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Motivation

Over the last decades impurity problems have drawn a lot of attention and theoretical
methods have been developed in order to solve those problems. One of these impurity
models is the Kondo model, where the electrons of the conduction band interact with a
only spin dependent magnetic impurity. The low energy physics is governed by the quench-
ing of the spin degenerated impurity through the conduction band electrons. There exist
numerous experiments concerning the Kondo model, in most cases well understood on the
theoretical side .
The Bose-Fermi Kondo model (BFKM), which will be discussed in great detail in this
thesis, is a rather recent impurity model, but nevertheless, it can be considered as a sort of
generalisation of the ordinary Kondo model, as it additionally couples a bosonic dissipative
bath to the impurity. This new type of bath tries, on the one side, to decohere the spin, on
the other side the fermionic bath, known from the Kondo model, tries to quench the spin,
resulting in a competition of the two different baths depending on the coupling strength of
the respective baths to the impurity spin. This competition gives rise to a phase transition
between the Kondo phase, where the Kondo coupling dominates, and the Bose phase, with
the coupling of the spin to the bosonic bath prevailing. On the contrary to the Kondo
model, a lot of experimental outcomes of the BFKM are not understood by theoretical
means. The additional complexity due to bosonic bath makes it very difficult to seize the
full problem.
However, as an extension to the Kondo model, the Bose-Fermi Kondo model has another
origin, which comes from the mapping of a translation invariant lattice model, the so called
Kondo lattice, on an impurity model, via extended dynamical mean field theory (EDMFT).
It is widely believed that these Kondo lattices describe certain types of heavy fermion met-
als. Assuming that the translation invariant lattice of our concern consists of an on-site
as well as an inter-site interaction of the lattice impurities such a mapping will result into
the Bose-Fermi-Kondo model, describing the local physics. The EDMFT is a very well
established theory and one can think of it as a kind of extended quantum version to the
usual mean field theory.
The impurity model may be solved easier, where one has reliable analytic methods such
as poor man’s scaling, renormalisation groups and, a rather recent one, the flow equation
method, and via the mapping, information of the lattice model can be gained. The use-
fulness of the aforementioned connection lies in its ability to be a possible description of
a quantum phase transition of such a Kondo lattice, as in the very same model, a com-
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petition between the on-site interaction and the inter-site interaction is present. Such a
quantum phase transition takes place at zero temperature, hence it can not be driven by
thermal fluctuations.
The first attempts to understand the quantum phase transition have been made by us-
ing Hertz-Millis theory. This theory considers only long wavelength fluctuations and do
not account for any local fluctuations created by the on-side interactions. It turned out
that the Hertz-Millis theory is indeed an adequate description for weakly coupled systems,
however it fails to produce the right experimental data when strongly coupled systems are
considered. In the case of strong coupling the most promising candidate is the EDMFT,
which also accounts for local fluctuation, mainly displayed by the local theory, the BFKM.
Those local fluctuations give rise to a breakdown of Fermi liquid theory at the quantum
critical point.
The strong coupling nature of the model requires methods that go beyond perturbation
theory, such as NRG on the numerical side and the flow equation method on the ana-
lytical side. Actually, there are two types of BFKM one can consider, on the one hand
the Ising type model, the spin couples to the bosonic bath in a specific direction, and
on the other hand the isotropic one, the spin couples to the bosonic baths equally in all
three directions. The Ising BFKM is accessible through numerical methods and we will
also study this model, but more as a check of the capability of the flow equation method
concerning its applicability on the model. After doing so we proceed on to the isotropic
case, which attracts our attention, as no numerical solution is present, due to the three
emerging bosonic baths.
We will reproduce the already known results from RG-methods on the approximate ω-
dependence of the spin correlation function, and furthermore, we obtain a full solution of
the general spin correlation function, by solving the gained flow equations, which has not
been done so far. That means our calculations are not restricted to consider the zero tem-
perature case only and therefore we can check an assumed correspondence of the BFKM
at the critical point with a conformal field theory. This is so important, because the as-
sumption has been made in order to give an expression for the temperature dependent
dynamical spin susceptibility, since the conformal field theory has been the only way to
give an expression at all. So far there is no justification of such an correspondence in
terms of microscopical physics. However, as the Kondo lattice is concerned the very same
local dynamical spin susceptibility is needed in order to solve the self-consitency equations
and thus make statements on the nature of the quantum phase transition. Obviously, one
would not like to base such important statements on mere unproven assumptions.

Outline

In chapter 1 an introduction to the different types of quantum phase transition as well as
the two main theoretical descriptions the Hertz-Millis theory and the EDMFT, is provided.
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Moreover, the known results of the local isotropic BFKM are presented.

The flow equations for the Ising BFKM are derived in chapter 2. The flow of the couplings
are the same as in the Kondo model, except the fact that the perpendicular coupling is
shifted by a constant, given by the dissipative strength of the bosonic bath.

Chapter 3 presents the differential equations of the couplings of the isotropic BFKM.
We reproduce the ω-dependence of the spin correlation function at zero temperature,using
the flow equation method, further on we calculate the non-zero temperature dependence
of the dynamical spin susceptibility and compare it to a particular correlation function
of a conformal field theory, since there has been recent conjecture, claiming a connection
between the BFKM at the quantum critical point and a certain conformal field theory.

The last chapter provides an outlook for future work. It includes a schematical guide-
line how to get an expression for the T -matrix of the isotropic BFKM and a consideration
of the time evolution of the spin operator. By solving the Heisenberg equation of motions
with the help of the flow equation method, in order to avoid secular terms.
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Chapter 1

Introduction

1.1 The Models

We consider two models, one is the Kondo model the other one, the Bose Fermi Kondo
model, which can be regarded as an extention of the first one. Both of them are worthy to be
studied for their own sake, but our main attention is drawn to the later one. Nevertheless, it
is possible to deduce them via DMFT (dynamical mean field theory) respectively EDMFT
(extended dynamical mean field theory) from a lattice model the so called Kondo lattice.
Historically, the Kondo model was regarded as an impurity system to model magnetic
behaviour of metals. In the next section will present its relation to the Anderson impurity
model. The Bose Fermi Kondo model, though shows some similarities to the conventional
Kondo model, it was originally deduced via EDMFT. In the section on the Bose Fermi
Kondo model we will give a kind of sketch how EDMFT works.

1.1.1 The Kondo Model

The s-d model originally introduced by Zener [1] (also known as Kondo model because of
Kondo who made major advantages in understanding the problem [2]) has been of great
interest over the last decades. In addition to DMFT one can also deduce the Kondo model
by a so called Schrieffer Wolff [3] transformation from the Anderson model. This canonical
transformation also connects the respective coupling constants of the two different models
and hence explains the antiferromagnetic dominating contribution. The most general form
of a single site Anderson model is given by

HA =
∑
σ

εdndσ + Und↑nd↓

+
∑
kσ

εkc
†
kσckσ +

∑
kσ

(Vkc
†
dσckσ + V ∗k c

†
kσcdσ), (1.1)

where d stands for the impurity level more presicely the orbital, which can at maximum
contain two electrons with opposite spin. Vk and V ∗k denote the interaction between the im-
purity and conduction electron and U the on site interaction. After applying the Schrieffer
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Wolff transformation, the Anderson model is mapped onto the Kondo model

HK =
∑
pσ

εpc
†
pσcpσ +

∑
pq

J(p, q)sp,q · S (1.2)

with sp,q =
∑

αβ c
†
pα

σαβ
2
cqβ and σ denotes the Pauli matrizes, in which the conduction spin

operator is expressed in terms of fermionic creation and annihilation operators respectively.
The connection between the two models is reflected by the relation of the coupling constants

J(p, q) = V ∗p Vq

(
1

U + εd − εq +
1

(εp − εd)
)
. (1.3)

The Kondo model can be viewed as an impuritity model, the electrons of the conduction
band scatter at a spin dependend impurity on the contrary to the Anderson model the
charge fluctuations on the impurity orbital are frozen. We take the impurity to have
a Spin 1

2
dependence. The great intrest of studying such impurity models is to model

magnetic properties of metals. Experimentally, it was a long known fact that the usual
description of the electrical resistivity R(T ) in terms of phonon-electron interaction does
not hold in impurity metals. It was observed that the resistivity has got a minimum at a
certain temperature value instead of a monotonic decreasing behaviour as the temperature
decreases. Phonon-electron interaction alone would not cause such a dependence. Kondo
could explain the minimum of the electrical resistivety by means of third order perurbation
theory in the coupling constant J , which gives raise to a logarithmic dependence ln(T ),
fitting the experimental data quite well. So the resistivity is of the following form

R(T ) = aT 5 + cimpR0 − cimpR1ln(
kBT

D
), (1.4)

D is the band width of the conduction electrons, cimp the impurity concentration and a, R1

and R0 are some material constants. Although Kondo could show the right behaviour, the
result can not be applicable over the full temperature range. As T → 0 the logarithmus
will diverge and the perturbation thoery breaks down. Finding a solution also valid in the
low temperature region is the famous Kondo problem. Actually, if one rewrites the spin
operator in a SU(2) Eqs.(1.2) invariant form it is possible to apply field theoretical methods
to the fermionic operators. The result was a devergence of e.g. the impurity susceptibility
at non zero temperature, given by

χimp(T ) ∼
(

1− 2Jρ0

1 + 2Jρ0ln(kBT
D

)

)
, (1.5)

hence this expression in terms of perturbation theory is just valid down to

kBTK ∼ De−
1
2
Jρ0 , (1.6)

TK marks this non-zero temperature, also known as the Kondo temperature. Notice, the
divergence only occures in the antiferromagnetic case J > 0. Many attempts have been
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Figure 1.1: The flow of the coupling constants in the poor man’s scaling approach, taken
from [3]

made to solve that problem, one of the most interesting is that of Anderson. Within a
series of papers [4, 5, 6], Anderson et. al. have developed a new method called poor man’s
scaling. The method can be regarded as direct antecessor of Wilson’s renormalisation
group theory. They applied their ideas to the Ising type model

H =
∑
pq

J+S
+c†p↓cq↑ + J−S

+c†p↑cq↓ + JzS
z(c†p↑cq↑ − c†p↓cq↓), (1.7)

which can be easily derived from the isotropic Kondo model. J+ and J− generate the spin
flip. From now on we set them equal J+ = J− = J⊥. The poor man’s scaling follows the
philosophy that the high energy excitations or rather the states around the upper and lower
band edge are cut off, at the same time the band width D gets reduced by a small amount
±|δD| and one is left with states in the range of 0 < |εp| < D − |δD|. Moreover, one has
to demand form invariance of the new Hamiltonian in comparison to the old one. It is
obvious that the form invariance can solely be achieved by rescaling the coupling constants
and thus the new couplings differ from the old ones by depending on the reduced band
width |δD|. In other words the couplings can be rewritten as

J⊥ → J⊥ + δJ⊥ Jz → Jz + δJz, (1.8)

where both δJ⊥ and δJz depend on δD. By considering the physics close to the Fermi
surface we obtain to differential equations

dJ⊥
dlnD

= −2ρ0JzJ⊥
dJz
dlnD

= −2ρ0J
2
⊥, (1.9)
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ρ0 is the constant density of states. After dividing and integration one ends up with

J2
z − J2

⊥ = const . (1.10)

In Fig.1.1 the divergence of the coupling constant in the antiferromagnetic reginon is shown.
Therefore the interaction between the magnetic impurity and the electrons of the conduc-
tion band becomes arbitary high, eventually a conduction electron will be trapped by the
impurity. A bound state is formed giving rise to an increase in the density of states in the
vicinity of the impurity ( Kondo effect). A lot of further efforts have been put in to solve
this problem by using methods like Fermi liquid [3] and renormalisation group [7]. It was
Andrei (1980) [8] and Wiegman(1980) [9] by applying the Bethe ansatz [10] who solved the
model in great detail, at least in one dimension. In fact, Andrei and Wiegmann were not
the first who could give a solution to the low temperature physics, it was Wilson [7] with
his numerical renormalisation group, but their main achievment was the derivation of an
analytic solution. For a general introduction to Kondo physics as such, which encoperates
almost all approaches, the reader is adviced to [3].

1.2 Bose Fermi Kondo Model

1.2.1 Motivation

A Quantum phase transition [11] occures e.g. in heavy fermion metals at zero temperature,
inspite of the classical phase transition at non-zero temperature. Although, it is not ex-
perimentally accessible, the behaviour of T = 0 temperature systems are of great interest,
since some of them, namely the heavy electron systems, show so called quantum critically.
Generally, quantum criticality provides a mechanism for the breakdown of Fermi-liquids,
which emerges in high temperature superconductor and heavy fermion metals. Tracing
down the temperature scale within the critical region one eventually ends up in a quan-
tum critical point, which seperates to different ground states of the system. There, one
expects non-Fermi-liquid behaviour, best detected through transport and thermodynamic
measurements near the QCP. A lot of materials exhibit magnetic quantum critical point
(QCP). Such a QCP also effects the non zero temperature of the sample, leading to a so
called quantum critical matter. Within this new type of phase certain unexpected proper-
ties of measurable quantities arise, which help to classify the universality class of the QCP.
The quantum critical point is expected to go along with a second order phase transition
(continuous phase transition). In classical system the thermal fluctutions, which are the
driving forces behind a phase transition, frezze out at zero temperature, hence there is
no possibility for any kind of classical phase transition. However, a quantum system is
principally able to undergo a phase transition, due to the emergence of a novel force that
come into the game, the uncertainty principle. Actually, at zero temperature no kinetic
energy would be present so the momentum of a specific paritcle would be known and in
addition its position. The uncertian principle causes so called quantum fluctuations in
order to anticipate that. These quantum fluctuations, if sufficiently strong, give rise to
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the possibility of a quantum phase transition. A QPT is governed by the variation of a
non thermal parameter, for instance pressure or magnetic field. The system has different
ground states depending on the phase it has occupied. Besides, that it is not possible to
observe such a quantum phase transition at least directly, it is very well justified to study
such systems, since it has also an effect on the non-zero temperature physics. Observable
quantities such as correlation function or electrical resistivity behave differentely in the
quantum critical regime, as they would within any specific phase.

In the last few years, there have been lots of experiments with intreresting results in
heavy fermion physics as well as in high temperature superconductivity 1, for instance
La2−xCuO4 which is a insulator for a x less than 0.05 and high temperature superconduc-
tivity is found for x greater than 0.05, where x denotes density of holes relative to the
insulation state with one electron per site [12]. Inelastic neutron scattering [13, 14] on
CeCu6−xAux that undergoes a transition from a paramagnetic metal to an antiferromag-
netic metal by changing the concentration x, was one of the major key experiments. At
the critical value xc ≈ 0.1 the phase transition occurs and one expects a QCP. This can
also be performed by varying external parameters such as pressure e.g. CeCu5Au [15] or
magnetic field in order to alter competing coupling constants [16].

The following results will be the hallmarks on testing the validity of a quantum critical
theory and mainly come from inelastic neutron scattering on CeCu6−xAux;

1. Fractional exponent α of the frequency dependent dynamical spin susceptibility as
well as the temperature dependent dynamical spin susceptibility.

2. The susceptibility exhibits a ω
T

scaling.

3. The fractional exponent does not occur only at the ordering wavevector Q, but over
the entire Brillouin zone.

Probably the most interesting novel feature, which was detected, is the non-Fermi liquid
behaviour near the quantum critical point, where new kinds of excitations are expected to
appear. Roughly speaking, on the theoretical side there are two major ideas, an extention
of the standard second order phase transition introduced by Hertz and the emergent of
new critical exitations creating a completely new kind of criticality. The two major the-
oretical ideas are the well known Hertz-Millis theory [17, 18] or the novel theory named
local quantum criticality [19, 20]. The two theories produce different results on the value
of e.g. susceptibility, hence the above stated experimental criterions decide the validity of
the proposed theories2.

1Although the second one leads to new quantum phase such as unconventional superconductivity which
will have most likely practical applications, once the quantum criticality is fully undersand, we are mainly
interested heavy fermion physics as it occurs in the Bose-Fermi-Kondo model.

2There are experiments on quantum critical metals that produce different results, which can be described
by the Hertz-Millis theory, only. However, in this thesis we are interested in the local typ of quantum
criticality, so we exclusively deal with this one.
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Historically, it was believed that only the long wavelength fluctuations, namely the para-
magnons, are considered to contribute to the critical modes, driving the quantum phase
transition in the low-energy regime. In this picture the low-energy excitations are rep-
resented by the paramagnons. There is an order parameter characterising the crossover
between the antiferromagnetic phase specified by a staggered magnetic field and a para-
magnetic phase, both phases are metallic in their nature. In order to give an adequate
description one has to extend the classical Φ4-theory by including quantum fluctuations,
but experiments forced a new kinds of idea, since the extended Φ4-theory or Hertz-Milles
theory can not produce the correct results, as it is shown in the next section. The local
quantum criticality was, among others, one of these new ideas and at this stage is the most
promising one. To sum up, the Hertz-Millis works in weak coupling systems sufficiently
well, however, in strong coupling systems it fails.

In this thesis we just discuss the local criticallity as a promising candidate to explain
the new critical phenomena.

1.2.2 Kondo Lattice

A Kondo lattice is a heavy fermion system built up of strongly correlated f -electrons and
conduction band electrons. These f-electrons usually originated in rare-earth metals have
a on-site Coulomb repulsion much stronger then the kinitic energies that is why they form
a so called localised magnetic moments. The energy scale for the onset of this formation
is in most cases given by the room temperature, where below the formation takes place
and therefore the Kondo lattice can be regarded as a appropriate model to describe heavy
fermion physics, but only below this termperature threshold.

Generally, it is assumed that the quantum magnetic phase transition is driven by the
competition between the Kondo physics and the RKKY 3 interaction, which are expressed
in the following Hamiltionian

H =
∑
ijσ

tijc
†
iσcjσ +

∑
i

JKSi · sc,i +
∑
ij

Iij
2

Si · Sj , (1.11)

JK is the Kondo coupling, governing the interaction strength between the local moments
and the free conduction electrons, Iij is the coupling between the local moments. The
RKKY interaction is, instead of the local on site Kondo interaction, a purely non-local
intersite interaction and the last parameter, the tight-binding determines the kinetic energy,
namely the dispersion relation εk. It can be said that the dimensionality of the lattice and
other features of the lattice, e.g. the kind of lattice (e.g.square lattice) are contained in the
specific value of tij. Si are the local spin operators sitting on site i, for this work the local

3RKKY stands for Ruderman-Kittel-Kasuya-Yoshida.
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moment spin is exclusively taken to be 1
2
, though the above Hamiltionian is quite generic,

viz the spin operator could in principal take higher values (e.g. 3
2
)and sc,i are the spins of

the conduction electrons. The two coupling parameters determine the only relevant energy
scales setting the problem, with TK as the Kondo temperature that has to be fallen below
in order to obtain a Kondo screening. The conduction band density of states is given by

ρ0(ε) =
∑
p

δ(ε− εp), (1.12)

whereas the ’RKKY density of states’ is

ρI(ε) =
∑
k

δ(ε− Iq), (1.13)

for further analysis this density of states will mainly govern the physical characteristics
of the lattice system. To ensure the existence of a stable paramagnetic solution, at least
in a finite dimensional system, the Fourier-transformed Iq of Iij is suppose to be non-zero
solely over a finite region.

By merely considering the ordinary Kondo lattice there is no coupling between the lo-
cal moments just a coupling between the local moment and the conduction electrons via
the Kondo-coupling. Later, an additional interaction was thought to be important, namely
the RKKY-interaction of the local moments. Donaich [21] could show that in a simplyfied
model 4 a second order quantum phase transition occures. On the one site the quan-
tum mechanical ground state is given by an insulating paramagnet (the Kondo coupling
dominates over the RKKY-couling) on the other site an insulating antiferromganet (the
RKKY-coupling is dominating). Nowadays, Donaich’s system is considerd to by too easy
in order to describe a real system, the fact of a quantum phase transition survived and
has become a subject of great physical research. Before the emerge of Quantum criticality
as a completely new type fo phase transition, one usualy explained the Kondo lattice as
a strongly correlated system in terms of Landau quasi-paricles a so called Fermi-liquid.
In the Kondo lattice the formation of the Kondo singlet leads to a Kondo resonance 5

that creates quasi-particles, therefore one can explain the system in terms of these quasi-
particles, if their excitations are not too far away from the Fermi-surface and the localised
f-electrons become delocalised contributing to the Fermi-volume. It is easier to think of
this Kondo resconance in terms of a single impurity system rather than considering the
whole lattice, because the important physics can be grasp by this picture and basically
each local moment of the lattice contribute to the Kondo resonace.
The next two sections discuss the theoretical approaches, however, the Herts-Millis theory
is not of direct concern in this thesis, it has to be mentioned as it serves a very natural
understanding of the quantum criticality.

4There a 1-D system, where the conduction electrons are replaced by a lattice of coupled -localised
spins, is regarded.

5The f -electron density of states displays a peak in the vicinity of the Fermi-energy.
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1.2.3 Hertz-Millis Theory

Before considering the Hertz-Millis theory a few statements have to be pointed out to
bring some basic features of statistical and quantum mechanics back to mind. This follows
closely the review of Sondhi et.al.[22]. The partition function for a given Hamiltionian H
reads

Z(β) = Sp(e−Hβ) =
∑
j

〈j|e−Hβ|j〉, (1.14)

from which one can extract all physical quantities of interest. It is kind of obvious to see
that the operator e−βH is the same as the time evolution e−

iHt
h̄ , if one identifies β = 1

kbT
= it

h̄
.

This rewriting of the partition function leads to the following depiction

Z(β) =
∑
j

〈j|e−βH |j〉 =
∑
j

〈j|e− iHth̄ |j〉, (1.15)

the part after the second equation sign can be interpreted as the transition probability
after an imaginary time step. The crucial point is to realise that it is actually the same, if
one considers the thermodynamical behaviour at a certain temperature and the transition
amplitudes of a quantum mechanical system after its time evolution, where the magnitude
of the time interval is governed by the temperature value. In analogy to the derivation
of the path integral formulation it is convinient to consider N infinitesimal time steps δτ ,
where τ denotes the imaginary time it, such that Nτ = h̄β. Formally, one obtains

eβH = e−( 1
h̄

)NδτH = [e−( 1
h̄

)δτH ]N , (1.16)

the second step is just valid up to (δτ)2. Eqs.(1.14) involves already a sum (integral) over
d space dimensions, by inserting the sequence into Eqs.(1.14), one can interpret the action
of time as a further spatial dimension

Z(β) =
∑
j

〈j|[e−( 1
h̄

)δτH ]N |j〉

=
∑
j

∑
j1,j2···jN

〈j|e−( 1
h̄

)δτH |j1〉〈j1| · · · |jN〉〈jN |e−( 1
h̄

)δτH |j〉. (1.17)

This can be understood in terms of a transfer matrix, the imaginary time can be imagined
as an additional spatial dimension, ending up with effectively d+1 dimension, d represents
the proper spatial dimensions. One has to be tentative, because of the finiteness of the
new dimension, since time is restricted by the temperature through h̄β. Alternatively, this
can also be seen in terms of a functional integral, which exhibits a closer relation to the
Ginzburg Landau theory

Z(β) =
∑

space-time

e−S[φ], (1.18)

where the action is

S[φ] =

∫ βh̄

0

dτ

∫ ∞
∞

ddxL[φ(x, τ)]. (1.19)
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By considering the system at T = 0 the extra dimension extents to infinity and can be
treated equally to the space dimensions, leading to the conclusion that a d dimensional
quantum system is so to say equal to a d + 1 dimensional classical system. In extension
of the classical not only static fluctuations but also dynamical fluctuations contribute like-
wise, hence one assumes that these fluctuations of the order parameter are both in space
and (imaginary) time. Generally, the number of extra dimensions is given by the dynam-
ical exponent z and can of course deviate from one. Of course it is possible to recover
classical dynamics form the high temperature limit, by taking this limit the imaginary
time interval can then be choosen arbitrary small. So, for example if the time intervall
is shorter than the system inherent frequence, and the typical time histories solely con-
sist of static configurations without any change if different time slices are regarded. What
happens is, the dynamics drops out and one is left over with the bare Boltzmann wight only.

In classical phase transition the Landau theory tells us that a second order phase transiton
takes place if some order parameter 6 of the system changes abruptly its value. The order
parameter fluctuation can generaly be expressed in terms of fields, leading to a φ4 field
theory. In terms of physics, the spatial fluctuations of the order parameter characterises
the critical fluctuations, their size is usually denoted by the correlation length ξ and diverge
as the critical point is reached. The Hertz-Millis theory comprises the QCP in terms of
critical fluctuations of the magnetic order parameter, which are just long wavelength in
nature. The generated paramagnons were believed to take account of the non- Fermi-liquid
behaviour modifying the quantum critical physics. Despite the classical order parameter,
which varies merely in space the additional quantum effects provoke a time dependence7 of
the order parameter (the paramagnons), as it was motivated above. Electronic excitations,
due to the Kondo resonance, are totally left out, only the long wavelength contribute to
the critical modes, which means that at the QCP scattering of the singular electrons by
the paramagnons dominate. However, no importance is attributed to the process of Kondo
screening. The main effect of the present electrons is, to give rise to extra decay channels
for the magnetic fluctuations, leading to a damping (electron hole decay).

The φ4 term in the quantum action represents the non-linear coupling of the paramagnons,
additonally, the critical theory has an effective dimension of deff = d+ z, z is the dynam-
ical exponent and reflects the critical fluctuation in imaginary time direction. Actually, z
displays the generalisation of the QCP concept. The order parameter is typically described
in terms of spin-density-waves (SDW), a spontaneous spatial modulation of the spins of the
charge carrier (here electrons). The spin density wave refers to the notion of paramagnons,
the quantiezed version of waves, their critical behaviour governes the QCP. Despite all
the similarities between the classical and quantum mechanical describtion of the criticality
there are also so called non matching aspects, like scaling. Classically, a phase transition is

6For simplicity one can think of a magnetic field as the order paramter such as it is used, for instance
to seperate a pramagnetic phase with zero magnetisation and an antiferromagnetic phase where the order
parameter takes a non-zero value.

7Actually it is a imaginary time dependence.
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given by the non-analyticity of the free energy at the critical point entailing critical scaling
behaviour of specific thermodynamical quantities, for instance the magnetic suszeptibility.
However quantum mechanically, one, generally, needs two order parameter instead of one,
as it is in classical theory, in order to depict the transition, one is a non-thermal parameter
here denoted by δ the other one is the temperature T . Varying both parameters individ-
ualy when they are close to the critical point different physics occurs, for example taking
the limit δ −→ δc at T = 0 the correlation length is going to increase untill its divergence
on the other hand if δ = δc and reducing the temperature the size of the time droplets are
going to increase as 1

kBT
, remember the previously made identification of time with the

inverse temperature T .

In our case of antiferromagnetic metals the value of z is equal to two and therefore a
upper critical dimension for the spatial part of d = 2 is obtained, similar to the classical
Landau theory. For dimension d ≥ 2, the critical theory becomes Gaussian and the re-
sulting fixed point is non-interacting and its physical properties are quite simple e.g. the
dynamical spin susceptibility shows a linear frequency dependence. On the contrary, if
d < 2, an interacting fixed is obtianed. So it is clear that the Hertz picture would be insuf-
ficient in the case d ≥ 2 and new critical modes are needed at the quantum critical point,
as it contradicts the experimental facts, at least in two or more spatial dimensions. This
new modes are originated in the Kondo resonance and the thereon resulting electronic
excitations, moreover, they have to be treated on equal footing to the magnetic excita-
tions. The critical modes reveal themselves as the destruction of the Kondo resonance,
actually, the Kondo singlet is broken up through the transition at zero temperature. There
are several attempts to include that new critical fluctuations into a quantum critical theory.

The section on Hertz-Millis theory will be finished by a short summary of alternative
canditates for a quantum critical theory.

1. Local quantum criticality

In the framework of ”local” quantum criticality the Kondo effect is destroyed be-
cause local moments are coupled not only to the conduction band but also to the
fluctuations of the other local moments. These magnetic fluctuations, whose spec-
trum turns critically at the QCP, act as a source of dissipation and decohere the
Kondo effect. In the local formulation of the problem this effect will be modeled by
an extra bosonic bath. A local theory has at least one bosonic and one fermionic
external bath. In the next section, the microscopic nature of phase transition will be
covered. Not only the Kondo and the magnetic interaction, have to be treated on
equal footing, but also their dynamical interplay, in order to model the kind of fixed
point of interest. The most promising approach is EDMFT , independently proposed
by Smith and Si [23] and Sengupta [24], as a description of the QCP in a Kondo
lattice.

2. Spin charge seperation
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Another idea is the seperation of spin and charge of the electron in the quantum
critical regime8 by Coleman et. al. [25]. Basically, the quantum critically is com-
pared with a black hole horizon, once a electron goes beyond the horizon on the
paramagnetic side it appears at once on the other side throught the criticality. Per-
sumably, the phase diagram gives the striking argument, its V-shaped diagram shows
a quantum critical regime with a horizont seperating the quantum criticaly from the
ordinary phase and the critcal matter eventually emerge in the T = 0 singularity.

The last note on this section is that it might be possible to cure the problems of the
ordinary φ4 theory and consequently saving a field theoretical describtion, by including
new terms into the action, such as S = SSDW + Sloc + Smix. The terms Sloc (coupling
amoung local modes) and Smix (coupling between local and non-local modes) have to be
constructed such that the local fluctuations are expressed in non-linear coupling 9.

1.2.4 The Extended Dynamical Mean Field Theory

The Dynamical mean field theory was encountered by Georges et.al. [26] and Meztner and
Vollhardt [27] and is a sort of generalization of the classical Weiss mean field theory, in
which all fluctuations are negelected10. One of the main differences of the classical and
quantum mechanical approach is, that the classical effective model11 turns out to be a
single ’particle’ problem, whereat the effective quantum mechanical system is still a many
body problem. The DMFT comprises local fluctuations such as on-site temporal quantum
fluctuations but excludes inter-site non local fluctuations, these were then considered in
the Extended Dynamical Mean Field Theory approach. The EDMFT extension of the
ordinary dynamical mean field theory is imposed by the new RKKY term, which gives rise
to the inter-site quantum fluctuations. Quite often it is futile to hope for a general solution
of a microscopic problem, in this sense EDMFT is no exception, one assumes a negligible
q-dependence of single electron quantities such as self energy Σ(ω). The EDMFT self
consistency equations can be obtained in various different ways

1. The ”cavity” method [28]

2. The diagrammatic method[23] ,

3. The functional formalism [29].

8To our knowledge this concept is so far just of qualitative in its nature.
9At the time of this diploma thesis there was no field theory known, that incorporates both critical

modes the electronic and the magnetic ones.
10In the language of quantum mechanics one would refer to the Hartree-Fock approximation, and ba-

sically fluctuations can be incorporated by making a random phase approximation around the static and
uniform saddle point. But RPA is a perturbative method and e.g. local quantum fluctuations must be
treated non-perturbatively.

11It is easiest to think of an one dimensional Ising system.
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It should be mentioned that the cavity method is borrowed from ordinary statistical me-
chanics and therefore is the most ’intuitive’ one. In the following the method is outlined
only schematically. The idea is to consider an infinite dimensional lattice and to perform
EDMFT within this approximation. Obviously, the idea has also been borrowed form clas-
sical theory, because classical mean field theory only produces exact results if the dimension
d is taken to be infinite. For a finite d EDMFT provides just an approximative solution
to the system( it is also valid to consider the number of neighbours z), for instance in a
cubic lattice z = 6 or a face-centred cubic lattice z = 12. In principal 1

z
acts as a control

parameter and its value governs the accuracy of the approximation, generally it holds, the
smaller 1

z
is the better is the approximation, hence EDMFT gets exact in the limit d→∞.

Basically, one rescales t〈ij〉 → t0√
d

and I〈ij〉 → I0√
d

ensuring the finiteness of the overall
kinetic and ’potential’ energy. Up to zero-th order DMFT is obtained, the inter-site effects
completely drop out and one is left with the local part only. First order calculations also
take inter-site effects into account resulting in novel results expressed by a self-consistent
impurity Hamiltonian. Note, there are some subtle difficulties, such as double counting.
Even, if one takes Iij = 0 in Eqs.(1.11) non local interaction between nearest neighbours
are going to occur. Say, one electron from the conduction band interacts with the impurity
and picks up a factor of Jtij, if this electron interacts then with the next impurity, it picks
up another factor of Jtij, resulting in (Jtij)

2. An effective RKKY interaction between
local moments is created, while in the d → ∞ limit this term is of higher order and does
not contribute, in the case where d, respectively z stays finite it does contribute and thus
changes the mean field equation.

EDMFT equations

It is convenient to write the partition function of Eqs(1.11) as a functional over Grassman
variables

Z =

∫ ∏
i

D(c†i.σ, ci.σ)e−S[c†i.σ ,ci.σ ] (1.20)

and the action is given by

S[c†i.σ, ci.σ] =

∫ β

0

dτ

[∑
iσ

c†i.σ(τ)
∂

∂τ
ci.σ(τ) +

∑
ijσ

tijc
†
iσ(τ)cjσ(τ)

+
∑
ij

Iij
2

Si(τ) · Sj(τ) +
∑
i

JkSi(τ) · sc,i(τ)

]
. (1.21)

By the aforementioned analogy to the classical method all fermions are traced out except
one specific site o12to obtain an effective description

1

Zeff

e−Seff[c†oσ ,coσ ] ≡ 1

Z

∫ ∏
i 6=o,σ

D(c†i.σ, ci.σ)e−S . (1.22)

12The site can be chosen arbitrarily
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The original action S is split into three different parts, S = S(0) + S0 + S∆, where S0

denotes the local part S∆ the inter-site interaction between the site and the rest of the
system and S(0) is the lattice action in the presence of the cavity

S0 =

∫ β

0

dτ

[∑
σ

c†0σ(τ)(
∂

∂τ
+ t00)c0σ(τ) + JKS0(τ) · sc,0(τ)

]
(1.23)

and

S∆ =

∫ β

0

dτ

[∑
iσ

ti0c
†
iσ(τ)c0σ(τ) + t0ic

†
0σ(τ)ciσ(τ)

+
1

2
(Ii0 + I0i)Si(τ) · S0(τ)

]
(1.24)

and

S(0) =

∫ β

0

dτ

[∑
i 6=0σ

c†iσ(τ)
∂

∂τ
ciσ(τ) +

∑
i,j 6=0σ

tijc
†
iσ(τ)cjσ(τ)

∑
i 6=0

JkSi(τ) · sc,i(τ)

]
. (1.25)

In order to make use of Eqs.(1.22) it is necessary to expand the S∆-part in the parition
function

Z =

∫
D[c†0σ, c0σ]e−S0

∫ ∏
i 6=0

D[c†iσ, ciσ]e−S
(0)−

R β
0 dτS∆(τ)

=

∫
D[c†0σ, c0σ]e−S0

∫ ∏
i 6=0

D[c†iσ, ciσ]e−S
(0)

×
(

1−
∫ β

0

dτS∆(τ) +
1

2

∫ β

0

dτ1

∫ β

0

dτ2TτS∆(τ1)S∆(τ2) + · · ·
)

=

∫
D[c†0σ, c0σ]e−S0Z(0)

(
1−

∫ β

0

dτ〈S∆(τ)〉(0)

+
1

2

∫ β

0

dτ1

∫ β

0

dτ2〈TτS∆(τ1)S∆(τ2)〉(0) + · · ·
)
. (1.26)

Note, the 〈S∆(τ)〉(0)-term vanishes, because 〈Si(τ)〉(0) is zero (the i = o term is ex-
cluded in the 〈〉(0) averaging). The same argument holds for the fermionic term. From
〈TτS∆(τ1)S∆(τ2)〉(0) one gets two one point correlation functions, a purely fermionic one
and a purely bosonic one. Now, an effective action has to be constructed, thereby the
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linked cluster theorem13 is used

Seff = S0 +
∞∑
n=1

∑
i1,..jn

∫
ti1,0...t0,jnc

†
0σ(τi1)...c†0σ(τin)c0σ(τj1)...c0σ(τin)

×G(0)
i1...jn

(τi1 ...τin , τj1 ...τjn) + const, (1.27)

where G
(0)
i1...jn

is the n-point connected Green’s function of the cavity Hamiltonian. The
expression for the effective action reduces drastically in the limit of infinite dimensions. In
the following the scaling argument is just applied to the fermionic case, though the same
arguments are valid for the RKKY term. If the limit, d to infinity, is taken, only the first
expansions term survives, because tij scales as tij = t√

d
, the one particle Green’s function

Gij goes as 1

d
|i−j|

2

, because it is proportional to t|i−j|. The sum over i and j gives a further

factor of d2, so and if only nearest neigbhour interaction is regarded, this cancels out and
one ends up with the first term being of order of 1. By the same reasoning all higher
terms are, at least, proportional to 1

d
, so the scale to zero in the large dimension limit. A

more explicit discussion was provided by Georges et.al.. [26]. The EDMFT equations of a
Kondo lattice can be enunciated in an effective impurity action

Seff = Stop +

∫ β

0

dτ JKS · sc

−
∫ β

0

dτ

∫ β

0

dτ ′
∑
σ

c†σ(τ)G−1
0 (τ − τ ′)cσ(τ)

−1

2

∫ β

0

dτ

∫ β

0

dτ ′
∑
σ

S(τ) · χ−1
0 (τ − τ ′)S(τ), (1.28)

where Stop is the so called Berry phase action of the local moments and G−1
0 and χ−1

0 are
the Weiss fields. G−1

0 encodes the local physics, the on-site quantum fluctuation and χ−1
0

represents the non-local nature of the system. In the path integral formalism the Berry
phase takes account for the Kondo singlet formation, as an intrinsic quantum mechanical
effect. The last two terms were obtained via the application of the linked cluster theorem as
it was explained above and the second term refers to the S0. One can think of these Weiss
fields in terms of the familiar Weiss field which is known from the ordinary Ising model as
a field which expresses the collective affection of the surrounding degrees of freedom on a
single site. Being aware of the fact that in classical theory the Weiss field is just a number
in the quantum case , though it is a function depending on imaginary time. The second
Weiss field χ−1

0 is a nouveau feature of EDMFT, since it depicts the long range properties
of the system. However, the other Weiss field has already been present in the usual DMFT
description, catching the local physics.

Alternatively, the aforementioned effective action can also be deduced from a self-consitent

13At this point, 1
d provides an adequate expansion parameter of the perturbation series.
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Figure 1.2: The emerged local theory, after applying the EDMFT on the Kondo lattice, is
charcterised by the coupling of the local moment to a fermionic bath with the strength J
and to a bosonic bath via λ. The picture is taken form Si et.al. [19].

impurity model, known as the Bose-Fermi-Kondo model

Himp =
∑
pσ

Epc
†
pσcpσ + JKS · sc

+
∑
k

ωkΦ
†
k ·Φk +

∑
k

λS · (Φ†−k + Φk). (1.29)

The local impurity couples to fermionic degrees of freedom, representing the local part,
and to bosonic degrees of freedom, expressing the non-local part. The RKKY interac-
tion emerge as a bosonic bath, whereas the fermionic bath is induced by the conduction
electrons, see Fig.1.2. Actually, the vector bosons give rise to magnetic fluctuations and
the electronic degrees of freedom to local fluctuation. Both fluctuation are expected to
contribute equally to the critical spectrum at the QCP to generate a phase transition,
when going from the Kondo dominated domain to the magnetic domain and vice versa.
The parameters Ep, ωk, and λ have to be ascertained self-consistently from the EDMFT
equation. By integrating out the bosonic and fermionic degrees of freedom in Eq.(1.29)
one ends up with Eq.(1.28), preconditioned the following identifications have been made

χ−1
0 = −

∑
k

λ2 2ωk
(iνm)2 − ω2

k

(1.30)

and

G−1
0 (iwn) =

∑
p

1

iwn − Ep , (1.31)

νm and wn are the bosonic, respectively fermionic Matsubara frequencies.

Now, it follows a short sketch of the self-consitent procedure, the way how this princi-
pally works follows closely [16];

1. Guess a trial form for G−1
0 and χ−1

0 . Practically, one would made a intelligent guess
for fermionic and bosonic density of states, which are themselves connected to the
particular Weiss field.
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2. From the solution to the Bose-Fermi-Kondo model one can extract the impurity cor-
relation functions, which readily can be identified with the local correlation function
of the lattice model

χaloc(τ) ≡ 〈TτSa(τ)Sa(0)〉 (1.32)

and

Gloc(τ) ≡ −〈Tτcσ(τ)c†σ(0)〉, (1.33)

where a = x, y, z. In addition the spin self energy and the conduction-electron self
energy can be obtained from the Bethe-Salter respectively the Dyson equation

Mloc(iνm) = χ−1
0 (iνm) +

1

χloc(iνm)
(1.34)

and

Σloc(iwn) = G−1
0 (iwn)− 1

Gloc(iwn)
. (1.35)

3. Imposing the self-consitency condition that reflects physically the translation invari-
ance of the lattice, leads to

χloc(ω) =
∑
k

χ(k, ω) (1.36)

and

Gloc(ω) =
∑
p

G(p, ω). (1.37)

The lattice Green’s function and the lattice spin susceptibility on the right hand side
of the above equations read

χ(k, ω) =
1

Mloc(ω) + Iq
, (1.38)

and

G(p, ω) =
1

ω + µ− εp − Σloc(ω)
, (1.39)

and µ is the chemical potential.

Once one went through the whole recipe it is possible to adjust the free parameters in
the Weiss fields respectively density of states in order to get the self-consitent equation
worked out. After that, the procedure has to be iterated over and over again, means
making an even more intelligent guess for the Weiss fields inserting into step one and so on
and so forth, since convergence is reached. Eventually, one ends up with the right lattice
correlation function or at least a very good approximation of it.
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The Occurrence of a Quantum Phase Transition in the EDMFT Framework

It was shown in [16] that EDMFT not necessarily leads to a local critical point, in fact just
if the magnetic fluctuations are two dimensional. Three dimensional fluctuations induce
a Gaussian fixed point, because the critical exponents exhibit no fractional behaviour. A
general criterion was proposed by Si et. al. [30], there a ’new’ energy scale was introduced
E∗loc in order to decide whether a local critical point occurs or not. It is defined such that
the local spin self energy Mloc(ω) is regular below E∗loc, likewise one can define E∗loc as the
energy scale below which the Kondo singlet is still present. At a fixed temperature one
can upon increasing the value δ one goes from one ”phase” to the other by crossing E∗loc.
On the left side one is in the small Fermi-surface phase, the Kondo screening is suppressed
and the behaviour of the local moment is mainly governed by the RKKY interaction, right
of this energy separation the Kondo resonance is present and the local moments become
delocalised and contribute to the Fermi-surface, hence one obtains an enhancement of
the Fermi-surface. By cooling the system down to zero temperature one gets two differ-
ent phases separated by the aforementioned energy scale. Note that at zero temperature
E∗loc marks a proper quantum phase transition, however, at non-zero tepmerature just a
crossover takes place. Now, there are two different cases, what kind of phase transition
appears, determined by E∗loc and δ 14.

Recall, the tuning parameter of the lattice model is given by δ = IRKKY
JK

and δc de-
notes the critical value, where the phase transition takes place. If δ < δc the system resides
at the paramagnetic side, but if δ > δc the antiferromagnetic phase is present and δc is
specified to be that parameter value by which the lattice spin susceptibility diverges. It
is well known from classical phase transition, a divergent magnetic susceptibility indicates
a phase transition. Although, varying δ alters the local Kondo physics and apparently
affects the impurity model, due to the EDMFT connection. As it will be shown in the next
section the impurity model undergoes phase transition similarly to the lattice model. The
microscopic phase transition arises due to the competition of the relevant energy scales
λ and JK

15, so it is convenient to define δloc, which is the ratio of the microscopic cou-
pling parameters(e.g. λ

JK
). With the help of these two parameters one is finally in the

position to decide, whether a local quantum critical point is occurring. The local parame-
ters are influenced not only by the attempt of Kondo physics to quench to local moment
by the surrounding fermionic bath, but also by the bosonic bath trying to polarise the
local moment in order to prevent them from total screening and align them in a certain
direction. This reasoning shows, at a particular value δloc = δcloc, the critical point of the
microscopic system is reached, just as E∗loc goes to zero at that point. Furthermore, the
lattice system also reaches its critical point at δ = δc indicated by the smallest value of
δ when the magnetic susceptibility diverges. Let’s say, δc < δcloc that means the magnetic
fluctuations become critical before the onset of local physics being significant in terms of

14Actually, there is a third one, but firstly it has not been found experimentally and secondly it neither
has got a Kondo screening nor is magnetically ordered.

15Sometimes the Kondo temperature TK itself is taken to be the relevant energy scale.
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Figure 1.3: The diagrams for the two different types of quantum phase transition in Kondo
lattice. The external tuning parameter is δ = IRKKY

JK
, δc is the critical value of the lattice

model and δloc = λ
JK

, with δcloc as the critical value of the corresponding local theory. Below
the energy scale E∗loc the local Kondo phase is present and therefore the susceptibility has
got Pauli form. a) shows the conventional quantum phase transition explained by the
Hertz-Millis theory, the onset of the magnetic quantum phase transition sets in before
the local theory gets critical, hence the local critical fluctuations do not contribute to the
critical theory. b) the magnetic fluctuations get critical at the very same point as the local
fluctuations, both fluctuations are going to contribute. In both pictures there also exists
the transition of the paramagnetic phase to the antiferromagnetic phase separated by a
finite transition temperature TN . Taken from Si et.al. [19].

local Kondo physics and a conventional quantum phase transition takes place, describable
by the Hertz-Mill theory. On the other hand, if δc = δcloc the local critical aid to critical
spectrum and one eventually spots a local critical quantum point, where new physics is
anticipated to emerge. This is visualised in Fig. 1.3.

The fully screened local moments, screened by the surrounding conduction band elec-
tron, is a necessary condition for the Kondo resonance to be built up, hence the local spin
susceptibility should better has Pauli form, implying a finite value at zero temperature and
frequency. In a translations invariant system 16 the local spin susceptibility is equal to the
average of the wavevector-dependent dynamical spin susceptibility. Notice, the similarity
to the self-consistency condition, there the assumption, that the local spin susceptibility
is the same as the susceptibility of the single impurity model, was made. Let Q be the
antiferromagnetic ordering wave vector, then the susceptibility χ(Q,ω, T ) is divergent at
the antiferromagnetic QCP, though the average susceptibility could either be divergent
or stays finite. As mentioned above a finite average susceptibility implies an unmodified
Kondo resonance, while its divergence leads to a destruction of the Kondo singlet. This

16The Kondo lattice is considered to be translations invariant in the bulk, otherwise one has to account
for the right choice of boundary conditions.
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also gives rise to two different types of QCP, in addition to the Grüneisen ratio, which
will be discussed in the final section of this chapter, whereas the ratio is more an experi-
mentally accessible criterion and the average susceptibility a theoretical one. In terms of
Fermi liquid theory a divergent average susceptibility would imply, no Kondo resonance is
present at the QCP, accordingly the non-Fermi-liquid theory must be treated equally to
the magnetic ordering. The electronic excitations become critical at the very same point
in the phase diagram as the long range magnetically critical fluctuations.

For the sake of completeness apart from the EDMFT method there exists a further method
called cluster DMFT, including information about underlying lattice structure into the lo-
cal features of the effective theory. For an readable introduction we refer to the paper of
Ferrero et. al. [31]. Without any local features incorporate into the EDMFT, only the long
wavelength will contribute to the magnetic phase transition and this is exactly one would
expect from classic critical theory. Motivated by the classical theory one equally assumes
in quantum system the independence of the phase transition of the underlying microscopic
structure as the correlation length tends to infinity.

The solution of impurity model

Several attempts have been made to solve the impurity problem. Among them there are
both analytic and numerical ones, whereupon numerical methods merely can deal with the
Ising Bose-Fermi-Kondo model. M.Glossop and K. Ingersent [32] could prove the occur-
rence of a quantum phase transition of such a model, using NRG. The main difficulty in the
numerical effort is to handle the baths, one fermionic bath is doable and an extent can be
made fairly easily, however, the bosonic bath is rather challenging, as an infinite occupation
of a certain energy level is feasible. So far just one bosonic bath could be included into
the numerical calculations. To seize the impurity problem by means of analytic methods,
conventional perturbative renormalisation group theory [33, 24] had been applied as well
as a non-perturbative large N expansion by Zhu et.al. [34], N denotes the number of spin
channel indices17.

Collectively, they assumed a constant density of states of fermions within the conduction
band width and a power law like behaviour for the bosonic density of states

λ2
∑
k

δ(ω − ωk) = 2αωs for 0 ≤ ω < Λ, (1.40)

with s and α to be determined self-consistently. The parameter s has to be chosen for the
impurity model by hand. There are three different types of bosonic baths;

i) s < 1 sub-ohmic bath

17Although, in this thesis we are only interested in the N = 2 case, the large N results are the same as
for the N = 2 case, so it is believed that right critical behaviour can be captured within this model.
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ii) s = 1 ohmic bath

iii) s > 1 super-ohmic bath

and Λ is the cut-off parameter displaying the upper potentially occupied frequency.

Within the RG method an expansion in the anomalous dimension ε = 1 − s has been
performed Sengupta [24] applied the ε-expansion on the Ising BFKM and both Zárand
and Demler [33]and Si et.al.[16] on the isotropic BFKM, respectively. Zárand and Demler
discussed several models, among others the Bose-Kondo model with a completely turned
off fermionic coupling, the Ising Bose-Fermi-Kondo model, and the SU(2) symmetric Bose-
Fermi-Kondo model. In Fig. 1.4 one can see the flow of the couplings in the isotropic
BFKM, two stable fixed points and one unstable fixed point are perceived. The flow of the
couplings is based on the scaling equations of the coupling constants

dξ

dlnΛ−1
= ξ(ξ − 2g) , (1.41)

dg

dlnΛ−1
= (εg − 4g4) . (1.42)

Note, Zárand and Demler used a different notation for the coupling constants, by rewriting
g = 2g̃, where g̃ is the bosonic coupling they used, the original scaling equations are
obtained. Two quite important results have been achieved, firstly they showed that the
critical point namely the unstable fixed point is accessible in a perturbative way and
secondly the asymptotic developing of the local spin correlation function at this critical
point was calculated to be

χ
SU(2)
αβ (τ) = 〈TSα(τ)Sβ(0)〉 = δαβχ(τ) ∼ δαβ

τ ε
, (1.43)

τ denotes the imaginary time. After performing a Fourier transformation the frequency
dependent spin susceptibility is

χloc(ω) ∼ 1

ω1−ε , (1.44)

which is a very important result. This result is just valid at zero temperature At non-
zero temperature it is very difficult to derive an expression for the susceptibility for an
interacting non gaussian fixed point. One idea is to assume a correspondence between
the BFKM at the critical point and a certain boundary conformal field theory, motivated
by the matching of the susceptibility of the models at zero temperature. Based on this
assumption Aronson et. al. [35] gave an expression for the non zero temperature dynamical
susceptibility

χα(τ, T ) = C

(
T

sin(πTτ)

)ε
, (1.45)
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Figure 1.4: The renormalisation group flow of the coupling fermionic coupling J and the
bosonic coupling λ. The diagram exhibits three fixed points, two stable ones namely SU(2)-
Kondo and the SU(2)-Bose, which is the Kondo and the purely bosonic phase, respectively,
and one unstable fixed point the SU(2) BF. This unstable fixed point can be interpreted
as the quantum phase transition point. The picture is taken from Si et.al.[16].

α indicates the spatial direction and C is a constant. Again, after the Fourier transforma-
tion the frequency dependent finite temperature susceptibility is

χα(ω, T ) ∼ 1

T 1−ε
Γ(1

2
− ε

2
)Γ(1

2
− iω

2πT
)

Γ( ε
2
)Γ(1

2
− ε

2
− iω

2πT
)

(1.46)

and Γ is the well known gamma function. This expression also shows the desired ω
T

-scaling.
Zaŕand and Demler [33] also could deduce

ε
SU(2)
QCP ≡ 1 (1.47)

for the EDMFT self-consitent condition to hold. The deviation of the exponent from one is
a clue for a non-Fermi-liquid and leads to the desired scaling behaviour like the ω

T
-scaling.

Spin-glasses [36, 37] exhibit the same characteristics in spin dynamics and are expected
to belong to the same universality class, so one can study them as well, in order to gain
insights to the nature of a quantum phase transition.

In the Ising BFKM similar results has been obtained, the main and definitely one of
the most important difference is, the non-accessibility of the unstable fixed point via per-
turbation theory, although the right devolution of the spin susceptibility can be received
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by Ward identities, and in the z direction the susceptibility at zero temperature is same as
stated above. Nevertheless, an exact solution of the Ising BFKM can be obtained analyt-
ically, so far only in the ohmic case, means ε is set equal to zero, and a special choice of
the dissipative parameter α. In this case the Ising BFKM can be mapped onto a Caldeira-
Leggett model [38]. The flow of the coupling constants of the Ising BFKM, in the ohmic
case, is the same, at least qualitatively, as the flow of couplings in the anisotropic Kondo
model, the only difference is that the perpendicular fermionic coupling of the Ising BFKM
is shifted by a constant, which value is determined by the strength of the coupling of the
bosonic bath to the impurity spin, see Li et. al. [38].

The section is finished by a few final remarks on the numerical methods and their ob-
tained results. In terms of numerics no solution of the isotropic BFKM is available yet,
though in the Ising BFKM there are several attempts, such as [39, 40, 32], moreover, these
numerical methods serve a non-perturbative method of solving the impurity problem. Zhu
et.al [40] applied the Quantum Monte Carlo method and could produce the correct curves
for the E∗loc against λ

JK
and for the ω

T
-scaling. There they could also show the interaction

nature of the unstable fixed point by plotting the single particle spectrum, hence the de-
struction of the Kondo resonance.
Within the NRG framework, in the case s ≤ 1 two stable fixed points, the Kondo phase and
the Bose phase, have been found as well as one unstable fixed point with non zero bosonic
and fermionic couplings. The ohmic critical point is Kosterlitz-Thouless like, while in the
range of 0 < s < 1 the static temperature dependent local susceptibility at the critical
point is given by

χoloc(T ) ∼ 1

T s
, (1.48)

which matches with the result received by an ε-expansion [41] and in the s = 1 case it
reduces to the well known Curie law, see [38]. Similar to the isotropic BFKM the imaginary
part of the dynamical local susceptibility χ

′′

loc(ω) at the critical point, in the Ising type case,
has the form

χ
′′

loc(ω) ∼ 1

|ω|s sgn(ω). (1.49)

Last but not least Glossop and Ingersent could also plot graphs of the imaginary part of
the dynamical local susceptibility at non zero temperature, demonstrating consistency with
the ω

T
-scaling. To be precise in the case ω � TK they obtained the following expression

TKχ
′′

loc(ω, T ) ∼
(
T

TK

)−s
Φ
(ω
T

)
, (1.50)

with Φ
(
ω
T

)
as an universal function. Zhu et. al. [34] received a similar result, however in

the case of a multi-channel BFKM within the framework of large N-expansion.

We close this chapter by a little summarisation of possible experimental methods to scru-
tinise the nature of the quantum phase transition.
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1.2.5 Experimental Criterion on the Nature of the QCP

The Fermi surface

By going from the paramagnetic side, governed by the Kondo coupling Jk, to the antiferro-
magnetic the Kondo screening breaks down close to the QCP. In the paramagnetic domain
the local spins become a part of the Fermi surface since they are strongly entangled with
the conduction electrons. These f-electrons are now part of the low energy electronic ex-
citation and due to the formation of the Kondo singlet the f-electrons and the conduction
electrons are entangled in such a way that the originally charge free local moments ’gain’
charge and turn into a charged spin 1

2
quasi paritcle excitation. So the f-electrons become

delocalised and contribute to the Fermi surface. Assuming x is the number of conduction
electrons in a unit cell then the Fermi-volume on the paramagnetic side encloses x + 1
electrons. Close to the paramagnetic critical point the electronic excitations, consisting of
conduction electrons and local moments start to deviate from their Fermi-liquid structure
towards a non-Fermi-liquid. These novel excitations become a part of the quantum criti-
cal spectrum in the local critical theory. At the magnetic QCP the magnetic fluctuations
are dominating, where the spectrum of the paramagnons designate the criticality and the
Fermi volume is merely given by the conduction electrons. This means that the f-electrons
turn into their localised stage, the entanglement with the conduction electrons breaks up
and hence do not contribute to Fermi-surface any more. By tuning the control parameter
δ through the critical point the Fermi-surface is going to decrease erratically. But the im-
portant new physics are the novel local fluctuation, that change the former non-interacting
Gaussian fixed point into an interaction one, and one can hope to built a new critical theory
on this basis, explaining the experimental results correctly. Fig.1.3.b refers to this type of
quantum phase transition. Moreover, it is possible for the experimentalists to perform an
experiment, where the magnitude of the Fermi-surface is measured by Paschen et.al. [42]
utilising the Haas-van Alphen effect [43, 44]. The local quantum criticality predicts a dis-
continuous enhancement of the Fermi-surface at the QCP, the Kondo coupling dominated
region has a larger Fermi-volume than the antiferromagnetic region. In the spin-density-
wave picture no such jump happens, the transition is smooth while the SDW order sets in.
Corresponding to Fig.1.3.b, where the onset of the magnetic phase transition already takes
place, while the local moments are still quenched. An experimentally very well accessible
quantity is the Hall coefficient RH , the continuity of the Hall coefficient through the critical
point is directly related to the Fermi surface so if RH jumps so the Fermi-surface will do,
see also [42].

Grüneisen ratio

As mentioned before, the divergence of thermodynamical quantities come about only in
classical phase transitions, though in QPT with zero temperature there is no such diver-
gence, since the third law of thermodynamics has to be obeyed18. However, the Grürneisen

18The entropy of a system stays finite as the temperature approaches zero.



28 1. Introduction

ratio diverges at the QCP [45]. This ratio is defined in terms of two thermal quantities the
specific heat cp = T

N
∂S
∂T
|p and the thermal expansion α = 1

V
∂S
∂p
|T,N ,

Γ =
α

cp
= − N

TV

∂S
∂p

∂S
∂T

. (1.51)

The divergence of the Grüneisen ratio 19 reflects the very fact, that two parameters are
necessary to describe the QPT, while cp measures the response to T , α measures the
response to the external tuning parameter. In the classical phase transition parameter like
T and p are thermodynamically connected and the typical parameter that controls the
transition is proportional to |T − Tc|, therefore Γ stays finite at the classical singularity.
Zhu et.al. [45] showed that the temperature dependence of Γ reads

Γ ∼ 1

T
1
νz

, (1.52)

the factor νz provides a criterion to classify different types of criticality. One usually refers
to the factor 1

νz
as the Grüneisen exponent. Zhu et.al. could also disclose that;

a. the divergence of Γ is independent of the kind of QCP

b. the Grüneisen exponent serves a criterion to decide which sort of QCP is
present.

For example, for Ce2Ni2Ge2, the Grüneisen exponent is 1
νz

= x = 1 and is perfectly con-
sitent with the spin-density-wave approach, 20 Küchler et.al. [46] pointed out. Otherwise
the exponent x differs from one for CeCu6−xAgx [47] and the spin-density-wave approach
is not appropriate any more, although the local quantum critical theory of Si et.al. [19, 16]
predicts the right exponent.

19If the control parameter is a magnetic field the ratio is defined by Γ = 1
T

∂T
∂H |S and can be measured

using the magnetocaloric effect.
20If the critical fluctuations are 3-dimensional.
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1.3 Flow Equation

Most analytic methods rely on the integrability of the regarded model, therefore such
methods like conventional perturbation theory are not applicable and one has to use non-
perturbative methods like NRG or flow equation approach. Additionally, the flow equation
approach, since it is a non-perturbativ method, can be used for strong coupling calculations,
e.g. Sine-Gordon model [48] or a strong weak coupling crossover in the Kondo regime [49].
This is our main motivation to study the Ising type and isotropic Bose Fermi Kondo model
with the help of flow equation method.

1.3.1 Overview and the RG-method

The flow equation approach to many body physics was introduced by Wegner [50] and
independently by Glazek and Wilson [51, 52] whereas the later ones applied their method
mainly to high energy physics. Since this work deals essentially with condensed matter
physics, we follow the notation of Wegner. The method itself can be viewed as a kind
of generalisation to the usual renormalisation group method due to Wilson [7]. The RG-
method works principally as follows, one separates the fast moving from the slow moving
modes and integrates out the high energy degrees of freedom that means reducing the
dimension of Hilbert space controlled by a certain cut-off parameter ΛRG, which denotes
the energy scale one is currently looking at. In order to keep it as simple as possible the
considered Hamiltonian depends only on one coupling constant λ that governs the inter-
action of the system. This coupling constant gets rescaled and the remaining Hamiltonian
with the new coupling shall describe the same physics as before within its validity. If
this procedure is performed gradually the coupling becomes a function of ΛRG and we talk
about a running coupling constant. Assume the considered theory is renomalizable, we can
express the behaviour of the running coupling constant in terms of a differential equation

dλ(ΛRG)

dlnΛRG

= β(λ(ΛRG)), (1.53)

where the β-function is often not known in all detail, though its access via perturbation
theory leaded to remarkable results. However, a main disadvantage is that all the infor-
mation about the high energy sector of the Hamiltonian is gone, which is sort of obvious
due to the reduction of Hilbert space dimensions. The reader should see this just as a very
basic introduction it was aimed to either refresh some already acquired knowledge or to
provide the main idea. For further details we refer to [7], but this is not necessary to follow
the rest of this work.

1.3.2 The new Idea

The basic new idea of the flow equation is the unitary transformation of the Hamilton
operator, which gradually diagonalises the Hamiltonian, if the transformation is performed
several times, see Fig 1.5. For this purpose the unitary transformation will depend on a
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parameter B ∈ [0,∞) and therefore generate a whole family of transformations U(B) so
to say a sequence of successively applied infinitesimal unitary transformation

H(B) = U(B)H(B = 0)U †(B) , (1.54)

where U(B) = eη(B) and η†(B) = −η(B) is the antihermitean generator. The main state-
ment is that the solution of the differential equation

dH(B)

dB
= [η(B), H(B)] , (1.55)

with H(B = 0), with our original Hamiltonian as initial condition, is given by Eqs.(1.54).
Generally, we can not demand commutation of the generator with different values of the
flow parameter [η(B1), η(B2)] 6= 0. Similar to time evolution operator and the time ordering
operator we define

U(B) = TBe
RB
0 dB′η(B′) (1.56)

and by taking the derivatve of equation (1.54) we get

dH(B)

dB
=

dU(B)

dB
H(B = 0)U †(B) + U(B)H(B = 0)

dU †(B)

dB

=
dU(B)

dB
U †(B)H(B) +H(B)U(B)

dU †(B)

dB
= η(B)H(B)−H(B)η(B) = [η(B), H(B)], (1.57)

the definition of U(B) and Eqs.(1.54) were used.

Starting from a certain operator product in the interaction term new operator terms
will be generated during the flow. In the worst case there will be an infinite number of
newly generated terms, thus it can not be expected to solve Eqs.(1.54) generically. It
is convenient to rewrite Eqs.(1.54) again, in order to give an approximative solution in
terms of perturbation theory. There are cases where the Eqs.(1.54) is exactly solvable
(e.g. The Potential Scattering Model [53]), but these are rather limited exceptions. The
approximative Hamiltonian, for a fixed value of B, reads

H(B) = U(B)H0U(B)† = eS(B)H0e
S(B)† =

∑
n

1

n!
[S(B), H0] =

= H0 + [S(B), H0] +
1

2
[S(B), [S(B), H0]] + · · · (1.58)

21 and each term of the expansion can be identified as a higher order term in the sense
of newly generated interactions. The Hamiltonian can be expressed through a power law
series

H0 = H(B = 0) =
∞∑
n=0

εnH(n), (1.59)

21Since we consider a fixed value of B only, we write S(B) instead of η(B) mainly to avoid confusions.
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Figure 1.5: Picture a) displays the the conventional RG-approach, integrating out the high
energy degrees of freedom. b) shows the flow equation method, making the Hamiltonian
more and more diagonal.

where ε is the expansions parameter. H(0) is the free part while all other H(n) are represent-
ing the interaction terms. We want to emphasis that the expansion had been applied after
the unitary transformation took place, so we are still dealing with a Hamiltonian unitarily
equivalent to the original one up to a certain order. As we have already mentioned there is
not much hope to solve Eqs.(1.57) exactly for a many body problem, hence we also would
like to have H(B) in form of a power series. We assume for the generator to have a power
series representation in the parameter ε, keeping in mind that for ε = 0 the Hamiltonian
is already diagonal and no more operator products will be generated. A reasonable ansatz
will be

η(B) =
∞∑
n=0

εnηn(B), (1.60)

plugging this into (1.55) we get a well controlled expansion

dH(B)

dB
= ε[η(1), H(0)] + ε2([η(1), H(1)] + [η(2), H(0)]) +O(ε3). (1.61)

Remember, we took a random but fixed value of B, so our deduction is valid for all
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values of B, however, the generalisation is quite subtle, since the η(B) does not commute
with itself for different B’s. For a mathematically rigorous derivation one has to apply the
continuous representation Eqs.(1.56)to Eqs. (1.54,). At the end of the day, one gets the
same result, which is kind of straightforward to check.

1.3.3 Normal Ordering

One of the main motivations to study flow equation was to obtain non perturbative results,
but as we have seen more and more operator products will be generated during the flow.
To handle that problem we can e.g. either do an expansion in the coupling and truncate
the generated terms by their appearance in power of the coupling or, if the coupling is not
small, decide whether the new terms contain any physical significance. A way to do so is
the normal ordering procedure.

Wick [54] formally defined the normal ordering of an operator O denoted by : O :. The
operator O consists of creation and annihilation operators combined written as Ak, where
the Ak’s can be either fermionic operators or bosonic operators. The following three rules
define the normal ordering

: 1 := 1 (1.62)

: αO1 + βO2 := α : O1 : +β : O2 : (1.63)

Ak : O :=: AkO : +
∑
l

〈AkAl〉 :
∂O

∂Al
: . (1.64)

Note that the here taken expectation value is at zero temperature, nonzero temperature
expectation values must be performed with respect to the density matrix. From here Wick
first and second theorem can be deduced, but for further details see [53].
In Quantum field theories e.g. Quantum electrodynamics the normal ordering is used
to subtract the vacuum energy from the expectation value. But the physical meaning
outperform the mere subtraction rule, it actually is given by the fact that the expectation
value of an operator O composed of creation and annihilation operators, which is normal
ordered, vanishes [53]. There it was also proven that if C1

n and C2
n are operators each with

n creation or annihilation operators in total and : O2m : with 2m of such ones, then

〈C1
n : O2m : C2

n〉 6= 0 (1.65)

if n ≥ m. In terms of physics this means, if we look at e.g. c†pc
†
qckcl there are also one

particle interaction included, whereas : c†pc
†
qckcl : just includes two particle interaction, the

generalisation is straightforward.

So far we have not talked about any specific representation of the generator, but this
is of great importance due to the applicability of normal ordering. The next subsection
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will deal with the representation and how this practically looks like will be postponed to
the next chapter.

1.3.4 The Meaning of the Generator

The generator lies at the core of this theory while Wegner [50] proposed

η(B) = [Hdiag(B), Hint(B)] (1.66)

for the generator other choices are possible all of them have to share the same property,
namely their task is to decouple interaction terms with a non zero energy separation.
This means that off diagonal matrix elements will decay and one eventually ends up with
a completely diagonalised Hamiltonian, where one easily can read off the eigenenergies of
the many body system. If the diagonal matrix elementes are written as hqq=̂εq, Eqs. (1.66)
reads

ηpq = (εp − εq)hpq, (1.67)

where hpq are the matirx elements of the Hamiltonian. In the simple case of a two particle
scattering interaction it can be shown [50] that the off diagonal matrix elements decay like

hpq(B) ∼ hpq(B = 0)e−B(εp−εq)2

. (1.68)

It can be seen that the off diagonal terms corresponding to the largest single particle energy
separation die off fastest. Eqs.(1.54) and Eqs(1.66) show us the physical dimension of the
generator [η] = E2 and Eqs. (1.68) gives [B] = E−2. At the beginning of the flow ( the
value of B differs only solely from 0) interaction terms with large energy separation are
eliminated, while B increases more and more degenerated energies will be removed. We
can at least expect block diagonal form for Hint(B =∞) in the general case, optimally the
interaction part of the Hamiltonian itself is diagonal and we get

[Hdiag(B =∞), Hint(B =∞)] = 0, (1.69)

hence η(B = ∞)=0. As mentioned above within the flow equation method the Hilbert
space dimensions do not alter, so the information of the high energy degrees of freedom is
still available, though we have to deal with more complicated differential equations of the
coupling constants compared to the usual RG-method.

1.4 Obsevables

1.4.1 Expectation value

In many body physics often one is interested in the behaviour of macroscopic properties
e.g. the magnetisation due to the expectation value of the Spin operator. In order to
calculate expectation values one has to consider what happens with an operator O (always
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taken to be hermitian) and the state of the system ( mostly one is interested in the ground
state) during the flow. The expectation value of an operator at zero temperature is defined
by

〈O〉gs = 〈Ψgs|O|Ψgs〉 (1.70)

and |Ψgs〉 solves

H|Ψgs〉 = Egs|Ψgs〉, (1.71)

where Egs denotes the ground state energy and |Ψgs〉 the ground state, respectively. Ap-
plying the unitary transformation U(B = ∞) a diagonalised Hamiltonian is obtained,
whereupon the ground state has been altered

H(B =∞)|Ψ̃gs〉 = Egs|Ψ̃gs〉, (1.72)

with

|Ψ̃gs〉 = U(B =∞)|Ψgs〉. (1.73)

The new ground state is plugged into Eqs. (1.70) and one receives

〈O〉gs = 〈Ψ̃gs|U(B =∞)O(B = 0)U †(B =∞)|Ψ̃gs〉 (1.74)

by redefining the operator as

O(B =∞) = U(B =∞)O(B = 0)U †(B =∞) (1.75)

one realises the similarity to Eqs.(1.53) and therefore imposes a differential equation for
the operator in terms of the flow parameter B

dO(B)

dB
= [η(B), O(B)] . (1.76)

The initial condition is O(B = O) = O, which is the original operator of interest. The
initial operator, even when it is very simply at the beginning, will become more and more
complicated durning the flow since new operator terms are generated. Formally one can
write the operator as an infinite sum over products of creation and annihilation operators.
Say Cn consists of some creation and annihilation operators and cn(O) are their evolution
parameter depending on the original operator

O(B =∞) =
∑
m

cn(O)Cn. (1.77)

Once H(B =∞) is diagonal Cn can be chosen such that it fulfils the following relation

[H(B =∞), Cn] = ΩnCn (1.78)

that will be very important to calculate the correlation function.
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1.4.2 Correlation Function

Zero Temperature

The correlation function of two operators O1 and O2 at different times t1 and t2 and zero
temperature is given by

Cgs(t1, t2) = 〈O1(t1)O2(t2)〉. (1.79)

The operators are in the Heisenberg picture. Firstly, one changes to the Schrödinger picture

O(t) = eiHtO(t = 0)e−iHt (1.80)

and secondly the unitary transformation is used. Moreover Eqs. (1.77) is used to express
the operators. After some straightforward manipulation one eventually receives

Cgs(t1, t2) =
∑
n1,n2

cn1(O1)cn2(O2)eiΩn1 (t1−t2)〈Ψ̃gs|Cn1Cn2|Ψ̃gs〉, (1.81)

where Eqs. (1.78) has also been used. From here one can deduce e.g. the Green’s function,
response funktion and so on. In the case of a not explicit time dependend Hamoltonian
the correlation function just depends on the time difference t1 − t2. After performing a
Fouier transformation one receives the frequency dependend correlation function

Cgs(ω) =

∫
d(t1 − t2)eiω(t1−t2)Cgs(t1 − t2). (1.82)

Nonzero Temperature

The nonzero temperature correlation function can be ascertained on the some footing as
the zero temperature correlation function, though one has to use the density function
approach to generalise the notion of expectation value

Cβ(t1, t2) =
1

Z̃(β)
Sp(ρ(β)O1(t1)O1(t2)), (1.83)

where β indicates the temperature dependence. So one can get all measurable many body
quantities this equation either in terms of time or frequency with nonzero temperature,
leading to

Cβ(t1, t2) =
1

Z(β)

∑
jn1n2

cn1(O1)cn2(O2)e−βEj−iΩn1 (t1−t2〈j|Cn1Cn2|j〉 (1.84)

Although we will mainly be concerned about the zero temperature Quantum phase transti-
tion that means we are especially interested in the zero temperature correlation function
Eqs.(1.82). For a more pedagogical introduction to the flow equation method, see [53].
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Chapter 2

The Ising Bose Fermi Kondo Model

The major advantage of the Ising BFKM compared to the isotropic BFKM is its acces-
sibility by numerical methods such as NRG [39] or Quantum Monte Carlo methods [41],
moreover, there are also analytical results such as Li et.al. [38] to compare with. So we take
the Ising BFKM as testing ground for new kind of methods, since the numerical solutions
go beyond a perturbative approach. In this chapter we will reproduce already know results,
such as the flow of the coupling results, by applying the flow equation on the Ising BFKM.
In other words we show the usefulness of the flow equation method for this model, in order
to justify a flow equation approach for the isotropic BFKM, where numerical realisations
are not present at the moment.

2.1 The Hamiltonian

Generally, the Hamiltonian of the Ising type system can be written as

H(B) =
∑
k,σ

εk : c†kσckσ : +
∑
k

ωk : b†kbk :

+
1

2

∑
pq

J‖(p, q)(B)(: c†p↑cq↑ : − : c†p↓cq↓ :)Sz

+
1

2

∑
pq

J⊥(p, q)(B)((: c†p↑cq↓ : S−+ : c†q↓cp↑ : S+)

+Sz
∑
k

λk(B)(b†k + bk)

= Hf
0 (B) +Hb

0(B) +H
⊥,(f)
int (B) +H

‖,(f)
int (B) +Hb

int(B), (2.1)

where the first line on the right hand side is related to the non-interacting part, denoted
by H0. The remaining lines combined are the interaction part Hint. The normal ordering
occurs in two different form, as fermionic ordering and as bosonic ordering, but we think,
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at least here, it should not be confusing1. Using Eqs.(1.66) we are able to determine
the generator by calculating the commutator of the free and the interaction part of the
Hamiltonian

η(B) = [Hf
0 (B) +Hb

0(B), H
⊥,(f)
int (B) +H

‖,(f)
int (B) +Hb

int(B)]

= [Hf
0 (B), H

⊥,(f)
int (B) +H

‖,(f)
int (B)] + [Hb

0(B), Hb
int(B)], (2.2)

we get

η
⊥,(f)
0 (B) + η

‖,(f)
0 (B) = [Hf

0 (B), H
⊥,(f)
int (B) +H

‖,(f)
int (B)]

=
1

2

∑
pq

(εp − εq)J‖(p, q)(B)(: c†p↑c
†
q↑ : − : c†p↓c

†
q↓ :)Sz

+
1

2

∑
pq

(εp − εq)J⊥(p, q)(B)(: c†p↑c
†
q↓ : S−− : c†q↓c

†
p↑ : S+)(2.3)

and

ηb0(B) = [Hb
0(B), Hb

int(B)] = Sz
∑
k

ωkλk(b
†
k − bk). (2.4)

By calculating

[η
‖
0(B) + η⊥0 (B) + ηb0(B), Hf

0 (B) +Hb
0(B) +H

⊥,(f)
int (B) +H

‖,(f)
int (B) +Hb

int(B)] (2.5)

we receive back coupling terms, which have already existed, and new operator product
terms, see Appendix(B) for the respective commutators, and so we have to rewrite our
ansatz for the Hamiltonian and the generator. But before doing so it is advised to have
a closer look to the commutators themselves in order to truncate all terms that contain
more then three operators one spin operator and two creation or annihilation operators of
whatever sort, but the kept terms must have one creation and one annihilation operator.
Normal ordered terms containing a higher number of operators will be omitted, because
they produce a higher order in scattering. Likewise we only keep those terms in coupling
up to O(J3), O(J2λ) and O(Jλ2). Moreover, we skip terms like Eqs.(A.7), due to the fact,
that they only produce a shift of the energy by a constant. Finally, we end up with the

1If it is not entirely clear we will make a comment.
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following extended version of the Hamiltonian and of the generator respectively

η(B) =
1

2

∑
pq

J‖(p, q)(B)(εp − εq)(: c†p↑cq↑ : − : c†p↓cq↓ :)Sz

+
1

2

∑
pq

J⊥(p, q)(B)(εp − εq)((: c†p↑cq↓ : S−− : c†q↓cp↑ : S+)

+
∑
k

λk(B)ωk(b
†
k − bk)Sz

+
∑
kpq

Kkpq(B)((εp − εq)− ωk)(bk : c†p↑cq↓ : S− − b†k : c†q↓cp↑ : S+)

+
∑
kpq

Lkpq((εp − εq) + ωk)(b
†
k : c†p↑cq↓ : S− − bk : c†q↓cp↑ : S+)

= η
⊥,(f)
0 (B) + η

‖,(f)
0 + ηb0(B) + ηKnew(B) + ηLnew(B) (2.6)

and

H(B) =
∑
k,σ

εk : c†kσckσ : +
∑
k

ωk : b†kbk :

+
1

2

∑
pq

J‖(p, q)(B)(: c†p↑cq↑ : − : c†p↓cq↓ :)Sz

+
1

2

∑
pq

J⊥(p, q)(B)(: c†p↑cq↓ : S−+ : c†q↓cp↑ : S+)

+
∑
k

λk(B)(b†k + bk)S
z

+
∑
kpq

Kkpq(B)(b†k : c†q↓cp↑ : S+ + bk : c†p↑cq↓ : S−)

+
∑
kpq

Lkpq(B)(bk : c†q↓cp↑ : S+ + b†k : c†p↑cq↓ : S−)

= Hf
0 (B) +Hb

0(B) +H
⊥,(f)
int (B) +H

‖,(f)
int (B) +Hb

int(B)

+HK
new(B) +HL

new(B) , (2.7)

where the newly introduced couplings are given by

Kkpq(B) =
1

2
λk(B)J⊥(p, q)(B)((εp − εq) + ωk) (2.8)

and

Lkpq =
1

2
λk(B)J⊥(p, q)(B)((εp − εq)− ωk). (2.9)

The new coupling constants have been already produced in order of O(Jλ), which sim-
plifies our task of calculating the flow equations for the couplings, by disregarding higher
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coupling terms like [ηKnew(B)+ηLnew(B), HK
new(B)+HL

new(B)] . The question is, why we even
ought to take Kkpq(B) and Lkpq(B) into account?
The main reason is, the commingling of both the fermionic degrees of freedom and the
bosonic degrees of freedom with the local spin operator, leading to an effective coupling
of the fermionic part with the bosonic part, have to be taken into account to grasp the
essential physics of the system.

We have already calculated the commutators of [ηold, Hold], those commutators, which
are left such as [ηnew, Hold] and [ηold, Hnew], are presented in the Appendix(B.2).

2.2 Flow equations

Eventually, the differential equations for the couplings are obtained by considering the back
coupling of the commutators to the new Hamiltonian in leading order of the flow equation
analysis. Certain precautions are necessary, since ordinary scattering, energy shift and
higher order terms are going to occure and it is easy to get lost in the sometimes quite
messy expression of particular commutators. In the following we will present the coupling
equations. We do not even try to solve them analytically in the below exposed form and
further approximations have to be made

dJ‖(p, q)(B)

dB
= −(εp − εq)2J‖(p, q)(B)

+
1

2

∑
n

(1− 2nf (n))(2εn − εp − εq)J⊥(p, n)(B)J⊥(q, n)(B) (2.10)

and

dJ⊥(p, q)(B)

dB
= −(εp − εq)2J⊥(p, q)(B)

+
1

4

∑
n

(1− 2nf (n))(2εn − εp − εq)J‖(p, n)J⊥(q, n)

+
1

4

∑
n

(1− 2nf (n))(2εn − εp − εq)J⊥(p, n)(B)J‖(q, n)(B)

+2
∑
k

ωkλk(B)(Lkpq(B)−Kkpq(B))(1 + 2nb(k))

+
∑
k

(εp − εq)λk(B)(Lkpq(B) +Kkpq(B))(1 + 2nb(k)) (2.11)

and

dλk(B)

dB
= −ω2

kλk(B) +
1

2

∑
pq

ωkJ
⊥(p, q)(B)(Kkpq(B)− Lkpq(B))

×(nf (p) + nf (q)− 2nf (p)nf (q)) (2.12)
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and

dKkpq(B)

dB
= −Kkpq((εp − εq)− ωk)2 +

1

2
λk(B)J⊥(p, q)((εp − εq) + ωk)

+
1

4

∑
n

(2εn − εp − εq − ωk)J‖(p, n)(B)Kknq(B)(1− 2nf (n))

+
1

4

∑
n

(2εn − εp − εq + ωk)J
‖(q, n)(B)Kkpn(B)(1− 2nf (n)) (2.13)

and

dLkpq(B)

dB
= −Lkpq((εp − εq) + ωk)

2 +
1

2
λk(B)J⊥(p, q)(B)((εp − εq)− ωk)

+
1

4

∑
n

(2εn − εp − εq − ωk)J‖(n, q)(B)Lkpn(1− 2nf (n))

+
1

4

∑
n

(2εn − εp − εq + ωk)J
‖(p, n)(B)Lknq(B)(1− 2nf (n)). (2.14)



42 2. The Ising Bose Fermi Kondo Model

2.3 The infrared Approximation

As it was mentioned in the previous section we need to find an appropriate approximation to
the flow equations. A good choice is the so called infrared approximation, where we separate
the exponential factor that comprises the momentum dependence from the bare infrared
part of the coupling constant. Except for the newly generated terms the momentum
dependence of the residual coupling is needed for the ongoing calculation of the Kondo
and bosonic coupling. By doing so we obtain the following ansatz

J⊥(p, q)(B) = J⊥IR(B)e−B(εp−εq)2

(2.15)

J‖(p, q)(B) = J
‖
IR(B)e−B(εp−εq)2

(2.16)

λk(B) = λIR(B)e−Bω
2
k (2.17)

Kkpq(B) = K̃kpq(B)e−B((εp−εq)−ωk)2

(2.18)

Lkpq(B) = K̃kpq(B)e−B((εp−εq)+ωk)2

. (2.19)

The strategy is to determine the coupling constants Lpqk(B) and Kpqk(B) in terms of

infrared Kondo couplings J
‖
IR(B) and J⊥IR(B), and the infrared bosonic bath coupling

λIR(B) that means we first instert Eqs.(2.15), Eqs.(2.17) and Eqs.(2.19) into Eqs.(2.14),
furthermore, we just want to know the behaviour of the couplings up to the order of
O(J2) or O(Jλ), hence we omit the last two lines in Eqs.(2.14), because Lpqk(B) is already
generated in second order. The actual flow equation of Lpqk(B) reduces to

dL̃pqk(B)

dB
=

1

2
λIR(B)J⊥IR(B)((εp − εq)− ωk)e2Bωk(εp−εq). (2.20)

Integration over B, from zero up to B′ leads to

L̃kpq(B
′) =

1

2
((εp − εq)− ωk)

∫ B′

0

dB λIR(B)J⊥IR(B)e2Bωk(εp−εq), (2.21)

where Lpqk(B = 0) = 0, since our original Hamiltonian did not depend on it at all. By
using the mean value theorem for integration we get

L̃kpq(B
′) =

1

2
((εp − εq)− ωk) 1

B

∫ B′

0

dB λIR(B)J⊥IR(B)

∫ B′

0

dB e2Bωk(εp−εq). (2.22)

Remember, the infrared coupling varies slowly with B in comparison to the exponential
factor, and so we consider the product λIR(B) · J⊥IR(B) as almost independent of B, but
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notice, this is only a valid approximation, if we take the exponential factor explicitly into
account. In other words, the exponentially fast decay of the e-function suppresses the onset
of the variation of the infrared couplings. After integration, the Lpqk(B)-coupling is then
given by

L̃kpq(B) =
1

2

λIR(B)J⊥IR(B)((εp − εq)− ωk)
2ωk(εp − εq)

(
e2Bωk(εp−εq) − 1

)
, (2.23)

inserting into Eqs.(2.19) gives

Lkpq(B) =
1

2

λIR(B)J⊥IR(B)((εp − εq)− ωk)
2ωk(εp − εq)

(
e−B((εp−εq)2+ω2

k) − e−B((εp−εq)+ωk)2
)
. (2.24)

Further simplifications can be made by merely considering the physics close to the Fermi
surface, where the Fermi-energy is defined as εF = 0, which treads the physics at temper-
ature T = 0 and is of our main concern. On the one hand we take the limit where the
momentum dependent energies go to zero, e.g. εp and εp → 0 and on the other hand the
Fermi-Dirac function reduces at T = 0 to

nf (ε) =

{
1, if ε < 0,

0, if ε > 0,
(2.25)

and the Bose-Einstein statistic to

nb(ω) = 0 for all ω > 0. (2.26)

By taking the limits εp and εp → 0 in Eqs.(2.24) we finally have the following expression
for the Lpqk(B)-coupling

 Lk00 = −1

2
λIR(B)J⊥IR(B)ωkBe

−Bω2
k . (2.27)

On the very same footing we get an expression for the Kpqk(B)-coupling

Kkpq = +
1

2
λIR(B)J⊥IR(B)ωkBe

−Bω2
k . (2.28)

Now, with these approximations we can calculate the flow of the couplings J⊥IR(B) and

J
‖
IR(B), so Eqs.(2.10) simplifies as follows

J
‖
IR(B)

dB
= (J⊥IR(B))2

∑
n

εne
−2Bε2n(1− 2nf (n))

= ρ0(J⊥IR(B))2

∫ D

−D
dε εe−2Bε2(1− 2nf (ε))

=
ρ0

2

(J⊥IR(B))2

B
(1− e−2BD2

). (2.29)
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As we can read off, it is perfectly fine to neglect the flow of the coupling, while B ≤ D−2.
For greater B’s the flow of the coupling sets in and the flow equation becomes

J
‖
IR(B)

dB
=
ρ0

2

(J⊥IR(B))2

B
. (2.30)

Notice that we have gained the same coupling eqaution for J
‖
IR(B), we have already been

familiar with from the Kondo model [3]. We implicitly assumed a constant density of states
ρ0 for the fermions, which have been introduced by the change of the sum into an integral∑

−→
∫
ρ(ε) dε. (2.31)

But, before we procced on in establishing the flow equation for J⊥IR(B) we have to talk
about the bosonic part, which explicitly enters here and will alter the flow of J⊥IR(B) in
comparison to the Kondo model. The bosonic density of states, often denoted as spectral
density, is given by

S(ω) =
∑
k

λ2
kδ(ω − ωk) = 2αωsΘ(ωc − ω)2, (2.32)

where ωc is a cut-off parameter, and α determines decoherence effects, see [55].

We go back to Eqs.(2.11), and by using the assumption stated before, we receive

dJ⊥IR(B)

dB
=

∑
m

(1− 2nf (n))εnJ
⊥
IR(B)J

‖
IR(B)e−2Bεn

−2
∑
k

ω2
kJ
⊥
IR(B)λ2

IR(B)e−2Bωk . (2.33)

Now, we use the spectral density to rewrite the sum over k as an integral and the same
reasoning as for the J

‖
IR(B)-coupling holds here for the fermionic part, therefore the flow

equation becomes

dJ⊥IR(B)

dB
=

ρ0

2

J⊥IR(B)J
‖
IR(B)

B
(1− e−2BD2

)

−4αJ̃⊥IR(B)B

∫ ωc

0

dω ωs+2e−2Bω2

=
ρ0

2

J⊥IR(B)J
‖
IR(B)

B
− 4αJ⊥IR(B)

(2B)
1
2

(s+3)
B

∫ √2Bωc

0

dx xs+2e−x
2

=
ρ0

2

J⊥IR(B)J
‖
IR(B)

B
− 4αJ⊥IR(B)

(2B)
1
2

(s+5)
B

∫ 2Bω2
c

0

dy y( 1
2

(s+3))−1e−y︸ ︷︷ ︸
=Γ( 1

2
(s+3)), B large enough

, (2.34)

2The meaning of the parameter s has been explained in Chapter 1.
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the second line is obtained by substituting ω = x√
2B

and the last line by x =
√
y.

The bosonic coupling equation is simply just

dλk(B)

dB
= −ω2

kλk(B) (2.35)

in leading order. We insert our ansatz and see that this equation is only fulfilled as long
as λIR(B) is a constant, and thus its value is determined by the intitial strength of the
bosonic coupling.

The remaining unsolved flow equations are

dJ⊥IR(B)

dB
=
ρ0

2

J⊥IR(B)J
‖
IR(B)

B
− αJ⊥IR(B)

2
1
2

(s+1)

1

B
1
2

(s+1)
Γ(

1

2
(s+ 3)) (2.36)

and

dJ
‖
IR(B)

dB
=
ρ0

2

(J⊥IR(B))2

B
. (2.37)

For our purposes its enough to consider the s = 1 (ohmic) case, which reduces the com-
plexity of the flow equations to an easily solvable set of differential equations

dJ⊥IR(B)

dB
=
J⊥IR(B)

B
(
ρ0

2
J
‖
IR(B)− α

2
) (2.38)

and
dJ
‖
IR(B)

dB
=
ρ0

2

(J⊥IR(B))2

B
, (2.39)

by redefining g‖(B) = ρ0

2
J
‖
IR(B) − α

2
and g⊥(B) = ρ0

2
J⊥IR(B) we receive the well known

differential equations for the anisotropic Kondo model, shifted only by a constant,

dg‖(B)

dB
=

(g⊥(B))2

B
(2.40)

and
dg⊥(B)

dB
=
g⊥(B)g‖(B)

B
. (2.41)

The shift of the coupling in the parallel direction is give by α
2

and is exactly the result
obtained by Li et.al. [38].
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Figure 2.1: The flow of the new defined dimensionsless coupling constants g‖(B) =
ρ0

2
J
‖
IR(B)− α

2
and g⊥(B) = ρ0

2
J⊥IR(B). On the contrary to the flow of the original Kondo-

couplings Fig.1.1 the finite coupling region is extended by the dissipation parameter α (In
this plot the value of α is taken to be 0.25). So if we increase the value of α the region, with
non divergent coupling constants, is enlarged. Actually, the set of the value of possible
initial conditions that end up having a finite value after the flow, is enlarged.

2.3.1 Solution of the Flow Equation with T 6= 0

Now, we can ask the question, how does a non zero temperature change the flow equations,
and will they still have similarities to the ordinary anisotropic Kondo model? We go back
to the to the flow equations before we set T = 0 and use the well known Bose-Enstein and
Fermi-Dirac statistic.

We rewrite the couplings as J⊥IRρ0 = g̃⊥ and J
‖
IRρ0 = g̃‖ and hence the differential equations

become
dg̃‖
dB

= g̃2
⊥

∫ ∞
−∞

dε εe−2Bε2(1− 2nf (ε)) (2.42)

and

dg̃⊥
dB

= g̃⊥g̃‖

∫ ∞
−∞

dε εe−2Bε2(1− 2nf (ε))

−4αg̃⊥B

∫ ∞
0

dω ωs+2e−2Bω2

(1 + 2nb(ω)). (2.43)

We also rewrite the Bose-Einstein and Fermi-Dirac statistic in a different representation

(1− 2nf (ε)) = 1− 2

e
ε
T + 1

= tanh(
ε

2T
) (2.44)
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and

(1 + 2nb(ω)) = 1 +
2

e
ω
T − 1

= coth(
ω

2T
), (2.45)

which has the advantage of a straightforward linearisation of the new expressions around
ε

2T
= 0. But before we make use of this, it has to be mentioned that there are basically

two different limiting cases we are interested, in the first one, we consider the region where
BT 2 � 1. As B is the inverse of the squared cut off energy, we refer to this limit as
the high energy limit, in other words the energy is much higher then the temperature
and therefore the scaling equations for the couplings Eqs.(2.36) and Eqs.(2.37) we have
obtained by setting T = 0 can be adopt for this case as well.

In the other case the temperature is greater than the energy BT 2 � 1 and therefore
the respective statistics have to be taken into account. First we expand tanh( ε

2T
) = ε

2T
up

to first order and plug it into Eqs.(2.42) and we get

dg̃‖
dB

= g̃2
⊥

∫ ∞
−∞

dε εe−2Bε2(1− 2nf (ε))

= g̃2
⊥

∫ ∞
−∞

dε εtanh(
ε

2T
)

= g̃2
⊥

∫ ∞
−∞

dε
ε2

2T

=

√
2π

16

1

TB
3
2

(2.46)

For the second differential equation we consider the ohmic case where s=1, only. We
expand coth( ω

2T
) for small arguments hence for small frequencies or large temperatures

coth(
ω

2T
) =

2T

ω︸︷︷︸
A

+
1

3

ω

2T︸ ︷︷ ︸
B

. (2.47)

So for term A we obtain

−8αBT

∫ ∞
0

dωω2e−2Bω2

=︸︷︷︸
ω= x√

2B

− 4√
2

αT

B
1
2

∫ ∞
0

dxx2e−x
2

=

√
π

2

αT

B
1
2

(2.48)

and for the B-term

−3

2

αB

T

∫ ∞
0

dωω4e−2Bω2

=︸︷︷︸
ω= x√

2B

− 1

6
√

2

α

TB
3
2

∫ ∞
0

dxx4e−x
2

= −
√
π

16
√

2

α

TB
3
2

. (2.49)

If we put all this together we receive for the flow equation of g̃⊥

dg̃⊥
dB

=

√
2π

16

1

TB
3
2

(g̃⊥g̃‖ − 8αT 2B︸︷︷︸
�1

− α

2︸︷︷︸
=const

), (2.50)
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since we are in the BT 2 � 1 region and the third term on the right hand side is constant,
we can omit the third term in favor of the second term on the right hand side. So in the
limit of BT 2 � 1 we get for the complete flow equations

dg̃⊥
dB

= g̃⊥g̃‖

√
2π

16

1

TB
3
2

−
√

2π

2

αT

B
1
2

(2.51)

and
dg̃‖
dB

= g̃2
⊥

√
2π

16

1

TB
3
2

(2.52)

Note that the temperature dependence of the dissipative term is, irrespective of the pre-
factors, the same as the second loop contribution in the Kondo model, see [53].
Even more can be said as a final remark of this chapter, the one loop calculations of the
Ising BFKM, to be precise the contributions coming form the dissipative bath, have lots
of similarities to the second loop contribution of the ordinary anisotropic Kondo model.



Chapter 3

The isotropic Bose Fermi Kondo
Model

In the isotropic case all of the fermionic couplings are equal and likewise the bosonic
couplings. The investigation of the isotropic BFKM in terms of numerics, such as NRG,
could not be done so far, since it is not possible to model three bosonic baths at once, yet
the flow equation method is in principal able to solve the model. In this section we are
going to present not an exact solution but we give a sufficiently well perturbative solution.
The perturbatively obtained correlation function can be used to analyse the EDMFT self
consistency equation. Additionally, we consider the idea of the existence of a conformal
field theory in the immediate vicinity of the quantum phase transition proposed by Kirchner
and Si [56].

3.1 Hamiltonian

The Hamiltonian of the BFKM is given by

H =
∑
pα

εp : c†pαcpα : +
∑
pq

J(p, q) : S · spq :

+
∑
k

ωk : Φ†k ·Φk : +
∑
k

λkS · (Φ†k + Φk), (3.1)

where spq =
∑2

αβ=1 c
†
pα

1
2
σαβcqβ and Φ†k , Φk are bosionic vector operators.

The generator is gained by Eqs.(1.66) and reads

η(B) =
∑
pq

(εp − εq)J(p, q)(B) : S · spq :

+
∑
k

λk(B)ωkS · (Φ†k −Φk). (3.2)
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While inserting this into Eqs.(1.55) and performing the commutator new terms are gen-
erated durning the flow, hence we have to rewrite the original Hamiltonian, which as well
changes the generator, as it follows

H(B) =
∑
pα

εp : c†pαcpα : +
∑
pq

J(p, q)(B) : S · spq :

+
∑
k

ωk : Φ†k ·Φk : +
∑
k

λk(B)S · (Φ†k + Φk)

+ i
∑
pqk

Kpqk(B)Φ†k· : spq × S :

+ i
∑
pqk

Lpqk(B)Φ·k : spq × S :

+ i
∑
kl

µkl(B)S· : Φ†k ×Φl :

+ i
∑
kl

Ψkl(B)S · (Φ†k ×Φ†l −Φk ×Φl) (3.3)

and

η(B) =
∑
pq

(εp − εq)J(p, q)(B) : S · spq : +
∑
k

λk(B)ωkS · (Φ†k −Φk)

+ i
∑
pqk

Kpqk(B)((εp − εq) + ωk)Φ
†
k· : spq × S :

+ i
∑
pqk

Lpqk(B)((εp − εq)− ωk)Φ·k : spq × S :

+ i
∑
kl

µkl(B)(ωk − ωl)S· : Φ†k ×Φl :

+ i
∑
kl

Ψkl(B)(ωk + ωl)S · (Φ†k ×Φ†l + Φk ×Φl), (3.4)

where we introduced new couplings

Kpqk(B) = −J(p, q)(B)λk(B)((εp − εq)− ωk) (3.5)

Lpqk(B) = −J(p, q)(B)λk(B)((εp − εq) + ωk) (3.6)

µkl(B) = (ωk + ωl)λl(B)λk(B) (3.7)

Ψkl(B) = ωkλk(B)λl.(B) (3.8)

The coupling constants obey the following relations, for any B , since the Hamiltonian has
to be hermitian

Kpqk = −Lqpk and µkl = µlk. (3.9)
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3.1.1 The Commutators

The overall commutation relation reads:

[ηf0 (B) + ηb0(B) + ηnew(B), Hf
0 (B) +Hb

0(B) +Hf
int(B) +Hb

int(B) +Hnew(B)] (3.10)

where

ηnew(B) = ηKnew(B) + ηLnew(B) + ηµnew(B) + ηΨ
new(B) (3.11)

and

Hnew(B) = HK
new(B) +HL

new(B) +Hµ
new(B) +HΨ

new(B). (3.12)

Notice that we neglect terms like

[ηKnew(B)+ηLnew(B)+ηµnew(B)+ηΨ
new(B), HK

new(B)+HL
new(B)+Hµ

new(B)+HΨ
new(B)] (3.13)

from the outset, because they will produce couplings in higher order than we are interested.
To be precise we neglect couplings of order O(λ4),O(Jλ3) and O(J2λ2). The calculations
of the commutator are rather cumbersome and therefore we delayed the quite lengthy
expression into the Appendix(B), since the calculations are not at all necessary for the
understanding of the following discussion, nevertheless, they have to be done. In the next
section we will present the flow equations of the couplings in all its detail, at least up to
the order of our interest.

3.2 Flow Equation

3.2.1 The Flow Equations

Once again Appendix(B) displays the commutator relations of the generator and Hamilto-
nian, however, we only consider those terms, which couple back to the Hamiltonian given
in Eqs(3.3) and so we end up with a quite complicated set of coupled differential equations

dJ(p, q)(B)

dB
= −(εp − εq)2J(p, q)(B)

−
∑
k

Kpqk(B)((εp − εq) + 2ωk)λk(B)(1 + 2n(k))

−
∑
k

Lpqk(B)((εp − εq)− 2ωk)λk(B)(1 + 2n(k))

+
∑
m

(εp + εq − 2εm)J(p,m)(B)J(m, q)(B)(n(m)− 1

2
) (3.14)
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and

dλk(B)

dB
= −ω2

kλk(B)

+
1

2

∑
pq

Kpqk(B)ωkJ(p, q)(B)(n(p) + n(q)− 2n(p)n(q))

+
∑
l

(ωk − 2ωl)λl(B)µkl(B)(1 + 2b(l))

+
∑
kl

(ωk + 2ωl)λl(B)(Ψkl(B)−Ψlk(B))(1 + 2nb(l)) (3.15)

and

dKpqk(B)

dB
= −((εp − εq) + ωk)

2Kpqk(B)

−J(p, q)(B)λk(B)((εp − εq)− ωk)
1

4

∑
m

Kpmk(B)J(m, q)(B)((εp − εq) + ωk − 2εm)(1− 2n(m))

1

4

∑
m

Kmqk(B)J(p,m)(B)((εp − εq)− ωk − 2εm)(1− 2n(m)) (3.16)

and

dLpqk(B)

dB
= −((εp − εq)− ωk)2Lpqk(B)

−J(p, q)(B)λk((εp − εq) + ωk)

1

4

∑
m

Lpmk(B)J(m, q)(B)((εp − εq)− ωk − 2εm)(1− 2n(m))

1

4

∑
m

Lmqk(B)J(p,m)(B)((εp − εq) + ωk − 2εm)(1− 2n(m)) (3.17)

and
dµkl(B)

dB
= −(ωk − ωl)2µkl(B) + (ωk + ωl)λk(B)λl(B) (3.18)

and
dΨkl(B)

dB
= −(ωk + ωl)

2Ψkl(B) + λl(B)λk(B)ωk. (3.19)

3.2.2 Solution of the Flow Equation

Of course, we can not expect to solve the above flow equations analytically, however, if we
search for a solution in the low energy sector by applying an infrared approximation of the
couplings we can extract the relevant information of their behaviour in the B →∞ limit.
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Deriving the fixed point equation

But before we are getting started it is important to know, how do we detect from the flow
equations, whether a quantum phase transition is present or a stable phase. A stable fixed
point where all flow lines go in, is identified by a certain phase, because once you are in that
particular fixed point there is no chance to leave it. Whereas, if we consider an unstable
fixed point, some flow lines go into the point and others go out of it, and we identify this
with a transition point see Figure (1.4). So we just follow the flow lines of the coupling
constants by taking B →∞ and eventually end up in either a stable or an unstable fixed
point. Just to get a felling how, the couplings behave, we first consider two limiting cases;
1.Kondo phase
The Kondo regime is obtained by setting the bosonic coupling λ equals to zero and the
flow equations reduce to

dJ(p, q)(B)

dB
= −(εp − εq)2J(p, q)(B)

+
∑
m

(εp + εq − 2εm)J(p,m)(B)J(m, q)(B)(n(m)− 1

2
) (3.20)

see S. Kehrein[53], therefore the Kondo phase is identified.

2.SU(2) bosonic phase
The purely bosonic SU(2)-invariant domain is governed by the λ-coupling, which can be
achieved by setting J=0 and gives the following equations

dλk
dB

= −ω2
kλk(B)

+
∑
l

(ωk − 2ωl)λlµkl(B)(1 + 2nb(l))

+
∑
kl

(ωk + 2ωl)λl(B)(Ψkl(B)−Ψlk(B))(1 + 2nb(l)) (3.21)

and
dµkl(B)

dB
= −(ωk − ωl)2µkl(B) + (ωk + ωl)λk(B)λl(B) (3.22)

and
dΨkl(B)

dB
= −(ωk + ωl)

2Ψkl(B) + λl(B)λk(B)ωk. (3.23)

It is convenient to define

λk =
√

2ωskα(B)e−Bω
2
k , (3.24)

which is justified by the representation of the spectral function of bosons, given by

S(w) =
∑
k

λ2
kδ(ωk − ω) = 2αωsΘ(ωc − ω), (3.25)
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where ωc is the cut off parameter and α describes the coupling of spin to the bosonic bath.
We redefine the parameter s as 1 − s = ε. The s parameter is used to describe the char-
acteristic behaviour of the spectral function.(e.g. ohmic, sub-ohmic , super-ohmic). The ε
parameter will be our small expansion parameter.

By making the ansatz

µkl(B) = µ̃kl(B)e−B(ωk−ωl)2

(3.26)

and plugging this into Eqs.(3.18) we receive

µkl(B) =
(ωl + ωk)

2ωkωl

√
2ω1−ε

k

√
2ω1−ε

l α(B)(1− e−2Bωkωl)e−B(ωk−ωl)2

. (3.27)

Additionally, we make the ansatz

Ψkl(B) = Ψ̃kl(B)e−B(ωk+ωl)
2

(3.28)

and inserting into Eqs.(3.19)

Ψkl(B) =

√
2ω1−ε

l

√
2ω1−ε

k

2ωl
α(B)(e2Bωkωl) − 1)e−B(ωk+ωl)

2

. (3.29)

Finally, we rewrite Eqs.(3.15) in terms of α, as it has been defined in Eqs.(3.24). Now,
we are in the position to solve the flow equation for the actual coupling so Eqs.(3.27) and
Eqs.(3.29) are combined with the rewritten Eqs.(3.15) we get

√
2ω1−ε

k

d
√
α(B)

dB
= −

∑
l

(ωk − 2ωl)2ω
1−ε
l

√
2ω1−ε

k α(B)
3
2

(ωl + ωk)

2ωkωl

×(e−2Bωkωl − 1)e−B(ωk−ωl)2

eBω
2
ke−Bω

2
l

+
∑
l

(ωk + 2ωl)2ω
1−ε
l α(B)

3
2

√
2ω1−ε

k

2
(

1

ωl
− 1

ωk
)

×(e2Bωkωl) − 1)e−B(ωk+ωl)
2

eBω
2
ke−Bω

2
l . (3.30)

Since we just consider the zero temperature case, ωk is set equal to zero and

d
√
α(B)

dB
= 2

∑
l

ω1−ε
l α(B)

3
2 (−2Bωl)e

−2Bω2
l ωl

+2
∑
l

ω1−ε
l α(B)

3
2 (−2Bωl)e

−2Bω2
l ωl. (3.31)
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Obviously, the first term and the second one on the right hand side are the same and we
can simplify the equation

d
√
α(B)

dB
= −8B

∑
l

ω3−ε
l α

3
2 e−2Bω2

l

= −8Bα
3
2

∫
dω ω3−εe−2Bω2

= −2
α

3
2

(2B)
1
2

(2−ε)
Γ(

1

2
(4− ε)) (3.32)

=⇒ dα(B)

dB
= − 4α(B)2

(2B)
1
2

(2−ε)
Γ(

1

2
(4− ε)) (3.33)

E.g. for the ohmic case we get
dα

dB
= −2

α2

B
, (3.34)

which is the first term of the β-function therefore this result indicates a stable fixed point.
In the s 6= 1 case, which means that ε 6= 0, the above equation is solved by the following
ansatz α(B) ∝ Bx(power law, x has to be determined), which also indicates a stable fixed
point. These two limiting cases only occur, if in the first case λ either goes to zero or
becomes vanishing small, and in the second case J → 0, which, in both cases, depends on
the initial value of the respective coupling constants.

3. SU(2) Bose Fermi unstable fixed point
Somewhere between there should be the unstable SU(2) Bose-Fermi fixed point. We solve
the flow equation for the Kpqk and Lpqk coupling in first order expansion. In order to do so
we use the following ansatz eliminating more and more degenerated energies durning the
flow

Kpqk(B) = K̃pqk(B)e−B((εp−εq)+ωk)2

(3.35)

Lpqk(B) = L̃pqk(B)e−B((εp−εq)−ωk)2

(3.36)

λk(B) =
√

2ω1−ε
k α(B)e−Bω

2
k (3.37)

J(p, q)(B) = JIR(B)e−(εp−εq)2

. (3.38)

Plugging these into Eqs.(3.16) and neglect couplings that go with O(J2)

K̃pqk(B)

dB
= −JIR(B)

√
2ω1−ε

k α(B)((εp − εq)− ωk)e2B(εp−εq)ωk . (3.39)
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After a straightforward integration we take the εp,εq −→ 0 limit, since we only regard the
physics close to the fermi surface

K00k(B) = BJIR(B)
√

2ω1−ε
k α(B)ωke

−Bω2
k , (3.40)

in analogy Lpqk

L00k(B) = −BJIR(B)
√

2ω1−ε
k α(B)ωke

−Bω2
k (3.41)

therefore we get a solvable differential equation for the coupling constant JIR(B) by con-
sidering the physics close to the fermi surface. Recall that a quantum phase transition
takes place at T = 0, this causes a drastic simplification of the particle number function
of both, bosonic as well as fermionic function

nf (ε) =

{
1, if ε < 0,

0, if ε > 0,
(3.42)

and
nb(ω) = 0 for all ω > 0. (3.43)

Eqs.(3.16) can be written as follows

dJIR
dB

=
∑
m

εmJIR(B)2e−2Bε2m(1− 2nf (m))− 8α(B)JIR(B)B
∑
k

ω3−ε
k e−2Bω2

k

= JIR(B)2ρ0

∫
dε εe−2Bε2(1− 2nf (ε))− 8α(B)JIR(B)B

∫
ω3−εe−2Bω2

=
J2
IR(B)ρ0

2B
− 2

JIR(B)α(B)Γ(1
2
(4− ε))

(2B)
1
2

(2−ε)
. (3.44)

Redefining JIR(B)ρ0 = ξ(B) gives

dξ(B)

dB
=

1

2B
(ξ(B)2 − 2

ξ(B)α(B)Γ(1
2
(4− ε))

(2B)−
ε
2

). (3.45)

On the bosonic side we take the limit ωk → 0 in order to investigate the low energy physics.
In Eqs.(3.15), the term ωkKpqk(B) appears, which is zero in the considered limit. As a
result we can say, that a non-zero value of JIR(B) are not going to alter the flow equation
for the bosonic coupling α(B)

dα(B)

dB
= − 4α(B)2

(2B)
1
2

(2−ε)
Γ(

1

2
(4− ε)). (3.46)

A good choice for the ansatz is α(B) = g∗B−x

−xg∗B−x−1 = − 4g∗2

2(2)−
ε
2

B−2x−1+ ε
2 Γ(

1

2
(4− ε)), (3.47)
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this equation has to hold for all B, hence

x =
ε

2
and therefore g∗ =

ε

4

1

Γ(1
2
(4− ε))2 ε

2

. (3.48)

We assumed no B dependence for g∗, so g∗ is already the fixed point value. For a more
general ansatz we let g depend on B, so α(B) = g(B)B−

ε
2 ,

dg(B)

dB
B−

ε
2 − ε

2
B

ε
2
−1g(B) = −4g(B)2B−ε

(2B)
1
2

(2−ε)
Γ(

1

2
(4− ε))

⇐⇒ dg(B)

dB
=

ε

2B
g(B)− 4g(B)2(B)−

ε
2

2B
1
2

(2−ε)
Γ(

1

2
(4− ε)) (3.49)

leading to
dg(B)

dB
=

1

2B

(
εg(B)− 4g(B)22

ε
2 Γ(

1

2
(4− ε))

)
. (3.50)

Due to the redefinition of the coupling constant α(B) the new coupling constant g(B)
is dimensionless. We plug the ansatz into Eqs.(3.45) and obtain

dξ(B)

dB
=

1

2B
(ξ(B)2 − 2

ξ(B)g(B)Γ(1
2
(4− ε))

2−
ε
2

). (3.51)

It can easily be seen that the above founded fixed point solves Eqs.(3.50). We insert
g∗ into Eqs.(3.45) and obtain,

dξ(B)

dB
=
ξ(B)

2B
(ξ(B)− ε

2
) (3.52)

it is easily seen that ξ = ε
2

is a solution and at the same time the desired fixed point value.

In order to get the full solution we have to define the initial value of ξ,

ξ(B = D−2) = ξ0 (3.53)

The solution of the fermionic coupling in terms of B at the bosonic fixed point value is
given by

⇒ ξ =
ε

2 + ( ε
ξ0
− 2)(BD−2)

ε
4

(3.54)

From here we can see the nature of the fixed, in the present case an unstable fixed point
is identified. If



58 3. The isotropic Bose Fermi Kondo Model

ξ0 <
ε
2
⇒ ξ(B)→ 0 as B →∞

we find yourselves in the purely bosonic phase, since the Kondo coupling eventually ap-
proaches zero, however, if we look at the case
ξ0 >

ε
2
⇒ ξ(B)→∞ as B →∞,

so the Kondo coupling goes to infinity and we are in the strong coupling regime, means,
the paramagnetic Kondo phase is occupied. But if,
ξ0 = ε

2
⇒ ξ(B) = ε

2
for all B,

the fixed point value is found. So a slight deviation of the initial condition form ξ0 = ε
2

causes as significant different outcome.

In the following we would like to write the flow equation, now depending on B, in terms
of the cut off parameter Λ1. The resulting equations can then be compared to previously
obtained equations by Zaránd and Demler[33]

− dg

dlnΛ︸ ︷︷ ︸
dg

dlnΛ−1

=

(
εg − 4g22

ε
2 Γ(

1

2
(4− ε))

)
(3.55)

⇒ − dξ

dlnΛ︸ ︷︷ ︸
dξ

dlnΛ−1

= (ξ2 − 2
ξgΓ(1

2
(4− ε))

2−
ε
2

). (3.56)

If we expand g∗ up to second order in ε we find

g∗ =
ε

4
+

1

8
(ln2− γ + 1)ε2 +O(ε3), (3.57)

where γ is the Euler constant, and approximate 2
ε
2 Γ(1

2
(4 − ε) = 1, to ensure that we are

merely dealing with first order terms in ε. For further discussions of the Bose-Fermi Kondo
problem we stick to the first order expansion of the fixed point value of the bosonic coupling
as well as the fermionic coupling, namely

g∗ =
ε

4
and ξ∗ =

ε

2
. (3.58)

Remember, the parameter ε was an external input parameter. Actually, its exact value is
determine by the solution of the self-consistency condition, but we assumed it to be small
in order ensure the validity of the perturbative approach. Combining these approximation
with Eqs.(3.55) and Eqs.(3.56) the flow equations finally reduces to

dξ

dlnΛ−1
= ξ(ξ − 2g) , (3.59)

dg

dlnΛ−1
= (εg − 4g4) . (3.60)

1Just as a reminder Λ = B−
1
2 .
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3.3 The Spin S Operator

As it was mentioned in section 1.2 it is stringently neccesary to find an expression for
the local correlation function, mainly to have an educated guess for the self consistency
equation. But before talking about the correlation function, we have to figure out the
general behaviour of the Spin-operator in the new basis2 and from there we are able to
calculate the correlation function or the susceptibility.

3.3.1 Commutators and the Flow Equation

By solving Eqs.(1.76) we will receive the Spin-operator in the new basis, which is achieved
in more or less the same manner as it has been done by the Hamilton operator. We can
use the same generator as in Eqs.(3.2)

η(B) =
∑
pq

(εp − εq)J(p, q)(B) : S · spq : +
∑
k

ωkλk(B)S · (Φ†k −Φk). (3.61)

During the flow of [η, Sa], where a = x, y, x new terms are generated so it is not un-
reasonable to use a more sophisticated ansatz than simply the bare spin operator itself

S(B)a = h(B)Sa + i
∑
pq

µpq(B)(: S× spq :)a + i
∑
k

Ψk(B)(S× (Φ†k −Φk))
a. (3.62)

The commutator [ηf + ηb, S
a
0 +Saf +Sab ] can be divided into certain pieces, which are given

by

[ηf (B), Sa(B)b] = −
∑
pqk

(εp − εq)J(p, q)(B)

×(: sp,q : (Φ†k −Φk) · S− Sa(: sp,q : ·(Φ†k −Φk))) (3.63)

and

[ηb(B), Sa(B)f ] = −
∑
pqk

ωkλk(B)µpq(B)

×((Φ†k −Φk)
a(: sp,q : ·S)− Sa(: sp,q : ·(Φ†k −Φk))) (3.64)

2While we have gradually diagonalised the Hamilton operator, we simultaneously changed the basis
representation of the eigenstate.
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and

[ηb(B), Sa(B)b] = −
∑
kl

ωkλk(B)Ψl(B)(Φ
†(a)
k (Φ†l · S)− Sa(Φ†k ·Φ†l ))

−
∑
kl

ωkλk(B)Ψl(B)(Φa
k(Φl · S)− Sa(Φk ·Φl))

+
∑
kl

ωkλk(B)Ψl(B)(: Φ
†(a)
k (Φl · S :)− (: Sa(Φ†k ·Φl :))

+
∑
kl

ωkλk(B)Ψl(B)(: Φ†l · S(Φa
k :)− (: Sa(Φ†l ·Φk :))

−2
∑
k

ωkλkΨk(1 + 2nb(k)) (3.65)

and

[ηf (B), Sa(B)f ] = i
∑
pqmn

(: samn(S · spq) : −Sa : spq · smn :)

+
i

4

∑
pqmn

(δqm : sapn : +δpn : saqm :)

− i
2
Sa
∑
pqmn

(
1

2
δqm(1− 2nf (q))

∑
σ

: c†pσcnσ :

+
1

2
δpn(1− 2nf (p))

∑
σ

: c†mσcqσ :

+2δqmδpn(1− nf (q)nf (p)))
−1

4

∑
pqmn

δqm(1− nf (q)) : (S · spn)a :

−1

4

∑
pqmn

δpn(1− nf (p)) : (S · sqm)a : . (3.66)

Again, we merely consider the terms that have already been taken into account in the
original ansatz of our spin operator. The newly appeared terms, however, are initially gen-
erated in higher order of the coupling, and therefore will be neglected during the following
calculation. So we can easily read of the differential equation for the couplings

dh(B)

dB
=

∑
pq

(εp − εq)J(p, q)(B)µqp(B)n(p)(1− n(q))

−2
∑
k

ωkλk(B)Ψk(B)(1 + 2nb(k)) (3.67)
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and

dµpq(B)

dB
= h(B)(εp − εq)J(p, q)(B)

+
1

4

∑
m

((εp − εm)J(p,m)(B)µmq(B)

+(εq − εm)J(m, q)(B)µpm(B)) (1− 2nf (m)) (3.68)

and
dΨk(B)

dB
= hωk(B)λk(B). (3.69)

Notice, the structure of the differential equation of µpq(B) is exactly the same as for the
ordinary Kondo model without a bosonic bath [53], although, the bosonic bath influences
Eqs.(3.68) by the modified Eqs.(3.67), where the bosonic part affects the spin decay. Before
we proceed on and try to solve the above equation we perform a little consistency check
by proving that the sum rule is fulfilled for any value of B. This is done in subsequent
section and the hasty reader may skip it.

3.3.2 Sum Rules

During the unitary flow certain sum rules should stay fulfilled, e.g. the anti-commutation
relations of the fermionic creation and annihilation operators and relation for the Spin
operators 〈(Sa(B))2〉 = 3

4
, obviously this is satisfied when B = 0. The expectation value

takes the normal ordering of the operators into account. The structure of the flow equation
is such that we can consider the sum rule of the fermionic part and the bosonic part
separately. In Ref.[53] it is shown that the fermionic part obeys this sum rule exact, at
least, up to O(J2). We check the bosonic part by setting J = 0, because in our problem
the bosonic part and the fermionic part are independent of each other. First we calculate
the expectation value of the spin operator and then we sum over all directions

⇒
3∑

a=1

〈Sa(B)Sa(B)〉 = h2(B)
3

4
−
∑
kla

Ψk(B)Ψl(B)〈εabcεadeSb(Φ†ck − Φc
k)S

d(Φ†el − Φe
l )〉

= h2(B)
3

4
+

3

2

∑
k

Ψk(B)2(1 + 2nb(k))
!

= const. (3.70)

We take the derivative of this expression with respect to B and get

d
∑3

a=1〈Sa(B)Sa(B)〉
dB

=
3

2
h(B)h′(B) + 3

∑
k

Ψk(B)Ψk(B)′(1 + 2nb(k)), (3.71)
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where the prime denotes the derivation with respect to B and with the use of Eqs.(3.67)
we receive

d
∑3

a=1〈Sa(B)Sa(B)〉
dB

= −3h(B)
∑
k

ωkλkΨk(1 + 2nb(k))

+3h(B)
∑
k

ωkλkΨk(1 + 2nb(k)) = 0, (3.72)

and the sum rule is valid.

3.3.3 Discussion of the Spin operator near the unstable fixed
point

Spin operator within the h=1 ansatz (T=0)

Obviously, it is not that easy to solve the differential equations Eqs.(3.67), Eqs.(3.68) and
Eqs.(3.69) analytically, at least in the present form, hence we have to make a few reasonable
assumptions. Firstly, notice that µpq(B) is already generated in order O(J), so we neglect
the second term in Eqs.(3.68), and secondly, we look at that part of the flow, where the
deviation of h(B) from 1 can be considered as negligible small, in other words h(B) varies
slowly, and in Eqs.(3.68) and Eqs.(3.69) we set

h(B) = 1. (3.73)

Surely, the validity of this approximation is rather limited, but we can hope for a clue how
a better solution might look like. In addition, the ansatz for the coupling is again

λk(B) =
√

2ω1−ε
k α(B)e−Bω

2
k (3.74)

and

J(p, q)(B) = JIR(B)e−B(εp−εq)2

. (3.75)

Plugging into Eqs.(3.68), respectively Eqs.(3.69) we get

µpq(B) =
JIR(B)

(εp − εq)(1− e−B(εp−εq)2

) (3.76)

and

Ψk(B) =

√
2ω1−ε

k α(B)

ωk
(1− e−Bω2

k). (3.77)
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Now, we insert these two equations into Eqs.(3.67)

dh(B)

dB
= −

∑
pq

J2
IR(B)(1− e−B(εp−εq)2

)e−B(εp−εq)2

nf (p)(1− nf (q))

−4
∑
k

ω1−ε
k α(B)(1− e−Bω2

k)e−ω
2
kB(1 + 2nb(k))

= −J2
IR(B)ρ2

0

∫ 0

−∞
dε′
∫ ∞

0

dε(1− e−B(ε′−ε)2

)e−B(ε′−ε)2

−4α(B)

∫
dω ω1−ε(1− e−Bω2

)e−ω
2B

= −ξ(B)2

4B
− 2α(B)Γ(1

2
(2− ε))

B
1
2

(2−ε)

(
1− 1

2
1
2

(2−ε)

)
, (3.78)

and the differential equation, ultimately, has got the form

dh(B)

dB
= − 1

B

(
ξ2(B)

4
+

2α(B)Γ(1
2
(2− ε))

B−
ε
2

(
1− 1

2
1
2

(2−ε)

))
. (3.79)

We restrict ourselves to the behaviour of the Spin operator at the unstable fixed point,
namely ξ∗ = ε

2
and g∗ = ε

22+ ε
2 Γ( 1

2
(4−ε))

, have to be inserted which leads to the following

expression
dh(B)

dB
= − 1

B

(
ε2

64
+
ε

2

Γ(1
2
(2− ε))

Γ(1
2
(4− ε))(

1

2
ε
2

− 1

2
)

)
. (3.80)

The solution is given by

h(B) = 1−m(ε)ln(BD−2) (3.81)

where

m(ε) =
ε2

64
+
ε

2

Γ(1
2
(2− ε))

Γ(1
2
(4− ε))(

1

2
ε
2

− 1

2
), (3.82)

with the initial condition is h(B = D−2) = 1. It is easy to see that m(ε) goes to zero as ε
goes to zero, so we can choose ε such that m(ε) is arbitrarily small, which means that the
deviation rate of h(B) from 1 is controlled by the value of ε. Additionally, we can deduce
that the fermionic coupling influences the evolution of the Spin operator in O(ε2) and the
bosonic part solely in first order of ε. The logarithmic behaviour of h(B) points towards a
power law e.g. h ∼ Bx in a more sophisticated ansatz, since a expansion in x will produce
a h ∼ 1− xln(B) up to higher terms of x. So just to make a rough guess, we expand m(ε)
to first order in ε, so m(ε) = ε

4
+ O(ε2), which means that the power x = ε

4
. Of course,

this does not count as a prove, and we have to make a better ansatz for h(B).

Spin operator within the more sophisticated ansatz of h

We would like to know the behaviour of h(B) over the entire B range, which is achieved
by making no assumption of any form of h(B) in the first place going back to the original
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differential equations Eqs.(3.68) and Eqs.(3.69) which are at least formaly solved by

µpq(B) = (εp − εq)
∫ B

0

dB′ h(B′)JIR(B′)e−B
′(εp−εq) (3.83)

and

Ψk(B) =
√

2ω1−ε
k ωk

∫ B

0

dB′ h(B′)
√
α(B′)e−B

′ω2
k . (3.84)

We limit ourselves just to the fixed point that means we replace the coupling constants by
their critical value

dh(B)

dB
= −

∑
pq

(εp − εq)2J2(B)e−B(εp−εq)2

nf (q)(1− nf (p))
∫ B

0

dB′ h(B′)e−B
′(εp−εq)2

−4
∑
k

ω3−ε
k

√
α(B)(1 + 2nb(k))

∫ B

0

dB′ h(B′)
√
α(B′)e−B

′ω2
k (3.85)

= − ε
2

16

∫ 0

−∞
dε′
∫ ∞

0

dε (ε′ − ε)2e−B(ε′−ε)2

∫ B

0

dB′ h(B′)e−B
′(ε′−ε)2

−ε
∫
dω ω3−εB−

ε
4 e−Bω

2

∫ B

0

dB′ h(B′)B′−
ε
4 e−B

′ω2

. (3.86)

Note that the fermionic part is a second order contribution and can be neglected in first
order calculation, whereas the bosonic part is of first order as one can see very easily.
Since we are working in first order expansion we can set ε equals to zero if it appears in
an exponent, which gives the following

dh(B)

dB
= −ε

∫ ωc

0

.dω ω3

∫ B

0

dB′ h(B′)e−(B+B′)ω2

=︸︷︷︸
ω= x√

B+B′

−ε
∫ B

0

dB′
h(B′)

(B +B′)2

∫ √B+B′ωc

0

dx x3e−x
2

= −ε
2

∫ B

0

dB′
h(B′)

(B +B′)2
. (3.87)

Above the logarithmic dependence of h(B) was shown which can be viewed as an indication
of a power law behaviour of h(B). It is reasonable to make the following ansatz h(B) ∼ B−x

and plug this into the above equation
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⇒

− xB−x−1 = −ε
2

∫ B

0

dB′
B′−x

(B +B′)2

= −ε
2
B−2

∫ B

0

dB′
B′−x

(1 + (B
′

B
))2

=︸︷︷︸
B′=Bz

−ε
2
B−1−x

∫ 1

0

dz
z−x

(1 + z2)︸ ︷︷ ︸
= 1

2
z−x=1

(3.88)

⇒ x = ε
4

thus

h(B) ∼ B−
ε
4 , (3.89)

and the power law behaviour is proved up to the considered order. So our previously
guessed power law behaviour was correct.

3.3.4 Correlation function

The general expression

The S-operator, given in Eqs.(3.62), can be written in the structure S(t) = F (t) + B(t),
as in the limit B goes to infinity h(B = ∞) = 0. Remember, the frequency dependent
symmetric correlation function is given by

C(ω) =
1

2

∫
dt eiωt〈{S(0), S(t)}〉. (3.90)

Taking a closer look at the anti-commutator products of the spin operator we see that
we either get a purely bosonic and fermionic part or so called mixed terms, conisting of a
product of the bosonic part and the fermionic part

〈{S(0), S(t)}〉 = 〈{F (0) +B(0), F (t) +B(t)}〉
= 〈F (0)F (t) + F (t)F (0)〉+ 〈B(0)B(t) +B(t)B(0)〉

+〈B(0)F (t) +B(t)F (0) + F (0)B(t) + F (t)B(0)〉
= 〈F (0)F (t) + F (t)F (0)〉+ 〈B(0)B(t) +B(t)B(0)〉 (3.91)

The bosionic part of the spin operator contains only a single annihilation opertator or
creation operator and the expectation value of the mixed term gives no contribution, only
the square terms of the bosonic and fermionic operators will give a non zero expectation
value. So once again we can split the correlation function into a purely bosonic and
fermionic part

C(ω) = Cf (ω) + Cb(ω). (3.92)
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The Cf (ω) has already been calculated by S. Kehrein [53] and reads

Cf (ω) =
π

4

∑
p

µ2
εp+ω,εp(B =∞)

×(nf (εp)(1− nf (εp + ω)) + nf (εp + ω)(1− nf (εp))). (3.93)

We use Eqs.(1.84) in order to calculate the bosonic bit of the correlation function

Cb(ω) = − π

Z̃(β)

∑
j

e−Ejβ
∑
mk

Ψm(B =∞)Ψk(B =∞) < j|εabcεadeSbSd(−φc†mφek)|j >

×(δ(ω − (−ωk)) + δ(ω + (−ωk)))
− π

Z̃(β)

∑
j

e−Ejβ
∑
mk

Ψm(B =∞)Ψk(B =∞) < j|εabcεadeSbSd(−φcmφe†k )|j >

×(δ(ω − (ωk)) + δ(ω + (ωk)))

=
π

2

∑
k

Ψk(B =∞)(1 + 2nb(ωk))(δ(ω − (ωk)) + δ(ω + (ωk)))

=
π

2

(
Ψ2
ω(B =∞)(1 + 2nb(ω)) + Ψ2

−ω(B =∞)(1 + 2nb(−ω))
)
. (3.94)

We usually use the Einstein convention, however, in this case we do not sum over the index
a, but over all others that appear twice. A summation over a would lead to an overall
factor of three, due to the isotropic nature of the model.

On the one hand Cf (ω) ∼ O(J2) and on the other hand Cb(ω) ∼ O(λ2). At the fixed

point J ∼ ε and λ ∼ (ε)
1
2 up to first order, thus we can omit the fermionic part of the cor-

relation function as it is of higher order in the expansions parameter ε and the remaining
correlation function is

C(ω) =
π

2
Ψ2
|ω|(B =∞)(1 + 2nb(|ω|)) . (3.95)

Spin correlation function and dynamical susceptibility in first order calculation

In order to calculate the spin correlation function we have to reinsert Eqs.(3.89) into
Eqs.(3.84)

Ψk(B) '
√

2ω1−ε
k ωk

∫ B

0

dB′ B′−
ε
4

√
α(B′)e−B

′ω2
k

'
√
ε

4

√
2ω1−ε

k

ω−εk ωk

∫ Bω2
k

0

dx x−
3
4
εe−x

'
√
ε

4

√
2ω1−ε

k

ω−εk ωk
Γ(1− ε

2
). (3.96)
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In the integral expression we took the limit B to infintiy so that the last line is the needed
expression for Ψk(B =∞). By inserting this into Eqs.(3.95) and setting nb(ω) = 0 due to
T = 0 we finally receive the following ω-dependence of the correlation function up to first
order in the ε-expansion

C(ω) ∼ Ψ(|ω|)2 ∼ sgn(ω)

|ω|1−ε . (3.97)

This is exactly the same result as it was obtained by Zárand and Demler [33], but, new is
that now we have a full expression for the correlation function, so if we solved Eqs.(3.67),
Eqs.(3.68)and Eqs.(3.69) we could extract all the information of the correlation function,
not just the approximate ω-dependence. In the T 6= 0 we have to keep track of the momen-
tum dependence of couplings and therefore the infrared approximation is not appropriate
any more, so analytically it seems futile to solve the full set of differential equations, how-
ever, numerically it can be done, even for T 6= 0, and this is very important. On the one
hand, there is the ω

T
-scaling and of course we would like to know, if this can be deduced

within our framework, on the other hand, there is a kind of conjecture on a possible con-
nection between the BFKM at the fixpoint and a certain conformal field theory.

Before we discusse those two topics in detail, we would like to compare once again the
above result with the one we would get if we took the simple ansatz for h(B), namely
h(B) = 1. After some fairly straightforward calculations we have

C(ω) ∼ 1

ω
. (3.98)

So no ε dependence of the exponent is present in first order calculation and we do not
have the desired behaviour of the susceptibility which would be important for the kind of
phase transition we are looking for and by taking the limit ε→ 0 in Eqs.(3.97) we obtain
Eqs.(3.98).

3.4 Conformal Field Theory Conjecture

A further step to get a better understanding of the nature of the quantum phase transition
was taken by Kirchner and Si [56], by suggesting a kind of connection between the BFK-
system3 at the quantum critical point and a conformal field theory. On the conformal field
theory side it is a well known fact that with the help of mapping the half plane on a half
cylinder, the expression for the finite temperature correlator reads

〈Φ(τ, T ),Φ(0, T )〉 = C

(
π/β

sin(πτ/β)

)2∆

, (3.99)

where τ is the imaginary time, β = 1
T

, ∆ the scaling dimension of Φ a conformal primary
field and C a constant, see [57, 58]. And if the dynamical spin susceptibility of the BFKM

3In their paper they considered both types, the Ising type as well as the isotropic model.



68 3. The isotropic Bose Fermi Kondo Model

0.001 0.01 0.1 1
ω

0.01

0.1

1

10

100

1000

 χ
’’

 (
ω

)

T = 0.000
y = 0.246 * x^-0.894

T = 0.001
T = 0.005
T = 0.010
T = 0.030
T = 0.050
T = 0.100

ε = 0.1

0 0.5 1 1.5 2
 ω / Τ

0

0.5

T
 0

.9
 χ

’’
 (

 ω
 /

 Τ
 )

CFT

a)

b)

Figure 3.1: The expansion parameter ε is 0.1, a) shows a double logarithmic plot of the
imaginary part of the dynamical spin susceptibility χ′′(ω) at different temperatures. If we
take T = 0 the analytically obtained power law is recovered, but, if the temperature is
non-zero, χ′′(ω) begins to deviate from the power low behaviour as ω

T
< 1. In other words,

in the case of non-zero temperature, the temperature only matters, as long as the energy
is sufficiently small, otherwise in the high energy region the temperature has got no effect.
In b) the rescaled dynamical spin susceptibility is plotted for different temperatures and
compared to the conformal field theory result.

at the quantum critical point has the same form, by matching the parameters, a connection
would be very likely. The trueness of this conjecture causes different new insights, such as,
although the BFK-Hamiltonian possesses no conformal invariance, due to the sub-ohimc
nature of the bosonic spectrum, the BFK-Hamiltonian at the critical point, somehow gains
symmetry, thus making an underlying boundary conformal field theory possible. So far it
is not clear, where these additional symmetries should come from, or in other words, how
the system enhances its symmetries.

As aforementioned we have to solve the differential equations Eqs.(3.67), Eqs.(3.68)and
Eqs.(3.69) and plug the solution into the expression for the correlation function 3.94. This
has been done by using numerical methods for solving differential equations, by Peter
Fritsch. In order to compare the result with Eqs.(3.99), we have to convert the symmetric



3.4 Conformal Field Theory Conjecture 69

0.001 0.01 0.1 1
ω

0.001

0.01

0.1

1

10

100

1000

 χ
’’

 (
ω

)

T = 0
y = 0.517 * x^(-0.779)

T = 0.01
T = 0.02
T = 0.03
T = 0.05
T = 0.07
T = 0.10

ε = 0.2

0 0.5 1 1.5 2
 ω / Τ

0

0.5

T
 0

.8
 χ

’’
 (

 ω
 /

 Τ
 )

CFT

a)

b)

Figure 3.2: The expansion parameter ε is 0.2, a) and b) display, at least, qualitatively the
same behaviour as in Fig.3.1

correlation function into the susceptibility, by using the fluctuation dissipation theorem

C
(sym)
β (ω) = coth

(
βω

2

)
ImRβ(ω), (3.100)

and Rβ(ω) is the general response function, which, if we consider spin operators, is the dy-
namical susceptibility. In Fig.3.1 and Fig.3.2 we see that in the high energy domain ω

T
> 1,

firstly the bare imaginary part of the dynamical spin susceptibility χ′′(ω) features power
law behaviour and secondly, the matching of the rescaled susceptibility with the conformal
field theory result is quite good. Considering the low energy domain ω

T
< 1, on the one

hand χ′′(ω) begins to deviate from the power low, and on the other hand the matching of
the rescaled susceptibility and the conformal field theory result loses its quality. We want
to note that the maximum of the conformal field theory result can only be altered by its
absolute value not by its position. In Fig. 3.4 we have zoomed into the small frequency
region, where the discrepance between the conformal field theory and the BFKM at the
QCP is most noticeable. It has to be said that the region ω

T
< 1 is very difficult to access,

not just for the flow equation methods but also for the ordinary RG-method or NRG,
besides this fact, the agreement of curves is quite remarkable. There is an almost perfect
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Figure 3.3: A douple logarithmic plot of the BFKM rescaled dynamical spin susceptibility
in the low frequency region. a) ε = 0.1 and b) ε = 0.2, both plots display the some
behaviour. If ω

T
< 1 the BFKM-susceptibility start to deviate from the conformal field

theory solution.

match in the high frequency, when the frequency is greater than the temperature, domain.

As a final remark we can say, there are energy regions where the agreement of the imagi-
nary part of the dynamical spin susceptibility and the conformal field theory result is quite
astonishing, but on the other side there are energy regions where we see a not negligible
deviation of the results. Our statement is, that the conformal field theory is a good ap-
proximation to the BFKM at the quantum phase transition point, however, whether there
is an exact correspondence can not be decided yet.



Chapter 4

Outlook

The outlook deals with, firstly the time evolution of the BFKM, to be precise, the time
evolution of the correlation function, and secondly with a principle determination of the
T -matrix.

4.1 Time Evolution of the Bose Model

In chapter 3 we saw that in first order of the ε-expansion only the bosonic part contribute
to the leading behaviour of the correlation function and when we want to know how the
istoropic BFKM evolves in time up to first order, it is very well justified to look at the so
called Bose-Kondo model only, with the fermionic part is totally left aside.

4.1.1 Introduction

Real time evolution in many-body physics is an outstanding problem, since an evolution
of an operator in the Heisenberg picture

A(t) =
∑
j

(it)j

j!
[H,A]n

1′2 (4.1)

in powers of time, leads to serious difficulties. One is that the utility of the above expres-
sion is of restricted practicality, because an infinite number of commutators have to be
calculated. Even in a perturbative way this is still hardly useful, as far as the long-time
behaviour is concerned. In the long-time limit all higher terms of t eventually contribute,
means, if the time value is larger than one over the (small) coupling constant, the higher
terms cannot be neglected any more. But in the flow equation method the Hamiltonian
finally becomes diagonal in the B =∞ representation and typically the regarded operator
also becomes fairly simple in that representation, which enables us to solve the real time

1[H,A]n denotes the n-fold commutator
2The operator A in the commutator is time independent, given in the Schrödinger picture



72 4. Outlook

Time evolution

Non-perturbative solution

of Heisenberg equations

of motion for operator A(t)

U
†

U
B = 0 B = ∞

Figure 4.1: The time evolution of a physical system represented in terms of forward B →∞
at time t = 0 transformation and backward B → 0 at time t transformation. Taken from
[59, 60]

evolution problem. No secular terms, generated by the grow in time, are going to spoil the
perturbative calculation.

Basically, the scheme works as follows, first one applies the unitary transformation depend-
ing on B on the system to make the Hamiltonian diagonal(B =∞). In this representation
the Heisenberg equation of motion can be solved exactly, after that a backward transfor-
mation is performed, going from B = ∞ to B = 0. Finally, the considered operator is
expressed in the original basis merely depending on time and not on the flow parameter
B. So we end up with an effective way to solve the Heisenberg equation of motion, even
non-perturbativly, at least in principle, and therefore non-equillibrium many body systems
can be studied. In Figure 4.1, it is visualised, how the time evolution procedure is done in
principal.
This idea has mainly been created by Andreas Hackl and Stefan Kehrein [59, 60]. In their
work they investigate the spin evolution of the Spin Boson model.

4.2 Time Evolution

The BFKM Hamiltonian becomes diagonal

H(B =∞) =
∑
pα

εp : c†pαcpα : +
∑
k

ωk : Φ†k ·Φk : (4.2)

once the B →∞ limit is reached.
Now, we are in the position to make an reasonable attempt to obtain a solution of the
Heisenberg equation of motion in this new basis. The Heisenberg equation of motion is

ih̄
dA(t)

dt
= [A(t), H], (4.3)
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if A has got no explicit time dependence and is at least formally solved by

A(t) = eiHtA(0)e−iHt. (4.4)

We use the operator relation

eAB = BeA+D where D satisfies [A,B] = DB where [A,D] = [B,D] = 0 (4.5)

to solve Eqs(4.4).

We are mainly interested in the time dependent evolution of the spin operator Sz, to-
gether with the initial condition that Sz is fully aligned in +1

2
direction at t = 03. In the

previous section we made the following ansatz

S(B)a = h(B)Sa + i
∑
k

Ψk(S× (Φ†k −Φk))
a

in the purely bosonic case, since only the vector bosons governs the power law behaviour
of the spin susceptibility. Further H(B =∞) reduces to

H(B =∞) =
∑
k

ωk : Φ†k ·Φk :

and as a reminder the decisive part of the generator is

η(B) =
∑
k

ωkλkS · (Φ†k −Φk), (4.6)

so only two commutators has to be calculated∑
k

ωkεabc[Φ
†d
k Φd

k, S
bΦ†cl ] =

∑
k

(ωk)︸︷︷︸
=D

(S×Φ†k)
a (4.7)

and analogous

−
∑
k

ωkεabc[Φ
†d
k Φd

k, S
bΦc

l ] = −
∑
k

−(ωk)︸ ︷︷ ︸
=D

(S×Φk)
a, (4.8)

which obviously satisfy the above requirements. So the time dependent spin operator reads

Sa(B =∞, t) = h(B =∞)Sa + i
∑
k

ΨkS× (Φ†ke
iωkt −Φke

−iωkt), (4.9)

by redefining the old parameter as

Ψ̃k := Ψke
iωkt and Ψ̃k

∗
:= Ψke

−iωkt (4.10)

3 This may be achieved by applying an external magnetic field for negative t and suddenly switch it off
at t = 0.
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we make a ’new’ ansatz for the spin-operator

Sa(B, t) = h(B)Sa + i
∑
k

Ψ̃k(B, t)S×Φ†k − i
∑
k

Ψ̃k
∗
(B, t)S×Φk. (4.11)

And then we apply the backwards transformation on it, by integrating B from infinity
down to zero and the time dependent solution of the Heisenberg equation of motion acts
as the new initial condition.

The commutators are given by

[η(B), Sa(h)] = i
∑
k

h(B)ωkλkS ·Φ†k

−i
∑
k

h(B)ωkλkS ·Φk (4.12)

and

[η(B), Sa
(Ψ̃)

] = −
∑
kl

ωkλkΨ̃l(Φ
†(a)
k (Φ†l · S)− Sa(Φ†k ·Φ†l ))

+
∑
kl

ωkλkΨ̃l(: Φ
†(a)
k (Φl · S :)− (: Sa(Φ†k ·Φl :))

−
∑
k

ωkλkΨ̃k(1 + 2nb(k)) (4.13)

and

[η(B), Sa
(Ψ̃∗)

] = −
∑
kl

ωkλkΨ̃
∗
l (Φ

a
k(Φl · S)− Sa(Φk ·Φl))

+
∑
kl

ωkλkΨ̃
∗
l (: Φ†l · S(Φa

k :)− (: Sa(Φ†l ·Φk :))

−
∑
k

ωkλkΨ̃
∗
k(1 + 2nb(k)). (4.14)

Now, we can easily read off the flow equations

dh(B)

dB
= −

∑
k

ωkλk(Ψ̃k + Ψ̃∗k)(1 + 2n(k)) (4.15)

and

dΨ̃k(B)

dB
= ωkλkh(B) (4.16)
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and

dΨ̃∗k(B)

dB
= ωkλkh(B) . (4.17)

After inserting λk into Eqs.(4.16) in favour of α and integrating down to B = 0 we obtain

∫ Ψ̃k(0,t)

Ψ̃k(B,t)

dΨ̃k = ωk

√
2ω1−ε

k

∫ 0

B

dB′
√
α(B′)h(B′)e−B

′ω2
k

⇒ Ψ̃k(0, t) = Ψ̃k(B)eiωkt

+ωk

√
2ω1−ε

k

∫ 0

B

dB′
√
α(B′)h(B′)e−B

′ω2
k

= ωk

√
2ω1−ε

k

∫ B

0

dB′
√
α(B′)h(B′)e−B

′ω2
k(eiωkt − 1), (4.18)

on the same footing this can be done for Ψ̃∗k,

Ψ̃∗k(0, t) = ωk

√
2ω1−ε

k

∫ B

0

dB′
√
α(B′)h(B′)e−B

′ω2
k(e−iωkt − 1). (4.19)

We plug these into Eqs.(4.15) and receive a flow equation merely for the time dependent h.
The evolution of h(0, t) governs the time-behaviour of the spin-operator after the switch
off, of the external constrain e.g. magnetic field

dh(B, t)

dB
= 4

∑
k

ω3−ε
k e−Bω

2
k

√
α(B)

∫ B

0

dB′
√
α(B′)h(B′)e−B

′ω2
k

−2
∑
k

ω3−ε
k e−Bω

2
k

√
α(B)

∫ B

0

dB′
√
α(B′)h(B′)e−B

′ω2
k

× (eiωkt + e−iωkt)︸ ︷︷ ︸
2cos(ωkt)

= ε
∑
k

ω3−ε
k e−Bω

2
kB−

ε
4

∫ B

0

dB′B′−
ε
4h(B′)e−B

′ω2
k

×(1− cos(ωkt)), (4.20)

where we used the fixed point expression for α(B) and neglected again the gamma function
by just considering first order calculations in ε.
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Substituting ω = x√
(B+B′)

and expanding x3−ε = x3 +O(ε), it follows

dh(B, t)

dB
= ε

∫ B

0

dB′
h(B′)

(B +B′)2

∫ √B+B′ωc

0

dxx3e−x
2

(1− cos(x
t√

B +B′
))

= ε

∫ B

0

dB′
h(B′)

(B +B′)3/2

t

16
e−

1
4

t2

B+B′

×
(
−6i
√
πerf((

1

2
i

t√
B +B′

) + 2
t√

B +B′
e

1
4

t2

B+B′

+i
t2

B +B′
√
πerf(

1

2
i

t√
B +B′

)

)
. (4.21)

Substituting t√
B+B′

= x yields to (note we change the integration limit and picking up a

minus sign)

dh(B, t)

dB
=

ε

8

∫ t√
B

t√
2B

dxh((
t2

x2
+B)e−

1
4
x2

×
(
−6i
√
πerf((

1

2
ix) + 2xe

1
4
x2

+ ix2
√
πerf(

1

2
ix)

)
(4.22)

Interim we are just concerned in the behaviour of small time evolution, (additionally we
could say that we are coming from B ∼ ∞) so we integrate over a very small region of
small x-values(

−6i
√
πerf((

1

2
ix) + 2xe

1
4
x2

+ ix2
√
πerf(

1

2
ix)

)
e−

1
4
x2

= 8x− 2x3 +O(x5), (4.23)

this leads to the following simplified differential equation for h(B, t), namely

dh(B, t)

dB
=
ε

8

∫ t√
B

t√
2B

dxh((
t2

x2
+B)(8x− 2x3). (4.24)

At this stage there is not much hope to find an analytic expression for h(B, t) that solves
this differential equation, so what we can do, is to go back to the time dependent flow
quations and try to solve them numerically4.

4At the time this thesis has been written, the work on the numerical solution was still in progress. The
work was done in collaboration with Anderas Hackl in Köln.
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4.3 The T -matrix

The correlation function, we obtained in the previous chapter, is not the only quantity of
interest in the local system. The second very important one is the T -matrix. In order
to get a solution of the self-consistency equation we need to know an expression for the
T -matrix of the impurity system. In fact, the self-consistency equations are given in terms
of the susceptibility and the Green’s function, which is directly related to the T -matrix.

The T -matrix for the scattering of the conduction electrons on the impurity is defined
by

Gpq.σ(ω) = δpqG0
pq,σ(ω) + G0

pq,σ(ω)Tσ(ω)G0
pq,σ(ω), (4.25)

Gpq.σ(ω) = 〈〈cp,σ; c†q,σ〉〉 is the retarded Green’s function and G0
pq,σ(ω) the unperturbated

Green’s function, for a more detailed description see [3]. On the contrary to the bare
Kondo model, the BFKM has one significantly different setting, not only the conduction
electrons influence the spin of the impurity but also the bosonic degrees of freedom. So
we expect a mixture of bosonic and fermionic operators in the T -matrix, due to the fact
that both, the bosonic and fermionic degrees of freedom interact with the spin operator.
But, the T -matrix is still local in our model similar to the Kondo model. By solving the
Heisenberg equation of motion of the Green’s function Costi and Rosch et.al. [61] and [62],
respectively, could show that Tσ(ω) has the form

Tσ(ω) = J2
K〈〈Oσ;O†σ〉〉 , (4.26)

where Oσ =
∑

pα c
†
pα

σασ
2
· S and JK is the Kondo coupling. The retarded Green’s func-

tion is purely imaginary and therefore we take only the imaginary part of the T -matrix,
furthermore, we perform a Fourier transformation as we are interested in its ω-dependece

Im(T̂σ(ω)) = Im

(
−i
∫ −∞
∞

dt Θ(t)〈{Oσ(t), O†σ(0)}〉eiωt
)
. (4.27)

Now, we have the basic ingredients, to calculate the T -matrix, by making use of the flow
equation method, which means we must transform the operator Oσ into the diagonal basis5.
Again, we need to solve Eqs.(1.76), by simply taking

η(B) =
∑
pq

(εp − εq)J(p, q)(B) : S · sp,q : +
∑
k

λk(B)ωkS · (Φ†k −Φk) (4.28)

as your generator and our initial operator is

Oσ =
∑
pα

Tp(B)c†pα
σασ
2
· S, (4.29)

5See chapter 1 for further information.
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where we set JK = Tp(B = 0). In the same manner, as in the previous chapters, we can see
that during the flow new terms are going to be generated, thus we make a better ansatz
for the operator

Oσ =
∑
pα

Tp(B)c†pα
σασ
2
· S + i

∑
kp

∑
α

Pkp(B)(Φ†k −Φk) · (c†pα
σασ
2
× S), (4.30)

with Pkp(B) = λk(B)ωkTp(B). From the expression for the newly generated coupling
Pkp(B) we can read off the connection of the bosonic degrees and fermionic degrees of
freedom as aforementioned. The actual calculation of the T -matrix is postponed to the
Appendix(C) as it was not complete at the time this thesis has been written.



Conclusion

After introducing the Kondo lattice and the BFKM we briefly described the mapping of the
Kondo lattice onto the BFKM, via EDMFT. Then we applied the flow equation method
on both the Ising BFKM and the isotropic BFKM.
The Ising BFKM was merely used to check the efficiency of the flow equation method,
since non-perturbative results form NRG are available to compare with. The essential part
of the thesis dealt with applying the flow equation method on the isotropic BFKM. We
could reproduce already known results such as, the correct flow of the coupling constants
in the infrared limit and its non trivial solution displaying a perturbatively accessible
unstable fixed point, which actually is the transition point. Anymore, the approximate
ω-dependence of the spin correlation function at the quantum critical point matches also
with the known one. More important is, however, that in this thesis the non zero tem-
perature dynamical spin susceptibility was given for the very first time. Remarkably, the
temperature dependent spin susceptibility showed the desired ω

T
-scaling.

We used that result to compare it with a recently proposed conjecture between the isotropic
BFKM at the quantum critical point and a certain conformal field theory, by looking at
the dynamical spin susceptibility and respectively the correlation function of the primary
fields. The astonishing agreements provide certainly no prove for the conjecture, but at
least we can say that for a small expansion parameter the conformal field theory is a very
good approximation. We thus justified the conformal field theory assumption used in the
literature.
In the outlook chapter we analytically obtained a set of differential equations for the time
evolution of the impurity spin, after switching on the couplings of the spin impurity to the
bathes. Further analysing of the differential equations in terms of numerical studies need
to be done. Additionally, we provided a way how to calculate the T -matrix, as the last
ingredient for solving the self-consistency equation of the EDMFT. All the calculations
have been made using a power law like bosonic density of states S(ω) ∼ ω1−ε, as it has
been done in the literature concerning this issue. The flow equation method is principally
capable of dealing with an arbitrary kind of bosonic density of states, however this remains
to be done in future work.
So with the help of the flow equation method we could give a full solution, for the dynam-
ical spin susceptibility, and a recipe for the T -matrix. With the help of this recipe the
first expression for the T -matrix could be received in order to understand the nature of the
emerging local quantum phase transition in certain Kondo lattices. Based on this work new
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insights into the quantum phase transition can be gained, by solving the self-consitency
equations.



Appendix A

Ising Bose Fermi Kondo Model

A.1 The first newly Generated Terms

The required commutators read

[η⊥0 (B), H
‖,(f)
int (B)] =

1

4

∑
pqmn

(εp − εq)J⊥(p, q)(B)J‖(m,n)(B)

×
(

(: c†p↑cq↓c
†
m↑cn↑ : S−+ : c†q↓cp↑c

†
m↑cn↑ : S+)

−(: c†p↑cq↓c
†
m↓cn↓ : S−+ : c†q↓cp↓c

†
m↑cn↑S

+ :)
)

+
1

8

∑
pqm

(1− 2nf (m))
(
(εm − εq)J⊥(m, q)(B)J‖(p,m)(B)

−(εp − εm)J⊥(p,m)(B)J‖(q,m)(B)
)

×(: c†p↑cq↓ : S−+ : c†q↓cp↑ : S+) (A.1)

and

[η
‖
0(B), H

⊥,(f)
int (B)] =

1

4

∑
pqmn

(εp − εq)J⊥(m,n)(B)J‖(p, q)(B)

×
(

(− : c†p↑cq↑c
†
m↑cn↓ : S−+ : c†p↑cq↑c

†
m↓cn↑ : S+)

−(− : c†p↓cq↓c
†
m↑cn↓ : S−+ : c†p↓cq↓c

†
m↓cn↑S

+ :)
)

+
1

8

∑
pqm

(1− 2nf (m))
(
(εm − εp)J⊥(m, q)(B)J‖(p,m)(B)

−(εq − εm)J⊥(p,m)(B)J‖(q,m)(B)
)

×(: c†p↑cq↓ : S−+ : c†q↓cp↑ : S+) (A.2)

and
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[η⊥0 (B), H
⊥,(f)
int (B)] = −1

2

∑
pqmn

(εp − εq + εm − εn)J⊥(p, q)(B)J⊥(m,n)(B)

×(: c†n↓cm↑c
†
p↑cq↓ : Sz)

−1

2

∑
pq

(nf (p) + nf (q)− 2nf (p)nf (q))(εp − εq)(J⊥(p, q)(B))2Sz

−1

4

∑
pqm

(1− 2nf (m))(2εm − εp − εq)

×J⊥(m, q)(B)J⊥(m, p) : c†p↓cq↓ : Sz

−1

4

∑
pqm

(1− 2nf (m))(2εm − εp − εq)

×J⊥(p,m)(B)J⊥(q,m) : c†p↑cq↑ : Sz

−1

8

∑
pqm

(2εm − εp − εq)J⊥(m, q)(B)J⊥(m, p) : c†p↓cq↓ :

−1

8

∑
pqm

(2εm − εp − εq)J⊥(q,m)(B)J⊥(p,m) : c†p↑cq↑ : (A.3)

and

[ηb0(B), Hb
0(B)] = −Sz

∑
k

ω2
kλk(b

†
k + bk) (A.4)

and

[ηb0(B), H
⊥,(f)
int +H

‖,(f)
int ] =

1

2

∑
kpq

ωkλkJ⊥(p, q)(b†k − bk)(: c†q↓cp↑ : S+− : c†p↑cq↓ : S−) (A.5)

and

[η
‖
0 + η⊥0 , H

b
int] =

1

2

∑
kpq

(εp − εq)J⊥(p, q)λk(b
†
k + bk)(: c

†
p↑cq↓ : S−+ : c†q↓cp↑ : S−) (A.6)

and

[ηb0(B), Hb
int(B)] = −1

2

∑
k

ωkλ
2
k. (A.7)
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[η
⊥,(f)
0 (B) + η

‖,(f)
0 (B), H0(B)] =

1

2

∑
pq

(εp − εq)2J‖(p, q)(B)(: c†p↑c
†
q↑ : − : c†p↓c

†
q↓ :)Sz

+
1

2

∑
pq

(εp − εq)2J⊥(p, q)(B)

×(: c†p↑c
†
q↓ : S−− : c†q↓c

†
p↑ : S+), (A.8)

and

[η
‖
0(B), H

‖,(f)
int (B)] =

1

8

∑
pq

(nf (p)− nf (q))(εp − εq)J‖(p.q)(B)2

+
1

16

∑
pqm(εp + εq − 2εm)J‖(p,m)(B)J‖(m, q)(B)

×(: c†p↑cq↑+ : c†p↓cq↓) (A.9)

A.2 Correction Terms

Here we present the remaining commutator relations, which are needed in order to get the
dynamicas of the couplings in terms of the flow parmeter B up to leading order in the
couplings

[η
‖
0(B), HK

new(B)] =
1

2

∑
mnpqk

(εm − εn)J‖(m,n)(B)Kkpq(B)

×
(

: c†m↑cn↑c
†
q↓cp↑ : − : c†m↓cn↓c

†
q↓cp↑ :)b†kS

+

+(: c†m↓cn↓c
†
p↑cq↓ : − : c†m↑cn↑c

†
p↑cq↓ :)bkS

−
)

+
1

4

∑
npqk

(
(εq − εn)J‖(n, q)(B)Kkpq(B)− (εp − εq)J‖(q, p)(B)Kkqn(B)

)
×(1− 2n(q))(b†k : c†n↓cp↑ : S+ + bk : c†p↑cn↓ : S−) (A.10)
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and

[η⊥0 (B), HK
new(B)] =

1

2

∑
mnpqk

(εm − εn)J⊥(m,n)(B)Kkpq(B)

×(: c†m↑cn↓c
†
q↓cp↑ : b†k+ : c†n↓cm↑c

†
p↑cp↓ : bk)S

z

+
1

2

∑
mpqk

(εq − εm)J⊥(m, q)(B)Kkpq(B)(1− 2n(q))

×
(
b†k(: c

†
m↑cp↑ : − : c†p↓cm↓ :) + bk(: c

†
p↑cm↑ : − : c†m↓cp↓ :)

)
Sz

+
1

4

∑
mnpqk

(εm − εq)J⊥(m, q)(B)Kkpq(B)

×
(
b†k(: c

†
m↑cp↑ : + : c†p↓cm↓ :) + bk(: c

†
p↑cm↑ : + : c†m↓cp↓ :)

)
+

1

2

∑
pqk

(εp − εq)J⊥(p, q)(B)Kkpq(B)

×(n(p) + n(q)− 2n(p)n(q))(b†k + bk)S
z

+
1

4

∑
pqk

(εp − εq)J⊥(p, q)(B)Kkpq(B)(n(p)− n(q))(b†k + bk)(A.11)

and

[ηb0(B), HK
new(B)] =

∑
pqkl

ωkλk(B)Klpq(B)(: c†q↓cp↑ : b†kb
†
lS

++ : c†p↑cq↓ : bkblS
−)

−
∑
pqkl

ωkλk(B)Klpq(B)(: c†q↓cp↑ :: b†l bk : S++ : c†p↑cq↓ :: b†kbl : S−)

−1

2

∑
pqk

ωkλk(B)Kkpq(B)(1 + 2nb(k))

×(: c†q↓cp↑ : S++ : c†p↑cq↓ : S−) (A.12)

and

[η
‖
0(B), HL

new(B)] =
1

2

∑
mnpqk

(εm − εn)J‖(m,n)(B)Lkpq(B)

×
(

(: c†m↑cn↑c
†
q↓cp↑ : − : c†m↓cn↓c

†
q↓cp↑ :)bkS

+

+(: c†m↓cn↓c
†
p↑cq↓ : − : c†m↑cn↑c

†
p↑cq↓ :)b†kS

−
)

+
1

4

∑
npqk

(
(εq − εn)J‖(n, q)(B)Lkpq(B)− (εp − εq)J‖(q, p)(B)Lkqn(B)

)
×(1− 2n(q))(bk : c†n↓cp↑ : S+ + b†k : c†p↑cn↓ : S−) (A.13)
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and

[η⊥0 (B), HL
new(B)] =

∑
mnpqk

(εn − εm)J⊥(m,n)(B)Lkpq(B)

×
(

: c†m↑cn↓c
†
q↓cp↑ : bk+ : c†n↓cm↑c

†
p↑cp↓ : b†k

)
Sz

+
1

2

∑
mnpqk

(εq − εm)J⊥(m, q)(B)Lkpq(B)(1− 2n(q))

×
(
bk(: c

†
m↑cp↑ : − : c†p↓cm↓ :) + b†k(: c

†
p↑cm↑ : − : c†m↓cp↓ :)

)
Sz

+
1

4

∑
mnpqk

(εm − εq)J⊥(m, q)(B)Lkpq(B)

×(bk(: c
†
m↑cp↑ : + : c†p↓cm↓ :) + b†k(: c

†
p↑cm↑ : + : c†m↓cp↓ :))

+
1

2

∑
pqk

(εp − εq)J⊥(p, q)(B)Lkpq(B)(n(p) + n(q)− 2n(p)n(q))(b†k + bk)S
z

+
1

4

∑
pqk

(εp − εq)J⊥(p, q)(B)Lkpq(B)(n(p)− n(q))(b†k + bk) (A.14)

and

[ηb0(B), HL
new(B)] = −

∑
pqkl

ωkλk(B)Llpq(B)(: c†q↓cp↑ : bkblS
++ : c†p↑cq↓ : b†kb

†
lS
−)

+
∑
pqkl

ωkλk(B)Llpq(B)(: c†q↓cp↑ :: b†kbl : S++ : c†p↑cq↓ :: b†l bk : S−)

+
1

2

∑
pqk

ωkλk(B)Lkpq(B)(1 + 2nb(k))

×(: c†q↓cp↑ : S++ : c†p↑cq↓ : S−) (A.15)

and

[ηKnew(B), H
‖,(f)
int (B)] =

1

2

∑
mnpqk

Kkpq(B)((εp − εq)− ωk)J‖(m,n)

×
(

: c†n↑cm↑c
†
p↑cq↓ : bkS

−+ : c†m↑cn↑c
†
q↓cp↑ : b†kS

+

−(: c†m↓cn↓c
†
p↑cq↓ : bkS

−+ : c†n↓cn↓c
†
q↓cp↑ : b†kS

+)
)

+
1

4

∑
mpqk

(Kkpq(B)((εp − εq)− ωk)J‖(m, p)(B)

−Kkmp(B)((εm − εp)− ωk)J‖(p, q))(B)

×(1− 2n(p))(: c†m↑cq↓ : bkS
−+ : c†q↓cm↑ : b†kS

+) (A.16)
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and

[ηKnew(B), H
⊥,(f)
int (B)] = −

∑
mnpqk

(εn − εm)J⊥(m,n)(B)Kkpq(B)

×(: c†m↑cn↓c
†
q↓cp↑ : b†k+ : c†n↓cm↑c

†
p↑cp↓ : bk)S

z

−1

2

∑
npqk

(εp − εq)J⊥(p, n)(B)Kkpq(B)(1− 2n(p))

×
(

(b†k : c†n↑cq↑ : − : c†n↓cq↓ : bk)S
z + (bk : c†q↑cn↑ : − : c†n↓cp↓ : b†k)S

z
)

+
1

2

∑
npqk

ωkJ
⊥(p, n)(B)Kkpq(B)(1− 2n(p))

×
(

(b†k : c†n↑cq↑ : + : c†n↓cq↓ : bk)S
z + (bk : c†q↑cn↑ : + : c†n↓cp↓ : b†k)S

z
)

−1

4

∑
npqk

(εp − εq)J⊥(p, n)(B)Kkpq(B)

×
(

(b†k : c†n↑cq↑ : + : c†n↓cq↓ : bk) + (bk : c†q↑cn↑ : + : c†n↓cp↓ : b†k)
)

−1

4

∑
npqk

ωkJ
⊥(p, n)(B)Kkpq(B)

×
(
bk(: c

†
n↓cq↓ : − : c†q↑cn↑ :) + (: c†q↓cn↓ : − : c†n↑cp↑ :)b†k

)
−1

2

∑
pqk

((εp − εq)− ωk)J⊥(p, q)(B)Kkpq(B)

×(n(p) + n(q)− 2n(p)n(q))(b†k + bk)S
z

+
1

4

∑
pqk

((εp − εq)− ωk)J⊥(p, q)Kkpq(B)(n(p)− n(q))(b†k + bk) (A.17)

and

[ηKnew(B), HB
0 (B)] =

∑
pqkl

((εp − εq)− ωk)λl(B)Kkpq(B)

×(: c†q↓cp↑ : b†kb
†
lS

++ : c†p↑cq↓ : bkblS
−)

+
∑
pqkl

((εp − εq)− ωk)λl(B)Kkpq(B)(: c†q↓cp↑ :: b†kbl : S++ : c†p↑cq↓ :: b†l bk : S−)

+
1

2

∑
pqk

((εp − εq)− ωk)λk(B)Kkpq(B)

×(: c†q↓cp↑ : S++ : c†p↑cq↓ : S−)(1 + 2nb(k)) (A.18)

and
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[ηLnew(B), Hb
0(B) +Hf

0 (B)] = −
∑
pqk

Lkpq(B)((εp − εq) + ωk)
2

×(b†k : c†p↑cq↓ : S− + bk : c†q↑cp↓ : S+) (A.19)

and

[ηLnew(B), Hb
0(B) +Hf

0 (B)] = −
∑
pqk

Kkpq(B)((εp − εq)− ωk)2

×(b†k : c†p↑cq↓ : S− + b†k : c†q↑cp↓ : S+) (A.20)

and

[ηLnew(B), H
‖
0 (B)] =

1

2

∑
mnpqk

Lkpq(B)((εp − εq) + ωk)J
‖(m,n)(B)

×
(

: c†n↑cm↑c
†
p↑cq↓ : b†kS

−+ : c†m↑cn↑c
†
q↓cp↑ : bkS

+

−(: c†m↓cn↓c
†
p↑cq↓ : b†kS

−+ : c†n↓cn↓c
†
q↓cp↑ : bkS

+)
)

+
1

4

∑
mpqk

(Lkpq(B)((εp − εq) + ωk)J
‖(m, p)(B)

−Lkmp(B)((εm − εp) + ωk)J
‖(p, q))(B)

×(1− 2n(p))(: c†m↑cq↓ : b†kS
−+ : c†q↓cm↑ : bkS

+) (A.21)

and

[ηLnew(B), Hb
0(B)] =

∑
pqkl

((εp − εq) + ωk)λl(B)Lkpq(B)

×(: c†q↓cp↑ : bkblS
++ : c†p↑cq↓ : b†kb

†
lS
−)

+
∑
pqkl

((εp − εq) + ωk)λl(B)Lkpq(B)

×(: c†q↓cp↑ :: b†l bk : S++ : c†p↑cq↓ :: b†kbl : S−)

+
1

2

∑
pqk

((εp − εq) + ωk)λk(B)Lkpq(B)

×(: c†q↓cp↑ : S++ : c†p↑cq↓ : S−)(1 + 2nb(k)). (A.22)
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and

[ηLnew(B), H
⊥,(f)
0 (B)] = −

∑
mnpqk

(εn − εm)J⊥(m,n)(B)Lkpq(B)

×(: c†m↑cn↓c
†
q↓cp↑ : bk+ : c†n↓cm↑c

†
p↑cp↓ : b†k)S

z

−1

2

∑
npqk

(εp − εq)J⊥(p, n)(B)Lkpq(B)(1− 2nf (p))

×
(

(bk : c†n↑cq↑ : − : c†n↓cq↓ : b†k)S
z + (b†k : c†q↑cn↑ : − : c†n↓cp↓ : bk)S

z
)

−1

2

∑
npqk

ωkJ
⊥(p, n)(B)Lkpq(B)(1− 2n(p))

×
(

(bk : c†n↑cq↑ : + : c†n↓cq↓ : b†k)S
z + (b†k : c†q↑cn↑ : + : c†n↓cp↓ : bk)S

z
)

−1

4

∑
npqk

(εp − εq)J⊥(p, n)(B)Lkpq(B)

×
(

(bk : c†n↑cq↑ : + : c†n↓cq↓ : b†k) + (b†k : c†q↑cn↑ : + : c†n↓cp↓ : bk)
)

+
1

4

∑
npqk

ωkJ
⊥(p, n)(B)Lkpq(B)

×
(
b†k(: c

†
n↓cq↓ : − : c†q↑cn↑ :) + (: c†q↓cn↓ : − : c†n↑cp↑ :)bk

)
−1

2

∑
pqk

((εp − εq) + ωk)J
⊥(p, q)(B)Lkpq(B)

×(n(p) + n(q)− 2n(p)n(q))(b†k + bk)S
z

+
1

4

∑
pqk

((εp − εq) + ωk)J
⊥(p, q)(B)Lkpq(B)

×(n(p)− n(q))(b†k + bk) (A.23)
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A.3 The non-ohmic Cases

For the sake of completeness we consider the case s 6=1 here in the Appendix. The reasons,
why this is put here and not in the actual work, are, on the one hand we discussed this
model solely as a kind of check for applicability of our method, and therefore we want
to keep the considered model as simple as possible. On the other hand, it will turn out
that the non-ohmic case exhibits a fixed point, which is, at least within our method, not
perturbatively accessible.

We define:x = 1
2
(s+ 1) and κ =

αΓ( 1
2

(s+3))

2
1
2 (s+1)

and make the ansatz

J⊥IR(B) = g(B)e−
κB1−x

1−x , (A.24)

taking the derivative thereof with respect to B leads to

dJ⊥IR(B)

dB
=

dg

dB
e−

κB1−x
1−x − g(B)κe−

κB1−x
1−x B−x. (A.25)

Inserting into Eqs.(2.36) gives

dg

dB
=
ρ0

2

g(B)J
‖
IR(B)

B
(A.26)

dJ
‖
IR(B)

dB
=
ρ0

2

g2

B
e−

2κB1−x
1−x . (A.27)
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Appendix B

The isotropic Bose Fermi Kondo
Model

B.1 The Commutators

We present all the commutators that are needed in order to derive the flow eqautions of
the running couplings

[ηKnew(B), Hf
0 (B) +Hb

0(B)] = −i
∑
pqk

Kpqk(B)((εp − εq) + ωk)
2Φ†k · (: spq × S :) (B.1)

and

[ηLnew(B), Hf
0 (B) +Hb

0(B)] = −i
∑
pqk

Lpqk(B)((εp − εq)− ωk)2Φk · (: spq × S :) (B.2)

and

[ηKnew(B), Hb
int(B)] = −

∑
pqkl

Kpqk(B)((εp − εq) + ωk)λl(B)

×
(

: spq · S : (Φ†k ·Φ†l+ : Φ†k ·Φl :)

−(S ·Φ†k : spq : ·Φ†l+ : S ·Φ†k : spq :f ·Φl :b +)
)

−
∑
pqk

λk(B)Kpqk(B)((εp − εq) + ωk)

×(1 + 2nb(k))(: spq · S :) (B.3)
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and

[ηKnew(B), Hf
int(B)] = −

∑
pqmnk

Kmnk(B)((εm − εn) + ωk)J(p, q)(B)

×((: smn · S)(spq ·Φ†k :)− : (Φ†k · S)(smn · spq :))

+
1

4

2∑
α=1

∑
pqmk

Kpmk(B)((εp − εm) + ωk)J(m, q)(B)

×(1− 2nf (m))(: c†pαcqα : Φ†k · S)

+
1

4

2∑
α=1

∑
pqmk

Kmqk(B)((εm − εq) + ωk)J(p,m)(B)

×(1− 2nf (m))(: c†pαcqα : Φ†k · S)

+
i

4

∑
pqmk

Kpmk(B)((εp − εm) + ωk)J(m, q)(B)

×(1− 2nf (m))(Φ†k· : S× spq :)

− i
4

∑
pqmk

Kmqk(B)((εm − εq) + ωk)J(p,m)(B)

×(1− 2nf (m))(Φ†k· : S× spq :)

+
1

2

∑
pqk

Kqpk(B)((εq − εp) + ωk)J(p, q)(B)

×(nf (p) + nf (q)− 2nf (p)nf (q))(Φ
†
k · S)

+
i

4

∑
pqmk

Kpmk(B)((εp − εm) + ωk)J(m, q)(B)(Φ†k· : spq :)

+
i

4

∑
pqmk

Kmqk(B)((εm − εq) + ωk)J(p,m)(B)(Φ†k· : spq :)(B.4)

and

[ηLnew(B), Hb
int(B)] = −

∑
pqkl

Lpqk(B)((εp − εq)− ωk)λl(B)

×
(

: spq · S : (: Φ†l ·Φk + Φk ·Φl)

−((S ·Φk)(: spq : ·Φl) + (: spq :f ·Φ†l )(S ·Φk :b))
)

−
∑
pqk

λk(B)Lpqk(B)((εp − εq)− ωk)

×(1 + 2nb(k))(: spq · S :) (B.5)
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and

[ηLnew(B), Hf
int(B)] = −

∑
pqmnk

Lmnk(B)((εm − εn)− ωk)J(p, q)(B)

×((: smn · S)(spq ·Φk :)− : (Φk · S)(smn · spq :))

+
1

4

2∑
α=1

∑
pqmk

Lpmk(B)((εp − εm)− ωk)J(m, q)(B)

×(1− 2nf (m)) : c†pαcqα : Φk · S

+
1

4

2∑
α=1

∑
pqmk

Lmqk(B)((εm − εq)− ωk)J(p,m)(B)

×(1− 2nf (m)) : c†pαcqα : Φ·kS

+
i

4

∑
pqmk

Lpmk(B)((εp − εm)− ωk)J(m, q)(B)

×(1− 2nf (m))Φk· : S× spq :

− i
4

∑
pqmk

Lmqk(B)((εm − εq)− ωk)J(p,m)(B)

×(1− 2nf (m))Φ·k : S× spq :

+
1

2

∑
pqk

Lqpk(B)((εq − εp)− ωk)J(q, p)(B)

×(nf (p) + nf (q)− 2nf (p)nf (q))Φk · S
+
i

4

∑
pqmk

Lpmk(B)((εp − εm)− ωk)J(m, q)(B)Φ·k : spq :

+
i

4

∑
pqmk

Lmqk(B)((εm − εq)− ωk)J(p,m)(B)Φk· : spq : (B.6)

and

[ηµnew(B), Hf
0 (B)] = 0 (B.7)

and

[ηµnew(B), Hf
int(B)] = −

∑
klpq

(ωk − ωl)µkl(B)J(p, q)(B)(Φ†k ×Φl) · (: spq × S) (B.8)

and

[ηµnew(B), Hb
0(B)] = −i

∑
kl

(ωk − ωl)2µkl(B)S · (Φk ×Φl) (B.9)
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and

[ηµnew(B), Hb
int(B)] =

∑
klm

(ωk − ωl)µkl(B)λm(B)

×(: Φ†m ·ΦlΦ
†
k · S− : Φ†m ·Φ†kΦl · S)

+
∑
klm

(ωk − ωl)µkl(B)λm(B)

×(: Φm ·ΦlΦ
†
k · S− : Φm ·Φ†kΦk · S)

+
∑
kl

(ωk − ωl)µkl(B)λl(B)(1 + 2nb(l))S · (Φ†l + Φk) (B.10)

and

[ηf0 (B), HK
new(B)] =

∑
pqmnk

Kmnk(B)(εp − εq)J(p, q)(B)

((: smn · S)(spq ·Φ†k :)− : (Φ†k · S)(smn · spq :))

−1

4

2∑
α=1

∑
pqmk

Kpmk(B)(εm − εq)J(m, q)(B)

×(1− 2nf (m)) : c†pαcqα : Φ†k · S

−1

4

2∑
α=1

∑
pqmk

Kmqk(B)(εp − εm)J(p,m)(B)

×(1− 2nf (m)) : c†pαcqα : Φ†k · S
− i

4

∑
pqmk

Kpmk(B)(εm − εq)J(m, q)(B)

×(1− 2nf (m))Φ†k· : S× spq :

+
i

4

∑
pqmk

Kmqk(B)(εm − εq)J(p,m)(B)

×(1− 2nf (m))Φ†k· : S× spq :

−1

2

∑
pqk

Kqpk(B)((εq − εp) + ωk)J(p, q)(B)

×(nf (p) + nf (q)− 2nf (p)nf (q))Φ
†
k · S

− i
4

∑
pqmk

Kmpk(B)(εp − εq)J(p, q)(B)Φ†k· : smq :

− i
4

∑
pqmk

Kqmk(B)(εp − εq) + ωk)J(p, q)(B)Φ†k· : spm : (B.11)
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and

[ηf0 (B), HL
new(B)] =

∑
pqmnk

Lmnk(B)(εp − εq)J(p, q)(B)

((: smn · S)(spq ·Φk :)− : (Φk · S)(smn · spq :))

−1

4

2∑
α=1

∑
pqmk

Lpmk(B)(εm − εq)J(m, q)(B)

×(1− 2nf (m)) : c†pαcqα : Φk · S

−1

4

2∑
α=1

∑
pqmk

Lmqk(B)(εp − εm)J(p,m)(B)

×(1− 2nf (m)) : c†pαcqα : Φk · S
− i

4

∑
pqmk

Lpmk(B)(εm − εq)J(m, q)(B)

×(1− 2nf (m))Φk· : S× spq :

+
i

4

∑
pqmk

Lmqk(B)(εm − εq)J(p,m)(B)

×(1− 2nf (m))Φk· : S× spq :

−1

2

∑
pqk

Lqpk(B)((εq − εp) + ωk)J(p, q)(B)

×(nf (p) + nf (q)− 2nf (p)nf (q))Φk· : S

− i
4

∑
pqmk

Lmpk(B)(εp − εq)J(p, q)(B)Φk · smq :

− i
4

∑
pqmk

Lqmk(B)(εp − εq) + ωk)J(p, q)(B)Φk · spm : (B.12)

and

[ηf0 (B), Hµ
new(B)] = −

∑
pqkl

(εp − εq)µkl(B)J(p, q)(B) : spq : · : Φ†k ×Φl : ×S (B.13)

and

[ηb0(B), HK
new(B)] =

∑
pqkl

Kpqk(B)ωlλl(B)

×
(

: spq · S : (Φ†k ·Φ†l− : Φ†k ·Φl :)

−(S ·Φ†k : spq : ·Φ†l− : S ·Φ†k : spq :f ·Φl :b +)
)

−
∑
pqk

λk(B)Kpqk(B)ωk(1 + 2nb(k)) : spq · S : (B.14)
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and

[ηb0(B), HL
new(B)] =

∑
pqkl

Lpqk(B)ωlλl(B)(
: spq · S : (: Φ†l ·Φk −Φk ·Φl)

−((S ·Φk)(: spq : ·Φl)− (: spq :f ·Φ†l )(S ·Φk :b))
)

+
∑
pqk

λk(B)Lpqk(B)ωk(1 + 2nb(k)) : spq · S : (B.15)

and

[ηb0(B), Hµ
new(B)] =

∑
klm

ωmλm(B)µkl(B)(
: Φ†m ·Φ†kΦl · S : − : Φ†m ·ΦlΦ

†
k · S :

− : Φm ·Φ†kΦl · S : + : Φm ·ΦlΦ
†
k · S :

)
−
∑
kl

ωlλl(B)µkl(B)(1 + 2nb(l))(Φ
†
k + Φk) · S (B.16)

and

[ηΨ
new(B), Hb

0(B)] = −i
∑
kl

(ωk + ωl)
2Ψkl(B)S · (Φ†k ×Φ†l −Φk ×Φ) (B.17)

and

[ηΨ
new(B), Hb

int(B)] =
∑
klm

(ωk + ωl)Ψkl(B)λm(B)(
: Φ†m ·ΦlΦk · S : − : Φ†m ·ΦkΦl · S :

)
+
∑
kl

(ωk + ωl)λl(B)(Ψkl(B)−Ψlk(B))

×(1 + 2nb(l))S · (Φ†k + Φ) (B.18)

and

[ηb0(B), HΨ
new(B)] =

∑
klm

ωmΨkl(B)λm(B)(
: Φ†m ·ΦlΦk · S : − : Φ†m ·ΦkΦl · S :

)
+
∑
kl

ωlλl(B)(Ψkl(B)−Ψlk(B))

×(1 + 2nb(l))S · (Φ†k + Φ) (B.19)
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and
[ηΨ
new(B), H0(B)] = 0 (B.20)

and

[ηΨ
new(B), Hf

int(B)] = −
∑
klpq

(Ψkl(B)−Ψlk(B))(ωl + ωk)J(p, q)(B)

×
(

(: spq : ·Φ†k)(Φ†l · S) + (: spq : ·Φk)(Φl · S)
)

(B.21)

and

[ηf0 (B), HΨ
new(B)] =

∑
klpq

(Ψkl(B)−Ψlk(B))(εp − εq)J(p, q)(B)

×
(

(: spq : ·Φ†k)(Φ†l · S) + (: spq : ·Φk)(Φl · S)
)

(B.22)

.
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Appendix C

The T -matrix

C.1 The Correlation Function

The T -matrix is given by the following expression

Im(T̂σ(ω)) = Im

(
−i
∫ −∞
∞

dt Θ(t)〈{Oσ(t), O†σ(0)}〉eiωt
)
, (C.1)

where σ denotes the spin degrees of freedom. The time evolution of the operator Oσ(t) can
be expressed in the Heisenberg representation, thus the expectation value reads

〈{Oσ(B =∞, t), Oσ(B =∞, t = 0)†}〉 = 〈eiH0tOσe
−iH0tO†σ +O†σe

iH0tOσe
−iH0t〉, (C.2)

and with the help of the operator relation

eAB = BeA+D [A,B] = DB, [A,D] = [B,D] = 0, (C.3)

the expectation value can be calculated. Recall, the free part of the Hamiltonian is

H0 =
∑
pα

εp : c†pαcpα : +
∑
k

ωk : Φ†kΦk :, (C.4)

and furthermore, the necessary commutator relations are

[H0, c
†
qαS ·

σασ
2

] = εqc
†
qαS ·

σασ
2

(C.5)

and

[Hf
0 , (Φ

†
k −Φk) · c†qβ(

σβσ
2
× S)] = εq(Φ

†
k −Φk) · c†qβ(

σβσ
2
× S) (C.6)

and

[H0,Φ
†
k · c†qβ(

σβσ
2
× S)] = ωk(Φ

†
k · c†qβ(

σβσ
2
× S) (C.7)
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and
[H0,−Φk · c†qβ(

σβσ
2
× S)] = (−ωk)−Φk · c†qβ(

σβσ
2
× S). (C.8)

After some straightforward manipulations we obtain an expression for the expectation
value

〈{Oσ(B =∞, t) , Oσ(B =∞, t = 0)†} =

= 〈eiH0t(
∑
p

Tpc
†
pαS ·

σασ
2

+ i
∑
pk

Ppk(Φ
†
k −Φk) · c†pα(

σασ
2
× S))e−iH0t

×(
∑
q

Tqc
†
qβS ·

σβσ
2

+ i
∑
ql

Pql(Φ
†
l −Φl) · c†qβ(

σσβ

2
× S))

+(
∑
q

Tqc
†
qβS ·

σβσ
2

+ i
∑
ql

Pql(Φ
†
l −Φl) · c†qβ(

σσβ

2
× S))

×eiH0t(
∑
p

Tpc
†
pαS ·

σασ
2

+ i
∑
pk

Ppk(Φ
†
k −Φk) · c†pα(

σασ
2
× S))e−iH0t〉

=
3

16

∑
p

T 2
p e

iεpt +
3

8

∑
pk

P 2
pk(1− nf (p) + nb(k))ei(εp+ωk)t

+
3

8

∑
pk

P 2
pk(nf (p) + nb(k))e−i(ωk−εp)t. (C.9)

Therefore we get for the T -matrix

Im(T̂σ(ω)) = Im

(
− 3i

16

∑
p

T 2
p

∫ ∞
−∞

dt Θ(t)ei(ω+εp)t

−3i

8

∑
pk

P 2
pk(1− nf (p) + nb(k))

∫ ∞
−∞

dt Θ(t)ei(ω+(εp+ωk))t

−3i

8

∑
pk

P 2
pk(nf (p) + nb(k))

∫ ∞
−∞

dt Θ(t)ei(ω+(+εp−ωk))t

)
. (C.10)

The appearing time integral can be evaluated by using the following relation

Im(−i
∫ ∞
−∞

dt Θ(t)ei(α+iη)t) = Im(
1

α + iη
) = Im(

α− iη
α2 + η2

) = − η

α2 + η2
, (C.11)

by taking the limit η → 0 we find a representation of the delta function

limes
η→0

(
− η

α2 + η2

)
= −πδ(α). (C.12)
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C.2 The O operator

The operator O(B) and the generator η(B) in terms of creation and annihilation operators
were given in chapter 4. Now we want to calculate the flow of the operator and therefore
we have to calculate

[ηf + ηb, Of
σ +Ob

σ]. (C.13)

The commutators are

[ηf , Of
σ] = i

∑
pqm

∑
αβγ

(εp − εq)J(p, q)Tm : c†pαcqβc
†
mγ : S · (σαβ

2
× σγσ

2
)

+
1

4

∑
pq

∑
αβ

(εp − εq)J(p, q)Tq(
σαβ
2
· σβσ

2
)c†pα

−
∑
pq

∑
α

(εp − εq)J(p, q)Tq(1− 2nf (q))c
†
pα

σασ
2
· S (C.14)

and

[ηf , Ob] = −
∑
pqmk

∑
αβγ

(εp − εq)J(p, q)Pkm(
σαβ
2
· σγσ

2
)((Φ†k −Φk) · S) : c†pαcqβc

†
mγ :

+
∑
pqmk

∑
αβγ

(εp − εq)J(p, q)Pkm(
σγσ
2
· S)(

σαβ
2
· (Φ†k −Φk)) : c†pαcqβc

†
mγ :

+
i

4

∑
pqk

∑
αβ

(εp − εq)J(p, q)Pkq(Φ
†
k −Φk) · (σαβ

2
× σβσ

2
)c†pα

−1

4

∑
pqk

(εp − εq)J(p, q)Pkq(Φ
†
k −Φk) · Sc†pσ(1− 2nf (q))

− i
2

∑
pqk

∑
α

(εp − εq)J(p, q)Pkm(1− 2nf (q))(Φ
†
k −Φk) · (c†pασασ × S)(C.15)

and

[ηb, Ob
σ] =

∑
pkl

∑
α

ωkλkPlpεdbcεdafS
fc†pασ

c
ασ

×
(

Φ†ak Φ†bl + Φa
kΦ

b
l+ : Φa

kΦ
†b
l : + : Φ†ak Φb

l :
)

−2
∑
kp

∑
α

ωkλkPlp(1 + 2nb(k))c†pα
σασ
2
· S (C.16)

and

[ηb, Of ] = i
∑
kp

∑
α

λkωkTp(Φ
†
k −Φk) · (c†pασασ × S). (C.17)
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C.3 Flow equation

We just take the back coupling terms, while the newly generated terms are of higher order,
and the flow equations read

dTp(B)

dB
= −

∑
q

(εp − εq)J(p, q)(B)Tq(B)(1− 2nf (q))

−2
∑
k

ωkλkPkp(B)(1 + 2nb(k)) (C.18)

and

dPkp(B)

dB
= λkωkTp(B)− 1

2

∑
q

(εp − εq)J(p, q)(B)Pkq(B)(1− 2nf (q)). (C.19)

Up to leading order we can neglect the second term in Eqs.(C.19). Since we are interested in
the behaviour of the T -matrix at the unstable fixed point we replace the the Kondo coupling
and the bosonic coupling by its fixed point value and solve the above flow equations with
the initial conditions Tp(B = 0) = J and Pkp(B = 0) = 0. Now, we integrate Eqs(C.19)
and obtain the following expression

Pkp(B) =

√
1

2

εω1−ε
k

2εΓ(1
2
(4− ε))ωk

∫ B

0

dB′ Tp(B
′)B′−

ε
4 eB

′ω2
k , (C.20)

inserting this into Eqs.(C.18), we end up with a differential equation only for Tp(B)

dTp(B)

dB
= +

1

ρ0

∑
q

(εq − εp)ε
2
e−B(εq−εp)2

Tq(B)(1− 2n(q))

−
∑
k

εω3−ε
k

2εΓ(1
2
(4− ε))B

− ε
4 e−Bω

2
k(1 + 2n(k))

×
∫ B

0

dB′Tp(B
′)B′−

ε
4 eB

′ω2
k . (C.21)

We turn the sum over all momenta into an integral, as is has been done before, and make
use of the bosonic spectral function. After some straightforward manipulations we end up
with the following differential equation for the coupling

dTp(B)

dB
= ε

Tp(B)

2B

(
e−Bε

2
p − 1

2

)
. (C.22)

In the following we solve this differential equations in its limiting cases, namely for a
comparable small flow and a large flow, always compared to the energy above the fermi
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sea. The first case is Bε2p � 1, this means that we can approximate the e-function as

(eBε
2
p = 1) and the differential equation reduces to

dTp
dB

=
ε

4

Tp(B)

B
, (C.23)

with the initial condition Tp(B = D−2) = J . The solution reads

T (1)
p (B) = J(BD2)

ε
4 if D−2 < B < ε−2

p . (C.24)

On the other hand, we take the limit Bε2p � 1 implying that e−Bε
2
p = 0. The simplified

differential equation takes the form

dTp
dB

= −ε
4

Tp(B)

B
, (C.25)

at this point the initial condition is given by the former solution of Tp evaluated at B = ε−2
p

,namely Tp(B = ε−2
p ) = J(D

εp
)
ε
2 . After integrating Eqs.(C.25) we obtain

T (2)
p (B) = J(

D

ε2p
)
ε
2B−

ε
4 . (C.26)

Then this is inserted into Eqs.(C.20) leading to

Pkp(B) =

√
1

2

εω1−ε
k

2εΓ(1
2
(4− ε))ωk

×
(∫ ε−2

p

D−2

dB′T (1)
p (B′)B′−

ε
4 e−Bω

2
k +

∫ B

ε−2
p

dB′T (2)
p (B′)B′−

ε
4 e−Bω

2
k

)
.(C.27)

Due to clarity reasons we calculate both integrals independently, starting with the first one∫ ε−2
p

D−2

dB′T (1)
p (B′)B′−

ε
4 e−Bω

2
k = JD

ε
2

∫ ε−2
p

D−2

dB′e−Bω
2
k

= J
D

ε
2

ω2
k

(
e−(

ωk
D

)2 − e−(
ωk
εp

)2
)
. (C.28)

The second one, however, is a little bit more tricky and is given by∫ ε−2
p

D−2

dB′T (2)
p (B′)B′−

ε
4 e−Bω

2
k = J

D
ε
2

εεp

∫ B

ε−2
p

dB′B′−
ε
2 e−B

′ω2
k . (C.29)

In addition we can make the approximation Bω2
k � 1 which sends the upper integral

boundary technically to infinity, and gives us

J
D

ε
2

εεp
ωε−2
k Γ(1− ε

2
,

(
ωk
εp

)2

). (C.30)
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Collecting all the terms leads to the following expression

Pkp(B) = J

√
1

2

εω1−ε
k

2εΓ(1
2
(4− ε))

D
ε
2

ωk(
e−(

ωk
D

)2 − e−(
ωk
εp

)2

+
ωεk
εεp

Γ(1− ε

2
,

(
ωk
εp

)2

)

)
. (C.31)

Going back to Eqs.(C.10) we can make a few preliminary thoughts, which will simplify the
expression of the T -matrix, namely integrating out the time dependence in the second term
of Eqs.(C.10) yields to a delta function δ(ω+εp+ωk), therefore the only contributions to the
sum over εp are, if ω+ εp +ωk = 0, so εp runs only over purely negative terms, since ω and
ωk > 0. Although, the expression 1−np is strictly zero and the whole term does not make
a contribution to the T -matrix. However, by the very same reasoning the third term does
make a contribution, but the delta function put some restriction to the summation over ωk.

Inserting Eqs.(C.31) into the simplified Eqs.(C.10), the T -matrix boils down to

Im(T̂σ(ω)) =
3

8

ω∑
ωk=0

P 2
ωk,ωk−ω

=
3ε3Dε

64ρ2
0

ω∑
ωk=0

1

ω2+2ε
k

(
e−(

ωk
D

)2 − e−(
ωk

(ωk−ω)
)2

+
ωεk

(ωk − ω)ε
Γ(1− ε

2
,

(
ωk

(ωk − ω)

)2

)

)2

. (C.32)

Remember that we can change the sum over ωk into an integral by inserting the density
of states. After taking the square we basically have to calculate three different types
of integrals, beforehand the behaviour of the integrals at their boundaries have to be
investigated in order to ensure the convergence of the integrals:

1. Term ∫ ω

0

dω̃1+ε
(

1− e−( ω̃
ω̃−ω )

2)2

(C.33)

has no contribution if ω̃ → 0, the main contribution comes from the upper part of
the boundary so we effectively have to calculate∫ ω

0

dω̃
1

ω̃1+ε
≈ 1

ε
ω−ε. (C.34)
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2. Term ∫ ω

0

dω̃
1

ω̃1−ε
1

(ω̃ − ω)2ε
(Γ(1− ε

2
,

(
ω̃

(ω̃ − ω)

)2

))2 (C.35)

goes to zero at the upper bound since the extended Gamma function vanishes suffi-
ciently fast and is well behaved at the lower bound, which, indeed accounts for almost
the whole integral, so the above expression reduces to∫ ω

0

dω̃
1

ω̃1−ε
1

(ω̃ − ω)2ε
≈ (ω)−2ε

∫ ω

0

dω̃
1

ω̃1−ε ≈
1

ε
ω−ε (C.36)

3. Term

2

∫ ω

0

dω̃
1

ω̃1+ε

1

(ω̃ − ω)ε

(
1− e−( ω̃

ω̃−ω )
2)

Γ(1− ε

2
,

(
ω̃

(ω̃ − ω)

)2

) (C.37)

has no significant contribution from the upper as well as the lower bound, because
at both boundaries the function tends to zero, which means in this case that we can
neglect the value of this integral in comparison to the others.

Finally, we are in the position to calculate Eqs.(C.10) at least its approximate ω-dependence

Im(T̂σ(ω)) ≈ ε2ω−ε . (C.38)

Although, at the present stage this expression is in discussion and we do not claim the
absolute correctness of it, since certain arguments still have to be checked and possible
false conclusions to be sorted out. So we would like to request the reader, not to take this
result for granted.
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