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“[...] And I’m not happy with all the analyses that go with just the classical
theory, because nature isn’t classical, dammit, and if you want to make a
simulation of nature, you’d better it quantum mechanical, and by golly it’s
a wonderful problem, because it doesn’t look so easy.”
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“The principles of physics, as far as I can see, do not speak against the
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practice, it has not been done because we are too big.”
- R.P. Feynman, Plenty of Room at the Bottom (lecture), December 1959.
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Chapter 1

Introduction

1.1 Quantum computation

Following first ideas of Richard Feynman [1] to simulate quantum mechanical properties in
quantum mechanical systems, quantum computation started being a primary and promis-
ing field of research in the late 90s of the last century.

Following the elementary algorithm of David Deutsch [2], much of the recent attention
is due to the algorithms of Shor [3] and Grover [4]. Shor’s algorithm factorizes numbers
quicker than every classical computer (exponential speedup), using Grover’s algorithm one
can search a database entry faster than on a normal computer (

√
N speedup, where N =

number of database entries).
Since then several realizations have been proposed for quantum computation; in par-

ticular, quantum optics [5, 6, 7] and nuclear magnetic resonance (NMR) systems [8] were
used to define these two-state systems, so-called quantum bits (or qubits), which can be
brought in a superpostion of the two classical states.

Qubits based on quantum optical methods are excellent examples for tunable micro-
scopic quantum systems, because of their stability against influences from the outside
world, and have been studied very intensely [9]. Quantum cryptography [10, 11] is also
based on quantum optics, first commercial systems are available now. In 2001, Shor’s algo-
rithm was implemented first [12] in an NMR setup and it was used to factorize a number.
Only seven qubits have been addressed to factorize the number 15.

But back to the basic ideas, there are three main features of a quantum computer:

1. the possibility for a qubit to be in an superposition of two states, |ψ〉 = α |0〉+ β |1〉.

2. quantum parallelism, i.e. calculations can have a large number of results in the same
moment, of which only one is read out.

3. entanglement, which means an nonlocal correlation between qubits, used e.g. in
Shor’s algorithm and in quantum cryptography.

In order to build a large quantum computer, one has to couple many qubits to each other
(e.g. in [13]). Solid state devices, where one can design the system by hand in a very flexible
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way, have the advantage that they can easily be coupled by lithographic techniques. These
methods are widely known for integrating devices in electrical circuits.

1.2 Coupled double dots as a qubit

Solid state devices are usually strongly limited by decoherence, so one has to choose an
appropriate system for the realization of a scalable quantum computer [14].

Quantum dots (“artificial atoms”) are prototype systems for realizing quantum bits,
fully controllable two-state quantum systems, in solid state physics. There are various
proposals to define qubits in quantum dots, e.g. one could use the spin degree of freedom
[15] in coupled quantum dots or optically excited charge states in etched quantum dots
[16].

We however consider another realization, a charge qubit whose basis states are defined
by the position (either on the left or right dot) of an additional, spin-polarized electron
in the system of two laterally coupled quantum dots (i.e. an “artificial molecule”) [17].
The experiment of Waugh et al. [18] was the first, where coherent molecular states have
been observed. The coupling of these two states can be controlled externally by a highly
transparent quantum point contact between the two dots (red in Figure 1.1). In this
Figure 1.1 the system under consideration is sketched. The system has two leads (µL and

(a) (b)

inter−dot coupling (tunable)strong

weak coupling to the leads (tunable)

µ µL R

Figure 1.1: (a) Sketch of the double dot system, (b) scanning electron microscope (SEM)
picture of a real double dot system

µR) which are attached to one dot each via a weak, tunable coupling (green), realized by
a low transparent quantum point contact.

In order to minimize the inevitable decoherence through coupling to the electronic leads,
this setup can be biased in the Coulomb Blockade regime where sequential tunneling [19] is
supressed. This regime can be reached by adjusting the gate voltages such that the levels
under consideration are far outside the transport window. The main goal of this thesis is
to investigate how the cotunneling contribution [20] in this regime decoheres the system.
We shall consider only spin-polarized electrons, because we want to use only the charge
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degree of freedom to define the qubit. This spin-polarization can be realized by applying
a magnetic field BP, which should be in-plane with the lateral dots. It has been shown
for the Kondo regime [21], that already if gPµBBP > kBTK, the physics is governed by the
charge degrees of freedom only. TK is the Kondo temperature, which is assumed to be much
smaller than the temperature throughout the present work, so that Kondo physics can be
ignored. However, to achieve full spin polarization, we have to fulfil another condition for
Zeeman splitting gPµBBP > 2δ, where 2δ is the level splitting in our molecular system and
will be defined later (see Chapter 2).

This system is treated by using the well-established Bloch-Redfield theory, which can
be applied to describe the weak coupling to the environment perturbatively and to take
the strong internal coupling fully into account. Originally the Bloch-Redfield method was
developed to describe NMR physics [22] and it has been widely used in chemical physics.
In the few last years it turned out that Bloch-Redfield theory could also be used as an
alternative to path-integral methods in open quantum systems, even at low temperatures,
as realized in solid state physics [23]. This has been done for some other models such as
the Spin-Boson model (see e.g. [24]), so that some experience exists in using the Bloch-
Redfield formalism for quantum control and decoherence. It could be interesting to analyze
analogies between the different systems.

We use a Schrieffer-Wolff transformation to derive an effective Hamiltonian that in-
corporates cotunneling processes. And then we use this effective Hamiltonian as starting
point for our Bloch-Redfield approach (which uses a Born approximation with the input
Hamiltonian). If we take the normal Hamiltonian as input, we would get a description of se-
quential tunneling only. The Schrieffer-Wolff transformation gives an effective Hamiltonian
with higher orders in the coupling to the leads. With this new Hamiltonian, Bloch-Redfield
theory results in a Born approximation in higher orders, that means that we do describe
cotunneling.

We study the general case plus a simple Gedanken experiment, where the system is
initially brought into a superposition and then the inter-dot tunneling is removed nonadi-
abatically.

1.3 Overview

We will start the discussion of the above mentioned system by explaining the model Hamil-
tonian (Chapter 2). Chapter 3 covers the Schrieffer- Wolff transformation as a tool to treat
cotunneling in such a system. The Bloch-Redfield formalism is considered and fully used
in Chapter 4. In Chapter 5 an expression for the current through the coupled double dot
system is derived. The numerical results of Chapters 4 and 5 and their interpretation can
be found in Chapter 6. In Chapter 7 we draw our conclusions from this work. Chapter 8
is a summary in German language. The regular chapters are supplemented by technical
appendices.

First results for the simple Gedanken experiment mentioned above have been published
recently [25].
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Chapter 2

Physical starting point

2.1 General case

In the Coulomb Blockade regime [26, 27], the relevant Hilbert space is spanned by four basis
states, written as |i, j〉, which denotes i additional electrons on the left dot, j additional
electrons on the right dot. The two states |1, 0〉 and |0, 1〉 define the computational basis
[14], because they are energetically stable due to the charging energy. The energy levels
for one electron each are very far from each other in ultra-small dots. In this regime
cotunneling is the most important process of the coupling to the leads, thus we use the
closest energetically forbidden states as virtual intermediate states. These are |v0〉 = |0, 0〉
and |v2〉 = |1, 1〉. Zero and two electron states are energetically even less favorable due to
the high charging energy of the individual dots.

The Hamiltonian of this system can be written as

H = H0 +H1 (2.1)

H0 = Hsys +Hres (2.2)

Hsys = εas(n̂l − n̂r)− εαn̂v0 + εβn̂v2 + γ
∑

n

(aL†n a
R
n + aR†n a

L
n) (2.3)

Hres =
∑

~k

εL~k b
L†
~k
bL~k +

∑

~k′

εR~k′b
R†
~k′
bR~k′ (2.4)

H1 = tc
∑

~k,n

(aL†n b
L
~k
+ aLnb

L†
~k
) + tc

∑

~k′,m

(aR†m b
R
~k′
+ aRmb

R†
~k′
) . (2.5)

Note, that the sum over dot states only runs over the restricted Hilbert space described
above. H0 describes the energy spectrum of the isolated double-dot (Hsys) and the leads
(Hres), whereas the tunneling part H1 describes the coupling of each dot to its lead and will
be treated as a perturbation. n̂l/r are the number operators counting additional electrons
on either dot. The asymmetry energy εas = (εl − εr)/2 describes the difference between
the energy level for the additional electron in left dot (εl) and the corresponding energy
level in the right dot (εr). It can be tuned via the gate voltages which are applied at each
dot. εβ and εα are the energy differences towards the higher level |v2〉 and the lower level
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εβ
εβ

εα εα

|1,1>

|0,0>

|1,0>

|0,1>
as2ε

|β>

|α>

|γ,+>

|γ,−>
2δ

diagonalization

Figure 2.1: Energy spectrum of the system before and after a diagonalization; δ is defined

as δ =
√

ε2as + γ2.

|v0〉 respectively (see Figure 2.1). γ is the tunable inter-dot coupling. The a(†)s and b(†)s
denote electron creation/annihilation operators in the dots and leads. In H1 the symbol
tc represents the tunnel matrix element between the dots and the leads, which should be
small compared to the asymmetry energy. Note, that we have chosen a slightly asymmetric
notation in order to highlight the physical model: For the actual calculation, H1 is also
expressed in the localized basis of the dot. The matrix representation of H0 is (states in
decreasing order)

H0 =











εβ 0 0 0
0 εas γ 0
0 γ −εas 0
0 0 0 −εα











+











E0 0 0 0
0 E0 0 0
0 0 E0 0
0 0 0 E0











, (2.6)

where E0 is the energy offset due to the energies of the two leads.
The eigenstates of the double-dot are

|γ,+〉 =
1

S

(

|1, 0〉+ γ

δ + εas
|0, 1〉

)

(2.7)

|γ,−〉 =
1

S

(

− γ

δ + εas
|1, 0〉+ |0, 1〉

)

, (2.8)

where S =
√

1 + γ2

(δ+εas)2
is a normalization factor. We will call these states also “molecular

states”, because these states represent in case of a dominating inter-dot coupling γ the
bonding and anti-bonding state in a molecule. These molecular states are exact eigenstates
of H0 and serve as a starting point for our perturbation theory (next chapter). There are
no clear transition rules anymore, because in the new basis both states couple to both
leads. The upper state |v2〉 = |1, 1〉 = |β〉 and the lower state |v0〉 = |0, 0〉 = |α〉 remain
unchanged. In the new basis, the diagonal matrix representation of H0 has the following
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form (again in decreasing order of energy levels)

H0,diag =











εβ + E0 0 0 0
0 δ + E0 0 0
0 0 −δ + E0 0
0 0 0 −εα + E0











, (2.9)

here the half level splitting δ is δ =
√

ε2as + γ2, as in the caption of Figure 2.1.

2.2 Atomic limit

In order to treat one limit analytically by hand, we consider a Gedanken experiment, in
which all terms are simplified and the number of terms is reduced.

For our Gedanken experiment, we assume that first the inter-dot coupling γ is high
such that the system relaxes into the ground state, which is a molecular superposition
state of the form |g〉 = (|0, 1〉 − |1, 0〉)/

√
2. Then the gate voltage that controls the inter-

dot coupling is switched to high values, so that the coupling is practically zero. After this,
the system dephases and relaxes into a thermal mixture of the localized eigenstates of the
new system. Thus, in order to describe decoherence, we only have to consider the case
γ = 0. This means, that H0 is already diagonal, i.e. the states |1, 1〉, |1, 0〉, |0, 1〉 and |0, 0〉
are eigenstates of our system. We call this the “atomic limit”, because here both dots act
like uncoupled atoms.

(a) (b)

molecular superposition atomic limit

Figure 2.2: Sketch of the two phases for the Gedanken experiment: (a) superposition, (b)
atomic limit
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Chapter 3

Schrieffer-Wolff transformation

3.1 General case

We want to apply the well-established and controlled Bloch-Redfield theory, because it is a
common and systematic tool for describing open quantum systems. It uses a Born approxi-
mation and includes the non-markovian parts up to errors beyond the Born approximation.
Originally Bloch-Redfield theory uses a Liouville equation of motion for the density ma-
trix of a given system as a starting point. Bloch-Redfield theory has been shown to be
numerically equivalent [23] to path integral methods for low temperatures and it should
be appropriate for such a system (strong inter-dot coupling, weak dot-lead coupling). This
involves using the Born-approximation in the system bath-coupling. In the Coulomb block-
ade, the first order result of the time dependent perturbation theory for H1 would vanish.
In order to treat cotunneling with this formalism, we perform a generalized Schrieffer-Wolf
transformation which generates transition terms in our effective Hamiltonian between the
unperturbed levels which originate from indirect processes via the intermediate states.

The Schrieffer-Wolff transformation [28] has to be carried out in a way which generalizes
the transformation of the standard Anderson model. This transformation is also known
under different names in other fields such as atomic physics [29] or chemical physics [30].

This Schrieffer-Wolff transformation transforms indirect processes between the multi-
plets into direct transitions in the molecular basis (see Figure 3.1): one starts from one
eigenstate (|γ,+〉 or |γ,−〉) in the two-state system, then goes via a virtual process to one
of the two other levels (|β〉 or |α〉). From there one goes back to the two-state system again
using a virtual process, but not necessarily to the starting state. And all possible processes
must be summed up. This is the way how the four elements of HI,eff are determined. The
above mentioned procedure is captured in the expression

〈γ, i|HI,eff |γ, j〉 =
1

2

∑

φ6=γ

〈γ, i|H1 |φ〉 〈φ|H1 |γ, j〉 ×

×




1

Eγ,i − Eφ ± εL/Rs

+
1

Eγ,j − Eφ ∓ εL/Rs



 , (3.1)
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virtual state final state

=

initial state effective process

|γ,+>

|γ,−>

|α>

|β>

|β>

Figure 3.1: Principle of the generalized Schrieffer-Wolff transformation

where γ and φ are labels for different multiplets in the spectrum of the problem. γ denotes
the molecular two-state system and φ can here be either β (i.e. the upper virtual state
|β〉 or α (i.e. the lower virtual state |α〉). i and j can be either + or − (for the molecular
states |γ,+〉 and |γ,−〉). The Es are the eigenenergies of the corresponding states.
Equation (3.1) can be found in a similar way in [29], however, one has to realize that the
leads change their energies as well, hence ±εL/Rs and ∓εL/Rs show up. This generalizes
standard second order perturbation theory, where only diagonal matrix elements are cal-
culated.
As a final result, one gets the parts of HI,eff as

〈γ,+|HI,eff |γ,+〉 = HI,++ = A(R†, R,++) bR†m b
R
n + A(R†, L,++) bR†m b

L
l +

+A(L†, R,++) bL†k b
R
n + A(L†, L,++) bL†k b

L
l +

+A(L,L†,++) bLl b
L†
k + A(L,R†,++) bLl b

R†
m +

+A(R,L†,++) bRn b
L†
k + A(R,R†,++) bRn b

R†
m (3.2)

〈γ,−|HI,eff |γ,−〉 = HI,−− = A(R†, R,−−) bR†m bRn + A(R†, L,−−) bR†m bLl +

+A(L†, R,−−) bL†k bRn + A(L†, L,−−) bL†k bLl +

+A(L,L†,−−) bLl bL†k + A(L,R†,−−) bLl bR†m +

+A(R,L†,−−) bRn bL†k + A(R,R†,−−) bRn bR†m (3.3)

〈γ,+|HI,eff |γ,−〉 = HI,+− = A(R†, R,+−) bR†m bRn + A(R†, L,+−) bR†m bLl +

+A(L†, R,+−) bL†k bRn + A(L†, L,+−) bL†k bLl +

+A(L,L†,+−) bLl bL†k + A(L,R†,+−) bLl bR†m +

+A(R,L†,+−) bRn bL†k + A(R,R†,+−) bRn bR†m (3.4)

〈γ,−|HI,eff |γ,+〉 = HI,−+ = A(R†, R,−+) bR†m b
R
n + A(R†, L,−+) bR†m b

L
l +

+A(L†, R,−+) bL†k b
R
n + A(L†, L,−+) bL†k b

L
l +

+A(L,L†,−+) bLl b
L†
k + A(L,R†,−+) bLl b

R†
m +

+A(R,L†,−+) bRn b
L†
k + A(R,R†,−+) bRn b

R†
m . (3.5)
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The As are called Schrieffer-Wolff coefficients, they are calculated with equation (3.1)
and can be found in Appendix A. The + and − signs represent the molecular states |γ,+〉
and |γ,−〉.

3.2 Atomic limit

In the special case of the Gedanken experiment, one finds the following equations

HI,++ = A(R†, R,++) bR†m b
R
n + A(L,L†,++) bLl b

L†
k (3.6)

HI,−− = A(L†, L,−−) bL†k bLl + A(R,R†,−−) bRn bR†m (3.7)

HI,+− = A(R†, L,+−) bR†m bLl + A(L,R†,+−) bLl bR†m (3.8)

HI,−+ = A(L†, R,−+) bL†k b
R
n + A(R,L†,−+) bRn b

L†
k . (3.9)

If one compares these four equations (3.6)-(3.9) to the general case (3.2)-(3.5), it is
obvious that a lot of terms are missing in this special case. This is due to the symmetry
of the considered “atomic” states.

Figure 3.2 illustrates the processes in equations (3.6)-(3.9), where the cyan (magenta)
circle denotes the final (initial) position of the starting state. The green arrows represent
the first processes, the red ones the second processes. The + sign denotes the same sign
in equations (3.6)-(3.9).

The processes acting on the left panels in Figure 3.2 are |β〉 mediated virtual processes
(like the one in Figure 3.1), on the right panels the |α〉 mediated virtual transitions are
shown.

(a)

+

(b)

+

(c)

+

(d)

+

Figure 3.2: Sketch of the virtual processes involved in (a) HI,++, (b) HI,−−, (c) HI,+− and
(d) HI,−+
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Chapter 4

Bloch-Redfield formalism

4.1 Formalism

As a starting point for the derivation of the Bloch-Redfield equations (4.4), one usually
[31] takes the Liouville equation of motion for the density matrix of the whole systemW (t)
(describing the time evolution of the system)

Ẇ (t) = − i
h̄
[H,W (t)] , (4.1)

where
H = Hsys +Hres +HI . (4.2)

Hsys is the Hamiltonian which describes the system (in our case: the double-dot system),
Hres stands for the reservoirs (the two leads) and HI is the interaction Hamiltonian between
system and reservoirs.
Projecting the the density matrix of the whole system W (t) on the relevant part of the
system (which means only our two-state system), one finally gets the reduced density
matrix ρ

ρ(t) = PW (t) , (4.3)

where P is the projector on the relevant sub-system. Putting (4.3) in equation (4.1) one
gets the Nakajima-Zwanzig equation [32, 33]. If one then uses the Born approximation
and back-propagation, one finally comes to the Bloch-Redfield equations for the reduced
density matrix ρ in the eigenstate basis of Hsys [31, 34]

ρ̇nm(t) = −iωnmρnm(t)−
∑

k,l

Rnmklρkl(t) , (4.4)

where Rnmkl are the elements of the Redfield tensor and the ρnm are the elements of the
reduced density matrix. These equations of motion for the reduced density matrix ρ are
obtained within Born approximation in the effective system-bath coupling, so after the
Schrieffer-Wolff transformation, the Rnmkl are of the order t4c . Let us remark that our
perturbation theory naturally breaks down below the Kondo temperature TK, which can
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however be made arbitrarily small by lowering tc through pinching off the contacts to the
reservoirs.

The Bloch-Redfield equations are of Markovian form, however, by properly using the
free time evolution of the system (back-propagation), they take into account all bath
correlations which are relevant within the Born approximation [23]. In [23] it has also been
shown that in the bosonic case the Bloch-Redfield theory is numerically equivalent to the
path-integral method.

The Redfield tensor has the form

Rnmkl = δlm
∑

r

Γ
(+)
nrrk + δnk

∑

r

Γ
(−)
lrrm − Γ

(+)
lmnk − Γ

(−)
lmnk. (4.5)

The rates entering the Redfield tensor elements are given by the following Golden-Rule
expressions

Γ
(+)
lmnk = h̄−2

∞
∫

0

dt e−iωnkt〈H̃I,lm(t)H̃I,nk(0)〉 (4.6)

Γ
(−)
lmnk = h̄−2

∞
∫

0

dt e−iωlmt〈H̃I,lm(0)H̃I,nk(t)〉 , (4.7)

where HI appears in the interaction representation (written as H̃I). In the interaction
picture one has to replace [35] all operators in second quantization by time-dependent

operators, e.g. bR†m (t) = bR†m (0)e
i
h̄
εRmt. l, m, n and k can be either + or −. ωnk is defined

as ωnk = (En − Ek)/h̄. The possible values of ωnk are ω++ = ω−− = 0, ω+− = 2δ
h̄

and
ω−+ = −2δ

h̄
.

4.2 Renormalization

In order to use the Bloch-Redfield theory, the effective interaction Hamiltonian H̃I should
only produce noise, i.e. the expectation value of H̃I must vanish

〈H̃I〉 = 0 . (4.8)

Considering now the Hamiltonian which we calculated in the last chapter, we observe
that 〈H̃I〉 6= 0. If we continue to work with this interaction Hamiltonian, we would get
some divergences. Thus we reformulate H̃I by

H̃I(t) := H̃I(t)− 〈H̃I(t)〉 (4.9)

H̃I(t) = A(R†, R)bR†m (t)bRn (t) + A(R†, L)bR†m (t)bLl (t)

+A(L†, R)bL†k (t)bRn (t) + A(L†, L)bL†k (t)bLl (t)

+A(L,L†)bLl (t)bL†k (t) + A(L,R†)bLl (t)bR†m (t)

+A(R,L†)bRn (t)bL†k (t) + A(R,R†)bRn (t)bR†m (t)

−A(L†, L)fL(εLk )δkl − A(R†, R)fR(εRm)δmn
−A(L,L†)(1− fL(εLk ))δkl − A(R,R†)(1− fR(εRm))δmn . (4.10)
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Of course this must be done for all four components of H̃I . In order to compensate this
definition, one has to change the unperturbed Hamiltonian H0,diag as well,

H0,diag := H0,diag + 〈H̃I(t)〉 . (4.11)

This effect on H0,diag, will be considered in Appendix B and shown to be small.
The correlation function in (4.6) is then

〈H̃I(t)H̃I(0)〉 =
∑

k,k′,l,l′

m,m′,n,n′

〈A(R†, R)bR†m (t)bRn (t)× H̃I(0) + A(R†, L)bR†m (t)bLl (t)× H̃I(0)

+A(L†, R)bL†k (t)bRn (t)× H̃I(0) + A(L†, L)bL†k (t)bLl (t)× H̃I(0)

+A(L,L†)bLl (t)bL†k (t)× H̃I(0) + A(L,R†)bLl (t)bR†m (t)× H̃I(0)

+A(R,L†)bRn (t)bL†k (t)× H̃I(0) + A(R,R†)bRn (t)bR†m (t)× H̃I(0)

−A(R†, R)fR(εRm)δmn × H̃I(0)− A(L†, L)fL(εLk )δkl × H̃I(0)

−A(L,L†)(1− fL(εLk ))δkl × H̃I(0)− A(R,R†)(1− fR(εRm))δmn × H̃I(0)〉 , (4.12)

where

H̃I(0) = A′(R†, R)bR†m′bRn′ + A′(R†, L)bR†m′bLl′ + A′(L†, R)bL†k′ bRn′
+A′(L†, L)bL†k′ bLl′ + A′(L,L†)bLl′bL†k′ + A′(L,R†)bLl′bR†m′

+A′(R,L†)bRn′bL†k′ + A′(R,R†)bRn′bR†m′

−A′(R†, R)fR(εRm′)δm′n′ − A′(L†, L)fL(εLk′)δk′l′
−A′(L,L†)(1− fL(εLk′))δk′l′ − A′(R,R†)(1− fR(εRm′))δm′n′ , (4.13)

which was calculated from the original Hamiltonian through the Schrieffer-Wolff transfor-
mation. All primed coefficients and variables represent the time-independent case. From
all the possible cases, only two major cases are relevant: the first is k = l, k ′ = l′, m = n
and m′ = n′, the second is k = l′, l = k′, m = n′ and n = m′. All other possibilities
are neglected, because their expectation values vanish. All terms for the first case also
vanish (this is due to the reformulation of H̃I) and only the second case is relevant and
additionally the sum changes to an integral in the continuum limit

〈H̃I(t)H̃I(0)〉 = c1

∞
∫

−∞

∞
∫

−∞

dεLk dε
L
l e

i
h̄
(εL
k
−εL

l
)tfL(ε

L
k )(1− fL(εLl ))×

×[A(L†, L)(A′(L†, L)− A′(L,L†)) + A(L,L†)(A′(L,L†)− A′(L†, L))]

+c1

∞
∫

−∞

∞
∫

−∞

dεRmdε
R
n e

i
h̄
(εRm−ε

R
n )tfR(ε

R
m)(1− fR(εRn ))×

×[A(R†, R)(A′(R†, R)− A′(R,R†)) + A(R,R†)(A′(R,R†)− A′(R†, R))]

+c1

∞
∫

−∞

∞
∫

−∞

dεLk dε
R
n e

i
h̄
(εL
k
−εRn )tfL(ε

L
k )(1− fR(εRn ))×
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×[A(L†, R)(A′(R†, L)− A′(L,R†)) + A(R,L†)(A′(L,R†)− A′(R†, L))]

+c1

∞
∫

−∞

∞
∫

−∞

dεRmdε
L
l e

i
h̄
(εRm−ε

L
l
)tfR(ε

R
m)(1− fL(εLl ))×

×[A(R†, L)(A′(L†, R)− A′(R,L†)) + A(L,R†)(A′(R,L†)− A′(L†, R))] ,
(4.14)

where c1 is c1 =
V 2
2DEG

m2
∗

(2πh̄2)2
from the density of states of the lead energies. The above

calculation can analogously be carried out for the correlation function in (4.7). One then
finds

〈H̃I(0)H̃I(t)〉 = c1

∞
∫

−∞

∞
∫

−∞

dεLk dε
L
l e

i
h̄
(εL
k
−εL

l
)tfL(ε

L
l )(1− fL(εLk ))×

×[A′(L†, L)(A(L†, L)− A(L,L†)) + A′(L,L†)(A(L,L†)− A(L†, L))]

+c1

∞
∫

−∞

∞
∫

−∞

dεRmdε
R
n e

i
h̄
(εRm−ε

R
n )tfR(ε

R
n )(1− fR(εRm))×

×[A′(R†, R)(A(R†, R)− A(R,R†)) + A′(R,R†)(A(R,R†)− A(R†, R))]

+c1

∞
∫

−∞

∞
∫

−∞

dεLk dε
R
n e

i
h̄
(εL
k
−εRn )tfR(ε

R
n )(1− fL(εLk ))×

×[A′(R†, L)(A(L†, R)− A(R,L†)) + A′(L,R†)(A(R,L†)− A(L†, R))]

+c1

∞
∫

−∞

∞
∫

−∞

dεRmdε
L
l e

i
h̄
(εRm−ε

L
l
)tfL(ε

L
l )(1− fR(εRm))×

×[A′(L†, R)(A(R†, L)− A(L,R†)) + A′(R,L†)(A(L,R†)− A(R†, L))] .
(4.15)

4.3 General case

In order to calculate the Γ(+)-rates, we have to plug equation (4.14) in (4.6), multiply
everything out and evaluate all integrals. These integrals are all of the same form

c1

∞
∫

0

dt

∞
∫

−∞

dε1

∞
∫

−∞

dε2e
i
h̄
(ε1−ε2±2δ)t

1

ε1 − εa
1

ε2 − εb
f1(ε1)(1− f2(ε2)) , (4.16)

where the exponent of the exponential function will be called iat with a = 1
h̄
(ε1− ε2± 2δ).

The ±2δ originates in the ωnk and this term could also vanish in the case where n = k.
The +/− signs in ±2δ denote ω−+ resp. ω+−. Additionally there can of course be other
constant prefactors stemming from the Schrieffer-Wolff coefficients. For starters, we carry
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out the time integration which uses only the exponential function

∞
∫

0

dteiat = lim
θ→0

∞
∫

0

dteiat−θt

= lim
θ→0

[

eiat−θt

ia− θ

]∞

0+

= lim
θ→0+

1

−ia+ θ
= lim

θ→0+

i

a+ iθ
= πδ(a) , (4.17)

where we used the residue theorem in the shorthand notation for poles on the real axis
(see e.g. in [35]) in the last step

lim
θ→0+

1

x+ iθ
= P

(

1

x

)

− iπδ(x) . (4.18)

P denotes the principle value of 1
x
which is neglected here due to energy conservation

[29]. That means that the energies are changed only very slowly due to the Born approx-
imation. The principle value would play a role, if we want to renormalize the frequencies
ωnk, which is normally done in the case of bosonic baths. This is not necessary, because
our reformulation of H̃I is already of second order in the coupling to the leads tc, whereas
in the bosonic case the renormalization of the ωnks is only of first order in the strength of
the dissipative coupling. Consequently we find for the rest of our integral

c1
π

h̄

∞
∫

−∞

dε1

∞
∫

−∞

dε2
1

ε1 − εa
1

ε2 − εb
δ(ε1 − ε2 ± 2δ)f1(ε1)(1− f2(ε2)) =

c1
π

h̄

∞
∫

∞

dε2
1

ε2 ∓ 2δ − εa
1

ε2 − εb
f1(ε2 ∓ 2δ)(1− f2(ε2)) . (4.19)

The h̄−2 from equation (4.6) has also been taken into account here. The application of
the residue theorem (again along the lines of [36]) then gives

c1
π

h̄

∞
∫

−∞

dε2
1

ε2 ∓ 2δ − εa
1

ε2 − εb
f1(ε2 ∓ 2δ)(1− f2(ε2)) =

c1
π

h̄

{

πi

εb − εa ∓ 2δ
[f1(εb ∓ 2δ)(1− f2(εb))− f1(εa)(1− f2(εa ± 2δ))]

− 2πi

β

∞
∑

j=0

1

µ1 − εa + πi
β
(2j + 1)

1

µ1 − εb ± 2δ + πi
β
(2j + 1)

×

× (1− f2(µ1 ± 2δ +
πi

β
(2j + 1)))

+
2πi

β

∞
∑

j=0

1

µ2 ∓ 2δ − εa + πi
β
(2j + 1)

1

µ2 − εb + πi
β
(2j + 1)

×
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× f1(µ2 ∓ 2δ +
πi

β
(2j + 1))

}

. (4.20)

Carrying out the resummation of the Matsubara series [using (B.10) and [37]], which
means summing over the poles of the Fermi functions f(ε), we get finally the generic form
of one single integral in equation (4.6) by

Γ(+) = c

{

iπ

εb − εa ∓ 2δ
[f1(εb ∓ 2δ)(1− f2(εb))− f1(εa)(1− f2(εa ± 2δ))]

+
−n1(µ2 ∓ 2δ)

εb − εa ∓ 2δ

[

ψ

(

1

2
+
iβ

2π

(

εb ∓ 2δ − µ1
))

− ψ
(

1

2
+
iβ

2π

(

εa − µ1
))

− ψ
(

1

2
+
iβ

2π

(

εb − µ2
))

+ ψ

(

1

2
+
iβ

2π

(

εa ± 2δ − µ2
))]}

, (4.21)

where c = c1
π
h̄
t4c
4
=

t4cπV
2
2DEG

m2
∗

4h̄(2πh̄2)2
. The factor t4c

4
is common in all products of Schrieffer-Wolff

coefficients and very important for the order of magnitude. One can express the coupling
to the leads tc by tc =

√

g
8π2
· EF

n
, where g is a conductance in terms of the quantum

conductance, EF is the Fermi energy of the leads and n is the number of electrons in the

leads. Consequently, c is then changed to c = t2cg
32πh̄

. The energy changes εa and εb contain
varying combinations of εβ, εα and εas. Due to the multitude of possibilities for virtual
transitions, each element of the Redfield tensor contains a number of terms of this generic
structure. In the above equations, the terms containing the Fermi function f(ε) only play
a role close to resonance and can be neglected inside the Coulomb Blockade [38]. The
energies in these Fermi functions are dominated by εα and εβ, that means that one is far
away from our transport window between −δ and δ. The nL/Rs represent Bose functions
for the electron-hole pairs (excitons) that are generated by the cotunneling processes. The
ψs denote Digamma functions and hence diverge logarithmically at low temperatures. So,
the final, generic result for one integral of (4.6) is

Γ(+) = c
−n1(µ2 ∓ 2δ)

εb − εa ∓ 2δ

[

ln

(

εb − µ1 ∓ 2δ

εa − µ1

)

+ ln

(

εa − µ2 ± 2δ

εb − µ2

)]

. (4.22)

If one does the completely analogous calculation for Γ(−), one yields the form of one
integral in equation (4.7) by

Γ(−) = c
−n2(µ1 ± 2δ)

εb − εa ∓ 2δ

[

ln

(

εa − µ1
εb − µ1 ∓ 2δ

)

+ ln

(

εb − µ2
εa − µ2 ± 2δ

)]

. (4.23)

In both cases (Γ(+) and Γ(−)) one normally has to sum up 64 terms to get one Γ
(±)
lmnk.

This is too tedious for a complete manual treatment, so these sums have been implemented
in Maple V (Release 7). All other used special rules for these integrals can be found in
Appendix C. With the implementation, it was also possible to analyze the behaviour of the
Redfield tensor elements and therefore of the relaxation and dephasing rates. By solving
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equation (4.4), one finds that the off-diagonal elements of the reduced density matrix
decay towards zero on a time scale τφ (dephasing time) whereas the diagonal elements of
the reduced density matrix equilibrate on a time scale τr (relaxation time).

In general, one has to find the eigenvalues of R [see below in (4.24)] to get the relaxation
and dephasing rates. This becomes clear, if we write equation (4.4) in another way

d

dt
~ρ(t) = −R~ρ(t), (4.24)

where the reduced density matrix ρ(t) =

(

ρ++(t) ρ+−(t)
ρ−+(t) ρ−−(t)

)

is written as ~ρ(t) =











ρ++(t)
ρ−−(t)
ρ+−(t)
ρ−+(t)











.

(4.24) can be reformulated as

d

dt
~ρ(t) = −BCB−1~ρ(t), (4.25)

where C is a diagonal matrix, or since B and B−1 are time-independent

d

dt
B−1~ρ(t) = −CB−1~ρ(t). (4.26)

This differential equation for B−1~ρ can be solved via a usual exponential Ansatz and
we find

~ρ(t) = Be−CtB−1~ρ(0). (4.27)

We can now analyze the components of ~ρ. The time evolution of the diagonal elements
of the reduced density matrix (i.e. the relaxation rates) are given by the first two diagonal
entries of C. The last two diagonal entries then describe the time evolution of the off-
diagonal elements of the reduced density matrix (i.e. the dephasing rates). The plots in
Chapter 6 have been made by only considering the leading order in the coupling tc to the
leads in the relaxation or dephasing rates.

4.4 Atomic limit

In order to find the relaxation and dephasing rates in the case of our Gedanken experiment,
we first calculate all nonvanishing elements of the Redfield tensor Rnmkl

R++++ = Γ
(+)
+−−+ + Γ

(−)
+−−+ (4.28)

R−−−− = Γ
(+)
−++− + Γ

(−)
−++− (4.29)

R++−− = −Γ(+)
−++− − Γ

(−)
−++− (4.30)

R−−++ = −Γ(+)
+−−+ − Γ

(−)
+−−+ (4.31)

R+−+− = Γ
(+)
+−−+ + Γ

(−)
−++− + Γ

(+)
++++ + Γ

(−)
−−−− − Γ

(+)
−−++ − Γ

(−)
−−++ (4.32)

R−+−+ = Γ
(+)
−++− + Γ

(−)
+−−+ + Γ

(+)
−−−− + Γ

(−)
++++ − Γ

(+)
++−− − Γ

(−)
++−− , (4.33)
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where Γ
(+)
lmnk = Γ

(−)
lmnk and Γ

(+)
++−− = Γ

(+)
−−++.

If we now only consider the diagonal elements of the reduced density matrix (to get the
relaxation rate), we find from equation (4.4)

d

dt

(

ρ++(t)
ρ−−(t)

)

= −
(

R++++ R++−−

R−−++ R−−−−

)(

ρ++(t)
ρ−−(t)

)

. (4.34)

Diagonalizing the matrix in equation (4.34), we find two relaxation rates: Γr = 0 and
Γr = R+++++R−−−−. Γr = 0 means that there is a stationary state and the only nontrivial
relaxation channel is described by the other, finite Γr.

Analyzing the off-diagonal elements of the reduced density matrix in equation (4.4)
leads to the two equations

ρ̇+−(t) = −i(ω+− − iR+−+−)ρ+−(t) (4.35)

ρ̇−+(t) = −i(ω−+ − iR−+−+)ρ−+(t) . (4.36)

Here, we can directly identify the two dephasing rates by the Rs, but in this specific
case R+−+− = R−+−+. This means that there is only one dephasing rate Γφ = R+−+−.

Summarizing our previous results, we found

Γr = 2 (Γ
(+)
+−−+ + Γ

(+)
−++−) (4.37)

Γφ =
Γr
2

+ (Γ
(+)
++++ + Γ

(+)
−−−− − 2Γ

(+)
++−−) (4.38)

where

Γ
(+)
+−−+ = Γ

(−)
+−−+ = c (−nR(µL + 2εas))Z (4.39)

Γ
(+)
−++− = Γ

(−)
−++− = c (nL(µR − 2εas))Z (4.40)

Γ
(+)
++++ = Γ

(−)
++++ = c kBT Y1 (4.41)

Γ
(+)
−−−− = Γ

(−)
−−−− = c kBT Y−1 (4.42)

Γ
(+)
++−− = Γ

(−)
++−− = c kBT Y1,−1. (4.43)

Z is a function containing several ψ-functions (or logarithms). Y1, Y−1 and Y1,−1 are
different functions of several ψ’-(Trigamma-) functions (or reciprocals), however, these
functions have no temperature dependence. The functions can be found in Appendix D.
The most important part of the temperature dependence comes in through the propor-
tionality to T and through the Bose functions nL/R. One can generally say, that in the
relaxation rate (4.37) are only terms with an energy exchange with the two leads. This
can be seen in the function nL/R. In the dephasing rate (4.38) are also terms without an
energy exchange with the environment.

We will now compare these results to the relaxation and dephasing rates in the Spin-
Boson case [39, 40]

Γr = sin2 θ J(δ) coth

(

2δ

2kBT

)

(4.44)

Γφ =
Γr
2

+ 2πα
kBT

h̄
cos2 θ , (4.45)
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where 2δ is again the level splitting. J is the spectral density of a bosonic bath; this
function measures the phase space and depends logarithmically from the energies of the
intermediate states. θ is the angle between the z-axis and an effective magnetic field ~Beff .
This magnetic field is responsible for the bias in an NMR system [41]. The α is the
dimensionless strength of the interaction of the two-state system with the environment.
The α dependent term occurs only if the bath is composed of ohmic oscillators for low
frequencies. This term also describes dephasing processes without spin flip.

We can observe similar structures in the relaxation rates (4.37) and (4.44), if we write
the relaxation rate like this

Γr = σ κ coth

(

2δ

2kBT

)

. (4.46)

Here we identified a cross section σ with Z or cos2 θ. κ is a spectral density, which
means that it denotes c or J . The coth function can be identified in (4.37), if one writes
the sum of the Bose functions nL/R in another way.

The comparison of the dephasing rates is even shorter, because the structure looks
immediately similar in both cases. The first term is the same and in the second term is
a linear temperature dependence combined with again something that looks like a cross
section [Y s in (4.38)].

We observe universal features in the relaxation and dephasing rates of our model com-
pared to the Spin-Boson model, but we considered two distinct fermionic baths. In general
these two baths also have different chemical potentials and therefore we usually are in a
non-equilibrium situation. Our Gedanken experiment would correspond to pure dephasing
in the Spin-Boson model, but we observe relaxation, which is due to the two baths and a
voltage source.
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Chapter 5

Calculation of the current

In this chapter, we will derive an expression for the cotunneling current through our double-
dot system, because we would like to describe an easy accessible, natural observable which
is potentially useful for an easy probing of timescales. Transport spectroscopy is one of the
most important and powerful techniques to characterize such mesoscopic systems.

Following the fundamental relation from [42]

I(t) = −e i
h̄

t
∫

−∞

dt′ 〈
[

ṄL(t), H̃I(t
′)
]

〉 , (5.1)

one can deduce a relation for the time-dependent current through the coupled double-dot
system. ṄL is the time derivative of the particle counting operator NL on the left dot in
the interaction picture (5.2). In order to determine an expression for the current through
the whole system, both dots are equivalent.

We start with the calculation of ṄL, where we have to consider the commutator between
NL and H̃I(t)

ṄL(t) =
i

h̄

[

H̃I(t), NL

]

=
i

h̄

(

1 0
0 0

)

[

H̃I,++(t), NL

]

+
i

h̄

(

0 0
0 1

)

[

H̃I,−−(t), NL

]

+
i

h̄

(

0 1
0 0

)

[

H̃I,+−(t), NL

]

+
i

h̄

(

0 0
1 0

)

[

H̃I,−+(t), NL

]

, (5.2)

where

H̃I,cd(t) = e
i
h̄
ωcdt

{

e
i
h̄
(εRm−ε

R
n )t
[

A(R†, R, cd)bR†m bRn + A(R,R†, cd)bRn bR†m
]

+ e
i
h̄
(εL
k
−εL

l
)t
[

A(L†, L, cd)bL†k bLl + A(L,L†, cd)bLl bL†k
]

+ e
i
h̄
(εRm−ε

L
l
)t
[

A(R†, L, cd)bR†m bLl + A(L,R†, cd)bLl bR†m
]

+ e
i
h̄
(εL
k
−εRn )t

[

A(L†, R, cd)bL†k bRn + A(R,L†, cd)bRn bL†k
]

}

. (5.3)
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Evaluating all important commutators we finally yield for ṄL

ṄL(t) =
i

h̄

{(

1 0
0 0

)(

e
i
h̄
(εRm−ε

L
l
)tbR†m b

L
l [A(R†, L,++)− A(L,R†,++)]

+e
i
h̄
(εL
k
−εRn )tbL†k b

R
n [A(R,L†,++)− A(L†, R,++)]

)

+

(

0 0
0 1

)(

e
i
h̄
(εRm−ε

L
l
)tbR†m b

L
l [A(R†, L,−−)− A(L,R†,−−)]

+e
i
h̄
(εL
k
−εRn )tbL†k b

R
n [A(R,L†,−−)− A(L†, R,−−)]

)

+e
i
h̄
2δt

(

0 1
0 0

)(

e
i
h̄
(εRm−ε

L
l
)tbR†m b

L
l [A(R†, L,+−)− A(L,R†,+−)]

+e
i
h̄
(εL
k
−εRn )tbL†k b

R
n [A(R,L†,+−)− A(L†, R,+−)]

)

+e−
i
h̄
2δt

(

0 0
1 0

)(

e
i
h̄
(εRm−ε

L
l
)tbR†m b

L
l [A(R†, L,−+)− A(L,R†,−+)]

+e
i
h̄
(εL
k
−εRn )tbL†k b

R
n [A(R,L†,−+)− A(L†, R,−+)]

)}

, (5.4)

where only processes play a role that act on both leads. Carrying out some straightforward
manipulations, we finally get the following expression for the commutator between ṄL(t)
and H̃I(t

′)

[

ṄL(t), H̃I(t
′)
]

=

(

1 0
0 0

)

(
[

ṄL,++(t), H̃I,++(t
′)
]

+ṄL,+−(t)H̃I,−+(t
′)− H̃I,+−(t

′)ṄL,−+(t))

+

(

0 0
0 1

)

(
[

ṄL,−−(t), H̃I,−−(t
′)
]

+ṄL,−+(t)H̃I,+−(t
′)− H̃I,−+(t

′)ṄL,+−(t))

+

(

0 1
0 0

)

(ṄL,++(t)H̃I,+−(t
′)− H̃I,++(t

′)ṄL,+−(t)

+ṄL,+−(t)H̃I,−−(t
′)− H̃I,+−(t

′)ṄL,−−(t))

+

(

0 0
1 0

)

(ṄL,−−(t)H̃I,−+(t
′)− H̃I,−−(t

′)ṄL,−+(t)

+ṄL,−+(t)H̃I,++(t
′)− H̃I,−+(t

′)ṄL,++(t)) . (5.5)

This means that we again have to sum up a lot of terms. If we continue to calculate
equation (5.1) by carrying out the time integration [using again (4.18)] and rotating back
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to the Schrödinger picture, we yield for the summands in general

0
∫

−∞

dt

∞
∫

−∞

dε1

∞
∫

−∞

dε2ṄL,abH̃I,cd =

iπc1

{ ∞
∫

−∞

dεLl fR(ε
L
l ∓ 2δ)(1− fL(εLl )) [A(R†, L, ab)− A(L,R†, ab)]×

× [A(L†, R, cd)− A(R,L†, cd)]

−
∞
∫

−∞

dεRm′fL(ε
R
m′ ∓ 2δ)(1− fR(εRm′)) [A(R†, L, cd)− A(L,R†, cd)]×

× [A(L†, R, ab)− A(R,L†, ab)]
}

(5.6)

0
∫

−∞

dt

∞
∫

−∞

dε1

∞
∫

−∞

dε2H̃I,cdṄL,ab =

iπc1

{

−
∞
∫

−∞

dεRmfR(ε
R
m)(1− fL(εRm ∓ 2δ)) [A(R†, L, cd)− A(L,R†, cd)]×

× [A(L†, R, ab)− A(R,L†, ab)]

+

∞
∫

−∞

dεLl′fL(ε
L
l′ )(1− fR(εLl′ ∓ 2δ)) [A(R†, L, ab)− A(L,R†, ab)]×

× [A(L†, R, cd)− A(R,L†, cd)]
}

, (5.7)

where ∓2δ comes from ω−+ resp. ω+−. These terms have the same structure as the Γ(+)

and Γ(−) rates and can be treated like them using the Maple V implementation. Even
most constants are the same if one takes the constants in equation (5.1) into account,
there is only one additional e for the electron charge, which makes sense to get a current
(charge/time).

If one considers a total expression for I(t), one has to look at equation (5.5) and
calculate all terms along the lines of (5.6) and (5.7). Then one finally gets the four matrix
elements of I(t). Only terms containing processes that act on both leads appear in the
matrix elements of I(t). This current expression itself can of course not be observed in an
experiment. For this purpose we calculate the expectation value of I(t) by

〈I(t)〉 = tr[ρ(t)I(t)] (5.8)

= tr

[(

ρ++(t) ρ+−(t)
ρ−+(t) ρ−−(t)

)(

I++(t) I+−(t)
I−+(t) I−−(t)

)]

(5.9)

= ρ++(t)I++(t) + ρ+−(t)I−+(t) + ρ−+(t)I+−(t) + ρ−−(t)I−−(t) . (5.10)
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In this expression, relaxation and dephasing rates cannot be found explicitly, but im-
plicitly (via the time-dependent elements of ρ) they provide the adjustment of a dynamical
equilibrium.

In the case of a stationary current (usually considered in literature), we have to consider

Ist := 〈I(t)〉 = ρ++,stI++(t) + ρ−−,stI−−(t) , (5.11)

where

ρ++,st =
R++−−

R++−− −R++++

(5.12)

ρ−−,st =
R−−++

R−−++ −R−−−−
(5.13)

are the stationary occupation probabilities for the ground state |γ,−〉 and the excited
state |γ,+〉. They are determined by equation (4.4), where the off-diagonal elements of
the density matrix ρ vanish.

Using the nonstationary Bloch-Redfield equations (4.4), we can also study the nonsta-
tionary current [see equations (5.8)-(5.10)].
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Chapter 6

Discussion of the results

After the evaluation of the Redfield tensor elements and the current calculation, we analyze
the physical properties of the system.

The aim is to get as much information as possible out of these results and to understand
the fundamental processes, which control the system behaviour.

For having definite numbers, we have to make some realistic assumptions based on the
experiments [43, 44, 45] concerning the size of energies, which are used as parameters in
this theory.

First of all, one could choose the 2D volume V2DEG of the two leads as 10−12 m2. This
seems reasonable, if one contemplates SEM pictures of lateral double dot systems. Another
assumption concerns the Fermi energy EF of the leads, which we take as 5 meV. The num-
ber of electrons per volume in the leads is n/V2DEG = 1.7 ·1015 m−2. Together with g = 0.1
in terms of the quantum conductance, one finally yields tc = 1.21 mK for the coupling of
the dots to the leads (the formula for tc can be found in Chapter 4.3). The distances to
the nearest other states apart from the two-state system are εβ = 11 K and εα = 9 K,
describing the charging energies which are needed to put another electron into the system
or to get one electron out of the system. The intrinsic energies are taken to be in the
ranges εas = −0.5..0.5 K and γ = −0.5..0.5 K. Furthermore, the average chemical potential
is mostly given by µav = 0.88 K and the temperature is normally set to T = 0.14 K.
All energies are given in the unit Kelvin K (1 K = 86.17 µeV/kB).
In the following sections, the relaxation time, the dephasing time and the stationary cur-
rent are presented depending on the different parameters: internal energies εas and γ,
temperature T and bias voltage V = µR − µL. The section concerning conductance treats
only the bias voltage dependence of the (differential) conductance.
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6.1 Relaxation times

6.1.1 Internal energies
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Figure 6.1: Relaxation times τr for different values of εas when the coupling strength γ is
varied (with T = 0.14 K, V = 0.06 K and µav = 0.88 K)

As one can see in Figure 6.1, the relaxation time τr is in the order of ms. This means
that an incoherent mixture in the relevant two-state system decays very slowly due to
cotunneling. Processes involving phonons are probably orders of magnitudes faster.

The curves are axially symmetric to the y-axis at γ = 0. If the absolute value of the
asymmetry energy εas is equal, the curves for εas > 0 and for εas < 0 are also very similar
to each other, but not equal. This is due to the positive bias voltage (V = µR−µL), which
is applied here. That means that the energy levels with positive εas in the double-dot are
closer to the Fermi energies of the leads, and hence they can decay easier.

The relaxation time rises as the absolute value of εas drops down. By approaching the
εas = 0 line, one adds another symmetry to the system. Because of this symmetry the
states are more stable and the relaxation time reaches its maximum value.
Another characteristic part of the diagrams is the low-γ-minimum in the curve for |εas| =
0.1 K. This minimum is probably due to the changing from the “atomic” to the “molecular”
basis, which is done by varying the inter-dot coupling strength. The height of this dip is
also connected to the absolute value of εas, for smaller εas the dip is huger and sharper.
For εas = 0, no dip can be resolved. But this also makes sense, because only the inter-
dot coupling contributes to the changing to the molecular basis. By varying γ, transport
channels can be controlled, this will be discussed near Figure 6.9, because the relaxation
processes contribute to the electron transport.

After a specific point in γ, the relaxation times goes down with bigger absolute values
of γ. This can be understood by again looking at the Spin-Boson case. One would expect
such a decrease for higher values of the tunnel coupling cos2 θ [see equation (4.44)].
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Figure 6.2: Relaxation times τr for different values of γ when the asymmetry energy εas is
varied (with T = 0.14 K, V = 0.06 K and µav = 0.88 K)

Figure 6.2 shows the relaxation time τr as a function of the asymmetry energy εas. One
observes a small asymmetry at εas = 0, which is due to the applied small bias voltage. For
small negative εas, the relaxation times are higher, a possible explanation for this is given
in Section 6.7.

This figure is fully consistent with Figure 6.1, because for large absolute values of εas
the relaxation time goes down. A maximum in the relaxation time arises for small absolute
values of εas, because the system is very stable there.

The behaviour, which is described in Figures 6.1 and 6.2, could be understood as a
cross-over between a symmetric regime (εas < γ) and an asymmetric regime (εas ≥ γ).
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6.1.2 Temperature
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Figure 6.3: Relaxation times τr for different values of εas and γ when the temperature T
is varied (with V = 0.06 K and µav = 0.88 K)

In Figure 6.3, the temperature dependence of τr is shown. One can observe the fol-
lowing properties. Firstly one denotes that the relaxation time τr decreases for higher
temperatures. This was of course to be expected, because the Pauli blocking is smaller
at higher temperatures and more energy levels are available for relaxation processes. This
temperature dependence is similar to the Spin-Boson case, but there bunching effects are
the reason for the temperature dependence.
We plotted only positive γs, because τr does not depend on the sign of γ.

And one expects from Figure 6.1, that for εas < 0 the relaxation time should be greater
than for εas > 0. This can be confirmed in Figure 6.3, if one compares the curves with
|εas| = 0.1 K and γ = 0.2 K. At higher temperatures these both curves approach each other.
This can of course be explained by the contributing energy scales, because the voltage was
only V = 0.06 K compared to a rising temperature. Consequently if T is much bigger than
V , the temperature is dominating.

One also observes that the graph for γ = 0.1 K starts at a higher τr and drops down
with rising temperature very rapidly, crossing some other lines during this process. On the
other hand, the curve for γ = 0.3 K starts at the lowest τr and crosses some other lines.
With an analogy to the Spin-Boson case (see Chapter 4), this can be understood. The

coth
(

2δ
2T

)

grows stronger, if δ is small. This means that the exciton states are occupied
faster than for big δ. The curve for εas = 0 is again the highest. This is consistent with
our observation for Figure 6.1 that the symmetry makes the system more stable against
relaxation.
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6.1.3 Bias voltage
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Figure 6.4: Relaxation times τr for different values of εas and γ when the bias voltage V
is varied: (a) at T = 0.1 mK, µav = 0.88 K, (b) at T = 0.14 K, µav = 0.88 K, (c) at
T = 0.1 mK, µav = 4 K and (d) at T = 0.14 K, µav = 4 K

In Figure 6.4, one can observe that the plots at the same temperature remain qual-
itatively equal, only the absolute value of τr changes for a different µav. This is due to
the fact, that the bandwidth enters the evaluation logarithmically (similar to the Kondo
effect). The peak positions for different temperatures are also the same, but for the higher
temperature (T = 0.14 K) the peaks are smeared out. And there is also an axial symmetry
in εas which is also evident in the curve for εas = 0 itself, because this the only curve which
is symmetric to V = 0. The appearance of the peaks could be explained by the naive pic-
ture, that there is one configuration, which is the most stable for some given parameters
(see Section 6.7). For positive εas the maximum must be in the negative voltage range.
The peak position depends on the value of δ. At ±2δ the peak maximum can be found,
this is consistent with all other voltage dependencies that follow (Figures 6.8, 6.13, 6.14
and 6.15).
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6.2 Dephasing times

6.2.1 Internal energies

(a) (b)

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
inter−dot coupling γ [K]

0.02

0.04

0.06

0.08

0.1

0.12

D
ep

ha
si

ng
 T

im
e 

τ φ 
[s

]

εas=−0.5 K
εas=−0.3 K
εas=−0.2 K
εas=−0.1 K
εas=−0.01 K
εas=−0.1 mK
εas=0 K

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
inter−dot coupling γ [K]

0.02

0.04

0.06

0.08

0.1

0.12

D
ep

ha
si

ng
 T

im
e 

τ φ 
[s

]

εas=0.5 K
εas=0.3 K
εas=0.2 K
εas=0.1 K
εas=0.01 K
εas=0.1 mK
εas=0 K

Figure 6.5: Dephasing times τφ for different values of εas when the coupling strength γ is
varied (with T = 0.14 K, V = 0.06 K and µav = 0.88 K)

In Figure 6.5, there is a very obvious asymmetry of the dephasing time τφ depending on
the coupling strength γ, if one compares both pictures. This is again due to the asymmetry
energy εas and the voltage V . The dephasing times are higher for negative εas, because
there is a small, positive voltage. For smaller absolute values of εas (|εas| = 0.01 K or
|εas| = 0.1 mK) the curves in (a) and (b) look more and more identical.

The appearance of only one peak (compared to Figure 6.1) could be explained by an
analogy with the Spin-Boson model, if we take “flipless” processes into account. These
processes, that are linear in the temperature T , occur only in the dephasing [compare e.g.
to (4.38)] and have no energy transfer to the leads. The appearance of these terms has also
been checked in the Maple V implementation. The curve for εas = 0 is the highest one, but
this cannot be resolved in these pictures. In general are more symmetric configurations
more stable concerning “flipless” processes. This can also be understood, if one analyzes
the formulae for Y1, Y−1 and Y1,−1 (representing the “flipless” processes) in Appendix D.
The fact that the maxima can be found at γ = 0 is probably due to the small number of
processes remaining for these localized “atomic states”.

The whole figure is a combination of the relaxation time features (see Figure 6.1; min-
imum at γ = 0) and the “flipless” features (maximum at γ = 0).

Since the figures for the γ dependence (Figures 6.1, 6.5 and 6.9) are symmetric to γ = 0,
we used only positive γs for the other figures.
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Figure 6.6: Dephasing times τφ for different values of γ when the asymmetry energy εas is
varied (with T = 0.14 K, V = 0.06 K and µav = 0.88 K)

Figure 6.6 shows the dependence of the dephasing time τφ on the other internal energy,
the asymmetry energy εas. Like in Figure 6.2, one observes an asymmetry at εas = 0, which
is again due to the small bias voltage (see Section 6.7 for an explanation).

The other features, which we can find here, have been seen in Figure 6.2. For example,
Figures 6.5 and 6.6 are consistent with each other, and we can again see the already
mentioned cross-over between a symmetric regime (εas < γ) and an asymmetric regime
(εas ≥ γ).
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6.2.2 Temperature
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Figure 6.7: Dephasing times τφ for different values of εas and γ when the temperature T is
varied (with V = 0.06 K and µav = 0.88 K)

The temperature dependence of the dephasing time is plotted in Figure 6.7. And here
one observes a similar behaviour like in the Spin-Boson case. This is due to the fact that
in the analytical expressions for the dephasing rate are some terms that are linear in T ,
which cannot be seen for the relaxation rate. This again the same argument, which we
used to explain Figure 6.5. “Flipless” processes occur for the dephasing.

Additionally, the already mentioned asymmetry for equal values of the absolute values
of εas is again visible (due to the interaction of εas and V ).
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6.2.3 Bias voltage
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Figure 6.8: Dephasing times τφ for different values of εas and γ when the bias voltage V
is varied: (a) at T = 0.1 mK, µav = 0.88 K, (b) at T = 0.14 K, µav = 0.88 K, (c) at
T = 0.1 mK, µav = 4 K and (d) at T = 0.14 K, µav = 4 K

There is again a symmetry for the different absolute values of εas, while the peaks for
themselves are not symmetric at all. For the low temperature the peaks have two important
points, one at V = 0 and one depending on εas and γ (at ±2δ). The peak at V = 0 is
probably again due to “flipless” processes, because such a structure does not show up in
the relaxation time. An explanation could be that these non-diagonal dephasing processes
are driven by a finite voltage. So for V = 0, these processes are suppressed and the only
phase space, where “flipless” processes could survive, stems from the thermal smearing out
of the Fermi edge. But this phase space is very small. The peak at ±2δ has its origin in
the relaxation processes which have been discussed earlier (see Figure 6.4).

As already seen in Figure 6.4, the curves for the voltage dependence in Figure 6.8 are
smeared out for the higher temperature (in (b) and (d)), so that the characteristics of the
two peaks were lost.
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6.3 Stationary current

6.3.1 Internal energies

(a) (b)
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Figure 6.9: Stationary current Ist for different values of εas when the coupling strength γ
is varied (with T = 0.14 K, V = 0.06 K and µav = 0.88 K)

In Figure 6.9, there is a symmetry for the same absolute values of εas. This can be
explained by the fact that the current expression [see equation (5.11)] is a sum of products of
two quantities with an odd symmetry (current rates and stationary occupation probability).
One would furthermore expect that at γ = 0 there is no stationary current at all, but for
εas = 0 there seems to be a current maximum. This is not the full truth, because the dip
downwards for εas = 0 cannot be resolved in these pictures. If one looks very closely at this
curve, one finds a very narrow dip that reaches Ist = 0 at γ = 0. The stationary current
for γ = 0 at a finite voltage must be 0, because there is no connection between the two
dots then. That means that there is no way for an electron to go through the double-dot
structure.

Another feature is that a saturation value for the stationary current in dependence of
the coupling strength seems to exist (at about I0,st = 7.5 · 10−18 A). This is probably due
to the regime γ À V where the curves show the saturation. For γ À V only one of the two
states is in the “transport window” (can be used for electron transport). We can also see
a current of 2I0,st in the curve for εas = 0. That means we can distinguish between three

transport regimes: the first for γ < t2c
2δ

where there is no current I = 0, a second regime
t2c
2δ
< γ <

√

V 2

4
− ε2as where there is I = 2I0,st and the third for γ >

√

V 2

4
− ε2as where there

is a current of Ist = I0,st. In the first regime, no molecular state can be used for electron
transport. Both molecular states are used in the second case, whereas in the third case
there is only one molecular state available for charge transport. The reason, why we talk
about transport channels or states like in the Landauer-Büttiker formalism, is that we look
at coherent transport through the whole double-dot due to cotunneling, where there is no
dephasing during the transport through the structure.
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Figure 6.10: Stationary current Ist for different values of γ when the asymmetry energy εas
is varied (with T = 0.14 K, V = 0.06 K and µav = 0.88 K)

Figure 6.10 shows the dependence of the stationary current from εas as the second
internal energy. This figure is a full confirmation of the interpretation of Figure 6.9. First
of all, the plot is symmetric to εas = 0, which was also the case before due to the fact
that the stationary current is the sum of products of quantities with odd symmetry (see
discussion of Figure 6.9).

The appearance of a single peak at εas = 0 makes sense, because the condition for
charge transport is ideal there (only one effective level due to the symmetry between the
two dots), there is no further blocking in the double-dot system.

We recognize again the three transport regimes, but they are not so clear now, because
there are some “intermediate” values of γ, therefore we see all possibilities. If we start the
discussion for the γ = 0 curve, we see that the stattionary current is exactly Ist = 0, as
we would expect. For growing, but small values of γ, the maximum at εas = 0 reaches the
highest value Ist = 2I0,st at about 1.5 ·10−17 A (like in Figure 6.9). If we increase γ further,
the height of the peak goes down again and saturates at Ist = I0,st ≈ 7.5 · 10−18 A.
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Figure 6.11: Limits for the three transport regimes with the parameters V = 0.06 K and
tc = 1.21 mK

Figure 6.11 shows the limits for the three transport regimes, which we identified in
Figures 6.9 and 6.10 with the same parameters. The three regimes are

• atomic limit γ < t2c
2δ
;

• two-channel t2c
2δ
< γ <

√

V 2

4
− ε2as;

• one-channel γ >
√

V 2

4
− ε2as.

Thus we get the following, possible criteria for the limits

• between the 1st and the 2nd regime

– limit 1: γ = −
√

− ε2as
2
+ 1

2

√

ε4as + t4c ;

– limit 2: γ =

√

− ε2as
2
+ 1

2

√

ε4as + t4c ;

• between the 2nd and the 3rd regime

– limit 1: γ = −
√

V 2

4
− ε2as;

– limit 2: γ =
√

V 2

4
− ε2as.
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6.3.2 Temperature
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Figure 6.12: Stationary current Ist for different values of εas and γ when the temperature
T is varied (with V = 0.06 K and µav = 0.88 K)

At a specific value of the temperature, the curves for the stationary current begin to
rise very fast in Figure 6.12, whereas they were nearly constant for low T s. Even the
sometimes very different behaviour for the possibilities of the absolute values of εas does
not occur. This can be unterstood from Figure 6.13, where both are nearly equal for a
sufficient small voltage.

The values for the stationary current seem to saturate for each configuration of the
εas and the γ seperately. This saturation can be understood, if we look again at the
regime, which we use. Here we rise the temperature more and more, that means that both
molecular states can be used for electron transport. This results in a higher current. Using
this argument, we also explain, why the curves saturate seperately: the molecular states
(i.e. the level spacing 2δ) are different for each configuration (only for |εas| = 0.1 K and
γ = 0.2 K the curves are identical).
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6.3.3 Bias voltage
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Figure 6.13: Stationary Ist-V characteristics for different values of εas and γ: (a) at T =
0.1 mK, µav = 0.88 K, (b) at T = 0.14 K, µav = 0.88 K, (c) at T = 0.1 mK, µav = 4 K and
(d) at T = 0.14 K, µav = 4 K

As already observed, also in Figure 6.13 the curves are smeared out for the high tem-
perature and for εas = γ = 0.1 K, the current-voltage dependence really looks like a linear
resistor. In (b) and (d) it is hard to recognize the edges that are there. In the other two
pictures ((a) and (c)), there is again the asymmetry for negative and positive voltages and
again the curves for the same absolute value of εas and γ are somehow symmetric with
respect to V = 0.

The position of these edges is again determined by ±2δ. This has already been ob-
served in the voltage dependence of the relaxation (Figure 6.4) and the dephasing time
(Figure 6.8). The edges seem to stem from the relaxation processes, because they can be
observed whenever relaxation plays a role. At these edges, an additional transport channel
disappears (at −2δ) or reappears (at +2δ). Between −2δ and +2δ, only one molecular
state is available for electron transport through the double-dot structure.
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6.4 Conductance and differential conductance

(a)

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
Voltage V [K]

5.0e−17

1.0e−16

1.5e−16

2.0e−16

2.5e−16

3.0e−16

C
on

du
ct

an
ce

 G
 [A

/K
]

εas=0.1 K, γ=0.1 K
εas=0.1 K, γ=0.2 K
εas=0.1 K, γ=0.3 K
εas=0 K, γ=0.2 K
εas=−0.1 K, γ=0.2 K

(b)

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
Voltage V [K]

5.0e−17

1.0e−16

1.5e−16

2.0e−16

2.5e−16

3.0e−16

C
on

du
ct

an
ce

 G
 [A

/K
]

εas=0.1 K, γ=0.1 K
εas=0.1 K, γ=0.2 K
εas=0.1 K, γ=0.3 K
εas=0 K, γ=0.2 K
εas=−0.1 K, γ=0.2 K

(c)

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
Voltage V [K]

5.0e−17

1.5e−16

2.5e−16

3.5e−16

C
on

du
ct

an
ce

 G
 [A

/K
]

εas=0.1 K, γ=0.1 K
εas=0.1 K, γ=0.2 K
εas=0.1 K, γ=0.3 K
εas=0 K, γ=0.2 K
εas=−0.1 K, γ=0.2 K

(d)

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
Voltage V [K]

1.0e−16

2.0e−16

3.0e−16

4.0e−16

C
on

du
ct

an
ce

 G
 [A

/K
]

εas=0.1 K, γ=0.1 K
εas=0.1 K, γ=0.2 K
εas=0.1 K, γ=0.3 K
εas=0 K, γ=0.2 K
εas=−0.1 K, γ=0.2 K

Figure 6.14: Conductance G for different values of εas and γ when the bias voltage V
is varied: (a) at T = 0.1 mK, µav = 0.88 K, (b) at T = 0.14 K, µav = 0.88 K, (c) at
T = 0.1 mK, µav = 4 K and (d) at T = 0.14 K, µav = 4 K

In Figure 6.14, one sees again a very obvious asymmetry with respect to V = 0. Again
this effect is smeared out for the high temperature. For the low temperature, one observes a
minimal level with two flanks each that behave very differently. The width of this minimal
level is given by 4δ, which is consistent with the other pictures of voltage dependencies.

Especially in (a) and (c), it becomes obvious that the asymmetry energy is respon-
sible for the characteristics of the curves, because only the symmetric curve (εas = 0) is
fully symmetric to V = 0. These pictures highlight the behaviour that was observed in
Figure 6.13. A later interpretation of Figure 6.16 will probably explain this feature.
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Figure 6.15: Differential conductance dIst/dV for different values of εas and γ when the
bias voltage V is varied: (a) at T = 0.1 mK, µav = 0.88 K, (b) at T = 0.14 K, µav = 0.88 K,
(c) at T = 0.1 mK, µav = 4 K and (d) at T = 0.14 K, µav = 4 K

The differential conductance as a function of the voltage (Figure 6.15) shows mainly
the same characteristics as already presented in Figure 6.14. All features are even clearer:
the asymmetry in the voltage, the symmetry for special values (same absolute value) and
the smearing out due to a higher temperature.

The asymmetries can only be observed, if εas 6= 0. And the positions of the peaks are
again determined by the values of δ, they can be found at ±2δ.

These features seem to be very general, because they appear in all “voltage plots”.
The asymmetries can maybe be explained by looking at the difference of the stationary
occupation probability ρ++,st − ρ−−,st (Figure 6.16). Further plausible explanations for
these effects are stability arguments in the double-dot systems (see Section 6.7).
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Figure 6.16: Difference of the stationary occupation probabilities ρ++,st−ρ−−,st for different
values of εas and γ when the bias voltage V is varied: (a) at T = 0.1 mK, µav = 0.88 K,
(b) at T = 0.14 K, µav = 0.88 K, (c) at T = 0.1 mK, µav = 4 K and (d) at T = 0.14 K,
µav = 4 K

In Figure 6.16, the difference in the stationary occupation probabilities is shown. And
all features which were not clear in Figures 6.14 and 6.15 seem to make sense now, because
all of the already mentioned characteristics do also appear in this figure. In Chapter 5,
where one can find a part of the analytical expression for the current, there is a trace over a
product of a current matrix and the (stationary) reduced density matrix [equation (5.11)].
That means that this behaviour is due to the behaviour of the occupation probabilities
which are given by Bloch-Redfield theory. A further discussion can be found in Section 6.7.
The time evolution, that leads to the here observed behaviour of the difference of two
stationary elements of the reduced density matrix, can be found in Figure 6.17 for some
given parameters.
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6.5 Time-dependent elements of the reduced density

matrix
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Figure 6.17: Time-dependent reduced density matrix elements with the following parame-
ters: T = 0.14 K, µav = 0.88 K and εas = 0.1 K; additionally (a) V = 0.06 K, γ = 0.2 K,
(b) V = 0.06 K, γ = 0 K, (c) V = 0 K, γ = 0.2 K and (d) V = 0 K, γ = 0 K

In Figure 6.17, the behaviour of the time-dependent elements of the reduced density
matrix is shown. The left part of the pictures is the case of a pure state (the execited
state ρ++) as a starting value ρ0 for the reduced density matrix. The right part shows the
behaviour, if we start in a superpostion of states (ρ++ = ρ−− = ρ+− = ρ−+ = 0.5). For
long times, the left and the right part of each picture must coincide. This happens to be
the case for all pictures.

The common behaviour for all pictures is that after a while the ground state (ρ−−)
is mainly occupied, the occupation probability for the excited state is small, whereas the
off-diagonal density matrix elements ρ+− and ρ−+ remain to be 0 or dephase with coherent
oscillations to 0 (depending on the starting value ρ0). Although the oscillations seem to
be frequency modulated, a closer look reveals clear oscillations with an angular frequency
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of about 2δ
h̄
.

The occupation probability for the ground state never reaches 1 fully, this can explained by
the temperature of T = 0.14 K. That means that there is always a small thermal excitation.

There are also some differences between the pictures, which are due to the different
voltages and the different γs. If we compare (a) and (b), we observe that the occupation
probability for the ground state is significantly smaller in (b), where there is no inter-dot
coupling γ. This probably due to the fact that it is harder to relax to the ground state,
if the dots are not coupled. Another difference is that the dephasing processes in (a) are
faster than in (b), this can be explained with the same argument. A comparison between
(c) and (d) gives the same observations. The difference between (a) and (c) and between
(b) and (d) is that the occupation probability for the ground state is even smaller in (c)
and (d) than in (a) and (b). The only reason can be the finite voltage V = 0.06 K that
makes it easier to relax to the ground state in (a) and (b).
The stationary values for the elements of the reduced density matrix, which can be observed
here, can also be found in Figure 6.16(b), if one subtracts ρ−−,st from ρ++,st.

6.6 Time-dependent current
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Figure 6.18: Time-dependent cotunneling current through the double dot system with the
parameters: T = 0.14 K, µav = 0.88 K and εas = 0.1 K; additionally (a) V = 0.06 K and
(b) V = 0 K

Figure 6.18 shows the time-evolution of the current through the double-dot system.
The results are consistent with Figure 6.17.

(a) and (b) look very similar with one major difference: for γ = 0.2 K there remains a
finite current in (a), but this is clear, because there is also a finite voltage V = 0.06 K and
a finite temperature T = 0.14 K as well.

The common results in (a) and (b) are that there are only oscillations (not frequency
modulated) in the current for γ = 0.2 K and if one starts in a superposition. All other
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curves approximate their saturation value directly. Mostly this saturation value is 0, be-
cause there should not be a stationary current, if γ = 0 or V = 0. This has also been
discussed before. Note that we only discuss the expectation value of the current. In order
to observe this current, one first has to study the shot-noise associated with it, which is
potentially very high.

6.7 Stability in the double dot system

(a)

V

2εas

(b)

V

2εas

(c)

V

2εas

(d)

V

2εas

Figure 6.19: Sketches for some “stable” [(a) and (b)] and “unstable” [(c) and (d)] config-
urations in the asymmetry energy εas and the voltage V

Figure 6.19 shows some possible configurations for the asymmetry energy εas and the
voltage V .

In pictures (a) and (b), εas and V have opposite signs, whereas in (c) and (d) they
have the same sign. In (a) and (b) one directly observes that the distances to the Fermi
energies of the leads are huge, because the levels are aligned in the same way. Thus these
configurations are somehow stable. For the other two pictures (c) and (d), the opposite
argument holds. The levels of the dots and of the leads are not aligned in the same way,
that means that there is one very small distance to the Fermi energy of one lead. Therefore
the configurations in (c) and (d) are unstable.

On the other hand, if the voltage is increased immensely, then the above mentioned
alignment makes charge transport easier, because the levels in the dots do not block each
other, which would be true for (c) and (d). This can be observed in Figures 6.13, 6.14 and
6.15.
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Figure 6.20: Difference of the stationary occupation probabilities ρ++,st−ρ−−,st for varying
εas and V with γ = 0.2 K, εβ = 11 K, εα = 9 K, T = 0.14 K and µav = 0.88 K

In Figure 6.20, we can make the observation, which we expected due to the stability
arguments that have been mentioned on the last page. For different signs in the asymmetry
energy εas and the voltage V , one gets a more stable excited state |γ,+〉. If the signs are
the same, the ground state |γ,−〉 is nearly fully occupied in the stationary case.
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Figure 6.21: Difference of the stationary occupation probabilities ρ++,st−ρ−−,st for varying
εas and V with γ = 0.2 K, εβ = 11 K, εα = 9 K, T = 0.1 mK and µav = 0.88 K

Figure 6.21 shows in addition to Figure 6.20 that a “transition” regime between the
stable configurations does not exist for low temperatures. This explains the sharp con-
tures in the voltage dependence plots in Chapter 6 (Figures 6.4, 6.8, 6.13, 6.14, 6.15 and
6.16). The pictures in Figure 6.16 contain cuts through the Figures 6.20 and 6.21 for the
configuration εas = 0.1 K and γ = 0.2 K.

The dominating relaxation channel would give a current in the opposite direction of
the bias voltage V , hence it is suppressed.
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Chapter 7

Conclusions

We analyzed decoherence and transport properties of spin-polarized electrons due to co-
tunneling processes in a lateral double quantum dot structure. We showed how one can
control decoherence using a non-equilibrium between two baths and we discussed non-linear
cotunneling through an artificial molecule.

As a starting point, we used in Chapter 3 a generalized Schrieffer-Wolff transformation
[28] to treat the cotunneling processes in order to get an effective description of the inter-
action between the dots and the leads in the two-state system. This is important, because
a standard treatment would only describe sequential tunneling, which is suppressed in the
Coulomb Blockade regime and therefore not the dominating transport mechanism.

The resulting Hamiltonian is of typical system and bath form. In Chapter 4 we hence
can apply the Bloch-Redfield formalism [22, 31, 34], which treats the system part exactly
and performs perturbation theory in the coupling to the bath, which was assumed to be
small. As a result one obtains expressions for the time-dependent reduced density matrix
ρ and also for the relaxation (τr) and dephasing (τφ) times. Relaxation describes the
transition from a starting state to the stationary state, in which mainly the ground state is
occupied (see Figure 6.17). Dephasing is the loss of phase information of the off-diagonal
elements of the reduced density matrix with growing time. The off-diagonal elements of
the reduced density matrix become zeroes in the stationary state. These expressions have
been implemented with Maple V (Release 7) for an arbitrary inter-dot coupling γ. The
case γ = 0 has been treated by hand as a Gedanken experiment.

In Chapter 5, an expression for the cotunneling current through this double dot system
has been derived and also implemented using Maple V.

The results of this theory are shown and discussed in Chapter 6. The behaviour of the
different analyzed quantities can mostly be understood by stability arguments of states due
to the internal energy asymmetry and the bias voltage (see Section 6.7). For different signs
of the bias voltage V = µR − µL and the asymmetry energy εas = (εl − εr)/2, a particular
state is in principle more stable than others, whereas there is a maximum for this stability.
This can e.g. be observed in the figures concerning the relaxation time.

The dependencies of the relaxation time τr on the inter-dot coupling γ, the asymmetry
energy εas, the temperature T and the bias voltage V that has been applied between
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the leads, are illustrated in several examples in Section 6.1. The transition from the
“atomic” to the “molecular” basis, together with asymmetry arguments, dominates the
dependence of τr on γ (Figure 6.1) in this temperature regime. If one also takes Figure 6.2
into account, one can understand the behaviour as a cross-over between a symmetric and
an asymmetric regime. The temperature dependence (Figure 6.3) can be understood by
looking at asymmetries and in analogy to the Spin-Boson case [39, 40]. To explain the bias
voltage dependence of relaxation time (Figure 6.4), one should again take the asymmetry
energy εas and the inter-dot coupling γ into account. Some characteristic points (±2δ) can
also be found in figures for the bias voltage dependence of other quantities.
In Section 6.2, we analyzed the dephasing time τφ. Some properties, that also occurred
for relaxation time, can be found here, too. The important difference is the appearance
of “flipless” processes, during which there is no energy exchange with the leads. These
processes can be suppressed, if one tunes the charging energies εβ and εα (i.e. the charging
energies required for transitions between the two-state system and a higher or lower level)
to be equal. If εβ = εα, then dephasing processes can only take place using relaxation
processes. However, we used εβ 6= εα, because, the charging energies for different levels in a
double-dot structure are not equal in general. The “flipless” processes affect the behaviour
of the dephasing times in comparison to the relaxation times immensely. One can still
observe a decrease of the dephasing time for huge absolute values of γ in Figure 6.5, but an
additional stability due to the transition of the basis states cannot be observed. Together
with Figure 6.6, again a cross-over can be observed as mentioned above. The temperature
dependence of the dephasing time (Figure 6.7) is also very strongly affected by the “flipless”
processes, because these are linear in T in the dephasing rate Γφ [see equation (4.38)]. The
dependence of τφ on the bias voltages V (Figure 6.8) is similar to the behaviour of τr, but
there is one additional peak at V = 0. This is also due to the “flipless” processes.

In the last paragraphs, we described the control of decoherence due to cotunneling
processes by applying a voltage (and thus creating a non-equilibrium situation) between
the two fermionic baths (leads). There seem to be two different operating points for a
quantum calculation and quantum measurement. A long dephasing time τφ would be good
for calculations, that means e.g. V = 0 is an appropriate voltage. On the other hand, it
would be favourable for a measurement to have a long relaxation time τr, which would be
realized at V = ±2δ (depending on the sign of the asymmetry energy).

In Section 6.3, we next analyzed the stationary current Ist. In the plot for the γ depen-
dence (Figure 6.9) one observes that all stationary currents vanish for γ = 0. Unfortunately,
this could not be resolved for all curves. Another feature was a non-monotonic behaviour
of the stationary current with rising inter-dot coupling γ. This has been explained by
analyzing the role of different transport channels. An analysis of the εas dependence (Fig-
ure 6.10) gives the same result. This is summarized in Figure 6.11, where the borders of
the transport regimes are illustrated. Contemplating the temperature dependence of Ist
(Figure 6.12), one observes two saturation effects: one for small temperatures (see above)
and one for higher temperatures. With the thermal excitation, the second molecular state
can be addressed for charge transport here. We can also find asymmetries in the bias volt-
age behaviour of the stationary current (at the same points ±2δ as before) in Figure 6.13.
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This could be explained via the same arguments that hold for the relaxation time.
As a next step, we considered in Section 6.4 the bias voltage dependence of quantities

that are related to the stationary current and of the difference of the stationary occu-
pation probabilities of ground and excited state (ρ−−,st and ρ++,st resp.). In these three
Figures 6.14, 6.15 and 6.16, one also observes peaks or characteristic points at the same
places that have been mentioned above. The reason for this behaviour can again be found
in stability arguments due to the interplay of the dot asymmetry energy εas and the bias
voltage V (see Section 6.7).

A visualization of the time-dependent elements of the reduced density matrix followed
(Figure 6.17) in Section 6.5. One could again see the interplay of εas and V . And addition-
ally the inter-dot coupling γ and the temperature T play an important role to describe the
occupation of the state during the flow of time. If one starts in a superposition of states,
one observes the dephasing processes via coherent oscillations.

Section 6.6 treated the time-dependent current I (Figure 6.18), which is flowing through
the double-dot system due to cotunneling processes. If one starts in a pure state, the current
approaches its stationary value Ist continuously. In the case of a superposition as a starting
state, one can see oscillations again. For γ = 0 there is also a continuous progression of
the current. This makes sense, because charge transport without an inter-dot coupling is
only possible via the leads.

Finally, some stability arguments were discussed in the last section (Section 6.7).
To summarize this thesis, we described the control of dephasing (for quantum opera-

tions) and relaxation (for detection) of a coupled double-dot system due to cotunneling
processes to leads. This control is possible by adjusting various parameters, in particular
also the transport voltage.

We interpret our results for the charge transport Ist(γ) (with a rich, non-monotonic
structure) in terms of coherent channels. This can be called “molecular cotunneling spec-
troscopy”.

The relaxation rate Γr and the current I depend on each other, which we explained via
stability arguments (see Section 6.7).

The experimentally measured decoherence times are, however, in the order of µs [27],
whereas our observations can only explain relaxation and dephasing times in the range of
10 − 1000 ms. Consequently, we did not focus on the dominating decoherence process in
this thesis. We have to permit other effects like phonon and/or photon assisted processes
[46, 47, 43, 27] in order to do this. If it is possible to suppress the decoherence due
to phonons using phonon cavities [47], then cotunneling could again be the dominating
decoherence mechanism. An analysis of the used electrical circuit could maybe also be
useful in order to reduce further, unwanted sources of decoherence.

The application of a similar theory to explain recent experimental results [44] would be
another prospective field of work.
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Chapter 8

Deutsche Zusammenfassung

In den vorausgegangenen Kapiteln haben wir Dekohärenz- und Transporteigenschaften
von spin-polarisierten Elektronen in einer lateralen Doppelquantenpunktstruktur im Ko-
tunnelregime analysiert. Wir haben gezeigt, wie man Dekohärenz mithilfe eines Nicht-
gleichgewichts zwischen den beiden Bädern kontrollieren kann. Und wir haben nicht-
lineares Kotunneln durch ein künstliches Molekül diskutiert.

Zunächst verwenden wir in Kapitel 3 zur Behandlung der Kotunnelprozesse eine ver-
allgemeinerte Schrieffer-Wolff-Transformation [28], um eine effektive Beschreibung der Wech-
selwirkung zwischen Quantenpunkten und Kontakten in Form eines Hamiltonianoperators
zu erhalten. Das ist sehr wichtig, denn eine Standardbehandlung würde nur sequen-
tielles Tunneln, das im Coulomb-Blockade-Regime unterdrückt und deswegen nicht der
dominierende Dekohärenzmechanismus ist, beschreiben.

In Kapitel 4 sind wir in der Lage den Bloch-Redfield-Formalismus [22, 31, 34], der
interne Kopplungen voll und Kopplungen an äußere Bäder perturbativ berücksichtigt,
anzuwenden. Als Ergebnis erhält man Ausdrücke für die zeitabhängige reduzierte Dichte-
matrix ρ und auch für die Relaxationszeit τr und die Dephasierungszeit τφ. Relaxation
beschreibt den Übergang eines Anfangszustandes in den stationären Zustand, wobei man
nachher hauptsächlich den Grundzustand besetzt sieht (siehe Abbildung 6.17). Depha-
sierung ist der Verlust der Phaseninformationen der nicht-diagonalen reduzierten Dichte-
matrixelemente mit fortschreitender Zeit. Im stationären Zustand werden die nicht-diago-
nalen reduzierten Dichtematrixelemente zu Nullen. Für beliebige Kopplung γ zwischen
den beiden Quantenpunkten sind diese Ausdrücke in Maple V (Release 7) implementiert
worden und den Fall γ = 0 haben wir als Gedankenexperiment von Hand berechnet.

Im anschließenden Kapitel 5 wird ein Ausdruck für den Kotunnel-Strom durch dieses
Doppelquantenpunktsystem hergeleitet und darauffolgend ebenfalls in Maple V implemen-
tiert.

Eine Sammlung von graphischen Ergebnissen und physikalischen Erklärungen folgt
(Kapitel 6). Die meisten Verhaltensweisen der verschiedenen analysierten Größen lassen
sich durch Überlegungen zur Stabilität von Zuständen aufgrund von Symmetrieargumenten
und Spannungseinstellungen erklären (siehe auch Abschnitt 6.7). Bei verschiedenen Vor-
zeichen von Spannung V = µR − µL und Asymmetrieenergie εas = (εl − εr)/2 ist der
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Zustand prinzipiell stabiler, wobei es auch ein Maximum der Stabilität gibt. Dies kann
man insbesondere in den Abbildungen zur Relaxationszeit beobachten.

Die Abhängigkeit der Relaxationszeit τr von der Kopplungsstärke γ zwischen den Quan-
tenpunkten, von der Asymmetrieenergie εas, von der Temperatur T und der an die Kon-
takte angelegten Spannung V wird anhand von Beispielen in Abschnitt 6.1 gezeigt. Der
Basiswechsel vom “atomaren” zum “molekularen” Zweizustandssystem dominiert in diesem
Temperaturbereich zusammen mit Asymmetrieüberlegungen das Verhalten von τr bei Vari-
ation von γ (Abbildung 6.1). Wenn man zusätzlich noch Abbildung 6.2 betrachtet, dann
kann man das Verhalten als “cross-over” zwischen einem symmetrischen und einem asym-
metrischen Regime verstehen. Die Temperaturabhängigkeit (Abbildung 6.3) kann aufgrund
von Asymmetrien und der Analogie zum Spin-Boson Fall [39, 40] verstanden werden. Für
eine Erklärung der Spannungsabhängigkeit (Abbildung 6.4) kann man wieder die Asym-
metrieenergie εas und die Kopplungsstärke γ heranziehen. Bestimmte charakteristische
Punkte (±2δ) findet man auch in den Abbildungen der Spannungsabhängigkeiten der an-
deren Größen.

In Abschnitt 6.2 wird die Dephasierungszeit τφ betrachtet. Hier lassen sich einige
Eigenschaften, die auch bei der Relaxationszeit auftraten, wiederfinden. Der wesentliche
Unterschied ist das Auftreten von “fliplosen” Prozessen, bei denen kein Energieaustausch
mit den Kontakten erfolgt. Diese Prozesse lassen sich auch ausschließen, wenn man die
Ladungsenergien εβ und εα, die zu Übergängen zum nächsthöheren bzw. -niedrigen Ener-
gieniveau der Quantenpunkte außerhalb des Zweizustandssystems benötigt werden, gleich-
setzt. Dann findet Dephasierung nur noch über Relaxationsprozesse statt. Wir behalten
diese Asymmtrie in den Ladungsenergien allerdings in allen Abbildungen in Kapitel 6
bei, um keine charakteristischen Eigenschaften unseres Systems zu verpassen. Abgese-
hen davon sind die Ladungsenergien im allgemeinen nicht gleich. Die “fliplosen” Prozesse
verändern die Eigenschaften der Dephasingzeit im Vergleich zur Relaxationszeit ganz er-
heblich. Zwar beobachtet man immer noch ein Abfallen der Dephasingzeit für große
Kopplungsstärken γ (Abbildung 6.5), allerdings scheint das Vorhandensein der moleku-
laren Basis bei endlichen γ’s keine anfängliche, zusätzliche Stabilität geben. Zusammen
mit Abbildung 6.6 kann man wieder ein “cross-over” beobachten (s.o.). Die Tempera-
turabhängigheit der Dephasierungszeit (Abbildung 6.7) ist ebenfalls durch die “fliplosen”
Prozesse stark beeinflußt, denn diese sind linear in der Temperatur in der Dephasingrate
Γφ [siehe auch (4.38)]. Die Abhängigkeit von der angelegten Spannung (Abbildung 6.8) ist
ähnlich wie die der Relaxationszeit, jedoch gibt es noch einen Peak bei V = 0, der durch
die “fliplosen” Prozesse entstanden ist.

In den letzten Absätzen haben wir die Kontrolle der Dekohärenz aufgrund von Kotunnel-
Prozessen durch Anlegen einer Spannung (und damit der Erzeugung eines Nichtgleichge-
wichts) zwischen den beiden fermionischen Bädern (Kontakten) beschrieben. Es scheint
zwei verschiedene Arbeitspunkte für das Rechnen mit den Doppelquantenpunkten und
deren Auslesen zu geben. Eine lange Dephasierungszeit τφ ist gut für Rechnungen, d.h.
V = 0 ist eine angemessene Spannung. Andererseits ist es für eine Messung der Quan-
tenzustände nützlich, eine lange Relaxationszeit τr zu haben, was bei V = ±2δ (abhängig
vom Vorzeichen der Asymmetrieenergie) realisiert ist.
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In Abschnitt 6.3 wird der stationäre Strom Ist analysiert. In der γ-Abhängigkeit (Abbil-
dung 6.9) erkennt man, daß für γ = 0 alle stationären Ströme verschwinden, auch wenn das
nicht für alle Parameter in den entsprechenden Abbildungen aufgelöst werden kann. An-
sonsten bemerkt man ein nicht-monotones Verhalten des stationären Stroms mit steigen-
der Kopplung γ zwischen den Quantenpunkten. Dies erklärt man durch verschiedene
Transportregime. Eine Analyse der εas-Abhängigkeit (Abbildung 6.10) ergibt das gleiche
Ergebnis, welches dann noch einmal in Form der Abbildung 6.11 mit den Grenzen der
Transportregime illustriert wird. In der Temperaturabhängigkeit (Abbildung 6.12) von Ist
findet man zwei Sättigungseffekte: einen für kleine Temperaturen (vorher beobachtet) und
einen für höhere Temperaturen. Hier wird durch thermische Anregung der zweite moleku-
lare Zustand für den Transport zugänglich gemacht. Und wieder kann man Asymmetrien
in der Spannungsabhängigkeit (Abbildung 6.13) ausmachen (an den gleichen Stellen ±2δ
wie vorher). Dies wird erklärbar über ähnliche Argumente wie bei der Relaxationszeit.

Als nächster Schritt (Abschnitt 6.4) wird die Spannungsabhängigkeit der Größen unter-
sucht, die aus dem stationären Strom gewonnen wurden, sowie die Differenz der stationären
Besetzungszahlen von anregtem und Grundzustand (ρ++,st und ρ−−,st) als Funktion der
Spannung V . In diesen drei Abbildungen (6.14, 6.15 und 6.16) ergeben sich ebenfalls
Sprünge oder vielmehr charakteristische Punkte an den gleichen Stellen, wie bereits zuvor
notiert. Die Begründung ist wiederum in Stabilitätsargumenten aufgrund der Wechsel-
wirkung zwischen Asymmetrieenergie εas und der angelegten Spannung V zu finden (siehe
Abschnitt 6.7).

Darauf folgt eine Visualierung des Zeitverhaltens der reduzierten Dichtematrixelemente
(Abbildung 6.17) in Abschnitt 6.5. Auch hier kann man wieder das Wechselspiel zwischen
εas und V feststellen, außerdem spielen die Kopplung γ zwischen den Quantenpunkten
und die Temperatur eine entscheidende Rolle, wie die Zustände im Laufe der Zeit besetzt
werden. Für den Fall, daß man in einer Überlagerung von Zuständen startet, kann man
die Dephasierung in der Form von kohärenten Oszillationen beobachten.

Abschnitt 6.6 behandelt den zeitabhängigen Strom I, der durch das Doppelquanten-
punktsystem aufgrund von Kotunnel-Prozessen fließt (Abbildung 6.18). Wenn man in
einem reinem Zustand startet, dann läuft der Strom kontinuierlich auf seinen stationären
Wert Ist zu. Falls man in einem Überlagerungszustand und γ 6= 0 beginnt, so kann man
wiederum Oszillationen beobachten; für γ = 0 ist auch ein kontinuierlicher Verlauf zu
beobachten. Was auch Sinn macht, denn ohne eine Kopplung zwischen den Dots ist ein
Elektronen-Transport nur über die Kontakte möglich.

Im oft zitierten, letzten Abschnitt 6.7 werden einige Stabilitätsargumente im lateralen
Doppelquantenpunktsystem diskutiert.

Mit dieser Arbeit sind wir in der Lage, die Kontrolle von Dephasierung (wichtig für
die Quantenoperationen) und Relaxation (wichtig für die Messung) in einem gekoppelten
Doppelquantenpunktsystem aufgrund der Ankopplung an zwei Kontakte zu beschreiben.
Diese Kontrolle kann durch verschiedene Parameter (insbesondere durch das Anlegen einer
geeigneten Spannung) ausgeübt werden.

Wir interpretieren unsere Ergebnisse für den Ladungstransport Ist(γ) (mit einer vielfäl-
tigen, nicht-monotonen Struktur) als kohärente Transportkanäle. Man kann dies auch als
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“Molekulare Kotunnelspektroskopie” bezeichnen.
Die Relaxationsrate Γr und der Strom I sind abhängig voneinander, was in Abschnitt 6.7

erklärt wird.
Diese Ergebnisse erklären jedoch nicht die wesentlichen Dekohärenzeigenschaften, die

man experimentell beobachtet [27], denn hier liegen die gemessenen Relaxations- und
Dephasierungszeiten in der Größenordnung von µs. Unsere Beobachtungen können jedoch
nur 10-1000 ms erklären. In einem nächsten Schritt liegt es nahe, zusätzlich zum Kotun-
neln noch andere Effekte zuzulassen und deren Auswirkung zu prüfen. In Frage kämen
dafür Phononen und/oder Photonen [46, 47, 43, 27]. Falls es möglich sein sollte, die durch
Phononen erzeugte Dekohärenz mithilfe von Phononen-Kavitäten [47] zu unterdrücken,
dann könnte der hier betrachtete Kotunnel-Mechanismus wieder der dominierende Dekohä-
renzkanal sein. Eine Analyse des Einflusses des Stromkreises könnte möglicherweise auch
nützlich sein, um andere, ungewollten Dekohärenzquellen zu reduzieren.

Ein anderes, künftiges Arbeitsgebiet könnte die Anwendung einer ähnlichen Theorie
sein, um neue experimentelle Ergebnisse [44] zu erklären.
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Appendix A

Schrieffer-Wolff coefficients

By applying equation (3.1), one can find all Schrieffer-Wolff coefficients, which are used in
(3.2)-(3.5).

The Schrieffer-Wolff coefficients for HI,++ are

A(R†, R,++) =
t2c
2S2

[

1

εRm − (−δ + εβ)
+

−1
εRn − (δ − εβ)

]

(A.1)

A(R†, L,++) =
t2c
2S2

[

1

εRm − (−δ + εβ)
+

−1
εLl − (δ − εβ)

]

γ

δ + εas
(A.2)

A(L†, R,++) =
t2c
2S2

[

1

εLk − (−δ + εβ)
+

−1
εRn − (δ − εβ)

]

γ

δ + εas
(A.3)

A(L†, L,++) =
t2c
2S2

[

1

εLk − (−δ + εβ)
+

−1
εLl − (δ − εβ)

]

×

× γ2

(δ + εas)2
(A.4)

A(L,L†,++) =
t2c
2S2

[

−1
εLl − (δ + εα)

+
1

εLk − (−δ − εα)

]

(A.5)

A(L,R†,++) =
t2c
2S2

[

−1
εLl − (δ + εα)

+
1

εRm − (−δ − εα)

]

γ

δ + εas
(A.6)

A(R,L†,++) =
t2c
2S2

[

−1
εRn − (δ + εα)

+
1

εLk − (−δ − εα)

]

γ

δ + εas
(A.7)

A(R,R†,++) =
t2c
2S2

[

−1
εRn − (δ + εα)

+
1

εRm − (−δ − εα)

]

×

× γ2

(δ + εas)2
. (A.8)
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The Schrieffer-Wolff coefficients for HI,−− are

A(R†, R,−−) =
t2c
2S2

[

1

εRm − (δ + εβ)
+

−1
εRn − (−δ − εβ)

]

×

× γ2

(δ + εas)2
(A.9)

A(R†, L,−−) =
t2c
2S2

[

1

εRm − (δ + εβ)
+

−1
εLl − (−δ − εβ)

]

×

× −γ
δ + εas

(A.10)

A(L†, R,−−) =
t2c
2S2

[

1

εLk − (δ + εβ)
+

−1
εRn − (−δ − εβ)

]

×

× −γ
δ + εas

(A.11)

A(L†, L,−−) =
t2c
2S2

[

1

εLk − (δ + εβ)
+

−1
εLl − (−δ − εβ)

]

(A.12)

A(L,L†,−−) =
t2c
2S2

[

−1
εLl − (−δ + εα)

+
1

εLk − (δ − εα)

]

×

× γ2

(δ + εas)2
(A.13)

A(L,R†,−−) =
t2c
2S2

[

−1
εLl − (−δ + εα)

+
1

εRm − (δ − εα)

]

×

× −γ
δ + εas

(A.14)

A(R,L†,−−) =
t2c
2S2

[

−1
εRn − (−δ + εα)

+
1

εLk − (δ − εα)

]

×

× −γ
δ + εas

(A.15)

A(R,R†,−−) =
t2c
2S2

[

−1
εRn − (−δ + εα)

+
1

εRm − (δ − εα)

]

. (A.16)
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The Schrieffer-Wolff coefficients for HI,+− are

A(R†, R,+−) =
t2c
2S2

[

1

εRm − (−δ + εβ)
+

−1
εRn − (−δ − εβ)

]

×

× −γ
δ + εas

(A.17)

A(R†, L,+−) =
t2c
2S2

[

1

εRm − (−δ + εβ)
+

−1
εLl − (−δ − εβ)

]

(A.18)

A(L†, R,+−) =
t2c
2S2

[

1

εLk − (−δ + εβ)
+

−1
εRn − (−δ − εβ)

]

×

× −γ2
(δ + εas)2

(A.19)

A(L†, L,+−) =
t2c
2S2

[

1

εLk − (−δ + εβ)
+

−1
εLl − (−δ − εβ)

]

×

× γ

δ + εas
(A.20)

A(L,L†,+−) =
t2c
2S2

[

−1
εLl − (δ + εα)

+
1

εLk − (δ − εα)

]

×

× −γ
δ + εas

(A.21)

A(L,R†,+−) =
t2c
2S2

[

−1
εLl − (δ + εα)

+
1

εRm − (δ − εα)

]

(A.22)

A(R,L†,+−) =
t2c
2S2

[

−1
εRn − (δ + εα)

+
1

εLk − (δ − εα)

]

×

× −γ2
(δ + εas)2

(A.23)

A(R,R†,+−) =
t2c
2S2

[

−1
εRn − (δ + εα)

+
1

εRm − (δ − εα)

]

×

× γ

δ + εas
. (A.24)
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The Schrieffer-Wolff coefficients for HI,−+ are

A(R†, R,−+) =
t2c
2S2

[

1

εRm − (δ + εβ)
+

−1
εRn − (δ − εβ)

]

×

× −γ
δ + εas

(A.25)

A(R†, L,−+) =
t2c
2S2

[

1

εRm − (δ + εβ)
+

−1
εLl − (δ − εβ)

]

×

× −γ2
(δ + εas)2

(A.26)

A(L†, R,−+) =
t2c
2S2

[

1

εLk − (δ + εβ)
+

−1
εRn − (δ − εβ)

]

(A.27)

A(L†, L,−+) =
t2c
2S2

[

1

εLk − (δ + εβ)
+

−1
εLl − (δ − εβ)

]

×

× γ

δ + εas
(A.28)

A(L,L†,−+) =
t2c
2S2

[

−1
εLl − (−δ + εα)

+
1

εLk − (−δ − εα)

]

×

× −γ
δ + εas

(A.29)

A(L,R†,−+) =
t2c
2S2

[

−1
εLl − (−δ + εα)

+
1

εRm − (−δ − εα)

]

×

× −γ2
(δ + εas)2

(A.30)

A(R,L†,−+) =
t2c
2S2

[

−1
εRn − (−δ + εα)

+
1

εLk − (−δ − εα)

]

(A.31)

A(R,R†,−+) =
t2c
2S2

[

−1
εRn − (−δ + εα)

+
1

εRm − (−δ − εα)

]

×

× γ

δ + εas
. (A.32)
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Appendix B

Effect of the renormalization

Our renormalization has been formulated by

H̃I(t) := H̃I(t)− 〈H̃I(t)〉 . (B.1)

Let us now consider the effect of this renormalization on H0,diag. As already seen in
equation (4.10), we defined 〈H̃I〉 in each component as

〈H̃I〉 = A(R†, R)fR(εRm)δmn + A(L†, L)fL(εLk )δkl
+A(L,L†)(1− fL(εLk ))δkl
+A(R,R†)(1− fR(εRm))δmn . (B.2)

Going to the continuum limit, one finds

〈H̃I〉 = c2

∞
∫

−∞

dεRmA(R†, R)fR(εRm) + c2

∞
∫

−∞

dεLkA(L†, L)fL(εLk )

+c2

∞
∫

−∞

dεLkA(L,L†)(1− fL(εLk ))

+c2

∞
∫

−∞

dεRmA(R,R†)(1− fR(εRm)) , (B.3)

with c2 again being a factor which comes out of the density of states in the leads, c2 =
V2DEGm∗

2πh̄2
. The first two integrals have both the form

c3

∞
∫

−∞

dε
1

ε− ζ
1

eβ(ε−µ) + 1
, (B.4)

and the other two integrals in (B.3) have the generic structure

c3

∞
∫

−∞

dε
1

ε− ζ
1

e−β(ε−µ) + 1
, (B.5)
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where c3 is a product of c2 with the constants from the Schrieffer-Wolff coefficients. The
integrals (B.4) and (B.5) can be calculated using the residue theorem along the lines of
[36]. The application of the residue theorem gives then

∞
∫

−∞

dε
1

ε− ζ
1

eβ(ε−µ) + 1
= πif(ζ)

−2πi

β

∞
∑

j=0

1

µ− ζ + πi
β
(2j + 1)

(B.6)

∞
∫

−∞

dε
1

ε− ζ
1

e−β(ε−µ) + 1
= πi(1− f(ζ))

+
2πi

β

∞
∑

j=0

1

µ− ζ + πi
β
(2j + 1)

. (B.7)

This is the way how all these integrals can be evaluated. The final results for this
procedure are given below. To get a feeling for the influence of the renormalization, we
consider only the order of magnitude, which is given by c3. We take c3 now as

c3 =
t2c
2S2

V2DEGm∗

2πh̄2
, (B.8)

whereas other occuring factors will not change the order of magnitude.
We take the following values for the parameters: h̄ = 7.605 · 10−12 Ks, m∗ = me =

9.109 · 10−31 kg, V2DEG = 10−12 m2, tc = 1.21 mK and S = 1.
Whereas the numerical values for tc and S are realistic estimates, the choice of tc is discussed
in Chapter 6 and S only consists of factors that will not change the order of magnitude as
we stated before. The final result for the order of magnitude of c3 is then

c3 = 1.3277 · 10−4K . (B.9)

This a 1000 times smaller than typical values of the asymmetry energy εas or the inter-
dot coupling γ. Thus we normally neglect the effect of the renormalization.

One needs the follwing rule (similar to [37]) to get Digamma or ψ functions in equations
(B.6) and (B.7)

ψ(x+ iy)− ψ(x+ iz) =
∞
∑

j=0

(

1

x+ iz + j
− 1

x+ iy + j

)

=
∞
∑

j=0

i(y − z)
(x+ iz + j)(x+ iy + j)

. (B.10)
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Then one yields the effect of the renormalization as

〈H̃I〉++ = c3

{

πi[fR(−δ + εβ)− fR(δ − εβ)]

−ψ
(

1

2
+
iβ

2π
(δ − εβ − µR)

)

+ ψ

(

1

2
+
iβ

2π
(−δ + εβ − µR)

)

+
γ2

(δ + εas)2

[

πi[fl(−δ + εβ)− fL(δ − εβ)]

−ψ
(

1

2
+
iβ

2π
(δ − εβ − µL)

)

+ ψ

(

1

2
+
iβ

2π
(−δ + εβ − µL)

)]

+πi[(1− fL(−δ − εα))− (1− fL(δ + εα))]

+ψ

(

1

2
+
iβ

2π
(δ + εα − µL)

)

− ψ
(

1

2
+
iβ

2π
(−δ − εα − µL)

)

+
γ2

(δ + εas)2

[

πi[(1− fR(−δ − εα))− (1− fR(δ + εα))]

+ψ

(

1

2
+
iβ

2π
(δ + εα − µR)

)

− ψ
(

1

2
+
iβ

2π
(−δ − εα − µR)

)]}

(B.11)

〈H̃I〉−− = c3

{

γ2

(δ + εas)2

[

πi[fR(δ + εβ)− fR(−δ − εβ)]

−ψ
(

1

2
+
iβ

2π
(−δ − εβ − µR)

)

+ ψ

(

1

2
+
iβ

2π
(δ + εβ − µR)

)]

+πi[fl(δ + εβ)− fL(−δ − εβ)]

−ψ
(

1

2
+
iβ

2π
(−δ − εβ − µL)

)

+ ψ

(

1

2
+
iβ

2π
(δ + εβ − µL)

)

+
γ2

(δ + εas)2

[

πi[(1− fL(δ − εα))− (1− fL(−δ + εα))]

+ψ

(

1

2
+
iβ

2π
(−δ + εα − µL)

)

− ψ
(

1

2
+
iβ

2π
(δ − εα − µL)

)]

+πi[(1− fR(δ − εα))− (1− fR(−δ + εα))]

+ψ

(

1

2
+
iβ

2π
(−δ + εα − µR)

)

− ψ
(

1

2
+
iβ

2π
(δ − εα − µR)

)}

(B.12)
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〈H̃I〉+− = c3

{

−γ
δ + εas

[

πi[fR(−δ + εβ)− fR(−δ − εβ)]

−ψ
(

1

2
+
iβ

2π
(−δ − εβ − µR)

)

+ ψ

(

1

2
+
iβ

2π
(−δ + εβ − µR)

)]

+
γ

δ + εas

[

πi[fl(−δ + εβ)− fL(−δ − εβ)]

−ψ
(

1

2
+
iβ

2π
(−δ − εβ − µL)

)

+ ψ

(

1

2
+
iβ

2π
(−δ + εβ − µL)

)]

+
−γ

δ + εas

[

πi[(1− fL(δ − εα))− (1− fL(δ + εα))]

+ψ

(

1

2
+
iβ

2π
(δ + εα − µL)

)

− ψ
(

1

2
+
iβ

2π
(δ − εα − µL)

)]

+
γ

δ + εas

[

πi[(1− fR(δ − εα))− (1− fR(δ + εα))]

+ψ

(

1

2
+
iβ

2π
(δ + εα − µR)

)

− ψ
(

1

2
+
iβ

2π
(δ − εα − µR)

)]}

(B.13)

〈H̃I〉−+ = c3

{

−γ
δ + εas

[

πi[fR(δ + εβ)− fR(δ − εβ)]

−ψ
(

1

2
+
iβ

2π
(δ − εβ − µR)

)

+ ψ

(

1

2
+
iβ

2π
(δ + εβ − µR)

)]

+
γ

δ + εas

[

πi[fl(δ + εβ)− fL(δ − εβ)]

−ψ
(

1

2
+
iβ

2π
(δ − εβ − µL)

)

+ ψ

(

1

2
+
iβ

2π
(δ + εβ − µL)

)]

+
−γ

δ + εas

[

πi[(1− fL(−δ − εα))− (1− fL(−δ + εα))]

+ψ

(

1

2
+
iβ

2π
(−δ + εα − µL)

)

− ψ
(

1

2
+
iβ

2π
(−δ − εα − µL)

)]

+
γ

δ + εas

[

πi[(1− fR(−δ − εα))− (1− fR(−δ + εα))]

+ψ

(

1

2
+
iβ

2π
(−δ + εα − µR)

)

− ψ
(

1

2
+
iβ

2π
(−δ − εα − µR)

)]}

.(B.14)
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If one carries out the usual approximations (ψ(x)→ ln(x) and ψ ′(x)→ 1
x
), one finds

〈H̃I〉++ = c3

{

ln

(

−δ + εβ − µR
δ − εβ − µR

)

+
γ2

(δ + εas)2
ln

(

−δ + εβ − µL
δ − εβ − µL

)

+ ln

(

δ + εα − µL
−δ − εα − µL

)

+
γ2

(δ + εas)2
ln

(

δ + εα − µR
−δ − εα − µR

)}

(B.15)

〈H̃I〉−− = c3

{

γ2

(δ + εas)2
ln

(

δ + εβ − µR
−δ − εβ − µR

)

+ ln

(

δ + εβ − µL
−δ − εβ − µL

)

+
γ2

(δ + εas)2
ln

(

−δ + εα − µL
δ − εα − µL

)

+ ln

(

−δ + εα − µR
δ − εα − µR

)}

(B.16)

〈H̃I〉+− = c3
γ

δ + εas

{

− ln

(

−δ + εβ − µR
−δ − εβ − µR

)

+ ln

(

−δ + εβ − µL
−δ − εβ − µL

)

− ln

(

δ + εα − µL
δ − εα − µL

)

+ ln

(

δ + εα − µR
δ − εα − µR

)}

(B.17)

〈H̃I〉−+ = c3
γ

δ + εas

{

− ln

(

δ + εβ − µR
δ − εβ − µR

)

+ ln

(

δ + εβ − µL
δ − εβ − µL

)

− ln

(

−δ + εα − µL
−δ − εα − µL

)

+ ln

(

−δ + εα − µR
−δ − εα − µR

)}

. (B.18)
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Appendix C

Rules for the integrals

In order to evaluate the Γ(+) rates, we have to consider all integrals of the general form
(4.16) that appear in equation (4.6). Each of these integrals has two integration variables
and can be determined by the rules that follow below. For the Γ(−) rates an analogous
consideration has been done. ε1 and ε2 are the generic integration variables. The ωs belong
to the equations (4.6) and (4.7); their definition can be found in Chapter 4.

C.1 Rules for Γ(+)

general case:

Γ(+) = c
−n1(µ2 ∓ 2δ)

εb − εa ∓ 2δ

[

ln

(

εb − µ1 ∓ 2δ

εa − µ1

)

+ ln

(

εa − µ2 ± 2δ

εb − µ2

)]

(C.1)

C.1.1 ωnk = 0

i) µ1 = µ2:

Γ(+) = c
1

εb − εa
kBT

[

1

εa − µ1
− 1

εb − µ+ 1

]

(C.2)

ii) εa = εb:

Γ(+) = c (−n1(µ2))
[

1

εa − µ1
− 1

εa − µ2

]

(C.3)

iii) µ1 = µ2 and εa = εb:

Γ(+) = c kBT
1

(εa − µ1)2
(C.4)

C.1.2 ωnk 6= 0

i) two integration variables ε1:

Γ(+) = c
−n1(µ2 ∓ 2δ)

εb − εa ∓ 2δ

[

ln

(

εb − µ1
εa − µ1

)

+ ln

(

εa − µ2 ± 2δ

εb − µ2 ± 2δ

)]

(C.5)
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ii) two integration variables ε2:

Γ(+) = c
−n1(µ2 ∓ 2δ)

εb − εa ∓ 2δ

[

ln

(

εb − µ1 ∓ 2δ

εa − µ1 ∓ 2δ

)

+ ln

(

εa − µ2
εb − µ2

)]

(C.6)

iii) εb = εa ± 2δ:

Γ(+) = c (−n1(µ2 ∓ 2δ))

[

1

εa − µ1
− 1

εb − µ2

]

(C.7)

iv) two integration variables ε1 or ε2 and εa = εb:

Γ(+) = 0 (C.8)

C.2 Rules for Γ(−)

general case:

Γ(−) = c
−n2(µ1 ± 2δ)

εb − εa ∓ 2δ

[

ln

(

εa − µ1
εb − µ1 ∓ 2δ

)

+ ln

(

εb − µ2
εa − µ2 ± 2δ

)]

(C.9)

C.2.1 ωlm = 0

i) µ1 = µ2:

Γ(−) = c
1

εb − εa
kBT

[

1

εa − µ1
− 1

εb − µ+ 1

]

(C.10)

ii) εa = εb:

Γ(−) = c (−n2(µ1))
[

1

εa − µ2
− 1

εa − µ1

]

(C.11)

iii) µ1 = µ2 and εa = εb:

Γ(−) = c kBT
1

(εa − µ1)2
(C.12)

C.2.2 ωlm 6= 0

i) two integration variables ε1:

Γ(−) = c
−n2(µ1 ± 2δ)

εb − εa ∓ 2δ

[

ln

(

εa − µ1
εb − µ1

)

+ ln

(

εb − µ2 ± 2δ

εa − µ2 ± 2δ

)]

(C.13)

ii) two integration variables ε2:

Γ(−) = c
−n2(µ1 ± 2δ)

εb − εa ∓ 2δ

[

ln

(

εa − µ1 ∓ 2δ

εb − µ1 ∓ 2δ

)

+ ln

(

εb − µ2
εa − µ2

)]

(C.14)
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iii) εb = εa ± 2δ:

Γ(−) = c (−n2(µ1 ± 2δ))

[

1

εb − µ2
− 1

εa − µ1

]

(C.15)

iv) two integration variables ε1 or ε2 and εa = εb:

Γ(−) = 0 (C.16)
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Appendix D

Functions for the atomic limit

One can evaluate the functions Z, Y1, Y−1 and Y1,−1 in equations (4.39)-(4.43), if one
applies equations (4.22) and (4.23) from the general case or the rules from Appendix C to
all summands in the nonvanishing Γ(±)’s in (4.28)-(4.33). This was done by hand.

Z =
1

4εas

[

ln

(

3εas + εβ − µR
−εas + εβ − µR

)

+ ln

(

−3εas + εβ − µL
εas + εβ − µL

)]

− 1

2(εas − εβ) + 2εas

[

ln

(

εas − εβ − µR
−εas + εβ − µR

)

+ ln

(

−3εas + εβ − µL
−εas − εβ − µL

)]

− 1

2(εas + εβ) + 2εas

[

ln

(

3εas + εβ − µR
εas − εβ − µR

)

+ ln

(

−εas − εβ − µL
εas + εβ − µL

)]

+

[

1

εas − εβ − µR
− 1

−εas − εβ − µL

]

+
1

2εas + εβ − εα

[

ln

(

−εas + εβ − µR
−εas + εα − µR

)

+ ln

(

−3εas + εα − µL
−3εas + εβ − µL

)]

− 1

2εas − εα − εβ

[

ln

(

εas − εα − µR
−εas + εβ − µR

)

+ ln

(

−3εas + εβ − µL
−εas − εα − µL

)]

− 1

2εas − εα − εβ

[

ln

(

εas − εβ − µR
−εas + εα − µR

)

+ ln

(

−3εas + εα − µL
−εas − εβ − µL

)]

+
1

2εas + εβ − εα

[

ln

(

εas − εα − µR
εas − εβ − µR

)

+ ln

(

−εas − εβ − µL
−εas − εα − µL

)]

+
1

2εas + εβ − εα

[

ln

(

3εas + εβ − µR
3εas + εα − µR

)

+ ln

(

εas + εα − µL
εas + εβ − µL

)]

− 1

2εas + εα + εβ

[

ln

(

3εas + εα − µR
εas − εβ − µR

)

+ ln

(

−εas − εβ − µL
εas + εα − µL

)]

− 1

2εas + εα + εβ

[

ln

(

3εas + εβ − µR
εas − εα − µR

)

+ ln

(

−εas − εα − µL
εas + εβ − µL

)]
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+
1

2εas + εβ − εα

[

ln

(

εas − εα − µR
εas − εβ − µR

)

+ ln

(

−εas − εβ − µL
−εas − εα − µL

)]

+
1

4εas

[

ln

(

3εas + εα − µR
−εas + εα − µR

)

+ ln

(

−3εas + εα − µL
εas + εα − µL

)]

− 1

2(εas + εα) + 2εas

[

ln

(

3εas + εα − µR
εas − εα − µR

)

+ ln

(

−εas − εα − µL
εas + εα − µL

)]

− 1

2(εas − εα) + 2εas

[

ln

(

εas − εα − µR
−εas + εα − µR

)

+ ln

(

−3εas + εα − µL
−εas − εα − µL

)]

+

[

1

εas − εα − µR
− 1

−εas − εα − µL

]

(D.1)

Y1 =
1

(εas + εα − µL)2
+

1

(−εas − εα − µL)2
− 1

εas + εα

[

1

−εas − εα − µL
− 1

εas + εα − µL

]

+
1

(−εas + εβ − µR)2
+

1

(εas − εβ − µR)2
− 1

εas − εβ

[

1

−εas + εβ − µR
− 1

εas − εβ − µR

]

(D.2)

Y−1 =
1

(εas + εβ − µL)2
+

1

(−εas − εβ − µL)2
− 1

εas + εβ

[

1

−εas − εβ − µL
− 1

εas + εβ − µL

]

+
1

(−εas + εα − µR)2
+

1

(εas − εα − µR)2
− 1

εas − εα

[

1

−εas + εα − µR
− 1

εas − εα − µR

]

(D.3)

Y1,−1 =
1

εβ − εα

[

1

εas + εα − µL
− 1

εas + εβ − µL
− 1

−εas − εα − µL
+

1

−εas − εβ − µL

]

− 1

2εas + εα + εβ

[

− 1

εas + εα − µL
− 1

εas + εβ − µL
+

1

−εas − εα − µL
+

1

−εas − εβ − µL

]

+
1

εβ − εα

[

1

−εas + εα − µR
− 1

−εas + εβ − µR
− 1

εas − εα − µR
+

1

εas − εβ − µR

]

− 1

2εas − εα − εβ

[

1

−εas + εα − µR
+

1

−εas + εβ − µR
− 1

εas − εα − µR
− 1

εas − εβ − µR

]

(D.4)
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Appendix E

Some Comments on the

Implementation

In order to get expressions for the rates Γ
(±)
lmnk in equation (4.5), we implemented the large

sums in equations (4.6) and (4.7) in Maple V (Release 7). After this, we have been able to
combine these rates to obtain the Redfield tensor elements. The diagonalization of the ten-
sor and the solution of the Redfield equations (4.4) followed then in a straightforward way.

The current expression contained terms that were similar to the rates Γ
(±)
lmnk, consequently

the implementation of the rates could partially be used.
The special thing about this implementation is that we used string manipulation to

accomplish our calculations. First, the products of the required Schrieffer-Wolff coefficients
(see Appendix A) have been evaluated, then these expressions have been parsed for specific
parameters to obtain the summands of the final rate via the rules in Appendix C. Finally
everything was summed up and one could give values to the parameters to receive some
plots or numbers.

One further remark is requested: the actual implementation works only with Maple V
(Release 7) or better, because the package “StringTools” did not exist in an earlier version
of Maple. On the long term, an implementation in a real programming language like C or
C++ is required and planned [e.g. by compiling the Maple code with Matlab or the new
Maple V (Release 8)].

69



Appendix F

Some 3D Pictures

The pictures below [generated with Maple V (Release 7)] have been taken to show the
borders of our theory.

F.1 Relaxation time
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Figure F.1: Relaxation time τr when εas and γ are varied; V = 0.06 K, µav = 0.88 K and
T = 0.14 K

We found some not forseeable peaks here, therefore we do not trust our theory, if εas
or γ is much larger than 0.5 K.
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F.2 Dephasing time
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Figure F.2: Dephasing time τφ when εas and γ are varied; V = 0.06 K, µav = 0.88 K and
T = 0.14 K

Even negative dephasing times are possible according to this plot. This is of course not
consistent with our understanding of the processes. A quantum state can decay, but not
improve its stability.
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F.3 Stationary current
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Figure F.3: Stationary current Ist when εas and γ are varied; V = 0.06 K, µav = 0.88 K
and T = 0.14 K

In this picture, one can see two areas where the values of the stationary current are not
defined or in a very huge peak. These areas are another reason to restrict our analysis to
small values of εas and γ.
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Used symbols

symbol meaning

H Hamiltonian
H0 unperturbed Hamiltonian
H1 perturbation Hamiltonian
Hsys Hamiltonian of the double-dot system
Hres Hamiltonian of the leads

HI or HI,eff effective interaction Hamiltonian for the coupling between dots and leads

H̃I effective interaction Hamiltonian in the interaction picture
A(·) Schrieffer-Wolff coefficient (see Appendix A)

a
R/L†
n/m , a

R/L
n/m creation and annihilation operators acting on the right/left dot

b
R/L†
m/k , b

R/L
n/l creation and annihilation operators acting on the right/left lead

εas = (εl − εr)/2 asymmetry energy between energy levels in the left and the right dot
γ inter-dot coupling
tc strength of the coupling between the dots and the leads

δ =
√

ε2as + γ2 half level splitting in the molecular basis

Rnmkl Redfield tensor elements
R Redfield tensor with included ωnm

Γ
(±)
lmnk rates that construct the Redfield tensor elements
Γr relaxation rate

τr =
1
Γr

relaxation time

Γφ dephasing rate
τφ = 1

Γφ
dephasing time

ρnm elements of the reduced density matrix
W density matrix of the whole system

ωnm = (En − Em)/h̄ angular frequency of the coherent oscillations
En eigenenergy of state n
t time
T temperature

εL/Rs energies in the left/right lead
µL/R electrochemical potential of the left/right lead

µav = (µR + µL)/2 average of the electrochemical potentials of both leads
V = µR − µL bias voltage
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symbol meaning

I current
Ist stationary current
G conductance
εβ charging energy to reach the |β〉 state
εα charging energy to reach the |α〉 state

nL/R(ε) Bose function for the left/right lead
fL/R(ε) Fermi function for the left/right lead

NL particle counting operator on the left dot
C diagonized R (with ωnm included)

B and B−1 matrices that diagonalize R
ψ Digamma function
ψ′ Trigamma function

S =
√

1 + γ2

(δ+γ)2
normalization factor for the molecular states

n number of electrons in the leads
V2DEG volume of the leads (two dimensional electron gas)

m∗ reduced mass in the leads
EF Fermi energy of the leads

β = 1
kBT

inverse temperature

kB = 1.38 · 10−23 J/K Boltzmann constant
h̄ = 1.05 · 10−34 Js Planck constant over 2π

c, c1, c2 and c3 constants stemming from the density of states in the leads
δlm Kronecker symbol
δ(ε) Dirac delta function
tr(·) trace of ·
BP strength of the magnetic field, which is needed to polarize

the spins of the electrons
µB = 9.27 · 10−24 Am2 Bohr magneton

gP Landé g factor
TK Kondo temperature

Z, Y1, Y−1 and Y1,−1 specific functions for the atomic limit (see Appendix D)
α strength of the dissipation in the Spin-Boson model

J(ε) spectral density of a bosonic bath

θ angle between the z-axis and an effective magnetic field ~Beff

in NMR notation
σ generalized cross section
κ generalized spectral density

74



List of Figures

1.1 (a) Sketch of the double dot system, (b) scanning electron microscope (SEM)
picture of a real double dot system . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Energy spectrum of the system before and after a diagonalization; δ is de-

fined as δ =
√

ε2as + γ2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Sketch of the two phases for the Gedanken experiment: (a) superposition,
(b) atomic limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Principle of the generalized Schrieffer-Wolff transformation . . . . . . . . . 10
3.2 Sketch of the virtual processes involved in (a) HI,++, (b) HI,−−, (c) HI,+−

and (d) HI,−+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6.1 Relaxation times τr for different values of εas when the coupling strength γ
is varied (with T = 0.14 K, V = 0.06 K and µav = 0.88 K) . . . . . . . . . 26

6.2 Relaxation times τr for different values of γ when the asymmetry energy εas
is varied (with T = 0.14 K, V = 0.06 K and µav = 0.88 K) . . . . . . . . . 27

6.3 Relaxation times τr for different values of εas and γ when the temperature
T is varied (with V = 0.06 K and µav = 0.88 K) . . . . . . . . . . . . . . . 28

6.4 Relaxation times τr for different values of εas and γ when the bias voltage V
is varied: (a) at T = 0.1 mK, µav = 0.88 K, (b) at T = 0.14 K, µav = 0.88 K,
(c) at T = 0.1 mK, µav = 4 K and (d) at T = 0.14 K, µav = 4 K . . . . . . 29

6.5 Dephasing times τφ for different values of εas when the coupling strength γ
is varied (with T = 0.14 K, V = 0.06 K and µav = 0.88 K) . . . . . . . . . 30

6.6 Dephasing times τφ for different values of γ when the asymmetry energy εas
is varied (with T = 0.14 K, V = 0.06 K and µav = 0.88 K) . . . . . . . . . 31

6.7 Dephasing times τφ for different values of εas and γ when the temperature
T is varied (with V = 0.06 K and µav = 0.88 K) . . . . . . . . . . . . . . . 32

6.8 Dephasing times τφ for different values of εas and γ when the bias voltage V
is varied: (a) at T = 0.1 mK, µav = 0.88 K, (b) at T = 0.14 K, µav = 0.88 K,
(c) at T = 0.1 mK, µav = 4 K and (d) at T = 0.14 K, µav = 4 K . . . . . . 33

6.9 Stationary current Ist for different values of εas when the coupling strength
γ is varied (with T = 0.14 K, V = 0.06 K and µav = 0.88 K) . . . . . . . . 34

75



6.10 Stationary current Ist for different values of γ when the asymmetry energy
εas is varied (with T = 0.14 K, V = 0.06 K and µav = 0.88 K) . . . . . . . 35

6.11 Limits for the three transport regimes with the parameters V = 0.06 K and
tc = 1.21 mK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.12 Stationary current Ist for different values of εas and γ when the temperature
T is varied (with V = 0.06 K and µav = 0.88 K) . . . . . . . . . . . . . . . 37

6.13 Stationary Ist-V characteristics for different values of εas and γ: (a) at T =
0.1 mK, µav = 0.88 K, (b) at T = 0.14 K, µav = 0.88 K, (c) at T = 0.1 mK,
µav = 4 K and (d) at T = 0.14 K, µav = 4 K . . . . . . . . . . . . . . . . . 38

6.14 Conductance G for different values of εas and γ when the bias voltage V is
varied: (a) at T = 0.1 mK, µav = 0.88 K, (b) at T = 0.14 K, µav = 0.88 K,
(c) at T = 0.1 mK, µav = 4 K and (d) at T = 0.14 K, µav = 4 K . . . . . . 39

6.15 Differential conductance dIst/dV for different values of εas and γ when the
bias voltage V is varied: (a) at T = 0.1 mK, µav = 0.88 K, (b) at T = 0.14 K,
µav = 0.88 K, (c) at T = 0.1 mK, µav = 4 K and (d) at T = 0.14 K, µav = 4 K 40

6.16 Difference of the stationary occupation probabilities ρ++,st−ρ−−,st for differ-
ent values of εas and γ when the bias voltage V is varied: (a) at T = 0.1 mK,
µav = 0.88 K, (b) at T = 0.14 K, µav = 0.88 K, (c) at T = 0.1 mK, µav = 4 K
and (d) at T = 0.14 K, µav = 4 K . . . . . . . . . . . . . . . . . . . . . . . 41

6.17 Time-dependent reduced density matrix elements with the following pa-
rameters: T = 0.14 K, µav = 0.88 K and εas = 0.1 K; additionally (a)
V = 0.06 K, γ = 0.2 K, (b) V = 0.06 K, γ = 0 K, (c) V = 0 K, γ = 0.2 K
and (d) V = 0 K, γ = 0 K . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.18 Time-dependent cotunneling current through the double dot system with
the parameters: T = 0.14 K, µav = 0.88 K and εas = 0.1 K; additionally (a)
V = 0.06 K and (b) V = 0 K . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.19 Sketches for some “stable” [(a) and (b)] and “unstable” [(c) and (d)] config-
urations in the asymmetry energy εas and the voltage V . . . . . . . . . . . 44

6.20 Difference of the stationary occupation probabilities ρ++,st−ρ−−,st for vary-
ing εas and V with γ = 0.2 K, εβ = 11 K, εα = 9 K, T = 0.14 K and
µav = 0.88 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.21 Difference of the stationary occupation probabilities ρ++,st−ρ−−,st for vary-
ing εas and V with γ = 0.2 K, εβ = 11 K, εα = 9 K, T = 0.1 mK and
µav = 0.88 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

F.1 Relaxation time τr when εas and γ are varied; V = 0.06 K, µav = 0.88 K
and T = 0.14 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

F.2 Dephasing time τφ when εas and γ are varied; V = 0.06 K, µav = 0.88 K and
T = 0.14 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

F.3 Stationary current Ist when εas and γ are varied; V = 0.06 K, µav = 0.88 K
and T = 0.14 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

76



Bibliography

[1] R.P. Feynman, Int. J. Theor. Phys., V 21, 467 (1982).

[2] D. Deutsch, Proc. R. Soc. Lond. A 400, 97 (1985).

[3] P. Shor, in Proc. 35th Ann. Symp. on the Foundations of Computer Science (ed. S.
Goldwasser), pp. 124-134 (IEEE Computer Society Press, Los Alamitos, California,
1994).

[4] L.K. Grover, Phys. Rev. Lett. 79, 325 (1997).

[5] J.I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).

[6] J.I. Cirac, T. Pellizzari and P. Zoller, Science 273, 1207 (1996).

[7] J.F. Poyatos, J.I. Cirac and P. Zoller, Phys. Rev. Lett. 78, 390 (1997).

[8] N. Gershenfeld and I.L. Chuang, Science 275, 350 (1997).

[9] A. Barenco et al., Phys. Rev. A 52, 3457 (1995).

[10] C.H. Bennett, G. Brassard and A.K. Ekert, Sci. Am. 267, 50 (1992).

[11] A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991).

[12] L.M.K. Vandersypen et al., Nature 414, 883 (2001).

[13] M.J. Storcz, master’s thesis, University of Bonn (2002).

[14] see e.g. M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Infor-
mation, (CUP, Cambridge, 2000).

[15] D. Loss and D. DiVincenzo, Phys. Rev. A 57, pp. 120-126 (1998).

[16] P. Zanardi and F. Rossi, Phys. Rev. Lett. 81, 4752 (1998).

[17] R.H. Blick and H. Lorenz, ISCAS 2000 proceedings, pp. II245-II248.

[18] F.R. Waugh et al., Phys. Rev. Lett. 75, 705 (1995).

77



[19] T. Dittrich et al., Quantum Transport and Dissipation, (Wiley-VCH, Weinheim, 1998).

[20] D.V. Averin and Y.V. Nazarov in Single Charge Tunneling (eds H. Grabert and M.H.
Devoret), Proc. NATO ASI Ser. B 294, (Plenum, New York, 1991), pp. 217-247.

[21] L.Borda et al., cond-mat/0207001 (2002).

[22] P.N. Agyres and P.L. Kelley, Phys. Rev. 134, A 98 (1964).

[23] L. Hartmann, I. Goychuk, M. Grifoni and P. Hänggi, Phys. Rev. E 61, R4687 (2000).

[24] M.C. Goorden, master’s thesis, Delft University of Technology (2002).

[25] U. Hartmann and F.K. Wilhelm, phys. stat. sol. (b) 233, No. 3 (2002).

[26] L.P. Kouwenhoven et al., Proceedings of the NATO Advanced Study Institute on
Mesoscopic Electron Transport, edited by L.L. Sohn, L.P. Kouwenhoven, and G. Schön
(Kluwer Series E345, 1997) pp. 105-214.

[27] W.G. van der Wiel et al., cond-mat/0205350 (2002).

[28] J.R. Schrieffer and P.A. Wolff, Phys. Rev. 149, 491 (1966).

[29] C. Cohen-Tannoudji, J. Dupont-Roc and G. Grynberg, Atom-Photon Interactions:
Basic Processes and Applications, (Wiley, New York, 1992).

[30] I. Shavitt and L.T. Redmon, J. Chem. Phys. 73, 5711 (1980).

[31] U. Weiss, Quantum dissipative systems, 2nd ed., (World Scientific, Singapore, 1999).

[32] S. Nakajima, Prog. Theor. Phys. 20, 948, (1958).

[33] R. Zwanzig, J. Chem. Phys. 33, 1338, (1960).

[34] K. Blum, Density Matrix Theory and Applications, (Plenum Press, New York, 1981).

[35] R.D. Mattuck, A Guide to Feynman Diagrams in the Many-Body Problem, 2nd ed.,
(Dover Publications, New York, 1992).

[36] G.B. Arfken and H.J. Weber, Mathematical Methods for Physicists, (Harcourt AP,
San Diego, 2001).

[37] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, 6th ed.,
(Harcourt AP, San Diego, 2000)

[38] J. König, H. Schoeller and G. Schön, Phys. Rev. Lett. 78, 4482 (1997).

[39] A.J. Leggett et al., Rev. Mod Phys. 59, 1 (1987).

[40] M. Grifoni, E. Paladino and U. Weiss, Eur. Phys. J. B 10, 719 (1999).

78



[41] A. Abragam, Principles of Nuclear Magnetism, (Oxford University Press, Oxford,
1961).

[42] G.D. Mahan, Many-Particle Physics, 3rd ed., (Kluwer Academic / Plenum Publishers,
New York, 2000).

[43] H. Quin, A.W. Holleitner, K. Eberl and R.H. Blick, Phys. Rev. B 64, R241302 (2001).

[44] A.W. Holleitner et al., Science 297, 70 (2002).
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