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1

Introduction

One very important model in the �eld of stronly correlated electrons is the Anderson
impurity model [1]. Due to its many-body nature it cannot be solved exactly, but a
powerful numerical method, the NRG, has been developed [2, 4] with which an accurate
treatment of the model is possible. NRG has successfully been used to solve the Anderson
model among other impurity models. Also thermodynamic and dynamical properties of
such models are accessible with NRG. However, for a more complex impurity withm levels,
the Hilbert space dimension scales with a factor of 2m. This makes it very di�cult to obtain
good numerical solutions of a more complex Anderson model with NRG.

Another well established method in this �eld is the density matrix renormalisation
group (DMRG) [6, 7, 8] that allows for sucessful treatment of tight-binding models like the
Hubbard model where NRG fails.

It has been shown that both methods, NRG and DMRG, can be formulated using ma-
trix product states (MPS) [9, 10, 13, 14, 15]. DMRG is in many respects equivalent to
the MPS approach but even there using MPS language can improve the performance of
the computation compared to traditional DMRG formulation. Also the states created by
NRG have by construction the structure of MPS [17]. This makes it possible to further
improve NRG results by variationally optimising upon NRG generated MPS. As it is possi-
ble to distribute numerical resources more e�ciently within the MPS formulation, models
impossible to treat with NRG become feasible by using the MPS approach.

In this work we will take advantage from that fact and use the framework of matrix
product states to combine ideas of both NRG and DMRG into an variational optimisation
approach for the Anderson model. This way we can overcome the main weaknesses of NRG,
high computational complexity for complex models and non optimal scheme for truncating
the e�ective Hilbert space used to describe the system, and solve more complex models
than possible with NRG. We will apply our method to the extended Anderson model for
a quantum dot with several dot levels coupled to two electronic leads.

For a small system with two dot levels we checked our results obtained with the MPS
approach with NRG data. For such systems NRG is known to work very well and the
results of both methods show good agreement. We calculated �rst results for a spinful
four-level model which is intractable with NRG. These results are very promising for future
applications of this method to time-dependent problems. Also in prospect of steady state
problems the results so far achieved are promising for further developments.



2 Introduction

Outline

This thesis is organised as follows. In chapter 1 we introduce the extended Anderson
model, which we use to describe a multi-level quantum dot coupled to several leads. We
also summarise the main ideas of NRG and show how NRG is applied to the Anderson
model, which leads us to the Hamiltonian we will later treat numerically.

In chapter 2 we introduce the matrix product state approach for our model and we
will present all the necessary techniques for solving our model within this formalism (like
calculating scalar products, expectation values, . . . ). We will then show how to incorporate
the DMRG idea of Hilbert space truncation into MPS language. Having provided all
necessary technical tools, we present the variational optimisation scheme for determining
the ground state of our system. We will discuss two variants for optimising the ground
state and �nally provide a cost analysis for the algorithm we introduced.

In chapter 3 we present �rst data from our implementation of a generalised Anderson
model with two leads and up to four spinful dot levels. For the case with two dot levels
we compare our results with NRG.
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Chapter 1

Model

1.1 Anderson impurity model

Here we study a well known impurity model. It was �rst introduced by Anderson [1] in
1961 to describe the e�ect of iron-group ions, which carry a magnetic moment, dissolved
in metals. Today this model is commonly used to describe quantum dot systems.

1.1.1 Single impurity Hamiltonian

The Anderson Hamiltonian describes an atomic impurity coupled to a conduction band
where the impurity is represented by a spinful one-level system. The density of states
around the Fermi energy is assumed to be constant. In second quantization the Hamiltonian
has the form1

H =
∑
k,s

εkc
†
kscks +

∑
s

εdd
†
sds + Ud†�d�d

†
�d� +

∑
k,s

(
Vk d

†
scks + V ∗

k c
†
ksds

)
. (1.1)

Here, c†ks denotes the creation operator for a conduction band electron with momentum k
and spin s. Accordingly, d†s denotes the creation operator for the impurity level with spin
s. The U term represents the Coulomb interaction between electrons on the impurity,
the coupling of the conduction band to the impurity is denoted by the last sum in the
Hamiltonian. For a sketch see Figure 1.1.

We will apply the Anderson model to a quantum dot system. Thus we will refer to the
impurity level as 'dot level' instead of the d-shell of a transition metal as in the original
work of Anderson. A commonly used approximation is to assume the coupling strength to
be real (for no magnetic �eld) and energy independent, Vk = V ∗

k = V .

1.1.2 Multiple dot levels and leads

For our studies of a quantum dot coupled to several leads in equilibrium we need to
generalise the single impurity Anderson model. We consider m dot levels and N leads2

1Note that we use s as spin index here, because we will use σ for a di�erent purpose later on.
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Figure 1.1: Anderson model for a single conduction band and one dot level.
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Figure 1.2: Sketch of a quantum dot coupled to several leads

that are coupled to the dot (see Figure 1.2). With these generalisations we arrive at the
following parts of the Hamiltonian:

• Eigenenergies of the dot levels. Any magnetic �eld can be incorporated into the
energies εis.

Hdot =
m∑
i=1

∑
s=�,�

εisd
†
isdis (1.2)

2For our numerical method we will later distinguish between spin up and spin down leads, but this
plays no important role in our current considerations.
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• Coulomb interaction on the dot. By lifting the constraint of a constant U , thus
introducing coe�cients U ss′

ij , one can easily model di�erent dots coupled to the same
leads.

Hint =
U

2

∑
(i,s) 6=(j,s′)

d†isdisd
†
js′djs′ (1.3)

• Free Hamiltonian for N leads (α = 1 . . . N). We assume identical spectrum and
density of states for all leads. Only the density of states near the Fermi edge3 will
be important4. Any di�erences of the density of states can be incorporated to the
couplings of the leads to the dot.

Hleads =
∑
αks

εkc
†
αkscαks (1.4)

• Coupling between the leads and the dot. The tunnel couplings may vary for di�erent
lead and level number: Viα, i = 1 . . .m, α = 1 . . . N .

Hcoupling =
∑
αiks

Viα

(
d†iscαks + c†αksdis

)
(1.5)

The Hamiltonian for the whole system is just the sum of all these parts.

Hsystem = Hdot +Hint +Hleads +Hcoupling (1.6)

1.2 Numerical renormalization group formalism

In principle, one would like to calculate the properties of Hsystem from (1.6). Due to the
in�nite number of degrees of freedom, this problem cannot be solved neither analytically5

nor numerically. For impurity problems like ours a very successful method, the numerical
renormalization group (NRG), has been developed by Wilson [2] in 1975.

1.2.1 Basic idea of NRG

The main problem of solving the Anderson model comes from the fact, that the Anderson
model is a true many-body problem, and that the conduction bands of the leads cannot be
described by quasi-particles because of the presence of the impurity, as we will explain with
the following short argument. Suppose we are in a regime when there is an odd number
of electrons with overall spin down on the dot. Now, an electron with spin up from one of
the leads can spin-�ip scatter with the dot such that both the dot state and the scattering
electron change spin, which leaves the dot in a spin up state. The next such spin-�ip

3Since we study the system only in equilibrium EF is the same for all leads.
4For more details see section 1.2.2 or [4].
5apart from some special cases, like U = 0
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scattering process can now only occur with a spin down electron of the leads. Therefore one
cannot describe the leads coupled to the dot with a quasi-particle picture as with individual
free leads. The main achievement of NRG is to provide a non-perturbative way to describe

E
W

−1 0 1

−Λ−1 −Λ−2 Λ−2 Λ−1

Figure 1.3: Logarithmic energy discretisation for a conduction band of a lead with bandwith 2W
centered around EF = 0.

the system. For this purpose a logarithmic discretisation of the conduction band around
the Fermi energy with a discretisation parameter Λ > 1 is introduced. The n-th state
represents the energy interval proportional to the interval from Λ−(n+1) to Λ−n. After doing
a Fourier transformation of the creation and annihilation operators of the conduction band
electrons on these intervals and taking only their �rst Fourier components into account one
can apply an unitary transformation to arrive at a tridiagonal Hamiltonian for the leads.
With this the conduction bands of the leads transform to semi-in�nite �Wilson chains�
with nearest neighbour hopping and exponentially decaying coupling constants within the
chains Furthermore only the �rst element of each chain is coupled to the dot levels (for
details see section 1.2.2). In NRG one then de�nes a series of Hamilton operators Hn,
where H0 describes only the quantum dot, H1 describes the dot and the �rst sites of all the
attached lead chains and so forth. One iteratively solves each Hamiltonian of this series
and truncates the state space to a manageable size. One stops this iteration process once
the spectrum no longer changes, which indicates that the considered chain is long enough
to resolve even the smallest energy scale in the system i. e. to describe the ground state of
the full system.

1.2.2 Application of NRG formalism

In this work we are interested in the ground state properties of the multi-level multiple-lead
Anderson model at T = 0. In order to resolve low energy excitations we need high energy
resolution near the Fermi energy. This is achieved by the logarithmic energy discretisation
of NRG. We therefore apply the NRG formalism to our model Hamiltonian but will use a
di�erent method for solving it. Here we will follow the derivation and notation of [4] very
closely and will cite only important steps of the calculation.

The �rst thing to note is, that Hdot (1.2) and Hint (1.3) are not a�ected by the NRG
transformation, as it a�ects only the lead parts of the Hamiltonian. We assume the con-
duction band to be symmetric with respect to the Fermi energy and have bandwidth 2W .
So with the convention EF = 0 the conduction band extends from −W to W . Now we
introduce a new variable ε = E

W
, note that ε is called k in [4]. We also neglect the en-

ergy dependence of Viα and the density of states ρ, and replace both with their values at
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the Fermi level6, ρ = ρ(EF ) and Viα = Viα(EF ). As a further simpli�cation, we consider
only electrons with no angular momentum (s-wave states of the conduction band), thus
we can label the electron states by energy (ε). We de�ne new creation operators for the
lead electrons a†αεs that create an electron in lead α with energy ε and spin s. They obey
{aαεs, a

†
α′ε′s′} = δαα′δ(ε− ε′)δss′ . With the de�nition of

Γiα = πρV 2
iα, (1.7)

we get for the a�ected parts of the Hamiltonian:

Hleads = W
∑
αs

1∫
−1

dε εa†αεsaαεs (1.8)

Hcoupling = W
∑
αis

√
Γiα
πW

1∫
−1

dε
(
d†isaαεs + a†αεsdis

)
. (1.9)

Logarithmic discretisation

The next step is to introduce the logarithmic discretisation scheme and apply it to the
Hamiltonian. One de�nes a discretisation parameter Λ > 1 and divides the ε domain into
a series of intervals as shown in Figure 1.3 such that the nth interval extends from Λ−(n+1)

to Λn (for positive ε). By de�ning Fourier series on these intervals one can expand the aαεs
in terms of two sets (for positive and negative ε) of independent and discrete operators
aαnps and bαnps, which obey standard anitcommutation rules. As a further approximation
one neglects all higher harmonics7 in the expansion of the aαks, i. e. one drops all terms
with aαnps and bαnps where p 6= 0. Thus we will drop the subscript p of a and b. With the
de�nition

fα0s =

√
1

2
(1− Λ−1)

∞∑
n=0

Λ−n
2 (aαns + bαns) (1.10)

one arrives at the following Hamiltonians:

Hleads = W
∑
αs

1

2
(1 + Λ−1)

∞∑
n=0

Λ−n (a†αnsaαns − b†αnsbαns
)

(1.11)

Hcoupling = W
∑
αis

√
2Γiα
πW

(
f †α0sdis + d†isfα0s

)
. (1.12)

Nearest neighbour hopping Hamiltonian

So far one already has achieved that only the fα0s operators couple to the dot levels.
In the �nal step the lead Hamiltonian gets transformed to a nearest neighbour hopping

6Note that we will use the same symbols.
7This turns out to be a surprisingly good approximation even for Λ being as big as 3.
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Hamiltonian. Therefore one performs an unitary transformation on the a and b operators
to get a new complete set of orthonormal operators f . As the Hamiltonian in (1.11) is
diagonal in the a and b operators the best one can achieve is to get only nearest neighbour
coupling in terms of the f operators, i. e. a tridiagonal Hamiltonian. The exact de�nition
of the fαns can be found in [4], but is not important for our further discussions. De�ning
new coe�cients

ξn =
(
1− Λ−n−1

) (
1− Λ−2n−1

)− 1
2
(
1− Λ−2n−3

)− 1
2 (1.13)

the lead Hamiltonian is given by

Hleads = W
∑
αs

1

2
(1 + Λ−1)

∞∑
n=0

Λ−n
2 ξn

(
f †αnsfα(n+1)s + f †α(n+1)sfαns

)
. (1.14)

Putting the pieces together we get the Hamiltonian for the whole system after applying
the NRG formalism. Any further uses of Hcoupling and Hleads will refer to (1.12) and (1.14).
Note that the hopping constant in (1.14) decays exponentially with Λ−n

2 as the ξn are of
order O(1).

1.2.3 NRG solution

We will now brie�y describe how this Hamiltonian is solved by NRG. We introduce the
notation of Hk

leads as the Hamiltonian of the lead chains including k sites for every chain.
For the �rst NRG step one solves the system

H0 = Hdot +Hint +Hcoupling +Hk0
leads, (1.15)

where k0 is chosen such that H0 can directly be solved by exact diagonalisation. As a result
one knows the spectrum and the eigenstates of H0. Hn is de�ned similarly by

Hn = Hdot +Hint +Hcoupling +Hk0+n
leads . (1.16)

Now starts the NRG iteration process, so we will describe the tasks of the nth iteration
step. One keeps the D eigenstates8 with the lowest energies from the set of eigenstates
obtained in the previous iteration, and projects Hn−1 onto the space spanned by the kept
states. Now, the next site of each chain is added and the new Hamiltonian Hn is solved in
the enlarged Hilbert space consisting of the tensor product of the D-dimensional truncated
Hilbert space of the previous iteration with the local state spaces of the newly added chain
sites, thus yielding the spectrum and eigenstates of Hn. This iteration step is repeated
until the rescaled9 spectrum converges. This typically takes place at chain lengths up
to 60. Let |σn〉 denote the local states of site n and |sn〉 the states we keep to describe
the e�ective Hilbert space of Hn. Then we can express (see Figure 1.4 for a graphical

8Typical values for D vary between 500 and 2000.
9As the couplings in Hleads decay exponentially, one has to rescale the spectrum after each step

with Λ1/2.



1.2 NRG transformation 9

representation) the states |sn〉 in terms of the local states |σn〉 and the states kept from
the previous iteration step |sn−1〉

|sn〉 =
∑

σnsn−1

|σn〉 ⊗ |sn−1〉A[σn]
sn−1sn

, (1.17)

where the coe�cients A[σn]
sn−1sn determine which linear superpositions are kept for the next

iteration. By viewing these A-tensors as generalised matrices, the result of a repeated
application of (1.17) can be denoted as a �matrix product state�. This structure arises
naturally by the NRG construction. We will not elaborate on matrix product states in
NRG context, more information on this can be found in [19].

An|sn−1〉

|σn〉

|sn〉

Figure 1.4: Iterative construction of NRG state space |sn〉.

Discussion

The reason for this procedure to work so well is the energy scale separation between the
di�erent iteration steps that is guaranteed by the exponential decay of the coupling along
the chains. This provides very good energy resolution at low excitation energies near EF
and bad energy resolution at high energies. So one basically treats a di�erent energy scale
in every step. In order to maintain this energy scale separation also for a multiple-chain
model, one has to include the nth site of every chain at the same iteration step. Assuming
a local state space dimension for each site and spin of d = 2 (fermionic chains), in each
step the Hilbert space dimension increases by a factor of d2N (because of spin degree of
freedom) and is then reduced again to D. This is known to work quite well for models
with N = 2, but as soon as d2N becomes larger then roughly 50, it is unclear how reliable
this methods works. An other problem of NRG is the truncation scheme that simply keeps
these D eigenstates that have the lowest eigenenergies. This is the most simple but not
the best possible approach10. While this works very well for impurity models, where the
coupling constant decays for the mapped system, it fails for chain models without decaying
coupling constants and real-space methods [5].

Outlook

In the following chapter, we will show how these two limitations of NRG can be overcome
using the matrix product state approach. The key idea is to variationally determine the
ground state by minimising the expectation value 〈ψ|H|ψ〉 within the space of all matrix

10We will show how to improve the truncation scheme in section 2.2.
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product states, with the elements of all A-matrices al variational parameters. For imple-
menting this idea, we have to introduce a number of technical steps. Therefore we will
�rst show how a matrix product state is constructed and introduce an intuitive graphical
representation for it. Then we will develop techniques to calculate scalar products 〈ψ′ |ψ〉,
reduced density matrices ρk, and expectation values 〈ψ|Ĥ|ψ〉. Having provided these tech-
niques, we will use them to implement a more accurate Hilbert space truncation scheme
that follows the DMRG idea, and �nally present our variational optimisation scheme for
the ground state of the system.
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Chapter 2

Matrix product state method

We will now introduce the matrix product state method. The main idea is to write down
an ansatz for the groundstate�a so called matrix product state�and then improve on it
with a variational optimisation scheme.

2.1 Representation of states

2.1.1 Hamiltonian with �xed chain length

As we don't use an iterative method like NRG, we have to �x the length L of the lead
chains from the start. Apart from this the lead Hamiltonian is the same as in Wilson's
NRG (1.14), so we will often refer to the lead chains as �Wilson chains�. Typically, we
choose L = 60 to 80. From now on, we use for the bandwidth the convention W = 1, so
the Hamiltonian of the whole systems is

Hsystem =
m∑
i=1

∑
s=�,�

εisd
†
isdis

+
U

2

∑
i,j=1...m
s,s′=�,�

(i,s) 6=(j,s′)

d†isdisd
†
js′djs′

+
∑
s=�,�

N∑
α=1

1

2
(1 + Λ−1)

L∑
n=0

Λ−n
2 ξn

(
f †αnsfα(n+1)s + f †α(n+1)sfαns

)
+
∑
s=�,�

N∑
α=1

m∑
i=1

√
2Γiα
π

(
f †α0sdis + d†isfα0s

)
.

(2.1)

One important point to note is that electrons with di�erent spin only interact via the
Coulomb interaction U . So it is convenient to interpret the lead term of the Hamiltonian
as a sum over 2N Wilson chains, N for each spin. However, one has to be very careful
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about interchanging operators and states1, as we are dealing with Fermions. In order
to avoid this ordering problem we apply the Jordan-Wigner transformation, which we
describe in detail in appendix A.1, to the Hamiltonian (2.1). As a result we get almost
bosonic behaviour of the former fermionic operators, and we can exchange operators and
states for di�erent sites2 without generating any factors of −1. Because there are apart
from few local corrections on the dot no further consequences applying the transformation,
we will call the transformed f operators c from now on and assume that all corrections
are absorbed into them. The Jordan-Wigner transformed Hamiltonian (2.1) will be our
starting point for the treatment with the matrix product state method.

2.1.2 Construction of matrix product states

The full Hilbert space of the whole system is the product of the local state spaces of all
chain sites and the dot state space. It is clear that its dimension is far too big in order
to operate on it directly. Thus we need a description for the ground state�that is what
we want to calculate here�that refers to an e�ective Hilbert space. This description will
be provided by the matrix product state. We will now explain, how the matrix product
description arises naturally, considering single chain sites3 as fundamental building blocks
of our system, by building an e�ective Hilbert space site by site.

In order to illustrate this, we restrict ourselves to only a single chain of length L. But
this scheme can easily be generalised to the complex system of (2.1). We de�ne the notion
of the basis of an inner4 state space |ik〉 (ISS), outer state space |ok〉 (OSS) and local state
space |σk〉 (LSS) with respect to a certain site k. So the outer basis |ok〉 is a basis of the
e�ective Hilbert space covering all sites k′ > k. Thus the dot is always contained in the
ISS for every chain site. With the separation of spin up and down parts of the chains,
our chain sites are simple spinless fermionic sites, thus the LSS basis consists of the states
�occupied� and �un-occupied�:

|σk〉 = {|0k〉, |1k〉}. (2.2)

����� k

|σk〉

k−1

|ok〉|ok−1〉
�����

� � � 
���� 
 	 �

Figure 2.1: Part of a chain to illustrate how to determine an OSS basis |ok−1〉 of site k − 1 from

the outer and local bases of site k.

1States can always be written as some combination of creation operators applied to the vacuum state.
Thus they cannot be interchanged without respecting the anticommutation relations, too.

2In particular we will often use the possibility of exchanging states of di�erent parts of the system.
3The dot levels can as well be viewed as a combination of single sites (for each dot level and spin one

site). The fact, that the couplings di�er from a nearest neighbour hopping chain, imposes no restriction
to our argument.

4Here outer refers to that direction in the chain that points to the end of the chain, inner refers to the
direction leading to the dot.
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It follows directly from the chain structure (Figure 2.1) that for any given site k the
outer and local state spaces can be combined to an e�ective OSS for the next inward site5.
The coe�cients used for the linear combination are encoded in A.

|ok−1〉 =
∑

{ok},{σk}

A[σk]
ok−1,ok

|ok〉|σk〉 (2.3)

For brevity we will drop the sum symbols and imply summation over repeated6 super-/
subscripts, further we drop all but one k-subscript whenever possible. We will also use the
notion of the basis and its associated state space synonymously7.

|ok−1〉 = |o′〉 = A
[σk]
o′o |o〉|σ〉 (2.4)

This holds for every site k except for the end of the chain, as there are no more outer sites
and thus no e�ective OSS. Keeping this in mind, one can repeatedly apply (2.4) to get a
basis describing a whole chain.

|o0〉 = A[σ1]
o0o1

A[σ2]
o1o2

. . . A[σL]
oL−1

|σ1〉|σ2〉 . . . |σL−1〉|σL〉 (2.5)

The Jordan-Wigner transformation allows us to place the local state space vectors last,
to correspond to the ordering of the A-matrices. Moreover we use the convention that the
�rst index of every chain site A-matrix refers to the inner and the second index to the outer
basis8. The third index is the local basis index and is placed as a superscript, that carries
also the chain index k. For historical reasons we use the term matrix also for tensors with
arbitrary number of indices as long as they are used in the same context as the As above.
With that, we get an interpretation of the coe�cients A[σk]

o′o as matrices, and we can rely on
the matrix product�that is where the name of this method, matrix product state method,
is derived from�in order to write (2.5) more compactly:

|o〉 =
∑

σ

(
L∏
k=1

A[σk]

)
o

|σ〉. (2.6)

Additionally, we used the short-hand notation

|σk〉 = |σk〉|σk+1〉 . . . |σL〉 and for k = 1 |σ〉 = |σ1〉|σ2〉 . . . |σL〉. (2.7)

The whole matrix product in (2.6) has only one index assigned. This comes from the fact
that the A[σL] have column-vector shape, as the Lth site has no outer neighbour. So the

5Of course, this can be done for corresponding inner state space bases as well.
6Actually, we will even drop the summation symbol if the indeces are just equivalent and no confusion

is to be feared.
7So if we talk of a space |σk〉, we actually refer to the state space spanned by the basis |σk〉.
8But in the present context, while treating OSS bases, �inner� would refer to the �inner OSS� basis, e. g.

|ok−1〉 in (2.4), and not to the basis spanning the inner state space of the current site. This convention
allows us to use the standard nomenclature of �in� and �out�, regarding index directions, while still dealing
only with outer (or, later on, inner) state space bases.
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matrix product results actually in a vector (for every |σ〉). We call (2.6) a matrix product
state (MPS).

So far, we have done nothing to shrink the size of our Hilbert space, but the MPS
structure provides an e�cient tool for doing that. By setting some of the coe�cients
noted by the A-matrices to zero, i. e. limiting the size of the A-matrices, one can e�ectively
truncate the described state space. The dimension of the e�ective Hilbert space is then
given by the dimensions of the A-matrices. A very important question is how to truncate
the Hilbert space in an e�cient way so that one gets a reasonably good description of the
ground state. We will address this question in section 2.2. Of course, neighbouring matrices
must agree in their adjacent dimension. Thus we have an easily accessable parameter to
control the e�ective state space size, the dimensions of the matrices.

Graphical representation

|o〉 = o A1

σ1

A2

σ2

����� AL−1

σL−1

AL

σL

Figure 2.2: Graphical representation of the right-hand site of (2.6).

Matrix product states possess an intuitive graphical representation as shown in Fig-
ure 2.2. In this representation we depict the matrices by boxes and place the matrix
identi�er with just the site index k inside. All links from a box correspond to the indices
of the matrix, where usually the left link corresponds to the �inner� index and the right
one to the �outer� index9, and the link at the bottom of the boxes refers to the LSS index.
Links that connect two boxes denote a contraction of the relevant indices, implying in most
cases a matrix product. If we want to label the links explicitly, we place the index either
inside the box, right next to the link, if the link is connected to another box, or at the
open end of a link. There will be cases where we cannot use the matrix product notation
and we have to use a general contraction. But by thinking of a contraction as a generalised
matrix product, one can even stick with the same phrases.

To describe multiple chains, we reintroduce the additional indices α = 1 . . . N and
s =�, � to identify di�erent chains

|ok−1,αs〉 =
∑
σkαs

(
L∏
j=k

A[σjαs]

)
ok−1,αs

|σkαs〉 = P [σk]
αs |σkαs〉, (2.8)

9Context determines whether the indices refer to inner or outer state spaces.
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where we used the following abbreviation10

P k
αs ≡

(
P [σk]
αs

)
o
≡ P [σkαs]

oαs
≡

(
L∏
j=k

A[σjαs]

)
o

. (2.9)

If k = 1 in (2.9), we will drop the superscript12 k of P completely, like in Figure 2.3, which

|oαs〉 ≡ o A1

σ1

A2

σ2

����� AL−1

σL−1

AL

σL

≡ o Pαs

σαs

Figure 2.3: Graphical representation11 of (2.8) for k = 1: |oαs〉 = Pαs|σαs〉.

represents the equation |oαs〉 = Pαs|σαs〉.
Similar to a chain site we introduce a coe�cient �matrix� for the dot. But in contrast

to a chain site, the e�ective Hilbert space at the dot is divided in 2N e�ective chain state
spaces |oαs〉 (one for each chain and spin), which are independent from each other, and a
LSS |σαs〉, which typically is bigger than an ordinary chain site LSS for a single fermion.
So the �dot-matrix� B has 2N indices for the leads and a local index. With all these
ingredients a state of the whole system can be written as a MPS:

|ψ〉 = P [σ1�]
o1�

P [σ2�]
o2�

. . . P [σN�]
oN�

P [σ1�]
o1�

. . . P [σN�]
oN�

B[σ0�,σ0�]
o1�o2�...oN�

|σ0�,σ0�,σ1�, . . . ,σN�〉
= B[σ0�,σ0�]

o1�o2�...oN�
|o1�〉|o2�〉 . . . |oN�〉|o1�〉 . . . |oN�〉|σ0�,σ0�〉,

(2.10)

where |σ0s〉 = |σd1s, σd2s, . . . , σdms〉 is the LSS of the dot composed of the state spaces of
the m dot levels. Again, we use the fact that spin up and spin down electrons interact only
via the Coulomb term to split the big B-matrix into two parts13. This turns out to be a
huge numerical advantage (see section 2.3.5).

B[σ0�,σ0�]
o1�...oN�o1�...oN�

≡ A[σ0�]
o1�...oN�v

A[σ0�]
o1�...oN�v

(2.11)

Note the additional index v at both dot A-matrices that links spin up and spin down parts
together (see Figure 2.4).

So far we have introduced a generic MPS for a multi-level, multi-lead Anderson model.
Within this work we have implemented a spinful 2-lead Anderson model with 2 and 4 dot
levels. So for clarity, we will from now on restrict our notation to the 2-level 2-lead case
and use mostly the graphical representation (Figure 2.5), but the ensuing development can
easily be generalised to the general N -lead case. Note that using the graphical representa-
tion is as precise as using an explicit notation like in (2.8) but far more concise. It is always

10We also introduce more and less detailed variants, which will be used as necessary.
12We will also drop the k subscript in |ok−1,αs〉 for k = 1, i. e. instead of |o0αs〉 we will just write |oαs〉.
13Actually this structure of the Hamiltonian is not a prerequisite for being able to split B, but because

of it the splitting of B will turn out to be a very e�cient choice.
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Figure 2.4: Graphical MPS representation for a multi-level multi-lead Anderson model.

|ψ〉 = Pl�

σl�

A0�

σ0�

Pr�

σr�

Pl�

σl�

A0�

σ0�

Pr�

σr�

����
�� ��� ��� ��	 ����
�������� ����� ��	

Figure 2.5: Graphical MPS representation of |ψ〉 as in equation (2.10) with the dot matrix split

in two for the 2-level 2-lead Anderson model, which we will use from now on.

possible to translate the graphics back to explicit formulas using the rules we de�ned so
far.

Of course, there are numerical limitations for calculating properties of a multiple-lead
model, and we will comment on this when we discuss algorithmic details. From now on, we
refer to our leads as �left� (l) and �right� (r) lead and the chains are labelled accordingly as
r�, l�, r�, and l�. If we do not explicitly label the various parts of a MPS in a graphical
representation, we assume labels as in Figure 2.5. In cases where we do want to use the
explicit notation of (2.10), we will use a simpli�ed14 symbolic variant to denote a MPS

|ψ〉 =

(∏
k

A[σk]

)
|σ〉. (2.12)

14Otherwise one gets easily lost in all the indices, which would appear in the equations but are not
important at all.
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Inner state space basis

We have used the e�ective OSS bases for all previous statements. The construction of
e�ective ISS is in principle analogous:

|ik+1〉 = A
[σk]
ikik+1

|ik〉|σk〉 (2.13)

We illustrate our labelling conventions regarding ISS bases in Figure 2.6. There is only

����� k

|σk〉

k+1

|ik+1〉|ik〉
�����

� � � 
���� 
 	 �

Figure 2.6: Part of a chain to illustrate how to determine an ISS basis |ik+1〉 of site k + 1 from

the inner and local bases of site k.

one di�erence, namely the beginning of the chain.
For builing up e�ective OSS bases we started at the end of a certain Wilson chain,

where there is no more site further out. That made it easy to build successive OSS bases
starting from the end of the chain.

This is di�erent for the ISS bases, which always have the dot (and the other chains
attached to the dot) at the inner side of the �rst chain site. So in order to build successive
ISS bases for a certain chain, we �rst need to determine the ISS basis |i1αs〉 ≡ |iαs〉 of the
�rst chain site15. This basis provides an e�ective description for the dot and all the other
chains coupled to the dot.

� ��� |il�〉 = A0�

|σ0�〉

|or�〉

|v�〉

� �� A0�Pl� Pr� Pl� A0� Pr�

|or�〉|ol�〉

|v�〉

|or�〉

= |il�〉

|σ0�〉

Figure 2.7: Diagrams for calculating the ISS bases for the �rst site of the left spin up chain. The

gray parts in (b) indicate what the shorthand sketch (a) represents when written out explicitly.

To accomplish this, we have to obtain e�ective basis sets describing all the other chains,
i. e. the e�ective OSS bases |oαs〉 for their �rst sites. With these descriptions of the chains

15We drop the k index of |ikαs〉 for k = 1.
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combined with the local dot basis, we construct a new e�ective basis describing both the
dot and the other chains (Figure 2.7):

|il�〉 = A
[σ0�]
il�or�v�

|or�〉|v�〉|σ0�〉 with |v�〉 = A[σ0�]
ol�or�v�

|ol�〉|or�〉|σ0�〉 (2.14)

This new e�ective basis |i〉 can be used as starting point for calculating the other
e�ective ISS bases along this chain, which works in complete analogy to the OSS case.

2.1.3 Useful techniques

Before we can go on and explain how to use matrix product states to get a good approx-
imation for the groundstate, we need to introduce various techniques of handling matrix
product states.

Scalar product

〈ψ′ |ψ〉 = 〈σ′|

(∏
k′

A′[σ′
k′ ]

∗
)(∏

k

A[σk]

)
|σ〉 (2.15)

The composed local state space basis is of course orthonormal: 〈σα |σβ〉 = δαβ. Thus we
�nd that for calculating the scalar product of two MPS we �just�16 need to contract every
corresponding index pair as shown in (Figure 2.8).

〈ψ′ |ψ〉 =

Pl� A0� Pr� Pl� A0� Pr�

P ′∗
l� A′∗

0�
P ′∗

r�
P ′∗

l� A′∗
0�

P ′∗
r�

Figure 2.8: Scalar product 〈ψ′ |ψ〉 in MPS language.

Partial product

The norm is de�ned as usual ‖ψ‖ = 〈ψ |ψ〉. It turns out to be useful to de�ne a partial
product (norm) Skαs of a MPS17 (see Figure 2.9 for MPS expression)

Skαs ≡
(
Skαs
)
i′i
≡
∑
σk

(
P [σk]
αs

)
i

(
P [σk]∗
αs

)
i′
. (2.16)

16While in principle the order in which we carry out the contractions is irrelevant. But we try to keep
the size of intermediate results as small as possible, as the computational cost for contractions grows cubic
with tensor dimensions and we might run into additional memory problems.

17Note that there is no summation over α and s of the right hand side as these specify the lead
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(

Sk
αs

)

i′i
=

P k
αs

P k
αs

∗

i

i′

k L

Figure 2.9: MPS representation of the partial product (Skαs)i′i.

The de�nition of a partial product (2.16) starts with the contraction always at the end
of a chain, as it is based on the de�nition of the P k

αs. But this restriction can easily be
lifted and one can de�ne arbitrary index ranges (even beyond single chains) whose local
indices are to be contracted out. The result of such a procedure is an object (Figure 2.10)
with four remaining indices Xi′ij′j

A0� Pl� A0� Pr�

A∗
0�

P ∗
l� A∗

0�
P ∗

r�

i

i′

j

j′

Xi′ij′j =

Figure 2.10: Generalised partial product Xi′ij′j . The parts of the MPS that are not contracted

out are put in gray.

Other useful partial products are the contraction of a whole spin subsystem T sv′v (Fig-
ure 2.11) and S̃kαs, the �complement� of S

k
αs (Figure 2.12).

Pl� A0� Pr�

P ∗
l� A∗

0�
P ∗

r�

v

v′

T �

v′v =

Pl� A0� Pr�

P ∗
l� A∗

0�
P ∗

r�

Figure 2.11: Product of spin up subsystem T �
v′v.

Density matrix

One can easily build a density matrix out of a MPS:

ρ = |ψ〉〈ψ| =

(∏
k′

A[σ′
k′ ]

∗

)(∏
k

A[σk]

)
|σ′〉〈σ|. (2.17)
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Pl� A0� Pl� A0� Pr�

P ∗
l� A∗

0�
P ∗

l� A∗
0�

P ∗
r�

i

i′

(

S̃k
r�

)

i′i
= Sk

r�

Figure 2.12: Complementary partial product
(
S̃kr�

)
i′i
.

The reduced density matrix ρkαs for site kαs can be obtained by tracing out all the other
local indices (Figure 2.13). We call ρkαs also single-site density matrix, to distinguish it
from the two-site density matrix ρk

αs
k′
α′s′

, which is the reduced density matrix for sites kαs
and k′α′s′ (Figure 2.14).

Pl�

i

i′

A0� Pr� Pl� A0� Pr�

P ∗
l� A∗

0�
P ∗

r�
P ∗

l� A∗
0�

P ∗
r�

(ρkαs
)i′i =

Figure 2.13: One-site density matrix (ρkαs)i′i.

Pl�

i

i′

A0� Pr� Pl� A0� Pr�

j

j′

P ∗
l� A∗

0�
P ∗

r�
P ∗

l� A∗
0�

P ∗
r�

(

ρk
αs

k′
α′s′

)

i′j′ij
=

Figure 2.14: Two-site density matrix
(
ρk

αs
k′
α′s′

)
i′j′ij

.

2.1.4 Interpretation of the A-matrices

So far, we have shown in section 2.1.2 how to contruct an MPS and how the state of the
whole system can be described by a product of all the A-matrices. In this picture, we have
introduced an interpretation for the A-matrices as a basis transformation from site to site
in a very general form18. We also have shown how to calculate e�ective bases for the inner

18The As may represent any linear transformation, we did not demand unitarity of the A-matrices, so
far.
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and outer state space of a certain site. With the knowledge of these bases together with
the local basis, we can represent19 a state of the whole system in a local manner

|ψ〉 = A
[σk]
io |i〉|o〉|σk〉. (2.18)

This description holds for every site k. We thus obtain a second interpretation for the
Ak, as coe�cients needed to construct a system state |ψ〉 from the inner, outer and local
basis states. (2.18) is really just a di�erent interpretation of (2.10). If |o〉 and |i〉 are
replaced with their explicit forms similar to (2.6), but di�erent index regimes for k, (2.10)
is recovered. The product of all the other matrices is just split in parts and hidden in the
e�ective inner and outer basis states.

2.1.5 Orthonormal basis states

For every site we can construct e�ective basis states for the inner and outer parts of the
system in such a way, that together with the local basis they span the e�ective Hilbert
space for the whole system. We call this special site, for which we use this description, the
�current site� and k (kαs) the �current index�. A priori only the local basis states |σk〉 are
guaranteed to be orthonormal. Now, it will be convenient to demand that the basis states
of the inner and outer bases of the current site |σk〉, namely |i〉 and |o〉, are orthonormal,
too, i. e. that they obey

〈o|o′〉 = δoo′ (2.19a)

〈i|i′〉 = δii′ . (2.19b)

From this requirement we derive a condition on the MPS:

Skαs = 1 by (2.19a) (2.20a)

S̃k−1
αs = 1 by (2.19b). (2.20b)

These conditions have di�erent implications for the A's from di�erent parts of the system.
Let us focus for the moment20 on A-matrices from the outer part. (2.20a) is ful�lled if we
demand every A-matrix in the outer part to be �row unitary�∑

σk′

A[σk′ ]A[σk′ ]
†
= 1 for k′ > k, (2.21)

because then A[σk′ ] converts one orthonormal basis, |ok′〉, into another, |ok′−1〉. In order to
better understand, what this condition states, we rearrange the indices of A and introduce

19As we applied the Jordan-Wigner transformation to our Hamiltonian, we are free to choose any ordering
of the state vectors. We place the non local state vectors in the same order as their corresponding indices
of A are ordered, the local state vectors are placed last.

20The same reasoning applies to all other matrices, too, there are mainly technical di�erences. We will
provide the details in appendix A.2.1.
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a �superindex� x = (o, σ). This rearranging of A does not change A at all. But it enables
us to use standard terminilogy and well known de�nitions for two-dimensional matrices.
With that we can rewrite the original three-dimensional A as follows:

A
[σk′ ]
io = Ak

′

i,(o,σ) = Ak
′

ix. (2.22)

We use still the same symbol A, because we change only the notation but not the object
itself. Now (2.21) can be written in ordinary matrix form (for a graphical representation
see Figure 2.15a)

AA† = 1. (2.23)

This is, what we call �row unitary�. A is not a normal unitary matrix as A is usually not a
square matrix. However, it is subunitary, as the row vectors of Aix are orthonormal. Note
that the partial product of (2.16) reduces to(

Skαs
)
i′i
≡ δi′i (2.24)

if all A-matrices involved in it are now row unitary.
By analogous reasoning, the orthonormality of the inner basis, (2.19b), is guaranteed

if the matrices for k′ < k satisfy column unitarity (Figure 2.15b),∑
σk′

A[σk′ ]
†
A[σk′ ] = A†A = 1. (2.25)

AA† ≡ A A† = �

(a) Condition for row unitarity of A

A†A ≡ A† A = �

(b) Condition for column unitarity of A

Figure 2.15: Orthonormality conditions for outer and inner A-matrices. Gray lines indicate or-

thogonal vectors.

2.1.6 Operator representation

We will now discuss how to obtain a representation of an operator in an e�ective basis.
Usually we know the representation of an operator B̂ in the LSS basis21:

Bσ′σ = 〈σ′|B̂|σ〉 (2.26)

We assume that B̂ acts locally on site k and the basis |ok〉 is orthonormal. If the |ok〉 are
not orthonormal, we have to replace the δo′kok

, which we used in order to arrive at (2.27),

21For clarity we focus here on operators that act only upon one site. But a generalisation to operators
acting upon several sites straightforward.
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by the partial scalar product (Sk)o′kok
. See also Figure 2.17 for an example. To calculate

the matrix elements of B̂ in the e�ective outer state space basis (see also Figure 2.16) of
site k − 1 one uses (2.4) twice:

Bo′k−1ok−1
= 〈o′k−1|B̂|ok−1〉 = A

[σk]

ok−1ok
A

[σ′k]∗
o′k−1ok

Bσ′kσk
. (2.27)

Similarly we get for an operator Ĉ that is given in the outer basis of site k

Co′k−1ok−1
= 〈o′k−1|Ĉ|ok−1〉 = A

[σk]
ok−1ok

A
[σk]∗
o′k−1o

′
k
Co′kok

. (2.28)

Bo′
k−1

o
k−1

≡

Ak
ok−1

σ

B
σ′

A∗
ko′k−1

ok Co′
k−1

o
k−1

≡

Ak
ok−1

ok

σk C
o′

kA∗
ko′k−1

Figure 2.16: Basis transformation of operator representations

Bo′
k−1

o
k−1

≡

Ak
ok−1

σ

B
σ′

A∗
ko′k−1

P k+1
αs

P k+1∗
αs

Figure 2.17: Example for a basis transformation of an operator in case the OSS basis is not

orthonormal.

2.1.7 Evaluation of an operator

When dealing with the nearest neighbour hopping Hamiltonian we need to be able to
calculate terms like ck|ψ〉 and c†kck+1|ψ〉 There are two ways to look at this problem.

Global view

With this way we do not need to worry about orthonormalisation of the MPS. The operators
are represented in their LSS basis,

〈σ′k|c
†
k|σk〉 =

(
c†k

)
σ′kσk

and

〈σ′k+1|ck+1|σk+1〉 =
(
ck+1

)
σ′k+1σk+1

.
(2.29)
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Now these operators are contracted directly with the corresponding indices of the MPS
(we use the symbolic notation of (2.12), see Figure 2.18 for graphical version)

c†kck+1|ψ〉 =

(∏
k1<k

A[σk1
]

)(
c†k

)
σkσ

′
k

A[σ′k]
(
ck+1

)
σk+1σ

′
k+1

A[σ′k+1]

( ∏
k2>k+1

A[σk2
]

)
|σk1〉|σk, σk+1〉|σk2〉.

(2.30)

c
†
kck+1|ψ〉 ≡

Pl� A0�

c†

Pr�

c

Pl� A0� Pr�

Figure 2.18: Global way for calculating c†kck+1|ψ〉.

Local view

This view uses the local interpretation of the A-matrices. Therefore we need to provide
a representation of the operators with which we want to act on |ψ〉 in the appropriate
local e�ective bases. It is convenient to choose a A-matrix such that one operator can be
represented via the local |σk〉 space. In this example we choose k + 1 as current site index
(see also Figure 2.19). If any of the e�ective bases are not orthonormal, this will only be
re�ected in the representation of the operators we use.

c†kck+1|ψ〉 =
(
c†k

)
ii′

(
ck+1

)
σk+1σ

′
k+1

A
[σ′k+1]

i′o |i〉|o〉|σk+1〉 (2.31)

c
†
kck+1|ψ〉 ≡

Ak+1 |o〉c
†
k

|i〉

ck+1

|σk+1〉

Figure 2.19: Local way for calculating c†kck+1|ψ〉; graphical representation of (2.31).

2.1.8 Expectation values

From the global view it is straightforward to see how expectation values jave to be calcu-
lated. One has to calculate the scalar product of |ψ〉 with c†kck+1|ψ〉 as shown in Figure 2.20.
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〈ψ|c†kck+1|ψ〉≡

Pl� A0�

c†

Pr�

c

Pl� A0� Pr�

P ∗
l� A∗

0�
P ∗

r�
P ∗

l� A∗
0�

P ∗
r�

Figure 2.20: Global way for calculating the expectation value 〈ψ|c†kck+1|ψ〉.

In case of the Hamilton operator, which acts nontrivially on all sites, 〈ψ|Ĥ|ψ〉 can be vi-
sualised like in Figure 2.21. However, it is still important that the Hamiltonian breaks
up into simple (few-operator) local expressions for this contraction scheme to be doable in
practice.

〈ψ|Ĥ|ψ〉 ≡

Pl� A0� Pr�

Ĥ

Pl� A0� Pr�

P ∗
l� A∗

0�
P ∗

r�
P ∗

l� A∗
0�

P ∗
r�

Figure 2.21: Global way for calculating the expectation of the Hamiltonian, 〈ψ|Ĥ|ψ〉.

For calculating an expectation value the local way one needs to multiply (2.31) with 〈ψ|
in the local picture. Assuming the local bases to be orthonormal22, we get (see Figure 2.22)

〈ψ|c†kck+1|ψ〉 = A
[σk+1]
io

∗ (
c†k

)
ii′

(
ck+1

)
σk+1σ

′
k+1

A
[σ′k+1]

i′o . (2.32)

Since both methods of calculating expectation values are equivalent, the local variant
is numericly far more e�cient as it involves fewer matrix multiplications compared to
the global method. Consequently, it is very important for an e�cient method to work
locally throughout keeping the relevant operator representations. This directly leads to an
iterative method.

E�ects of Jordan-Wigner Transformation

In the above examples we did not care about fermionic ordering. This is �ne for the
linear portions of the chains, as we are using the Jordan-Wigner Transformation (JWT),
see appendix A.1. For the dot region, however, a few extra thoughts are necessary. On

22Later on we will always have orthonormal bases. In cases where this assumption is not valid, one
simply replaces Kronecker-deltas with the appropriate partial scalar products.



26 2. Matrix product state method

〈ψ|c†kck+1|ψ〉 ≡

Ak+1

c
†
k

ck+1

A∗
k+1

Figure 2.22: Local calculation of the expectation value 〈ψ|c†kck+1|ψ〉.

the dot, the hopping terms to the leads are not necessarily nearest neighbour terms with
respect to the JWT numbering scheme.

We will now calculate the term for the coupling of the �rst23 dot level to the right chain
in order to demonstrate the e�ects of the JWT, which occur in such a case. For pointing
out the di�erence between the JWT operators and the original ones we denote them by c̃.
Using k1, k2 to denote the dot level one and two and assuming properly orthonormalised
bases, we can write (see Figure 2.23)

〈ψ|c†k1ck+1|ψ〉 = 〈ψ|c̃†k1pk2 c̃k+1|ψ〉 = A
[σk1

,σk2
]

olorv

(
c̃†k1

)
σk1

σ′k1

(
pk2
)
σk2

σ′k2

(
c̃k+1

)
oro

′
r
A

[σ′k1
,σ′k2

]∗
ol o

′
rv

,

(2.33)
where pk = 1−2c†kck is the JWT correction term The calculation of hoppings form the dot
to the �rst site in the lead introduces extra p operators which are to be included for the
sites intermediate in the JWT ordering.

〈ψ|c̃†k1
pk2
c̃k+1|ψ〉 =

Ak

c̃
†
k1

pk2

A∗
k

c̃k+1

Figure 2.23: Local calculation of the expectation value 〈ψ|c̃†k1pk2 c̃k+1|ψ〉.

23Our site indices we use here cannot distinguish between the dot levels, but the graphical representation
indicates which level we refer to. Of course, in the actual implementation one has to use a di�erent indexing
scheme, in order to correctly implement JWT, but this is merely bookkeeping.
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2.2 Hilbert space truncation

We now show how to overcome the limitations of the NRG truncation scheme that keeps
simply the D states with lowest energy after each iteration. For this we utilise the DMRG
Hilbert space truncation scheme24, and choose which states to keep according to their
weight in the density matrix. Our goal is to keep all these states in the e�ective Hilbert
spaces, whose weight in the density matrix is larger than a certain threshold wmin. We
usually choose wmin = 10−6, which turns out to provide a good compromise between
accuracy and manageable numerical resources. We will now show how to maintain this
criterion while orthonormalising the e�ective basis states to obey (2.19)

2.2.1 Construction of the density matrix

To apply the DMRG truncation idea, we need an expression for the density matrix in the
local picture of (2.18):

ρ = |ψ〉〈ψ| = A
[σk]
i o A

[σ′k]∗
i′o′ |i〉〈i

′||o〉〈o′||σk〉〈σ′k|. (2.34)

Suppose we want to change the current site from k to k − 1, therefore we need a new
orthonormalised outer basis |ok−1〉. To achieve this we need to replace Ak by a row unitary
matrix Ãk in order to ful�ll (2.21). The density matrix ρ of (2.34) describes the whole
system. If we trace over the inner system states |i〉, we end up with the reduced density
matrix for the current site and the outer part of the system

ρ(i) = tri ρ = A
[σk]
i o A

[σ′k]∗
io′ |o〉〈o′||σk〉〈σ′k|, (2.35)

which is exactly what we want to describe with the new OSS basis |ok−1〉. Once again we
introduce a superindex x ≡ (o, σk) in order to use conventional matrices for notation

ρ(i) = Aix A
∗
ix′|x〉〈x| = A†A. (2.36)

In principle one would now diagonalise ρ(i), determine the eigenstates |x̃〉 with the biggest
weights and �nally choose a transformation that keeps exactly these states. It turns out
that this can be accomplished without even calculating ρ(i) explicitly using singular value
decomposition (SVD).

2.2.2 Singular value decomposition

The SVD is a very robust decomposition method for rectangular matrices, see [20, 21] for
details and proofs. Any n× n′ matrix A can be written in the following form, called SVD:

A = USV †, (2.37)

24We will not elaborate on DMRG here, see [6, 7, 8] for details.
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where S = diag(s1, s2, . . . , sl) with s1 ≥ s2 ≥ . . . ≥ sl and l = min(n, n′) is a diagonal
matrix that contains the descending �singular values� of A, U and V † are column and row
unitary matrices, respectively, and obey U †U = V †V = 1. If n ≥ n′, U is a n× n′ matrix
and V † is n′ × n′. In the case n < n′, U is a square matrix of size n× n and V † is n× n′,
see Figure 2.24 for visualisation.

A = U S V †

n < n′ � =

n×n′ n×n n×n n×n′

n > n′ � =

n×n′ n×n′
n′×n′ n′×n′

Figure 2.24: Singular value decomposition for rectangular matrices.

Constructing the reduced density matrix ρ(i) out of A = Aix, writing x ≡ (o, σk), using
(2.36), and applying the SVD to A, we obtain

ρ(i) ≡ A†A = V SU †USV † = V S2V †. (2.38)

So by calculating the SVD of A we implicitely diagonalise ρ(i) and from the rows of V † we
obtain a set of orthonormal basis states that are ordered according to their weight in the
density matrix.

To keep only states whose weight is larger than some threshold wmin, we can simply
set all singular values si = 0 for s2

i < wmin. Equivalently we can set the dimension n = D
when we build new OSS basis for site k − 1, where sD is the smallest singular value we
would keep. In practice we work the other way round. We set n = D from the beginning
and check for every site whether

s2
D < wmin (2.39)

holds. If the smallest singular value is too big, we need to increase D. Generally we
try to keep D as small as possible while preserving (2.39), because the value of D has a
big impact on the numerical performance of our optimisation scheme as the cost of the
algorithm scales like O(D3) as we will show in section 2.3.5.

An OSS basis for site k − 1 that is optimal in DMRG sense is thus given by

|ok−1〉 = V †
ok−1,(ok,σk)|ok〉|σk〉. (2.40)

2.2.3 Orthonormalisation & truncation scheme

We are now �nally in the position to specify explicitely how to implement the orthonor-
malisation procedure of our MPS in a �DMRG-optimal� way. An important point to notice
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is that, if we demand the e�ective bases of the current site in the local picture of (2.18) to
be orthonormal, the matrix Ak from (2.18) will be the only one not to be orthonormal in
any direction, as it carries the coe�cients that connect all incoming basis states. All other
A-matrices are part of the description of the e�ective bases for the inner and outer state
spaces, or in case of a dot matrix, of the lead and the other spin state space. In a proper
orthonormalised MPS all other matrices are orthonormal towards the current index k.

Assume that we want to change the current site from k to k − 1. This requires to
rewrite the product Ak−1Ak into a di�erent product Ãk−1Ãk that describes the same state
yet ensures that the inner and outer bases are now orthonormal with respect to the new
current site k − 1. To be explicit, Ãk now needs to ful�ll (2.23), which was not the case
while k was the current index. On the other side we can lift the orthonormality condition
for Ak−1 and replace it with Ãk−1, as now k − 1 is the current index. To ensure that the
overall state |ψ〉 does not change, we get as a basic condition for our procedure (introducing
the superindices x = (i, σk−1) and y = (o, σk)):

A
[σk−1]
iα A[σk]

αo = Ak−1
xα Akαy = Ak−1Ak = unchanged, (2.41)

where the sum over α yields the usual matrix product.
Our demand for a �DMRG-optimal� truncation already determines Ãk through (2.40):

Ãk = V †
i,(o,σk), (2.42)

where Ak = USV † is the SVD of Aki,(o,σk). The condition for an unchanged overall state

then determines Ãk−1 (see also Figure 2.25):

Ãk−1 = Ak−1US. (2.43)

With this choice we obviously obtain an new �DMRG-optimal� orthonormal OSS basis as
in Figure 2.25 and keep the overall state |ψ〉 unchanged.

Ak−1Ak = Ak−1 Ak = Ak−1 US V † = Ãk−1 Ãk = Ãk−1Ãk

Figure 2.25: Orthonormalisation of Ak towards the inner direction. The matrices that are not

orthonormalised in any direction are printed with gray background. The gray lines within the

boxes indicate whether the row or column vectors are orthonormal.

Let Dk, Dk+1 and d be the dimensions of the inner, outer and local state spaces of Ak,
so Ak has the size Dk×Dk+1× d. The LSS (d = 2) is �xed25, but we are free to choose Dk

and Dk+1. So by choosing Dk < Dk+1d we automatically truncate the OSS for site k − 1.
Our particular choice (2.42) and (2.43) for orthonormalising Ak guarantees that we keep

25We implement the dot matrices to have m local indices of dimension d = 2, where m is the number of
dot levels.
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all states with �nite weights in the density matrix. Note that this is somewhat di�erent to
conventional DMRG, where by addressing two neighbouring sites at the same time there
is explicit truncation indeed. In our case, however, SVD just provides a convenient and an
exact way of orthonormalising the A-matrices without changing the overall state.

2.2.4 Orthonormalisation towards other indices

The above procedure, which led to a �DMRG-optimal� OSS basis for site k− 1, can easily
be generalised for an orthonormalisation towards any index. The main idea for orthonor-
malising towards index g is to trace out all indeces of the density matrix except for index
g. All the other indices can be combined into a superindex x. The last step is to apply the
SVD to Agx (or Axg, depending on the ordering of the indices) to get the transformation
equations. Since everything works out in complete analogy, we just state the result for
creating a new ISS basis for site k + 1 starting from site k:

Ãk = U, Ãk+1 = SV †Ak+1, (2.44)

where the SVD of A(i,σk),o is given by Ak = USV † and the condition for the overall state
|ψ〉 to remain unchanged is

AkAk+1 = ÃkÃk+1 = unchanged. (2.45)

2.2.5 Matrix dimensions

At the ends of the terminated Wilson chains there are no outer states. So starting from
the end of the chains26 the state space dimension Dk will take the values d, d2, d3, . . . =
2, 4, 8, . . . until we start to truncate the e�ective Hilbert space. At the sites where Dk =
Dk+1d we do not truncate, so we choose Ai,(o,σk) = 1i,(o,σk). It turns out that, because there
is only Coulomb interaction between the two dot matrices but no particle exchange, we
can choose a small Dv between the spin up and down dot sites compared to the Dk along
the chains. Usually we choose the same matrix dimensions in all four chains. Figure 2.26
shows an example.

2.3 Variational optimisation scheme

So far we have provided the MPS description for system states, calculation techniques and
an e�cient way to truncate our state space according to DMRG ideas. In this section we
will devise a variational approach for �nding the optimal MPS representation of the system
ground state.

26The dimension DL is actually given by DL = 1, which means that the last chain matrix has also an
outer index. But as its dimension DL = 1 this does not have any in�uence and actually enables us to use
the same structure for all chain matrices.
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Figure 2.26: Example for a choice of matrix dimensions along the �rst part of a Wilson chain.

The value for k = 0 is the dimension Dv between the two dot matrices.

2.3.1 Minimisation problem

In order to �nd the ground state of the system in matrix product description we need
to calculate the MPS |ψ〉 that minimises the energy E = 〈ψ|H|ψ〉 with the constraint of
keeping the norm of |ψ〉 constant [17]. Using λ as a Langrange multiplier for normalisation
we arrive at the following minimisation problem:

min
|ψ〉

(
〈ψ|H|ψ〉 − λ〈ψ |ψ〉

)
. (2.46)

The key idea of the variational MPS optimisation is to optimise every single A-matrix
of |ψ〉 seperately until the ground state energy has converged. Therefore we need to
derive a condition from (2.46) for a single A. Inserting the local MPS description |ψ〉 =

A
[σk]
io |i〉|o〉|σk〉 from (2.18) into (2.46) yields (see Figure 2.27 for graphical representation)

min
Ak

(
A

[σ′k]∗
i′o′ H(i′o′σ′k),(ioσk)A

[σk]
io − λA

[σk]∗
io A

[σk]
io

)
, (2.47)

where H(i′o′σ′k),(ioσk) are the matrix elements of the Hamiltonian in the current local bases

H(i′o′σ′k),(ioσk) = 〈σ′k|〈o′|〈i′|H|i〉|o〉|σk〉. (2.48)

What we actually have done using the local description of |ψ〉 is to treat one Ak of the
multi-dimensional minimisation problem at a time keeping all other Ak′ �xed. For general
problems this can be a very bad approach as one can get stuck in a local minimum during
the optimisation. This must be kept in the back of ones mind. However, it has proven
to work reliable when the site site coupling vaires smoothly and monotonously. In our
case the Hamiltonian has only nearest neighbour interactions and there are no long-range
correlations in the system. This leads to the reliable behaviour of our approach.
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A
[σ′

k
]∗

i′o′ H(i′o′σ′
k
),(ioσ

k
)A

[σ
k
]

io − λA
[σk]∗
io A

[σk]
io ≡ H

Ak

A∗
k

−λ

Ak

A∗
k

Figure 2.27: Graphical representation of the ground state minimisation problem.

2.3.2 Site optimisation of the Ak

We solve (2.47) for the optimal solution in the usual27 way:

∂

∂A
[σ′k]∗
i′o′

(
A

[σ′k]∗
i′o′ H(i′o′σ′k),(ioσk)A

[σk]
io − λA

[σk]∗
io A

[σk]
io

)
= H(i′o′σ′k),(ioσk)A

[σk]
io − λA

[σ′k]

i′o′ = 0. (2.49)

Switching from coe�cient notation to operator notation and replacing λ with E0 results
in the eigenvalue problem

HA
[σk]
io |i〉|o〉|σk〉 = E0A

[σk]
io |i〉|o〉|σk〉. (2.50)

The eigenvector of the smallest eigenvalue is the solution to our minimisation problem.
So after solving this eigenvalue problem for the current site we replace the Ak with the
coe�cients of the eigenvector corresponding to the smallest eigenvalue and move on to the
next site.

2.3.3 Solving the eigenvalue problem

The main work we need to do in order to �nd the ground state is to solve the eigenvalue
problem (2.50): H|ψ〉 = E0|ψ〉. This is a well known problem from linear algebra and
there exist e�cient algorithms to solve it. The e�ective Hilbert space dimension is DiDod
which can become big easily. However, we are not interested in the whole spectrum of
H but only in the smallest eigenvalue and its eigenvector, so we apply standard Lanczos
method28 to solve it. For applying this method we only need to be able to calculate H|ψ〉,
which means �rst of all we need to calculate the matrix elements H(i′o′σ′k),(ioσk).

Using the fact that the Hamiltonian contains, in terms of matrix site indices, only
�nearest neighbour� coupling terms29, we can write for every site30 k:

〈σ′k|〈o′|〈i′|H(k)|i〉|o〉|σk〉 = 〈i′|H(k)
i |i〉+ 〈σ′k|〈i′|H

(k)
i• |i〉|σk〉+ 〈σ′k|H(k)

• |σk〉
+ 〈σ′k|〈o′|H(k)

•o |o〉|σk〉+ 〈o′|H(k)
o |o〉.

(2.51)

27Because the states are elements of a Hilbert space with a hermitian scalar product we need to take
the derivative of (2.47) with respect to the complex conjugate A∗k.

28See [21] for details.
29As as the dot levels are described by one matrix per spin, this holds also for the couplings from the

leads to the dot levels.
30We will drop the additional site superscripts of (2.51) whenever possible.
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For a graphical representation of (2.51) see Figure 2.28. Here, Hi and Ho denote the parts

〈σ′k|〈o
′|〈i′|H(k)|i〉|o〉|σk〉 ≡ H

i

i′

σk

σ′k

o

o′

= Hi

i

i′

+ Hi•

i σk

i′ σ′k

+ H•

σk

σ′k

+ H•o

σk o

σ′k o′

+ Ho

o

o′

Figure 2.28: Partioning of the Hamiltonian into smaller parts.

of the Hamiltonian that act on the ISS/OSS only31, Hi• and H•o contain the hoppings32

between the sites k and k ∓ 1, respectively. H•, which is only present at the dot, consists
of the pure local part of the Hamiltonian, i. e. the level energy terms.

Calculating the matrix elements of H•, Hi• and H•o is straight forward using the tech-
niques we introduced in section 2.1.8. For Hi and Ho we can use the recursion formulas

H
(k)
i = H

(k−1)
i +H

(k−1)
i• and (2.52a)

H(k)
o = H(k+1)

o +H(k+1)
•o . (2.52b)

The formula (2.52a) for Hi translates into the MPS equation Figure 2.29.

H
(k−1)
i

Ak−1

A∗
k−1

i

i′

+ H
(k−1)
i•

Ak−1

A∗
k−1

i

i′

=
(

H
(k)
i

)

i′i

Figure 2.29: Recursion formula for the inner part of the Hamiltonian
(
H

(k)
i

)
i′i
.

We can calculate Ho starting from the end of every chain. There by construction we
have the initial conditions

H(L)
o = H(L)

•o = 0, H(L−1)
o = 0, H(L−1)

•o = Λ
L−1

2 ξL−1

(
c†LcL−1 + h.c.

)
. (2.53)

For calculating Hi we proceed in the same way as for orthonormalising the ISS bases. We
�rst calculate all Ho for all the other chains, use them to get an e�ective Hamiltonian
describing also the dot in addition to the other chains. From there we can start using the
recursion formula (2.52a) for Hi.

31At the dot there is a third term for the other spin part of the system
32With respect to hopping to or from the dot, all dot levels of course have to be taken with the proper

Jordan-Wigner corrections into account
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2.3.4 Sweeping procedure

The whole optimisation process it put together as follows. First we initialise the whole
MPS randomly except those sites at the very end of the chain where we never truncate the
Hilbert space. There we choose the adequate unity matrix as in section 2.2.5. In addition
we do not optimise these sites as there is no need to, since no Hilbert space truncation
takes place. As a starting point for the optimisation process we chose site ko = L − 1 of
the left spin up chain.

So we orthonormalise the MPS towards k0 and prepare the matrix elements of the
Hamiltonian accordingly to (2.51). The next step is to solve the minimisation problem for
Ak0 and replace it by the newly found ground state of H. After that we iterate and go
on to the next site until after having passed all sites in the system we arrive at k0 again.
This is what we call a sweep, optimising the MPS back and forth once, see Figure 2.30

Pl� A0� Pr�

Pl� A0� Pr�

Figure 2.30: Sweeping sequence. For clarity we place the spin up and spin down parts on top of

each other. The solid blue line depicts standard procedure. Following the dashed sequence the dot

sites are skipped when switching from one lead to the other of the same spin. As a consequence

the dot sites get optimised only twice in a sweep, too. In this case the sweeping time decreases,

but to achieve as good energy convergence as with the standard sequence we need to perform

more sweeps. So the overall computational e�ort is comparable for both sweeping sequences.

for sweeping sequence. During one sweep every chain matrix gets optimised twice, the dot
matrices three times or also twice (see Figure 2.30). We repeat the sweeps until the MPS
has converged, which we test by calculating the overlap of the states before |ψN−1〉 and
after the N -th sweep |ψN〉. If we demand that the change

1− |〈ψN−1 |ψN〉| ≤ ε (2.54)

is to be bounded by ε = 10−3 we typically need between 10 and 15 sweeps. This depends
crucially on the system parameters. As we iterate site by site through the MPS we can
exploit that the system has changed only on one side of the current site thus enabling us to
reuse former calculated data for the other, unchanged side. To exploit this advantage we
save H(k)

i while the sweeping steps are directed outwards and H(k)
o while they are directed

inwards for every k.
Due to the strictly variational nature of our optimisation strategy we can only improve

the ground state description on every step, so the approximated ground state energy will
decrease until it converges. Let Ek be the lowest eigenvalue of H found at optimising site k.
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Figure 2.31: Energy convergence plot for 5 sweeps. k is the matrix site index with Jordan-Wigner

ordering except that the dot matrices have only one index assigned. The dot sites are marked

with the gray lines.

By plotting ∆E = Ek − min(Ek) versus the matrix site index k we can assess the energy
convergence (see Figure 2.31). We can see that the biggest improvements on the ground
state energy are made at the dot sites and their vicinity. At the chains the energy changes
only little. As we do not know the exact ground state energy we use the lowest Ek as a
reference for plotting. This leads to the apparent tremendous energy decrease at the end
of the last sweep, but this means only that the energy hardly changes in the outer half of
the chain.

2.3.5 Numerical costs

Let us now discuss the numerical costs of our algorithm. The calculation of H|ψ〉 has the
main impact on the computational time needed, thus we focus our analysis on this term
whose calculation basically consists of elementary matrix multiplications. The Lanczos
method, which we chose for solving the eigenvalue problem (2.50), is an iterative method.
For every �Lanczos iteration� the term H|ψ〉 is calculated once. We cannot completely
control the number of Lanczos iterations l performed but it will be usually less than 100
per site. We will now discuss the cost of a single Lanczos iteration, i. e. the multiplication
H|ψ〉, in further detail.
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The computational costs for every matrix multiplication is proportional to the size of
the resulting matrix times the dimension of the index that was contracted out. We will
provide a detailed analysis of the term Hi•|ψ〉 in the middle of a chain, where

Hi• ∝ c†k−1ck + h.c. (2.55)

We need the matrix elements 〈i′|c†k−1|i〉. There are Dk×Dk of them and they are constant
for the Lanczos iterations of the current site, so we only calculate them once for the site
under consideration. ck is a 2× 2 matrix in the LSS. Both of them need to be contracted
to the current Ak of size DkDk+1d. Thus the costs Ci• for calculating this term is

Ci• = O
(
D2(D + d)d

)
, (2.56)

where we used D = Dk = Dk+1 for simplicity as O(Dk) = O(Dk+1). By similar arguments
we �nd Ci = Co = O(D3d) and as the total costs for one Lanczos iteration in the chains

Cc = O
(
D2(D + d)d

)
. (2.57)

Using the same reasoning the result for the costs of an iteration step at a dot site (m dot
levels, D = D1) is

Cd = O
(
D2Dvd

m(D +Dv +md)
)
, (2.58)

note that O(D) = O(Dv) is not necessarily true, but depends on the system parameters.
The total cost for the optimisation process is then given by

Cs = Nswl (4LCc + Cd) , (2.59)

where Nsw, the number of sweeps performed, l the number of Lanczos iterations, and L
the Wilson chain length.

So it is obvious that the size of the dot matrices is the main limiting factor for the
performance of this algorithm. Its dimension is of course given by the problem, but we can
choose D and Dv as close as possible to the required minimum for keeping all states with
more weight in the density matrix than wmin. Space complexity is of no concern as long as
we manage to �t several dot matrices into the available computer memory.

2.3.6 Bond optimisation

The temporal complexity of the above introduced site optimisation method scales expo-
nentially with the number of dot levels m, which is bad if one would like to increase the
number of levels. The reason for this is the fast growing size of the dot Hilbert space as
D3dm, which is a direct subject to the Lanczos iterations. If it is possible to decrease the
size of the objects which are optimised, we could gain a huge advantage for the computa-
tional time needed for the Lanczos iterations. We will now present an alternative to the
site optimisation method, the bond optimisation method, where the computational cost
of every Lanczos iteration step is O(D3). This is e�ectively a bond optimisation, so the
current site reduces to the current bond.
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It is very similar to the site optimisation procedure. In principle we only perform the
optimisation step during the orthonormalisation process. Suppose the current site is k
with proper orthonormalised inner and outer state space bases |ik〉 and |ok〉 and we want
to sweep towards site k+ 1. Therefore we perform a SVD on site k as in section 2.2.4, but
we do not yet change Ak+1, see Figure 2.32. Performing a SVD on Ak yields Ak = USV †.

AkAk+1 = Ak Ak+1 = Ãk SV † Ak+1 = ÃkΨAk+1

|ik+1〉 |ok〉

Figure 2.32: Orthonormalisation of Ak. The gray lines indicate orthonormal vectors, non unitary

matrices are printed with gray background

As usual we set Ãk = U , but we introduce Ψ = SV † instead of multiplying the remainder
of the SVD onto Ak+1. This way we get a description of the whole system through Ψ in
terms of the ISS |ik+1〉 and the OSS |ok〉

|ψ〉 = Ψik+1ok
|ik+1〉|ok〉. (2.60)

Using this description for a system state we can adopt the whole reasoning of sections
2.3.1 and 2.3.2 and apply the optimisation algorithm to Ψ. The only di�erence is that the
Hamiltonian now splits into three parts

〈o′|〈i′|H|i〉|o〉 = 〈i′|Hi|i〉+ 〈o′|Ho|o〉+ 〈o′|〈i′|Hio|i〉|o〉, (2.61)

which can all be calculated using the same arguments as in section 2.3.3. To �nish the
current sweeping step after having Ψ optimised we restore the original MPS structure of
|ψ〉 by setting

Ã
[σk+1]
io = Ψio′A

[σk+1]
o′o . (2.62)

By analysing the temporal complexity of this approach we see that the costs Cb for
performing one Lanczos iteration is now independent on the currrent position and does no
longer depend on m at all:

Cb = O(D3) (2.63)

So as long as we are interested in ground state properties only, we can use this bond
optimisation scheme, which is far more e�cient than the site optimisation scheme and
can e�ciently be expanded for more dot levels keeping memory restrictions in mind. The
big advantage of the bond optimisation is to solve the actual minimisation problem on
smaller con�guration spaces compared with the site optimisation. Optimising the dot site
(Cd = O(D4dm)) is replaced by three �small� optimsations on the bonds only (Cb = O(D3))
for optimising the same parameter space (D3dm). This directly implies the necessity of
more sweeps.

However, this is also the downside of this method. Considering �nite size spectra (see
section 3.1.2) it turns out that the excitation spectrum does not converge as well as with
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the site optimisation approach. So in order to reach an equally well converged spectrum
we need to increase the number of sweeps we perform by a considerable amount, which
will reduce the performance advantage of the bond optimisation scheme.

There is another point one has to be very careful about when using the bond opti-
misation method. If one is calculating a series of ground states while varying a certain
parameter, e. g. the position of the dot levels compared to the Fermi energy of the leads,
it is tempting to use an already calculated ground state from a di�erent parameter value
as starting point for the actual calculation. This works �ne when doing site optimisation.
But due to the slow convergence of the bond optimisation scheme the sweep truncation cri-
terion (2.54) may be ful�lled after very few sweeps, causing the algorithm to stop sweeping
prematurely, although the current state is still very di�erent from the real ground state.
This behaviour can be improved by demanding a minimum number of sweeps, but our
experience shows that it is best to start the calculation for every parameter value with a
randomly initialised MPS.

2.4 Determining the ground state in a nutshell

In the previous sections we have introduced the MPS description for system states and
provided the tools to handle such states e�ciently. Furthermore we applied the DMRG
Hilbert space truncation scheme to the MPS representation and derived a variational algo-
rithm to determine the system ground state. Now we will put all the pieces together and
present the whole algorithm for determining the ground state in condensed form (we use
Matlab pseudo code notation).

First we need to create the initial MPS and prepare the Hamiltonian.

1 % initialise MPS mps
2 mps = MPState (L , D, d , . . . ) ;
3 k0 = 2 ; k_end = 4∗L+1
4 or thonormal i s e (mps , k0 ) ;

For normalising the MPS we formally just need to create the ISS |iL+1〉 for the whole
system to ensure ‖ψ‖ = 1. Of course we need to use the Jordan-Wigner numbering scheme
for implementing the algorithm (see section A.1.3).

5 % prepare Hamiltonian h for sweeping
6 h = hamiltonian ( eps_dot , Gamma, U, . . . ) ;

7 prepareOps (h , mps) ; % calculate H
(k)
i and H(k)

o ∀k

After we calculated all e�ective Hamilton operators H(k)
i and H(k)

o , we can start with the
sweeping.

8 for n = 1 :maxSweeps
9 mps_old = mps ;

10 for k = [ k0 : k_end , k_end:−1: k0 ] % back and forth through the system
11 A = mps{k } ;
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12 A2 = LanczosGroundState (A, h) ; % A2 is the new optimised one

This requires a method for calculating H|ψ〉, which we need to supply. This is also the
function with the highest impact on computational performance as it is called very often.

13 [ u , s , v ] = svd (A2) ; % obtain singular value decomposition of A2
14 mps{k} = u ; % provides orthonormal basis
15 mps{k+1} = s∗v '∗mps{k+1} % preserves original MPS

16 updateHamiltonAndOps (h ,mps{k}) % calculate new H
(k+1)
o or H

(k+1)
i

17 end

These inner and outer Hamilton operators are required by the Lanczos method for cal-
culating the ground state with respect to the current site (bond). We neglected here the
consequences of a more complicated sweeping order, but this is only bookkeeping.

18 % check for stopping criterion
19 change = 1 − abs ( s ca l a rp roduc t (mps , mps_old ) ) ;
20 i f change < sweepEps
21 break ; % stop the sweeping if the state hardly changed
22 end

23 end % sweeping loop
24 % now we got ground state mps ready to use

This kind of stopping criterion works �ne for site optimisation. In case of bond optimisation
we need a more sophisticated one to avoid stopping the sweeping process prematurely.

In principle this is the whole sweeping procedure. We did not show all the functions
needed for handling a MPS (like initialising, orthonormalising, scalarproducts, . . . ), as
they are straightforward to implement using the formulas we provided.

In the next chapter we will show how to check whether our choices of the Dk and L, the
chain length, were su�cient. Additionally we will present �rst results we obtained using
this optimisation approach and compare our results with NRG for parameters where NRG
is still feasible.
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Chapter 3

First results

Within this work we successfully implemented a two-lead Anderson model with two and
four dot levels. We will now present �rst data we obtained from this method.

3.1 Consistency checks

3.1.1 Matrix dimensions

After the calculation of a ground state it is important to check whether the choice of the
matrix dimensions was su�cient to describe the result well enough. Therefore we calculate
the reduced density matrix ρ(i) = A†

kAk = ρk from (2.38) for every site k. We then can
determine the minimal Dk,min necessary for keeping all states with a corresponding weight
bigger than wmin by just counting the eigenvalues of ρk bigger than wmin.

We compare this Dk,min with what we call bond entropy Sk. We de�ne the bond entropy
as the Shannon entropy of the reduced density matrix [8]

Sk = −ρk ln ρk. (3.1)

With the name bond entropy we emphasise the fact that we used the reduced density
matrix, which describes the system as a bipartite system with respect to one speci�x
bond, i. e. an index in the MPS to be summed over. In plot Figure 3.1 we actually plot
eSk . Because in the case where ρk is a classical homogeneous mixture of N states, all the
eigenvalues of ρk are equal to 1

N
, and so we �nd

eSk = N, with ρk = diagN(
1

N
, . . . ,

1

N
). (3.2)

If we interprete the bond entropy in an information theoretical sense, it provides a
measure for the amount of information that links the two parts of the system. So we would
expect for the Dk,min to show similar characteristics along the chains.

For the comparison plot we scale eSk by a linear factor so that it nearly overlaps with
Dk,min at the far ends of the chains. We notice that both curves show similar behaviour but



42 3. First results

1

3

5

7

9

11

13

15

17

−63 −54 −45 −36 −27 −18 −9 0 9 18 27 36 45 54

k

Dk,min

4.5 · eSk

Figure 3.1: bond entropy

especially near the dot the rescaled bond entropy does not rise as high as Dk,min. These
even-odd oscillations that appear in both curves are frequently observed with NRG-type
methods and can be linked to singlet formation.

The signi�cant criteria for judging whether the chosen Dk were su�cient are the Dk,min.
Since per construction

Dk,min ≤ Dk, (3.3)

we need to check the smallest eigenvalue1 of ρk explicitely if it is smaller than wmin. If it
is not our choice for Dk was too small and we need to increase it.

3.1.2 Flow diagram

The second parameter to check is the Wilson chain length L. This can be done by consid-
ering energy �ow diagrams, also called �nite size spectra.

Single chain �ow diagram

Given our model with four chains attached to the dot, we can obtain an energy �ow diagram
in two ways. For the �rst way we consider only one chain2. We start with the current
position at the dot and proceed out till the end of the chain. Along the way, we calculate a
sequence of inner Hamiltonians H(k)

i for all k along this chain just the same way as during

1Everything can be done using the singular values of the proper reshaped Ak. There is no need to
calculate the reduced density matrix explicitely.

2Usually, we use the upper right chain for this purpose, but this choice has no big consequences,
especially for symmetric couplings to the leads.
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Figure 3.2: Flow diagram for the model parameters of Figure 3.3 at ε = 0.4U .

the sweeping process. We can then calculate the spectra E(k) of these Hamiltonians by
exact diagonalisation. In order to undo the e�ects of the logarithmic energy discretisation
of the NRG formalism we rescale the energy di�erences with respect to the ground state
with Λ

k
2 :

Ẽ
(k)

=
(
E(k) − E

(k)
0

)
· Λ

k
2 (3.4)

We then plot these Ẽ
(k)

versus the chain index k to obtain the single chain �ow diagram (see
Figure 3.2) for even or odd site indices k. Note that this already contains the expectation
value of the Hamiltonians for the remaining chains. Even-odd oscillations would again
become visible if one would plot the spectrum for every k. To avoid this e�ect we only
plot the spectra for even or odd site indices k. In plot Figure 3.2 we chose to plot the
�ow diagrams for even sites. By doing this we study how the system responds to a length
change of one of the chains. If the rescaled spectrum no longer changes, the chain length
is big enough to prevent �nite chain length e�ects.
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NRG-like �ow diagram

As an alternative to the single chain �ow diagram we can calculate a �ow diagram in
analogy to NRG. There we consider a somewhat di�erent series of Hamiltonians H(k) =
Hdot + Hcoupling + Hk

leads, where H
k
leads describes the �rst k sites of all chains. So in this

series we add step by step one site at the end of every chain. For calculating the spectra
of the H(k) we combine all ISS |ikαs〉 for the same k to a single NRG-like ISS

|iNRG
k 〉 = |ikl�〉 ⊗ |ikr�〉 ⊗ |ikl�〉 ⊗ |ikr�〉. (3.5)

In principle the calculation of the spectra is as straightforward as for the single chain spec-
tra, but there is the technical problem that by combining the |ikαs〉 in a tensor product
like fashion, the resulting Hilbert space, i. e. the one that has to be used in NRG context,
is orders of magnitudes larger than the one in the underlying variational problem. Accord-
ingly the Hamiltonians H(k) have the size D4 × D4. Because of the size of these objects
we can at the moment only calculate the NRG-like �ow diagram for D ≤ 6. For every k
we determine the spectrum for a system with chain length k, hence the name ��nite size
spectrum�.

We compare both types of �ow diagrams for D = 6 with a single chain �ow diagram for
an adapted choice of Dk, where Dk is 16 along the outer part of the chains. We note that
the �xed points in the �ow diagram agree quite well for the lowest lying excitation and
show also for higher excitation energies similarities. The major source for the di�erence is
that for the single chain �ow diagram a larger Dk was taken (Dk = 16 > D = 6) and thus
can be considered more accurate. For D = Dk the �xed point spectra coincides.

3.2 Occupation of the quantum dot

Troughout this part we �x the Coulomb interaction U = 0.2W , 2W being the band-
with, und use the convention W = 1. The relative positions of the single dot levels
ε = (ε1, . . . , εm) are given with respect to the overall level position ε corresponding to the
onsite chemical potential. We label the dot levels with increasing level energy. For the
occupation number plots we use ε as abscissa. For the comparison of MPS and NRG results
we used parameter sets from [16].

3.2.1 Two-level dot

Spinless system

For symmetric couplings of two spinless dot levels to two spinless leads, the resulting two-
level Anderson model calculations are also easily feasible using NRG. First we calculated the
occupation of two spinless dot levels (see Figure 3.3). By setting the Coulomb interaction
U = 0 between the spin up and down parts of the dot we can simulate a spinless system
with our model, as there is no interaction between the two spin �avours left. In this case
we can also set the matrix dimension between the two dot matrices Dv = 1 and restrict the
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Figure 3.3: Dot level occupation for a spinless two-level system. For the symmetric level splitting

and the couplings of the dot we used ε2 − ε1 = 0.1U and Γ1l = Γ1r = 0.005U , Γ2l
= Γ2r = 30Γ1l.

N = 1
2(n1 + n2) is the rescaled overall dot occupation.

sweeping to one spin subsystem. For the plot of Figure 3.3 we �nd very good agreement
in both the occupation of the dot levels and the groundstate energy. The relative energy
di�erence of MPS and NRG data is of order 10−5. The NRG calculations were carried out
by Andreas Weichselbaum using D = 256.

Spinful system

We also compared with NRG results for a spinful two-level system (Figure 3.4), again with
symmetric couplings of to the leads. Since we applied no magnetic �eld and therefore the
spin up and spin down site for each level are degenerate, we plotted only the summed
occupation for each dot level.

The NRG data calculated with D = 512 is again from Andreas Weichselbaum. Note
the deviation between NRG and MPS data in this case. Introducing spin into the system
basically squares the dimension of the Hilbert space. This is starting to be a problem
especially for NRG, because it is not possible to increase the kept Hilbert space to the
same extent. However, it is possible for symmtric couplings to the leads to map the
leads to a new set of leads such that each dot level only couples to one lead [16]. This
transformation would enable NRG to describe the system in a better way, since only two
instead of four �spinless� leads need to be taken into account.
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Figure 3.4: Dot level occupation for a spinful two-level system. For the symmetric level splitting

and the couplings of the dot we used ε2 − ε1 = 0.2U and Γ1l = Γ1r = 0.1U , Γ2l
= Γ2r = 4Γ1l.

ni = ni� + ni�, N = 1
2(n1 + n2) is the rescaled overall dot occupation.

3.2.2 Four-level dot

There was little time to explore the rich physics that is accessible with our method within
the scope of this thesis. We will show only a demonstration plot of the occupation numbers
of a spinful four-level dot coupled to two leads (see Figure 3.5). As parameters we used:
U = 0.2W and εi = (−0.1,−0.03, 0.07, 0.1)·U+ε, where ε is the middle level position which
is plotted along the abscissa. For the couplings of the lead to the dot we chose symmetric
values up to a minus sign: Γil = Γi, Γir = siΓi with Γi = (0.5, 0.02, 1, 0.7) · 0.2U and
si = (+1,−1,−1,+1). However, in principle our implementation imposes no restrictions
at all on the values of Γ. For this plot we applied three di�erent magnetic �elds B1 = 0.2U ,
B2 = 0.02U and B3 = 0.002U , which has the e�ect to remove the energy degeneracy of
spin up and spin down parts of the dot levels, εi� = εi +

1
2
B and εi� = εi − 1

2
B. The main

features of this plot (Figure 3.5) are well understood. The levels with small coupling Γ to
the leads exhibit steep rises of their occupation (espacially level 2). The di�erent magnetic
�elds mainly change the energy di�erences between spin up and spin down part of the
levels, which is again best visible for level 2. We used the site optimisation method for
calculating the data for this plot. We also applied the bond optimisation scheme to this
model and we found it very hard to judge how well the state has already converged due to
the slow convergence of that method, see also section 2.3.6. One possible improvement on
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Figure 3.5: Occupation of a four-level dot. We used the site optimisation method tor create this

plot.

this situation may be to combine both sweeping methods to get a higher level of con�dence
in the results.

The method we have shown in this thesis so far allow us to study an interesting and
broad �eld of physics. We demonstrated this by applying it to a four-level model, that
in its full generality is highly challenging for conventional NRG calculations. It should
be noted that whereas NRG already heavily relies on the exploitation of symmetries in
the system such as total particle or spin conservation, the method presented in this thesis
was built on a simple computational environment without symmetries except for the very
important fact that on a variational basis the chains can be treated separately, which is
absolutely impossible within the spirit of NRG.
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Chapter 4

Conclusions and Outlook

The goal of this thesis was to develop the matrix product state approach for �nding the
ground state of an Anderson model with multiple leads and dot levels. We applied the NRG
transformation to the Anderson Hamiltonian and treated in principle the same Hamilto-
nian numerically as NRG does, but we used the DMRG Hilbert space truncation idea.
Additionally the MPS approach is a strictly variational method compared to the itera-
tive solving scheme of NRG. The MPS ansatz enables us to distribute numerical resources
di�erently along the system and provides methods for checking the quality of the chosen
model parameters.

For a spinful two-lead Anderson model with two and four dot levels we successfully
implemented two di�erent sweeping methods (onsite and bond optimisation). Comparison
with NRG results for setups where NRG is still feasible yields very good agreement. But
with our approach we are able to calculate properties of more complex systems like the
spinfull four-level dot for zero temperature.

However, this is a rather young method and there is still some development to do.

• The calculation of spectral functions has already been demonstrated for one-dimen-
sional systems [17] and should be straightforward to implement in our model.

• For �nite temperature properties solving for the ground state is not enough. One
needs to calculate the full density matrix ρ ∝ e−βH , which has been accomplished
for NRG using MPS language [12, 19]. Therefore it should be possible to extend this
method to our MPS approach.

• Time-dependent problems can be solved using time-dependent DMRG [8]. Also for
NRG exists a method do study the time evolution of a system [18], but there are
some limitations as the parameters may only change abruptly at t = 0. As DMRG
can also be formulated in terms of MPS, it should also be applicable to our model.

• Steady state solutions of non-equilibrium problems can be described by a many-body
Lippmann-Schwinger equation. Solving the Lippmann-Schwinger equation requires
similar techniques as calculating spectral functions. So it should be possible to for-
mulate such an approach within the MPS framework.
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Appendix A

Further details

A.1 Jordan-Wigner Transformation

We will now adopt the Jordan-Wigner transformation (JWT), which was �rst introduced
by Jordan and Wigner in 1928 [3]. This method mainly targets one-dimensional systems
and obtains almost bosonic behaviour of the transformed fermionic operators.This makes
numerical treatment much easier, as operators of di�erent sites commute, greatly simpli-
fying the treatment of fermionic signs in the underlying physical system.

A.1.1 De�nition

Let {ci} be a set of fermionic operators with some ordering scheme, say i = 1, . . . , N . The
JWT is de�ned as the following transformation:

c̃i ≡ (−1)
P

k<i c
†
kckci ≡

(∏
k<i

(−1)c
†
kck

)
ci ≡

(∏
k<i

pk

)
ci ≡ Pici, (A.1)

where we introduced the following sign factors

pk = (−1)c
†
kck and Pi =

∏
k<i

pk, (A.2)

which is diagonal and can only take the values ±1. With c̃†kc̃k = P 2
k c

†
kck = c†kck, the inverse

transformation is
ci = (−1)

P
k<i c̃

†
k c̃k c̃i. (A.3)

A.1.2 Commutator Relations

The sign factor pk can be rewritten:

pk ≡ (−1)c
†
kck = 1− 2c†kck =

[
ck, c

†
k

]
. (A.4)
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Keeping the fermionic anticommutator relations for the ci in mind, the commutators for
the transformed operators (for i = j) can be written down:[

c̃i , c̃
†
i

]
= P 2

i

[
ci , c

†
i

]
= pi,[

c̃i, c̃i
]

= P 2
i

[
ci, ci

]
= 0,[

c̃†i , c̃
†
i

]
= P 2

i

[
c†i , c

†
i

]
= 0.

(A.5)

For i 6= j (we assume i < j, the argument for j < i works exactly the same) one �nds using

Pk−i =
k−1∏
j=i+1

pj : (A.6)

[
c̃i , c̃

†
j

]
= P 2

i Pj−i

[
ci , pic

†
j

]
= Pj−i

[
ci , (ci c

†
i − c†ici )c

†
j

]
= Pj−i(ci ci c

†
ic

†
j︸ ︷︷ ︸

=0

−ci c
†
ici c

†
j − ci c

†
ic

†
jci + c†ici c

†
jci︸ ︷︷ ︸

=0

)

= Pj−i(−ci c
†
ici c

†
j + ci c

†
ici c

†
j) = 0,[

c̃i, c̃j
]

= P 2
i Pj−i

[
ci , (ci c

†
i − c†ici )cj

]
= 0,[

c̃†i , c̃
†
j

]
= P 2

i Pj−i

[
c†i , (ci c

†
i − c†ici )c

†
j

]
= 0.

Summarising these results:[
c̃i , c̃

†
j

]
= (−1)c

†
i ci δij,

[
c̃i , c̃j

]
=
[
c̃†i , c̃

†
j

]
= 0. (A.7)

This implies bosonic relationship for i 6= j, while maintaining the fermionic locally for
i = j. This is important as it prohibits double occupancy as c̃ic̃i = cici = 0, a consequence
from dealing with Fermions. The ordering scheme itself is unimportant up to the point
that hopping terms in the Hamiltonian should appear as nearest neighbour terms. This
can easily be donw in linear systems, but gives rise to more complex operators in the
Hamiltonian if this is not possible.

A.1.3 Application

Operators

Now we apply the JWT to our system Hamiltonian (2.1). There are only two types of
terms we need to consider. The �rst one are the energy and Coulomb interaction terms on
the dot, which consist of n̂ operators only. Using the de�nition (A.1) we immediately get

ñk = P 2
k c

†
kck = nk. (A.8)

So we can directly replace all n operators with their JWT counterparts.
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The second type of terms are the hopping terms. For nearest neighbour hopping we
derive

c̃†kc̃k+1 = P 2
k c

†
kpkck+1 =

(
c†kckc

†
k − c†kc

†
kck

)
ck+1 = c†kck+1. (A.9)

For other hopping terms, which occur, e. g. for the hopping from the leads to the dot, we
have

c̃†kc̃k+l+1 = P 2
k c

†
kpk

l∏
i=1

(
pk+i

)
ck+l+1 = c†k

l∏
i=1

(
pk+i

)
ck+l+1. (A.10)

So we see that, when using JWT operators in our Hamiltonian, only hopping terms other
than nearest neighbour hopping are rewritten. These terms require appropriate corrections
pi that a�ect only the sites between those coupled by the hopping itself.

Ordering scheme

As a last step for applying the JWT to our problem, we need to introduce a coherent
ordering scheme for the whole system. For brevity of discussion we use the two-level two-
lead model as an example (Figure A.1), but the principle applies to any number of levels
and leads and can easily be generalised. We start labelling at the end of the left spin up

Pl�

1 L

A0�

L+1 L+2

Pr�

L+3 2L+2

Pl�

2L+3 3L+2

A0�

3L+3 3L+4

Pr�

3L+5 4L+4

Figure A.1: Ordering scheme in the 2-level 2-lead Anderson model we use for the Jordan-Wigner

transformation. Only the �rst and last index of the chains are labelled, the others are grayed out.

chain and continue to the right until we hit the end of the right spin up chain. The spin
up dot sites are placed in the middle of the two spin up chains. Then we proceed at the
end of the left spin down chain the same way to the end of the right spin down chain. Note
that the site indices di�er from the matrix indices, because one dot matrix describes more
(in this case two) dot levels (sites). The generalisation to m dot levels is straight forward,
all the dot sites are added in an arbitrary but �xed order. For more leads, however, we
would have to add whole additional chains somewhere between the already existing chains
in the labelling scheme. Assume we add another Wilson chain for a third lead, which also
allows hopping onto the dot. Suppose we put it between the �rst Wilson chain and the
dot with respect to the JWT ordering. The original nearest neighbour coupling between
the �rst chain and the dot would transform to a hopping term over the distance L of the
newly added third chain. This would generate correction terms a�ecting the whole third
chain. This cannot be avoided since such a three chain model cannot be mapped to an one
dimensional chain model keeping all couplings in nearest neighbour order1.

1JWT can be generalised to more than one dimension [11]. However, it is much more complex and
beyond the scope of this thesis.
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The reason for the JWT to work so well in our model lies in the fact that the coupling
between the spin up and down part is only carried by Coulomb interactions. In this terms
appear only n̂ operators, which do not aquire corrections due to JWT. So in terms of
particle hopping we can view our system as two distinct one-dimensional systems. To
these we can apply the JWT without complications.

By applying the JWT all but some of the coupling terms of the dot levels to the
leads remain unchanged. To the changed terms simple additional operators (pk) are added
between the original hopping sites. This can always be incorporated in the e�ective creation
and annihilation operators of the dot or corrected locally on the dot itself, when the dot site
is the current site. So we will suppress this corrections in our further discussions and just
use the transformed operators with the same symbols. We will also neglect the di�erence
between the ordering imposed by the JWT and our labelling developed in section 2.1.2,
this di�erence matters only for the actual implementation of the algorithm, but for our
discussion we will stick with the more convenient nomenclature of 2.1.2.

A.2 Orthonormal basis states

A.2.1 Derivation of the MPS orthonormality condition

Outer state space basis

We start at the end of a chain. The e�ective OSS basis for the second last chain site is
given by

|oL−1〉 = A[σL]
oL−1

|σL〉 (A.11)

The orthonormalisation condition (2.19a) can be written in MPS form (Figure A.2), drop-
ping super�uous subscripts.

AL

A∗
L

o

o′

δo′o ≡ 〈o′ |o〉 ≡ ≡

o

o′

Figure A.2: Orthonormalisation condition for |o〉 = |oL−1〉

For an arbitrary chain position we may write the outer basis states |ok〉 as

|ok〉 = A[σk+1]
okok+1

|ok+1〉|σk+1〉. (A.12)

We immediately derive the following orthonormalisation condition:

〈o′k |ok〉 = Sk+1
o′kok

= P
[σ]k+1

o′k

∗
P

[σ]k+1

ok
= δo′kok

. (A.13)
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Using the fact that the |ok+1〉 are already orthonormal, the orthonormality condition (2.19a)
readily yields (see also Figure A.3)

A
[σk+1]
okok+1

A
[σk+1]

o′ko
′
k+1

∗
δo′k+1ok+1

= δo′kok
. (A.14)

We can again reformulate this in terms of an ordinary two-dimensional matrix Aokx, if

A
[σk+1]
o

k
o

k+1

A
[σk+1]∗

o′
k
o

k+1

=

Ak+1

A∗
k+1

ok

o′k

σk+1

ok+1

o′k+1

=

ok

o′k

= δo′
k
o

k

Figure A.3: Orthonormalisation condition for Ak+1

we introduce a superindex x = (ok+1, σk+1). In this compact representation we obtain as
orthonormalisation condition (for a graphical representation see Figure 2.15a)

AA† = 1, (A.15)

which states that the row vectors of A are orthonormal.

Inner state space basis

In principle everything works the same for the inner bases, only the inner and outer indices
need to be interchanged. Let us assume we already obtained an e�ective ISS basis |i1〉 for
the �rst chain site, as we will describe in section A.2.2. For the inner basis states |ik〉 of
site k the orthonormalisation condition is

〈i′k |ik〉 = S̃ki′kik = δi′kik . (A.16)

Using the orthonormality of |ik−1〉,

S̃k−1
i′k−1ik−1

= δi′k−1ik−1
, (A.17)

we get again a condition (Figure A.4) on the Ak−1. Once again we introduce a superindex2

A
[σk−1]
i
k−1

i
k

A
[σk−1]∗

i
k−1

i′
k

=

Ak−1

A∗
k−1

ik

i′k

=

ik

i′k

= δi′
k
i
k

Figure A.4: Orthonormalisation condition for Ak−1 regarding inner basis states
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x = (ik−1, σk−1) in order to write A as a two-dimensional matrix Axik . In this representation
we can formulate the condition of Figure A.4 very compactly as3:

A†A = 1. (A.18)

So in order to have orthonormal ISS bases, the Axii must be column unitary, i. e. their
column vectors need to be orthonormal.

The di�erence to the outer basis case is caused by the di�erent position of the index in
whose direction we build the basis. So by transposing this two-dimensional A-matrix we
could transform (A.18) to (A.15).

A.2.2 Orthonormalisation conditions for dot matrices

As we represent the quantum dot with two matrices, one for the spin up part, one for the
spin down part, we perform orthonormalisation of the dot for either of the two matrices
seperately. As an example we show the resulting orthonormality conditions for constructing
the inner basis for the beginning of the right spin up chain |ir�〉. A necessary prerequisite
is the construction of orthonormal e�ective outer state space bases for the �rst sites of all
the other chains.

Basis for complete spin subsystem

In the �rst step we need to orthonormalise the dot down matrix A0�. Using the orthonor-
mality of the adjacent e�ective chain bases |ol�〉 and |or�〉 we obtain Figure A.5 as a
condition on A0�. The orthonormal basis |v〉, which is determined by A0�,

A
[σ0�]
ol�or�v A

[σ0�]∗
ol�or�v′ =

A0�

A∗
0�

ol� or�

v

v′

=

v

v′

= δv′v

Figure A.5: Orthonormalisation condition for the dot down matrix

|v〉 = A[σ0�]
ol�or�v

|ol�〉|or�〉|σ0�〉, (A.19)

then describes the whole spin down part of the system.

2In order to group the inner and the local index of A we need to permute the local index with the
outer one. As long as we do not interchange the inner and the outer index, this permutation does not
in�uence our reasoning. Only when transforming Axik

back to its original form, one needs to undo this
permutation.

3See also Figure 2.15b.
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Dot matrix orthonormalised towards a chain

The second step provides a condition (Figure A.6) on the dot up matrix A0� assuming the
the bases |v〉 and |ol�〉 to be orthonormal. Given that A0� satis�es this condition, the states

A0�

A∗
0�ol�

v

ir�

i′r�

=

ir�

i′r�

Figure A.6: Orthonormalisation condition for the dot up matrix with respect to the right chain

index

|ir�〉 = A
[σ0�]
ol�ir�v

|ol�〉|v〉|σ0�〉 (A.20)

constitute an orthonormal ISS basis for the �rst site of the right spin up chain.
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