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Recent experiments [1] allowed to approach an answer on a fundamental question: what are the size limita- 
tions for the existence of superconductivity? In this paper we develop a theoretical investigation of the low 
temperature behavior of ultrasmall metallic particles with BCS interaction and discrete spectrum of electron 
levels (characterized by the energy level spacing d). We find that  the value of a superconducting gap depends 
on the level spacing and the electron number parity, being so much smaller in the odd than the even case that  
these differences should be measurable in current experiments. 

Very recently a dramatic development in fabrica- 
tion of utrasmall metallic particles has been achieved 
in experiments by Black, Ralph and Tinkham (BRT) 
[1], who have constructed a single-electron transistor 
(SET) with a single nm-scale AI grain, being more 
than four orders of magnitude smaller in volume (es- 
t imated radii between r .-. 5.1 and 13 nm) than that 
of conventional SETs. Thus a new energy scale, tbe 
average level spacing d = 1/N(E~.) between discrete 
electronic levels, enters the problem. 

The eigenenergies of the larger grains studied 
by BRT revealed the existence of an excitation gap 
f~ > d which is driven continuously to zero by an 
applied magnetic field, and striking gap-dependent 
parity effects, i.e. differences between islands with 
an even or odd [P = e/o] number of electrons. BRT 
very convincingly interpreted these phenomena as 
evidence for superconductivity. 

These experiments allowed to aproach the an- 
swers on fundamental questions: What are the size 
limitations for the existence of superconductivity? 
And how do they depend on parity? This paper is 
devoted to a mean field study of tile above problems. 
In particular, we calculate tile superconducting gap 
A(d, 0) and Tr by solving the BCS gap equation 
at T = 0 and Ap = 0, respectively. 

As fluctuations in particle number of small grains 
are strongly suppressed by the charging energy, it is 
reasonable to consider a completely isolated grain, 
which should be described using a canonical ensem- 
ble with a prescribed number of electrons n = 2re+p, 
where p = (0, 1) for P = (c,o) (the labels p, P and 
also n will be used interchangeably as parity labels 

below). We adopt a model Hamiltonian having tile 
standard reduced BCS form: 

f /  ~ - - ~ 0 t  c. ~ t  t c- = ejcj'a 1 o -  Ad~-~ Ci+CiC j -  ] + .  (1) 
ja ij 

Itere eJo creates an electron. The states I J+) and 
I J - )  are degenerate, time-reversed partners. For a 
given n = 2m + p, we take j = 0 to describe the first 
energy level whose occupation in the T = 0 Fermi 
sea is not 2 but p, so that j = - m , . . . o o .  Finally, 
tile dimensionless coupling constant A-1 = I n - ~  is 
regarded as a phenomenological parameter. 

We shall stick to the approach [2, 3] and calculate 
an auxiliary parity-projected grand-canonical parti- 
tion function, 

Zg(#)  ~ Tra�89 + (--)N]e -act~-oR) = e -an~(~) , 
(2) 

from which the desired fixed-n partition function Zn 
can be exactly projected by integration: 

; du iun G Zn = . ~-~e- Zp(iu/l~) . (3) 

As usually it is hard to perform the integration ex- 
actly, we approximate the integral by its saddle point 
value, Z .  ~_e-am'nZa(#,.), where/~, is fixed by 

. [= <N)p ]. (4) 

We evaluate Zg  using a mean-field approach, us- 

ing 7njo = U n j e n j a  - -  O'VnjCtnj_a. One obtains tile 

usual results f l - - I ,nlV -- C,  + ~ j o  t "~ Enja~lja"[njo , 
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where E,,io - [r + A~,] ' /2  , E'*i -= c ~ - t ' '*, and 

2 = � 8 9  r Eq. (2) ca,, be rewritten v'* i 
[2] using quasiparticle-parity projection, Z ~ ( i t n ) =  
, z_a) ,  ~(Z+ :1: where 

= e - " c "  1-I(1  �9 (5)  
j a  

T h e  usual mean-f ie ld self-consistency cond i t ion  
At, = A d ~ ( c j _ c . i + ) p  takes the form 

X - -  2E , j  1 -  f.j~, , (6) 
IJl<o~,/d 

where fnia -- (~[~ia"[nia)P (see [2, 3]). Tile above de- 
scription thus involves tim usual BCS quasiparticles, 
but their number parity is restricted to bcp. 

Let us consider the case of equal level spac- 
0 = ing, ej = j d  + r ~ Using n = 

- = ~-~j,7 (v2ni + (u~i Eq. (4) gives [2] It,, 
_ 6 . , . .  
We first study the gap equation (6) at T = 0. 

The quasiparticle occupation function reduces to 
f,,ia 1 = 7~io6p, o at T = 0, as intuitively expected, be- 
cause then the even or odd systems have exactly zero 
or one quasiparticle, tile latter in tile lowest quasi- 
particle state, namely j = 0. This e/o difference has 
a strong impact on the T = 0 gap equation: in the 
odd case, tile j = 0 level, for which E~i I is largest, is 
absent, reflecting the fact that  the odd quasiparticle 
in the j = 0 state obstructs pair scattering involv- 
ing this state. To compensate this missing term, Ao 
must therefore become significantly smaller than A~ 
as soon as d is large enough that a single term be- 
comes significant relative to the complete sum. 

The full solutions of Eq. (6) for At , (d ,T) ,  ob- 
tained numerically, are shown in Figure�9 The critical 
values dc,p at which Ap(dc,p,O) = 0 can be found 
analytically by setting A p = T = O  in Eq. (6): 

dc o dr 2e. r 3.56 and �89 "r _ 0.890 . . . . . .  - -  , - ~  , ~ , ' , . ,  s  s , 

(7) 
where ~ is the macroscopic order parameter. For 
d / ~  << 1 and T = 0 the even gap has the form 

A,(d, 0) = s  V ~ e - 2 r A / a ) ;  in contrast, one 
easily finds from Eq. (6) that the odd gap drops lin- 
early, Ao(d, O) = A - d/2, in agreement with [2, 3]. 

An important general feature of our results is 
that level discreteness always reduces Ap(d ,0)  be- 
low ~x. The most important  conclusion of this pa- 
per is summarized by Figure and Eq. (7): there is a 

A B 

T[Zr ~ ~ ~( 

large regime in which Ao = 0 while Ae is still ~ ~x, 
in other words, superconducting correlations vanish 
significantly sooner for odd than even grains as their 
size is reduced. Moreover, the largeness of tile ratio 
dc,e/de,o = 4 opens tile exciting possibility to study 
grains with dc,o < d < de,e, which have Ao = 0 while 
Ae is still • ~X. BRT should be able to test this pre- 
diction directly, since they can change and control 
the electron parity of a given grain�9 

Although in such small systems fluctuations are 
quite large and can in principle change some details 
of our mean-field-based predictions, there are several 
reasons to believe that at least in the (experimen- 
tally accessible) regime of T / d  ~_ O, our main results 
are indeed robust. Without  going into details here 
we only quote one of these reasons: it is well known 
even for systems much smaller than ultrasmall grains 
(that have n .-~ I04), namely shell model nuclei (with 
n ,,- 100), the T = 0 BCS-description of pairing in- 
teractions has been remarkably successful (see e.g. 
[4]), despite the presence of large fluctuations. 

In conclusion, we have investigated the influence 
of parity on the superconducting mean-field order pa- 
rameter in ultrasmall grains. We have found that as 
a function of decreasing grain size, superconductiv- 
ity breaks down in an odd grain significantly earlier 
than in an even grain, which should be observable in 
present experiments. 
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