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Recently a new strategy for performing measurements
on solid state (Josephson) qubits was proposed, in which
the qubit is coupled to the measurement device through
a single damped harmonic oscillator.1) Due to this cou-
pling, the measurement comes arbitrarily close to a von-
Neumann measurement. This system was also discussed
in connection with electron transfer processes2) and de-
coherence control of two-level atoms in lossy cavities.3)

In this short note we discuss the dynamics of the sys-
tem shown in Fig. 1, namely a two-level system coupled
to an harmonic oscillator, which is coupled to a bath
of harmonic oscillators. This system can be mapped
to a standard model for dissipative quantum systems,
namely the spin-boson model.2) In this case the spectral
function governing the dynamics of the spin will have a
resonance peak. We diagonalize the model by means of
infinitesimal unitary transformations (flow equations),4)

thereby decoupling the small quantum system from its
environment. We calculate the renormalized tunneling
matrix element for different coupling strengths and com-
pare our results with an adiabatic renormalization cal-
culation. The renormalization of the tunneling matrix
element plays an important role for performing quantum
measurements on qubits as it tells how close a measure-
ment comes to a von-Neumann measurement.1) We also
calculate spin-spin correlation functions for several in-
structive parameter choices. Spin-spin correlation func-
tions can be used to calculate dephasing and relaxation
times for measurements on qubits.1)

The system shown in Fig. 1, namely
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where the dynamics of the spin depends only on the spec-
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Fig. 1. A two-level system is coupled to an harmonic oscillator
with frequency Ω, which is coupled to a bath of harmonic oscil-
lators.

tral function J(ω) ≡∑k λ2kδ(ω − ωk) given by
J(ω) =

2αωΩ4

(Ω2 − ω2)2 + (2πΓωΩ)2 with α =
8Γg2

Ω2
. (2)

Using the flow equation technique we approximately
diagonalize the Hamiltonian H [Eq.(1)] by means of in-
finitesimal unitary transformations U(l):

H(l) = U(l)HU†(l), (3)

where l is the so-called flow parameter. Here H(l = 0) =
H is the initial Hamiltonian and H(l = ∞) is the final
diagonal Hamiltonian. In a differential formulation

dH(l)
dl

= [η(l),H(l)] with η(l) =
dU(l)

dl
U−1(l). (4)

Using the flow equation approach one can decouple sys-
tem and bath by diagonalizing H(l = 0):4,5)
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Here ∆∞ is the renormalized tunneling frequency. For
the generator of the flow we choose the Ansatz:5)
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The flow equations for the effective Hamiltonian [Eq. (5)]
then take the following form:

∂J(ω, l)

∂l
= −2(ω −∆)2J(ω, l) (7)
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Fig. 2. The renormalized tunneling frequency ∆∞ as function of α
calculated using the flow equation approach and adiabatic renor-
malization (with p = 1) for ∆0 = 1.0, Γ = 0.02 and ∆0/Ω = 0.1.
The inset shows the flow equation result for ∆0 = 1.0, Γ = 0.06
and ∆0/Ω = 1.1. The maximum α corresponds to a coupling
between two-level system and harmonic oscillator of g ≈ 7.9/0.4.
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The unitary flow diagonalizing the Hamiltonian gener-
ates a flow for the spin which takes the structure
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One can show that the function h(l) decays to zero as
l → ∞. Therefore the observable σz decays completely
into bath operators.5) We integrated the flow equations
numerically in order to calculate the renormalized tun-
neling matrix element, ∆∞, for different values of α. In
Fig. 2 we compare our result with an adiabatic renormal-
ization6) calculation for the spectral function of Eq.(2):
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where p is an unspecified constant. The main plot in
Fig. 2 shows ∆∞/∆0 for ∆0 � Ω. In this limit both
methods yield qualitatively the same dependence. For
∆0 > Ω (see inset of Fig. 2) the flow equation result
shows the expected level repulsion, namely ∆∞ > ∆0
for α > 0. For conceptual reasons, adiabatic renormal-

ization can not work in this limit. We also calculated
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Fig. 3. (a) C(ω) for ∆0 = 1.0, Ω = 0.8, Γ = 1.6 and g2 = 0.005
(corresponds to α = 0.1). (b) C(ω) for ∆0 = 1.0, Ω = 0.8,
Γ = 0.01 and g = 0.1 (corresponds to α = 0.00125). (c) Term
scheme of a two-level system coupled to an harmonic oscillator
for ∆0 > Ω.

the Fourier transform, C(ω), of the spin-spin correlation
function

C(t) ≡ 1
2
〈σz(t)σz(0) + σz(0)σz(t)〉. (14)

Fig. 3 shows C(ω) for two instructive limits, namely
(a) Γ ≈ ∆0 ≈ Ω, g � Γ: Due to the small coupling be-
tween two-level system and harmonic oscillator, we ex-
pect the tunneling matrix element not to be altered very
much, ∆∞ ≈ ∆0, and C(ω) is expected to show a single
peak at ∆∞.
(b) Ω ≈ ∆0, g � (Ω, ∆0), Γ� g: In this case we expect
a double peak structure, which can be understood from
the term scheme shown in Fig. 3(c). A second order per-
turbation calculation for the coupled two-level-harmonic
oscillator system yields the following two frequencies for
the peak position of C(ω), corresponding to transitions
1 and 2 in Fig. 3(c)

ω1,+ − ω0,+ = Ω− g22∆0/(∆20 − Ω2)
ω0,− − ω0,+ = ∆0 + g22∆0/(∆20 − Ω2).

This is consistent with Fig. 3(b).
In summary, we investigated the renormalization of

the tunneling matrix element and calculated spin-spin
correlation functions for the system depicted in Fig. 1,
using a flow equation approach.
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