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We have explored the nonlinear dynamics of an optomechanical system consisting of an illuminated

Fabry-Perot cavity, one of whose end mirrors is attached to a vibrating cantilever. The backaction induced

by the bolometric light force produces negative damping such that the system enters a regime of nonlinear

oscillations. We study the ensuing attractor diagram describing the nonlinear dynamics. A theory is

presented that yields quantitative agreement with experimental results. This includes the observation of a

regime where two mechanical modes of the cantilever are excited simultaneously.
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Micro- and nanomechanical systems have become a
focus of research [1], with the goals ranging from ultra-
sensitive measurements to fundamental tests of quantum
mechanics. Optomechanical systems are particularly
promising, where the interaction of light circulating in an
optical cavity with a mechanical system like a cantilever is
exploited. This produces a variety of effects, including a
modification of the mechanical spring constant [2–7], bi-
stability [8,9], optomechanical cooling, and parametric
instability. Recent experiments have made impressive
progress in cooling [5,6,10–15], which may ultimately
lead to the mechanical ground state [16,17]. The opposite
regime is of equal interest, where the mechanical Q factor
is enhanced due to the backaction of light-induced forces
and a parametric instability arises, driving the system into
self-sustained oscillations [2,18–26]. The same physics is
also found in other systems as diverse as a driven LC
circuit [27], a superconducting single-electron transistor
coupled to a nanobeam [28–30], or cold atoms in an optical
lattice [31]. Although the basic instability has been ob-
served by now in a number of experiments [20–
23,25,26,32], it was recently realized theoretically [24]
that the nonlinear dynamics of this system can become
highly nontrivial, leading to an intricate attractor diagram.
We present an experiment that traces this diagram and offer
a detailed analysis and comparison against theory. As an
unexpected feature, we observe the simultaneous excita-
tion of several mechanical modes of the cantilever, leading
to coupled nonlinear dynamics. The system studied here is
dominated by bolometric forces (i.e., light absorption de-
flecting the bimorph cantilever) and may inspire future
studies of the analogous attractor diagram in radiation-
pressure-dominated setups (such as [22,23]).

Experimental setup.—We employ the setup displayed in
Fig. 1. The light of a 633 nm monomode HeNe laser is
coupled into a single mode fiber and passes through a

Faraday isolator (35 dB suppression). The fiber end inside
a vacuum chamber (at 5" 10!6 mbar) was polished and
coated with a reflecting gold layer of 30 nm (yielding a
theoretical reflectivity of 70%) to form the first cavity
mirror. The sample is a gold-coated atomic force micros-
copy cantilever acting as a micromirror, with length
223 !m, thickness 470 nm, width 22 !m, spring constant
K ¼ 0:01 N=m, and a gold layer of 42 nm evaporated on
one side only. The cantilever’s fundamental mechanical
mode has a frequency of!1 ¼ 2"" 8:7 kHz and a damp-
ing rate of !1 ¼ 30 Hz. A simulation of the silicon-gold
bilayer system gave a reflectivity of 91% for a wavelength
of 633 nm. The divergent beam is sent through a micro-
scope setup consisting of two identical lenses, yielding a
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FIG. 1 (color online). The experimental setup. The light inside
the optical cavity is focused onto a cantilever, where it exerts a
force. Both the transmitted light intensity and its sidebands at the
cantilever frequency are recorded (Transmission and Amplitude,
respectively).
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Gaussian focus on the sample with a 1=e2 diameter of
6 !m. The cantilever has been mounted on an xyz piezo
stepper positioner block [33], such that it can be placed at
the microscope’s focal point, which was chosen near the
end of the cantilever, at about 3=4 of its length. The finesse
of the cavity defined by the sample and the fiber end was
found to be F $ 4:5. The transmitted intensity is measured
with a Si photodiode behind the cantilever.

Theoretical model.—The dynamics of the cantilever is
described by the equation of motion of a damped oscillator,
driven by light-induced forces:

€x ¼ !!2
1ðx! x0Þ ! !1 _xþ ðFrad þ FbolÞ=m1: (1)

Here xðtÞ is the cantilever deflection observed at the laser
spot. For now, we focus on the motion of the first mechani-
cal mode (with effective mass m1, frequency !1, and
damping rate !1) and study higher-order modes below.
The cavity is assumed to be in resonance with the laser
at x ¼ 0, while the mechanical equilibrium position x0 is
controlled by the piezo positioner. The radiation-pressure
force Frad is set by the power I circulating inside the cavity:
Frad=m1 ¼ P I. For an ideally reflecting mirror, we have
P ¼ ðm1cÞ!1, although in practice P has to be treated as a
fit parameter. The bolometric force Fbol arises due to light
being absorbed. It is enhanced by a factor # over Frad and
is retarded due to the finite time of thermal conductance #
(where $ is proportional to the change in temperature):

Fbol=m1 ¼ #P
Z t

!1

dt0

#
e!ðt!t0Þ=#Iðt0Þ ( #P$ðtÞ: (2)

In the present low-finesse setup, the intensity reacts
instantaneously to the motion, IðtÞ ¼ I½xðtÞ*, and the
Fabry-Perot resonances overlap: I½xðtÞ*=Imax ¼
f1þ ð2F="Þ2 sin½2"% xðtÞ*2g!1, where Imax is the peak cir-
culating power. In contrast to Ref. [24], the time lag # of
the bolometric force is crucial.

Self-induced oscillations.—Time-retarded forces, pro-
duced by the backaction of the light onto the moving
cantilever, induce an effective optomechanical damping
rate [2,4,16–18,24], which can become negative. Then
the system may show a Hopf bifurcation towards self-
induced oscillations [24], which (for the present parame-
ters) are sinusoidal to a very good approximation: xðtÞ ¼
$xþ A cosð!1tÞ. The nonlinear dynamics can be character-
ized by the amplitude A and offset $x. From these we obtain
the experimentally observed light intensity IðtÞ. In steady
state, the average force and total power input (including
both mechanical friction and light-induced effects) must
balance to zero, i.e., h €xi ¼ 0 and h €x _xi ¼ 0, where h. . .i
denotes the time average. Inserting Eq. (1), we obtain the
power balance equation:

P h _x½IðtÞ þ #$ðtÞ*i ¼ !1h _x2i: (3)

The radiation pressure does not contribute: h _xIi ¼ 0, since
_xI½xðtÞ* is antisymmetric in time. Equation (3) yields

!1

P
¼ !#

A!1"

!1#

ð!1#Þ2 þ 1

Z 2"

0
d’I½ $xþ A cos’* cos’:

(4)

The force balance condition !2
1ð $x! x0Þ ¼ P ðhIiþ #h$iÞ

gives us $x ¼ $xðx0; AÞ:

$x! x0 ¼
ð1þ #ÞP
2"!2

1

Z 2"

0
d’I½ $xþ A cos’*: (5)
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FIG. 2 (color online). Attractor diagram. (a) Amplitude A of
self-induced oscillations vs cantilever equilibrium position x0.
The color scale displays the net power fed into the cantilever
from the radiation field, i.e., the right-hand side of Eq. (4).
Contour lines indicate possible oscillation amplitudes (attrac-
tors) for various damping constants !1. Red dots stem from
numerical simulations, for the experimental value of !1 (and a
laser input power of I ¼ 0:3I0). The inset shows the same plot as
a function of ðA; $xÞ instead of ðA; x0Þ. (b),(c) Whenever xðtÞ
(thick black line) passes through the optical resonances (green
bars), the light intensity (red line) displays spikes, leading to
delayed increases in the radiation force (dashed blue line), which
was plotted as ð$! $$Þ " 200. Plots (b) and (c) correspond to the
positions indicated in the attractor diagram (a).
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Attractor diagram.—Using Eqs. (4) and (5), one obtains
solutions ð $x; AÞ which can be visualized in attractor dia-
grams, like the one shown in Fig. 2. The color scale
encodes the power input due to the light-induced forces
[right-hand side of Eq. (4)], as a function of x0 and A. The
solution of Eq. (4) for various values of !1=P then corre-
sponds to contour lines of this function. Apart from the
expected %=2 periodicity in the detuning x0, the main
feature is the appearance of multiple solutions for A at a
given x0 (‘‘dynamical multistability’’). The deviation be-
tween $x and x0 [see Eq. (5)] leads to a distortion of the
diagram (inset in Fig. 2). This effect grows with increasing
input power, finally leading to multiple solutions for
$xðx0; AÞ.
Comparison of theory and experiment.—In the experi-

ment, the detuning x0 and the input power Iin are varied,
while the transmitted light intensity is measured. This is
compared to the time-averaged circulating power hIðtÞi
obtained from the theory. As soon as the oscillations set
in, IðtÞ is modulated at !1. A very helpful feature of this
system is that the amplitude A is directly proportional to
the first harmonic of the light intensity: ~I1 ¼ 1

T "R
T
0 dt cosð!1tÞIðtÞ, where T ¼ 2"=!1. From Eq. (4), we

see that A ¼ !2ð#P=!1!Þ!1#½1þ ð!1#Þ2*!1~I1. This re-
lation is true only in steady state (on the attractors), but
then it is valid even when the motion sweeps across several
optical resonances. Experimentally, ~I1 is obtained by send-
ing the photodetector signal through a narrow bandpass
filter (100 Hz) centered at the frequency !1.

Theoretical and experimental curves for the average
intensity (‘‘transmission’’) and the amplitude are shown
in Fig. 3, for different input powers. We have used F $ 4:5
(from a fit at low input power), # ¼ 3950, and !1# ¼ 39
(obtained independently). The conversion factor between
experimental input power and the force on the cantilever
was found to be P I0 ¼ 0:0775 m=s2, by fitting to the data
at intermediate power (the same was done for the rescaling
of theoretical and experimental transmission intensity).
The maximum laser power I0 ¼ 1:3 mW is estimated to
yield 500 !W circulating in the cavity on resonance.

At the lowest power displayed in Fig. 3, self-oscillations
have just set in, and the transmission curve shows a striking
asymmetry. At higher input powers, the multistability pre-
dicted by the attractor diagram (Fig. 2) leads to hysteresis
effects.

Beginning at Iin ¼ 0:57I0, a second interval of self-
oscillatory behavior appears to the left of the resonance,
growing stronger and wider with increasing laser power.
This initially unexpected result may be explained by the
influence of higher mechanical modes. These may be
excited by the radiation as well, leading to coupled (multi-
mode) nonlinear dynamics. Thus, we have to take into
account the second mode as well:

€x i ¼ !!2
i xi ! !i _xi þ Fbol

i ½xðtÞ*=mi; (6)

where xi denotes the coordinate of the ith mechanical
mode with frequency !i, mechanical damping rate !i,
and effective mass mi (!1=2" ¼ 8:7 kHz, !2=2" ¼
60 kHz, !1 ¼ 30:0 Hz, and !2 ¼ 150 Hz). The total dis-
placement is xðtÞ ¼ x0 þ x1ðtÞ þ x2ðtÞ. The mechanical
modes are now coupled indirectly by the bolometric force,
while radiation pressure is negligible. For the present
setup, this force changes sign when going to the second
mode. Choosing Fbol

2 m1=F
bol
1 m2 ¼ !28:8 as an adjustable

parameter, we have found the numerical simulation of (6)
to be in good agreement with the experiment (Fig. 3). We
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FIG. 3 (color online). Experiment vs theory. The transmitted
light intensity (left) and the amplitude of self-induced cantilever
oscillations (right), from a numerical simulation (red full curves)
and from the experiment (blue data points), at increasing input
power levels (top to bottom). Theoretical transmission curves
display the (rescaled) time-averaged circulating light intensity
from the simulation. Amplitude curves are obtained from the
sidebands in the intensity (see main text). For clarity, the
hysteresis observed upon sweeping x0 has been shown only in
the middle panel. The region of instability (shaded interval)
grows with increasing input power. Simultaneous self-induced
oscillations of the first two mechanical modes set in at the
highest power displayed (in the two intervals indicated in the
plot). The calculated amplitude of the second mode is shown as a
dashed line.
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note that the relation between the measured ‘‘amplitude,’’
i.e., first harmonic ~I1, and the actual amplitude A1 no
longer holds exactly in this regime.

At maximum laser power, there are two intervals with
simultaneous excitation of both modes (indicated in
Fig. 3). The onset of such a regime at x0 $ %=8 can be
interpreted as follows: Taking into account Fbol

2 =Fbol
1 < 0,

we see that the second mode gains its energy from
dipping into the resonance at x ¼ %=2, while the first is
still provided with energy due to the resonance at x ¼ 0.
Numerical evidence shows that the motion consists of
sinusoidal oscillations in x1;2, of nearly constant ampli-
tudes and without phase locking (for the parameters ex-
plored here). Thus xðtÞ $ x0 þ

P2
i¼1½Ai þ &AiðtÞ* "

cosð!itþ'iÞ, where &AiðtÞ=Ai + 1 and the 'i are arbi-
trary phases. Higher input powers will lead to excitations
of additional modes, and the systemmight go into a chaotic
regime.

Conclusions.—We have analyzed the nonlinear dynam-
ics of an optomechanical system by measuring and ex-
plaining its attractor diagram. The comparison with theory
has revealed the onset of multimode dynamics at large
power, with two mechanical modes of the cantilever par-
ticipating in the radiation-driven self-sustained oscilla-
tions. These effects could find applications in highly
sensitive force or displacement detection [24]. In the fu-
ture, it would be interesting to observe the attractor dia-
gram in systems of a high optical finesse [22,23], the self-
excitation of subwavelength mechanical resonators inside
a cavity [15,34], and quantum nonlinear dynamics in opto-
mechanical systems [35].
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[21] C. Höhberger and K. Karrai, in Proceedings of the 4th

IEEE Conference on Nanotechnology, 2004 (IEEE, New
York, 2004), p. 419.

[22] T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and
K. J. Vahala, Phys. Rev. Lett. 94, 223902 (2005).

[23] T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and
K. J. Vahala, Phys. Rev. Lett. 95, 033901 (2005).

[24] F. Marquardt, J. G. E. Harris, and S.M. Girvin, Phys. Rev.
Lett. 96, 103901 (2006).

[25] T. Corbitt et al., Phys. Rev. A 74, 021802 (2006).
[26] T. Carmon and K. J. Vahala, Phys. Rev. Lett. 98, 123901

(2007).
[27] K. R. Brown, J. Britton, R. J. Epstein, J. Chiaverini, D.

Leibfried, and D. J. Wineland, Phys. Rev. Lett. 99, 137205
(2007).

[28] A. Naik et al., Nature (London) 443, 193 (2006).
[29] D. A. Rodrigues, J. Imbers, and A.D. Armour, Phys. Rev.

Lett. 98, 067204 (2007).
[30] D. A. Rodrigues, J. Imbers, T. J. Harvey, and A.D.

Armour, New J. Phys. 9, 84 (2007).
[31] K.W. Murch, K. L. Moore, S. Gupta, and D.M. Stamper-

Kurn, Nature Phys. 4, 561 (2008).
[32] H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J.

Vahala, Opt. Express 13, 5293 (2005).
[33] xyz positioner from attocube systems AG (Munich).
[34] I. Favero and K. Karrai, arXiv:0707.3117.
[35] M. Ludwig, B. Kubala, and F. Marquardt,

arXiv:0803.3714.

PRL 101, 133903 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

26 SEPTEMBER 2008

133903-4


