yet
destroyed the BCS dynamics. Since in such a ’mode averaged’ argument no difference is made
between the prethermalized state and the final long-term behavior a golden rule approach as
presented in [270] should give an equivalent prediction.

Nonequilibrium BCS behavior observed in the prethermalized state. However,
the results presented in this thesis state that for a sudden quench the initial buildup of
correlations is fast and prethermalization is obtained rapidly. Yet in the subsequent transient
state there is no universal temperature of the system. While the total kinetic energy has
already relaxed and gives rise to the temperature TKE(t →∞, T ), the momentum distribution
has not smeared out and resembles a zero temperature Fermi liquid. Therefore, even if the
temperature TKE(t →∞, T ) exceeds the critical temperature of the BCS system, it might not
destruct the observation of BCS nonequilibrium dynamics in the same way as in equilibrium.
This motivates the definition of a second temperature TMD(t, T ) based on the shape of the
momentum distribution function. For a sudden quench it is zero throughout the prethermal-
ized transient state and grows as the distribution function thermalizes at a later time scale.
This temperature can be obtained by fitting the actual momentum distribution to a Fermi-
Dirac distribution in a small environment around the Fermi energy. The energy difference
from the Fermi energy must be much smaller than the energy scale of the temperature related
to the kinetic energy, kBTKE, where kB is the Boltzmann factor. Otherwise one would only
badly fit to a Fermi-Dirac distribution with temperature TKE. This is because due to the
Pauli principle, all temperature and correlation effects of a many-body fermionic system are
rather well-localized around the Fermi energy.
In the beginning of the relaxation of the transient state this second temperature measures the
effect of real scattering processes since only those can change momentum mode occupations
on longer time scales. Therefore the increase of this temperature beyond Tc indicates the
breakdown of any BCS dynamics. This, however, can be delayed to a later time. To avoid
over-emphasism it is noted that, since temperature is not a universal property in nonequilib-
rium, such comparisons are to be handled carefully. Instead, a full quantum solution of the
nonequilibrium BCS problem as it is actually implemented in optical lattices, i.e. including
all related heating effects, is a desirable goal for further research.
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Chapter 15

Further prospects

The discussion of the nonequilibrium behavior of a Fermi liquid has opened a variety of further
questions and possible extensions which require further numerical and analytical study. In
the following chapter I will point out to some prospects for future research.

15.1 Further analysis of the quenched Fermi liquid

Some further questions about the behavior of the quenched Fermi liquid suggest themselves
and barely deserve mentioning. For completeness, they are nevertheless listed here.

15.1.1 Higher correlation functions and other observables

First of all, the dynamics of higher correlation functions in the quench scenario could shed
additional light on the relaxation dynamics. Since the momentum distribution is a particular
simple object, the problem of secular terms was practically absent. In the flow equation
approach these terms could be solved by an individual analysis of their contributions to the
momentum distribution. However, it has been shown above that for the transformation of
the creation operator one secular term does not vanish. This makes a consistent and reliable
calculation of higher order correlation functions more difficult. Similarly, the interest in other
observables which are not one- but two- or many-particle objects could exhibit further steps
in the relaxation dynamics. The näıve intuition of the author motivates the speculation
that a full hierarchy of transient states which become observable in even more complicated
observables may arise. Such observations, however, would imply calculations in higher orders
of the interaction.

15.1.2 Calculation to higher orders for the momentum distribution

Calculations to higher orders in the interaction, however, would also allow for additional obser-
vations within the already discussed observables: First of all the relaxation of the momentum
distribution could be followed in detail on larger time scales. This would give insight how
the effective quantum Boltzmann dynamics emerges as an approximation of the full quantum
solution. Note that the full dynamics described by the quantum Boltzmann equation has not
been calculated in this thesis. Instead, only its long-time behavior has been concluded from
a fixed point argument. Thus the relaxation dynamics in the scattering regime has not been
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studied in detail. As the quantum Boltzmann equation is a highly nonlinear differential equa-
tion possible further intermediate steps cannot be excluded a priori even for the momentum
distribution.

Decay of quasiparticles Secondly, a calculation to higher orders could expose the dy-
namical character of the quasiparticles. In Landau’s Fermi liquid theory quasiparticles are
unstable away from the Fermi surface. In a flow equation treatment, an analogous instability
could be seen in higher orders. Then the parametrization of the flowing coupling constant
which relates to the quasiparticle residue, hk(B) ≈ hk(B = 0) in (9.2.2), is not sufficient any
more. Instead, a full decay of the quasiparticle under the flow can be expected. This implies
that the weight of the original physical fermion described by C†

k
(B = 0) is fully transferred to

many-body excitations. With increasing accuracy of the flow equation treatment, i.e. with
increasing order in the interaction strength, the representation of the creation operator has to
be extended; incoherent dressing with two-, three- or many- particle-hole excitations has to
be added stepwise to the truncated ansatz (9.9a) and more and more weight will be shifted to
the multiparticle terms. The loss of a nonvanishing overlap of the physical fermion and the di-
agonal degrees of freedom would imply the breakdown of the quasiparticle picture. Although
there is evidence for such behavior already for forth order corrections, this will not alter the
observations made for short times. How it may effect the applicability of the quantum Boltz-
mann equation on a long time scale (until the flow reaches its fixed point) is a challenging
question of mathematical physics.

15.2 Quenches in and between other parameter regimes of the
Hubbard model

Another natural extension of the analysis for the quenched Fermi liquid would be to do a
similar analysis for other phases of Hubbard model. Quenches within the Mott insulator are
expected to show a very different relaxation behavior since the mobility of lattice fermions is
strongly restricted in this phase. As the Mott phase is characterized by strong interactions,
a perturbative expansion in powers of the interaction strength is not possible. Alternative
approaches are provided, for instance, by nonequilibrium DMFT. Moreover, a flow equation
treatment of perturbations around the atomic limit (i.e. U →∞) is currently investigated.
Most interesting, however, would be an analytical treatment of quenches between the Fermi-
liquid phase and the Mott insulator phase of the Hubbard model. Then the relaxation of an
initial state which differs fundamentally from the equilibrium state of the later phase could be
studied. Yet for a flow equation approach, which needs to define a split-up of a Hamiltonian
into a noninteracting and an interacting part, the study of the dynamical crossover from the
Fermi-liquid to the Mott insulator remains a very difficult challenge.

15.3 Nonadiabatic switching processes and fully time depen-
dent Hamiltonian

A similarly close extension of a quench problem is to model the switching process more real-
istically since in all experimental setups a certain non-zero ramp-up time cannot be avoided.
Then a nontrivial time dependence of the interaction U(t) has to be considered. Firstly, this
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implies that a straightforward diagonalization of the Hamiltonian does not provide a solution
of the switching problem any more since the eigenbasis of the full Hamiltonian becomes time
dependent. Hence the time evolution of eigenvectors becomes more complicated than just
accumulating time dependent relative phase factors. This questions the usefulness and appli-
cability of unitary perturbation theory. While Keldysh perturbation theory can extract the
behavior of the momentum distribution function under a linear ramp-up of the interaction
(cf. chapter 14) the advantage of unitary perturbation theory, namely a controlled general
restriction of secular terms, is lost. An extension of a flow equation implementation of uni-
tary perturbation theory to nontrivial time dependence is currently investigated; one possible
approach is to include the continuos change of the Hamiltonian eigenbasis into a redefinition
of the –then time dependent– canonical generator [271]. This would allow to systematically
improve time dependent perturbation theory for many-body problems.

15.4 Measuring non-adiabaticity in systems with a continuous
energy spectrum

A first possible application of the mismatch of expectation values in equilibrium and nonequi-
librium described in this thesis lies in the definition of a criterion for adiabatic vs. sudden
switching of interactions in the case of systems with a continuous energy spectrum.
In discrete systems the minimal energy level distance of non-degenerate energy levels (∆�)min

sets a natural time scale t0 = 1/(∆�)min which separates fast from slow external constraints
on the Hamiltonian. This can be easily seen in the light of Landau-Zener physics where
excitations from the ground state are only excited if the transition velocity exceeds a threshold
which is related to the energy difference between the ground state and the first excited state.
However, taking the thermodynamic limit leaves, generically, a system without any gap in
the energy spectrum. Hence excitations with virtually zero energy are possible and the
assumption of an adiabatic procedure seems to require that all changes applied to parameters
of the Hamiltonian occur on a very large, theoretically even diverging time scale.
An alternative way to differ quantitatively adiabatic from nonadiabatic scenarios can be ob-
tained by relating adiabatic and nonadiabatic expectation values of suitable observables. Since
this relation is in general different from one but bounded and can be calculated approximately
in perturbation theory it could provide a useful measure. Instead of an intrinsic energy scale
of the model a level of significance for a deviation of an expectation value from its equilibrium
result would characterize the continuous crossover from adiabatic to sudden switching. This
seems to be an appropriate approach although it requires more computational effort.

15.5 Extension to the nonequilibrium Bose-Hubbard model in
more than one dimensions

Since ultracold bosonic gases can be generated experimentally much easier than ultracold
fermions and many such experiments have been established around the world, zero tem-
perature many-particle effects are best studied in bosonic systems. Therefore it would be
interesting to fill the open gap in Fig. 11.4 and translate the flow equation calculation for
the quenched Fermi liquid to the quench of a noninteracting Bose gas. Currently numerical
approaches based on DMFT are developed to study the nonequilibrium behavior of bosonic
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models. Complementing these works with observations based on the flow equation technique
could contribute to elucidate possible time-scale separations there. Obviously, the expected
physics is quite different: Instead of fermionic phase space restrictions due to the Pauli
principle the bosonic case is characterized by the Bose-Einstein condensation (BEC), i.e. a
macroscopic occupation of the ground state of the system. There is ample literature about
excitations of the BEC by external forces which lead to vortex formation (see, for instance,
quotations in [209] and [272]). However, quenching the Bose-Hubbard Hamiltonian may ex-
hibit novel nonequilibrium physics. It will be characterized by a redistribution of occupation
within the excited states; however, by a sudden quench even a macroscopic occupation of an
excited state might be achievable. The creation of such a state has been suggested already
12 years ago by Yukalov et al. [273]. They proposed that under resonant pumping processes
a Bose-Einstein condensate can be moved to an excited state and quasistationary ground
state occupations can be expected. Subsequently, the properties of such non ground states of
BECs were studied using the Gross-Pitaevskii equation which provides a mean-field approach
to a BEC and is well-established in equilibrium. Its stationary solutions of higher energy
are known as nonlinear coherent modes of a BEC; topological modes describing vortices are
only one example. Prerequisites for their resonant excitation have been outlined and their
temporal dynamics has been studied in detail for various initial conditions and two scale
oscillations of interference patterns and interference currents have been found [274]. Some
findings have been linked to dynamical critical phenomena and the dynamics of such non
ground state Bose-Einstein condensates has been investigated on the grounds of the Gross-
Pitaevskii equation. Dynamical transitions between mode-locked and mode-unlocked regimes
have been reported [275] and an order parameter has been suggested [276]. Finally, a non
ground state BEC (orbital band BEC) has been recently prepared experimentally [277].
The flow equation method would allow to perturbatively study the full quantum dynamics
of the nonequilibrium relaxation behavior that follows a quantum quench of a Bose-Einstein
condensate. This would allow to compare to what extend mean-field predictions based on
the Gross-Pitaevskii equations are reliable beyond the ground state. Although only a limited
number of initial states can be addressed by this approach, there is the hope that, again,
different time scales in the relaxation of the condensate could be specified.



Chapter 16

Conclusions

In this thesis I have contributed to the question how nonequilibrium initial conditions and
correlations jointly influence the dynamics of quantum many-particle systems. This problem
was addressed by a real-time analysis of the quantum dynamics of suitable model systems
which have been subjected to a quantum quench, i.e. to a sudden switching-on of an addi-
tional interaction term in the Hamiltonian. This implies that for all times after the quench
the full quantum evolution of all observables is generated by a time-independent Hamiltonian.
In consequence, its eigenbasis constitutes the preferred frame of reference for all investigations
and diagonalization techniques have been applied. Since throughout this thesis most obser-
vations are grounded on perturbative arguments the general assumption is that the strength
of the switched-on interaction is not too strong.
The main findings of this thesis are concluded from a formal but rather general observation
made for the scenario of a quantum quench: the discovery of a characteristic mismatch of
two quantum mechanical expectation values of particular observables. The first expectation
value is evaluated in the initial state of the nonequilibrium problem (which is the ground
state of the noninteracting part of the Hamiltonian) and then time-averaged with respect to
long times; the second one is evaluated in the (static) equilibrium ground state of the full
Hamiltonian.
Throughout this work I have illustrated the origin and the character of this mismatch in dif-
ferent systems, starting with the pedagogical example of the one-particle squeezed oscillator.
There an exact solution can be compared with a perturbative calculation to second order in
the interaction. Both approaches describe the mismatch of the nonequilibrium and equilib-
rium expectation values of the occupation but provide different numerical values for their ratio
m. This indicates that already a perturbative calculation captures essential nonequilibrium
physics. In a perturbative treatment of the squeezed oscillator to leading order, the ratio of
these nonequilibrium and equilibrium expectation values acquires a universal value of m = 2.
For one-particle systems the existence and the perturbative value of this mismatch can be
proven on the grounds of second order perturbation theory. For pedagogical reasons the
proof has been formulated in two versions. It illustrates the main requirement, namely the
vanishing of the commutator of the considered observable and the noninteracting part of
the Hamiltonian. This is the reason why perturbation theory in Hamiltonian eigenstates
is sufficient to describe the observed mismatch. Moreover, the proof rests on a dephasing
argument. This requires to restrict to systems which are nondegenerate in energy. Moreover,
this feature of the proof prevents its straightforward generalization to many-body systems.
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Although the characteristic mismatch has already appeared in previous calculations for in-
tegrable many-particle quantum systems [93], its has not been recognized as a widespread
structure and its relevance for the nonequilibrium dynamics of nonintegrable (and, in partic-
ular, almost integrable) systems could not be learned from these models. However, seen in
the light of my own results for the quenched Fermi liquid and considering related results of
others I have conjectured on a corresponding (but not fully equivalent) statement for many-
particle systems. Contrary to the theorem for the one-particle case this conjecture requires
the existence of additional constraints on the dynamics of the many-body system.
This requirement is met in the case of a quenched Fermi liquid. The real-time analysis of
its dynamics constitutes the main part of this thesis. For this purpose the Fermi liquid
is studied in a microscopic model, namely the Hubbard model at zero temperature and in
more than one dimension. In order to avoid complications by possible phase transitions, only
weak interaction quenches within the Fermi liquid regime of this model are discussed. The
diagonalization of the Hubbard Hamiltonian is achieved by means of the flow equation method
following Wegner. It represents a renormalization technique of its own kind which requires
the simultaneous diagonalization of the Hamiltonian and the transformation of all observables
into the (approximate) eigenbasis of the Hamiltonian. Contrary to the common numerical
solution of the differential flow equations, in this thesis an approximate analytical solution
has been used which reproduces perturbation theory up to second order in the interaction.
To leading order, the renormalization flow of Hamiltonian parameters, i.e. of the interaction
(which flows monotonously to weak coupling) and of the one-particle energies (no flow) turns
out to be unimportant. Yet the transformation of the creation operator exhibits a continuous
change from a description based on noninteracting particles to a many-particle representation;
there the original particle appears to be dressed by correlation-induced electron-hole pairs
which is characteristic for an interacting many-fermion system. Its careful analysis shows
that this change is not complete around the Fermi surface; instead, an overlap is retained
between the noninteracting fermions and the degrees of freedom of a diagonal representation.
This overlap represents a quasiparticle residue and therefore Landau’s quasiparticle picture
can be extended to a Fermi liquid for the considered nonequilibrium initial condition. The
establishment of a quasiparticle description is essential for the further analysis of the evolution
of the quenched Fermi liquid since it allows to discuss a residual dynamics of quasiparticles.
This is done by a quantum Boltzmann equation which is the kinetic equation for the quasi-
particle momentum distribution; it describes its evolution from a nonequilibrium distribution
towards a Fermi-Dirac distribution at an appropriate effective temperature.
However, the Boltzmann equation is not applied directly to the initial state. Instead, the
first phase of the dynamics is analyzed by a perturbative implementation of the full quantum
mechanical time evolution. Since it is second order in the interaction, it gives reliable results
on a corresponding time scale proportional to the inverse of the squared interaction strength.
Initially, one finds a rapid build-up of a correlated many-particle description due to dephas-
ing. Afterwards, the evolution of the momentum distribution almost freezes in a transient
state which can be long-lasting for weak interactions. This transient state exhibits prether-
malization of the total kinetic energy, i.e. the total kinetic energy has already relaxed to its
final value. This, however, does not imply heating of the momentum distribution: due to the
persistence of a Fermi surface discontinuity the later still resembles a zero temperature Fermi
liquid throughout the transient regime. Such a disagreement of temperatures derived from ex-
pectation values of different observables is known to be a characteristic trait of many systems
in nonequilibrium. Simultaneously, one observes the characteristic mismatch of nonequilib-
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rium and equilibrium expectation values in the transient state. This is most prominently
seen in the correlation-induced reduction of the quasiparticle residue. For the perturbative
solution of the flow equations the value of their ratio is, again, m = 2.
Phase space restrictions due to the Pauli principle together with the translational invariance
of the Hubbard model have been identified as the origin of this delayed equilibration of the
momentum distribution. They form a bottleneck to the further relaxation by scattering events
and are responsible for the clear separation of a second time scale from the one related to
initial dephasing. Thus a window is opened for the observation of the prethermalized transient
state.
The second time scale can be deduced from forth order corrections to the second order re-
sult which mirror the structure of the scattering integral of a quantum Boltzmann equation.
Equally, one can map the momentum distribution in the prethermalized state to a quasiparti-
cle representation and use it as an ’initial’ condition for the later Boltzmann dynamics. From
a linearization of the scattering integral one equally reads off that this second stage of the
dynamics occurs on a time scale proportional to the inverse forth power of the interaction. If
one assumes that a quasiparticle picture can be retained until the Boltzmann dynamics has
been accomplished (which holds trivially only in an arbitrarily close environment around the
Fermi surface) thermalization of the quenched Fermi liquid can be predicted.
These findings for the dynamics of a quenched Fermi liquid agree well with previously known
experimental results on the relaxation behavior of electron gases in semiconductors or metals.
Yet to the knowledge of the author it has not been before this work that a contiguous analytical
calculation of the dynamics of the momentum distribution function on the grounds of its
quantum mechanical time evolution has been given from the initial dephasing, throughout
the quasi-stationary regime of a prethermalized state until the onset of thermalization.
In a final outlook the calculation of the momentum distribution has been repeated using
Keldysh perturbation theory. On the one hand, this has exposed the particular simplicity of
the momentum distribution function in the Hubbard model for which even a direct second
order perturbative (Keldysh) calculation of its quantum mechanical time evolution would not
suffer from the otherwise widespread problem of secular terms1.
On the other hand, Keldysh perturbation theory simplifies the analysis of the crossover from
instantaneous to adiabatic switching processes. Since nonvanishing ramp-up times are un-
avoidable in many experiments, a proper derivation of the crossover scale is desirable. For
instance, recent proposals suggest to study the nonequilibrium dynamics of BCS systems
in ultracold atomic gases. This leads to the question if and how a sufficiently strong exci-
tation can be reached without heating up the system beyond the critical temperature of a
BCS system. The calculations and findings presented in this thesis may contribute to an-
swer this question more rigorously. Moreover they may stimulate the creative mind to think
about other sensitive nonequilibrium many-particle phenomena which can be excited by a
quantum quench and may become observable (only) within the time window spanned by the
prethermalized transient state of a Fermi liquid.

1Nonetheless, a trustworthy analysis of the extension of Landau’s quasiparticle picture to nonequilibrium
initial conditions (which are not captured by minimizing an energy functional) requires more insight than that
provided by the second order Keldysh perturbation approach presented here.
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Appendix A

Brief dictionary of definitions,
formulae and commutators

In the following appendix a little dictionary of helpful relations is given which are useful when
performing flow equation calculations. First of all, common textbook relations are reprinted
and definitions are repeated. Then some commutators of arbitrary operators are presented.

List of definitions

Energy difference

∆�1�12�2(B) = �1�(B)− �1(B) + �2�(B)− �2(B)

Fermionic phase space factors

Q122� = n1n2(1− n2�) + (1− n1)(1− n2)n2�

Q(1)

122� = n1n2(1− n2�)

Q(2)

122� = (1− n1)(1− n2)n2�

All three definitions of phase space factors are symmetric under the interchange of the first
two indices (see 9.2.2). For the Fermi liquid, the momentum dependence is summed up,
leading to the integrated phase space factor Ik(E) which can be evaluated easily for zero
temperature (T = 0)

Ik(E) :=
�

1�2�1

Q1�2�1δ(E − �1� − �2� + �1)δ1
�
+2

�

1+k

T=0= ρ2(E − �F )2

A variant of this is the phase space factor of the scattering integral in a quantum Boltzmann
equation

Jk(E;n) =
�

1�2�1

δ1
�
+2

�

1+k
δ(�1� + �2� − �1 − E)[nkn1(1− n1�)(1− n2�)− (1− nk)(1− n2)n1�n2� ]
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Formulae

Baker-Hausdorff-relation:

For operators A and B holds that

eABe−A = B + [A, B] +
1
2

[A, [A, B]] + . . . =
∞�

n=0

1
n!

[A, [A, [A, . . . B]]] (A.1)

Note that if the right hand side becomes cyclic (i.e. [A, B] = cB) it can be explicitly summed
up, leading to an exponential.

General relations between commutators of operators

Let A,B,C,D,E,F,G,H be arbitrary operators, i.e. elements of a common operator space. Then
the following relations for the commutator ([., .]) and anti-commutator ({., .}) hold:

Decomposition of commutators into commutators

[AB, C] = A [B,C] + [A, C]B
[AB, CD] = AC [B,D] + A [B,C]D + C [A, D]B + [A, C]DB

Decomposition of commutators into anticommutators

[AB, C] = A {B,C}− {A, C}B

[AB, CD] = −AC {B,D}+ A {B,C}D − C {A, D}B + {A, C}DB

[ABCD,EF ] = ABEC {D,F}−ABE {C, F}D +
ABC {D,E}F −AB {C, E}DF +
EA {B,F}CD − E {A, F}BCD +
A {B,E}FCD − {A, E}BFCD

[ABCD,EFGH] = ABEFC {D,G}H −ABEFG {C, H}D +
ABEF {C, G}HD −ABEFCG {D,H}+
ABC {D,E}FGH −ABE {C, F}DGH +
AB {C, E}FDGH −ABCE {D,F}GH +
EFA {B,G}HCD − EFG {A, H}BCD +
EF {A, G}HBCD − EFAG {B,H}CD +
A {B,E}FGHCD − E {A, F}BGHCD +
{A, E}FBGHCD −AE {B,F}GHCD
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Deutsche Zusammenfassung
Die Untersuchung des Zusammenspiels von wechselwirkungsinduzierten Korrelationen und
Nichtgleichgewichts-Anfangsbedingungen in Vielteilchensystemen ist Gegenstand aktueller
Forschung. Neue experimentelle Techniken ermöglichen die hochpräzise Manipulation von
Systemparametern, wodurch deren Nichtgleichgewichtsverhalten zugänglich wird. Beispiele
sind u.a. Transportmessungen in Halbleiter-Heterostrukturen, Pump-probe-Experimente, in
denen die zeitliche Relaxation angeregter Moleküle oder Festkörper verfolgt wird, oder Ver-
suche an ultrakalten Atomgasen in optischen Gittern. In all diesen Fällen können die Nicht-
gleichgewichtseigenschaften einer Fermiflüssigkeit relevant für eine korrekte Beschreibung sein.
Ein erster Zugang zu diesen ist der wesentliche Inhalt dieser Dissertation.
Am Anfang dieser Arbeit steht ein Überblick über wichtige Nichtgleichgewichtsphänomene
und beispielhafte Experimente sowie die Formulierung zentraler Fragen und Konzepte neben
einer kurze Einführung u.a. in Landau’s Fermiflüssigkeitstheorie, das Hubbard-Modell sowie
die Flussgleichungsrenormierungsmethode nach Wegner.
Die zentrale Beobachtung dieser Dissertation, eine charakteristische Verschiedenheit von quan-
tenmechanischen Erwartungswerten im Gleichgewicht und im Nichtgleichgewicht, wird zuerst
am Beispiel des gequetschten Oszillators verdeutlicht. Dabei zeigt ein Vergleich der exak-
ten Lösung mit einer störungstheoretischen, dass diese Verschiedenheit physikalischer Natur
und in Störungstheorie beobachtbar ist. Anschliessend werden diese Beobachtungen auf eine
größere Klasse von Einteilchenmodellen verallgemeinert.
Daraufhin wird das Nichtgleichgewichtsverhalten einer Fermiflüssigkeit, eines Vielteilchen-
Quantensystems, untersucht, indem man einem freien Fermigas der Temperatur T = 0 in-
stantan eine Zweiteilchenwechselwirkung aufschaltet und dessen Relaxation verfolgt. Als
mikroskopisches Modell dazu dient das Hubbardmodell in mehr als einer Dimension. Eine
unitäre Flussgleichungstransformation diagonalisiert dessen Hamiltonoperator nährungsweise
und bildet alle Observablen auf neue Operatoren in der Diagonalbasis ab. Dort können deren
Heisenberg-Bewegungsgleichungen leicht gelöst werden. Die Diskussion der zeitabhängigen
Impulsverteilungsfunktion und der kinetischen Energie enthüllt einen dreistufigen Relaxa-
tionsprozess: Dephrasierungsprozesse bedingen einen schnellen Korrelationsaufbau, führen
zur Etablierung eines Quasiteilchenbildes und münden ein in einen quasistationären Zwis-
chenzustand. Letzterer zeigt Präthermalisierung in der kinetischen Energie, die bereits zu
ihrem Endwert relaxiert ist. Gleiches gilt jedoch nicht für die Impulsverteilungsfunktion.
Letztere ähnelt nach wie vor der einer Fermiflüssigkeit bei T = 0, das Quasiteilchenresiduum
zeigt die beschriebene charakteristische Verschiedenheit seines Wertes im Nichtgleichgewicht
vom korrespondierenden Wert im Gleichgewicht. Die Ursache dieser verzögerten Relaxation
der Impulsverteilungsfunktion liegt in der Translationsinvarianz des Hubbardmodells und
dem Pauli-Prinzip für Fermionen, die gemeinsam den Phasenraum für Quasiteilchenstreu-
ung beschränken. Aufgrund der Nichtgleichgewichtsnatur des Zwischenzustandes gilt diese
Beschränkung jedoch nicht exakt und erlaubt eine weitere Relaxation, die jedoch erst auf
einer längeren Zeitskala wirksam wird. Diese verzögerte Thermalisierung wird mittels einer
Quanten-Boltzmanngleichung beschrieben, aus welcher auch die zugehörige Zeitskala folgt.
Diese Ergebnisse und ähnliche Beobachtungen in anderen Arbeiten rechtfertigen eine Ver-
mutung über das generische Verhalten von Vielteilchen-Quantensystemen nach plötzlichen
Anschaltvorgängen, die Beschreibung des Übergangs von instantanen zu adiabatischen Schalt-
vorgängen wird in einem Ausblick auf Grundlage einer Keldysh - Störungsrechnung skizziert.
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