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Theoretical investigation of the electron velocity in quantum Hall bars,
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Abstract

We report on our theoretical investigation of the electron velocity in (narrow) quantum Hall systems, considering the out-of-linear-
response regime. The electrostatic properties of the electron system are obtained by the Thomas–Fermi–Poisson nonlinear screening
theory. The electron velocity distribution as a function of the lateral coordinate is obtained from the slope of the screened potential
within the incompressible strips (ISs). The asymmetry induced by the imposed current on the ISs is investigated, as a function of the
current intensity and impurity concentration. We find that the width of the IS on one side of the sample increases linearly with the
intensity of the applied current and decreases with the impurity concentration.
r 2007 Elsevier B.V. All rights reserved.

PACS: 73.20.Dx; 73.40.Hm; 73.50.!h; 73.61.!r

Keywords: Edge states; Quantum Hall effect; Screening; Mach–Zehnder interferometer

In the conventional models of the quantum Hall effect
(QHE), the Coulomb interaction is ignored and either
localization or the 1D edge states (ESs) was accepted as the
explanation. However, recent experimental [1] and theore-
tical [2] investigations of the two-dimensional electron
systems (2DESs) under strong perpendicular magnetic
fields B provided information about the local quantities,
such as potential, compressibility, current and electron
density. The findings point out clearly the importance of
the involved interactions at narrow ðt10mmÞ samples,
which manifest themselves by the formation of the
compressible and incompressible regions. More recently,
the experiments performed in the integer QHE regime [3]
promote the possibility of inferring interaction mechanisms
between the ESs, using an electronic version of Mach–
Zehnder interferometer. The surprising results, up to now,
cannot be explained within the naive single particle
pictures, where the group velocity of the electrons (vel) is

assumed to be constant and the imposed current is believed
to be carried by the Büttiker type ESs.
Recently, we have investigated vel depending on the

sample properties, including the Coulomb interaction [4].
We used the screening model to calculate the electron and
potential distribution and obtained vel from the slope of
the screened potential at the Fermi level and also across the
incompressible strips (ISs), where the current flows from.
The calculations were done at equilibrium and within the
linear response regime. We found that vel strongly depends
on the sample properties, in the case of small currents.
Here, we extend our investigation to a regime, where the
imposed external current I is high enough to change both
the electron and potential distribution, i.e., out-of-linear-
response (OLR) regime. The effect of the current is
included self-consistently by employing the scheme devel-
oped by Güven and Gerhardts [2].
Here, we confine ourselves to the historical Chklovskii

model geometry [5]. We assume that electrons and donors
are on the same xy plane (z ¼ 0) and donors are distributed
homogeneously in the interval !doxod, where 2d is the
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sample width. On the other hand electrons are depleted
from the edges and the translational invariant electron
channel is formed in the interval !boxob, where jdj4jbj
and jd ! bj is called the depletion length. We consider
spinless electrons by setting the spin degeneracy to two,
gs ¼ 2; therefore ISs will assume only even local filling
factors, nðxÞ. First we calculate the electron density and the
screened potential from the following self-consistent (SC)
equations:

nelðxÞ ¼
Z

dE
DðEÞ

e½EþV ðxÞ!m%'=kBTÞ þ 1
(1)

and

V ðxÞ ¼ !
2e2

k̄

Z d

!d

dx0 Kðx; x0Þðn0 ! nelðx0ÞÞ, (2)

within the Thomas–Fermi approximation (TFA), which
assumes that the electrostatic quantities vary slowly in the
quantum mechanical scales, such as the magnetic length
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_=moc

p
(oc ¼ eB=mc). Eq. (1) describes nelðxÞ as a

function of the electrochemical potential m% (which is
constant in the absence of I), temperature ðTÞ and total
potential energy V ðxÞ, where DðEÞ is the Gaussian
broadened density of states (DOS) given by

DðEÞ ¼
1

2pl2
X1

n¼0

expð!½En ! E'2=G2Þffiffiffi
p

p
G

, (3)

with the impurity parameter G, which gives the Landau
level (LL) broadening and the Landau energy En ¼
_oc nþ 1

2

" #
, whereas Eq. (2) relates the charge distribution

with the total potential. We keep the donor distribution
fixed, with a constant surface number density n0, and obtain
nelðxÞ iteratively. Here k̄ is an average dielectric constant and
Kðx;x0Þ is the solution of the Poisson equation preserving
the boundary conditions, V ð!dÞ ¼ V ðdÞ ¼ 0. The confine-
ment potential can be calculated analytically yielding,

V confðxÞ ¼ E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! ðx=dÞ2

q
, where E0 ¼ ð2pe2=k̄Þn0d is the

pinch-off energy. In thermal equilibrium we solve these two
equations iteratively, keeping the average electron density
constant, starting from T ¼ 0 and B ¼ 0 solutions.

In the presence of an external (fixed) I driven in
longitudinal direction, the situation is fairly different.
Since the imposed current induces modifications on nelðxÞ
and V ðxÞ, one should include this effect self-consistently
into the above scheme, which is done by assuming a local
thermal equilibrium. The driving electric field is given by
the gradient of the (now, position-dependent) electroche-
mical potential, EðrÞ ¼ rm%ðrÞ=e ¼ r̂ðrÞjðrÞ. With transla-
tional invariance and keeping the intensity of I fixed, one
can obtain the current distribution and the position-
dependent electrochemical potential, for a given local
resistivity (r̂ðrÞ ¼ ½sðnelðxÞÞ'!1) tensor. In the next step this
m%ðxÞ will be used to obtain the new nelðxÞ and V ðxÞ in a
second iteration loop [2,6].

We first investigate the effect of the current intensity
I ¼ ðUH=eÞ½d=b'ðe2n̄el=mocÞE0, measured in units of

_ocð¼ OÞ on the widths (W 2) of the ISs with nðxÞ ¼ 2.
For a detailed discussion of the electron and potential
distribution, we suggest the reader to check Fig. 1 and the
related text of Ref. [2]. In Fig. 1, we show the evolution of
the IS widths as a function of the current intensity for three
B values. We see that W 2 on both sides are (almost)
linearly dependent on I, for the right IS it increases and for
the left IS decreases. We observe that the total width of the
IS increases by increasing the intensity. For a given
magnetic field, the average electron velocity is defined as
vyðxÞ ¼ ð1=_ÞðqV ðxÞ=qxÞ, within the TFA imposing
EnðX Þ ¼ En þ V ðX Þ and the center coordinate can be
replaced by the spatial coordinate x. If one calculates the
vel at the right IS, it will decrease by increasing I, since at a
fixed B, the height of the potential drop remains constant,
namely O, meanwhile the thickness of the IS increases. We
should also note that, although the velocity of the electrons
decreases, the number of electrons increases due to a wider
IS, therefore more current is carried at the right IS over all.
In Fig. 2, we plot the effect of DOS broadening on the IS
widths, again for three selected B field values and current
intensities. It is known that if the widths of the ISs become
small or comparable with the magnetic length they
essentially disappear [2]; however, here we still observe
them as an artifact of TFA. We see that the left ISs become
narrower than the magnetic length compared to the right
ISs, due to the strong current-induced-asymmetry. We
observe that the impurity concentration affects the W 2 in a
non-linear manner strongly and if the DOS broadening
exceeds 20% of the cyclotron energy, no ISs are left. At
zero bias the transition between having an IS or not is
rather smooth, meanwhile this transition occurs much
drastically in the case of Ia0.
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Fig. 1. The widths of the ISs at two edges of a narrow sample ð2d ¼ 2mmÞ
for three typical B values at T ¼ 1K vs. I. The widths of the ISs increase
(almost) linearly at the right edge (broken lines), whereas decreases
similarly on the opposite edge. The impurity concentration is chosen such
that the corresponding DOS broadening g ¼ G=_oc ¼ 0:025. The number
density of the donors is fixed n0 ¼ 4( 1011 cm!2, whereas the depletion
length is 200 nm.
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To summarize, we have studied the widths of the ISs, in
the OLR regime. We found that (i) the strong current
imposed induces an asymmetry on the IS width depending
linearly on the current intensity; (ii) the higher the impurity
concentration, the narrower theW 2 is, meanwhile at higher
currents this effect becomes more pronounced. The main
message of our SC calculations is that the electron velocity
strongly depends on the sample parameters and, in
addition, in the OLR regime the symmetry between the
left and right edges is broken due to electron–electron
interaction.
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C. Sohrmann, R.A. Römer, Phys. Status Solidi C Current Top. 3
(2006) 313.

[3] I. Neder, M. Heiblum, Y. Levinson, D. Mahalu, V. Umansky, Phys.
Rev. Lett. 96 (2006) 016804.

[4] D. Eksi, E. Cicek, A.I. Mese, S. Aktas, A. Siddiki, T. Hakioğlu, Phys.
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Fig. 2. W 2 at left (left panel) and right (right panel) side of the sample as a function of impurity concentration. At default T and depletion length.
Horizontal (dashed–dotted) lines indicate the magnetic length. The sample width is taken to be 3mm and calculations are done at 3K.
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