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Current polarization induced rectification of the quantized Hall plateaus (QHPs) is studied within
a Hartree type mean field approximation for asymmetrically depleted samples. We first investigate
the existence of the current carrying incompressible strips (ISs), by solving the self-consistent equa-
tions, and their influence on magneto-transport (MT) properties. Next, the widths of the ISs are
examined in terms of the steepness of the confining potential profile considering gate defined Hall
bars. The corresponding MT coefficients are calculated using a local Ohm’s law for a large fixed
current and are compared for symmetric and asymmetric depleted samples. We predict that, the
extend of the QHPs strongly depend on the current polarization, in the out of linear response
regime, when considering asymmetrically depleted samples. Our results, concerning the extend of
the QHPs depending on the current polarization are in contrast to the ones of the conventional
theories of the integer quantized Hall effect (IQHE). We propose certain experimental conditions to
test our theoretical predictions at high mobility, narrow samples.
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Surprisingly, open questions remain even nowadays in
the theory of the IQHE almost three decades after its
discovery [1]. When a two dimensional electron system
(2DES) is subject to a strong perpendicular magnetic B
field, the energy spectrum is (Landau) quantized. Due
to the gapped density of states (DOS), the measured
longitudinal and Hall resistances, RL and RH , present
anomalies if the electron density (nel) is an integer mul-
tiple of the quantized magnetic flux density (nφ), such
that RL = 0 and Hall resistance becomes quantized, i.e.
RH = e2

νh , where filling factor ν(= nel/nφ) is an inte-
ger, e is the electron charge and h is Planck’s constant.
In a first order approximation, two main schools have
emerged in giving an explanation to the IQHE, namely
the bulk [2] and the edge [3, 4, 5] pictures, which are
thought to be unavoidably in contrast to each other in
answering the question “ where does the current flow
?”. Moreover, there is an ongoing debate about whether
transport at the edges occur in the compressible [3, 5] or
in the incompressible [6, 7, 8, 9] states, which are formed
as a direct consequence of Landau quantization and their
widths are determined by the Coulomb interaction. The
local probe experiments present a strong evidence sug-
gesting that the current is carried by the incompressible
strips [10, 11]. In particular, experiments performed at
the von Klitzing’s group where a scanning force micro-
scope was used to measure the spatial distribution of the
Hall potential across the 2DES as a function of the B
field [10]. The observed dependence of the potential pro-
file on ν already suggests the dominant role of the e− e
interactions, leading to finite widths of both compress-
ible and incompressible strips (ISs), where the current
is carried by the later. The Hall potential profiles were
categorized mainly to three types: Type I, the potential
varies linearly in position 1.6 < ν < 2, Type II non-
linear spatial variation (ν ≈ 2) and, Type III, where the

potential strongly varies at the edges, however, is con-
stant at bulk, 2.05 < ν < 2.3. The observations were
explained within the self-consistent (SC) Thomas-Fermi-
Poisson theory of screening [12] plus the local Ohm’s law
(LOL) [7], which are the bases of the present work to be
discussed later. In a subsequent theoretical work [8] the
effect of finite extent of the wave functions on the incom-
pressible strips (ISs) was simulated by a spatial averaging
of the local quantities over quantum mechanical length
scales such as the Fermi wavelength λ or magnetic length
l (=

√
!/eB. The spatial averaging also enabled them to

relax the strict local approximation considering MT and
to lift the artifacts arising from the Thomas-Fermi ap-
proximation (TFA). The main outcome of this work was
to show explicitly that, if there exists an IS somewhere
in the sample (which is translation invariant in the cur-
rent direction) the system is in the QH regime, i.e. the
widths of the QHPs strongly depend on the widths of
the ISs. Moreover, its predictions on the asymmetry of
the QHPs with respect to the classical Hall resistance
curve, depending on the mobility and sample width, are
confirmed experimentally [13].

In the present work, we first present our geometry and
the related electrostatic problem, which in turn deter-
mines the width of the ISs. Next, we investigate the effect
of a large current on the local electron density nel(x) us-
ing the LOL. The DOS D(E) and the MT coefficients are
obtained from the SC Born approximation [14]. The cur-
rent density j(r), nel(x) and RH are compared in the out
of linear response regime (LRR) for generic and asym-
metrically depleted samples. The asymmetric distribu-
tion of the ISs with respect to the center of the sample
and its effect on RH is utilized as an experimental test
for two different boundary conditions, thereby density
profiles. At asymmetrically depleted samples, in which
the potential profile is steeper at one side than the other,
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FIG. 1: (Color online) (a) The spatial distribution of ν(x)
and the corresponding jy(x) considering a generic (symmetric,
i.e. bl = br = 150 nm, assuming VL = VR = 0) 3 µm sample.
(b) The SC and electrochemical potentials under low (solid
lines) and high bias (broken lines). All calculations are done
for !(eB/m)/E0

F (= Ω/E0
F )=0.94, where E0

F (=12.75 meV)
is the Fermi energy at the center, i.e. X = 1.5 µm, at the
default temperature kBT/Ω = 0.025. A homogeneous donor
density of n0 = 4× 1011 cm−2 is assumed, with the impurity
parameter Γ/Ω = 0.03.

we show that the IS at the steep edge is narrower than
the one at the smoother edge, which in turn determines
the current distribution and the extend of QHPs. As a
result of the applied current a Hall potential develops
within the sample, whose slope is determined by the cur-
rent direction and amplitude. Therefore, if the Hall po-
tential added to the electrostatic potential has the same
slope sign with the SC potential where the narrow IS re-
sides, this IS is enlarged and the QHP becomes wider
otherwise, becomes narrower. Such a rectification effect
due to current polarization is counter intuitive consider-
ing the conventional theories, both bulk and the edge,
since the extend of the QHPs mainly depend on the mo-
bility at fixed temperature and current amplitude, not
its direction. Here we follow the path of Ref. [8] in de-

scribing our 2DES considering the historical Chklovskii
geometry [15], i.e. a translation invariance in y− (cur-
rent) direction, where donor distribution n0 is assumed
to be homogeneous residing together with the electron
layer on z = 0 plane and the 2DES is depleted from the
edges by applying VL and VR to the metallic gates on
sides. In the screening theory of the IQHE, the Coulomb
interaction is included to a spin degenerate single particle
Hamiltonian, within the a Hartree type approximation,
via adding an effective mean field potential given by

VH(x) =
2e2

κ

∫ d

−d
nel(t)K(x, t)dt, (1)

where κ is an average dielectric constant (=12.4 for
GaAs) at the interface of the 2DES and the kernel K(x, t)
preserves the boundary conditions V (−d) = VL and
V (d) = VR for the above described model. The total
potential (energy) is then

V (x) = Vbg(x) + VG(x) + VH(x) (2)

where Vbg(x) is the background potential generated by
the donors and VG(x) by the gates for a sample width
of 2d. To calculate the Hartree potential one needs the
electron density distribution, which is given within TFA
by

nel(x) =
∫

dED(E)
[
e

(E−µ(x))
kBT + 1

]−1

, (3)

where kB is the Boltzmann constant, T the tempera-
ture, µ(x) = µ∗eq−V (x) the electrochemical potential and
µ∗eq the chemical potential at equilibrium. We define the
widths Γ of the broadened Landau levels (LLs) from the
mobility dependent short range broadening [8, 14]. The
SC scheme is closed by the Eqns. 2 and 3 provided that
the left and right depletion lengths, bl and br, are given.
The numerical task is now to solve these equations by
iteration until the electron density distribution remains
unchanged up to a numerical accuracy of 10−8. In the
next step the local current density j(r) is calculated as-
suming a fixed current in y direction I =

∫ d
−d jy(x, y)dx

via Ohm’s law

∇µ∗(r)/e ≡ E(r) = ρ̂(r)j(r), (4)

provided that the resistivity tensor ρ̂(r) is known through
the DOS [7, 8] and assuming a stationary state using the
local electric field E(r) obtained in the previous step.
The translation invariance is utilized together with the
equation of continuity ∇ · j(r) = 0 and ∇× E(r) = 0 to
obtain

jx ≡ 0, Ey(x) ≡ E0
y ,

jy(x) = E0
y/ρL(x), Ex(x) = E0

yρH(x)/ρL(x), (5)

where ρL(x) and ρH(x) are the diagonal and off-diagonal
entries of the resistivity tensor, respectively, and the con-

stant electric field in y direction E0
y = I.

[∫ d
−d

dx
ρL(x)

]−1
.
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FIG. 2: (Color online) The local variation of the filling factor
and the current densities for three selected B values, indicated
in Fig. 3, considering: (i) generic (black solid line) and (ii)
asymmetric samples, by setting VL = 0 and VR = −1.1 V
which results in bl = br/2 = 75 nm. Current polarizations
are depicted by (red) broken lines for (+) and (blue) dash-
dotted lines for (-). The asymmetric depletion is shown by the
diagonal shaded region on LHS and horizontal shaded region
on RHS (c), wich results in E0

F = 13.12 meV. Insets show the
regions of ISs on the right side.

Then µ∗(x) (now position dependent) is obtained from
Eqn. 4 by integration, up to a constant which is fixed by
nel. In our numerical scheme we start with nel(x) calcu-
lated without current, then calculate the current distri-
bution for a given fixed I. Next, we obtain µ∗(x) such
that nel is kept constant and start the new iteration from
the newly calculated nel(x). This procedure is continued
until convergence is obtained. In this paper we apply
the above described calculation scheme to an asymmet-
rically depleted gate defined sample. Following Ref. [8],
we perform a spatial averaging over λ (∼ 33 nm) to simu-
late the effects of the finite extend of the wave functions,
which also lifts the local strictness of the Ohm’s law. We
show that the large current induces an asymmetry on the
widths of the ISs due to the tilting of the Landau levels

FIG. 3: (Color online) The spatial distribution of the ISs
(blue regions) as a function of B for generic (a) and asym-
metric samples with (+) (b) and (-) DC polarization (c). The
corresponding RH and RL (d). Vertical lines indicate the B
field values shown in Fig. 2.

as a result of self-consistency, i.e. adding the Hall poten-
tial to the total potential and recalculating the electron
density. The amplitude of the current I ∼ 3 µA is suf-
ficiently large being in the out of LRR. Our aim is, first
to present this current induced asymmetry calculated for
a generic sample, which is equally and largely depleted
from both edges. Next using the side gates, we deplete
the sample asymmetrically such that the potential on the
right hand side (RHS) is smoother than that of the left
hand side (LHS). Therefore, the IS on RHS is larger even
without any current induced effect. In the last step we
apply a large negative (-) and a positive (+) DC current
to the system and investigate its effect on the density
distribution and the widths of the QHPs.

The applied current introduces a Hall voltage, which is
added to the SC potential, hence tilts the LLs and elec-
trons are redistributed accordingly. As a consequence of a
(+) bias, if there exists an IS, the spatial extend of the en-
ergy gapped region on the RHS becomes wider, whereas



4

shrinks on the LHS, resulting in a wider IS on the RHS
and a narrower IS on the LHS. Such a situation is shown
in Fig.1a. The local electron distributions (or equiva-
lently the local filling factor ν(x) = 2πl2) calculated at
low (thick solid lines) and high (thick broken lines) cur-
rent biases is shown together with the current density
distribution (thin vertical lines) in the upper panel for
a generic sample. It is clear that, the IS on the RHS is
larger than the one on the LHS under the large current
bias (cf. the inset of Fig. 1 and the current (horizontal
lines) is well confined to the ISs. Fig. 1b presents the SC
potentials (thick lines) together with the position depen-
dent electrochemical potentials (thin lines). We observe
that at the large bias the Hall potential tilts the LLs.
Note that, since the compressible regions can almost per-
fectly screen the Hall potential, the major effect on the
µ∗(x) is observed at the regions where an IS resides. Now,
we investigate the effect of current bias induced density
asymmetry at the asymmetrically depleted samples. In
Fig.2 (black) solid curves present ν(x) of a generic sam-
ple. For the lowest B value (a), no ISs exist larger than
λ (see the inset) for the symmetric and negatively biased
asymmetric (dash-dotted blue curves) samples. There-
fore, the electron and the current densities both remain
symmetric (note that the system is completely compress-
ible), hence the induced Hall potential can be almost per-
fectly screened. The current distribution exhibits, local
spikes at the positions of ν(x) ≈ 2 since, ρL(x) assumes
very small values in the very close vicinity of ν(x) = 2,
although no IS exists. One can clearly see that some
amount of current is still flowing from the bulk. How-
ever, for the asymmetric sample under (+) bias (broken
red lines) the IS on the RHS is larger than λ, hence, the
current is confined within this region mainly, meanwhile
no current flows from the bulk. We observe that for this
B value, the generic and asymmetric (-) samples are out
of the QHP. When increasing B slightly (Fig. 2b), an IS
is now well developed on the RHS of the generic sam-
ple where most of the current is confined to, however,
due to the local minima at the LHS mention before some
current also flows form this side. The interesting point
is that now no current flows from the bulk (up to our
numerical accuracy, i.e, 10−14 A) and the system is in
a QHP both for generic and asymmetric (+). Increas-
ing the B field furthermore, results in formation of an
IS also at the asymmetric (-) sample, where all three
samples are in the plateau regime. When the center ν
becomes very close to two (not shown here) the two ISs
merge at the bulk and all the current is now flowing from
the incompressible bulk, slightly asymmetric with respect
to the center. At the highest B field strengths shown in
Fig.3, the system is out of the QHP and both the elec-
tron and the current densities become symmetric, again.
If compared to Ahlswede experiments the sequence of the
potential types is I-I-III-III-II-I, which perfectly matches
with the findings. It is reasonable to expect that, if one

starts already with an asymmetric density profile, the
asymmetry induced by the large current will be either
enhanced or suppressed depending on the current direc-
tion. A (+) bias will tilt the LLs resulting a high poten-
tial on the RHS, whereas a (-) bias will do the opposite.
Therefore, for the (+) bias the sequence is I-III-III-III-
II-I, which essentially means that the asymmetric sam-
ple enters to the QHP at a lower B field compared to a
generic sample, due to already existing large IS at the
RHS. The situation is rather different for the (-) bias,
since the narrow IS is on the LHS and the high bias will
enlarge this IS. Hence, there is a competition between
the slope of induced Hall potential and the confinement
potential to generate a wide IS. Thus, the asymmetric
sample when (-) biased will enter to the QHP at a higher
B field value compared to both (+) biased and generic
samples. The asymmetric distribution of the ISs is obvi-
ous for the generic sample, where we only show the ISs
(dark-blue regions) wider than λ. Our findings point out
that the extend of the QHPs depend strongly on the sam-
ple asymmetry and the current polarization. The experi-
mental manifestation of the predicted rectification effect
requires, first of all, high mobility (≥ 1.0× 106 cm2V/s)
and narrow (2d ! 10 µm) asymmetrically depleted sam-
ples. One possible option is to define the Hall bars similar
to the ones investigated in Ref. [13], at which, an asym-
metry in RL is observed. However, the effect is not pro-
nounced to draw clear conclusions. The main drawback
of the gate defined samples relies on the fact that, by
using gates one cannot create very steep edge potential
profiles, therefore, rectification is somewhat suppressed.
Meanwhile, one can define Hall bars with steeper edge po-
tentials by deep etching, of course, with different etching
dept on both sides. However, it is known that etching can
cause inhomogeneities at the density profile which may
become important when considering narrow samples. A
hybrid solution, i.e. one side etch, other side gate de-
fined, seems to be the most reasonable solution. To ob-
tain the extreme sharp edge on one side, it is desirable to
perform the suggested experiments on cleaved edge over-
grown (CEO) samples, where it has been shown that no
ISs reside at the sharp edge [16]. The experiments need
not to be done at very low temperatures (0.4 < T < 4.0
K), whereas the imposed current should not exceed the
breakdown current due to Joule heating [9], which can
easily be determined by the experiments.

In conclusion, for the high mobility, narrow and asym-
metric samples we predict that, the large current either
enlarges or shrinks the QHPs depending on whether the
asymmetry induced by the current and the asymmetry
caused by the edge profile coincides or not. Based on
our findings, we proposed three set of sample structures
where the effect of the current induced asymmetry and
thereby the rectification of the QHPs can be controllably
measured. As a final remark, we note that at the edge
IQHE regime, i.e. Type III, a highly non-equilibrium
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situation is present, due to the competition between the
enhancement of the ISs resulting from the large current
and suppression due to steep potential profile, therefore
we expect a hysteresis like behavior in this regime both
depending on the sweep rate and direction of the B field
and current amplitude.
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