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Electronic transport calculations for self-assembled monolayers of 1,4-phenylene diisocyanide
on Au„111… contacts

Robert Dahlke and Ulrich Schollwo¨ck
Sektion Physik and Center for Nanoscience, LMU Mu¨nchen, Theresienstrasse 37, D-80333 Mu¨nchen, Germany

~Received 8 October 2003; published 27 February 2004!

We report on electronic transport calculations for self-assembled monolayers of 1,4-phenylene diisocyanide
on Au~111! contacts. Experimentally one observes more structure~i.e., peaks! within the measured conduc-
tance curve for this molecule with two isocyanide groups, compared to measurements with molecules having
thiol groups. The calculations are performed on the semiempiric extended Hu¨ckel level using elastic scattering
quantum chemistry, and we investigate three possible explanations for the experimental findings. Comparing
the experimental and theoretical data, we are able to rule out all but one of the scenarios. The observed
additional peaks are found to be only reproduced by a monolayer with additional molecules perturbing the
periodicity. It is conjectured that the weaker coupling to Au of isocyanide groups compared to thiol groups
might be responsible for such perturbations.

DOI: 10.1103/PhysRevB.69.085324 PACS number~s!: 73.23.2b, 72.10.2d, 85.65.1h
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I. INTRODUCTION

Within the last decade an increasing interest in molecu
electronics has developed, with the expectation of realiz
molecular diodes and transistors. This is based on
progress in manipulation techniques, which now allow
controlled attachment of atomic scale structures like m
ecules to mesoscopic leads. With these new devices on
able to determine the conductance properties of molec
structures. Explaining and predicting the electronic behav
of such devices is an essential step towards their design
use as nanoscale electronic circuits.

To this end a number of theoretical studies have b
performed with the aim of reproducing measuredIV charac-
teristics. These studies differ in the way they take the e
tronic levels of the molecules, their modification by the co
pling to the leads, and the change of electrostatic poten
due to bias into account. Semiempiric methods1–3 have been
used, as well as first principles techniques,4–7 the latter being
restricted to systems of moderate size.

The wide range of experimentally observed behavior~see
Sec. II! suggests that not only the structure of the molecu
but also the details of the device fabrication, affect the c
duction properties of molecular devices. The crucial step
the deposition of molecules onto the surface of the lead.
this is achieved by self-assembly the amount of adsor
molecules and their individual positions cannot be exac
controlled and therefore remains unknown. A satisfactory
derstanding of the interplay between geometrical alignm
of the molecules and measured conductance properties
thus not yet been achieved~for a recent review, see, e.g., Re
8!.

In this paper we study the way in which changing t
geometrical alignment of the monolayer has an influence
the conduction properties of a molecular device. In so do
we can rule out a number of explanations which have pre
ously been considered9 to explain the occurrence of add
0163-1829/2004/69~8!/085324~10!/$22.50 69 0853
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tional structure in the conductance-voltage~CV! characteris-
tics.

The outline is the following: first we summarize some
the recent experimental findings. Then the method we
~based on elastic scattering quantum chemistry10! for calcu-
lating the conductance properties of molecular devices
discussed. Calculations for the conductance of a s
assembled monolayer, being built of 1,4-phenylene diisoc
nide ~PDI! and sandwiched between gold leads are then p
sented. The results for three qualitatively differe
geometrical constitutions of the mono-layer are compa
with experimental data. By this we can rule out all but o
and conclude that the only geometrical alignment, wh
gives rise to several peaks in the conductance curve,
mono-layer with additional molecules perturbing the perio
icity.

II. EXPERIMENTAL OVERVIEW

The devices built to study conductance properties of m
lecular structures differ not only in amount and chemic
structure of the molecules in use but also in the way these
attached to metallic or semiconducting leads. Single or f
molecules are accessible in mechanically controllable br
junctions ~MCBs! and with the scanning tunneling micro
scope~STM!. Many molecules are involved in sandwiche
self-assembled monolayer~SAM! experiments. The observe
properties depend on the exact geometry of the device.
conductance differs in orders of magnitude and the qua
tive voltage dependency of the current ranges from sim
ohmic behavior to negative differential resistance.11

In the past Reedet al.12 have measured the electrical co
ductance of a self-assembled molecular monolayer bridg
a MCB at room temperature. Molecules of 1,4-benze
dithiol ~i.e., having two thiol groups, which are known t
couple strongly to Au atoms! were used and theCV charac-
teristic was found to be symmetric with one peak in t
voltage range of 0–2V. They measured a current of the or
©2004 The American Physical Society24-1
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of 50 nA at a bias voltage of 2 V, which they claim is pr
duced by transport through one single active molecule.
ichert et al.13 also used a MCB with molecules having tw
thiol groups, but being considerably longer. The measu
current amplitude was about 500 nA at 1 V, i.e. although
molecule was more than twice as long, the current was
times larger.

With a different setup, where a SAM is sandwiched b
tween two metallic leads, Chenet al.11 have found negative
differential resistance, namely one peak at 2V in theIV
curve. The molecule under investigation had one thiol gro
only and was attached to Au leads at both ends. The m
surements were taken at room temperature and the mea
current maximum was of the order of 1nA.

Only recently, sandwiched SAM devices at 4.2 K we
studied,9,14 where a benzene ring with two isocyanide inste
of thiol groups was used~see Fig. 1!. The measurement
exhibited currents of the order of 50–400 nA. TheCV char-
acteristic for this molecule revealed more structure, in fo
of three to five peaks within a voltage range of 1 V. Such
behavior was not observed with previous devices contain
other molecules.

III. THEORETICAL FORMALISM

In the literature there has been presented quite a num
of techniques to calculate nonequilibrium electronic tra
port through molecular systems attached to mesosc
leads. Usually the Landauer formalism is applied, which
scribes current as elastic electron transmission and there
requires the transmission functionT(E). To this end one
needs a framework that allows for a description of the m
lecular device on the atomic level. This involves not only t
molecules themselves, but also the surface and bulk re
of the leads. Quantum chemistry provides such a framew
and one can choose the level of theory according to the
of the system under consideration and the computationa
fort one is willing to spend.

Using a quantum chemistry method, the transmiss
function can be obtained from an effective one-parti
Hamiltonian, which is an appropriate description for stro
coupling of the molecules to the leads~as in the case o
covalent binding!. The methods differ in the generation o
the one-particle Hamiltonian, which might be based on se
empirical grounds1–3 or on first-principles and self-consiste
techniques.4–7

A different approach,15 taking many-particle effects ex
plicitly into account, uses a master equation with transit
rates calculated perturbatively using the golden rule. T
approach is appropriate for weak coupling.

We use the Landauer formalism, as the molecules are
sumed to be chemically bonded to the gold contacts~i.e.,
strong coupling!, together with the semiempiric extende

FIG. 1. Molecular structure of 1,4-phenylene diisocyanide.
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Hückel elastic scattering quantum-chemistry~ESQC!
method.10 The molecular structure is optimized16 beforehand.
This approach, though limited as compared to more sop
ticated quantum chemistry methods, is yet justified beca
we want to gain a qualitative understanding of a many m
ecule experiment which cannot be described by fir
principle techniques, as the number of atoms involved is
yond the practical limitations of to-date computer resourc

A. Landauer formalism

According to the Landauer formula, current along a def
region is the result of electron transmission from the sou
to the drain lead, described by the transmission funct
T(E). For chemical potentialsm1 andm2 of source and drain
lead, shifted with respect to each other by an applied volt
m15m21eV, the current reads

I 5
22e

h E
2`

`

T~E!@ f ~E2m1!2 f ~E2m2!#dE, ~1!

where f (E) is the Fermi function. The Landauer formula
valid under the condition that transport is coherent across
molecule, which is plausible as the typical mean free path
electrons within metals is of the order of 500 nm, while t
molecular gap between source and drain lead is only ab
1–5 nm in length.

The system is formally partitioned into three regio
S i ,i P$0,1,2%, two of them (S1,2) containing the semi-
infinite leads, the third one (S0) being the finite region con-
taining all molecules as well as a few surface layers of e
lead~see Fig. 2!. We use periodic boundary conditions in th
directions perpendicular to the surface normal.

By a tight binding approximation, the infinite-dimension
Hamiltonian of the entire system can be composed of qu
tum chemical one-particle block Hamiltonians of finite d
mension:

FIG. 2. ~Color online! Partitioning of the system into three part
the two semi-infinite leadsS1,2 ~surrounded by boxes! and the mo-
lecular regionS0 between them.
4-2
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H5 (
i Pmol

S « icmi
† cmi1(

j Þ i
Hi j

mcmi
† cm jD

1 (
dP leads

(
l 5 l 0

`

(
i P l

S «dlicdli
† cdli1(

j Þ i
Hlli j

d cdli
† cdl j D

1 (
dP leads

(
l 5 l 0

`

(
i P l

j P l 11

~Hl ,l 11,i j
d cdli

† cd,l 11,j1H.c.!

1 (
dP leads

(
i P l 0

(
j Pmol

~Hl 0i j
dm cdl0i

† cm j1H.c.!. ~2!

The first summation describes the isolated molecular reg
by an on-site energy« and a hopping term. The indicesi and
j run over the orbital basis set within that region. The n
two summations describe the isolated leads, labeled bd.
Layer by layer, starting with the surface layerl 0, the first
term accounts for intra-layer interactions, while the seco
one describes the interaction between layers. Finally the
term describes the coupling between the molecular reg
and each lead. Note that only the first layerl 0 contributes to
that term and that there is no interaction between differ
leads. These are only formal restrictions, as parts of e
lead can be included into the molecular region.

The determination of the transmission function involv
two steps. First the conduction properties of the isola
leads have to be calculated. Thereby each lead will be
composed into conducting and nonconducting incoming
outgoing channels. These correspond to propagating and
nescent solutions moving in one of two possible directio
respectively. In a second step, the channels are connect
each other via the molecular region. This is described by
scattering matrix and the transmission function is finally o
tained by summing up the contribution from each channe

The calculation can be performed either using Gree
function techniques17 or equivalently18 using ESQC,10,19

which is a scattering-matrix approach. We present the de
of the calculation in the second scheme, as individual con
butions from each channel to the transmission function
then be easily studied.

B. Bulk propagator

First we will restrict our attention to the semi-infinite lea
Hamiltonians, which do not have to be identical. The Ham
tonians of Eq.~2! for one leadd, namely,Hll 8

d , are layer
independent, if one assumes periodicity, i.e.,Hll

d 5Hl 0l 0
d and

Hl ,l 11
d 5Hl 0 ,l 011

d . Using Bloch’s theorem one can reduce t

infinite dimensional system of equations to anN3N-matrix
equation (N being the number of orbital basis functions
one layer!

@Md~E!1hd~E!eikD1hd
†~E!e2 ikD#g l~k,E!50, ; l ,

~3!

with Md(E)ªHl 0l 0
d 2ESl 0l 0

d , hd(E)ªHl 0 ,l 011
d 2ESl 0 ,l 011

d ,

andSll 8
d is the overlap matrix between orbitals in layerl and

layer l 8 of leadd for cases when one does not deal with
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orthonormal basis set~otherwiseSll 8
d

5Id•d l l 8). With D we
denote the lattice spacing and the layer coefficientsg l obey
the relation g l 115eikDg l . Defining lªeikD one can
easily see that Eq.~3! is anN3N quadratic eigenvalue equa
tion. It can be transformed into a 2N32N linear eigenvalue
problem:

Pd~E!S g l

g l 11
D 5lS g l

g l 11
D , ~4!

Pd~E!ªF 0 1

2hd
21hd

† 2hd
21MdG ~5!

~where we have dropped the energy- andk-dependency ofg l
for notational ease!. This layer-to-layer propagatorPd(E)
also connects the coefficients of adjacent layers

S g l

g l 11
D 5Pd~E!S g l 21

g l
D ~6!

and therefore reduces the problem of finding solutions for
entire isolated lead Hamiltonian to specifying the wave fun
tion coefficients at two adjacent layersg l andg l 11 only.

All possible solutions at energyE can be decomposed int
independent channels, by solving for the eigenvalues of
~4!. These eigenvalues come in pairs such that for each
genvaluel. , there exists a corresponding eigenvaluel,

satisfying the relationl.51/l,* , as can be seen by trans
posing Eq.~3!. Eigenvalues withuluÞ1, i.e., complexk, be-
long to exponentially diverging solutions@see Eqs.~6! and
~4!#. These are of course non physical, as long as the lea
infinite. In semi-infinite leads however~which we are dealing
with!, exponentially decaying coefficients at the bounda
will contribute to the surface wave function and must not
neglected.

C. Current operator

The contribution from a single channel to the net curre
cannot directly be seen from Eq.~4!. It depends on the cur
rent density associated with a solution to the Schro¨dinger
equation i\] tSg5Hg and is obtained via the continuit
equation. The probability amplitudeugu2 for a stationary so-
lution is constant in time,

]

]t
g†Sg5

i

\
@g†Hg2g†H†g#50, ~7!

becauseH andSare hermitian. For the probability amplitud
at all layers betweenl 1 and l 2 one therefore has

05
]

]t (
l 5 l 1

l 2

~g l
†Sg l !5

i

\ (
l 5 l 1

l 2

g l
†~H2H !g l

5
i

\
[g l 121

† h~E!g l 1
1g l 111

† h†~E!g l 1
2H.c.]

1
i

\
[g l 221

† h~E!g l 2
1g l 211

† h†~E!g l 2
2H.c.]
4-3
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5^gu l 2 ,l 211&
i

\ F 0 2h

h† 0 G ^ l 2 ,l 211ug&

2^gu l 121,l 1&
i

\ F 0 2h

h† 0 G ^ l 121,l 1ug&, ~8!

with the projectorŝ l ug&ªg l . This gives rise to the defini
tion of the current operatorWl for layer l as

Wlªu l ,l 11&
i

\ F 0 2h

h† 0 G ^ l ,l 11u. ~9!

Now let bothw andq be solutions at fixed energyE with the
eigenvaluesl1 andl2 respectively. Because the expectati
value forWl is layer independent@Eq. ~8!# one has

^quWl uw&5^quWl 11uw&

5l1l2* ^quWl uw&. ~10!

This equation describes the connection between the cu
properties of a solutionw and its eigenvaluel. We summa-
rize the results of a detailed analysis of this equation, wh
is given in Appendix A. Each channeluw i& can be assigned
current valuev i , defined as

v iªIm^w i uWuw i&, ~11!

where we have used the layer independence ofWl in simply
writing W.

Channels with eigenvalue modulusuluÞ1, i.e., evanes-
cent waves have zero current value. They therefore do
contribute to the current.~Yet they are important at the su
face, as already mentioned above.! Only channels with an
eigenvalue of modulus 1 (ulu51) contribute to the current
The sign ofv i determines the direction of charge transpo

Solutions for an isolated lead are linear combinations
propagating waves in opposite directions, with the sa
amount of current being transported in each direction, t
carrying no net current, and resulting in a standing wave

We now defineL. and L, as the twoN3N diagonal
matrices composed of all incoming and outgoing eigenval
L:ªdiag(l:

i ). The 2N32N matricesU andU21PU have
the following forms:

U21PU5FL. 0

0 L,
G , UªF U. U,

U.L. U,L,
G .

~12!

D. Scattering matrix

Up to now, we have considered the isolated leads o
These are now assumed to be each coupled to the mole
defect region and thereby indirectly coupled to one anot
We are interested in stationary solutions which consist of
incoming propagating wave in one lead, being scatte
among all the accessible outgoing channels~propagating and
evanescent ones!. This information is contained in the sca
tering matrixS, which is shown in Appendix B to be of th
form
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•Mout. ~13!

It is important to notice that the scattering matrix is a
ways quadratic, because in each lead there are the s
amount of incoming and outgoing channels and the sca
ing matrix connects all outgoing channels to all incomi
ones. This is opposed to the transfer matrixT, which deter-
mines the amplitudes of in- and outgoing waves in the dr
lead given the in- and outgoing waves of the source le
This matrix is quadratic only if both leads have the sa
number of channels. It then is of the form20

T5F F G†

G F†G , ~14!

and the relation to the scattering matrix is20

S5F2F†(21)G F†(21)

F21 G†F†(21)G . ~15!

Methods calculating the scattering matrix via the trans
matrix19 fail, if two types of leads are used, becauseF is then
no longer quadratic and cannot be inverted. Therefore
commonly takes source and drain lead to be identically c
stituted. But even in such cases, these methods become
merically unstable, with increasing distance between the m
lecular region and one lead. This is because the ma
elements ofF andG @in Eq. ~14!# diverge exponentially, with
increasing lead separation. Taking the inverse ofF is there-
fore a numerically critical procedure. Both these proble
are avoided by the direct calculation of the scattering mat
which we present in Appendix B. This calculation is we
defined without any restrictions to the number of leads a
their composition. Therefore it is not necessary to restric
identical leads. Furthermore it allows a numerically sta
determination of the scattering matrix, even for large le
separations.

E. Transmission function

The transmission function is the sum over the contrib
tions from each combination of incoming channels in t
source lead to outgoing channels in the drain lead:T(E)
5( i , jTj← i . The relation between the scattering matrixS and
these transmission function elements is

Tj← i5u~S21! j← i u2
v j

v i
, ~16!

whereS21 is that block ofS combining the incoming source
channels with the outgoing ones in the drain lead. T
weighting with velocity factors comes about because
scattering matrixS does not relate current densities, b
wave amplitudes. The current densities are obtained fr
these wave amplitudes by multiplication with the corr
sponding velocity factorv j . The factorv i in the denominator
normalizes the transmission function to be exactly one
perfect transmission. Ifv i50 thenTj← i50, because incom-
4-4
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ELECTRONIC TRANSPORT CALCULATIONS FOR SELF- . . . PHYSICAL REVIEW B 69, 085324 ~2004!
ing evanescent waves have zero amplitude at the surf
The total current is made up of the contribution from ea
channel:

T~E!5 (
i Psource

(
j Pdrain

Tj← i~E!. ~17!

IV. CALCULATIONS FOR PDI

Low temperature experiments with PDI SAMs san
wiched between two metallic leads show several peaks in
CV diagram.9,14 The typical voltage differences of thes
peaks are in the range ofDU'0.2 V ~i.e., there are abou
five peaks withinU50 and 1 V!. The commonly adopted
explanation for the occurrence of such peaks is the follo
ing. Each molecular orbital that enters the energy wind
which is opened by the applied voltage, enables reson
tunneling. This increases the conductance and therefore
sults in a peak within theCV diagram.

Typically, the energy gap between molecular orbitals is
the range ofDE'1 eV. In other words, for applied voltage
up toU51 V there should be only a single accessible orb
per molecule, giving rise to only a single peak in theCV
diagram. Therefore the following question arises: are th
geometrical alignments of the molecules such that the a
tional peaks in theCV diagram can also be explained b
resonant tunneling through molecular orbitals?

Influence of changes in the molecular alignment
to the transmission spectrum

During the device fabrication, the step under least exp
mental control is the adsorption of the molecules onto
leads. Therefore the exact geometrical alignment of the
lecular SAM and, at least in the sandwich geometry, also
atomic shape of the top metallic lead, is not exactly know
One therefore has to expect not only one specific but ra
quite a variety of molecular alignments to be produced.
one is interested in the conduction properties of the resul
device, it is important to understand the influence of ea
type of geometrical alignment to the transmission functio

To this end, we have investigated three such poss
alignments, which will be discussed separately. First we lo
at the influence of metallic clusters within the contact reg
between lead and molecule. Then we investigate the dif
ence between single and many molecule experiments
finally we consider the case of molecular clusters.

1. Influence of metallic clusters

In the sandwich geometry, first the bottom metallic lead
created. Then the molecular monolayer is adsorbed on to
it by self-assembly. Finally the top metallic lead is bui
upon the molecular monolayer. The exact shape of nei
metallic surface is known and may be anything but flat a
regular. It is likely that the surface atoms of the metal
leads build up clusters@as, for example, in Fig. 3~b!#.

The influence of such a Au cluster on the molecular el
tronic structure is twofold. First it introduces new electron
levels, and second the existing molecular electronic lev
08532
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FIG. 3. ~a! ~Color online! Structure for a molecule without clus
ter. ~b! ~Color online! Structure for a molecule with a gold cluste
on top. ~c! Transmission functionT(E) for both structures. The
energy scale is relative to the highest occupied–lowest unoccu
molecular orbital gap, such thatE50 corresponds to the middle o
the gap.
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FIG. 4. ~Color online! The structure for one, two, three, and four molecules adsorbed within an Au-933 supercell. This setup was use
to test the sum rule.
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will be shifted, by an amount which depends on the stren
of the coupling between cluster and molecule. The latter
fect will result in a shifted peak in the transmission functio
only if the coupling between cluster and molecule is differe
to the coupling between top electrode and molecule.
clusters similar to the one shown in Fig. 3~b!, this is however
not the case. The energetic peak positions are identica
can be seen in Fig. 3~c!.

Furthermore, there are no additional peaks, which
might have expected because of the additional electronic
els of the cluster. The explanation for their absence is
following: an electronic level gives rise to a peak in t
transmission function only, if the corresponding orbital wa
function overlaps with both the top and bottom electrod
The overlap with the electrode the cluster is attached to~say
the top electrode! is of course large. The overlap with th
bottom electrode consists of two parts: the direct overlap
the indirect overlap via the molecule. The direct overlap
negligible due to the large spatial separation. The indir
overlap depends on the molecular orbital wave function
the energy of the cluster level does not coincide with a m
lecular energy level, then there is no indirect overlap. Onl
two levels coincide, the indirect coupling is large, but in th
case, there already exists a transmission peak due to the
ecule itself.

Therefore if transmission is already suppressed by
molecule~at all off-resonant energies!, it can either be fur-
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ther reduced by off-resonant tunneling through the cluster
it can ~at best! be left unchanged by resonant tunnelin
through the cluster. Under no circumstances can transm
sion, once suppressed by the molecule, be afterwards
creased by the cluster. This in turn means that metallic c
ters cannot give rise to additional peaks in the transmiss
spectrum.

2. Monolayer vs single molecule

What do we expect the transmission functionTi(E) for i
periodically arranged molecules to look like? As long as
intermolecular interactions are small~compared to the in-
tramolecular ones! the molecular levels of each molecu
will not be significantly changed. Furthermore, as the mo
layer consists of only one kind of molecule, all of them w
have the same electronic structure. Therefore we expect
molecule to contribute the same amount to the transmis
function:Tn(E)ª( iT

1(E)5nT1(E), wherei runs over alln
adsorbed molecules.

We calculated the transmission function forn51 –4 mol-
ecules within a Au supercell of size 933 ~the structures are
shown in Fig. 4!. The distance between the molecules
chosen to be a multiple of the closest Au-Au separationa
(d55.76 Å52a, with a52.88 Å). To our knowledge, the
parameters of the PDI-SAM monolayer have never been
termined experimentally, which is why we have to assu
4-6
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ELECTRONIC TRANSPORT CALCULATIONS FOR SELF- . . . PHYSICAL REVIEW B 69, 085324 ~2004!
the above values. However STM studies21 and also theoreti-
cal calculations22 have been performed for alkanethiol mon
layers, and these parameters motivated our choice.

Independent of the number of molecules present,
transmission functions have the same amount of peaks
identical energetic positions~see Fig. 5!. This result is also
obtained for all larger distances of the molecules, where
inter-molecular interaction is even smaller. Furthermore
sum rule is indeed fulfilled, i.e., the calculated transmiss
functions can well be fitted to the relationTn(E)
5a(n,m)Tm(E), where the deviation ofa(n,m) from the
theoretically expected value ofn/m is below 6% for all
n,mP$1,2,3,4%. The mere fact that one deals with a mon
layer instead of a single molecule does not imply that
transmission function changes qualitatively.

3. Influence of molecular clusters

We now investigate cases where the molecular inte
tions are not negligible. This occurs for example when
periodic structure of the monolayer is perturbed by an ad
tional molecule, such that a molecular cluster is formed. I
sufficient to study the transmission function of an isola
cluster only, because we have already seen that molecul
the periodic SAM arrangement do not influence each ot
The sum of the transmission function for the periodic SA
and the transmission function for the molecular cluster
due to the sum rule, the total transmission function for
defect and SAM.

We study the influence of a shorter distance between t
three, and four molecules on the transmission spectrum
relate it to the discrete energies of the isolated molecu
The molecules are now separated byd52.88 Å, which cor-
responds to the Au-Au atom spacing. The atomic struct
for this calculation is shown in Fig. 6~a!, the resulting trans-

FIG. 5. Transmission function for one, two, three, and four P
molecules.
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mission functions in Figs. 6~b! and 6~c!.
By reducing the molecular separation the transmiss

function qualitatively changes. The number of peaks roug
doubles and the new peak positions are different from
ones we obtained in the previous calculations. This time,
peak positions do depend on the number of molecules
volved. This is an important point, because if there are s
eral molecular clusters with different molecular distanc
then they all give rise to peaks at different energy valu
The resulting transmission function is the sum of the in
vidual functions and will thus contain far more peaks th
the transmission function for the nonperturbed periodic lay

The additional peaks are a result of the intermolecu
interactions, which split the former degenerate energy lev
of the individual molecules, as can be seen in Fig. 7 wh
we have again plotted the transmission function for three
four molecules, this time together with the discrete ene
levels of the corresponding molecular cluster~shown as
points along the transmission function! obtained by diagonal-
izing the molecular Hamiltonian in the absence of all lea
Each of the transmission peaks is related to at least one
crete energy value. But, in turn, not all energy values can
related to a peak in the transmission function, because
corresponding energy level of the molecule does not cou
strong enough to the leads.

Finally we show that the additional peak structure in t
transmission function for a scenario with an increased in
molecular interaction gives rise to a number of steps in
IV-curve. Figure 8 contains anIV calculation for a molecular
structure containing all three molecular clusters shown
Fig. 6~a!. In this calculation the bias voltageVb enters as a
shift of the Fermi levels for source and drain lead:m15m2
1eVb . The molecular energy has been set toEm5m1
2dEm2heV, wheredEm is the zero bias displacement o
the molecular levels andh50.5, because of the symmetr
coupling to the leads.

Compared to the experiments9,14 the number of steps in
the IV curve is well reproduced by our calculation. The o
tained current is at least one order of magnitude larger t
the experimental values.14 This is a phenomenon common t
all theoretical methods based on the Landauer formula.3,23A
satisfactory explanation for this discrepancy as well as
the broad range of experimentally observed current val
has not yet been found.

V. DISCUSSION

We have shown that the peak structure of the transmis
function is robust against changes in the number of adsor
molecules, as long as the distance between molecules is
siderably large (d*6 Å). And also does the exact shape
the top metallic lead not influence the qualitative structure
the transmission function. Only if the distance between m
ecules becomes so small that inter-molecular interactions
no longer negligible~which is below 6 Å in our case!, does
the transmission function undergo a qualitative chan
Namely an additional peak structure occurs.

How does this finding compare to the experimental da
As we have pointed out in Sec. II, only in devices usi

I

4-7



fted with
ch alters the
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FIG. 6. ~a! ~Color online! Two, three, and four molecules with a shorter intermolecular distance.~b! The transmission functions for two
and three molecules.~c! The transmission functions for three and four molecules. In contrast to all previous cases, the peaks are shi
respect to each other and there are also additional peaks. These changes are due to the increase in intermolecular interaction, whi
electronic levels.
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molecules with two isocyanide groups a more or less rand
peak structure was observed in theCV characteristic.9,14 In
other devices, molecules with at least one thiol group
typically used. These show significantly less peak structu

We therefore give the following interpretation: The thi
group is known to bind strongly to Au atoms. It is therefo
likely that thiol-based monolayers stably adsorb to g
leads. Resulting periodic structures are then robust aga
distortions. The conductance of such structures is pro
tional to the corresponding single molecule conductance,
the number of molecules involved changes the abso
08532
m

e
.

st
r-
.,

te

value of the current only, not the peak structure.
The randomlike peak structure in devices made up of i

cyanide based molecules suggests that there are some
lecular clusters present in the monolayer. These clus
might occur, because the binding of an isocyanide group
Au is considerably weaker compared to that of a thiol gro
and weaker binding results in a less robust periodic struct
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APPENDIX A: CONNECTION BETWEEN EIGENVALUES
AND CURRENT VALUES

For ease of notation we transform into the diagonal r
resentation of the propagatorP @Eq. ~5!#, i.e., U21PU
5diag(l i). The current properties of each channeli can now
be related to the corresponding eigenvaluel i . We start from
Eq. ~10!:

^cuWj uf&5^cuWj 11uf&

5l1* l2^cuWj uf&.

FIG. 7. Magnification of the transmission functions for thr
and four closely spaced molecules. Additionally the discrete ene
levels of the system without leads are plotted as points along
transmission function. To each peak there belongs at least one
crete energy level. A detailed discussion is given in the main t
Inset: Transmission function~original scale! for three and four
closely spaced molecules@identical to Fig. 6~c!#.

FIG. 8. IV calculation for a molecular region containing all thre
molecular clusters shown in Fig. 6~a!. There are three distinct step
within the voltage range of 1 V.
08532
-

Let us first consideruc&5uf&, i.e., l15l2, i.e., ^cuWj uf&
5ulu^cuWj uf&. For each channel with eigenvalueuluÞ1
one then must havêcuWj uc&50, i.e., this channel does no
itself carry any current. This is consistent with our termino
ogy of an evanescent wave. If, however,ul i u51, then
^cuWj uc& is purely imaginary, becauseWj is an anti-
Hermitian operator. We can therefore define the velocity o
propagating wave to bev iªIm^cuWj uc&.

Now we consider the case of two different solutionsuc&
Þuf& and definev1,2ª^cuWj uf&. If their eigenvalues do
not satisfy l1l2* 51, then the current between these tw
solutions is zerov1,250. So let us assumel151/l2* . Be-
cause iful1u.1 thenul2u,1, a current can flow between a
evanescent left going wave and an evanescent right g
wave. But if we restrict ourselves to solutions with fini
amplitudes in a semi-infinite lead, then either the left or rig
going wave amplitude must be zero. Therefore evanes
waves do neither carry a current themselves nor do they
change current with other channels, that is they do not a
contribute to the net current.

Finally we are left with the casel151/l2* , with ul1u
5ul2u51. This is equivalent tol15l2, i.e., the case of
degenerate eigenvalues. Therefore propagating waves to
generate eigenvalues may exchange current. Howe
within the degenerate eigenvalue subspace ofP, we can per-
form an additional rotation, i.e., we can chooseU such that
the anti-Hermitian operatorW is also diagonal with purely
imaginary eigenvalues.

Summarizing we have shown that the transformationU
diagonalizing the propagatorP ~i.e., U21PU) can be chosen
such that the transformationU†WU of the current operator is
diagonal in the subspace of propagating waves with pu
imaginary diagonal elements. All the other diagonal entr
are zero and the only nonzero nondiagonal elements be
to evanescent waves in opposite directions.

APPENDIX B: CALCULATION OF THE SCATTERING
MATRIX

The part of the Hamiltonian containing the molecular r
gion and its coupling to the leads can be written as

~H2ES!uc&5F h1 M1 0 0 t1
†

0 0 h2 M2 t2
†

0 t1 0 t2 M0

G uc&50.

~B1!

~Using this order for the coefficients it is straightforward
extend all formulas to the general case of more than
leads.! The indices 1 and 2 indicate source and drain le
surface layers, while the index 0 is used for the molecu
region. t1,2 are the coupling matrices from source/drain
the molecules.

We now transform into the basis of incoming and outg
ing channels@Eq. ~12!#, i.e., we apply

U5FU1 0 0

0 U2 0

0 0 1
G with Ui5F U.

i U,
i

U.
i L.

i U,
i L,

i G

y
e
is-
t.
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from the right to Eq.~B1!:

~H2ES!U5F A.
1 A,

1 0 0 t1
†

0 0 A.
2 A,

2 t1
†

B.
1 B,

1 B.
2 B,

2 M0

G , ~B2!

with

A:
i 5hiU:

i 1MiU:
i L:

i ,

B:
i 5t iU:

i L:
i .

The first and third columns act on the surface layer of
incoming channels, the second and fourth act on outgo
ones, while the fifth column, acting on the molecular regio
remains unchanged.
an

ro

y

r,

08532
e
g
,

The scattering matrix expresses the outgoing channel
plitudes in terms of the incoming ones. Therefore we s
the matrix of Eq.~B2! into two parts, one containing th
outgoing columns, the other one containing the incom
ones as well as the molecular column:

MoutªF A,
1 0 t1

†

0 A,
2 t2

†

B,
1 B,

2 M0

G , M inªF A.
1 0

0 A.
2

B.
1 B.

2
G .

The first matrixMout is a square matrix and by inverting i
we obtain the scattering matrix

S52Mout
21

•M in . ~B3!
nd
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